1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/RegisterPressure.h" 33 #include "llvm/CodeGen/ScheduleDAG.h" 34 #include "llvm/CodeGen/SlotIndexes.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCInst.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Support/raw_ostream.h" 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "ppc-instr-info" 47 48 #define GET_INSTRMAP_INFO 49 #define GET_INSTRINFO_CTOR_DTOR 50 #include "PPCGenInstrInfo.inc" 51 52 STATISTIC(NumStoreSPILLVSRRCAsVec, 53 "Number of spillvsrrc spilled to stack as vec"); 54 STATISTIC(NumStoreSPILLVSRRCAsGpr, 55 "Number of spillvsrrc spilled to stack as gpr"); 56 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 57 STATISTIC(CmpIselsConverted, 58 "Number of ISELs that depend on comparison of constants converted"); 59 STATISTIC(MissedConvertibleImmediateInstrs, 60 "Number of compare-immediate instructions fed by constants"); 61 STATISTIC(NumRcRotatesConvertedToRcAnd, 62 "Number of record-form rotates converted to record-form andi"); 63 64 static cl:: 65 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 66 cl::desc("Disable analysis for CTR loops")); 67 68 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 69 cl::desc("Disable compare instruction optimization"), cl::Hidden); 70 71 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 73 cl::Hidden); 74 75 static cl::opt<bool> 76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 77 cl::desc("Use the old (incorrect) instruction latency calculation")); 78 79 static cl::opt<float> 80 FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), 81 cl::desc("register pressure factor for the transformations.")); 82 83 static cl::opt<bool> EnableFMARegPressureReduction( 84 "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), 85 cl::desc("enable register pressure reduce in machine combiner pass.")); 86 87 // Pin the vtable to this file. 88 void PPCInstrInfo::anchor() {} 89 90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 91 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 92 /* CatchRetOpcode */ -1, 93 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 94 Subtarget(STI), RI(STI.getTargetMachine()) {} 95 96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 97 /// this target when scheduling the DAG. 98 ScheduleHazardRecognizer * 99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 100 const ScheduleDAG *DAG) const { 101 unsigned Directive = 102 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 103 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 104 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 105 const InstrItineraryData *II = 106 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 107 return new ScoreboardHazardRecognizer(II, DAG); 108 } 109 110 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 111 } 112 113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 114 /// to use for this target when scheduling the DAG. 115 ScheduleHazardRecognizer * 116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 117 const ScheduleDAG *DAG) const { 118 unsigned Directive = 119 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 120 121 // FIXME: Leaving this as-is until we have POWER9 scheduling info 122 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 123 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 124 125 // Most subtargets use a PPC970 recognizer. 126 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 127 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 128 assert(DAG->TII && "No InstrInfo?"); 129 130 return new PPCHazardRecognizer970(*DAG); 131 } 132 133 return new ScoreboardHazardRecognizer(II, DAG); 134 } 135 136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 137 const MachineInstr &MI, 138 unsigned *PredCost) const { 139 if (!ItinData || UseOldLatencyCalc) 140 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 141 142 // The default implementation of getInstrLatency calls getStageLatency, but 143 // getStageLatency does not do the right thing for us. While we have 144 // itinerary, most cores are fully pipelined, and so the itineraries only 145 // express the first part of the pipeline, not every stage. Instead, we need 146 // to use the listed output operand cycle number (using operand 0 here, which 147 // is an output). 148 149 unsigned Latency = 1; 150 unsigned DefClass = MI.getDesc().getSchedClass(); 151 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 152 const MachineOperand &MO = MI.getOperand(i); 153 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 154 continue; 155 156 int Cycle = ItinData->getOperandCycle(DefClass, i); 157 if (Cycle < 0) 158 continue; 159 160 Latency = std::max(Latency, (unsigned) Cycle); 161 } 162 163 return Latency; 164 } 165 166 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 167 const MachineInstr &DefMI, unsigned DefIdx, 168 const MachineInstr &UseMI, 169 unsigned UseIdx) const { 170 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 171 UseMI, UseIdx); 172 173 if (!DefMI.getParent()) 174 return Latency; 175 176 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 177 Register Reg = DefMO.getReg(); 178 179 bool IsRegCR; 180 if (Register::isVirtualRegister(Reg)) { 181 const MachineRegisterInfo *MRI = 182 &DefMI.getParent()->getParent()->getRegInfo(); 183 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 184 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 185 } else { 186 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 187 PPC::CRBITRCRegClass.contains(Reg); 188 } 189 190 if (UseMI.isBranch() && IsRegCR) { 191 if (Latency < 0) 192 Latency = getInstrLatency(ItinData, DefMI); 193 194 // On some cores, there is an additional delay between writing to a condition 195 // register, and using it from a branch. 196 unsigned Directive = Subtarget.getCPUDirective(); 197 switch (Directive) { 198 default: break; 199 case PPC::DIR_7400: 200 case PPC::DIR_750: 201 case PPC::DIR_970: 202 case PPC::DIR_E5500: 203 case PPC::DIR_PWR4: 204 case PPC::DIR_PWR5: 205 case PPC::DIR_PWR5X: 206 case PPC::DIR_PWR6: 207 case PPC::DIR_PWR6X: 208 case PPC::DIR_PWR7: 209 case PPC::DIR_PWR8: 210 // FIXME: Is this needed for POWER9? 211 Latency += 2; 212 break; 213 } 214 } 215 216 return Latency; 217 } 218 219 /// This is an architecture-specific helper function of reassociateOps. 220 /// Set special operand attributes for new instructions after reassociation. 221 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 222 MachineInstr &OldMI2, 223 MachineInstr &NewMI1, 224 MachineInstr &NewMI2) const { 225 // Propagate FP flags from the original instructions. 226 // But clear poison-generating flags because those may not be valid now. 227 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 228 NewMI1.setFlags(IntersectedFlags); 229 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 230 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 231 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 232 233 NewMI2.setFlags(IntersectedFlags); 234 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 235 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 236 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 237 } 238 239 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 240 uint16_t Flags) const { 241 MI.setFlags(Flags); 242 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 243 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 244 MI.clearFlag(MachineInstr::MIFlag::IsExact); 245 } 246 247 // This function does not list all associative and commutative operations, but 248 // only those worth feeding through the machine combiner in an attempt to 249 // reduce the critical path. Mostly, this means floating-point operations, 250 // because they have high latencies(>=5) (compared to other operations, such as 251 // and/or, which are also associative and commutative, but have low latencies). 252 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 253 switch (Inst.getOpcode()) { 254 // Floating point: 255 // FP Add: 256 case PPC::FADD: 257 case PPC::FADDS: 258 // FP Multiply: 259 case PPC::FMUL: 260 case PPC::FMULS: 261 // Altivec Add: 262 case PPC::VADDFP: 263 // VSX Add: 264 case PPC::XSADDDP: 265 case PPC::XVADDDP: 266 case PPC::XVADDSP: 267 case PPC::XSADDSP: 268 // VSX Multiply: 269 case PPC::XSMULDP: 270 case PPC::XVMULDP: 271 case PPC::XVMULSP: 272 case PPC::XSMULSP: 273 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 274 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 275 // Fixed point: 276 // Multiply: 277 case PPC::MULHD: 278 case PPC::MULLD: 279 case PPC::MULHW: 280 case PPC::MULLW: 281 return true; 282 default: 283 return false; 284 } 285 } 286 287 #define InfoArrayIdxFMAInst 0 288 #define InfoArrayIdxFAddInst 1 289 #define InfoArrayIdxFMULInst 2 290 #define InfoArrayIdxAddOpIdx 3 291 #define InfoArrayIdxMULOpIdx 4 292 #define InfoArrayIdxFSubInst 5 293 // Array keeps info for FMA instructions: 294 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 295 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; 296 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; 297 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 298 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 299 // second MUL operand index is plus 1; 300 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. 301 static const uint16_t FMAOpIdxInfo[][6] = { 302 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 303 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, 304 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, 305 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, 306 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, 307 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, 308 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; 309 310 // Check if an opcode is a FMA instruction. If it is, return the index in array 311 // FMAOpIdxInfo. Otherwise, return -1. 312 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 313 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) 314 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 315 return I; 316 return -1; 317 } 318 319 // On PowerPC target, we have two kinds of patterns related to FMA: 320 // 1: Improve ILP. 321 // Try to reassociate FMA chains like below: 322 // 323 // Pattern 1: 324 // A = FADD X, Y (Leaf) 325 // B = FMA A, M21, M22 (Prev) 326 // C = FMA B, M31, M32 (Root) 327 // --> 328 // A = FMA X, M21, M22 329 // B = FMA Y, M31, M32 330 // C = FADD A, B 331 // 332 // Pattern 2: 333 // A = FMA X, M11, M12 (Leaf) 334 // B = FMA A, M21, M22 (Prev) 335 // C = FMA B, M31, M32 (Root) 336 // --> 337 // A = FMUL M11, M12 338 // B = FMA X, M21, M22 339 // D = FMA A, M31, M32 340 // C = FADD B, D 341 // 342 // breaking the dependency between A and B, allowing FMA to be executed in 343 // parallel (or back-to-back in a pipeline) instead of depending on each other. 344 // 345 // 2: Reduce register pressure. 346 // Try to reassociate FMA with FSUB and a constant like below: 347 // C is a floating point const. 348 // 349 // Pattern 1: 350 // A = FSUB X, Y (Leaf) 351 // D = FMA B, C, A (Root) 352 // --> 353 // A = FMA B, Y, -C 354 // D = FMA A, X, C 355 // 356 // Pattern 2: 357 // A = FSUB X, Y (Leaf) 358 // D = FMA B, A, C (Root) 359 // --> 360 // A = FMA B, Y, -C 361 // D = FMA A, X, C 362 // 363 // Before the transformation, A must be assigned with different hardware 364 // register with D. After the transformation, A and D must be assigned with 365 // same hardware register due to TIE attribute of FMA instructions. 366 // 367 bool PPCInstrInfo::getFMAPatterns( 368 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 369 bool DoRegPressureReduce) const { 370 MachineBasicBlock *MBB = Root.getParent(); 371 const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); 372 const TargetRegisterInfo *TRI = &getRegisterInfo(); 373 374 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 375 for (const auto &MO : Instr.explicit_operands()) 376 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 377 return false; 378 return true; 379 }; 380 381 auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, 382 unsigned OpType) { 383 if (Instr.getOpcode() != 384 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) 385 return false; 386 387 // Instruction can be reassociated. 388 // fast math flags may prohibit reassociation. 389 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 390 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 391 return false; 392 393 // Instruction operands are virtual registers for reassociation. 394 if (!IsAllOpsVirtualReg(Instr)) 395 return false; 396 397 // For register pressure reassociation, the FSub must have only one use as 398 // we want to delete the sub to save its def. 399 if (OpType == InfoArrayIdxFSubInst && 400 !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) 401 return false; 402 403 return true; 404 }; 405 406 auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 407 int16_t &MulOpIdx, bool IsLeaf) { 408 int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); 409 if (Idx < 0) 410 return false; 411 412 // Instruction can be reassociated. 413 // fast math flags may prohibit reassociation. 414 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 415 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 416 return false; 417 418 // Instruction operands are virtual registers for reassociation. 419 if (!IsAllOpsVirtualReg(Instr)) 420 return false; 421 422 MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 423 if (IsLeaf) 424 return true; 425 426 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 427 428 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 429 MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); 430 // If 'add' operand's def is not in current block, don't do ILP related opt. 431 if (!MIAdd || MIAdd->getParent() != MBB) 432 return false; 433 434 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 435 // as this fma will be changed later. 436 return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); 437 }; 438 439 int16_t AddOpIdx = -1; 440 int16_t MulOpIdx = -1; 441 442 bool IsUsedOnceL = false; 443 bool IsUsedOnceR = false; 444 MachineInstr *MULInstrL = nullptr; 445 MachineInstr *MULInstrR = nullptr; 446 447 auto IsRPReductionCandidate = [&]() { 448 // Currently, we only support float and double. 449 // FIXME: add support for other types. 450 unsigned Opcode = Root.getOpcode(); 451 if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) 452 return false; 453 454 // Root must be a valid FMA like instruction. 455 // Treat it as leaf as we don't care its add operand. 456 if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { 457 assert((MulOpIdx >= 0) && "mul operand index not right!"); 458 Register MULRegL = TRI->lookThruSingleUseCopyChain( 459 Root.getOperand(MulOpIdx).getReg(), MRI); 460 Register MULRegR = TRI->lookThruSingleUseCopyChain( 461 Root.getOperand(MulOpIdx + 1).getReg(), MRI); 462 if (!MULRegL && !MULRegR) 463 return false; 464 465 if (MULRegL && !MULRegR) { 466 MULRegR = 467 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); 468 IsUsedOnceL = true; 469 } else if (!MULRegL && MULRegR) { 470 MULRegL = 471 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); 472 IsUsedOnceR = true; 473 } else { 474 IsUsedOnceL = true; 475 IsUsedOnceR = true; 476 } 477 478 if (!Register::isVirtualRegister(MULRegL) || 479 !Register::isVirtualRegister(MULRegR)) 480 return false; 481 482 MULInstrL = MRI->getVRegDef(MULRegL); 483 MULInstrR = MRI->getVRegDef(MULRegR); 484 return true; 485 } 486 return false; 487 }; 488 489 // Register pressure fma reassociation patterns. 490 if (DoRegPressureReduce && IsRPReductionCandidate()) { 491 assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); 492 // Register pressure pattern 1 493 if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && 494 IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { 495 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); 496 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); 497 return true; 498 } 499 500 // Register pressure pattern 2 501 if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && 502 IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { 503 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); 504 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); 505 return true; 506 } 507 } 508 509 // ILP fma reassociation patterns. 510 // Root must be a valid FMA like instruction. 511 AddOpIdx = -1; 512 if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) 513 return false; 514 515 assert((AddOpIdx >= 0) && "add operand index not right!"); 516 517 Register RegB = Root.getOperand(AddOpIdx).getReg(); 518 MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); 519 520 // Prev must be a valid FMA like instruction. 521 AddOpIdx = -1; 522 if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) 523 return false; 524 525 assert((AddOpIdx >= 0) && "add operand index not right!"); 526 527 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 528 MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); 529 AddOpIdx = -1; 530 if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { 531 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 532 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); 533 return true; 534 } 535 if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { 536 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 537 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); 538 return true; 539 } 540 return false; 541 } 542 543 void PPCInstrInfo::finalizeInsInstrs( 544 MachineInstr &Root, MachineCombinerPattern &P, 545 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 546 assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); 547 548 MachineFunction *MF = Root.getMF(); 549 MachineRegisterInfo *MRI = &MF->getRegInfo(); 550 const TargetRegisterInfo *TRI = &getRegisterInfo(); 551 MachineConstantPool *MCP = MF->getConstantPool(); 552 553 int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); 554 if (Idx < 0) 555 return; 556 557 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 558 559 // For now we only need to fix up placeholder for register pressure reduce 560 // patterns. 561 Register ConstReg = 0; 562 switch (P) { 563 case MachineCombinerPattern::REASSOC_XY_BCA: 564 ConstReg = 565 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); 566 break; 567 case MachineCombinerPattern::REASSOC_XY_BAC: 568 ConstReg = 569 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); 570 break; 571 default: 572 // Not register pressure reduce patterns. 573 return; 574 } 575 576 MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); 577 // Get const value from const pool. 578 const Constant *C = getConstantFromConstantPool(ConstDefInstr); 579 assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); 580 581 // Get negative fp const. 582 APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); 583 F1.changeSign(); 584 Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); 585 Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); 586 587 // Put negative fp const into constant pool. 588 unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); 589 590 MachineOperand *Placeholder = nullptr; 591 // Record the placeholder PPC::ZERO8 we add in reassociateFMA. 592 for (auto *Inst : InsInstrs) { 593 for (MachineOperand &Operand : Inst->explicit_operands()) { 594 assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); 595 if (Operand.getReg() == PPC::ZERO8) { 596 Placeholder = &Operand; 597 break; 598 } 599 } 600 } 601 602 assert(Placeholder && "Placeholder does not exist!"); 603 604 // Generate instructions to load the const fp from constant pool. 605 // We only support PPC64 and medium code model. 606 Register LoadNewConst = 607 generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); 608 609 // Fill the placeholder with the new load from constant pool. 610 Placeholder->setReg(LoadNewConst); 611 } 612 613 bool PPCInstrInfo::shouldReduceRegisterPressure( 614 MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const { 615 616 if (!EnableFMARegPressureReduction) 617 return false; 618 619 // Currently, we only enable register pressure reducing in machine combiner 620 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector 621 // support. 622 // 623 // So we need following instructions to access a TOC entry: 624 // 625 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 626 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, 627 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) 628 // 629 // FIXME: add more supported targets, like Small and Large code model, PPC32, 630 // AIX. 631 if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && 632 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) 633 return false; 634 635 const TargetRegisterInfo *TRI = &getRegisterInfo(); 636 MachineFunction *MF = MBB->getParent(); 637 MachineRegisterInfo *MRI = &MF->getRegInfo(); 638 639 auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> { 640 RegionPressure Pressure; 641 RegPressureTracker RPTracker(Pressure); 642 643 // Initialize the register pressure tracker. 644 RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), 645 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 646 647 for (MachineBasicBlock::iterator MII = MBB->instr_end(), 648 MIE = MBB->instr_begin(); 649 MII != MIE; --MII) { 650 MachineInstr &MI = *std::prev(MII); 651 if (MI.isDebugValue() || MI.isDebugLabel()) 652 continue; 653 RegisterOperands RegOpers; 654 RegOpers.collect(MI, *TRI, *MRI, false, false); 655 RPTracker.recedeSkipDebugValues(); 656 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 657 RPTracker.recede(RegOpers); 658 } 659 660 // Close the RPTracker to finalize live ins. 661 RPTracker.closeRegion(); 662 663 return RPTracker.getPressure().MaxSetPressure; 664 }; 665 666 // For now we only care about float and double type fma. 667 unsigned VSSRCLimit = TRI->getRegPressureSetLimit( 668 *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); 669 670 // Only reduce register pressure when pressure is high. 671 return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > 672 (float)VSSRCLimit * FMARPFactor; 673 } 674 675 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { 676 // I has only one memory operand which is load from constant pool. 677 if (!I->hasOneMemOperand()) 678 return false; 679 680 MachineMemOperand *Op = I->memoperands()[0]; 681 return Op->isLoad() && Op->getPseudoValue() && 682 Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; 683 } 684 685 Register PPCInstrInfo::generateLoadForNewConst( 686 unsigned Idx, MachineInstr *MI, Type *Ty, 687 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 688 // Now we only support PPC64, Medium code model and P9 with vector. 689 // We have immutable pattern to access const pool. See function 690 // shouldReduceRegisterPressure. 691 assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && 692 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && 693 "Target not supported!\n"); 694 695 MachineFunction *MF = MI->getMF(); 696 MachineRegisterInfo *MRI = &MF->getRegInfo(); 697 698 // Generate ADDIStocHA8 699 Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 700 MachineInstrBuilder TOCOffset = 701 BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) 702 .addReg(PPC::X2) 703 .addConstantPoolIndex(Idx); 704 705 assert((Ty->isFloatTy() || Ty->isDoubleTy()) && 706 "Only float and double are supported!"); 707 708 unsigned LoadOpcode; 709 // Should be float type or double type. 710 if (Ty->isFloatTy()) 711 LoadOpcode = PPC::DFLOADf32; 712 else 713 LoadOpcode = PPC::DFLOADf64; 714 715 const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); 716 Register VReg2 = MRI->createVirtualRegister(RC); 717 MachineMemOperand *MMO = MF->getMachineMemOperand( 718 MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 719 Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); 720 721 // Generate Load from constant pool. 722 MachineInstrBuilder Load = 723 BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) 724 .addConstantPoolIndex(Idx) 725 .addReg(VReg1, getKillRegState(true)) 726 .addMemOperand(MMO); 727 728 Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); 729 730 // Insert the toc load instructions into InsInstrs. 731 InsInstrs.insert(InsInstrs.begin(), Load); 732 InsInstrs.insert(InsInstrs.begin(), TOCOffset); 733 return VReg2; 734 } 735 736 // This function returns the const value in constant pool if the \p I is a load 737 // from constant pool. 738 const Constant * 739 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { 740 MachineFunction *MF = I->getMF(); 741 MachineRegisterInfo *MRI = &MF->getRegInfo(); 742 MachineConstantPool *MCP = MF->getConstantPool(); 743 assert(I->mayLoad() && "Should be a load instruction.