1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "ppc-instr-info"
43 
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
47 
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49           "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51           "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54           "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56           "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58           "Number of record-form rotates converted to record-form andi");
59 
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62             cl::desc("Disable analysis for CTR loops"));
63 
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
66 
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
70 
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73   cl::desc("Use the old (incorrect) instruction latency calculation"));
74 
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77   SOK_Int4Spill,
78   SOK_Int8Spill,
79   SOK_Float8Spill,
80   SOK_Float4Spill,
81   SOK_CRSpill,
82   SOK_CRBitSpill,
83   SOK_VRVectorSpill,
84   SOK_VSXVectorSpill,
85   SOK_VectorFloat8Spill,
86   SOK_VectorFloat4Spill,
87   SOK_VRSaveSpill,
88   SOK_QuadFloat8Spill,
89   SOK_QuadFloat4Spill,
90   SOK_QuadBitSpill,
91   SOK_SpillToVSR,
92   SOK_SPESpill,
93   SOK_LastOpcodeSpill  // This must be last on the enum.
94 };
95 
96 // Pin the vtable to this file.
97 void PPCInstrInfo::anchor() {}
98 
99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
100     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
101                       /* CatchRetOpcode */ -1,
102                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
103       Subtarget(STI), RI(STI.getTargetMachine()) {}
104 
105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
106 /// this target when scheduling the DAG.
107 ScheduleHazardRecognizer *
108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
109                                            const ScheduleDAG *DAG) const {
110   unsigned Directive =
111       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
112   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
113       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
114     const InstrItineraryData *II =
115         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
116     return new ScoreboardHazardRecognizer(II, DAG);
117   }
118 
119   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
120 }
121 
122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
123 /// to use for this target when scheduling the DAG.
124 ScheduleHazardRecognizer *
125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
126                                                  const ScheduleDAG *DAG) const {
127   unsigned Directive =
128       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
129 
130   // FIXME: Leaving this as-is until we have POWER9 scheduling info
131   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
132     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
133 
134   // Most subtargets use a PPC970 recognizer.
135   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
136       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
137     assert(DAG->TII && "No InstrInfo?");
138 
139     return new PPCHazardRecognizer970(*DAG);
140   }
141 
142   return new ScoreboardHazardRecognizer(II, DAG);
143 }
144 
145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
146                                        const MachineInstr &MI,
147                                        unsigned *PredCost) const {
148   if (!ItinData || UseOldLatencyCalc)
149     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
150 
151   // The default implementation of getInstrLatency calls getStageLatency, but
152   // getStageLatency does not do the right thing for us. While we have
153   // itinerary, most cores are fully pipelined, and so the itineraries only
154   // express the first part of the pipeline, not every stage. Instead, we need
155   // to use the listed output operand cycle number (using operand 0 here, which
156   // is an output).
157 
158   unsigned Latency = 1;
159   unsigned DefClass = MI.getDesc().getSchedClass();
160   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
161     const MachineOperand &MO = MI.getOperand(i);
162     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
163       continue;
164 
165     int Cycle = ItinData->getOperandCycle(DefClass, i);
166     if (Cycle < 0)
167       continue;
168 
169     Latency = std::max(Latency, (unsigned) Cycle);
170   }
171 
172   return Latency;
173 }
174 
175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
176                                     const MachineInstr &DefMI, unsigned DefIdx,
177                                     const MachineInstr &UseMI,
178                                     unsigned UseIdx) const {
179   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
180                                                    UseMI, UseIdx);
181 
182   if (!DefMI.getParent())
183     return Latency;
184 
185   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
186   Register Reg = DefMO.getReg();
187 
188   bool IsRegCR;
189   if (Register::isVirtualRegister(Reg)) {
190     const MachineRegisterInfo *MRI =
191         &DefMI.getParent()->getParent()->getRegInfo();
192     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
193               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
194   } else {
195     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
196               PPC::CRBITRCRegClass.contains(Reg);
197   }
198 
199   if (UseMI.isBranch() && IsRegCR) {
200     if (Latency < 0)
201       Latency = getInstrLatency(ItinData, DefMI);
202 
203     // On some cores, there is an additional delay between writing to a condition
204     // register, and using it from a branch.
205     unsigned Directive = Subtarget.getCPUDirective();
206     switch (Directive) {
207     default: break;
208     case PPC::DIR_7400:
209     case PPC::DIR_750:
210     case PPC::DIR_970:
211     case PPC::DIR_E5500:
212     case PPC::DIR_PWR4:
213     case PPC::DIR_PWR5:
214     case PPC::DIR_PWR5X:
215     case PPC::DIR_PWR6:
216     case PPC::DIR_PWR6X:
217     case PPC::DIR_PWR7:
218     case PPC::DIR_PWR8:
219     // FIXME: Is this needed for POWER9?
220       Latency += 2;
221       break;
222     }
223   }
224 
225   return Latency;
226 }
227 
228 /// This is an architecture-specific helper function of reassociateOps.
229 /// Set special operand attributes for new instructions after reassociation.
230 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
231                                          MachineInstr &OldMI2,
232                                          MachineInstr &NewMI1,
233                                          MachineInstr &NewMI2) const {
234   // Propagate FP flags from the original instructions.
235   // But clear poison-generating flags because those may not be valid now.
236   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
237   NewMI1.setFlags(IntersectedFlags);
238   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
239   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
240   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
241 
242   NewMI2.setFlags(IntersectedFlags);
243   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
244   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
245   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
246 }
247 
248 // This function does not list all associative and commutative operations, but
249 // only those worth feeding through the machine combiner in an attempt to
250 // reduce the critical path. Mostly, this means floating-point operations,
251 // because they have high latencies (compared to other operations, such and
252 // and/or, which are also associative and commutative, but have low latencies).
253 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
254   switch (Inst.getOpcode()) {
255   // FP Add:
256   case PPC::FADD:
257   case PPC::FADDS:
258   // FP Multiply:
259   case PPC::FMUL:
260   case PPC::FMULS:
261   // Altivec Add:
262   case PPC::VADDFP:
263   // VSX Add:
264   case PPC::XSADDDP:
265   case PPC::XVADDDP:
266   case PPC::XVADDSP:
267   case PPC::XSADDSP:
268   // VSX Multiply:
269   case PPC::XSMULDP:
270   case PPC::XVMULDP:
271   case PPC::XVMULSP:
272   case PPC::XSMULSP:
273   // QPX Add:
274   case PPC::QVFADD:
275   case PPC::QVFADDS:
276   case PPC::QVFADDSs:
277   // QPX Multiply:
278   case PPC::QVFMUL:
279   case PPC::QVFMULS:
280   case PPC::QVFMULSs:
281     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
282            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
283   default:
284     return false;
285   }
286 }
287 
288 bool PPCInstrInfo::getMachineCombinerPatterns(
289     MachineInstr &Root,
290     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
291   // Using the machine combiner in this way is potentially expensive, so
292   // restrict to when aggressive optimizations are desired.
293   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
294     return false;
295 
296   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
297 }
298 
299 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
300 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
301                                          Register &SrcReg, Register &DstReg,
302                                          unsigned &SubIdx) const {
303   switch (MI.getOpcode()) {
304   default: return false;
305   case PPC::EXTSW:
306   case PPC::EXTSW_32:
307   case PPC::EXTSW_32_64:
308     SrcReg = MI.getOperand(1).getReg();
309     DstReg = MI.getOperand(0).getReg();
310     SubIdx = PPC::sub_32;
311     return true;
312   }
313 }
314 
315 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
316                                            int &FrameIndex) const {
317   unsigned Opcode = MI.getOpcode();
318   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
319   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
320 
321   if (End != std::find(OpcodesForSpill, End, Opcode)) {
322     // Check for the operands added by addFrameReference (the immediate is the
323     // offset which defaults to 0).
324     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
325         MI.getOperand(2).isFI()) {
326       FrameIndex = MI.getOperand(2).getIndex();
327       return MI.getOperand(0).getReg();
328     }
329   }
330   return 0;
331 }
332 
333 // For opcodes with the ReMaterializable flag set, this function is called to
334 // verify the instruction is really rematable.
335 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
336                                                      AliasAnalysis *AA) const {
337   switch (MI.getOpcode()) {
338   default:
339     // This function should only be called for opcodes with the ReMaterializable
340     // flag set.
341     llvm_unreachable("Unknown rematerializable operation!");
342     break;
343   case PPC::LI:
344   case PPC::LI8:
345   case PPC::LIS:
346   case PPC::LIS8:
347   case PPC::QVGPCI:
348   case PPC::ADDIStocHA:
349   case PPC::ADDIStocHA8:
350   case PPC::ADDItocL:
351   case PPC::LOAD_STACK_GUARD:
352   case PPC::XXLXORz:
353   case PPC::XXLXORspz:
354   case PPC::XXLXORdpz:
355   case PPC::XXLEQVOnes:
356   case PPC::V_SET0B:
357   case PPC::V_SET0H:
358   case PPC::V_SET0:
359   case PPC::V_SETALLONESB:
360   case PPC::V_SETALLONESH:
361   case PPC::V_SETALLONES:
362   case PPC::CRSET:
363   case PPC::CRUNSET:
364     return true;
365   }
366   return false;
367 }
368 
369 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
370                                           int &FrameIndex) const {
371   unsigned Opcode = MI.getOpcode();
372   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
373   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
374 
375   if (End != std::find(OpcodesForSpill, End, Opcode)) {
376     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
377         MI.getOperand(2).isFI()) {
378       FrameIndex = MI.getOperand(2).getIndex();
379       return MI.getOperand(0).getReg();
380     }
381   }
382   return 0;
383 }
384 
385 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
386                                                    unsigned OpIdx1,
387                                                    unsigned OpIdx2) const {
388   MachineFunction &MF = *MI.getParent()->getParent();
389 
390   // Normal instructions can be commuted the obvious way.
391   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
392     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
393   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
394   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
395   // changing the relative order of the mask operands might change what happens
396   // to the high-bits of the mask (and, thus, the result).
397 
398   // Cannot commute if it has a non-zero rotate count.
399   if (MI.getOperand(3).getImm() != 0)
400     return nullptr;
401 
402   // If we have a zero rotate count, we have:
403   //   M = mask(MB,ME)
404   //   Op0 = (Op1 & ~M) | (Op2 & M)
405   // Change this to:
406   //   M = mask((ME+1)&31, (MB-1)&31)
407   //   Op0 = (Op2 & ~M) | (Op1 & M)
408 
409   // Swap op1/op2
410   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
411          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
412   Register Reg0 = MI.getOperand(0).getReg();
413   Register Reg1 = MI.getOperand(1).getReg();
414   Register Reg2 = MI.getOperand(2).getReg();
415   unsigned SubReg1 = MI.getOperand(1).getSubReg();
416   unsigned SubReg2 = MI.getOperand(2).getSubReg();
417   bool Reg1IsKill = MI.getOperand(1).isKill();
418   bool Reg2IsKill = MI.getOperand(2).isKill();
419   bool ChangeReg0 = false;
420   // If machine instrs are no longer in two-address forms, update
421   // destination register as well.
422   if (Reg0 == Reg1) {
423     // Must be two address instruction!
424     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
425            "Expecting a two-address instruction!");
426     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
427     Reg2IsKill = false;
428     ChangeReg0 = true;
429   }
430 
431   // Masks.
432   unsigned MB = MI.getOperand(4).getImm();
433   unsigned ME = MI.getOperand(5).getImm();
434 
435   // We can't commute a trivial mask (there is no way to represent an all-zero
436   // mask).
437   if (MB == 0 && ME == 31)
438     return nullptr;
439 
440   if (NewMI) {
441     // Create a new instruction.
442     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
443     bool Reg0IsDead = MI.getOperand(0).isDead();
444     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
445         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
446         .addReg(Reg2, getKillRegState(Reg2IsKill))
447         .addReg(Reg1, getKillRegState(Reg1IsKill))
448         .addImm((ME + 1) & 31)
449         .addImm((MB - 1) & 31);
450   }
451 
452   if (ChangeReg0) {
453     MI.getOperand(0).setReg(Reg2);
454     MI.getOperand(0).setSubReg(SubReg2);
455   }
456   MI.getOperand(2).setReg(Reg1);
457   MI.getOperand(1).setReg(Reg2);
458   MI.getOperand(2).setSubReg(SubReg1);
459   MI.getOperand(1).setSubReg(SubReg2);
460   MI.getOperand(2).setIsKill(Reg1IsKill);
461   MI.getOperand(1).setIsKill(Reg2IsKill);
462 
463   // Swap the mask around.
464   MI.getOperand(4).setImm((ME + 1) & 31);
465   MI.getOperand(5).setImm((MB - 1) & 31);
466   return &MI;
467 }
468 
469 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
470                                          unsigned &SrcOpIdx1,
471                                          unsigned &SrcOpIdx2) const {
472   // For VSX A-Type FMA instructions, it is the first two operands that can be
473   // commuted, however, because the non-encoded tied input operand is listed
474   // first, the operands to swap are actually the second and third.
475 
476   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
477   if (AltOpc == -1)
478     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
479 
480   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
481   // and SrcOpIdx2.
482   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
483 }
484 
485 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
486                               MachineBasicBlock::iterator MI) const {
487   // This function is used for scheduling, and the nop wanted here is the type
488   // that terminates dispatch groups on the POWER cores.
489   unsigned Directive = Subtarget.getCPUDirective();
490   unsigned Opcode;
491   switch (Directive) {
492   default:            Opcode = PPC::NOP; break;
493   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
494   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
495   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
496   // FIXME: Update when POWER9 scheduling model is ready.
497   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
498   }
499 
500   DebugLoc DL;
501   BuildMI(MBB, MI, DL, get(Opcode));
502 }
503 
504 /// Return the noop instruction to use for a noop.
505 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
506   NopInst.setOpcode(PPC::NOP);
507 }
508 
509 // Branch analysis.
510 // Note: If the condition register is set to CTR or CTR8 then this is a
511 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
512 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
513                                  MachineBasicBlock *&TBB,
514                                  MachineBasicBlock *&FBB,
515                                  SmallVectorImpl<MachineOperand> &Cond,
516                                  bool AllowModify) const {
517   bool isPPC64 = Subtarget.isPPC64();
518 
519   // If the block has no terminators, it just falls into the block after it.
520   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
521   if (I == MBB.end())
522     return false;
523 
524   if (!isUnpredicatedTerminator(*I))
525     return false;
526 
527   if (AllowModify) {
528     // If the BB ends with an unconditional branch to the fallthrough BB,
529     // we eliminate the branch instruction.
530     if (I->getOpcode() == PPC::B &&
531         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
532       I->eraseFromParent();
533 
534       // We update iterator after deleting the last branch.
535       I = MBB.getLastNonDebugInstr();
536       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
537         return false;
538     }
539   }
540 
541   // Get the last instruction in the block.
542   MachineInstr &LastInst = *I;
543 
544   // If there is only one terminator instruction, process it.
545   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
546     if (LastInst.getOpcode() == PPC::B) {
547       if (!LastInst.getOperand(0).isMBB())
548         return true;
549       TBB = LastInst.getOperand(0).getMBB();
550       return false;
551     } else if (LastInst.getOpcode() == PPC::BCC) {
552       if (!LastInst.getOperand(2).isMBB())
553         return true;
554       // Block ends with fall-through condbranch.
555       TBB = LastInst.getOperand(2).getMBB();
556       Cond.push_back(LastInst.getOperand(0));
557       Cond.push_back(LastInst.getOperand(1));
558       return false;
559     } else if (LastInst.getOpcode() == PPC::BC) {
560       if (!LastInst.getOperand(1).isMBB())
561         return true;
562       // Block ends with fall-through condbranch.
563       TBB = LastInst.getOperand(1).getMBB();
564       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
565       Cond.push_back(LastInst.getOperand(0));
566       return false;
567     } else if (LastInst.getOpcode() == PPC::BCn) {
568       if (!LastInst.getOperand(1).isMBB())
569         return true;
570       // Block ends with fall-through condbranch.
571       TBB = LastInst.getOperand(1).getMBB();
572       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
573       Cond.push_back(LastInst.getOperand(0));
574       return false;
575     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
576                LastInst.getOpcode() == PPC::BDNZ) {
577       if (!LastInst.getOperand(0).isMBB())
578         return true;
579       if (DisableCTRLoopAnal)
580         return true;
581       TBB = LastInst.getOperand(0).getMBB();
582       Cond.push_back(MachineOperand::CreateImm(1));
583       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
584                                                true));
585       return false;
586     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
587                LastInst.getOpcode() == PPC::BDZ) {
588       if (!LastInst.getOperand(0).isMBB())
589         return true;
590       if (DisableCTRLoopAnal)
591         return true;
592       TBB = LastInst.getOperand(0).getMBB();
593       Cond.push_back(MachineOperand::CreateImm(0));
594       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
595                                                true));
596       return false;
597     }
598 
599     // Otherwise, don't know what this is.
600     return true;
601   }
602 
603   // Get the instruction before it if it's a terminator.
604   MachineInstr &SecondLastInst = *I;
605 
606   // If there are three terminators, we don't know what sort of block this is.
607   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
608     return true;
609 
610   // If the block ends with PPC::B and PPC:BCC, handle it.
611   if (SecondLastInst.getOpcode() == PPC::BCC &&
612       LastInst.getOpcode() == PPC::B) {
613     if (!SecondLastInst.getOperand(2).isMBB() ||
614         !LastInst.getOperand(0).isMBB())
615       return true;
616     TBB = SecondLastInst.getOperand(2).getMBB();
617     Cond.push_back(SecondLastInst.getOperand(0));
618     Cond.push_back(SecondLastInst.getOperand(1));
619     FBB = LastInst.getOperand(0).getMBB();
620     return false;
621   } else if (SecondLastInst.getOpcode() == PPC::BC &&
622              LastInst.getOpcode() == PPC::B) {
623     if (!SecondLastInst.getOperand(1).isMBB() ||
624         !LastInst.getOperand(0).isMBB())
625       return true;
626     TBB = SecondLastInst.getOperand(1).getMBB();
627     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
628     Cond.push_back(SecondLastInst.getOperand(0));
629     FBB = LastInst.getOperand(0).getMBB();
630     return false;
631   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
632              LastInst.getOpcode() == PPC::B) {
633     if (!SecondLastInst.getOperand(1).isMBB() ||
634         !LastInst.getOperand(0).isMBB())
635       return true;
636     TBB = SecondLastInst.getOperand(1).getMBB();
637     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
638     Cond.push_back(SecondLastInst.getOperand(0));
639     FBB = LastInst.getOperand(0).getMBB();
640     return false;
641   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
642               SecondLastInst.getOpcode() == PPC::BDNZ) &&
643              LastInst.getOpcode() == PPC::B) {
644     if (!SecondLastInst.getOperand(0).isMBB() ||
645         !LastInst.getOperand(0).isMBB())
646       return true;
647     if (DisableCTRLoopAnal)
648       return true;
649     TBB = SecondLastInst.getOperand(0).getMBB();
650     Cond.push_back(MachineOperand::CreateImm(1));
651     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
652                                              true));
653     FBB = LastInst.getOperand(0).getMBB();
654     return false;
655   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
656               SecondLastInst.getOpcode() == PPC::BDZ) &&
657              LastInst.getOpcode() == PPC::B) {
658     if (!SecondLastInst.getOperand(0).isMBB() ||
659         !LastInst.getOperand(0).isMBB())
660       return true;
661     if (DisableCTRLoopAnal)
662       return true;
663     TBB = SecondLastInst.getOperand(0).getMBB();
664     Cond.push_back(MachineOperand::CreateImm(0));
665     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
666                                              true));
667     FBB = LastInst.getOperand(0).getMBB();
668     return false;
669   }
670 
671   // If the block ends with two PPC:Bs, handle it.  The second one is not
672   // executed, so remove it.
673   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
674     if (!SecondLastInst.getOperand(0).isMBB())
675       return true;
676     TBB = SecondLastInst.getOperand(0).getMBB();
677     I = LastInst;
678     if (AllowModify)
679       I->eraseFromParent();
680     return false;
681   }
682 
683   // Otherwise, can't handle this.
684   return true;
685 }
686 
687 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
688                                     int *BytesRemoved) const {
689   assert(!BytesRemoved && "code size not handled");
690 
691   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
692   if (I == MBB.end())
693     return 0;
694 
695   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
696       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
697       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
698       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
699     return 0;
700 
701   // Remove the branch.
702   I->eraseFromParent();
703 
704   I = MBB.end();
705 
706   if (I == MBB.begin()) return 1;
707   --I;
708   if (I->getOpcode() != PPC::BCC &&
709       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
710       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
711       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
712     return 1;
713 
714   // Remove the branch.
715   I->eraseFromParent();
716   return 2;
717 }
718 
719 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
720                                     MachineBasicBlock *TBB,
721                                     MachineBasicBlock *FBB,
722                                     ArrayRef<MachineOperand> Cond,
723                                     const DebugLoc &DL,
724                                     int *BytesAdded) const {
725   // Shouldn't be a fall through.
726   assert(TBB && "insertBranch must not be told to insert a fallthrough");
727   assert((Cond.size() == 2 || Cond.size() == 0) &&
728          "PPC branch conditions have two components!");
729   assert(!BytesAdded && "code size not handled");
730 
731   bool isPPC64 = Subtarget.isPPC64();
732 
733   // One-way branch.
734   if (!FBB) {
735     if (Cond.empty())   // Unconditional branch
736       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
737     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
738       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
739                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
740                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
741     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
742       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
743     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
744       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
745     else                // Conditional branch
746       BuildMI(&MBB, DL, get(PPC::BCC))
747           .addImm(Cond[0].getImm())
748           .add(Cond[1])
749           .addMBB(TBB);
750     return 1;
751   }
752 
753   // Two-way Conditional Branch.
754   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
755     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
756                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
757                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
758   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
759     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
760   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
761     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
762   else
763     BuildMI(&MBB, DL, get(PPC::BCC))
764         .addImm(Cond[0].getImm())
765         .add(Cond[1])
766         .addMBB(TBB);
767   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
768   return 2;
769 }
770 
771 // Select analysis.
772 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
773                                    ArrayRef<MachineOperand> Cond,
774                                    Register DstReg, Register TrueReg,
775                                    Register FalseReg, int &CondCycles,
776                                    int &TrueCycles, int &FalseCycles) const {
777   if (Cond.size() != 2)
778     return false;
779 
780   // If this is really a bdnz-like condition, then it cannot be turned into a
781   // select.
782   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
783     return false;
784 
785   // Check register classes.
786   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
787   const TargetRegisterClass *RC =
788     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
789   if (!RC)
790     return false;
791 
792   // isel is for regular integer GPRs only.
793   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
794       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
795       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
796       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
797     return false;
798 
799   // FIXME: These numbers are for the A2, how well they work for other cores is
800   // an open question. On the A2, the isel instruction has a 2-cycle latency
801   // but single-cycle throughput. These numbers are used in combination with
802   // the MispredictPenalty setting from the active SchedMachineModel.
803   CondCycles = 1;
804   TrueCycles = 1;
805   FalseCycles = 1;
806 
807   return true;
808 }
809 
810 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
811                                 MachineBasicBlock::iterator MI,
812                                 const DebugLoc &dl, Register DestReg,
813                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
814                                 Register FalseReg) const {
815   assert(Cond.size() == 2 &&
816          "PPC branch conditions have two components!");
817 
818   // Get the register classes.
819   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
820   const TargetRegisterClass *RC =
821     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
822   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
823 
824   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
825                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
826   assert((Is64Bit ||
827           PPC::GPRCRegClass.hasSubClassEq(RC) ||
828           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
829          "isel is for regular integer GPRs only");
830 
831   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
832   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
833 
834   unsigned SubIdx = 0;
835   bool SwapOps = false;
836   switch (SelectPred) {
837   case PPC::PRED_EQ:
838   case PPC::PRED_EQ_MINUS:
839   case PPC::PRED_EQ_PLUS:
840       SubIdx = PPC::sub_eq; SwapOps = false; break;
841   case PPC::PRED_NE:
842   case PPC::PRED_NE_MINUS:
843   case PPC::PRED_NE_PLUS:
844       SubIdx = PPC::sub_eq; SwapOps = true; break;
845   case PPC::PRED_LT:
846   case PPC::PRED_LT_MINUS:
847   case PPC::PRED_LT_PLUS:
848       SubIdx = PPC::sub_lt; SwapOps = false; break;
849   case PPC::PRED_GE:
850   case PPC::PRED_GE_MINUS:
851   case PPC::PRED_GE_PLUS:
852       SubIdx = PPC::sub_lt; SwapOps = true; break;
853   case PPC::PRED_GT:
854   case PPC::PRED_GT_MINUS:
855   case PPC::PRED_GT_PLUS:
856       SubIdx = PPC::sub_gt; SwapOps = false; break;
857   case PPC::PRED_LE:
858   case PPC::PRED_LE_MINUS:
859   case PPC::PRED_LE_PLUS:
860       SubIdx = PPC::sub_gt; SwapOps = true; break;
861   case PPC::PRED_UN:
862   case PPC::PRED_UN_MINUS:
863   case PPC::PRED_UN_PLUS:
864       SubIdx = PPC::sub_un; SwapOps = false; break;
865   case PPC::PRED_NU:
866   case PPC::PRED_NU_MINUS:
867   case PPC::PRED_NU_PLUS:
868       SubIdx = PPC::sub_un; SwapOps = true; break;
869   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
870   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
871   }
872 
873   Register FirstReg =  SwapOps ? FalseReg : TrueReg,
874            SecondReg = SwapOps ? TrueReg  : FalseReg;
875 
876   // The first input register of isel cannot be r0. If it is a member
877   // of a register class that can be r0, then copy it first (the
878   // register allocator should eliminate the copy).
879   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
880       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
881     const TargetRegisterClass *FirstRC =
882       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
883         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
884     Register OldFirstReg = FirstReg;
885     FirstReg = MRI.createVirtualRegister(FirstRC);
886     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
887       .addReg(OldFirstReg);
888   }
889 
890   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
891     .addReg(FirstReg).addReg(SecondReg)
892     .addReg(Cond[1].getReg(), 0, SubIdx);
893 }
894 
895 static unsigned getCRBitValue(unsigned CRBit) {
896   unsigned Ret = 4;
897   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
898       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
899       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
900       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
901     Ret = 3;
902   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
903       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
904       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
905       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
906     Ret = 2;
907   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
908       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
909       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
910       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
911     Ret = 1;
912   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
913       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
914       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
915       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
916     Ret = 0;
917 
918   assert(Ret != 4 && "Invalid CR bit register");
919   return Ret;
920 }
921 
922 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
923                                MachineBasicBlock::iterator I,
924                                const DebugLoc &DL, MCRegister DestReg,
925                                MCRegister SrcReg, bool KillSrc) const {
926   // We can end up with self copies and similar things as a result of VSX copy
927   // legalization. Promote them here.