\n"); 744 for (auto MO : I->uses()) { 745 if (!MO.isReg()) 746 continue; 747 Register Reg = MO.getReg(); 748 if (Reg == 0 || !Register::isVirtualRegister(Reg)) 749 continue; 750 // Find the toc address. 751 MachineInstr *DefMI = MRI->getVRegDef(Reg); 752 for (auto MO2 : DefMI->uses()) 753 if (MO2.isCPI()) 754 return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; 755 } 756 return nullptr; 757 } 758 759 bool PPCInstrInfo::getMachineCombinerPatterns( 760 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 761 bool DoRegPressureReduce) const { 762 // Using the machine combiner in this way is potentially expensive, so 763 // restrict to when aggressive optimizations are desired. 764 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 765 return false; 766 767 if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) 768 return true; 769 770 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 771 DoRegPressureReduce); 772 } 773 774 void PPCInstrInfo::genAlternativeCodeSequence( 775 MachineInstr &Root, MachineCombinerPattern Pattern, 776 SmallVectorImpl<MachineInstr *> &InsInstrs, 777 SmallVectorImpl<MachineInstr *> &DelInstrs, 778 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 779 switch (Pattern) { 780 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 781 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 782 case MachineCombinerPattern::REASSOC_XY_BCA: 783 case MachineCombinerPattern::REASSOC_XY_BAC: 784 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 785 break; 786 default: 787 // Reassociate default patterns. 788 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 789 DelInstrs, InstrIdxForVirtReg); 790 break; 791 } 792 } 793 794 void PPCInstrInfo::reassociateFMA( 795 MachineInstr &Root, MachineCombinerPattern Pattern, 796 SmallVectorImpl<MachineInstr *> &InsInstrs, 797 SmallVectorImpl<MachineInstr *> &DelInstrs, 798 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 799 MachineFunction *MF = Root.getMF(); 800 MachineRegisterInfo &MRI = MF->getRegInfo(); 801 const TargetRegisterInfo *TRI = &getRegisterInfo(); 802 MachineOperand &OpC = Root.getOperand(0); 803 Register RegC = OpC.getReg(); 804 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 805 MRI.constrainRegClass(RegC, RC); 806 807 unsigned FmaOp = Root.getOpcode(); 808 int16_t Idx = getFMAOpIdxInfo(FmaOp); 809 assert(Idx >= 0 && "Root must be a FMA instruction"); 810 811 bool IsILPReassociate = 812 (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || 813 (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 814 815 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 816 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 817 818 MachineInstr *Prev = nullptr; 819 MachineInstr *Leaf = nullptr; 820 switch (Pattern) { 821 default: 822 llvm_unreachable("not recognized pattern!"); 823 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 824 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 825 Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 826 Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 827 break; 828 case MachineCombinerPattern::REASSOC_XY_BAC: { 829 Register MULReg = 830 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); 831 Leaf = MRI.getVRegDef(MULReg); 832 break; 833 } 834 case MachineCombinerPattern::REASSOC_XY_BCA: { 835 Register MULReg = TRI->lookThruCopyLike( 836 Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); 837 Leaf = MRI.getVRegDef(MULReg); 838 break; 839 } 840 } 841 842 uint16_t IntersectedFlags = 0; 843 if (IsILPReassociate) 844 IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 845 else 846 IntersectedFlags = Root.getFlags() & Leaf->getFlags(); 847 848 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 849 bool &KillFlag) { 850 Reg = Operand.getReg(); 851 MRI.constrainRegClass(Reg, RC); 852 KillFlag = Operand.isKill(); 853 }; 854 855 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 856 Register &MulOp2, Register &AddOp, 857 bool &MulOp1KillFlag, bool &MulOp2KillFlag, 858 bool &AddOpKillFlag) { 859 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 860 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 861 GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); 862 }; 863 864 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, 865 RegA21, RegB; 866 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 867 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, 868 KillA11 = false, KillA21 = false, KillB = false; 869 870 GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); 871 872 if (IsILPReassociate) 873 GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); 874 875 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 876 GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); 877 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 878 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 879 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 880 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 881 } else { 882 // Get FSUB instruction info. 883 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 884 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 885 } 886 887 // Create new virtual registers for the new results instead of 888 // recycling legacy ones because the MachineCombiner's computation of the 889 // critical path requires a new register definition rather than an existing 890 // one. 891 // For register pressure reassociation, we only need create one virtual 892 // register for the new fma. 893 Register NewVRA = MRI.createVirtualRegister(RC); 894 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 895 896 Register NewVRB = 0; 897 if (IsILPReassociate) { 898 NewVRB = MRI.createVirtualRegister(RC); 899 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 900 } 901 902 Register NewVRD = 0; 903 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 904 NewVRD = MRI.createVirtualRegister(RC); 905 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 906 } 907 908 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 909 Register RegMul1, bool KillRegMul1, 910 Register RegMul2, bool KillRegMul2) { 911 MI->getOperand(AddOpIdx).setReg(RegAdd); 912 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 913 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 914 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 915 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 916 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 917 }; 918 919 MachineInstrBuilder NewARegPressure, NewCRegPressure; 920 switch (Pattern) { 921 default: 922 llvm_unreachable("not recognized pattern!"); 923 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { 924 // Create new instructions for insertion. 925 MachineInstrBuilder MINewB = 926 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 927 .addReg(RegX, getKillRegState(KillX)) 928 .addReg(RegM21, getKillRegState(KillM21)) 929 .addReg(RegM22, getKillRegState(KillM22)); 930 MachineInstrBuilder MINewA = 931 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 932 .addReg(RegY, getKillRegState(KillY)) 933 .addReg(RegM31, getKillRegState(KillM31)) 934 .addReg(RegM32, getKillRegState(KillM32)); 935 // If AddOpIdx is not 1, adjust the order. 936 if (AddOpIdx != 1) { 937 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 938 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 939 } 940 941 MachineInstrBuilder MINewC = 942 BuildMI(*MF, Root.getDebugLoc(), 943 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 944 .addReg(NewVRB, getKillRegState(true)) 945 .addReg(NewVRA, getKillRegState(true)); 946 947 // Update flags for newly created instructions. 948 setSpecialOperandAttr(*MINewA, IntersectedFlags); 949 setSpecialOperandAttr(*MINewB, IntersectedFlags); 950 setSpecialOperandAttr(*MINewC, IntersectedFlags); 951 952 // Record new instructions for insertion. 953 InsInstrs.push_back(MINewA); 954 InsInstrs.push_back(MINewB); 955 InsInstrs.push_back(MINewC); 956 break; 957 } 958 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { 959 assert(NewVRD && "new FMA register not created!"); 960 // Create new instructions for insertion. 961 MachineInstrBuilder MINewA = 962 BuildMI(*MF, Leaf->getDebugLoc(), 963 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 964 .addReg(RegM11, getKillRegState(KillM11)) 965 .addReg(RegM12, getKillRegState(KillM12)); 966 MachineInstrBuilder MINewB = 967 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 968 .addReg(RegX, getKillRegState(KillX)) 969 .addReg(RegM21, getKillRegState(KillM21)) 970 .addReg(RegM22, getKillRegState(KillM22)); 971 MachineInstrBuilder MINewD = 972 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 973 .addReg(NewVRA, getKillRegState(true)) 974 .addReg(RegM31, getKillRegState(KillM31)) 975 .addReg(RegM32, getKillRegState(KillM32)); 976 // If AddOpIdx is not 1, adjust the order. 977 if (AddOpIdx != 1) { 978 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 979 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 980 KillM32); 981 } 982 983 MachineInstrBuilder MINewC = 984 BuildMI(*MF, Root.getDebugLoc(), 985 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 986 .addReg(NewVRB, getKillRegState(true)) 987 .addReg(NewVRD, getKillRegState(true)); 988 989 // Update flags for newly created instructions. 990 setSpecialOperandAttr(*MINewA, IntersectedFlags); 991 setSpecialOperandAttr(*MINewB, IntersectedFlags); 992 setSpecialOperandAttr(*MINewD, IntersectedFlags); 993 setSpecialOperandAttr(*MINewC, IntersectedFlags); 994 995 // Record new instructions for insertion. 996 InsInstrs.push_back(MINewA); 997 InsInstrs.push_back(MINewB); 998 InsInstrs.push_back(MINewD); 999 InsInstrs.push_back(MINewC); 1000 break; 1001 } 1002 case MachineCombinerPattern::REASSOC_XY_BAC: 1003 case MachineCombinerPattern::REASSOC_XY_BCA: { 1004 Register VarReg; 1005 bool KillVarReg = false; 1006 if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { 1007 VarReg = RegM31; 1008 KillVarReg = KillM31; 1009 } else { 1010 VarReg = RegM32; 1011 KillVarReg = KillM32; 1012 } 1013 // We don't want to get negative const from memory pool too early, as the 1014 // created entry will not be deleted even if it has no users. Since all 1015 // operand of Leaf and Root are virtual register, we use zero register 1016 // here as a placeholder. When the InsInstrs is selected in 1017 // MachineCombiner, we call finalizeInsInstrs to replace the zero register 1018 // with a virtual register which is a load from constant pool. 1019 NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 1020 .addReg(RegB, getKillRegState(RegB)) 1021 .addReg(RegY, getKillRegState(KillY)) 1022 .addReg(PPC::ZERO8); 1023 NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) 1024 .addReg(NewVRA, getKillRegState(true)) 1025 .addReg(RegX, getKillRegState(KillX)) 1026 .addReg(VarReg, getKillRegState(KillVarReg)); 1027 // For now, we only support xsmaddadp/xsmaddasp, their add operand are 1028 // both at index 1, no need to adjust. 1029 // FIXME: when add more fma instructions support, like fma/fmas, adjust 1030 // the operand index here. 1031 break; 1032 } 1033 } 1034 1035 if (!IsILPReassociate) { 1036 setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); 1037 setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); 1038 1039 InsInstrs.push_back(NewARegPressure); 1040 InsInstrs.push_back(NewCRegPressure); 1041 } 1042 1043 assert(!InsInstrs.empty() && 1044 "Insertion instructions set should not be empty!"); 1045 1046 // Record old instructions for deletion. 1047 DelInstrs.push_back(Leaf); 1048 if (IsILPReassociate) 1049 DelInstrs.push_back(Prev); 1050 DelInstrs.push_back(&Root); 1051 } 1052 1053 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 1054 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 1055 Register &SrcReg, Register &DstReg, 1056 unsigned &SubIdx) const { 1057 switch (MI.getOpcode()) { 1058 default: return false; 1059 case PPC::EXTSW: 1060 case PPC::EXTSW_32: 1061 case PPC::EXTSW_32_64: 1062 SrcReg = MI.getOperand(1).getReg(); 1063 DstReg = MI.getOperand(0).getReg(); 1064 SubIdx = PPC::sub_32; 1065 return true; 1066 } 1067 } 1068 1069 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1070 int &FrameIndex) const { 1071 unsigned Opcode = MI.getOpcode(); 1072 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1073 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 1074 1075 if (End != std::find(OpcodesForSpill, End, Opcode)) { 1076 // Check for the operands added by addFrameReference (the immediate is the 1077 // offset which defaults to 0). 1078 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1079 MI.getOperand(2).isFI()) { 1080 FrameIndex = MI.getOperand(2).getIndex(); 1081 return MI.getOperand(0).getReg(); 1082 } 1083 } 1084 return 0; 1085 } 1086 1087 // For opcodes with the ReMaterializable flag set, this function is called to 1088 // verify the instruction is really rematable. 1089 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 1090 AliasAnalysis *AA) const { 1091 switch (MI.getOpcode()) { 1092 default: 1093 // This function should only be called for opcodes with the ReMaterializable 1094 // flag set. 1095 llvm_unreachable("Unknown rematerializable operation!"); 1096 break; 1097 case PPC::LI: 1098 case PPC::LI8: 1099 case PPC::PLI: 1100 case PPC::PLI8: 1101 case PPC::LIS: 1102 case PPC::LIS8: 1103 case PPC::ADDIStocHA: 1104 case PPC::ADDIStocHA8: 1105 case PPC::ADDItocL: 1106 case PPC::LOAD_STACK_GUARD: 1107 case PPC::XXLXORz: 1108 case PPC::XXLXORspz: 1109 case PPC::XXLXORdpz: 1110 case PPC::XXLEQVOnes: 1111 case PPC::V_SET0B: 1112 case PPC::V_SET0H: 1113 case PPC::V_SET0: 1114 case PPC::V_SETALLONESB: 1115 case PPC::V_SETALLONESH: 1116 case PPC::V_SETALLONES: 1117 case PPC::CRSET: 1118 case PPC::CRUNSET: 1119 case PPC::XXSETACCZ: 1120 return true; 1121 } 1122 return false; 1123 } 1124 1125 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1126 int &FrameIndex) const { 1127 unsigned Opcode = MI.getOpcode(); 1128 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1129 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 1130 1131 if (End != std::find(OpcodesForSpill, End, Opcode)) { 1132 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1133 MI.getOperand(2).isFI()) { 1134 FrameIndex = MI.getOperand(2).getIndex(); 1135 return MI.getOperand(0).getReg(); 1136 } 1137 } 1138 return 0; 1139 } 1140 1141 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1142 unsigned OpIdx1, 1143 unsigned OpIdx2) const { 1144 MachineFunction &MF = *MI.getParent()->getParent(); 1145 1146 // Normal instructions can be commuted the obvious way. 1147 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 1148 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1149 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 1150 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 1151 // changing the relative order of the mask operands might change what happens 1152 // to the high-bits of the mask (and, thus, the result). 1153 1154 // Cannot commute if it has a non-zero rotate count. 1155 if (MI.getOperand(3).getImm() != 0) 1156 return nullptr; 1157 1158 // If we have a zero rotate count, we have: 1159 // M = mask(MB,ME) 1160 // Op0 = (Op1 & ~M) | (Op2 & M) 1161 // Change this to: 1162 // M = mask((ME+1)&31, (MB-1)&31) 1163 // Op0 = (Op2 & ~M) | (Op1 & M) 1164 1165 // Swap op1/op2 1166 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 1167 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 1168 Register Reg0 = MI.getOperand(0).getReg(); 1169 Register Reg1 = MI.getOperand(1).getReg(); 1170 Register Reg2 = MI.getOperand(2).getReg(); 1171 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 1172 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 1173 bool Reg1IsKill = MI.getOperand(1).isKill(); 1174 bool Reg2IsKill = MI.getOperand(2).isKill(); 1175 bool ChangeReg0 = false; 1176 // If machine instrs are no longer in two-address forms, update 1177 // destination register as well. 1178 if (Reg0 == Reg1) { 1179 // Must be two address instruction! 1180 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 1181 "Expecting a two-address instruction!"); 1182 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 1183 Reg2IsKill = false; 1184 ChangeReg0 = true; 1185 } 1186 1187 // Masks. 1188 unsigned MB = MI.getOperand(4).getImm(); 1189 unsigned ME = MI.getOperand(5).getImm(); 1190 1191 // We can't commute a trivial mask (there is no way to represent an all-zero 1192 // mask). 1193 if (MB == 0 && ME == 31) 1194 return nullptr; 1195 1196 if (NewMI) { 1197 // Create a new instruction. 1198 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 1199 bool Reg0IsDead = MI.getOperand(0).isDead(); 1200 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 1201 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 1202 .addReg(Reg2, getKillRegState(Reg2IsKill)) 1203 .addReg(Reg1, getKillRegState(Reg1IsKill)) 1204 .addImm((ME + 1) & 31) 1205 .addImm((MB - 1) & 31); 1206 } 1207 1208 if (ChangeReg0) { 1209 MI.getOperand(0).setReg(Reg2); 1210 MI.getOperand(0).setSubReg(SubReg2); 1211 } 1212 MI.getOperand(2).setReg(Reg1); 1213 MI.getOperand(1).setReg(Reg2); 1214 MI.getOperand(2).setSubReg(SubReg1); 1215 MI.getOperand(1).setSubReg(SubReg2); 1216 MI.getOperand(2).setIsKill(Reg1IsKill); 1217 MI.getOperand(1).setIsKill(Reg2IsKill); 1218 1219 // Swap the mask around. 1220 MI.getOperand(4).setImm((ME + 1) & 31); 1221 MI.getOperand(5).setImm((MB - 1) & 31); 1222 return &MI; 1223 } 1224 1225 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 1226 unsigned &SrcOpIdx1, 1227 unsigned &SrcOpIdx2) const { 1228 // For VSX A-Type FMA instructions, it is the first two operands that can be 1229 // commuted, however, because the non-encoded tied input operand is listed 1230 // first, the operands to swap are actually the second and third. 1231 1232 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 1233 if (AltOpc == -1) 1234 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1235 1236 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 1237 // and SrcOpIdx2. 1238 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 1239 } 1240 1241 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 1242 MachineBasicBlock::iterator MI) const { 1243 // This function is used for scheduling, and the nop wanted here is the type 1244 // that terminates dispatch groups on the POWER cores. 1245 unsigned Directive = Subtarget.getCPUDirective(); 1246 unsigned Opcode; 1247 switch (Directive) { 1248 default: Opcode = PPC::NOP; break; 1249 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 1250 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 1251 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 1252 // FIXME: Update when POWER9 scheduling model is ready. 1253 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 1254 } 1255 1256 DebugLoc DL; 1257 BuildMI(MBB, MI, DL, get(Opcode)); 1258 } 1259 1260 /// Return the noop instruction to use for a noop. 1261 MCInst PPCInstrInfo::getNop() const { 1262 MCInst Nop; 1263 Nop.setOpcode(PPC::NOP); 1264 return Nop; 1265 } 1266 1267 // Branch analysis. 1268 // Note: If the condition register is set to CTR or CTR8 then this is a 1269 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 1270 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 1271 MachineBasicBlock *&TBB, 1272 MachineBasicBlock *&FBB, 1273 SmallVectorImpl<MachineOperand> &Cond, 1274 bool AllowModify) const { 1275 bool isPPC64 = Subtarget.isPPC64(); 1276 1277 // If the block has no terminators, it just falls into the block after it. 1278 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1279 if (I == MBB.end()) 1280 return false; 1281 1282 if (!isUnpredicatedTerminator(*I)) 1283 return false; 1284 1285 if (AllowModify) { 1286 // If the BB ends with an unconditional branch to the fallthrough BB, 1287 // we eliminate the branch instruction. 1288 if (I->getOpcode() == PPC::B && 1289 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 1290 I->eraseFromParent(); 1291 1292 // We update iterator after deleting the last branch. 1293 I = MBB.getLastNonDebugInstr(); 1294 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 1295 return false; 1296 } 1297 } 1298 1299 // Get the last instruction in the block. 1300 MachineInstr &LastInst = *I; 1301 1302 // If there is only one terminator instruction, process it. 1303 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 1304 if (LastInst.getOpcode() == PPC::B) { 1305 if (!LastInst.getOperand(0).isMBB()) 1306 return true; 1307 TBB = LastInst.getOperand(0).getMBB(); 1308 return false; 1309 } else if (LastInst.getOpcode() == PPC::BCC) { 1310 if (!LastInst.getOperand(2).isMBB()) 1311 return true; 1312 // Block ends with fall-through condbranch. 1313 TBB = LastInst.getOperand(2).getMBB(); 1314 Cond.push_back(LastInst.getOperand(0)); 1315 Cond.push_back(LastInst.getOperand(1)); 1316 return false; 1317 } else if (LastInst.getOpcode() == PPC::BC) { 1318 if (!LastInst.getOperand(1).isMBB()) 1319 return true; 1320 // Block ends with fall-through condbranch. 1321 TBB = LastInst.getOperand(1).getMBB(); 1322 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1323 Cond.push_back(LastInst.getOperand(0)); 1324 return false; 1325 } else if (LastInst.getOpcode() == PPC::BCn) { 1326 if (!LastInst.getOperand(1).isMBB()) 1327 return true; 1328 // Block ends with fall-through condbranch. 1329 TBB = LastInst.getOperand(1).getMBB(); 1330 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1331 Cond.push_back(LastInst.getOperand(0)); 1332 return false; 1333 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 1334 LastInst.getOpcode() == PPC::BDNZ) { 1335 if (!LastInst.getOperand(0).isMBB()) 1336 return true; 1337 if (DisableCTRLoopAnal) 1338 return true; 1339 TBB = LastInst.getOperand(0).getMBB(); 1340 Cond.push_back(MachineOperand::CreateImm(1)); 1341 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1342 true)); 1343 return false; 1344 } else if (LastInst.getOpcode() == PPC::BDZ8 || 1345 LastInst.getOpcode() == PPC::BDZ) { 1346 if (!LastInst.getOperand(0).isMBB()) 1347 return true; 1348 if (DisableCTRLoopAnal) 1349 return true; 1350 TBB = LastInst.getOperand(0).getMBB(); 1351 Cond.push_back(MachineOperand::CreateImm(0)); 1352 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1353 true)); 1354 return false; 1355 } 1356 1357 // Otherwise, don't know what this is. 1358 return true; 1359 } 1360 1361 // Get the instruction before it if it's a terminator. 1362 MachineInstr &SecondLastInst = *I; 1363 1364 // If there are three terminators, we don't know what sort of block this is. 1365 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 1366 return true; 1367 1368 // If the block ends with PPC::B and PPC:BCC, handle it. 1369 if (SecondLastInst.getOpcode() == PPC::BCC && 1370 LastInst.getOpcode() == PPC::B) { 1371 if (!SecondLastInst.getOperand(2).isMBB() || 1372 !LastInst.getOperand(0).isMBB()) 1373 return true; 1374 TBB = SecondLastInst.getOperand(2).getMBB(); 1375 Cond.push_back(SecondLastInst.getOperand(0)); 1376 Cond.push_back(SecondLastInst.getOperand(1)); 1377 FBB = LastInst.getOperand(0).getMBB(); 1378 return false; 1379 } else if (SecondLastInst.getOpcode() == PPC::BC && 1380 LastInst.getOpcode() == PPC::B) { 1381 if (!SecondLastInst.getOperand(1).isMBB() || 1382 !LastInst.getOperand(0).isMBB()) 1383 return true; 1384 TBB = SecondLastInst.getOperand(1).getMBB(); 1385 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1386 Cond.push_back(SecondLastInst.getOperand(0)); 1387 FBB = LastInst.getOperand(0).getMBB(); 1388 return false; 1389 } else if (SecondLastInst.getOpcode() == PPC::BCn && 1390 LastInst.getOpcode() == PPC::B) { 1391 if (!SecondLastInst.getOperand(1).isMBB() || 1392 !LastInst.getOperand(0).isMBB()) 1393 return true; 1394 TBB = SecondLastInst.getOperand(1).getMBB(); 1395 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1396 Cond.push_back(SecondLastInst.getOperand(0)); 1397 FBB = LastInst.getOperand(0).getMBB(); 1398 return false; 1399 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 1400 SecondLastInst.getOpcode() == PPC::BDNZ) && 1401 LastInst.getOpcode() == PPC::B) { 1402 if (!SecondLastInst.getOperand(0).isMBB() || 1403 !LastInst.getOperand(0).isMBB()) 1404 return true; 1405 if (DisableCTRLoopAnal) 1406 return true; 1407 TBB = SecondLastInst.getOperand(0).getMBB(); 1408 Cond.push_back(MachineOperand::CreateImm(1)); 1409 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1410 true)); 1411 FBB = LastInst.getOperand(0).getMBB(); 1412 return false; 1413 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 1414 SecondLastInst.getOpcode() == PPC::BDZ) && 1415 LastInst.getOpcode() == PPC::B) { 1416 if (!SecondLastInst.getOperand(0).isMBB() || 1417 !LastInst.getOperand(0).isMBB()) 1418 return true; 1419 if (DisableCTRLoopAnal) 1420 return true; 1421 TBB = SecondLastInst.getOperand(0).getMBB(); 1422 Cond.push_back(MachineOperand::CreateImm(0)); 1423 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1424 true)); 1425 FBB = LastInst.getOperand(0).getMBB(); 1426 return false; 1427 } 1428 1429 // If the block ends with two PPC:Bs, handle it. The second one is not 1430 // executed, so remove it. 1431 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 1432 if (!SecondLastInst.getOperand(0).isMBB()) 1433 return true; 1434 TBB = SecondLastInst.getOperand(0).getMBB(); 1435 I = LastInst; 1436 if (AllowModify) 1437 I->eraseFromParent(); 1438 return false; 1439 } 1440 1441 // Otherwise, can't handle this. 1442 return true; 1443 } 1444 1445 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1446 int *BytesRemoved) const { 1447 assert(!BytesRemoved && "code size not handled"); 1448 1449 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1450 if (I == MBB.end()) 1451 return 0; 1452 1453 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1454 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1455 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1456 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1457 return 0; 1458 1459 // Remove the branch. 