928   const TargetRegisterInfo *TRI = &getRegisterInfo();
929   if (PPC::F8RCRegClass.contains(DestReg) &&
930       PPC::VSRCRegClass.contains(SrcReg)) {
931     MCRegister SuperReg =
932         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
933 
934     if (VSXSelfCopyCrash && SrcReg == SuperReg)
935       llvm_unreachable("nop VSX copy");
936 
937     DestReg = SuperReg;
938   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
939              PPC::VSRCRegClass.contains(DestReg)) {
940     MCRegister SuperReg =
941         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
942 
943     if (VSXSelfCopyCrash && DestReg == SuperReg)
944       llvm_unreachable("nop VSX copy");
945 
946     SrcReg = SuperReg;
947   }
948 
949   // Different class register copy
950   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
951       PPC::GPRCRegClass.contains(DestReg)) {
952     MCRegister CRReg = getCRFromCRBit(SrcReg);
953     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
954     getKillRegState(KillSrc);
955     // Rotate the CR bit in the CR fields to be the least significant bit and
956     // then mask with 0x1 (MB = ME = 31).
957     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
958        .addReg(DestReg, RegState::Kill)
959        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
960        .addImm(31)
961        .addImm(31);
962     return;
963   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
964       PPC::G8RCRegClass.contains(DestReg)) {
965     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
966     getKillRegState(KillSrc);
967     return;
968   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
969       PPC::GPRCRegClass.contains(DestReg)) {
970     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
971     getKillRegState(KillSrc);
972     return;
973   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
974              PPC::VSFRCRegClass.contains(DestReg)) {
975     assert(Subtarget.hasDirectMove() &&
976            "Subtarget doesn't support directmove, don't know how to copy.");
977     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
978     NumGPRtoVSRSpill++;
979     getKillRegState(KillSrc);
980     return;
981   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
982              PPC::G8RCRegClass.contains(DestReg)) {
983     assert(Subtarget.hasDirectMove() &&
984            "Subtarget doesn't support directmove, don't know how to copy.");
985     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
986     getKillRegState(KillSrc);
987     return;
988   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
989              PPC::GPRCRegClass.contains(DestReg)) {
990     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
991     getKillRegState(KillSrc);
992     return;
993   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
994              PPC::SPERCRegClass.contains(DestReg)) {
995     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
996     getKillRegState(KillSrc);
997     return;
998   }
999 
1000   unsigned Opc;
1001   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1002     Opc = PPC::OR;
1003   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1004     Opc = PPC::OR8;
1005   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1006     Opc = PPC::FMR;
1007   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1008     Opc = PPC::MCRF;
1009   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1010     Opc = PPC::VOR;
1011   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1012     // There are two different ways this can be done:
1013     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1014     //      issue in VSU pipeline 0.
1015     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1016     //      can go to either pipeline.
1017     // We'll always use xxlor here, because in practically all cases where
1018     // copies are generated, they are close enough to some use that the
1019     // lower-latency form is preferable.
1020     Opc = PPC::XXLOR;
1021   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1022            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1023     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1024   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1025     Opc = PPC::QVFMR;
1026   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1027     Opc = PPC::QVFMRs;
1028   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1029     Opc = PPC::QVFMRb;
1030   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1031     Opc = PPC::CROR;
1032   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1033     Opc = PPC::EVOR;
1034   else
1035     llvm_unreachable("Impossible reg-to-reg copy");
1036 
1037   const MCInstrDesc &MCID = get(Opc);
1038   if (MCID.getNumOperands() == 3)
1039     BuildMI(MBB, I, DL, MCID, DestReg)
1040       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1041   else
1042     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1043 }
1044 
1045 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1046                                               const TargetRegisterClass *RC)
1047                                               const {
1048   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1049   int OpcodeIndex = 0;
1050 
1051   if (RC != nullptr) {
1052     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1053         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1054       OpcodeIndex = SOK_Int4Spill;
1055     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1056                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1057       OpcodeIndex = SOK_Int8Spill;
1058     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1059       OpcodeIndex = SOK_Float8Spill;
1060     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1061       OpcodeIndex = SOK_Float4Spill;
1062     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1063       OpcodeIndex = SOK_SPESpill;
1064     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1065       OpcodeIndex = SOK_CRSpill;
1066     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1067       OpcodeIndex = SOK_CRBitSpill;
1068     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1069       OpcodeIndex = SOK_VRVectorSpill;
1070     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1071       OpcodeIndex = SOK_VSXVectorSpill;
1072     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1073       OpcodeIndex = SOK_VectorFloat8Spill;
1074     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1075       OpcodeIndex = SOK_VectorFloat4Spill;
1076     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1077       OpcodeIndex = SOK_VRSaveSpill;
1078     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1079       OpcodeIndex = SOK_QuadFloat8Spill;
1080     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1081       OpcodeIndex = SOK_QuadFloat4Spill;
1082     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1083       OpcodeIndex = SOK_QuadBitSpill;
1084     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1085       OpcodeIndex = SOK_SpillToVSR;
1086     } else {
1087       llvm_unreachable("Unknown regclass!");
1088     }
1089   } else {
1090     if (PPC::GPRCRegClass.contains(Reg) ||
1091         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1092       OpcodeIndex = SOK_Int4Spill;
1093     } else if (PPC::G8RCRegClass.contains(Reg) ||
1094                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1095       OpcodeIndex = SOK_Int8Spill;
1096     } else if (PPC::F8RCRegClass.contains(Reg)) {
1097       OpcodeIndex = SOK_Float8Spill;
1098     } else if (PPC::F4RCRegClass.contains(Reg)) {
1099       OpcodeIndex = SOK_Float4Spill;
1100     } else if (PPC::SPERCRegClass.contains(Reg)) {
1101       OpcodeIndex = SOK_SPESpill;
1102     } else if (PPC::CRRCRegClass.contains(Reg)) {
1103       OpcodeIndex = SOK_CRSpill;
1104     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1105       OpcodeIndex = SOK_CRBitSpill;
1106     } else if (PPC::VRRCRegClass.contains(Reg)) {
1107       OpcodeIndex = SOK_VRVectorSpill;
1108     } else if (PPC::VSRCRegClass.contains(Reg)) {
1109       OpcodeIndex = SOK_VSXVectorSpill;
1110     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1111       OpcodeIndex = SOK_VectorFloat8Spill;
1112     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1113       OpcodeIndex = SOK_VectorFloat4Spill;
1114     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1115       OpcodeIndex = SOK_VRSaveSpill;
1116     } else if (PPC::QFRCRegClass.contains(Reg)) {
1117       OpcodeIndex = SOK_QuadFloat8Spill;
1118     } else if (PPC::QSRCRegClass.contains(Reg)) {
1119       OpcodeIndex = SOK_QuadFloat4Spill;
1120     } else if (PPC::QBRCRegClass.contains(Reg)) {
1121       OpcodeIndex = SOK_QuadBitSpill;
1122     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1123       OpcodeIndex = SOK_SpillToVSR;
1124     } else {
1125       llvm_unreachable("Unknown regclass!");
1126     }
1127   }
1128   return OpcodesForSpill[OpcodeIndex];
1129 }
1130 
1131 unsigned
1132 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1133                                     const TargetRegisterClass *RC) const {
1134   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1135   int OpcodeIndex = 0;
1136 
1137   if (RC != nullptr) {
1138     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1139         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1140       OpcodeIndex = SOK_Int4Spill;
1141     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1142                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1143       OpcodeIndex = SOK_Int8Spill;
1144     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1145       OpcodeIndex = SOK_Float8Spill;
1146     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1147       OpcodeIndex = SOK_Float4Spill;
1148     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1149       OpcodeIndex = SOK_SPESpill;
1150     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1151       OpcodeIndex = SOK_CRSpill;
1152     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1153       OpcodeIndex = SOK_CRBitSpill;
1154     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1155       OpcodeIndex = SOK_VRVectorSpill;
1156     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1157       OpcodeIndex = SOK_VSXVectorSpill;
1158     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1159       OpcodeIndex = SOK_VectorFloat8Spill;
1160     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1161       OpcodeIndex = SOK_VectorFloat4Spill;
1162     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1163       OpcodeIndex = SOK_VRSaveSpill;
1164     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1165       OpcodeIndex = SOK_QuadFloat8Spill;
1166     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1167       OpcodeIndex = SOK_QuadFloat4Spill;
1168     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1169       OpcodeIndex = SOK_QuadBitSpill;
1170     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1171       OpcodeIndex = SOK_SpillToVSR;
1172     } else {
1173       llvm_unreachable("Unknown regclass!");
1174     }
1175   } else {
1176     if (PPC::GPRCRegClass.contains(Reg) ||
1177         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1178       OpcodeIndex = SOK_Int4Spill;
1179     } else if (PPC::G8RCRegClass.contains(Reg) ||
1180                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1181       OpcodeIndex = SOK_Int8Spill;
1182     } else if (PPC::F8RCRegClass.contains(Reg)) {
1183       OpcodeIndex = SOK_Float8Spill;
1184     } else if (PPC::F4RCRegClass.contains(Reg)) {
1185       OpcodeIndex = SOK_Float4Spill;
1186     } else if (PPC::SPERCRegClass.contains(Reg)) {
1187       OpcodeIndex = SOK_SPESpill;
1188     } else if (PPC::CRRCRegClass.contains(Reg)) {
1189       OpcodeIndex = SOK_CRSpill;
1190     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1191       OpcodeIndex = SOK_CRBitSpill;
1192     } else if (PPC::VRRCRegClass.contains(Reg)) {
1193       OpcodeIndex = SOK_VRVectorSpill;
1194     } else if (PPC::VSRCRegClass.contains(Reg)) {
1195       OpcodeIndex = SOK_VSXVectorSpill;
1196     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1197       OpcodeIndex = SOK_VectorFloat8Spill;
1198     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1199       OpcodeIndex = SOK_VectorFloat4Spill;
1200     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1201       OpcodeIndex = SOK_VRSaveSpill;
1202     } else if (PPC::QFRCRegClass.contains(Reg)) {
1203       OpcodeIndex = SOK_QuadFloat8Spill;
1204     } else if (PPC::QSRCRegClass.contains(Reg)) {
1205       OpcodeIndex = SOK_QuadFloat4Spill;
1206     } else if (PPC::QBRCRegClass.contains(Reg)) {
1207       OpcodeIndex = SOK_QuadBitSpill;
1208     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1209       OpcodeIndex = SOK_SpillToVSR;
1210     } else {
1211       llvm_unreachable("Unknown regclass!");
1212     }
1213   }
1214   return OpcodesForSpill[OpcodeIndex];
1215 }
1216 
1217 void PPCInstrInfo::StoreRegToStackSlot(
1218     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1219     const TargetRegisterClass *RC,
1220     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1221   unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1222   DebugLoc DL;
1223 
1224   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1225   FuncInfo->setHasSpills();
1226 
1227   NewMIs.push_back(addFrameReference(
1228       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1229       FrameIdx));
1230 
1231   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1232       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1233     FuncInfo->setSpillsCR();
1234 
1235   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1236     FuncInfo->setSpillsVRSAVE();
1237 
1238   if (isXFormMemOp(Opcode))
1239     FuncInfo->setHasNonRISpills();
1240 }
1241 
1242 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1243     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1244     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1245     const TargetRegisterInfo *TRI) const {
1246   MachineFunction &MF = *MBB.getParent();
1247   SmallVector<MachineInstr *, 4> NewMIs;
1248 
1249   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1250 
1251   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1252     MBB.insert(MI, NewMIs[i]);
1253 
1254   const MachineFrameInfo &MFI = MF.getFrameInfo();
1255   MachineMemOperand *MMO = MF.getMachineMemOperand(
1256       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1257       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1258       MFI.getObjectAlign(FrameIdx));
1259   NewMIs.back()->addMemOperand(MF, MMO);
1260 }
1261 
1262 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1263                                        MachineBasicBlock::iterator MI,
1264                                        Register SrcReg, bool isKill,
1265                                        int FrameIdx,
1266                                        const TargetRegisterClass *RC,
1267                                        const TargetRegisterInfo *TRI) const {
1268   // We need to avoid a situation in which the value from a VRRC register is
1269   // spilled using an Altivec instruction and reloaded into a VSRC register
1270   // using a VSX instruction. The issue with this is that the VSX
1271   // load/store instructions swap the doublewords in the vector and the Altivec
1272   // ones don't. The register classes on the spill/reload may be different if
1273   // the register is defined using an Altivec instruction and is then used by a
1274   // VSX instruction.