1460 I->eraseFromParent(); 1461 1462 I = MBB.end(); 1463 1464 if (I == MBB.begin()) return 1; 1465 --I; 1466 if (I->getOpcode() != PPC::BCC && 1467 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1468 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1469 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1470 return 1; 1471 1472 // Remove the branch. 1473 I->eraseFromParent(); 1474 return 2; 1475 } 1476 1477 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1478 MachineBasicBlock *TBB, 1479 MachineBasicBlock *FBB, 1480 ArrayRef<MachineOperand> Cond, 1481 const DebugLoc &DL, 1482 int *BytesAdded) const { 1483 // Shouldn't be a fall through. 1484 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1485 assert((Cond.size() == 2 || Cond.size() == 0) && 1486 "PPC branch conditions have two components!"); 1487 assert(!BytesAdded && "code size not handled"); 1488 1489 bool isPPC64 = Subtarget.isPPC64(); 1490 1491 // One-way branch. 1492 if (!FBB) { 1493 if (Cond.empty()) // Unconditional branch 1494 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1495 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1496 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1497 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1498 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1499 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1500 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1501 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1502 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1503 else // Conditional branch 1504 BuildMI(&MBB, DL, get(PPC::BCC)) 1505 .addImm(Cond[0].getImm()) 1506 .add(Cond[1]) 1507 .addMBB(TBB); 1508 return 1; 1509 } 1510 1511 // Two-way Conditional Branch. 1512 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1513 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1514 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1515 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1516 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1517 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1518 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1519 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1520 else 1521 BuildMI(&MBB, DL, get(PPC::BCC)) 1522 .addImm(Cond[0].getImm()) 1523 .add(Cond[1]) 1524 .addMBB(TBB); 1525 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1526 return 2; 1527 } 1528 1529 // Select analysis. 1530 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1531 ArrayRef<MachineOperand> Cond, 1532 Register DstReg, Register TrueReg, 1533 Register FalseReg, int &CondCycles, 1534 int &TrueCycles, int &FalseCycles) const { 1535 if (Cond.size() != 2) 1536 return false; 1537 1538 // If this is really a bdnz-like condition, then it cannot be turned into a 1539 // select. 1540 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1541 return false; 1542 1543 // Check register classes. 1544 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1545 const TargetRegisterClass *RC = 1546 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1547 if (!RC) 1548 return false; 1549 1550 // isel is for regular integer GPRs only. 1551 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1552 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1553 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1554 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1555 return false; 1556 1557 // FIXME: These numbers are for the A2, how well they work for other cores is 1558 // an open question. On the A2, the isel instruction has a 2-cycle latency 1559 // but single-cycle throughput. These numbers are used in combination with 1560 // the MispredictPenalty setting from the active SchedMachineModel. 1561 CondCycles = 1; 1562 TrueCycles = 1; 1563 FalseCycles = 1; 1564 1565 return true; 1566 } 1567 1568 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1569 MachineBasicBlock::iterator MI, 1570 const DebugLoc &dl, Register DestReg, 1571 ArrayRef<MachineOperand> Cond, Register TrueReg, 1572 Register FalseReg) const { 1573 assert(Cond.size() == 2 && 1574 "PPC branch conditions have two components!"); 1575 1576 // Get the register classes. 1577 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1578 const TargetRegisterClass *RC = 1579 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1580 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1581 1582 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1583 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1584 assert((Is64Bit || 1585 PPC::GPRCRegClass.hasSubClassEq(RC) || 1586 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1587 "isel is for regular integer GPRs only"); 1588 1589 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1590 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1591 1592 unsigned SubIdx = 0; 1593 bool SwapOps = false; 1594 switch (SelectPred) { 1595 case PPC::PRED_EQ: 1596 case PPC::PRED_EQ_MINUS: 1597 case PPC::PRED_EQ_PLUS: 1598 SubIdx = PPC::sub_eq; SwapOps = false; break; 1599 case PPC::PRED_NE: 1600 case PPC::PRED_NE_MINUS: 1601 case PPC::PRED_NE_PLUS: 1602 SubIdx = PPC::sub_eq; SwapOps = true; break; 1603 case PPC::PRED_LT: 1604 case PPC::PRED_LT_MINUS: 1605 case PPC::PRED_LT_PLUS: 1606 SubIdx = PPC::sub_lt; SwapOps = false; break; 1607 case PPC::PRED_GE: 1608 case PPC::PRED_GE_MINUS: 1609 case PPC::PRED_GE_PLUS: 1610 SubIdx = PPC::sub_lt; SwapOps = true; break; 1611 case PPC::PRED_GT: 1612 case PPC::PRED_GT_MINUS: 1613 case PPC::PRED_GT_PLUS: 1614 SubIdx = PPC::sub_gt; SwapOps = false; break; 1615 case PPC::PRED_LE: 1616 case PPC::PRED_LE_MINUS: 1617 case PPC::PRED_LE_PLUS: 1618 SubIdx = PPC::sub_gt; SwapOps = true; break; 1619 case PPC::PRED_UN: 1620 case PPC::PRED_UN_MINUS: 1621 case PPC::PRED_UN_PLUS: 1622 SubIdx = PPC::sub_un; SwapOps = false; break; 1623 case PPC::PRED_NU: 1624 case PPC::PRED_NU_MINUS: 1625 case PPC::PRED_NU_PLUS: 1626 SubIdx = PPC::sub_un; SwapOps = true; break; 1627 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1628 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1629 } 1630 1631 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1632 SecondReg = SwapOps ? TrueReg : FalseReg; 1633 1634 // The first input register of isel cannot be r0. If it is a member 1635 // of a register class that can be r0, then copy it first (the 1636 // register allocator should eliminate the copy). 1637 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1638 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1639 const TargetRegisterClass *FirstRC = 1640 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1641 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1642 Register OldFirstReg = FirstReg; 1643 FirstReg = MRI.createVirtualRegister(FirstRC); 1644 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1645 .addReg(OldFirstReg); 1646 } 1647 1648 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1649 .addReg(FirstReg).addReg(SecondReg) 1650 .addReg(Cond[1].getReg(), 0, SubIdx); 1651 } 1652 1653 static unsigned getCRBitValue(unsigned CRBit) { 1654 unsigned Ret = 4; 1655 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1656 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1657 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1658 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1659 Ret = 3; 1660 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1661 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1662 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1663 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1664 Ret = 2; 1665 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1666 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1667 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1668 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1669 Ret = 1; 1670 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1671 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1672 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1673 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1674 Ret = 0; 1675 1676 assert(Ret != 4 && "Invalid CR bit register"); 1677 return Ret; 1678 } 1679 1680 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1681 MachineBasicBlock::iterator I, 1682 const DebugLoc &DL, MCRegister DestReg, 1683 MCRegister SrcReg, bool KillSrc) const { 1684 // We can end up with self copies and similar things as a result of VSX copy 1685 // legalization. Promote them here. 1686 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1687 if (PPC::F8RCRegClass.contains(DestReg) && 1688 PPC::VSRCRegClass.contains(SrcReg)) { 1689 MCRegister SuperReg = 1690 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1691 1692 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1693 llvm_unreachable("nop VSX copy"); 1694 1695 DestReg = SuperReg; 1696 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1697 PPC::VSRCRegClass.contains(DestReg)) { 1698 MCRegister SuperReg = 1699 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1700 1701 if (VSXSelfCopyCrash && DestReg == SuperReg) 1702 llvm_unreachable("nop VSX copy"); 1703 1704 SrcReg = SuperReg; 1705 } 1706 1707 // Different class register copy 1708 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1709 PPC::GPRCRegClass.contains(DestReg)) { 1710 MCRegister CRReg = getCRFromCRBit(SrcReg); 1711 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1712 getKillRegState(KillSrc); 1713 // Rotate the CR bit in the CR fields to be the least significant bit and 1714 // then mask with 0x1 (MB = ME = 31). 1715 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1716 .addReg(DestReg, RegState::Kill) 1717 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1718 .addImm(31) 1719 .addImm(31); 1720 return; 1721 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1722 (PPC::G8RCRegClass.contains(DestReg) || 1723 PPC::GPRCRegClass.contains(DestReg))) { 1724 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1725 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1726 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1727 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1728 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1729 getKillRegState(KillSrc); 1730 if (CRNum == 7) 1731 return; 1732 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1733 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1734 .addReg(DestReg, RegState::Kill) 1735 .addImm(CRNum * 4 + 4) 1736 .addImm(28) 1737 .addImm(31); 1738 return; 1739 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1740 PPC::VSFRCRegClass.contains(DestReg)) { 1741 assert(Subtarget.hasDirectMove() && 1742 "Subtarget doesn't support directmove, don't know how to copy."); 1743 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1744 NumGPRtoVSRSpill++; 1745 getKillRegState(KillSrc); 1746 return; 1747 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1748 PPC::G8RCRegClass.contains(DestReg)) { 1749 assert(Subtarget.hasDirectMove() && 1750 "Subtarget doesn't support directmove, don't know how to copy."); 1751 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1752 getKillRegState(KillSrc); 1753 return; 1754 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1755 PPC::GPRCRegClass.contains(DestReg)) { 1756 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1757 getKillRegState(KillSrc); 1758 return; 1759 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1760 PPC::SPERCRegClass.contains(DestReg)) { 1761 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1762 getKillRegState(KillSrc); 1763 return; 1764 } 1765 1766 unsigned Opc; 1767 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1768 Opc = PPC::OR; 1769 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1770 Opc = PPC::OR8; 1771 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1772 Opc = PPC::FMR; 1773 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1774 Opc = PPC::MCRF; 1775 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1776 Opc = PPC::VOR; 1777 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1778 // There are two different ways this can be done: 1779 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1780 // issue in VSU pipeline 0. 1781 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1782 // can go to either pipeline. 1783 // We'll always use xxlor here, because in practically all cases where 1784 // copies are generated, they are close enough to some use that the 1785 // lower-latency form is preferable. 1786 Opc = PPC::XXLOR; 1787 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1788 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1789 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1790 else if (Subtarget.pairedVectorMemops() && 1791 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 1792 if (SrcReg > PPC::VSRp15) 1793 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 1794 else 1795 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1796 if (DestReg > PPC::VSRp15) 1797 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 1798 else 1799 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 1800 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 1801 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1802 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 1803 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 1804 return; 1805 } 1806 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1807 Opc = PPC::CROR; 1808 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1809 Opc = PPC::EVOR; 1810 else if ((PPC::ACCRCRegClass.contains(DestReg) || 1811 PPC::UACCRCRegClass.contains(DestReg)) && 1812 (PPC::ACCRCRegClass.contains(SrcReg) || 1813 PPC::UACCRCRegClass.contains(SrcReg))) { 1814 // If primed, de-prime the source register, copy the individual registers 1815 // and prime the destination if needed. The vector subregisters are 1816 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the 1817 // source is primed, we need to re-prime it after the copy as well. 1818 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); 1819 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); 1820 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1821 MCRegister VSLSrcReg = 1822 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1823 MCRegister VSLDestReg = 1824 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1825 if (SrcPrimed) 1826 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1827 for (unsigned Idx = 0; Idx < 4; Idx++) 1828 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) 1829 .addReg(VSLSrcReg + Idx) 1830 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); 1831 if (DestPrimed) 1832 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); 1833 if (SrcPrimed && !KillSrc) 1834 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1835 return; 1836 } else 1837 llvm_unreachable("Impossible reg-to-reg copy"); 1838 1839 const MCInstrDesc &MCID = get(Opc); 1840 if (MCID.getNumOperands() == 3) 1841 BuildMI(MBB, I, DL, MCID, DestReg) 1842 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1843 else 1844 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1845 } 1846 1847 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { 1848 int OpcodeIndex = 0; 1849 1850 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1851 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1852 OpcodeIndex = SOK_Int4Spill; 1853 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1854 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1855 OpcodeIndex = SOK_Int8Spill; 1856 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1857 OpcodeIndex = SOK_Float8Spill; 1858 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1859 OpcodeIndex = SOK_Float4Spill; 1860 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1861 OpcodeIndex = SOK_SPESpill; 1862 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1863 OpcodeIndex = SOK_CRSpill; 1864 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1865 OpcodeIndex = SOK_CRBitSpill; 1866 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1867 OpcodeIndex = SOK_VRVectorSpill; 1868 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1869 OpcodeIndex = SOK_VSXVectorSpill; 1870 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1871 OpcodeIndex = SOK_VectorFloat8Spill; 1872 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1873 OpcodeIndex = SOK_VectorFloat4Spill; 1874 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1875 OpcodeIndex = SOK_SpillToVSR; 1876 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { 1877 assert(Subtarget.pairedVectorMemops() && 1878 "Register unexpected when paired memops are disabled."); 1879 OpcodeIndex = SOK_AccumulatorSpill; 1880 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { 1881 assert(Subtarget.pairedVectorMemops() && 1882 "Register unexpected when paired memops are disabled."); 1883 OpcodeIndex = SOK_UAccumulatorSpill; 1884 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { 1885 assert(Subtarget.pairedVectorMemops() && 1886 "Register unexpected when paired memops are disabled."); 1887 OpcodeIndex = SOK_PairedVecSpill; 1888 } else { 1889 llvm_unreachable("Unknown regclass!"); 1890 } 1891 return OpcodeIndex; 1892 } 1893 1894 unsigned 1895 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1896 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1897 return OpcodesForSpill[getSpillIndex(RC)]; 1898 } 1899 1900 unsigned 1901 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1902 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1903 return OpcodesForSpill[getSpillIndex(RC)]; 1904 } 1905 1906 void PPCInstrInfo::StoreRegToStackSlot( 1907 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1908 const TargetRegisterClass *RC, 1909 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1910 unsigned Opcode = getStoreOpcodeForSpill(RC); 1911 DebugLoc DL; 1912 1913 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1914 FuncInfo->setHasSpills(); 1915 1916 NewMIs.push_back(addFrameReference( 1917 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1918 FrameIdx)); 1919 1920 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1921 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1922 FuncInfo->setSpillsCR(); 1923 1924 if (isXFormMemOp(Opcode)) 1925 FuncInfo->setHasNonRISpills(); 1926 } 1927 1928 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1929 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1930 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1931 const TargetRegisterInfo *TRI) const { 1932 MachineFunction &MF = *MBB.getParent(); 1933 SmallVector<MachineInstr *, 4> NewMIs; 1934 1935 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1936 1937 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1938 MBB.insert(MI, NewMIs[i]); 1939 1940 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1941 MachineMemOperand *MMO = MF.getMachineMemOperand( 1942 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1943 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1944 MFI.getObjectAlign(FrameIdx)); 1945 NewMIs.back()->addMemOperand(MF, MMO); 1946 } 1947 1948 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1949 MachineBasicBlock::iterator MI, 1950 Register SrcReg, bool isKill, 1951 int FrameIdx, 1952 const TargetRegisterClass *RC, 1953 const TargetRegisterInfo *TRI) const { 1954 // We need to avoid a situation in which the value from a VRRC register is 1955 // spilled using an Altivec instruction and reloaded into a VSRC register 1956 // using a VSX instruction. The issue with this is that the VSX 1957 // load/store instructions swap the doublewords in the vector and the Altivec 1958 // ones don't. The register classes on the spill/reload may be different if 1959 // the register is defined using an Altivec instruction and is then used by a 1960 // VSX instruction. 1961 RC = updatedRC(RC); 1962 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1963 } 1964 1965 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1966 unsigned DestReg, int FrameIdx, 1967 const TargetRegisterClass *RC, 1968 SmallVectorImpl<MachineInstr *> &NewMIs) 1969 const { 1970 unsigned Opcode = getLoadOpcodeForSpill(RC); 1971 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1972 FrameIdx)); 1973 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1974 1975 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1976 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1977 FuncInfo->setSpillsCR(); 1978 1979 if (isXFormMemOp(Opcode)) 1980 FuncInfo->setHasNonRISpills(); 1981 } 1982 1983 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1984 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1985 int FrameIdx, const TargetRegisterClass *RC, 1986 const TargetRegisterInfo *TRI) const { 1987 MachineFunction &MF = *MBB.getParent(); 1988 SmallVector<MachineInstr*, 4> NewMIs; 1989 DebugLoc DL; 1990 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1991 1992 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1993 FuncInfo->setHasSpills(); 1994 1995 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1996 1997 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1998 MBB.insert(MI, NewMIs[i]); 1999 2000 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2001 MachineMemOperand *MMO = MF.getMachineMemOperand( 2002 MachinePointerInfo::getFixedStack(MF, FrameIdx), 2003 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 2004 MFI.getObjectAlign(FrameIdx)); 2005 NewMIs.back()->addMemOperand(MF, MMO); 2006 } 2007 2008 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2009 MachineBasicBlock::iterator MI, 2010 Register DestReg, int FrameIdx, 2011 const TargetRegisterClass *RC, 2012 const TargetRegisterInfo *TRI) const { 2013 // We need to avoid a situation in which the value from a VRRC register is 2014 // spilled using an Altivec instruction and reloaded into a VSRC register 2015 // using a VSX instruction. The issue with this is that the VSX 2016 // load/store instructions swap the doublewords in the vector and the Altivec 2017 // ones don't. The register classes on the spill/reload may be different if 2018 // the register is defined using an Altivec instruction and is then used by a 2019 // VSX instruction. 2020 RC = updatedRC(RC); 2021 2022 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 2023 } 2024 2025 bool PPCInstrInfo:: 2026 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 2027 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 2028 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 2029 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 2030 else 2031 // Leave the CR# the same, but invert the condition. 2032 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 2033 return false; 2034 } 2035 2036 // For some instructions, it is legal to fold ZERO into the RA register field. 2037 // This function performs that fold by replacing the operand with PPC::ZERO, 2038 // it does not consider whether the load immediate zero is no longer in use. 2039 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2040 Register Reg) const { 2041 // A zero immediate should always be loaded with a single li. 2042 unsigned DefOpc = DefMI.getOpcode(); 2043 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 2044 return false; 2045 if (!DefMI.getOperand(1).isImm()) 2046 return false; 2047 if (DefMI.getOperand(1).getImm() != 0) 2048 return false; 2049 2050 // Note that we cannot here invert the arguments of an isel in order to fold 2051 // a ZERO into what is presented as the second argument. All we have here 2052 // is the condition bit, and that might come from a CR-logical bit operation. 2053 2054 const MCInstrDesc &UseMCID = UseMI.getDesc(); 2055 2056 // Only fold into real machine instructions. 