1275   RC = updatedRC(RC);
1276   storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1277 }
1278 
1279 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1280                                         unsigned DestReg, int FrameIdx,
1281                                         const TargetRegisterClass *RC,
1282                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1283                                         const {
1284   unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1285   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1286                                      FrameIdx));
1287   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1288 
1289   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1290       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1291     FuncInfo->setSpillsCR();
1292 
1293   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1294     FuncInfo->setSpillsVRSAVE();
1295 
1296   if (isXFormMemOp(Opcode))
1297     FuncInfo->setHasNonRISpills();
1298 }
1299 
1300 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
1301     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
1302     int FrameIdx, const TargetRegisterClass *RC,
1303     const TargetRegisterInfo *TRI) const {
1304   MachineFunction &MF = *MBB.getParent();
1305   SmallVector<MachineInstr*, 4> NewMIs;
1306   DebugLoc DL;
1307   if (MI != MBB.end()) DL = MI->getDebugLoc();
1308 
1309   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1310   FuncInfo->setHasSpills();
1311 
1312   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1313 
1314   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1315     MBB.insert(MI, NewMIs[i]);
1316 
1317   const MachineFrameInfo &MFI = MF.getFrameInfo();
1318   MachineMemOperand *MMO = MF.getMachineMemOperand(
1319       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1320       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1321       MFI.getObjectAlign(FrameIdx));
1322   NewMIs.back()->addMemOperand(MF, MMO);
1323 }
1324 
1325 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1326                                         MachineBasicBlock::iterator MI,
1327                                         Register DestReg, int FrameIdx,
1328                                         const TargetRegisterClass *RC,
1329                                         const TargetRegisterInfo *TRI) const {
1330   // We need to avoid a situation in which the value from a VRRC register is
1331   // spilled using an Altivec instruction and reloaded into a VSRC register
1332   // using a VSX instruction. The issue with this is that the VSX
1333   // load/store instructions swap the doublewords in the vector and the Altivec
1334   // ones don't. The register classes on the spill/reload may be different if
1335   // the register is defined using an Altivec instruction and is then used by a
1336   // VSX instruction.
1337   RC = updatedRC(RC);
1338 
1339   loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
1340 }
1341 
1342 bool PPCInstrInfo::
1343 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1344   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1345   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1346     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1347   else
1348     // Leave the CR# the same, but invert the condition.
1349     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1350   return false;
1351 }
1352 
1353 // For some instructions, it is legal to fold ZERO into the RA register field.
1354 // This function performs that fold by replacing the operand with PPC::ZERO,
1355 // it does not consider whether the load immediate zero is no longer in use.
1356 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1357                                      Register Reg) const {
1358   // A zero immediate should always be loaded with a single li.
1359   unsigned DefOpc = DefMI.getOpcode();
1360   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1361     return false;
1362   if (!DefMI.getOperand(1).isImm())
1363     return false;
1364   if (DefMI.getOperand(1).getImm() != 0)
1365     return false;
1366 
1367   // Note that we cannot here invert the arguments of an isel in order to fold
1368   // a ZERO into what is presented as the second argument. All we have here
1369   // is the condition bit, and that might come from a CR-logical bit operation.
1370 
1371   const MCInstrDesc &UseMCID = UseMI.getDesc();
1372 
1373   // Only fold into real machine instructions.
1374   if (UseMCID.isPseudo())
1375     return false;
1376 
1377   // We need to find which of the User's operands is to be folded, that will be
1378   // the operand that matches the given register ID.
1379   unsigned UseIdx;
1380   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1381     if (UseMI.getOperand(UseIdx).isReg() &&
1382         UseMI.getOperand(UseIdx).getReg() == Reg)
1383       break;
1384 
1385   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1386   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1387 
1388   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1389 
1390   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1391   // register (which might also be specified as a pointer class kind).
1392   if (UseInfo->isLookupPtrRegClass()) {
1393     if (UseInfo->RegClass /* Kind */ != 1)
1394       return false;
1395   } else {
1396     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1397         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1398       return false;
1399   }
1400 
1401   // Make sure this is not tied to an output register (or otherwise
1402   // constrained). This is true for ST?UX registers, for example, which
1403   // are tied to their output registers.
1404   if (UseInfo->Constraints != 0)
1405     return false;
1406 
1407   MCRegister ZeroReg;
1408   if (UseInfo->isLookupPtrRegClass()) {
1409     bool isPPC64 = Subtarget.isPPC64();
1410     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1411   } else {
1412     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1413               PPC::ZERO8 : PPC::ZERO;
1414   }
1415 
1416   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1417   return true;
1418 }
1419 
1420 // Folds zero into instructions which have a load immediate zero as an operand
1421 // but also recognize zero as immediate zero. If the definition of the load
1422 // has no more users it is deleted.
1423 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1424                                  Register Reg, MachineRegisterInfo *MRI) const {
1425   bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
1426   if (MRI->use_nodbg_empty(Reg))
1427     DefMI.eraseFromParent();
1428   return Changed;
1429 }
1430 
1431 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1432   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1433        I != IE; ++I)
1434     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1435       return true;
1436   return false;
1437 }
1438 
1439 // We should make sure that, if we're going to predicate both sides of a
1440 // condition (a diamond), that both sides don't define the counter register. We
1441 // can predicate counter-decrement-based branches, but while that predicates
1442 // the branching, it does not predicate the counter decrement. If we tried to
1443 // merge the triangle into one predicated block, we'd decrement the counter
1444 // twice.
1445 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1446                      unsigned NumT, unsigned ExtraT,
1447                      MachineBasicBlock &FMBB,
1448                      unsigned NumF, unsigned ExtraF,
1449                      BranchProbability Probability) const {
1450   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1451 }
1452 
1453 
1454 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1455   // The predicated branches are identified by their type, not really by the
1456   // explicit presence of a predicate. Furthermore, some of them can be
1457   // predicated more than once. Because if conversion won't try to predicate
1458   // any instruction which already claims to be predicated (by returning true
1459   // here), always return false. In doing so, we let isPredicable() be the
1460   // final word on whether not the instruction can be (further) predicated.
1461 
1462   return false;
1463 }
1464 
1465 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1466                                         ArrayRef<MachineOperand> Pred) const {
1467   unsigned OpC = MI.getOpcode();
1468   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1469     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1470       bool isPPC64 = Subtarget.isPPC64();
1471       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1472                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1473     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1474       MI.setDesc(get(PPC::BCLR));
1475       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1476     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1477       MI.setDesc(get(PPC::BCLRn));
1478       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1479     } else {
1480       MI.setDesc(get(PPC::BCCLR));
1481       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1482           .addImm(Pred[0].getImm())
1483           .add(Pred[1]);
1484     }
1485 
1486     return true;
1487   } else if (OpC == PPC::B) {
1488     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1489       bool isPPC64 = Subtarget.isPPC64();
1490       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1491                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1492     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1493       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1494       MI.RemoveOperand(0);
1495 
1496       MI.setDesc(get(PPC::BC));
1497       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1498           .add(Pred[1])
1499           .addMBB(MBB);
1500     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1501       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1502       MI.RemoveOperand(0);
1503 
1504       MI.setDesc(get(PPC::BCn));
1505       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1506           .add(Pred[1])
1507           .addMBB(MBB);
1508     } else {
1509       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1510       MI.RemoveOperand(0);
1511 
1512       MI.setDesc(get(PPC::BCC));
1513       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1514           .addImm(Pred[0].getImm())
1515           .add(Pred[1])
1516           .addMBB(MBB);
1517     }
1518 
1519     return true;
1520   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1521              OpC == PPC::BCTRL8) {
1522     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1523       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1524 
1525     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1526     bool isPPC64 = Subtarget.isPPC64();
1527 
1528     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1529       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1530                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1531       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1532       return true;
1533     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1534       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1535                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1536       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1537       return true;
1538     }
1539 
1540     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1541                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1542     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1543         .addImm(Pred[0].getImm())
1544         .add(Pred[1]);
1545     return true;
1546   }
1547 
1548   return false;
1549 }
1550 
1551 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1552                                      ArrayRef<MachineOperand> Pred2) const {
1553   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1554   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1555 
1556   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1557     return false;
1558   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1559     return false;
1560 
1561   // P1 can only subsume P2 if they test the same condition register.
1562   if (Pred1[1].getReg() != Pred2[1].getReg())
1563     return false;
1564 
1565   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1566   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1567 
1568   if (P1 == P2)
1569     return true;
1570 
1571   // Does P1 subsume P2, e.g. GE subsumes GT.
1572   if (P1 == PPC::PRED_LE &&
1573       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1574     return true;
1575   if (P1 == PPC::PRED_GE &&
1576       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1577     return true;
1578 
1579   return false;
1580 }
1581 
1582 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1583                                     std::vector<MachineOperand> &Pred) const {
1584   // Note: At the present time, the contents of Pred from this function is
1585   // unused by IfConversion. This implementation follows ARM by pushing the
1586   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1587   // predicate, instructions defining CTR or CTR8 are also included as
1588   // predicate-defining instructions.
1589 
1590   const TargetRegisterClass *RCs[] =
1591     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1592       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1593 
1594   bool Found = false;
1595   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1596     const MachineOperand &MO = MI.getOperand(i);
1597     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1598       const TargetRegisterClass *RC = RCs[c];
1599       if (MO.isReg()) {
1600         if (MO.isDef() && RC->contains(MO.getReg())) {
1601           Pred.push_back(MO);
1602           Found = true;
1603         }
1604       } else if (MO.isRegMask()) {
1605         for (TargetRegisterClass::iterator I = RC->begin(),
1606              IE = RC->end(); I != IE; ++I)
1607           if (MO.clobbersPhysReg(*I)) {
1608             Pred.push_back(MO);
1609             Found = true;
1610           }
1611       }
1612     }
1613   }
1614 
1615   return Found;
1616 }
1617 
1618 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1619                                   Register &SrcReg2, int &Mask,
1620                                   int &Value) const {
1621   unsigned Opc = MI.getOpcode();
1622 
1623   switch (Opc) {
1624   default: return false;
1625   case PPC::CMPWI:
1626   case PPC::CMPLWI:
1627   case PPC::CMPDI:
1628   case PPC::CMPLDI:
1629     SrcReg = MI.getOperand(1).getReg();
1630     SrcReg2 = 0;
1631     Value = MI.getOperand(2).getImm();
1632     Mask = 0xFFFF;
1633     return true;
1634   case PPC::CMPW:
1635   case PPC::CMPLW:
1636   case PPC::CMPD:
1637   case PPC::CMPLD:
1638   case PPC::FCMPUS:
1639   case PPC::FCMPUD:
1640     SrcReg = MI.getOperand(1).getReg();
1641     SrcReg2 = MI.getOperand(2).getReg();
1642     Value = 0;
1643     Mask = 0;
1644     return true;
1645   }
1646 }
1647 
1648 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1649                                         Register SrcReg2, int Mask, int Value,
1650                                         const MachineRegisterInfo *MRI) const {
1651   if (DisableCmpOpt)
1652     return false;
1653 
1654   int OpC = CmpInstr.getOpcode();
1655   Register CRReg = CmpInstr.getOperand(0).getReg();
1656 
1657   // FP record forms set CR1 based on the exception status bits, not a
1658   // comparison with zero.
1659   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1660     return false;
1661 
1662   const TargetRegisterInfo *TRI = &getRegisterInfo();
1663   // The record forms set the condition register based on a signed comparison
1664   // with zero (so says the ISA manual). This is not as straightforward as it
1665   // seems, however, because this is always a 64-bit comparison on PPC64, even
1666   // for instructions that are 32-bit in nature (like slw for example).
1667   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1668   // for equality checks (as those don't depend on the sign). On PPC64,
1669   // we are restricted to equality for unsigned 64-bit comparisons and for
1670   // signed 32-bit comparisons the applicability is more restricted.
1671   bool isPPC64 = Subtarget.isPPC64();
1672   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1673   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1674   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1675 
1676   // Look through copies unless that gets us to a physical register.
1677   Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1678   if (ActualSrc.isVirtual())
1679     SrcReg = ActualSrc;
1680 
1681   // Get the unique definition of SrcReg.
1682   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1683   if (!MI) return false;
1684 
1685   bool equalityOnly = false;
1686   bool noSub = false;
1687   if (isPPC64) {
1688     if (is32BitSignedCompare) {
1689       // We can perform this optimization only if MI is sign-extending.
1690       if (isSignExtended(*MI))
1691         noSub = true;
1692       else
1693         return false;
1694     } else if (is32BitUnsignedCompare) {
1695       // We can perform this optimization, equality only, if MI is
1696       // zero-extending.
1697       if (isZeroExtended(*MI)) {
1698         noSub = true;
1699         equalityOnly = true;
1700       } else
1701         return false;
1702     } else
1703       equalityOnly = is64BitUnsignedCompare;
1704   } else
1705     equalityOnly = is32BitUnsignedCompare;
1706 
1707   if (equalityOnly) {
1708     // We need to check the uses of the condition register in order to reject
1709     // non-equality comparisons.
1710     for (MachineRegisterInfo::use_instr_iterator
1711          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1712          I != IE; ++I) {
1713       MachineInstr *UseMI = &*I;
1714       if (UseMI->getOpcode() == PPC::BCC) {
1715         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1716         unsigned PredCond = PPC::getPredicateCondition(Pred);
1717         // We ignore hint bits when checking for non-equality comparisons.
1718         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1719           return false;
1720       } else if (UseMI->getOpcode() == PPC::ISEL ||
1721                  UseMI->getOpcode() == PPC::ISEL8) {
1722         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1723         if (SubIdx != PPC::sub_eq)
1724           return false;
1725       } else
1726         return false;
1727     }
1728   }
1729 
1730   MachineBasicBlock::iterator I = CmpInstr;
1731 
1732   // Scan forward to find the first use of the compare.