2057 if (UseMCID.isPseudo()) 2058 return false; 2059 2060 // We need to find which of the User's operands is to be folded, that will be 2061 // the operand that matches the given register ID. 2062 unsigned UseIdx; 2063 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 2064 if (UseMI.getOperand(UseIdx).isReg() && 2065 UseMI.getOperand(UseIdx).getReg() == Reg) 2066 break; 2067 2068 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 2069 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 2070 2071 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 2072 2073 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 2074 // register (which might also be specified as a pointer class kind). 2075 if (UseInfo->isLookupPtrRegClass()) { 2076 if (UseInfo->RegClass /* Kind */ != 1) 2077 return false; 2078 } else { 2079 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 2080 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 2081 return false; 2082 } 2083 2084 // Make sure this is not tied to an output register (or otherwise 2085 // constrained). This is true for ST?UX registers, for example, which 2086 // are tied to their output registers. 2087 if (UseInfo->Constraints != 0) 2088 return false; 2089 2090 MCRegister ZeroReg; 2091 if (UseInfo->isLookupPtrRegClass()) { 2092 bool isPPC64 = Subtarget.isPPC64(); 2093 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 2094 } else { 2095 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 2096 PPC::ZERO8 : PPC::ZERO; 2097 } 2098 2099 UseMI.getOperand(UseIdx).setReg(ZeroReg); 2100 return true; 2101 } 2102 2103 // Folds zero into instructions which have a load immediate zero as an operand 2104 // but also recognize zero as immediate zero. If the definition of the load 2105 // has no more users it is deleted. 2106 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2107 Register Reg, MachineRegisterInfo *MRI) const { 2108 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 2109 if (MRI->use_nodbg_empty(Reg)) 2110 DefMI.eraseFromParent(); 2111 return Changed; 2112 } 2113 2114 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 2115 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 2116 I != IE; ++I) 2117 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 2118 return true; 2119 return false; 2120 } 2121 2122 // We should make sure that, if we're going to predicate both sides of a 2123 // condition (a diamond), that both sides don't define the counter register. We 2124 // can predicate counter-decrement-based branches, but while that predicates 2125 // the branching, it does not predicate the counter decrement. If we tried to 2126 // merge the triangle into one predicated block, we'd decrement the counter 2127 // twice. 2128 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 2129 unsigned NumT, unsigned ExtraT, 2130 MachineBasicBlock &FMBB, 2131 unsigned NumF, unsigned ExtraF, 2132 BranchProbability Probability) const { 2133 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 2134 } 2135 2136 2137 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 2138 // The predicated branches are identified by their type, not really by the 2139 // explicit presence of a predicate. Furthermore, some of them can be 2140 // predicated more than once. Because if conversion won't try to predicate 2141 // any instruction which already claims to be predicated (by returning true 2142 // here), always return false. In doing so, we let isPredicable() be the 2143 // final word on whether not the instruction can be (further) predicated. 2144 2145 return false; 2146 } 2147 2148 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2149 const MachineBasicBlock *MBB, 2150 const MachineFunction &MF) const { 2151 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 2152 // across them, since some FP operations may change content of FPSCR. 2153 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 2154 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 2155 return true; 2156 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 2157 } 2158 2159 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 2160 ArrayRef<MachineOperand> Pred) const { 2161 unsigned OpC = MI.getOpcode(); 2162 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 2163 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2164 bool isPPC64 = Subtarget.isPPC64(); 2165 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 2166 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 2167 // Need add Def and Use for CTR implicit operand. 2168 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2169 .addReg(Pred[1].getReg(), RegState::Implicit) 2170 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2171 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2172 MI.setDesc(get(PPC::BCLR)); 2173 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2174 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2175 MI.setDesc(get(PPC::BCLRn)); 2176 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2177 } else { 2178 MI.setDesc(get(PPC::BCCLR)); 2179 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2180 .addImm(Pred[0].getImm()) 2181 .add(Pred[1]); 2182 } 2183 2184 return true; 2185 } else if (OpC == PPC::B) { 2186 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2187 bool isPPC64 = Subtarget.isPPC64(); 2188 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 2189 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 2190 // Need add Def and Use for CTR implicit operand. 2191 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2192 .addReg(Pred[1].getReg(), RegState::Implicit) 2193 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2194 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2195 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2196 MI.RemoveOperand(0); 2197 2198 MI.setDesc(get(PPC::BC)); 2199 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2200 .add(Pred[1]) 2201 .addMBB(MBB); 2202 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2203 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2204 MI.RemoveOperand(0); 2205 2206 MI.setDesc(get(PPC::BCn)); 2207 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2208 .add(Pred[1]) 2209 .addMBB(MBB); 2210 } else { 2211 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2212 MI.RemoveOperand(0); 2213 2214 MI.setDesc(get(PPC::BCC)); 2215 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2216 .addImm(Pred[0].getImm()) 2217 .add(Pred[1]) 2218 .addMBB(MBB); 2219 } 2220 2221 return true; 2222 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 2223 OpC == PPC::BCTRL8) { 2224 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 2225 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 2226 2227 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 2228 bool isPPC64 = Subtarget.isPPC64(); 2229 2230 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2231 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 2232 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 2233 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2234 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2235 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 2236 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 2237 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2238 } else { 2239 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 2240 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 2241 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2242 .addImm(Pred[0].getImm()) 2243 .add(Pred[1]); 2244 } 2245 2246 // Need add Def and Use for LR implicit operand. 2247 if (setLR) 2248 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2249 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 2250 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 2251 2252 return true; 2253 } 2254 2255 return false; 2256 } 2257 2258 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 2259 ArrayRef<MachineOperand> Pred2) const { 2260 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 2261 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 2262 2263 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 2264 return false; 2265 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 2266 return false; 2267 2268 // P1 can only subsume P2 if they test the same condition register. 2269 if (Pred1[1].getReg() != Pred2[1].getReg()) 2270 return false; 2271 2272 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 2273 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 2274 2275 if (P1 == P2) 2276 return true; 2277 2278 // Does P1 subsume P2, e.g. GE subsumes GT. 2279 if (P1 == PPC::PRED_LE && 2280 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 2281 return true; 2282 if (P1 == PPC::PRED_GE && 2283 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 2284 return true; 2285 2286 return false; 2287 } 2288 2289 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 2290 std::vector<MachineOperand> &Pred, 2291 bool SkipDead) const { 2292 // Note: At the present time, the contents of Pred from this function is 2293 // unused by IfConversion. This implementation follows ARM by pushing the 2294 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 2295 // predicate, instructions defining CTR or CTR8 are also included as 2296 // predicate-defining instructions. 2297 2298 const TargetRegisterClass *RCs[] = 2299 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 2300 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 2301 2302 bool Found = false; 2303 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2304 const MachineOperand &MO = MI.getOperand(i); 2305 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 2306 const TargetRegisterClass *RC = RCs[c]; 2307 if (MO.isReg()) { 2308 if (MO.isDef() && RC->contains(MO.getReg())) { 2309 Pred.push_back(MO); 2310 Found = true; 2311 } 2312 } else if (MO.isRegMask()) { 2313 for (TargetRegisterClass::iterator I = RC->begin(), 2314 IE = RC->end(); I != IE; ++I) 2315 if (MO.clobbersPhysReg(*I)) { 2316 Pred.push_back(MO); 2317 Found = true; 2318 } 2319 } 2320 } 2321 } 2322 2323 return Found; 2324 } 2325 2326 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2327 Register &SrcReg2, int &Mask, 2328 int &Value) const { 2329 unsigned Opc = MI.getOpcode(); 2330 2331 switch (Opc) { 2332 default: return false; 2333 case PPC::CMPWI: 2334 case PPC::CMPLWI: 2335 case PPC::CMPDI: 2336 case PPC::CMPLDI: 2337 SrcReg = MI.getOperand(1).getReg(); 2338 SrcReg2 = 0; 2339 Value = MI.getOperand(2).getImm(); 2340 Mask = 0xFFFF; 2341 return true; 2342 case PPC::CMPW: 2343 case PPC::CMPLW: 2344 case PPC::CMPD: 2345 case PPC::CMPLD: 2346 case PPC::FCMPUS: 2347 case PPC::FCMPUD: 2348 SrcReg = MI.getOperand(1).getReg(); 2349 SrcReg2 = MI.getOperand(2).getReg(); 2350 Value = 0; 2351 Mask = 0; 2352 return true; 2353 } 2354 } 2355 2356 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 2357 Register SrcReg2, int Mask, int Value, 2358 const MachineRegisterInfo *MRI) const { 2359 if (DisableCmpOpt) 2360 return false; 2361 2362 int OpC = CmpInstr.getOpcode(); 2363 Register CRReg = CmpInstr.getOperand(0).getReg(); 2364 2365 // FP record forms set CR1 based on the exception status bits, not a 2366 // comparison with zero. 2367 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 2368 return false; 2369 2370 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2371 // The record forms set the condition register based on a signed comparison 2372 // with zero (so says the ISA manual). This is not as straightforward as it 2373 // seems, however, because this is always a 64-bit comparison on PPC64, even 2374 // for instructions that are 32-bit in nature (like slw for example). 2375 // So, on PPC32, for unsigned comparisons, we can use the record forms only 2376 // for equality checks (as those don't depend on the sign). On PPC64, 2377 // we are restricted to equality for unsigned 64-bit comparisons and for 2378 // signed 32-bit comparisons the applicability is more restricted. 2379 bool isPPC64 = Subtarget.isPPC64(); 2380 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 2381 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 2382 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 2383 2384 // Look through copies unless that gets us to a physical register. 2385 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 2386 if (ActualSrc.isVirtual()) 2387 SrcReg = ActualSrc; 2388 2389 // Get the unique definition of SrcReg. 2390 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2391 if (!MI) return false; 2392 2393 bool equalityOnly = false; 2394 bool noSub = false; 2395 if (isPPC64) { 2396 if (is32BitSignedCompare) { 2397 // We can perform this optimization only if MI is sign-extending. 2398 if (isSignExtended(*MI)) 2399 noSub = true; 2400 else 2401 return false; 2402 } else if (is32BitUnsignedCompare) { 2403 // We can perform this optimization, equality only, if MI is 2404 // zero-extending. 2405 if (isZeroExtended(*MI)) { 2406 noSub = true; 2407 equalityOnly = true; 2408 } else 2409 return false; 2410 } else 2411 equalityOnly = is64BitUnsignedCompare; 2412 } else 2413 equalityOnly = is32BitUnsignedCompare; 2414 2415 if (equalityOnly) { 2416 // We need to check the uses of the condition register in order to reject 2417 // non-equality comparisons. 2418 for (MachineRegisterInfo::use_instr_iterator 2419 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2420 I != IE; ++I) { 2421 MachineInstr *UseMI = &*I; 2422 if (UseMI->getOpcode() == PPC::BCC) { 2423 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2424 unsigned PredCond = PPC::getPredicateCondition(Pred); 2425 // We ignore hint bits when checking for non-equality comparisons. 2426 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 2427 return false; 2428 } else if (UseMI->getOpcode() == PPC::ISEL || 2429 UseMI->getOpcode() == PPC::ISEL8) { 2430 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 2431 if (SubIdx != PPC::sub_eq) 2432 return false; 2433 } else 2434 return false; 2435 } 2436 } 2437 2438 MachineBasicBlock::iterator I = CmpInstr; 2439 2440 // Scan forward to find the first use of the compare. 2441 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 2442 ++I) { 2443 bool FoundUse = false; 2444 for (MachineRegisterInfo::use_instr_iterator 2445 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 2446 J != JE; ++J) 2447 if (&*J == &*I) { 2448 FoundUse = true; 2449 break; 2450 } 2451 2452 if (FoundUse) 2453 break; 2454 } 2455 2456 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 2457 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 2458 2459 // There are two possible candidates which can be changed to set CR[01]. 2460 // One is MI, the other is a SUB instruction. 2461 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2462 MachineInstr *Sub = nullptr; 2463 if (SrcReg2 != 0) 2464 // MI is not a candidate for CMPrr. 2465 MI = nullptr; 2466 // FIXME: Conservatively refuse to convert an instruction which isn't in the 2467 // same BB as the comparison. This is to allow the check below to avoid calls 2468 // (and other explicit clobbers); instead we should really check for these 2469 // more explicitly (in at least a few predecessors). 2470 else if (MI->getParent() != CmpInstr.getParent()) 2471 return false; 2472 else if (Value != 0) { 2473 // The record-form instructions set CR bit based on signed comparison 2474 // against 0. We try to convert a compare against 1 or -1 into a compare 2475 // against 0 to exploit record-form instructions. For example, we change 2476 // the condition "greater than -1" into "greater than or equal to 0" 2477 // and "less than 1" into "less than or equal to 0". 2478 2479 // Since we optimize comparison based on a specific branch condition, 2480 // we don't optimize if condition code is used by more than once. 2481 if (equalityOnly || !MRI->hasOneUse(CRReg)) 2482 return false; 2483 2484 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 2485 if (UseMI->getOpcode() != PPC::BCC) 2486 return false; 2487 2488 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2489 unsigned PredCond = PPC::getPredicateCondition(Pred); 2490 unsigned PredHint = PPC::getPredicateHint(Pred); 2491 int16_t Immed = (int16_t)Value; 2492 2493 // When modifying the condition in the predicate, we propagate hint bits 2494 // from the original predicate to the new one. 2495 if (Immed == -1 && PredCond == PPC::PRED_GT) 2496 // We convert "greater than -1" into "greater than or equal to 0", 2497 // since we are assuming signed comparison by !equalityOnly 2498 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 2499 else if (Immed == -1 && PredCond == PPC::PRED_LE) 2500 // We convert "less than or equal to -1" into "less than 0". 2501 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2502 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2503 // We convert "less than 1" into "less than or equal to 0". 2504 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2505 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2506 // We convert "greater than or equal to 1" into "greater than 0". 2507 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2508 else 2509 return false; 2510 2511 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 2512 } 2513 2514 // Search for Sub. 2515 --I; 2516 2517 // Get ready to iterate backward from CmpInstr. 2518 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2519 2520 for (; I != E && !noSub; --I) { 2521 const MachineInstr &Instr = *I; 2522 unsigned IOpC = Instr.getOpcode(); 2523 2524 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2525 Instr.readsRegister(PPC::CR0, TRI))) 2526 // This instruction modifies or uses the record condition register after 2527 // the one we want to change. While we could do this transformation, it 2528 // would likely not be profitable. This transformation removes one 2529 // instruction, and so even forcing RA to generate one move probably 2530 // makes it unprofitable. 2531 return false; 2532 2533 // Check whether CmpInstr can be made redundant by the current instruction. 2534 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2535 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2536 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2537 ((Instr.getOperand(1).getReg() == SrcReg && 2538 Instr.getOperand(2).getReg() == SrcReg2) || 2539 (Instr.getOperand(1).getReg() == SrcReg2 && 2540 Instr.getOperand(2).getReg() == SrcReg))) { 2541 Sub = &*I; 2542 break; 2543 } 2544 2545 if (I == B) 2546 // The 'and' is below the comparison instruction. 2547 return false; 2548 } 2549 2550 // Return false if no candidates exist. 2551 if (!MI && !Sub) 2552 return false; 2553 2554 // The single candidate is called MI. 2555 if (!MI) MI = Sub; 2556 2557 int NewOpC = -1; 2558 int MIOpC = MI->getOpcode(); 2559 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2560 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2561 NewOpC = MIOpC; 2562 else { 2563 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2564 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2565 NewOpC = MIOpC; 2566 } 2567 2568 // FIXME: On the non-embedded POWER architectures, only some of the record 2569 // forms are fast, and we should use only the fast ones. 2570 2571 // The defining instruction has a record form (or is already a record 2572 // form). It is possible, however, that we'll need to reverse the condition 2573 // code of the users. 2574 if (NewOpC == -1) 2575 return false; 2576 2577 // This transformation should not be performed if `nsw` is missing and is not 2578 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in 2579 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in 2580 // CRReg can reflect if compared values are equal, this optz is still valid. 2581 if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && 2582 Sub && !Sub->getFlag(MachineInstr::NoSWrap)) 2583 return false; 2584 2585 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2586 // needs to be updated to be based on SUB. Push the condition code 2587 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2588 // condition code of these operands will be modified. 2589 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2590 // comparison against 0, which may modify predicate. 2591 bool ShouldSwap = false; 2592 if (Sub && Value == 0) { 2593 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2594 Sub->getOperand(2).getReg() == SrcReg; 2595 2596 // The operands to subf are the opposite of sub, so only in the fixed-point 2597 // case, invert the order. 2598 ShouldSwap = !ShouldSwap; 2599 } 2600 2601 if (ShouldSwap) 2602 for (MachineRegisterInfo::use_instr_iterator 2603 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2604 I != IE; ++I) { 2605 MachineInstr *UseMI = &*I; 2606 if (UseMI->getOpcode() == PPC::BCC) { 2607 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2608 unsigned PredCond = PPC::getPredicateCondition(Pred); 2609 assert((!equalityOnly || 2610 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2611 "Invalid predicate for equality-only optimization"); 2612 (void)PredCond; // To suppress warning in release build. 2613 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2614 PPC::getSwappedPredicate(Pred))); 2615 } else if (UseMI->getOpcode() == PPC::ISEL || 2616 UseMI->getOpcode() == PPC::ISEL8) { 2617 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2618 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2619 "Invalid CR bit for equality-only optimization"); 2620 2621 if (NewSubReg == PPC::sub_lt) 2622 NewSubReg = PPC::sub_gt; 2623 else if (NewSubReg == PPC::sub_gt) 2624 NewSubReg = PPC::sub_lt; 2625 2626 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2627 NewSubReg)); 2628 } else // We need to abort on a user we don't understand. 2629 return false; 2630 } 2631 assert(!(Value != 0 && ShouldSwap) && 2632 "Non-zero immediate support and ShouldSwap" 2633 "may conflict in updating predicate"); 2634 2635 // Create a new virtual register to hold the value of the CR set by the 2636 // record-form instruction. If the instruction was not previously in 2637 // record form, then set the kill flag on the CR. 2638 CmpInstr.eraseFromParent(); 2639 2640 MachineBasicBlock::iterator MII = MI; 2641 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2642 get(TargetOpcode::COPY), CRReg) 2643 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2644 2645 // Even if CR0 register were dead before, it is alive now since the 2646 // instruction we just built uses it. 2647 MI->clearRegisterDeads(PPC::CR0); 2648 2649 if (MIOpC != NewOpC) { 2650 // We need to be careful here: we're replacing one instruction with 2651 // another, and we need to make sure that we get all of the right 2652 // implicit uses and defs. On the other hand, the caller may be holding 2653 // an iterator to this instruction, and so we can't delete it (this is 2654 // specifically the case if this is the instruction directly after the 2655 // compare). 2656 2657 // Rotates are expensive instructions. If we're emitting a record-form 2658 // rotate that can just be an andi/andis, we should just emit that. 2659 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2660 Register GPRRes = MI->getOperand(0).getReg(); 2661 int64_t SH = MI->getOperand(2).getImm(); 2662 int64_t MB = MI->getOperand(3).getImm(); 2663 int64_t ME = MI->getOperand(4).getImm(); 2664 // We can only do this if both the start and end of the mask are in the 2665 // same halfword. 2666 bool MBInLoHWord = MB >= 16; 2667 bool MEInLoHWord = ME >= 16; 2668 uint64_t Mask = ~0LLU; 2669 2670 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2671 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2672 // The mask value needs to shift right 16 if we're emitting andis. 2673 Mask >>= MBInLoHWord ? 0 : 16; 2674 NewOpC = MIOpC == PPC::RLWINM 2675 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2676 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2677 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2678 (ME - MB + 1 == SH) && (MB >= 16)) { 2679 // If we are rotating by the exact number of bits as are in the mask 2680 // and the mask is in the least significant bits of the register, 2681 // that's just an andis. (as long as the GPR result has no uses). 2682 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2683 Mask >>= 16; 2684 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2685 } 2686 // If we've set the mask, we can transform. 