1733   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1734        ++I) {
1735     bool FoundUse = false;
1736     for (MachineRegisterInfo::use_instr_iterator
1737          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1738          J != JE; ++J)
1739       if (&*J == &*I) {
1740         FoundUse = true;
1741         break;
1742       }
1743 
1744     if (FoundUse)
1745       break;
1746   }
1747 
1748   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1749   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1750 
1751   // There are two possible candidates which can be changed to set CR[01].
1752   // One is MI, the other is a SUB instruction.
1753   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1754   MachineInstr *Sub = nullptr;
1755   if (SrcReg2 != 0)
1756     // MI is not a candidate for CMPrr.
1757     MI = nullptr;
1758   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1759   // same BB as the comparison. This is to allow the check below to avoid calls
1760   // (and other explicit clobbers); instead we should really check for these
1761   // more explicitly (in at least a few predecessors).
1762   else if (MI->getParent() != CmpInstr.getParent())
1763     return false;
1764   else if (Value != 0) {
1765     // The record-form instructions set CR bit based on signed comparison
1766     // against 0. We try to convert a compare against 1 or -1 into a compare
1767     // against 0 to exploit record-form instructions. For example, we change
1768     // the condition "greater than -1" into "greater than or equal to 0"
1769     // and "less than 1" into "less than or equal to 0".
1770 
1771     // Since we optimize comparison based on a specific branch condition,
1772     // we don't optimize if condition code is used by more than once.
1773     if (equalityOnly || !MRI->hasOneUse(CRReg))
1774       return false;
1775 
1776     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1777     if (UseMI->getOpcode() != PPC::BCC)
1778       return false;
1779 
1780     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1781     unsigned PredCond = PPC::getPredicateCondition(Pred);
1782     unsigned PredHint = PPC::getPredicateHint(Pred);
1783     int16_t Immed = (int16_t)Value;
1784 
1785     // When modifying the condition in the predicate, we propagate hint bits
1786     // from the original predicate to the new one.
1787     if (Immed == -1 && PredCond == PPC::PRED_GT)
1788       // We convert "greater than -1" into "greater than or equal to 0",
1789       // since we are assuming signed comparison by !equalityOnly
1790       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1791     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1792       // We convert "less than or equal to -1" into "less than 0".
1793       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1794     else if (Immed == 1 && PredCond == PPC::PRED_LT)
1795       // We convert "less than 1" into "less than or equal to 0".
1796       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1797     else if (Immed == 1 && PredCond == PPC::PRED_GE)
1798       // We convert "greater than or equal to 1" into "greater than 0".
1799       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1800     else
1801       return false;
1802 
1803     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
1804   }
1805 
1806   // Search for Sub.
1807   --I;
1808 
1809   // Get ready to iterate backward from CmpInstr.
1810   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1811 
1812   for (; I != E && !noSub; --I) {
1813     const MachineInstr &Instr = *I;
1814     unsigned IOpC = Instr.getOpcode();
1815 
1816     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1817                              Instr.readsRegister(PPC::CR0, TRI)))
1818       // This instruction modifies or uses the record condition register after
1819       // the one we want to change. While we could do this transformation, it
1820       // would likely not be profitable. This transformation removes one
1821       // instruction, and so even forcing RA to generate one move probably
1822       // makes it unprofitable.
1823       return false;
1824 
1825     // Check whether CmpInstr can be made redundant by the current instruction.
1826     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1827          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1828         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1829         ((Instr.getOperand(1).getReg() == SrcReg &&
1830           Instr.getOperand(2).getReg() == SrcReg2) ||
1831         (Instr.getOperand(1).getReg() == SrcReg2 &&
1832          Instr.getOperand(2).getReg() == SrcReg))) {
1833       Sub = &*I;
1834       break;
1835     }
1836 
1837     if (I == B)
1838       // The 'and' is below the comparison instruction.
1839       return false;
1840   }
1841 
1842   // Return false if no candidates exist.
1843   if (!MI && !Sub)
1844     return false;
1845 
1846   // The single candidate is called MI.
1847   if (!MI) MI = Sub;
1848 
1849   int NewOpC = -1;
1850   int MIOpC = MI->getOpcode();
1851   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
1852       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
1853     NewOpC = MIOpC;
1854   else {
1855     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1856     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1857       NewOpC = MIOpC;
1858   }
1859 
1860   // FIXME: On the non-embedded POWER architectures, only some of the record
1861   // forms are fast, and we should use only the fast ones.
1862 
1863   // The defining instruction has a record form (or is already a record
1864   // form). It is possible, however, that we'll need to reverse the condition
1865   // code of the users.
1866   if (NewOpC == -1)
1867     return false;
1868 
1869   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1870   // needs to be updated to be based on SUB.  Push the condition code
1871   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1872   // condition code of these operands will be modified.
1873   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1874   // comparison against 0, which may modify predicate.
1875   bool ShouldSwap = false;
1876   if (Sub && Value == 0) {
1877     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1878       Sub->getOperand(2).getReg() == SrcReg;
1879 
1880     // The operands to subf are the opposite of sub, so only in the fixed-point
1881     // case, invert the order.
1882     ShouldSwap = !ShouldSwap;
1883   }
1884 
1885   if (ShouldSwap)
1886     for (MachineRegisterInfo::use_instr_iterator
1887          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1888          I != IE; ++I) {
1889       MachineInstr *UseMI = &*I;
1890       if (UseMI->getOpcode() == PPC::BCC) {
1891         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1892         unsigned PredCond = PPC::getPredicateCondition(Pred);
1893         assert((!equalityOnly ||
1894                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1895                "Invalid predicate for equality-only optimization");
1896         (void)PredCond; // To suppress warning in release build.
1897         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1898                                 PPC::getSwappedPredicate(Pred)));
1899       } else if (UseMI->getOpcode() == PPC::ISEL ||
1900                  UseMI->getOpcode() == PPC::ISEL8) {
1901         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1902         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1903                "Invalid CR bit for equality-only optimization");
1904 
1905         if (NewSubReg == PPC::sub_lt)
1906           NewSubReg = PPC::sub_gt;
1907         else if (NewSubReg == PPC::sub_gt)
1908           NewSubReg = PPC::sub_lt;
1909 
1910         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1911                                                  NewSubReg));
1912       } else // We need to abort on a user we don't understand.
1913         return false;
1914     }
1915   assert(!(Value != 0 && ShouldSwap) &&
1916          "Non-zero immediate support and ShouldSwap"
1917          "may conflict in updating predicate");
1918 
1919   // Create a new virtual register to hold the value of the CR set by the
1920   // record-form instruction. If the instruction was not previously in
1921   // record form, then set the kill flag on the CR.
1922   CmpInstr.eraseFromParent();
1923 
1924   MachineBasicBlock::iterator MII = MI;
1925   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1926           get(TargetOpcode::COPY), CRReg)
1927     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1928 
1929   // Even if CR0 register were dead before, it is alive now since the
1930   // instruction we just built uses it.
1931   MI->clearRegisterDeads(PPC::CR0);
1932 
1933   if (MIOpC != NewOpC) {
1934     // We need to be careful here: we're replacing one instruction with
1935     // another, and we need to make sure that we get all of the right
1936     // implicit uses and defs. On the other hand, the caller may be holding
1937     // an iterator to this instruction, and so we can't delete it (this is
1938     // specifically the case if this is the instruction directly after the
1939     // compare).
1940 
1941     // Rotates are expensive instructions. If we're emitting a record-form
1942     // rotate that can just be an andi/andis, we should just emit that.
1943     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1944       Register GPRRes = MI->getOperand(0).getReg();
1945       int64_t SH = MI->getOperand(2).getImm();
1946       int64_t MB = MI->getOperand(3).getImm();
1947       int64_t ME = MI->getOperand(4).getImm();
1948       // We can only do this if both the start and end of the mask are in the
1949       // same halfword.
1950       bool MBInLoHWord = MB >= 16;
1951       bool MEInLoHWord = ME >= 16;
1952       uint64_t Mask = ~0LLU;
1953 
1954       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1955         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1956         // The mask value needs to shift right 16 if we're emitting andis.
1957         Mask >>= MBInLoHWord ? 0 : 16;
1958         NewOpC = MIOpC == PPC::RLWINM
1959                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
1960                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
1961       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1962                  (ME - MB + 1 == SH) && (MB >= 16)) {
1963         // If we are rotating by the exact number of bits as are in the mask
1964         // and the mask is in the least significant bits of the register,
1965         // that's just an andis. (as long as the GPR result has no uses).
1966         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1967         Mask >>= 16;
1968         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
1969       }
1970       // If we've set the mask, we can transform.
1971       if (Mask != ~0LLU) {
1972         MI->RemoveOperand(4);
1973         MI->RemoveOperand(3);
1974         MI->getOperand(2).setImm(Mask);
1975         NumRcRotatesConvertedToRcAnd++;
1976       }
1977     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1978       int64_t MB = MI->getOperand(3).getImm();
1979       if (MB >= 48) {
1980         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1981         NewOpC = PPC::ANDI8_rec;
1982         MI->RemoveOperand(3);
1983         MI->getOperand(2).setImm(Mask);
1984         NumRcRotatesConvertedToRcAnd++;
1985       }
1986     }
1987 
1988     const MCInstrDesc &NewDesc = get(NewOpC);
1989     MI->setDesc(NewDesc);
1990 
1991     if (NewDesc.ImplicitDefs)
1992       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1993            *ImpDefs; ++ImpDefs)
1994         if (!MI->definesRegister(*ImpDefs))
1995           MI->addOperand(*MI->getParent()->getParent(),
1996                          MachineOperand::CreateReg(*ImpDefs, true, true));
1997     if (NewDesc.ImplicitUses)
1998       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1999            *ImpUses; ++ImpUses)
2000         if (!MI->readsRegister(*ImpUses))
2001           MI->addOperand(*MI->getParent()->getParent(),
2002                          MachineOperand::CreateReg(*ImpUses, false, true));
2003   }
2004   assert(MI->definesRegister(PPC::CR0) &&
2005          "Record-form instruction does not define cr0?");
2006 
2007   // Modify the condition code of operands in OperandsToUpdate.
2008   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2009   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2010   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2011     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2012 
2013   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2014     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2015 
2016   return true;
2017 }
2018 
2019 /// GetInstSize - Return the number of bytes of code the specified
2020 /// instruction may be.  This returns the maximum number of bytes.
2021 ///
2022 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2023   unsigned Opcode = MI.getOpcode();
2024 
2025   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2026     const MachineFunction *MF = MI.getParent()->getParent();
2027     const char *AsmStr = MI.getOperand(0).getSymbolName();
2028     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2029   } else if (Opcode == TargetOpcode::STACKMAP) {
2030     StackMapOpers Opers(&MI);
2031     return Opers.getNumPatchBytes();
2032   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2033     PatchPointOpers Opers(&MI);
2034     return Opers.getNumPatchBytes();
2035   } else {
2036     return get(Opcode).getSize();
2037   }
2038 }
2039 
2040 std::pair<unsigned, unsigned>
2041 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2042   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2043   return std::make_pair(TF & Mask, TF & ~Mask);
2044 }
2045 
2046 ArrayRef<std::pair<unsigned, const char *>>
2047 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2048   using namespace PPCII;
2049   static const std::pair<unsigned, const char *> TargetFlags[] = {
2050       {MO_LO, "ppc-lo"},
2051       {MO_HA, "ppc-ha"},
2052       {MO_TPREL_LO, "ppc-tprel-lo"},
2053       {MO_TPREL_HA, "ppc-tprel-ha"},
2054       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2055       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2056       {MO_TOC_LO, "ppc-toc-lo"},
2057       {MO_TLS, "ppc-tls"}};
2058   return makeArrayRef(TargetFlags);
2059 }
2060 
2061 ArrayRef<std::pair<unsigned, const char *>>
2062 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2063   using namespace PPCII;
2064   static const std::pair<unsigned, const char *> TargetFlags[] = {
2065       {MO_PLT, "ppc-plt"},
2066       {MO_PIC_FLAG, "ppc-pic"},
2067       {MO_PCREL_FLAG, "ppc-pcrel"},
2068       {MO_GOT_FLAG, "ppc-got"}};
2069   return makeArrayRef(TargetFlags);
2070 }
2071 
2072 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2073 // The VSX versions have the advantage of a full 64-register target whereas
2074 // the FP ones have the advantage of lower latency and higher throughput. So
2075 // what we are after is using the faster instructions in low register pressure
2076 // situations and using the larger register file in high register pressure
2077 // situations.