2687 if (Mask != ~0LLU) { 2688 MI->RemoveOperand(4); 2689 MI->RemoveOperand(3); 2690 MI->getOperand(2).setImm(Mask); 2691 NumRcRotatesConvertedToRcAnd++; 2692 } 2693 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2694 int64_t MB = MI->getOperand(3).getImm(); 2695 if (MB >= 48) { 2696 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2697 NewOpC = PPC::ANDI8_rec; 2698 MI->RemoveOperand(3); 2699 MI->getOperand(2).setImm(Mask); 2700 NumRcRotatesConvertedToRcAnd++; 2701 } 2702 } 2703 2704 const MCInstrDesc &NewDesc = get(NewOpC); 2705 MI->setDesc(NewDesc); 2706 2707 if (NewDesc.ImplicitDefs) 2708 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2709 *ImpDefs; ++ImpDefs) 2710 if (!MI->definesRegister(*ImpDefs)) 2711 MI->addOperand(*MI->getParent()->getParent(), 2712 MachineOperand::CreateReg(*ImpDefs, true, true)); 2713 if (NewDesc.ImplicitUses) 2714 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2715 *ImpUses; ++ImpUses) 2716 if (!MI->readsRegister(*ImpUses)) 2717 MI->addOperand(*MI->getParent()->getParent(), 2718 MachineOperand::CreateReg(*ImpUses, false, true)); 2719 } 2720 assert(MI->definesRegister(PPC::CR0) && 2721 "Record-form instruction does not define cr0?"); 2722 2723 // Modify the condition code of operands in OperandsToUpdate. 2724 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2725 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2726 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2727 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2728 2729 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2730 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2731 2732 return true; 2733 } 2734 2735 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2736 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2737 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2738 const TargetRegisterInfo *TRI) const { 2739 const MachineOperand *BaseOp; 2740 OffsetIsScalable = false; 2741 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2742 return false; 2743 BaseOps.push_back(BaseOp); 2744 return true; 2745 } 2746 2747 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2748 const TargetRegisterInfo *TRI) { 2749 // If this is a volatile load/store, don't mess with it. 2750 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2751 return false; 2752 2753 if (LdSt.getOperand(2).isFI()) 2754 return true; 2755 2756 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2757 // Can't cluster if the instruction modifies the base register 2758 // or it is update form. e.g. ld r2,3(r2) 2759 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2760 return false; 2761 2762 return true; 2763 } 2764 2765 // Only cluster instruction pair that have the same opcode, and they are 2766 // clusterable according to PowerPC specification. 2767 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2768 const PPCSubtarget &Subtarget) { 2769 switch (FirstOpc) { 2770 default: 2771 return false; 2772 case PPC::STD: 2773 case PPC::STFD: 2774 case PPC::STXSD: 2775 case PPC::DFSTOREf64: 2776 return FirstOpc == SecondOpc; 2777 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2778 // 32bit and 64bit instruction selection. They are clusterable pair though 2779 // they are different opcode. 2780 case PPC::STW: 2781 case PPC::STW8: 2782 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2783 } 2784 } 2785 2786 bool PPCInstrInfo::shouldClusterMemOps( 2787 ArrayRef<const MachineOperand *> BaseOps1, 2788 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 2789 unsigned NumBytes) const { 2790 2791 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2792 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2793 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2794 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2795 "Only base registers and frame indices are supported."); 2796 2797 // The NumLoads means the number of loads that has been clustered. 2798 // Don't cluster memory op if there are already two ops clustered at least. 2799 if (NumLoads > 2) 2800 return false; 2801 2802 // Cluster the load/store only when they have the same base 2803 // register or FI. 2804 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2805 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2806 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2807 return false; 2808 2809 // Check if the load/store are clusterable according to the PowerPC 2810 // specification. 2811 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2812 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2813 unsigned FirstOpc = FirstLdSt.getOpcode(); 2814 unsigned SecondOpc = SecondLdSt.getOpcode(); 2815 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2816 // Cluster the load/store only when they have the same opcode, and they are 2817 // clusterable opcode according to PowerPC specification. 2818 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2819 return false; 2820 2821 // Can't cluster load/store that have ordered or volatile memory reference. 2822 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2823 !isLdStSafeToCluster(SecondLdSt, TRI)) 2824 return false; 2825 2826 int64_t Offset1 = 0, Offset2 = 0; 2827 unsigned Width1 = 0, Width2 = 0; 2828 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2829 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2830 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2831 Width1 != Width2) 2832 return false; 2833 2834 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2835 "getMemOperandWithOffsetWidth return incorrect base op"); 2836 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2837 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2838 return Offset1 + Width1 == Offset2; 2839 } 2840 2841 /// GetInstSize - Return the number of bytes of code the specified 2842 /// instruction may be. This returns the maximum number of bytes. 2843 /// 2844 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2845 unsigned Opcode = MI.getOpcode(); 2846 2847 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2848 const MachineFunction *MF = MI.getParent()->getParent(); 2849 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2850 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2851 } else if (Opcode == TargetOpcode::STACKMAP) { 2852 StackMapOpers Opers(&MI); 2853 return Opers.getNumPatchBytes(); 2854 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2855 PatchPointOpers Opers(&MI); 2856 return Opers.getNumPatchBytes(); 2857 } else { 2858 return get(Opcode).getSize(); 2859 } 2860 } 2861 2862 std::pair<unsigned, unsigned> 2863 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2864 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2865 return std::make_pair(TF & Mask, TF & ~Mask); 2866 } 2867 2868 ArrayRef<std::pair<unsigned, const char *>> 2869 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2870 using namespace PPCII; 2871 static const std::pair<unsigned, const char *> TargetFlags[] = { 2872 {MO_LO, "ppc-lo"}, 2873 {MO_HA, "ppc-ha"}, 2874 {MO_TPREL_LO, "ppc-tprel-lo"}, 2875 {MO_TPREL_HA, "ppc-tprel-ha"}, 2876 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2877 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2878 {MO_TOC_LO, "ppc-toc-lo"}, 2879 {MO_TLS, "ppc-tls"}}; 2880 return makeArrayRef(TargetFlags); 2881 } 2882 2883 ArrayRef<std::pair<unsigned, const char *>> 2884 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2885 using namespace PPCII; 2886 static const std::pair<unsigned, const char *> TargetFlags[] = { 2887 {MO_PLT, "ppc-plt"}, 2888 {MO_PIC_FLAG, "ppc-pic"}, 2889 {MO_PCREL_FLAG, "ppc-pcrel"}, 2890 {MO_GOT_FLAG, "ppc-got"}, 2891 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2892 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2893 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2894 {MO_TPREL_FLAG, "ppc-tprel"}, 2895 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2896 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2897 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; 2898 return makeArrayRef(TargetFlags); 2899 } 2900 2901 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2902 // The VSX versions have the advantage of a full 64-register target whereas 2903 // the FP ones have the advantage of lower latency and higher throughput. So 2904 // what we are after is using the faster instructions in low register pressure 2905 // situations and using the larger register file in high register pressure 2906 // situations. 2907 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2908 unsigned UpperOpcode, LowerOpcode; 2909 switch (MI.getOpcode()) { 2910 case PPC::DFLOADf32: 2911 UpperOpcode = PPC::LXSSP; 2912 LowerOpcode = PPC::LFS; 2913 break; 2914 case PPC::DFLOADf64: 2915 UpperOpcode = PPC::LXSD; 2916 LowerOpcode = PPC::LFD; 2917 break; 2918 case PPC::DFSTOREf32: 2919 UpperOpcode = PPC::STXSSP; 2920 LowerOpcode = PPC::STFS; 2921 break; 2922 case PPC::DFSTOREf64: 2923 UpperOpcode = PPC::STXSD; 2924 LowerOpcode = PPC::STFD; 2925 break; 2926 case PPC::XFLOADf32: 2927 UpperOpcode = PPC::LXSSPX; 2928 LowerOpcode = PPC::LFSX; 2929 break; 2930 case PPC::XFLOADf64: 2931 UpperOpcode = PPC::LXSDX; 2932 LowerOpcode = PPC::LFDX; 2933 break; 2934 case PPC::XFSTOREf32: 2935 UpperOpcode = PPC::STXSSPX; 2936 LowerOpcode = PPC::STFSX; 2937 break; 2938 case PPC::XFSTOREf64: 2939 UpperOpcode = PPC::STXSDX; 2940 LowerOpcode = PPC::STFDX; 2941 break; 2942 case PPC::LIWAX: 2943 UpperOpcode = PPC::LXSIWAX; 2944 LowerOpcode = PPC::LFIWAX; 2945 break; 2946 case PPC::LIWZX: 2947 UpperOpcode = PPC::LXSIWZX; 2948 LowerOpcode = PPC::LFIWZX; 2949 break; 2950 case PPC::STIWX: 2951 UpperOpcode = PPC::STXSIWX; 2952 LowerOpcode = PPC::STFIWX; 2953 break; 2954 default: 2955 llvm_unreachable("Unknown Operation!"); 2956 } 2957 2958 Register TargetReg = MI.getOperand(0).getReg(); 2959 unsigned Opcode; 2960 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2961 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2962 Opcode = LowerOpcode; 2963 else 2964 Opcode = UpperOpcode; 2965 MI.setDesc(get(Opcode)); 2966 return true; 2967 } 2968 2969 static bool isAnImmediateOperand(const MachineOperand &MO) { 2970 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2971 } 2972 2973 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2974 auto &MBB = *MI.getParent(); 2975 auto DL = MI.getDebugLoc(); 2976 2977 switch (MI.getOpcode()) { 2978 case PPC::BUILD_UACC: { 2979 MCRegister ACC = MI.getOperand(0).getReg(); 2980 MCRegister UACC = MI.getOperand(1).getReg(); 2981 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 2982 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 2983 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 2984 // FIXME: This can easily be improved to look up to the top of the MBB 2985 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 2986 // we can just re-target any such XXLOR's to DstVSR + offset. 2987 for (int VecNo = 0; VecNo < 4; VecNo++) 2988 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 2989 .addReg(SrcVSR + VecNo) 2990 .addReg(SrcVSR + VecNo); 2991 } 2992 // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers. 2993 // So after building the 4 copies, we can replace the BUILD_UACC instruction 2994 // with a NOP. 2995 LLVM_FALLTHROUGH; 2996 } 2997 case PPC::KILL_PAIR: { 2998 MI.setDesc(get(PPC::UNENCODED_NOP)); 2999 MI.RemoveOperand(1); 3000 MI.RemoveOperand(0); 3001 return true; 3002 } 3003 case TargetOpcode::LOAD_STACK_GUARD: { 3004 assert(Subtarget.isTargetLinux() && 3005 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 3006 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 3007 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 3008 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 3009 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3010 .addImm(Offset) 3011 .addReg(Reg); 3012 return true; 3013 } 3014 case PPC::DFLOADf32: 3015 case PPC::DFLOADf64: 3016 case PPC::DFSTOREf32: 3017 case PPC::DFSTOREf64: { 3018 assert(Subtarget.hasP9Vector() && 3019 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 3020 assert(MI.getOperand(2).isReg() && 3021 isAnImmediateOperand(MI.getOperand(1)) && 3022 "D-form op must have register and immediate operands"); 3023 return expandVSXMemPseudo(MI); 3024 } 3025 case PPC::XFLOADf32: 3026 case PPC::XFSTOREf32: 3027 case PPC::LIWAX: 3028 case PPC::LIWZX: 3029 case PPC::STIWX: { 3030 assert(Subtarget.hasP8Vector() && 3031 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 3032 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3033 "X-form op must have register and register operands"); 3034 return expandVSXMemPseudo(MI); 3035 } 3036 case PPC::XFLOADf64: 3037 case PPC::XFSTOREf64: { 3038 assert(Subtarget.hasVSX() && 3039 "Invalid X-Form Pseudo-ops on target that has no VSX."); 3040 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3041 "X-form op must have register and register operands"); 3042 return expandVSXMemPseudo(MI); 3043 } 3044 case PPC::SPILLTOVSR_LD: { 3045 Register TargetReg = MI.getOperand(0).getReg(); 3046 if (PPC::VSFRCRegClass.contains(TargetReg)) { 3047 MI.setDesc(get(PPC::DFLOADf64)); 3048 return expandPostRAPseudo(MI); 3049 } 3050 else 3051 MI.setDesc(get(PPC::LD)); 3052 return true; 3053 } 3054 case PPC::SPILLTOVSR_ST: { 3055 Register SrcReg = MI.getOperand(0).getReg(); 3056 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3057 NumStoreSPILLVSRRCAsVec++; 3058 MI.setDesc(get(PPC::DFSTOREf64)); 3059 return expandPostRAPseudo(MI); 3060 } else { 3061 NumStoreSPILLVSRRCAsGpr++; 3062 MI.setDesc(get(PPC::STD)); 3063 } 3064 return true; 3065 } 3066 case PPC::SPILLTOVSR_LDX: { 3067 Register TargetReg = MI.getOperand(0).getReg(); 3068 if (PPC::VSFRCRegClass.contains(TargetReg)) 3069 MI.setDesc(get(PPC::LXSDX)); 3070 else 3071 MI.setDesc(get(PPC::LDX)); 3072 return true; 3073 } 3074 case PPC::SPILLTOVSR_STX: { 3075 Register SrcReg = MI.getOperand(0).getReg(); 3076 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3077 NumStoreSPILLVSRRCAsVec++; 3078 MI.setDesc(get(PPC::STXSDX)); 3079 } else { 3080 NumStoreSPILLVSRRCAsGpr++; 3081 MI.setDesc(get(PPC::STDX)); 3082 } 3083 return true; 3084 } 3085 3086 case PPC::CFENCE8: { 3087 auto Val = MI.getOperand(0).getReg(); 3088 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 3089 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 3090 .addImm(PPC::PRED_NE_MINUS) 3091 .addReg(PPC::CR7) 3092 .addImm(1); 3093 MI.setDesc(get(PPC::ISYNC)); 3094 MI.RemoveOperand(0); 3095 return true; 3096 } 3097 } 3098 return false; 3099 } 3100 3101 // Essentially a compile-time implementation of a compare->isel sequence. 3102 // It takes two constants to compare, along with the true/false registers 3103 // and the comparison type (as a subreg to a CR field) and returns one 3104 // of the true/false registers, depending on the comparison results. 3105 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 3106 unsigned TrueReg, unsigned FalseReg, 3107 unsigned CRSubReg) { 3108 // Signed comparisons. The immediates are assumed to be sign-extended. 3109 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 3110 switch (CRSubReg) { 3111 default: llvm_unreachable("Unknown integer comparison type."); 3112 case PPC::sub_lt: 3113 return Imm1 < Imm2 ? TrueReg : FalseReg; 3114 case PPC::sub_gt: 3115 return Imm1 > Imm2 ? TrueReg : FalseReg; 3116 case PPC::sub_eq: 3117 return Imm1 == Imm2 ? TrueReg : FalseReg; 3118 } 3119 } 3120 // Unsigned comparisons. 3121 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 3122 switch (CRSubReg) { 3123 default: llvm_unreachable("Unknown integer comparison type."); 3124 case PPC::sub_lt: 3125 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 3126 case PPC::sub_gt: 3127 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 3128 case PPC::sub_eq: 3129 return Imm1 == Imm2 ? TrueReg : FalseReg; 3130 } 3131 } 3132 return PPC::NoRegister; 3133 } 3134 3135 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 3136 unsigned OpNo, 3137 int64_t Imm) const { 3138 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 3139 // Replace the REG with the Immediate. 3140 Register InUseReg = MI.getOperand(OpNo).getReg(); 3141 MI.getOperand(OpNo).ChangeToImmediate(Imm); 3142 3143 if (MI.implicit_operands().empty()) 3144 return; 3145 3146 // We need to make sure that the MI didn't have any implicit use 3147 // of this REG any more. 3148 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3149 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 3150 if (UseOpIdx >= 0) { 3151 MachineOperand &MO = MI.getOperand(UseOpIdx); 3152 if (MO.isImplicit()) 3153 // The operands must always be in the following order: 3154 // - explicit reg defs, 3155 // - other explicit operands (reg uses, immediates, etc.), 3156 // - implicit reg defs 3157 // - implicit reg uses 3158 // Therefore, removing the implicit operand won't change the explicit 3159 // operands layout. 3160 MI.RemoveOperand(UseOpIdx); 3161 } 3162 } 3163 3164 // Replace an instruction with one that materializes a constant (and sets 3165 // CR0 if the original instruction was a record-form instruction). 3166 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 3167 const LoadImmediateInfo &LII) const { 3168 // Remove existing operands. 3169 int OperandToKeep = LII.SetCR ? 1 : 0; 3170 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 3171 MI.RemoveOperand(i); 3172 3173 // Replace the instruction. 3174 if (LII.SetCR) { 3175 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3176 // Set the immediate. 3177 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3178 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 3179 return; 3180 } 3181 else 3182 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 3183 3184 // Set the immediate. 3185 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3186 .addImm(LII.Imm); 3187 } 3188 3189 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 3190 bool &SeenIntermediateUse) const { 3191 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 3192 "Should be called after register allocation."); 3193 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3194 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 3195 It++; 3196 SeenIntermediateUse = false; 3197 for (; It != E; ++It) { 3198 if (It->modifiesRegister(Reg, TRI)) 3199 return &*It; 3200 if (It->readsRegister(Reg, TRI)) 3201 SeenIntermediateUse = true; 3202 } 3203 return nullptr; 3204 } 3205 3206 MachineInstr *PPCInstrInfo::getForwardingDefMI( 3207 MachineInstr &MI, 3208 unsigned &OpNoForForwarding, 3209 bool &SeenIntermediateUse) const { 3210 OpNoForForwarding = ~0U; 3211 MachineInstr *DefMI = nullptr; 3212 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3213 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3214 // If we're in SSA, get the defs through the MRI. Otherwise, only look 3215 // within the basic block to see if the register is defined using an 3216 // LI/LI8/ADDI/ADDI8. 3217 if (MRI->isSSA()) { 3218 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3219 if (!MI.getOperand(i).isReg()) 3220 continue; 3221 Register Reg = MI.getOperand(i).getReg(); 3222 if (!Register::isVirtualRegister(Reg)) 3223 continue; 3224 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 3225 if (Register::isVirtualRegister(TrueReg)) { 3226 DefMI = MRI->getVRegDef(TrueReg); 3227 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 || 3228 DefMI->getOpcode() == PPC::ADDI || 3229 DefMI->getOpcode() == PPC::ADDI8) { 3230 OpNoForForwarding = i; 3231 // The ADDI and LI operand maybe exist in one instruction at same 3232 // time. we prefer to fold LI operand as LI only has one Imm operand 3233 // and is more possible to be converted. So if current DefMI is 3234 // ADDI/ADDI8, we continue to find possible LI/LI8. 3235 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 3236 break; 3237 } 3238 } 3239 } 3240 } else { 3241 // Looking back through the definition for each operand could be expensive, 3242 // so exit early if this isn't an instruction that either has an immediate 3243 // form or is already an immediate form that we can handle. 3244 ImmInstrInfo III; 3245 unsigned Opc = MI.getOpcode(); 3246 bool ConvertibleImmForm = 3247 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 3248 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 3249 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 3250 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 3251 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 3252 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 3253 Opc == PPC::RLWINM8_rec; 3254 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 3255 ? isVFRegister(MI.getOperand(0).getReg()) 3256 : false; 3257 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 3258 return nullptr; 3259 3260 // Don't convert or %X, %Y, %Y since that's just a register move. 3261 if ((Opc == PPC::OR || Opc == PPC::OR8) && 3262 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 3263 return nullptr; 3264 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3265 MachineOperand &MO = MI.getOperand(i); 3266 SeenIntermediateUse = false; 3267 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 3268 Register Reg = MI.getOperand(i).getReg(); 3269 // If we see another use of this reg between the def and the MI, 3270 // we want to flat it so the def isn't deleted. 3271 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 3272 if (DefMI) { 3273 // Is this register defined by some form of add-immediate (including 3274 // load-immediate) within this basic block? 3275 switch (DefMI->getOpcode()) { 3276 default: 3277 break; 3278 case PPC::LI: 3279 case PPC::LI8: 3280 case PPC::ADDItocL: 3281 case PPC::ADDI: 3282 case PPC::ADDI8: 3283 OpNoForForwarding = i; 3284 return DefMI; 3285 } 3286 } 3287 } 3288 } 3289 } 3290 return OpNoForForwarding == ~0U ? nullptr : DefMI; 3291 } 3292 3293 unsigned PPCInstrInfo::getSpillTarget() const { 3294 // With P10, we may need to spill paired vector registers or accumulator 3295 // registers. MMA implies paired vectors, so we can just check that. 3296 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); 3297 return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0; 3298 } 3299 3300 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 3301 return StoreSpillOpcodesArray[getSpillTarget()]; 3302 } 3303 3304 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 3305 return LoadSpillOpcodesArray[getSpillTarget()]; 3306 } 3307 3308 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, 3309 unsigned RegNo) const { 3310 // Conservatively clear kill flag for the register if the instructions are in 3311 // different basic blocks and in SSA form, because the kill flag may no longer 3312 // be right. There is no need to bother with dead flags since defs with no 3313 // uses will be handled by DCE. 3314 MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); 3315 if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { 3316 MRI.clearKillFlags(RegNo); 3317 return; 3318 } 3319 3320 // Instructions between [StartMI, EndMI] should be in same basic block. 3321 assert((StartMI->getParent() == EndMI->getParent()) && 3322 "Instructions are not in same basic block"); 3323 3324 // If before RA, StartMI may be def through COPY, we need to adjust it to the 3325 // real def. See function getForwardingDefMI. 3326 if (MRI.isSSA()) { 3327 bool Reads, Writes; 3328 std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); 3329 if (!Reads && !Writes) { 3330 assert(Register::isVirtualRegister(RegNo) && 3331 "Must be a virtual register"); 3332 // Get real def and ignore copies. 3333 StartMI = MRI.getVRegDef(RegNo); 3334 } 3335 } 3336 3337 bool IsKillSet = false; 3338 3339 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 3340 MachineOperand &MO = MI.getOperand(Index); 3341 if (MO.isReg() && MO.isUse() && MO.isKill() && 3342 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 3343 MO.setIsKill(false); 3344 }; 3345 3346 // Set killed flag for EndMI. 3347 // No need to do anything if EndMI defines RegNo. 3348 int UseIndex = 3349 EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 3350 if (UseIndex != -1) { 3351 EndMI->getOperand(UseIndex).setIsKill(true); 3352 IsKillSet = true; 3353 // Clear killed flag for other EndMI operands related to RegNo. In some 3354 // upexpected cases, killed may be set multiple times for same register 3355 // operand in same MI. 3356 for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) 3357 if (i != UseIndex) 3358 clearOperandKillInfo(*EndMI, i); 3359 } 3360 3361 // Walking the inst in reverse order (EndMI -> StartMI]. 3362 MachineBasicBlock::reverse_iterator It = *EndMI; 3363 MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); 3364 // EndMI has been handled above, skip it here. 3365 It++; 3366 MachineOperand *MO = nullptr; 3367 for (; It != E; ++It) { 3368 // Skip insturctions which could not be a def/use of RegNo. 3369 if (It->isDebugInstr() || It->isPosition()) 3370 continue; 3371 3372 // Clear killed flag for all It operands related to RegNo. In some 3373 // upexpected cases, killed may be set multiple times for same register 3374 // operand in same MI. 3375 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 3376 clearOperandKillInfo(*It, i); 3377 3378 // If killed is not set, set killed for its last use or set dead for its def 3379 // if no use found. 3380 if (!IsKillSet) { 3381 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 3382 // Use found, set it killed. 3383 IsKillSet = true; 3384 MO->setIsKill(true); 3385 continue; 3386 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 3387 &getRegisterInfo()))) { 3388 // No use found, set dead for its def. 3389 assert(&*It == StartMI && "No new def between StartMI and EndMI."); 3390 MO->setIsDead(true); 3391 break; 3392 } 3393 } 3394 3395 if ((&*It) == StartMI) 3396 break; 3397 } 3398 // Ensure RegMo liveness is killed after EndMI. 3399 assert((IsKillSet || (MO && MO->isDead())) && 3400 "RegNo should be killed or dead"); 3401 } 3402 3403 // This opt tries to convert the following imm form to an index form to save an 3404 // add for stack variables. 3405 // Return false if no such pattern found. 3406 // 3407 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3408 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 3409 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 3410 // 3411 // can be converted to: 3412 // 3413 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 3414 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 3415 // 3416 // In order to eliminate ADD instr, make sure that: 3417 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 3418 // new ADDI instr and ADDI can only take int16 Imm. 3419 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 3420 // between ADDI and ADD instr since its original def in ADDI will be changed 3421 // in new ADDI instr. And also there should be no new def for it between 3422 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 3423 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 3424 // between ADD and Imm instr since ADD instr will be eliminated. 3425 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 3426 // moved to Index instr. 3427 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 3428 MachineFunction *MF = MI.getParent()->getParent(); 3429 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3430 bool PostRA = !MRI->isSSA(); 3431 // Do this opt after PEI which is after RA. The reason is stack slot expansion 3432 // in PEI may expose such opportunities since in PEI, stack slot offsets to 3433 // frame base(OffsetAddi) are determined. 3434 if (!PostRA) 3435 return false; 3436 unsigned ToBeDeletedReg = 0; 3437 int64_t OffsetImm = 0; 3438 unsigned XFormOpcode = 0; 3439 ImmInstrInfo III; 3440 3441 // Check if Imm instr meets requirement. 3442 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 3443 III)) 3444 return false; 3445 3446 bool OtherIntermediateUse = false; 3447 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 3448 3449 // Exit if there is other use between ADD and Imm instr or no def found. 3450 if (OtherIntermediateUse || !ADDMI) 3451 return false; 3452 3453 // Check if ADD instr meets requirement. 3454 if (!isADDInstrEligibleForFolding(*ADDMI)) 3455 return false; 3456 3457 unsigned ScaleRegIdx = 0; 3458 int64_t OffsetAddi = 0; 3459 MachineInstr *ADDIMI = nullptr; 3460 3461 // Check if there is a valid ToBeChangedReg in ADDMI. 3462 // 1: It must be killed. 3463 // 2: Its definition must be a valid ADDIMI. 3464 // 3: It must satify int16 offset requirement. 3465 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 3466 ScaleRegIdx = 2; 3467 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 3468 ScaleRegIdx = 1; 3469 else 3470 return false; 3471 3472 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 3473 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 3474 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 3475 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 3476 MachineBasicBlock::iterator End) { 3477 for (auto It = ++Start; It != End; It++) 3478 if (It->modifiesRegister(Reg, &getRegisterInfo())) 3479 return true; 3480 return false; 3481 }; 3482 3483 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 3484 // treated as special zero when ScaleReg is R0/X0 register. 3485 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 3486 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 3487 return false; 3488 3489 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 3490 // and Imm Instr. 3491 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 3492 return false; 3493 3494 // Now start to do the transformation. 3495 LLVM_DEBUG(dbgs() << "Replace instruction: " 3496 << "\n"); 3497 LLVM_DEBUG(ADDIMI->dump()); 3498 LLVM_DEBUG(ADDMI->dump()); 3499 LLVM_DEBUG(MI.dump()); 3500 LLVM_DEBUG(dbgs() << "with: " 3501 << "\n"); 3502 3503 // Update ADDI instr. 3504 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 3505 3506 // Update Imm instr. 3507 MI.setDesc(get(XFormOpcode)); 3508 MI.getOperand(III.ImmOpNo) 3509 .ChangeToRegister(ScaleReg, false, false, 3510 ADDMI->getOperand(ScaleRegIdx).isKill()); 3511 3512 MI.getOperand(III.OpNoForForwarding) 3513 .ChangeToRegister(ToBeChangedReg, false, false, true); 3514 3515 // Eliminate ADD instr. 3516 ADDMI->eraseFromParent(); 3517 3518 LLVM_DEBUG(ADDIMI->dump()); 3519 LLVM_DEBUG(MI.dump()); 3520 3521 return true; 3522 } 3523 3524 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3525 int64_t &Imm) const { 3526 unsigned Opc = ADDIMI.getOpcode(); 3527 3528 // Exit if the instruction is not ADDI. 3529 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3530 return false; 3531 3532 // The operand may not necessarily be an immediate - it could be a relocation. 3533 if (!ADDIMI.getOperand(2).isImm()) 3534 return false; 3535 3536 Imm = ADDIMI.getOperand(2).getImm(); 3537 3538 return true; 3539 } 3540 3541 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3542 unsigned Opc = ADDMI.getOpcode(); 3543 3544 // Exit if the instruction is not ADD. 3545 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3546 } 3547 3548 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3549 unsigned &ToBeDeletedReg, 3550 unsigned &XFormOpcode, 3551 int64_t &OffsetImm, 3552 ImmInstrInfo &III) const { 3553 // Only handle load/store. 3554 if (!MI.mayLoadOrStore()) 3555 return false; 3556 3557 unsigned Opc = MI.getOpcode(); 3558 3559 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3560 3561 // Exit if instruction has no index form. 3562 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3563 return false; 3564 3565 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3566 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 3567 III, true)) 3568 return false; 3569 3570 if (!III.IsSummingOperands) 3571 return false; 3572 3573 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3574 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3575 // Only support imm operands, not relocation slots or others. 3576 if (!ImmOperand.isImm()) 3577 return false; 3578 3579 assert(RegOperand.isReg() && "Instruction format is not right"); 3580 3581 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3582 if (!RegOperand.isKill()) 3583 return false; 3584 3585 ToBeDeletedReg = RegOperand.getReg(); 3586 OffsetImm = ImmOperand.getImm(); 3587 3588 return true; 3589 } 3590 3591 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3592 MachineInstr *&ADDIMI, 3593 int64_t &OffsetAddi, 3594 int64_t OffsetImm) const { 3595 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3596 MachineOperand &MO = ADDMI->getOperand(Index); 3597 3598 if (!MO.isKill()) 3599 return false; 3600 3601 bool OtherIntermediateUse = false; 3602 3603 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3604 // Currently handle only one "add + Imminstr" pair case, exit if other 3605 // intermediate use for ToBeChangedReg found. 3606 // TODO: handle the cases where there are other "add + Imminstr" pairs 3607 // with same offset in Imminstr which is like: 3608 // 3609 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3610 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3611 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3612 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3613 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3614 // 3615 // can be converted to: 3616 // 3617 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3618 // (OffsetAddi + OffsetImm) 3619 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3620 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3621 3622 if (OtherIntermediateUse || !ADDIMI) 3623 return false; 3624 // Check if ADDI instr meets requirement. 3625 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3626 return false; 3627 3628 if (isInt<16>(OffsetAddi + OffsetImm)) 3629 return true; 3630 return false; 3631 } 3632 3633 // If this instruction has an immediate form and one of its operands is a 3634 // result of a load-immediate or an add-immediate, convert it to 3635 // the immediate form if the constant is in range. 3636 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3637 MachineInstr **KilledDef) const { 3638 MachineFunction *MF = MI.getParent()->getParent(); 3639 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3640 bool PostRA = !MRI->isSSA(); 3641 bool SeenIntermediateUse = true; 3642 unsigned ForwardingOperand = ~0U; 3643 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3644 SeenIntermediateUse); 3645 if (!DefMI) 3646 return false; 3647 assert(ForwardingOperand < MI.getNumOperands() && 3648 "The forwarding operand needs to be valid at this point"); 3649 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3650 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3651 if (KilledDef && KillFwdDefMI) 3652 *KilledDef = DefMI; 3653 3654 // If this is a imm instruction and its register operands is produced by ADDI, 3655 // put the imm into imm inst directly. 3656 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3657 PPC::INSTRUCTION_LIST_END && 3658 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3659 return true; 3660 3661 ImmInstrInfo III; 3662 bool IsVFReg = MI.getOperand(0).isReg() 3663 ? isVFRegister(MI.getOperand(0).getReg()) 3664 : false; 3665 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3666 // If this is a reg+reg instruction that has a reg+imm form, 3667 // and one of the operands is produced by an add-immediate, 3668 // try to convert it. 3669 if (HasImmForm && 3670 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3671 KillFwdDefMI)) 3672 return true; 3673 3674 // If this is a reg+reg instruction that has a reg+imm form, 3675 // and one of the operands is produced by LI, convert it now. 3676 if (HasImmForm && 3677 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3678 return true; 3679 3680 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3681 // can be simpified to LI. 3682 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3683 return true; 3684 3685 return false; 3686 } 3687 3688 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, 3689 MachineInstr **ToErase) const { 3690 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3691 unsigned FoldingReg = MI.getOperand(1).getReg(); 3692 if (!Register::isVirtualRegister(FoldingReg)) 3693 return false; 3694 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); 3695 if (SrcMI->getOpcode() != PPC::RLWINM && 3696 SrcMI->getOpcode() != PPC::RLWINM_rec && 3697 SrcMI->getOpcode() != PPC::RLWINM8 && 3698 SrcMI->getOpcode() != PPC::RLWINM8_rec) 3699 return false; 3700 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 3701 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 3702 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 3703 "Invalid PPC::RLWINM Instruction!"); 3704 uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 3705 uint64_t SHMI = MI.getOperand(2).getImm(); 3706 uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 3707 uint64_t MBMI = MI.getOperand(3).getImm(); 3708 uint64_t MESrc = SrcMI->getOperand(4).getImm(); 3709 uint64_t MEMI = MI.getOperand(4).getImm(); 3710 3711 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 3712 "Invalid PPC::RLWINM Instruction!"); 3713 // If MBMI is bigger than MEMI, we always can not get run of ones. 3714 // RotatedSrcMask non-wrap: 3715 // 0........31|32........63 3716 // RotatedSrcMask: B---E B---E 3717 // MaskMI: -----------|--E B------ 3718 // Result: ----- --- (Bad candidate) 3719 // 3720 // RotatedSrcMask wrap: 3721 // 0........31|32........63 3722 // RotatedSrcMask: --E B----|--E B---- 3723 // MaskMI: -----------|--E B------ 3724 // Result: --- -----|--- ----- (Bad candidate) 3725 // 3726 // One special case is RotatedSrcMask is a full set mask. 3727 // RotatedSrcMask full: 3728 // 0........31|32........63 3729 // RotatedSrcMask: ------EB---|-------EB--- 3730 // MaskMI: -----------|--E B------ 3731 // Result: -----------|--- ------- (Good candidate) 3732 3733 // Mark special case. 3734 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 3735 3736 // For other MBMI > MEMI cases, just return. 3737 if ((MBMI > MEMI) && !SrcMaskFull) 3738 return false; 3739 3740 // Handle MBMI <= MEMI cases. 3741 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 3742 // In MI, we only need low 32 bits of SrcMI, just consider about low 32 3743 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 3744 // while in PowerPC ISA, lowerest bit is at index 63. 3745 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 3746 3747 APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 3748 APInt FinalMask = RotatedSrcMask & MaskMI; 3749 uint32_t NewMB, NewME; 3750 bool Simplified = false; 3751 3752 // If final mask is 0, MI result should be 0 too. 3753 if (FinalMask.isNullValue()) { 3754 bool Is64Bit = 3755 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); 3756 Simplified = true; 3757 LLVM_DEBUG(dbgs() << "Replace Instr: "); 3758 LLVM_DEBUG(MI.dump()); 3759 3760 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 3761 // Replace MI with "LI 0" 3762 MI.RemoveOperand(4); 3763 MI.RemoveOperand(3); 3764 MI.RemoveOperand(2); 3765 MI.getOperand(1).ChangeToImmediate(0); 3766 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 3767 } else { 3768 // Replace MI with "ANDI_rec reg, 0" 3769 MI.RemoveOperand(4); 3770 MI.RemoveOperand(3); 3771 MI.getOperand(2).setImm(0); 3772 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3773 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3774 if (SrcMI->getOperand(1).isKill()) { 3775 MI.getOperand(1).setIsKill(true); 3776 SrcMI->getOperand(1).setIsKill(false); 3777 } else 3778 // About to replace MI.getOperand(1), clear its kill flag. 3779 MI.getOperand(1).setIsKill(false); 3780 } 3781 3782 LLVM_DEBUG(dbgs() << "With: "); 3783 LLVM_DEBUG(MI.dump()); 3784 3785 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 3786 NewMB <= NewME) || 3787 SrcMaskFull) { 3788 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 3789 // than NewME. Otherwise we get a 64 bit value after folding, but MI 3790 // return a 32 bit value. 3791 Simplified = true; 3792 LLVM_DEBUG(dbgs() << "Converting Instr: "); 3793 LLVM_DEBUG(MI.dump()); 3794 3795 uint16_t NewSH = (SHSrc + SHMI) % 32; 3796 MI.getOperand(2).setImm(NewSH); 3797 // If SrcMI mask is full, no need to update MBMI and MEMI. 3798 if (!SrcMaskFull) { 3799 MI.getOperand(3).setImm(NewMB); 3800 MI.getOperand(4).setImm(NewME); 3801 } 3802 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3803 if (SrcMI->getOperand(1).isKill()) { 3804 MI.getOperand(1).setIsKill(true); 3805 SrcMI->getOperand(1).setIsKill(false); 3806 } else 3807 // About to replace MI.getOperand(1), clear its kill flag. 3808 MI.getOperand(1).setIsKill(false); 3809 3810 LLVM_DEBUG(dbgs() << "To: "); 3811 LLVM_DEBUG(MI.dump()); 3812 } 3813 if (Simplified & MRI->use_nodbg_empty(FoldingReg) && 3814 !SrcMI->hasImplicitDef()) { 3815 // If FoldingReg has no non-debug use and it has no implicit def (it 3816 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. 3817 // Otherwise keep it. 3818 *ToErase = SrcMI; 3819 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 3820 LLVM_DEBUG(SrcMI->dump()); 3821 } 3822 return Simplified; 3823 } 3824 3825 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3826 ImmInstrInfo &III, bool PostRA) const { 3827 // The vast majority of the instructions would need their operand 2 replaced 3828 // with an immediate when switching to the reg+imm form. A marked exception 3829 // are the update form loads/stores for which a constant operand 2 would need 3830 // to turn into a displacement and move operand 1 to the operand 2 position. 3831 III.ImmOpNo = 2; 3832 III.OpNoForForwarding = 2; 3833 III.ImmWidth = 16; 3834 III.ImmMustBeMultipleOf = 1; 3835 III.TruncateImmTo = 0; 3836 III.IsSummingOperands = false; 3837 switch (Opc) { 3838 default: return false; 3839 case PPC::ADD4: 3840 case PPC::ADD8: 3841 III.SignedImm = true; 3842 III.ZeroIsSpecialOrig = 0; 3843 III.ZeroIsSpecialNew = 1; 3844 III.IsCommutative = true; 3845 III.IsSummingOperands = true; 3846 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3847 break; 3848 case PPC::ADDC: 3849 case PPC::ADDC8: 3850 III.SignedImm = true; 3851 III.ZeroIsSpecialOrig = 0; 3852 III.ZeroIsSpecialNew = 0; 3853 III.IsCommutative = true; 3854 III.IsSummingOperands = true; 3855 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3856 break; 3857 case PPC::ADDC_rec: 3858 III.SignedImm = true; 3859 III.ZeroIsSpecialOrig = 0; 3860 III.ZeroIsSpecialNew = 0; 3861 III.IsCommutative = true; 3862 III.IsSummingOperands = true; 3863 III.ImmOpcode = PPC::ADDIC_rec; 3864 break; 3865 case PPC::SUBFC: 3866 case PPC::SUBFC8: 3867 III.SignedImm = true; 3868 III.ZeroIsSpecialOrig = 0; 3869 III.ZeroIsSpecialNew = 0; 3870 III.IsCommutative = false; 3871 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3872 break; 3873 case PPC::CMPW: 3874 case PPC::CMPD: 3875 III.SignedImm = true; 3876 III.ZeroIsSpecialOrig = 0; 3877 III.ZeroIsSpecialNew = 0; 3878 III.IsCommutative = false; 3879 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3880 break; 3881 case PPC::CMPLW: 3882 case PPC::CMPLD: 3883 III.SignedImm = false; 3884 III.ZeroIsSpecialOrig = 0; 3885 III.ZeroIsSpecialNew = 0; 3886 III.IsCommutative = false; 3887 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3888 break; 3889 case PPC::AND_rec: 3890 case PPC::AND8_rec: 3891 case PPC::OR: 3892 case PPC::OR8: 3893 case PPC::XOR: 3894 case PPC::XOR8: 3895 III.SignedImm = false; 3896 III.ZeroIsSpecialOrig = 0; 3897 III.ZeroIsSpecialNew = 0; 3898 III.IsCommutative = true; 3899 switch(Opc) { 3900 default: llvm_unreachable("Unknown opcode"); 3901 case PPC::AND_rec: 3902 III.ImmOpcode = PPC::ANDI_rec; 3903 break; 3904 case PPC::AND8_rec: 3905 III.ImmOpcode = PPC::ANDI8_rec; 3906 break; 3907 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3908 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3909 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3910 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3911 } 3912 break; 3913 case PPC::RLWNM: 3914 case PPC::RLWNM8: 3915 case PPC::RLWNM_rec: 3916 case PPC::RLWNM8_rec: 3917 case PPC::SLW: 3918 case PPC::SLW8: 3919 case PPC::SLW_rec: 3920 case PPC::SLW8_rec: 3921 case PPC::SRW: 3922 case PPC::SRW8: 3923 case PPC::SRW_rec: 3924 case PPC::SRW8_rec: 3925 case PPC::SRAW: 3926 case PPC::SRAW_rec: 3927 III.SignedImm = false; 3928 III.ZeroIsSpecialOrig = 0; 3929 III.ZeroIsSpecialNew = 0; 3930 III.IsCommutative = false; 3931 // This isn't actually true, but the instructions ignore any of the 3932 // upper bits, so any immediate loaded with an LI is acceptable. 3933 // This does not apply to shift right algebraic because a value 3934 // out of range will produce a -1/0. 3935 III.ImmWidth = 16; 3936 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3937 Opc == PPC::RLWNM8_rec) 3938 III.TruncateImmTo = 5; 3939 else 3940 III.TruncateImmTo = 6; 3941 switch(Opc) { 3942 default: llvm_unreachable("Unknown opcode"); 3943 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3944 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3945 case PPC::RLWNM_rec: 3946 III.ImmOpcode = PPC::RLWINM_rec; 3947 break; 3948 case PPC::RLWNM8_rec: 3949 III.ImmOpcode = PPC::RLWINM8_rec; 3950 break; 3951 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3952 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3953 case PPC::SLW_rec: 3954 III.ImmOpcode = PPC::RLWINM_rec; 3955 break; 3956 case PPC::SLW8_rec: 3957 III.ImmOpcode = PPC::RLWINM8_rec; 3958 break; 3959 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3960 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3961 case PPC::SRW_rec: 3962 III.ImmOpcode = PPC::RLWINM_rec; 3963 break; 3964 case PPC::SRW8_rec: 3965 III.ImmOpcode = PPC::RLWINM8_rec; 3966 break; 3967 case PPC::SRAW: 3968 III.ImmWidth = 5; 3969 III.TruncateImmTo = 0; 3970 III.ImmOpcode = PPC::SRAWI; 3971 break; 3972 case PPC::SRAW_rec: 3973 III.ImmWidth = 5; 3974 III.TruncateImmTo = 0; 3975 III.ImmOpcode = PPC::SRAWI_rec; 3976 break; 3977 } 3978 break; 3979 case PPC::RLDCL: 3980 case PPC::RLDCL_rec: 3981 case PPC::RLDCR: 3982 case PPC::RLDCR_rec: 3983 case PPC::SLD: 3984 case PPC::SLD_rec: 3985 case PPC::SRD: 3986 case PPC::SRD_rec: 3987 case PPC::SRAD: 3988 case PPC::SRAD_rec: 3989 III.SignedImm = false; 3990 III.ZeroIsSpecialOrig = 0; 3991 III.ZeroIsSpecialNew = 0; 3992 III.IsCommutative = false; 3993 // This isn't actually true, but the instructions ignore any of the 3994 // upper bits, so any immediate loaded with an LI is acceptable. 3995 // This does not apply to shift right algebraic because a value 3996 // out of range will produce a -1/0. 3997 III.ImmWidth = 16; 3998 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3999 Opc == PPC::RLDCR_rec) 4000 III.TruncateImmTo = 6; 4001 else 4002 III.TruncateImmTo = 7; 4003 switch(Opc) { 4004 default: llvm_unreachable("Unknown opcode"); 4005 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 4006 case PPC::RLDCL_rec: 4007 III.ImmOpcode = PPC::RLDICL_rec; 4008 break; 4009 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 4010 case PPC::RLDCR_rec: 4011 III.ImmOpcode = PPC::RLDICR_rec; 4012 break; 4013 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 4014 case PPC::SLD_rec: 4015 III.ImmOpcode = PPC::RLDICR_rec; 4016 break; 4017 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 4018 case PPC::SRD_rec: 4019 III.ImmOpcode = PPC::RLDICL_rec; 4020 break; 4021 case PPC::SRAD: 4022 III.ImmWidth = 6; 4023 III.TruncateImmTo = 0; 4024 III.ImmOpcode = PPC::SRADI; 4025 break; 4026 case PPC::SRAD_rec: 4027 III.ImmWidth = 6; 4028 III.TruncateImmTo = 0; 4029 III.ImmOpcode = PPC::SRADI_rec; 4030 break; 4031 } 4032 break; 4033 // Loads and stores: 4034 case PPC::LBZX: 4035 case PPC::LBZX8: 4036 case PPC::LHZX: 4037 case PPC::LHZX8: 4038 case PPC::LHAX: 4039 case PPC::LHAX8: 4040 case PPC::LWZX: 4041 case PPC::LWZX8: 4042 case PPC::LWAX: 4043 case PPC::LDX: 4044 case PPC::LFSX: 4045 case PPC::LFDX: 4046 case PPC::STBX: 4047 case PPC::STBX8: 4048 case PPC::STHX: 4049 case PPC::STHX8: 4050 case PPC::STWX: 4051 case PPC::STWX8: 4052 case PPC::STDX: 4053 case PPC::STFSX: 4054 case PPC::STFDX: 4055 III.SignedImm = true; 4056 III.ZeroIsSpecialOrig = 1; 4057 III.ZeroIsSpecialNew = 2; 4058 III.IsCommutative = true; 4059 III.IsSummingOperands = true; 4060 III.ImmOpNo = 1; 4061 III.OpNoForForwarding = 2; 4062 switch(Opc) { 4063 default: llvm_unreachable("Unknown opcode"); 4064 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 4065 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 4066 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 4067 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 4068 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 4069 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 4070 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 4071 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 4072 case PPC::LWAX: 4073 III.ImmOpcode = PPC::LWA; 4074 III.ImmMustBeMultipleOf = 4; 4075 break; 4076 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 4077 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 4078 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 4079 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 4080 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 4081 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 4082 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 4083 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 4084 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 4085 case PPC::STDX: 4086 III.ImmOpcode = PPC::STD; 4087 III.ImmMustBeMultipleOf = 4; 4088 break; 4089 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 4090 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 4091 } 4092 break; 4093 case PPC::LBZUX: 4094 case PPC::LBZUX8: 4095 case PPC::LHZUX: 4096 case PPC::LHZUX8: 4097 case PPC::LHAUX: 4098 case PPC::LHAUX8: 4099 case PPC::LWZUX: 4100 case PPC::LWZUX8: 4101 case PPC::LDUX: 4102 case PPC::LFSUX: 4103 case PPC::LFDUX: 4104 case PPC::STBUX: 4105 case PPC::STBUX8: 4106 case PPC::STHUX: 4107 case PPC::STHUX8: 4108 case PPC::STWUX: 4109 case PPC::STWUX8: 4110 case PPC::STDUX: 4111 case PPC::STFSUX: 4112 case PPC::STFDUX: 4113 III.SignedImm = true; 4114 III.ZeroIsSpecialOrig = 2; 4115 III.ZeroIsSpecialNew = 3; 4116 III.IsCommutative = false; 4117 III.IsSummingOperands = true; 4118 III.ImmOpNo = 2; 4119 III.OpNoForForwarding = 3; 4120 switch(Opc) { 4121 default: llvm_unreachable("Unknown opcode"); 4122 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 4123 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 4124 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 4125 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 4126 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 4127 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 4128 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 4129 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 4130 case PPC::LDUX: 4131 III.ImmOpcode = PPC::LDU; 4132 III.ImmMustBeMultipleOf = 4; 4133 break; 4134 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 4135 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 4136 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 4137 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 4138 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 4139 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 4140 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 4141 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 4142 case PPC::STDUX: 4143 III.ImmOpcode = PPC::STDU; 4144 III.ImmMustBeMultipleOf = 4; 4145 break; 4146 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 4147 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 4148 } 4149 break; 4150 // Power9 and up only. For some of these, the X-Form version has access to all 4151 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 4152 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 4153 // into or stored from is one of the VR registers. 