2078 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2079     unsigned UpperOpcode, LowerOpcode;
2080     switch (MI.getOpcode()) {
2081     case PPC::DFLOADf32:
2082       UpperOpcode = PPC::LXSSP;
2083       LowerOpcode = PPC::LFS;
2084       break;
2085     case PPC::DFLOADf64:
2086       UpperOpcode = PPC::LXSD;
2087       LowerOpcode = PPC::LFD;
2088       break;
2089     case PPC::DFSTOREf32:
2090       UpperOpcode = PPC::STXSSP;
2091       LowerOpcode = PPC::STFS;
2092       break;
2093     case PPC::DFSTOREf64:
2094       UpperOpcode = PPC::STXSD;
2095       LowerOpcode = PPC::STFD;
2096       break;
2097     case PPC::XFLOADf32:
2098       UpperOpcode = PPC::LXSSPX;
2099       LowerOpcode = PPC::LFSX;
2100       break;
2101     case PPC::XFLOADf64:
2102       UpperOpcode = PPC::LXSDX;
2103       LowerOpcode = PPC::LFDX;
2104       break;
2105     case PPC::XFSTOREf32:
2106       UpperOpcode = PPC::STXSSPX;
2107       LowerOpcode = PPC::STFSX;
2108       break;
2109     case PPC::XFSTOREf64:
2110       UpperOpcode = PPC::STXSDX;
2111       LowerOpcode = PPC::STFDX;
2112       break;
2113     case PPC::LIWAX:
2114       UpperOpcode = PPC::LXSIWAX;
2115       LowerOpcode = PPC::LFIWAX;
2116       break;
2117     case PPC::LIWZX:
2118       UpperOpcode = PPC::LXSIWZX;
2119       LowerOpcode = PPC::LFIWZX;
2120       break;
2121     case PPC::STIWX:
2122       UpperOpcode = PPC::STXSIWX;
2123       LowerOpcode = PPC::STFIWX;
2124       break;
2125     default:
2126       llvm_unreachable("Unknown Operation!");
2127     }
2128 
2129     Register TargetReg = MI.getOperand(0).getReg();
2130     unsigned Opcode;
2131     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2132         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2133       Opcode = LowerOpcode;
2134     else
2135       Opcode = UpperOpcode;
2136     MI.setDesc(get(Opcode));
2137     return true;
2138 }
2139 
2140 static bool isAnImmediateOperand(const MachineOperand &MO) {
2141   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2142 }
2143 
2144 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2145   auto &MBB = *MI.getParent();
2146   auto DL = MI.getDebugLoc();
2147 
2148   switch (MI.getOpcode()) {
2149   case TargetOpcode::LOAD_STACK_GUARD: {
2150     assert(Subtarget.isTargetLinux() &&
2151            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2152     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2153     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2154     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2155     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2156         .addImm(Offset)
2157         .addReg(Reg);
2158     return true;
2159   }
2160   case PPC::DFLOADf32:
2161   case PPC::DFLOADf64:
2162   case PPC::DFSTOREf32:
2163   case PPC::DFSTOREf64: {
2164     assert(Subtarget.hasP9Vector() &&
2165            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2166     assert(MI.getOperand(2).isReg() &&
2167            isAnImmediateOperand(MI.getOperand(1)) &&
2168            "D-form op must have register and immediate operands");
2169     return expandVSXMemPseudo(MI);
2170   }
2171   case PPC::XFLOADf32:
2172   case PPC::XFSTOREf32:
2173   case PPC::LIWAX:
2174   case PPC::LIWZX:
2175   case PPC::STIWX: {
2176     assert(Subtarget.hasP8Vector() &&
2177            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2178     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2179            "X-form op must have register and register operands");
2180     return expandVSXMemPseudo(MI);
2181   }
2182   case PPC::XFLOADf64:
2183   case PPC::XFSTOREf64: {
2184     assert(Subtarget.hasVSX() &&
2185            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2186     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2187            "X-form op must have register and register operands");
2188     return expandVSXMemPseudo(MI);
2189   }
2190   case PPC::SPILLTOVSR_LD: {
2191     Register TargetReg = MI.getOperand(0).getReg();
2192     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2193       MI.setDesc(get(PPC::DFLOADf64));
2194       return expandPostRAPseudo(MI);
2195     }
2196     else
2197       MI.setDesc(get(PPC::LD));
2198     return true;
2199   }
2200   case PPC::SPILLTOVSR_ST: {
2201     Register SrcReg = MI.getOperand(0).getReg();
2202     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2203       NumStoreSPILLVSRRCAsVec++;
2204       MI.setDesc(get(PPC::DFSTOREf64));
2205       return expandPostRAPseudo(MI);
2206     } else {
2207       NumStoreSPILLVSRRCAsGpr++;
2208       MI.setDesc(get(PPC::STD));
2209     }
2210     return true;
2211   }
2212   case PPC::SPILLTOVSR_LDX: {
2213     Register TargetReg = MI.getOperand(0).getReg();
2214     if (PPC::VSFRCRegClass.contains(TargetReg))
2215       MI.setDesc(get(PPC::LXSDX));
2216     else
2217       MI.setDesc(get(PPC::LDX));
2218     return true;
2219   }
2220   case PPC::SPILLTOVSR_STX: {
2221     Register SrcReg = MI.getOperand(0).getReg();
2222     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2223       NumStoreSPILLVSRRCAsVec++;
2224       MI.setDesc(get(PPC::STXSDX));
2225     } else {
2226       NumStoreSPILLVSRRCAsGpr++;
2227       MI.setDesc(get(PPC::STDX));
2228     }
2229     return true;
2230   }
2231 
2232   case PPC::CFENCE8: {
2233     auto Val = MI.getOperand(0).getReg();
2234     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2235     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2236         .addImm(PPC::PRED_NE_MINUS)
2237         .addReg(PPC::CR7)
2238         .addImm(1);
2239     MI.setDesc(get(PPC::ISYNC));
2240     MI.RemoveOperand(0);
2241     return true;
2242   }
2243   }
2244   return false;
2245 }
2246 
2247 // Essentially a compile-time implementation of a compare->isel sequence.
2248 // It takes two constants to compare, along with the true/false registers
2249 // and the comparison type (as a subreg to a CR field) and returns one
2250 // of the true/false registers, depending on the comparison results.
2251 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2252                           unsigned TrueReg, unsigned FalseReg,
2253                           unsigned CRSubReg) {
2254   // Signed comparisons. The immediates are assumed to be sign-extended.
2255   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2256     switch (CRSubReg) {
2257     default: llvm_unreachable("Unknown integer comparison type.");
2258     case PPC::sub_lt:
2259       return Imm1 < Imm2 ? TrueReg : FalseReg;
2260     case PPC::sub_gt:
2261       return Imm1 > Imm2 ? TrueReg : FalseReg;
2262     case PPC::sub_eq:
2263       return Imm1 == Imm2 ? TrueReg : FalseReg;
2264     }
2265   }
2266   // Unsigned comparisons.
2267   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2268     switch (CRSubReg) {
2269     default: llvm_unreachable("Unknown integer comparison type.");
2270     case PPC::sub_lt:
2271       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2272     case PPC::sub_gt:
2273       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2274     case PPC::sub_eq:
2275       return Imm1 == Imm2 ? TrueReg : FalseReg;
2276     }
2277   }
2278   return PPC::NoRegister;
2279 }
2280 
2281 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2282                                               unsigned OpNo,
2283                                               int64_t Imm) const {
2284   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2285   // Replace the REG with the Immediate.
2286   Register InUseReg = MI.getOperand(OpNo).getReg();
2287   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2288 
2289   if (MI.implicit_operands().empty())
2290     return;
2291 
2292   // We need to make sure that the MI didn't have any implicit use
2293   // of this REG any more.
2294   const TargetRegisterInfo *TRI = &getRegisterInfo();
2295   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2296   if (UseOpIdx >= 0) {
2297     MachineOperand &MO = MI.getOperand(UseOpIdx);
2298     if (MO.isImplicit())
2299       // The operands must always be in the following order:
2300       // - explicit reg defs,
2301       // - other explicit operands (reg uses, immediates, etc.),
2302       // - implicit reg defs
2303       // - implicit reg uses
2304       // Therefore, removing the implicit operand won't change the explicit
2305       // operands layout.
2306       MI.RemoveOperand(UseOpIdx);
2307   }
2308 }
2309 
2310 // Replace an instruction with one that materializes a constant (and sets
2311 // CR0 if the original instruction was a record-form instruction).
2312 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2313                                       const LoadImmediateInfo &LII) const {
2314   // Remove existing operands.
2315   int OperandToKeep = LII.SetCR ? 1 : 0;
2316   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2317     MI.RemoveOperand(i);
2318 
2319   // Replace the instruction.
2320   if (LII.SetCR) {
2321     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
2322     // Set the immediate.
2323     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2324         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2325     return;
2326   }
2327   else
2328     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2329 
2330   // Set the immediate.
2331   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2332       .addImm(LII.Imm);
2333 }
2334 
2335 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2336                                            bool &SeenIntermediateUse) const {
2337   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2338          "Should be called after register allocation.");
2339   const TargetRegisterInfo *TRI = &getRegisterInfo();
2340   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2341   It++;
2342   SeenIntermediateUse = false;
2343   for (; It != E; ++It) {
2344     if (It->modifiesRegister(Reg, TRI))
2345       return &*It;
2346     if (It->readsRegister(Reg, TRI))
2347       SeenIntermediateUse = true;
2348   }
2349   return nullptr;
2350 }
2351 
2352 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2353   MachineInstr &MI,
2354   unsigned &OpNoForForwarding,
2355   bool &SeenIntermediateUse) const {
2356   OpNoForForwarding = ~0U;
2357   MachineInstr *DefMI = nullptr;
2358   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2359   const TargetRegisterInfo *TRI = &getRegisterInfo();
2360   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2361   // within the basic block to see if the register is defined using an LI/LI8.
2362   if (MRI->isSSA()) {
2363     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2364       if (!MI.getOperand(i).isReg())
2365         continue;
2366       Register Reg = MI.getOperand(i).getReg();
2367       if (!Register::isVirtualRegister(Reg))
2368         continue;
2369       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2370       if (Register::isVirtualRegister(TrueReg)) {
2371         DefMI = MRI->getVRegDef(TrueReg);
2372         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2373           OpNoForForwarding = i;
2374           break;
2375         }
2376       }
2377     }
2378   } else {
2379     // Looking back through the definition for each operand could be expensive,
2380     // so exit early if this isn't an instruction that either has an immediate
2381     // form or is already an immediate form that we can handle.
2382     ImmInstrInfo III;
2383     unsigned Opc = MI.getOpcode();
2384     bool ConvertibleImmForm =
2385         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
2386         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2387         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
2388         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
2389         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2390         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
2391         Opc == PPC::RLWINM8_rec;
2392     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2393                        ? isVFRegister(MI.getOperand(0).getReg())
2394                        : false;
2395     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2396       return nullptr;
2397 
2398     // Don't convert or %X, %Y, %Y since that's just a register move.
2399     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2400         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2401       return nullptr;
2402     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2403       MachineOperand &MO = MI.getOperand(i);
2404       SeenIntermediateUse = false;
2405       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2406         Register Reg = MI.getOperand(i).getReg();
2407         // If we see another use of this reg between the def and the MI,
2408         // we want to flat it so the def isn't deleted.
2409         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2410         if (DefMI) {
2411           // Is this register defined by some form of add-immediate (including
2412           // load-immediate) within this basic block?
2413           switch (DefMI->getOpcode()) {
2414           default:
2415             break;
2416           case PPC::LI:
2417           case PPC::LI8:
2418           case PPC::ADDItocL:
2419           case PPC::ADDI:
2420           case PPC::ADDI8:
2421             OpNoForForwarding = i;
2422             return DefMI;
2423           }
2424         }
2425       }
2426     }
2427   }
2428   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2429 }
2430 
2431 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2432   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2433       // Power 8
2434       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2435        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2436        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2437        PPC::SPILLTOVSR_ST, PPC::EVSTDD},
2438       // Power 9
2439       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2440        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2441        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2442        PPC::SPILLTOVSR_ST}};
2443 
2444   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2445 }
2446 
2447 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2448   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2449       // Power 8
2450       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2451        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2452        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2453        PPC::SPILLTOVSR_LD, PPC::EVLDD},
2454       // Power 9
2455       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2456        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2457        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2458        PPC::SPILLTOVSR_LD}};
2459 
2460   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2461 }
2462 
2463 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2464                                      unsigned RegNo) const {
2465   const MachineRegisterInfo &MRI =
2466       StartMI.getParent()->getParent()->getRegInfo();
2467   if (MRI.isSSA())
2468     return;
2469 
2470   // Instructions between [StartMI, EndMI] should be in same basic block.
2471   assert((StartMI.getParent() == EndMI.getParent()) &&
2472          "Instructions are not in same basic block");
2473 
2474   bool IsKillSet = false;
2475 
2476   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2477     MachineOperand &MO = MI.getOperand(Index);
2478     if (MO.isReg() && MO.isUse() && MO.isKill() &&
2479         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2480       MO.setIsKill(false);
2481   };
2482 
2483   // Set killed flag for EndMI.
2484   // No need to do anything if EndMI defines RegNo.
2485   int UseIndex =
2486       EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2487   if (UseIndex != -1) {
2488     EndMI.getOperand(UseIndex).setIsKill(true);
2489     IsKillSet = true;
2490     // Clear killed flag for other EndMI operands related to RegNo. In some
2491     // upexpected cases, killed may be set multiple times for same register
2492     // operand in same MI.
2493     for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2494       if (i != UseIndex)
2495         clearOperandKillInfo(EndMI, i);
2496   }
2497 
2498   // Walking the inst in reverse order (EndMI -> StartMI].
2499   MachineBasicBlock::reverse_iterator It = EndMI;
2500   MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2501   // EndMI has been handled above, skip it here.
2502   It++;
2503   MachineOperand *MO = nullptr;
2504   for (; It != E; ++It) {
2505     // Skip insturctions which could not be a def/use of RegNo.