4154 case PPC::LXVX: 4155 case PPC::LXSSPX: 4156 case PPC::LXSDX: 4157 case PPC::STXVX: 4158 case PPC::STXSSPX: 4159 case PPC::STXSDX: 4160 case PPC::XFLOADf32: 4161 case PPC::XFLOADf64: 4162 case PPC::XFSTOREf32: 4163 case PPC::XFSTOREf64: 4164 if (!Subtarget.hasP9Vector()) 4165 return false; 4166 III.SignedImm = true; 4167 III.ZeroIsSpecialOrig = 1; 4168 III.ZeroIsSpecialNew = 2; 4169 III.IsCommutative = true; 4170 III.IsSummingOperands = true; 4171 III.ImmOpNo = 1; 4172 III.OpNoForForwarding = 2; 4173 III.ImmMustBeMultipleOf = 4; 4174 switch(Opc) { 4175 default: llvm_unreachable("Unknown opcode"); 4176 case PPC::LXVX: 4177 III.ImmOpcode = PPC::LXV; 4178 III.ImmMustBeMultipleOf = 16; 4179 break; 4180 case PPC::LXSSPX: 4181 if (PostRA) { 4182 if (IsVFReg) 4183 III.ImmOpcode = PPC::LXSSP; 4184 else { 4185 III.ImmOpcode = PPC::LFS; 4186 III.ImmMustBeMultipleOf = 1; 4187 } 4188 break; 4189 } 4190 LLVM_FALLTHROUGH; 4191 case PPC::XFLOADf32: 4192 III.ImmOpcode = PPC::DFLOADf32; 4193 break; 4194 case PPC::LXSDX: 4195 if (PostRA) { 4196 if (IsVFReg) 4197 III.ImmOpcode = PPC::LXSD; 4198 else { 4199 III.ImmOpcode = PPC::LFD; 4200 III.ImmMustBeMultipleOf = 1; 4201 } 4202 break; 4203 } 4204 LLVM_FALLTHROUGH; 4205 case PPC::XFLOADf64: 4206 III.ImmOpcode = PPC::DFLOADf64; 4207 break; 4208 case PPC::STXVX: 4209 III.ImmOpcode = PPC::STXV; 4210 III.ImmMustBeMultipleOf = 16; 4211 break; 4212 case PPC::STXSSPX: 4213 if (PostRA) { 4214 if (IsVFReg) 4215 III.ImmOpcode = PPC::STXSSP; 4216 else { 4217 III.ImmOpcode = PPC::STFS; 4218 III.ImmMustBeMultipleOf = 1; 4219 } 4220 break; 4221 } 4222 LLVM_FALLTHROUGH; 4223 case PPC::XFSTOREf32: 4224 III.ImmOpcode = PPC::DFSTOREf32; 4225 break; 4226 case PPC::STXSDX: 4227 if (PostRA) { 4228 if (IsVFReg) 4229 III.ImmOpcode = PPC::STXSD; 4230 else { 4231 III.ImmOpcode = PPC::STFD; 4232 III.ImmMustBeMultipleOf = 1; 4233 } 4234 break; 4235 } 4236 LLVM_FALLTHROUGH; 4237 case PPC::XFSTOREf64: 4238 III.ImmOpcode = PPC::DFSTOREf64; 4239 break; 4240 } 4241 break; 4242 } 4243 return true; 4244 } 4245 4246 // Utility function for swaping two arbitrary operands of an instruction. 4247 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 4248 assert(Op1 != Op2 && "Cannot swap operand with itself."); 4249 4250 unsigned MaxOp = std::max(Op1, Op2); 4251 unsigned MinOp = std::min(Op1, Op2); 4252 MachineOperand MOp1 = MI.getOperand(MinOp); 4253 MachineOperand MOp2 = MI.getOperand(MaxOp); 4254 MI.RemoveOperand(std::max(Op1, Op2)); 4255 MI.RemoveOperand(std::min(Op1, Op2)); 4256 4257 // If the operands we are swapping are the two at the end (the common case) 4258 // we can just remove both and add them in the opposite order. 4259 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 4260 MI.addOperand(MOp2); 4261 MI.addOperand(MOp1); 4262 } else { 4263 // Store all operands in a temporary vector, remove them and re-add in the 4264 // right order. 4265 SmallVector<MachineOperand, 2> MOps; 4266 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 4267 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 4268 MOps.push_back(MI.getOperand(i)); 4269 MI.RemoveOperand(i); 4270 } 4271 // MOp2 needs to be added next. 4272 MI.addOperand(MOp2); 4273 // Now add the rest. 4274 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 4275 if (i == MaxOp) 4276 MI.addOperand(MOp1); 4277 else { 4278 MI.addOperand(MOps.back()); 4279 MOps.pop_back(); 4280 } 4281 } 4282 } 4283 } 4284 4285 // Check if the 'MI' that has the index OpNoForForwarding 4286 // meets the requirement described in the ImmInstrInfo. 4287 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 4288 const ImmInstrInfo &III, 4289 unsigned OpNoForForwarding 4290 ) const { 4291 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 4292 // would not work pre-RA, we can only do the check post RA. 4293 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4294 if (MRI.isSSA()) 4295 return false; 4296 4297 // Cannot do the transform if MI isn't summing the operands. 4298 if (!III.IsSummingOperands) 4299 return false; 4300 4301 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 4302 if (!III.ZeroIsSpecialOrig) 4303 return false; 4304 4305 // We cannot do the transform if the operand we are trying to replace 4306 // isn't the same as the operand the instruction allows. 4307 if (OpNoForForwarding != III.OpNoForForwarding) 4308 return false; 4309 4310 // Check if the instruction we are trying to transform really has 4311 // the special zero register as its operand. 4312 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 4313 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 4314 return false; 4315 4316 // This machine instruction is convertible if it is, 4317 // 1. summing the operands. 4318 // 2. one of the operands is special zero register. 4319 // 3. the operand we are trying to replace is allowed by the MI. 4320 return true; 4321 } 4322 4323 // Check if the DefMI is the add inst and set the ImmMO and RegMO 4324 // accordingly. 4325 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 4326 const ImmInstrInfo &III, 4327 MachineOperand *&ImmMO, 4328 MachineOperand *&RegMO) const { 4329 unsigned Opc = DefMI.getOpcode(); 4330 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 4331 return false; 4332 4333 assert(DefMI.getNumOperands() >= 3 && 4334 "Add inst must have at least three operands"); 4335 RegMO = &DefMI.getOperand(1); 4336 ImmMO = &DefMI.getOperand(2); 4337 4338 // Before RA, ADDI first operand could be a frame index. 4339 if (!RegMO->isReg()) 4340 return false; 4341 4342 // This DefMI is elgible for forwarding if it is: 4343 // 1. add inst 4344 // 2. one of the operands is Imm/CPI/Global. 4345 return isAnImmediateOperand(*ImmMO); 4346 } 4347 4348 bool PPCInstrInfo::isRegElgibleForForwarding( 4349 const MachineOperand &RegMO, const MachineInstr &DefMI, 4350 const MachineInstr &MI, bool KillDefMI, 4351 bool &IsFwdFeederRegKilled) const { 4352 // x = addi y, imm 4353 // ... 4354 // z = lfdx 0, x -> z = lfd imm(y) 4355 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 4356 // of "y" between the DEF of "x" and "z". 4357 // The query is only valid post RA. 4358 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4359 if (MRI.isSSA()) 4360 return false; 4361 4362 Register Reg = RegMO.getReg(); 4363 4364 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 4365 MachineBasicBlock::const_reverse_iterator It = MI; 4366 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 4367 It++; 4368 for (; It != E; ++It) { 4369 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4370 return false; 4371 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4372 IsFwdFeederRegKilled = true; 4373 // Made it to DefMI without encountering a clobber. 4374 if ((&*It) == &DefMI) 4375 break; 4376 } 4377 assert((&*It) == &DefMI && "DefMI is missing"); 4378 4379 // If DefMI also defines the register to be forwarded, we can only forward it 4380 // if DefMI is being erased. 4381 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 4382 return KillDefMI; 4383 4384 return true; 4385 } 4386 4387 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 4388 const MachineInstr &DefMI, 4389 const ImmInstrInfo &III, 4390 int64_t &Imm, 4391 int64_t BaseImm) const { 4392 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 4393 if (DefMI.getOpcode() == PPC::ADDItocL) { 4394 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 4395 // However, we know that, it is 16-bit width, and has the alignment of 4. 4396 // Check if the instruction met the requirement. 4397 if (III.ImmMustBeMultipleOf > 4 || 4398 III.TruncateImmTo || III.ImmWidth != 16) 4399 return false; 4400 4401 // Going from XForm to DForm loads means that the displacement needs to be 4402 // not just an immediate but also a multiple of 4, or 16 depending on the 4403 // load. A DForm load cannot be represented if it is a multiple of say 2. 4404 // XForm loads do not have this restriction. 4405 if (ImmMO.isGlobal()) { 4406 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 4407 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 4408 return false; 4409 } 4410 4411 return true; 4412 } 4413 4414 if (ImmMO.isImm()) { 4415 // It is Imm, we need to check if the Imm fit the range. 4416 // Sign-extend to 64-bits. 4417 // DefMI may be folded with another imm form instruction, the result Imm is 4418 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 4419 APInt ActualValue(64, ImmMO.getImm() + BaseImm, true); 4420 if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth)) 4421 return false; 4422 if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth)) 4423 return false; 4424 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 4425 4426 if (Imm % III.ImmMustBeMultipleOf) 4427 return false; 4428 if (III.TruncateImmTo) 4429 Imm &= ((1 << III.TruncateImmTo) - 1); 4430 } 4431 else 4432 return false; 4433 4434 // This ImmMO is forwarded if it meets the requriement describle 4435 // in ImmInstrInfo 4436 return true; 4437 } 4438 4439 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 4440 unsigned OpNoForForwarding, 4441 MachineInstr **KilledDef) const { 4442 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4443 !DefMI.getOperand(1).isImm()) 4444 return false; 4445 4446 MachineFunction *MF = MI.getParent()->getParent(); 4447 MachineRegisterInfo *MRI = &MF->getRegInfo(); 4448 bool PostRA = !MRI->isSSA(); 4449 4450 int64_t Immediate = DefMI.getOperand(1).getImm(); 4451 // Sign-extend to 64-bits. 4452 int64_t SExtImm = SignExtend64<16>(Immediate); 4453 4454 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 4455 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4456 4457 bool ReplaceWithLI = false; 4458 bool Is64BitLI = false; 4459 int64_t NewImm = 0; 4460 bool SetCR = false; 4461 unsigned Opc = MI.getOpcode(); 4462 switch (Opc) { 4463 default: 4464 return false; 4465 4466 // FIXME: Any branches conditional on such a comparison can be made 4467 // unconditional. At this time, this happens too infrequently to be worth 4468 // the implementation effort, but if that ever changes, we could convert 4469 // such a pattern here. 4470 case PPC::CMPWI: 4471 case PPC::CMPLWI: 4472 case PPC::CMPDI: 4473 case PPC::CMPLDI: { 4474 // Doing this post-RA would require dataflow analysis to reliably find uses 4475 // of the CR register set by the compare. 4476 // No need to fixup killed/dead flag since this transformation is only valid 4477 // before RA. 4478 if (PostRA) 4479 return false; 4480 // If a compare-immediate is fed by an immediate and is itself an input of 4481 // an ISEL (the most common case) into a COPY of the correct register. 4482 bool Changed = false; 4483 Register DefReg = MI.getOperand(0).getReg(); 4484 int64_t Comparand = MI.getOperand(2).getImm(); 4485 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 4486 ? (Comparand | 0xFFFFFFFFFFFF0000) 4487 : Comparand; 4488 4489 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 4490 unsigned UseOpc = CompareUseMI.getOpcode(); 4491 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 4492 continue; 4493 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 4494 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 4495 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 4496 unsigned RegToCopy = 4497 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 4498 if (RegToCopy == PPC::NoRegister) 4499 continue; 4500 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 4501 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 4502 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 4503 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 4504 CompareUseMI.RemoveOperand(3); 4505 CompareUseMI.RemoveOperand(2); 4506 continue; 4507 } 4508 LLVM_DEBUG( 4509 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 4510 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 4511 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 4512 // Convert to copy and remove unneeded operands. 4513 CompareUseMI.setDesc(get(PPC::COPY)); 4514 CompareUseMI.RemoveOperand(3); 4515 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 4516 CmpIselsConverted++; 4517 Changed = true; 4518 LLVM_DEBUG(CompareUseMI.dump()); 4519 } 4520 if (Changed) 4521 return true; 4522 // This may end up incremented multiple times since this function is called 4523 // during a fixed-point transformation, but it is only meant to indicate the 4524 // presence of this opportunity. 4525 MissedConvertibleImmediateInstrs++; 4526 return false; 4527 } 4528 4529 // Immediate forms - may simply be convertable to an LI. 4530 case PPC::ADDI: 4531 case PPC::ADDI8: { 4532 // Does the sum fit in a 16-bit signed field? 4533 int64_t Addend = MI.getOperand(2).getImm(); 4534 if (isInt<16>(Addend + SExtImm)) { 4535 ReplaceWithLI = true; 4536 Is64BitLI = Opc == PPC::ADDI8; 4537 NewImm = Addend + SExtImm; 4538 break; 4539 } 4540 return false; 4541 } 4542 case PPC::SUBFIC: 4543 case PPC::SUBFIC8: { 4544 // Only transform this if the CARRY implicit operand is dead. 4545 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 4546 return false; 4547 int64_t Minuend = MI.getOperand(2).getImm(); 4548 if (isInt<16>(Minuend - SExtImm)) { 4549 ReplaceWithLI = true; 4550 Is64BitLI = Opc == PPC::SUBFIC8; 4551 NewImm = Minuend - SExtImm; 4552 break; 4553 } 4554 return false; 4555 } 4556 case PPC::RLDICL: 4557 case PPC::RLDICL_rec: 4558 case PPC::RLDICL_32: 4559 case PPC::RLDICL_32_64: { 4560 // Use APInt's rotate function. 4561 int64_t SH = MI.getOperand(2).getImm(); 4562 int64_t MB = MI.getOperand(3).getImm(); 4563 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 4564 SExtImm, true); 4565 InVal = InVal.rotl(SH); 4566 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 4567 InVal &= Mask; 4568 // Can't replace negative values with an LI as that will sign-extend 4569 // and not clear the left bits. If we're setting the CR bit, we will use 4570 // ANDI_rec which won't sign extend, so that's safe. 4571 if (isUInt<15>(InVal.getSExtValue()) || 4572 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 4573 ReplaceWithLI = true; 4574 Is64BitLI = Opc != PPC::RLDICL_32; 4575 NewImm = InVal.getSExtValue(); 4576 SetCR = Opc == PPC::RLDICL_rec; 4577 break; 4578 } 4579 return false; 4580 } 4581 case PPC::RLWINM: 4582 case PPC::RLWINM8: 4583 case PPC::RLWINM_rec: 4584 case PPC::RLWINM8_rec: { 4585 int64_t SH = MI.getOperand(2).getImm(); 4586 int64_t MB = MI.getOperand(3).getImm(); 4587 int64_t ME = MI.getOperand(4).getImm(); 4588 APInt InVal(32, SExtImm, true); 4589 InVal = InVal.rotl(SH); 4590 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 4591 InVal &= Mask; 4592 // Can't replace negative values with an LI as that will sign-extend 4593 // and not clear the left bits. If we're setting the CR bit, we will use 4594 // ANDI_rec which won't sign extend, so that's safe. 4595 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 4596 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 4597 isUInt<16>(InVal.getSExtValue())); 4598 if (ValueFits) { 4599 ReplaceWithLI = true; 4600 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 4601 NewImm = InVal.getSExtValue(); 4602 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 4603 break; 4604 } 4605 return false; 4606 } 4607 case PPC::ORI: 4608 case PPC::ORI8: 4609 case PPC::XORI: 4610 case PPC::XORI8: { 4611 int64_t LogicalImm = MI.getOperand(2).getImm(); 4612 int64_t Result = 0; 4613 if (Opc == PPC::ORI || Opc == PPC::ORI8) 4614 Result = LogicalImm | SExtImm; 4615 else 4616 Result = LogicalImm ^ SExtImm; 4617 if (isInt<16>(Result)) { 4618 ReplaceWithLI = true; 4619 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 4620 NewImm = Result; 4621 break; 4622 } 4623 return false; 4624 } 4625 } 4626 4627 if (ReplaceWithLI) { 4628 // We need to be careful with CR-setting instructions we're replacing. 4629 if (SetCR) { 4630 // We don't know anything about uses when we're out of SSA, so only 4631 // replace if the new immediate will be reproduced. 4632 bool ImmChanged = (SExtImm & NewImm) != NewImm; 4633 if (PostRA && ImmChanged) 4634 return false; 4635 4636 if (!PostRA) { 4637 // If the defining load-immediate has no other uses, we can just replace 4638 // the immediate with the new immediate. 4639 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 4640 DefMI.getOperand(1).setImm(NewImm); 4641 4642 // If we're not using the GPR result of the CR-setting instruction, we 4643 // just need to and with zero/non-zero depending on the new immediate. 4644 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 4645 if (NewImm) { 4646 assert(Immediate && "Transformation converted zero to non-zero?"); 4647 NewImm = Immediate; 4648 } 4649 } else if (ImmChanged) 4650 return false; 4651 } 4652 } 4653 4654 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4655 LLVM_DEBUG(MI.dump()); 4656 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4657 LLVM_DEBUG(DefMI.dump()); 4658 LoadImmediateInfo LII; 4659 LII.Imm = NewImm; 4660 LII.Is64Bit = Is64BitLI; 4661 LII.SetCR = SetCR; 4662 // If we're setting the CR, the original load-immediate must be kept (as an 4663 // operand to ANDI_rec/ANDI8_rec). 4664 if (KilledDef && SetCR) 4665 *KilledDef = nullptr; 4666 replaceInstrWithLI(MI, LII); 4667 4668 // Fixup killed/dead flag after transformation. 4669 // Pattern: 4670 // ForwardingOperandReg = LI imm1 4671 // y = op2 imm2, ForwardingOperandReg(killed) 4672 if (IsForwardingOperandKilled) 4673 fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); 4674 4675 LLVM_DEBUG(dbgs() << "With:\n"); 4676 LLVM_DEBUG(MI.dump()); 4677 return true; 4678 } 4679 return false; 4680 } 4681 4682 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4683 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4684 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4685 bool PostRA = !MRI->isSSA(); 4686 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4687 // for post-ra. 4688 if (PostRA) 4689 return false; 4690 4691 // Only handle load/store. 4692 if (!MI.mayLoadOrStore()) 4693 return false; 4694 4695 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4696 4697 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4698 "MI must have x-form opcode"); 4699 4700 // get Imm Form info. 4701 ImmInstrInfo III; 4702 bool IsVFReg = MI.getOperand(0).isReg() 4703 ? isVFRegister(MI.getOperand(0).getReg()) 4704 : false; 4705 4706 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4707 return false; 4708 4709 if (!III.IsSummingOperands) 4710 return false; 4711 4712 if (OpNoForForwarding != III.OpNoForForwarding) 4713 return false; 4714 4715 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4716 if (!ImmOperandMI.isImm()) 4717 return false; 4718 4719 // Check DefMI. 4720 MachineOperand *ImmMO = nullptr; 4721 MachineOperand *RegMO = nullptr; 4722 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4723 return false; 4724 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4725 4726 // Check Imm. 4727 // Set ImmBase from imm instruction as base and get new Imm inside 4728 // isImmElgibleForForwarding. 4729 int64_t ImmBase = ImmOperandMI.getImm(); 4730 int64_t Imm = 0; 4731 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4732 return false; 4733 4734 // Get killed info in case fixup needed after transformation. 4735 unsigned ForwardKilledOperandReg = ~0U; 4736 if (MI.getOperand(III.OpNoForForwarding).isKill()) 4737 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 4738 4739 // Do the transform 4740 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4741 LLVM_DEBUG(MI.dump()); 4742 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4743 LLVM_DEBUG(DefMI.dump()); 4744 4745 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4746 MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill()); 4747 MI.getOperand(III.ImmOpNo).setImm(Imm); 4748 4749 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 4750 if (DefMI.getParent() == MI.getParent()) { 4751 // Check if reg is killed between MI and DefMI. 4752 auto IsKilledFor = [&](unsigned Reg) { 4753 MachineBasicBlock::const_reverse_iterator It = MI; 4754 MachineBasicBlock::const_reverse_iterator E = DefMI; 4755 It++; 4756 for (; It != E; ++It) { 4757 if (It->killsRegister(Reg)) 4758 return true; 4759 } 4760 return false; 4761 }; 4762 4763 // Update kill flag 4764 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 4765 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4766 if (ForwardKilledOperandReg != ~0U) 4767 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4768 } 4769 4770 LLVM_DEBUG(dbgs() << "With:\n"); 4771 LLVM_DEBUG(MI.dump()); 4772 return true; 4773 } 4774 4775 // If an X-Form instruction is fed by an add-immediate and one of its operands 4776 // is the literal zero, attempt to forward the source of the add-immediate to 4777 // the corresponding D-Form instruction with the displacement coming from 4778 // the immediate being added. 4779 bool PPCInstrInfo::transformToImmFormFedByAdd( 4780 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4781 MachineInstr &DefMI, bool KillDefMI) const { 4782 // RegMO ImmMO 4783 // | | 4784 // x = addi reg, imm <----- DefMI 4785 // y = op 0 , x <----- MI 4786 // | 4787 // OpNoForForwarding 4788 // Check if the MI meet the requirement described in the III. 4789 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4790 return false; 4791 4792 // Check if the DefMI meet the requirement 4793 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4794 MachineOperand *ImmMO = nullptr; 4795 MachineOperand *RegMO = nullptr; 4796 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4797 return false; 4798 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4799 4800 // As we get the Imm operand now, we need to check if the ImmMO meet 4801 // the requirement described in the III. If yes set the Imm. 4802 int64_t Imm = 0; 4803 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4804 return false; 4805 4806 bool IsFwdFeederRegKilled = false; 4807 // Check if the RegMO can be forwarded to MI. 4808 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4809 IsFwdFeederRegKilled)) 4810 return false; 4811 4812 // Get killed info in case fixup needed after transformation. 4813 unsigned ForwardKilledOperandReg = ~0U; 4814 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4815 bool PostRA = !MRI.isSSA(); 4816 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 4817 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4818 4819 // We know that, the MI and DefMI both meet the pattern, and 4820 // the Imm also meet the requirement with the new Imm-form. 4821 // It is safe to do the transformation now. 4822 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4823 LLVM_DEBUG(MI.dump()); 4824 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4825 LLVM_DEBUG(DefMI.dump()); 4826 4827 // Update the base reg first. 4828 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4829 false, false, 4830 RegMO->isKill()); 4831 4832 // Then, update the imm. 4833 if (ImmMO->isImm()) { 4834 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4835 // directly. 4836 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4837 } 4838 else { 4839 // Otherwise, it is Constant Pool Index(CPI) or Global, 4840 // which is relocation in fact. We need to replace the special zero 4841 // register with ImmMO. 