2506     if (It->isDebugInstr() || It->isPosition())
2507       continue;
2508 
2509     // Clear killed flag for all It operands related to RegNo. In some
2510     // upexpected cases, killed may be set multiple times for same register
2511     // operand in same MI.
2512     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2513         clearOperandKillInfo(*It, i);
2514 
2515     // If killed is not set, set killed for its last use or set dead for its def
2516     // if no use found.
2517     if (!IsKillSet) {
2518       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2519         // Use found, set it killed.
2520         IsKillSet = true;
2521         MO->setIsKill(true);
2522         continue;
2523       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2524                                                   &getRegisterInfo()))) {
2525         // No use found, set dead for its def.
2526         assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2527         MO->setIsDead(true);
2528         break;
2529       }
2530     }
2531 
2532     if ((&*It) == &StartMI)
2533       break;
2534   }
2535   // Ensure RegMo liveness is killed after EndMI.
2536   assert((IsKillSet || (MO && MO->isDead())) &&
2537          "RegNo should be killed or dead");
2538 }
2539 
2540 // This opt tries to convert the following imm form to an index form to save an
2541 // add for stack variables.
2542 // Return false if no such pattern found.
2543 //
2544 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
2545 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
2546 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
2547 //
2548 // can be converted to:
2549 //
2550 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
2551 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
2552 //
2553 // In order to eliminate ADD instr, make sure that:
2554 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
2555 //    new ADDI instr and ADDI can only take int16 Imm.
2556 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
2557 //    between ADDI and ADD instr since its original def in ADDI will be changed
2558 //    in new ADDI instr. And also there should be no new def for it between
2559 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
2560 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
2561 //    between ADD and Imm instr since ADD instr will be eliminated.
2562 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
2563 //    moved to Index instr.
2564 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
2565   MachineFunction *MF = MI.getParent()->getParent();
2566   MachineRegisterInfo *MRI = &MF->getRegInfo();
2567   bool PostRA = !MRI->isSSA();
2568   // Do this opt after PEI which is after RA. The reason is stack slot expansion
2569   // in PEI may expose such opportunities since in PEI, stack slot offsets to
2570   // frame base(OffsetAddi) are determined.
2571   if (!PostRA)
2572     return false;
2573   unsigned ToBeDeletedReg = 0;
2574   int64_t OffsetImm = 0;
2575   unsigned XFormOpcode = 0;
2576   ImmInstrInfo III;
2577 
2578   // Check if Imm instr meets requirement.
2579   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
2580                                     III))
2581     return false;
2582 
2583   bool OtherIntermediateUse = false;
2584   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
2585 
2586   // Exit if there is other use between ADD and Imm instr or no def found.
2587   if (OtherIntermediateUse || !ADDMI)
2588     return false;
2589 
2590   // Check if ADD instr meets requirement.
2591   if (!isADDInstrEligibleForFolding(*ADDMI))
2592     return false;
2593 
2594   unsigned ScaleRegIdx = 0;
2595   int64_t OffsetAddi = 0;
2596   MachineInstr *ADDIMI = nullptr;
2597 
2598   // Check if there is a valid ToBeChangedReg in ADDMI.
2599   // 1: It must be killed.
2600   // 2: Its definition must be a valid ADDIMI.
2601   // 3: It must satify int16 offset requirement.
2602   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
2603     ScaleRegIdx = 2;
2604   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
2605     ScaleRegIdx = 1;
2606   else
2607     return false;
2608 
2609   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
2610   unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
2611   unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
2612   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
2613                        MachineBasicBlock::iterator End) {
2614     for (auto It = ++Start; It != End; It++)
2615       if (It->modifiesRegister(Reg, &getRegisterInfo()))
2616         return true;
2617     return false;
2618   };
2619 
2620   // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
2621   // treated as special zero when ScaleReg is R0/X0 register.
2622   if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
2623       (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
2624     return false;
2625 
2626   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
2627   // and Imm Instr.
2628   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
2629     return false;
2630 
2631   // Now start to do the transformation.
2632   LLVM_DEBUG(dbgs() << "Replace instruction: "
2633                     << "\n");
2634   LLVM_DEBUG(ADDIMI->dump());
2635   LLVM_DEBUG(ADDMI->dump());
2636   LLVM_DEBUG(MI.dump());
2637   LLVM_DEBUG(dbgs() << "with: "
2638                     << "\n");
2639 
2640   // Update ADDI instr.
2641   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
2642 
2643   // Update Imm instr.
2644   MI.setDesc(get(XFormOpcode));
2645   MI.getOperand(III.ImmOpNo)
2646       .ChangeToRegister(ScaleReg, false, false,
2647                         ADDMI->getOperand(ScaleRegIdx).isKill());
2648 
2649   MI.getOperand(III.OpNoForForwarding)
2650       .ChangeToRegister(ToBeChangedReg, false, false, true);
2651 
2652   // Eliminate ADD instr.
2653   ADDMI->eraseFromParent();
2654 
2655   LLVM_DEBUG(ADDIMI->dump());
2656   LLVM_DEBUG(MI.dump());
2657 
2658   return true;
2659 }
2660 
2661 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
2662                                                  int64_t &Imm) const {
2663   unsigned Opc = ADDIMI.getOpcode();
2664 
2665   // Exit if the instruction is not ADDI.
2666   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
2667     return false;
2668 
2669   Imm = ADDIMI.getOperand(2).getImm();
2670 
2671   return true;
2672 }
2673 
2674 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
2675   unsigned Opc = ADDMI.getOpcode();
2676 
2677   // Exit if the instruction is not ADD.
2678   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
2679 }
2680 
2681 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
2682                                                 unsigned &ToBeDeletedReg,
2683                                                 unsigned &XFormOpcode,
2684                                                 int64_t &OffsetImm,
2685                                                 ImmInstrInfo &III) const {
2686   // Only handle load/store.
2687   if (!MI.mayLoadOrStore())
2688     return false;
2689 
2690   unsigned Opc = MI.getOpcode();
2691 
2692   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
2693 
2694   // Exit if instruction has no index form.
2695   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
2696     return false;
2697 
2698   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
2699   if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
2700                        III, true))
2701     return false;
2702 
2703   if (!III.IsSummingOperands)
2704     return false;
2705 
2706   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
2707   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
2708   // Only support imm operands, not relocation slots or others.
2709   if (!ImmOperand.isImm())
2710     return false;
2711 
2712   assert(RegOperand.isReg() && "Instruction format is not right");
2713 
2714   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
2715   if (!RegOperand.isKill())
2716     return false;
2717 
2718   ToBeDeletedReg = RegOperand.getReg();
2719   OffsetImm = ImmOperand.getImm();
2720 
2721   return true;
2722 }
2723 
2724 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
2725                                          MachineInstr *&ADDIMI,
2726                                          int64_t &OffsetAddi,
2727                                          int64_t OffsetImm) const {
2728   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
2729   MachineOperand &MO = ADDMI->getOperand(Index);
2730 
2731   if (!MO.isKill())
2732     return false;
2733 
2734   bool OtherIntermediateUse = false;
2735 
2736   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
2737   // Currently handle only one "add + Imminstr" pair case, exit if other
2738   // intermediate use for ToBeChangedReg found.
2739   // TODO: handle the cases where there are other "add + Imminstr" pairs
2740   // with same offset in Imminstr which is like:
2741   //
2742   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
2743   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
2744   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
2745   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
2746   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
2747   //
2748   // can be converted to:
2749   //
2750   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
2751   //                                       (OffsetAddi + OffsetImm)
2752   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
2753   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
2754 
2755   if (OtherIntermediateUse || !ADDIMI)
2756     return false;
2757   // Check if ADDI instr meets requirement.
2758   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
2759     return false;
2760 
2761   if (isInt<16>(OffsetAddi + OffsetImm))
2762     return true;
2763   return false;
2764 }
2765 
2766 // If this instruction has an immediate form and one of its operands is a
2767 // result of a load-immediate or an add-immediate, convert it to
2768 // the immediate form if the constant is in range.
2769 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2770                                           MachineInstr **KilledDef) const {
2771   MachineFunction *MF = MI.getParent()->getParent();
2772   MachineRegisterInfo *MRI = &MF->getRegInfo();
2773   bool PostRA = !MRI->isSSA();
2774   bool SeenIntermediateUse = true;
2775   unsigned ForwardingOperand = ~0U;
2776   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2777                                            SeenIntermediateUse);
2778   if (!DefMI)
2779     return false;
2780   assert(ForwardingOperand < MI.getNumOperands() &&
2781          "The forwarding operand needs to be valid at this point");
2782   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2783   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2784   Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2785   if (KilledDef && KillFwdDefMI)
2786     *KilledDef = DefMI;
2787 
2788   ImmInstrInfo III;
2789   bool IsVFReg = MI.getOperand(0).isReg()
2790                      ? isVFRegister(MI.getOperand(0).getReg())
2791                      : false;
2792   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
2793   // If this is a reg+reg instruction that has a reg+imm form,
2794   // and one of the operands is produced by an add-immediate,
2795   // try to convert it.
2796   if (HasImmForm &&
2797       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2798                                  KillFwdDefMI))
2799     return true;
2800 
2801   if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2802       !DefMI->getOperand(1).isImm())
2803     return false;
2804 
2805   int64_t Immediate = DefMI->getOperand(1).getImm();
2806   // Sign-extend to 64-bits.
2807   int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2808     (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2809 
2810   // If this is a reg+reg instruction that has a reg+imm form,
2811   // and one of the operands is produced by LI, convert it now.
2812   if (HasImmForm)
2813     return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2814 
2815   bool ReplaceWithLI = false;
2816   bool Is64BitLI = false;
2817   int64_t NewImm = 0;
2818   bool SetCR = false;
2819   unsigned Opc = MI.getOpcode();
2820   switch (Opc) {
2821   default: return false;
2822 
2823   // FIXME: Any branches conditional on such a comparison can be made
2824   // unconditional. At this time, this happens too infrequently to be worth
2825   // the implementation effort, but if that ever changes, we could convert
2826   // such a pattern here.
2827   case PPC::CMPWI:
2828   case PPC::CMPLWI:
2829   case PPC::CMPDI:
2830   case PPC::CMPLDI: {
2831     // Doing this post-RA would require dataflow analysis to reliably find uses
2832     // of the CR register set by the compare.
2833     // No need to fixup killed/dead flag since this transformation is only valid
2834     // before RA.
2835     if (PostRA)
2836       return false;
2837     // If a compare-immediate is fed by an immediate and is itself an input of
2838     // an ISEL (the most common case) into a COPY of the correct register.
2839     bool Changed = false;
2840     Register DefReg = MI.getOperand(0).getReg();
2841     int64_t Comparand = MI.getOperand(2).getImm();
2842     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2843       (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2844 
2845     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2846       unsigned UseOpc = CompareUseMI.getOpcode();
2847       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2848         continue;
2849       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2850       Register TrueReg = CompareUseMI.getOperand(1).getReg();
2851       Register FalseReg = CompareUseMI.getOperand(2).getReg();
2852       unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2853                                      FalseReg, CRSubReg);
2854       if (RegToCopy == PPC::NoRegister)
2855         continue;
2856       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2857       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2858         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2859         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2860         CompareUseMI.RemoveOperand(3);
2861         CompareUseMI.RemoveOperand(2);
2862         continue;
2863       }
2864       LLVM_DEBUG(
2865           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2866       LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2867       LLVM_DEBUG(dbgs() << "Is converted to:\n");
2868       // Convert to copy and remove unneeded operands.
2869       CompareUseMI.setDesc(get(PPC::COPY));
2870       CompareUseMI.RemoveOperand(3);
2871       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2872       CmpIselsConverted++;
2873       Changed = true;
2874       LLVM_DEBUG(CompareUseMI.dump());
2875     }
2876     if (Changed)
2877       return true;
2878     // This may end up incremented multiple times since this function is called
2879     // during a fixed-point transformation, but it is only meant to indicate the
2880     // presence of this opportunity.
2881     MissedConvertibleImmediateInstrs++;
2882     return false;
2883   }
2884 
2885   // Immediate forms - may simply be convertable to an LI.
2886   case PPC::ADDI:
2887   case PPC::ADDI8: {
2888     // Does the sum fit in a 16-bit signed field?
2889     int64_t Addend = MI.getOperand(2).getImm();
2890     if (isInt<16>(Addend + SExtImm)) {
2891       ReplaceWithLI = true;
2892       Is64BitLI = Opc == PPC::ADDI8;
2893       NewImm = Addend + SExtImm;
2894       break;
2895     }
2896     return false;
2897   }
2898   case PPC::RLDICL:
2899   case PPC::RLDICL_rec:
2900   case PPC::RLDICL_32:
2901   case PPC::RLDICL_32_64: {
2902     // Use APInt's rotate function.
2903     int64_t SH = MI.getOperand(2).getImm();
2904     int64_t MB = MI.getOperand(3).getImm();
2905     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
2906                 SExtImm, true);
2907     InVal = InVal.rotl(SH);
2908     uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
2909     InVal &= Mask;
2910     // Can't replace negative values with an LI as that will sign-extend
2911     // and not clear the left bits. If we're setting the CR bit, we will use
2912     // ANDI_rec which won't sign extend, so that's safe.