4842 // Before that, we need to fixup the target flags for imm. 4843 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4844 if (DefMI.getOpcode() == PPC::ADDItocL) 4845 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4846 4847 // MI didn't have the interface such as MI.setOperand(i) though 4848 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4849 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4850 // and, add the ImmMO, then, move back all the operands behind ZERO. 4851 SmallVector<MachineOperand, 2> MOps; 4852 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4853 MOps.push_back(MI.getOperand(i)); 4854 MI.RemoveOperand(i); 4855 } 4856 4857 // Remove the last MO in the list, which is ZERO operand in fact. 4858 MOps.pop_back(); 4859 // Add the imm operand. 4860 MI.addOperand(*ImmMO); 4861 // Now add the rest back. 4862 for (auto &MO : MOps) 4863 MI.addOperand(MO); 4864 } 4865 4866 // Update the opcode. 4867 MI.setDesc(get(III.ImmOpcode)); 4868 4869 // Fix up killed/dead flag after transformation. 4870 // Pattern 1: 4871 // x = ADD KilledFwdFeederReg, imm 4872 // n = opn KilledFwdFeederReg(killed), regn 4873 // y = XOP 0, x 4874 // Pattern 2: 4875 // x = ADD reg(killed), imm 4876 // y = XOP 0, x 4877 if (IsFwdFeederRegKilled || RegMO->isKill()) 4878 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4879 // Pattern 3: 4880 // ForwardKilledOperandReg = ADD reg, imm 4881 // y = XOP 0, ForwardKilledOperandReg(killed) 4882 if (ForwardKilledOperandReg != ~0U) 4883 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4884 4885 LLVM_DEBUG(dbgs() << "With:\n"); 4886 LLVM_DEBUG(MI.dump()); 4887 4888 return true; 4889 } 4890 4891 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4892 const ImmInstrInfo &III, 4893 unsigned ConstantOpNo, 4894 MachineInstr &DefMI) const { 4895 // DefMI must be LI or LI8. 4896 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4897 !DefMI.getOperand(1).isImm()) 4898 return false; 4899 4900 // Get Imm operand and Sign-extend to 64-bits. 4901 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4902 4903 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4904 bool PostRA = !MRI.isSSA(); 4905 // Exit early if we can't convert this. 4906 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4907 return false; 4908 if (Imm % III.ImmMustBeMultipleOf) 4909 return false; 4910 if (III.TruncateImmTo) 4911 Imm &= ((1 << III.TruncateImmTo) - 1); 4912 if (III.SignedImm) { 4913 APInt ActualValue(64, Imm, true); 4914 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4915 return false; 4916 } else { 4917 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4918 if ((uint64_t)Imm > UnsignedMax) 4919 return false; 4920 } 4921 4922 // If we're post-RA, the instructions don't agree on whether register zero is 4923 // special, we can transform this as long as the register operand that will 4924 // end up in the location where zero is special isn't R0. 4925 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4926 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4927 III.ZeroIsSpecialNew + 1; 4928 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4929 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4930 // If R0 is in the operand where zero is special for the new instruction, 4931 // it is unsafe to transform if the constant operand isn't that operand. 4932 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4933 ConstantOpNo != III.ZeroIsSpecialNew) 4934 return false; 4935 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4936 ConstantOpNo != PosForOrigZero) 4937 return false; 4938 } 4939 4940 // Get killed info in case fixup needed after transformation. 4941 unsigned ForwardKilledOperandReg = ~0U; 4942 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 4943 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 4944 4945 unsigned Opc = MI.getOpcode(); 4946 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4947 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4948 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4949 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4950 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4951 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4952 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4953 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4954 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4955 Opc == PPC::SRD_rec; 4956 4957 MI.setDesc(get(III.ImmOpcode)); 4958 if (ConstantOpNo == III.OpNoForForwarding) { 4959 // Converting shifts to immediate form is a bit tricky since they may do 4960 // one of three things: 4961 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4962 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4963 // setting CR0) 4964 // 3. If the shift amount is in [1, OpSize), it's just a shift 4965 if (SpecialShift32 || SpecialShift64) { 4966 LoadImmediateInfo LII; 4967 LII.Imm = 0; 4968 LII.SetCR = SetCR; 4969 LII.Is64Bit = SpecialShift64; 4970 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4971 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4972 replaceInstrWithLI(MI, LII); 4973 // Shifts by zero don't change the value. If we don't need to set CR0, 4974 // just convert this to a COPY. Can't do this post-RA since we've already 4975 // cleaned up the copies. 4976 else if (!SetCR && ShAmt == 0 && !PostRA) { 4977 MI.RemoveOperand(2); 4978 MI.setDesc(get(PPC::COPY)); 4979 } else { 4980 // The 32 bit and 64 bit instructions are quite different. 4981 if (SpecialShift32) { 4982 // Left shifts use (N, 0, 31-N). 4983 // Right shifts use (32-N, N, 31) if 0 < N < 32. 4984 // use (0, 0, 31) if N == 0. 4985 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 4986 uint64_t MB = RightShift ? ShAmt : 0; 4987 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 4988 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4989 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 4990 .addImm(ME); 4991 } else { 4992 // Left shifts use (N, 63-N). 4993 // Right shifts use (64-N, N) if 0 < N < 64. 4994 // use (0, 0) if N == 0. 4995 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 4996 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 4997 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4998 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 4999 } 5000 } 5001 } else 5002 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5003 } 5004 // Convert commutative instructions (switch the operands and convert the 5005 // desired one to an immediate. 5006 else if (III.IsCommutative) { 5007 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5008 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 5009 } else 5010 llvm_unreachable("Should have exited early!"); 5011 5012 // For instructions for which the constant register replaces a different 5013 // operand than where the immediate goes, we need to swap them. 5014 if (III.OpNoForForwarding != III.ImmOpNo) 5015 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 5016 5017 // If the special R0/X0 register index are different for original instruction 5018 // and new instruction, we need to fix up the register class in new 5019 // instruction. 5020 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 5021 if (III.ZeroIsSpecialNew) { 5022 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 5023 // need to fix up register class. 5024 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 5025 if (Register::isVirtualRegister(RegToModify)) { 5026 const TargetRegisterClass *NewRC = 5027 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 5028 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 5029 MRI.setRegClass(RegToModify, NewRC); 5030 } 5031 } 5032 } 5033 5034 // Fix up killed/dead flag after transformation. 5035 // Pattern: 5036 // ForwardKilledOperandReg = LI imm 5037 // y = XOP reg, ForwardKilledOperandReg(killed) 5038 if (ForwardKilledOperandReg != ~0U) 5039 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 5040 return true; 5041 } 5042 5043 const TargetRegisterClass * 5044 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 5045 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 5046 return &PPC::VSRCRegClass; 5047 return RC; 5048 } 5049 5050 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 5051 return PPC::getRecordFormOpcode(Opcode); 5052 } 5053 5054 // This function returns true if the machine instruction 5055 // always outputs a value by sign-extending a 32 bit value, 5056 // i.e. 0 to 31-th bits are same as 32-th bit. 5057 static bool isSignExtendingOp(const MachineInstr &MI) { 5058 int Opcode = MI.getOpcode(); 5059 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 5060 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 5061 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 5062 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 5063 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 5064 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 5065 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 5066 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 5067 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 5068 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 5069 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 5070 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 5071 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 5072 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 5073 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 5074 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 5075 Opcode == PPC::EXTSB8_32_64) 5076 return true; 5077 5078 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 5079 return true; 5080 5081 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5082 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 5083 MI.getOperand(3).getImm() > 0 && 5084 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 5085 return true; 5086 5087 return false; 5088 } 5089 5090 // This function returns true if the machine instruction 5091 // always outputs zeros in higher 32 bits. 5092 static bool isZeroExtendingOp(const MachineInstr &MI) { 5093 int Opcode = MI.getOpcode(); 5094 // The 16-bit immediate is sign-extended in li/lis. 5095 // If the most significant bit is zero, all higher bits are zero. 5096 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 5097 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 5098 int64_t Imm = MI.getOperand(1).getImm(); 5099 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 5100 return true; 5101 } 5102 5103 // We have some variations of rotate-and-mask instructions 5104 // that clear higher 32-bits. 5105 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 5106 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 5107 Opcode == PPC::RLDICL_32_64) && 5108 MI.getOperand(3).getImm() >= 32) 5109 return true; 5110 5111 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 5112 MI.getOperand(3).getImm() >= 32 && 5113 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 5114 return true; 5115 5116 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5117 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 5118 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 5119 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 5120 return true; 5121 5122 // There are other instructions that clear higher 32-bits. 5123 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 5124 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 5125 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 5126 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 5127 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 5128 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 5129 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 5130 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 5131 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 5132 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 5133 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 5134 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 5135 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 5136 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 5137 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 5138 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 5139 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 5140 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 5141 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 5142 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 5143 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 5144 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 5145 Opcode == PPC::MFVSRWZ) 5146 return true; 5147 5148 return false; 5149 } 5150 5151 // This function returns true if the input MachineInstr is a TOC save 5152 // instruction. 5153 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 5154 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 5155 return false; 5156 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5157 unsigned StackOffset = MI.getOperand(1).getImm(); 5158 Register StackReg = MI.getOperand(2).getReg(); 5159 Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 5160 if (StackReg == SPReg && StackOffset == TOCSaveOffset) 5161 return true; 5162 5163 return false; 5164 } 5165 5166 // We limit the max depth to track incoming values of PHIs or binary ops 5167 // (e.g. AND) to avoid excessive cost. 5168 const unsigned MAX_DEPTH = 1; 5169 5170 bool 5171 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 5172 const unsigned Depth) const { 5173 const MachineFunction *MF = MI.getParent()->getParent(); 5174 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 5175 5176 // If we know this instruction returns sign- or zero-extended result, 5177 // return true. 5178 if (SignExt ? isSignExtendingOp(MI): 5179 isZeroExtendingOp(MI)) 5180 return true; 5181 5182 switch (MI.getOpcode()) { 5183 case PPC::COPY: { 5184 Register SrcReg = MI.getOperand(1).getReg(); 5185 5186 // In both ELFv1 and v2 ABI, method parameters and the return value 5187 // are sign- or zero-extended. 5188 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 5189 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 5190 // We check the ZExt/SExt flags for a method parameter. 5191 if (MI.getParent()->getBasicBlock() == 5192 &MF->getFunction().getEntryBlock()) { 5193 Register VReg = MI.getOperand(0).getReg(); 5194 if (MF->getRegInfo().isLiveIn(VReg)) 5195 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 5196 FuncInfo->isLiveInZExt(VReg); 5197 } 5198 5199 // For a method return value, we check the ZExt/SExt flags in attribute. 5200 // We assume the following code sequence for method call. 5201 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 5202 // BL8_NOP @func,... 5203 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 5204 // %5 = COPY %x3; G8RC:%5 5205 if (SrcReg == PPC::X3) { 5206 const MachineBasicBlock *MBB = MI.getParent(); 5207 MachineBasicBlock::const_instr_iterator II = 5208 MachineBasicBlock::const_instr_iterator(&MI); 5209 if (II != MBB->instr_begin() && 5210 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 5211 const MachineInstr &CallMI = *(--II); 5212 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 5213 const Function *CalleeFn = 5214 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 5215 if (!CalleeFn) 5216 return false; 5217 const IntegerType *IntTy = 5218 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 5219 const AttributeSet &Attrs = 5220 CalleeFn->getAttributes().getRetAttributes(); 5221 if (IntTy && IntTy->getBitWidth() <= 32) 5222 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 5223 Attribute::ZExt); 5224 } 5225 } 5226 } 5227 } 5228 5229 // If this is a copy from another register, we recursively check source. 5230 if (!Register::isVirtualRegister(SrcReg)) 5231 return false; 5232 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5233 if (SrcMI != NULL) 5234 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 5235 5236 return false; 5237 } 5238 5239 case PPC::ANDI_rec: 5240 case PPC::ANDIS_rec: 5241 case PPC::ORI: 5242 case PPC::ORIS: 5243 case PPC::XORI: 5244 case PPC::XORIS: 5245 case PPC::ANDI8_rec: 5246 case PPC::ANDIS8_rec: 5247 case PPC::ORI8: 5248 case PPC::ORIS8: 5249 case PPC::XORI8: 5250 case PPC::XORIS8: { 5251 // logical operation with 16-bit immediate does not change the upper bits. 5252 // So, we track the operand register as we do for register copy. 5253 Register SrcReg = MI.getOperand(1).getReg(); 5254 if (!Register::isVirtualRegister(SrcReg)) 5255 return false; 5256 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5257 if (SrcMI != NULL) 5258 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 5259 5260 return false; 5261 } 5262 5263 // If all incoming values are sign-/zero-extended, 5264 // the output of OR, ISEL or PHI is also sign-/zero-extended. 5265 case PPC::OR: 5266 case PPC::OR8: 5267 case PPC::ISEL: 5268 case PPC::PHI: { 5269 if (Depth >= MAX_DEPTH) 5270 return false; 5271 5272 // The input registers for PHI are operand 1, 3, ... 5273 // The input registers for others are operand 1 and 2. 5274 unsigned E = 3, D = 1; 5275 if (MI.getOpcode() == PPC::PHI) { 5276 E = MI.getNumOperands(); 5277 D = 2; 5278 } 5279 5280 for (unsigned I = 1; I != E; I += D) { 5281 if (MI.getOperand(I).isReg()) { 5282 Register SrcReg = MI.getOperand(I).getReg(); 5283 if (!Register::isVirtualRegister(SrcReg)) 5284 return false; 5285 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5286 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 5287 return false; 5288 } 5289 else 5290 return false; 5291 } 5292 return true; 5293 } 5294 5295 // If at least one of the incoming values of an AND is zero extended 5296 // then the output is also zero-extended. If both of the incoming values 5297 // are sign-extended then the output is also sign extended. 5298 case PPC::AND: 5299 case PPC::AND8: { 5300 if (Depth >= MAX_DEPTH) 5301 return false; 5302 5303 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 5304 5305 Register SrcReg1 = MI.getOperand(1).getReg(); 5306 Register SrcReg2 = MI.getOperand(2).getReg(); 5307 5308 if (!Register::isVirtualRegister(SrcReg1) || 5309 !Register::isVirtualRegister(SrcReg2)) 5310 return false; 5311 5312 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 5313 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 5314 if (!MISrc1 || !MISrc2) 5315 return false; 5316 5317 if(SignExt) 5318 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 5319 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 5320 else 5321 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 5322 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 5323 } 5324 5325 default: 5326 break; 5327 } 5328 return false; 5329 } 5330 5331 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 5332 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 5333 } 5334 5335 namespace { 5336 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 5337 MachineInstr *Loop, *EndLoop, *LoopCount; 5338 MachineFunction *MF; 5339 const TargetInstrInfo *TII; 5340 int64_t TripCount; 5341 5342 public: 5343 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 5344 MachineInstr *LoopCount) 5345 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 5346 MF(Loop->getParent()->getParent()), 5347 TII(MF->getSubtarget().getInstrInfo()) { 5348 // Inspect the Loop instruction up-front, as it may be deleted when we call 5349 // createTripCountGreaterCondition. 5350 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 5351 TripCount = LoopCount->getOperand(1).getImm(); 5352 else 5353 TripCount = -1; 5354 } 5355 5356 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 5357 // Only ignore the terminator. 5358 return MI == EndLoop; 5359 } 5360 5361 Optional<bool> 5362 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 5363 SmallVectorImpl<MachineOperand> &Cond) override { 5364 if (TripCount == -1) { 5365 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5366 // so we don't need to generate any thing here. 5367 Cond.push_back(MachineOperand::CreateImm(0)); 5368 Cond.push_back(MachineOperand::CreateReg( 5369 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 5370 true)); 5371 return {}; 5372 } 5373 5374 return TripCount > TC; 5375 } 5376 5377 void setPreheader(MachineBasicBlock *NewPreheader) override { 5378 // Do nothing. We want the LOOP setup instruction to stay in the *old* 5379 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 5380 } 5381 5382 void adjustTripCount(int TripCountAdjust) override { 5383 // If the loop trip count is a compile-time value, then just change the 5384 // value. 5385 if (LoopCount->getOpcode() == PPC::LI8 || 5386 LoopCount->getOpcode() == PPC::LI) { 5387 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 5388 LoopCount->getOperand(1).setImm(TripCount); 5389 return; 5390 } 5391 5392 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5393 // so we don't need to generate any thing here. 5394 } 5395 5396 void disposed() override { 5397 Loop->eraseFromParent(); 5398 // Ensure the loop setup instruction is deleted too. 5399 LoopCount->eraseFromParent(); 5400 } 5401 }; 5402 } // namespace 5403 5404 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 5405 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 5406 // We really "analyze" only hardware loops right now. 5407 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 5408 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 5409 if (Preheader == LoopBB) 5410 Preheader = *std::next(LoopBB->pred_begin()); 5411 MachineFunction *MF = Preheader->getParent(); 5412 5413 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 5414 SmallPtrSet<MachineBasicBlock *, 8> Visited; 5415 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 5416 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 5417 MachineRegisterInfo &MRI = MF->getRegInfo(); 5418 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 5419 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 5420 } 5421 } 5422 return nullptr; 5423 } 5424 5425 MachineInstr *PPCInstrInfo::findLoopInstr( 5426 MachineBasicBlock &PreHeader, 5427 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 5428 5429 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 5430 5431 // The loop set-up instruction should be in preheader 5432 for (auto &I : PreHeader.instrs()) 5433 if (I.getOpcode() == LOOPi) 5434 return &I; 5435 return nullptr; 5436 } 5437 5438 // Return true if get the base operand, byte offset of an instruction and the 5439 // memory width. Width is the size of memory that is being loaded/stored. 5440 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 5441 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 5442 unsigned &Width, const TargetRegisterInfo *TRI) const { 5443 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 5444 return false; 5445 5446 // Handle only loads/stores with base register followed by immediate offset. 5447 if (!LdSt.getOperand(1).isImm() || 5448 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5449 return false; 5450 if (!LdSt.getOperand(1).isImm() || 5451 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5452 return false; 5453 5454 if (!LdSt.hasOneMemOperand()) 5455 return false; 5456 5457 Width = (*LdSt.memoperands_begin())->getSize(); 5458 Offset = LdSt.getOperand(1).getImm(); 5459 BaseReg = &LdSt.getOperand(2); 5460 return true; 5461 } 5462 5463 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 5464 const MachineInstr &MIa, const MachineInstr &MIb) const { 5465 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 5466 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 5467 5468 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 5469 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 5470 return false; 5471 5472 // Retrieve the base register, offset from the base register and width. Width 5473 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 5474 // base registers are identical, and the offset of a lower memory access + 5475 // the width doesn't overlap the offset of a higher memory access, 5476 // then the memory accesses are different. 5477 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5478 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 5479 int64_t OffsetA = 0, OffsetB = 0; 5480 unsigned int WidthA = 0, WidthB = 0; 5481 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 5482 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 5483 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 5484 int LowOffset = std::min(OffsetA, OffsetB); 5485 int HighOffset = std::max(OffsetA, OffsetB); 5486 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 5487 if (LowOffset + LowWidth <= HighOffset) 5488 return true; 5489 } 5490 } 5491 return false; 5492 } 5493