2913     if (isUInt<15>(InVal.getSExtValue()) ||
2914         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
2915       ReplaceWithLI = true;
2916       Is64BitLI = Opc != PPC::RLDICL_32;
2917       NewImm = InVal.getSExtValue();
2918       SetCR = Opc == PPC::RLDICL_rec;
2919       break;
2920     }
2921     return false;
2922   }
2923   case PPC::RLWINM:
2924   case PPC::RLWINM8:
2925   case PPC::RLWINM_rec:
2926   case PPC::RLWINM8_rec: {
2927     int64_t SH = MI.getOperand(2).getImm();
2928     int64_t MB = MI.getOperand(3).getImm();
2929     int64_t ME = MI.getOperand(4).getImm();
2930     APInt InVal(32, SExtImm, true);
2931     InVal = InVal.rotl(SH);
2932     // Set the bits (        MB + 32        ) to (        ME + 32        ).
2933     uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2934     InVal &= Mask;
2935     // Can't replace negative values with an LI as that will sign-extend
2936     // and not clear the left bits. If we're setting the CR bit, we will use
2937     // ANDI_rec which won't sign extend, so that's safe.
2938     bool ValueFits = isUInt<15>(InVal.getSExtValue());
2939     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
2940                   isUInt<16>(InVal.getSExtValue()));
2941     if (ValueFits) {
2942       ReplaceWithLI = true;
2943       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
2944       NewImm = InVal.getSExtValue();
2945       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
2946       break;
2947     }
2948     return false;
2949   }
2950   case PPC::ORI:
2951   case PPC::ORI8:
2952   case PPC::XORI:
2953   case PPC::XORI8: {
2954     int64_t LogicalImm = MI.getOperand(2).getImm();
2955     int64_t Result = 0;
2956     if (Opc == PPC::ORI || Opc == PPC::ORI8)
2957       Result = LogicalImm | SExtImm;
2958     else
2959       Result = LogicalImm ^ SExtImm;
2960     if (isInt<16>(Result)) {
2961       ReplaceWithLI = true;
2962       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2963       NewImm = Result;
2964       break;
2965     }
2966     return false;
2967   }
2968   }
2969 
2970   if (ReplaceWithLI) {
2971     // We need to be careful with CR-setting instructions we're replacing.
2972     if (SetCR) {
2973       // We don't know anything about uses when we're out of SSA, so only
2974       // replace if the new immediate will be reproduced.
2975       bool ImmChanged = (SExtImm & NewImm) != NewImm;
2976       if (PostRA && ImmChanged)
2977         return false;
2978 
2979       if (!PostRA) {
2980         // If the defining load-immediate has no other uses, we can just replace
2981         // the immediate with the new immediate.
2982         if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2983           DefMI->getOperand(1).setImm(NewImm);
2984 
2985         // If we're not using the GPR result of the CR-setting instruction, we
2986         // just need to and with zero/non-zero depending on the new immediate.
2987         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2988           if (NewImm) {
2989             assert(Immediate && "Transformation converted zero to non-zero?");
2990             NewImm = Immediate;
2991           }
2992         }
2993         else if (ImmChanged)
2994           return false;
2995       }
2996     }
2997 
2998     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2999     LLVM_DEBUG(MI.dump());
3000     LLVM_DEBUG(dbgs() << "Fed by:\n");
3001     LLVM_DEBUG(DefMI->dump());
3002     LoadImmediateInfo LII;
3003     LII.Imm = NewImm;
3004     LII.Is64Bit = Is64BitLI;
3005     LII.SetCR = SetCR;
3006     // If we're setting the CR, the original load-immediate must be kept (as an
3007     // operand to ANDI_rec/ANDI8_rec).
3008     if (KilledDef && SetCR)
3009       *KilledDef = nullptr;
3010     replaceInstrWithLI(MI, LII);
3011 
3012     // Fixup killed/dead flag after transformation.
3013     // Pattern:
3014     // ForwardingOperandReg = LI imm1
3015     // y = op2 imm2, ForwardingOperandReg(killed)
3016     if (IsForwardingOperandKilled)
3017       fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
3018 
3019     LLVM_DEBUG(dbgs() << "With:\n");
3020     LLVM_DEBUG(MI.dump());
3021     return true;
3022   }
3023   return false;
3024 }
3025 
3026 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3027                                    ImmInstrInfo &III, bool PostRA) const {
3028   // The vast majority of the instructions would need their operand 2 replaced
3029   // with an immediate when switching to the reg+imm form. A marked exception
3030   // are the update form loads/stores for which a constant operand 2 would need
3031   // to turn into a displacement and move operand 1 to the operand 2 position.
3032   III.ImmOpNo = 2;
3033   III.OpNoForForwarding = 2;
3034   III.ImmWidth = 16;
3035   III.ImmMustBeMultipleOf = 1;
3036   III.TruncateImmTo = 0;
3037   III.IsSummingOperands = false;
3038   switch (Opc) {
3039   default: return false;
3040   case PPC::ADD4:
3041   case PPC::ADD8:
3042     III.SignedImm = true;
3043     III.ZeroIsSpecialOrig = 0;
3044     III.ZeroIsSpecialNew = 1;
3045     III.IsCommutative = true;
3046     III.IsSummingOperands = true;
3047     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3048     break;
3049   case PPC::ADDC:
3050   case PPC::ADDC8:
3051     III.SignedImm = true;
3052     III.ZeroIsSpecialOrig = 0;
3053     III.ZeroIsSpecialNew = 0;
3054     III.IsCommutative = true;
3055     III.IsSummingOperands = true;
3056     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3057     break;
3058   case PPC::ADDC_rec:
3059     III.SignedImm = true;
3060     III.ZeroIsSpecialOrig = 0;
3061     III.ZeroIsSpecialNew = 0;
3062     III.IsCommutative = true;
3063     III.IsSummingOperands = true;
3064     III.ImmOpcode = PPC::ADDIC_rec;
3065     break;
3066   case PPC::SUBFC:
3067   case PPC::SUBFC8:
3068     III.SignedImm = true;
3069     III.ZeroIsSpecialOrig = 0;
3070     III.ZeroIsSpecialNew = 0;
3071     III.IsCommutative = false;
3072     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3073     break;
3074   case PPC::CMPW:
3075   case PPC::CMPD:
3076     III.SignedImm = true;
3077     III.ZeroIsSpecialOrig = 0;
3078     III.ZeroIsSpecialNew = 0;
3079     III.IsCommutative = false;
3080     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3081     break;
3082   case PPC::CMPLW:
3083   case PPC::CMPLD:
3084     III.SignedImm = false;
3085     III.ZeroIsSpecialOrig = 0;
3086     III.ZeroIsSpecialNew = 0;
3087     III.IsCommutative = false;
3088     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3089     break;
3090   case PPC::AND_rec:
3091   case PPC::AND8_rec:
3092   case PPC::OR:
3093   case PPC::OR8:
3094   case PPC::XOR:
3095   case PPC::XOR8:
3096     III.SignedImm = false;
3097     III.ZeroIsSpecialOrig = 0;
3098     III.ZeroIsSpecialNew = 0;
3099     III.IsCommutative = true;
3100     switch(Opc) {
3101     default: llvm_unreachable("Unknown opcode");
3102     case PPC::AND_rec:
3103       III.ImmOpcode = PPC::ANDI_rec;
3104       break;
3105     case PPC::AND8_rec:
3106       III.ImmOpcode = PPC::ANDI8_rec;
3107       break;
3108     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3109     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3110     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3111     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3112     }
3113     break;
3114   case PPC::RLWNM:
3115   case PPC::RLWNM8:
3116   case PPC::RLWNM_rec:
3117   case PPC::RLWNM8_rec:
3118   case PPC::SLW:
3119   case PPC::SLW8:
3120   case PPC::SLW_rec:
3121   case PPC::SLW8_rec:
3122   case PPC::SRW:
3123   case PPC::SRW8:
3124   case PPC::SRW_rec:
3125   case PPC::SRW8_rec:
3126   case PPC::SRAW:
3127   case PPC::SRAW_rec:
3128     III.SignedImm = false;
3129     III.ZeroIsSpecialOrig = 0;
3130     III.ZeroIsSpecialNew = 0;
3131     III.IsCommutative = false;
3132     // This isn't actually true, but the instructions ignore any of the
3133     // upper bits, so any immediate loaded with an LI is acceptable.
3134     // This does not apply to shift right algebraic because a value
3135     // out of range will produce a -1/0.
3136     III.ImmWidth = 16;
3137     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3138         Opc == PPC::RLWNM8_rec)
3139       III.TruncateImmTo = 5;
3140     else
3141       III.TruncateImmTo = 6;
3142     switch(Opc) {
3143     default: llvm_unreachable("Unknown opcode");
3144     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3145     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3146     case PPC::RLWNM_rec:
3147       III.ImmOpcode = PPC::RLWINM_rec;
3148       break;
3149     case PPC::RLWNM8_rec:
3150       III.ImmOpcode = PPC::RLWINM8_rec;
3151       break;
3152     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3153     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3154     case PPC::SLW_rec:
3155       III.ImmOpcode = PPC::RLWINM_rec;
3156       break;
3157     case PPC::SLW8_rec:
3158       III.ImmOpcode = PPC::RLWINM8_rec;
3159       break;
3160     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3161     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3162     case PPC::SRW_rec:
3163       III.ImmOpcode = PPC::RLWINM_rec;
3164       break;
3165     case PPC::SRW8_rec:
3166       III.ImmOpcode = PPC::RLWINM8_rec;
3167       break;
3168     case PPC::SRAW:
3169       III.ImmWidth = 5;
3170       III.TruncateImmTo = 0;
3171       III.ImmOpcode = PPC::SRAWI;
3172       break;
3173     case PPC::SRAW_rec:
3174       III.ImmWidth = 5;
3175       III.TruncateImmTo = 0;
3176       III.ImmOpcode = PPC::SRAWI_rec;
3177       break;
3178     }
3179     break;
3180   case PPC::RLDCL:
3181   case PPC::RLDCL_rec:
3182   case PPC::RLDCR:
3183   case PPC::RLDCR_rec:
3184   case PPC::SLD:
3185   case PPC::SLD_rec:
3186   case PPC::SRD:
3187   case PPC::SRD_rec:
3188   case PPC::SRAD:
3189   case PPC::SRAD_rec:
3190     III.SignedImm = false;
3191     III.ZeroIsSpecialOrig = 0;
3192     III.ZeroIsSpecialNew = 0;
3193     III.IsCommutative = false;
3194     // This isn't actually true, but the instructions ignore any of the
3195     // upper bits, so any immediate loaded with an LI is acceptable.
3196     // This does not apply to shift right algebraic because a value
3197     // out of range will produce a -1/0.
3198     III.ImmWidth = 16;
3199     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
3200         Opc == PPC::RLDCR_rec)
3201       III.TruncateImmTo = 6;
3202     else
3203       III.TruncateImmTo = 7;
3204     switch(Opc) {
3205     default: llvm_unreachable("Unknown opcode");
3206     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
3207     case PPC::RLDCL_rec:
3208       III.ImmOpcode = PPC::RLDICL_rec;
3209       break;
3210     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
3211     case PPC::RLDCR_rec:
3212       III.ImmOpcode = PPC::RLDICR_rec;
3213       break;
3214     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
3215     case PPC::SLD_rec:
3216       III.ImmOpcode = PPC::RLDICR_rec;
3217       break;
3218     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
3219     case PPC::SRD_rec:
3220       III.ImmOpcode = PPC::RLDICL_rec;
3221       break;
3222     case PPC::SRAD:
3223       III.ImmWidth = 6;
3224       III.TruncateImmTo = 0;
3225       III.ImmOpcode = PPC::SRADI;
3226        break;
3227     case PPC::SRAD_rec:
3228       III.ImmWidth = 6;
3229       III.TruncateImmTo = 0;
3230       III.ImmOpcode = PPC::SRADI_rec;
3231       break;
3232     }
3233     break;
3234   // Loads and stores:
3235   case PPC::LBZX:
3236   case PPC::LBZX8:
3237   case PPC::LHZX:
3238   case PPC::LHZX8:
3239   case PPC::LHAX:
3240   case PPC::LHAX8:
3241   case PPC::LWZX:
3242   case PPC::LWZX8:
3243   case PPC::LWAX:
3244   case PPC::LDX:
3245   case PPC::LFSX:
3246   case PPC::LFDX:
3247   case PPC::STBX:
3248   case PPC::STBX8:
3249   case PPC::STHX:
3250   case PPC::STHX8:
3251   case PPC::STWX:
3252   case PPC::STWX8:
3253   case PPC::STDX:
3254   case PPC::STFSX:
3255   case PPC::STFDX:
3256     III.SignedImm = true;
3257     III.ZeroIsSpecialOrig = 1;
3258     III.ZeroIsSpecialNew = 2;
3259     III.IsCommutative = true;
3260     III.IsSummingOperands = true;
3261     III.ImmOpNo = 1;
3262     III.OpNoForForwarding = 2;
3263     switch(Opc) {
3264     default: llvm_unreachable("Unknown opcode");
3265     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3266     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3267     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3268     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3269     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3270     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3271     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3272     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3273     case PPC::LWAX:
3274       III.ImmOpcode = PPC::LWA;
3275       III.ImmMustBeMultipleOf = 4;
3276       break;
3277     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3278     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3279     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3280     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3281     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3282     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3283     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3284     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3285     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3286     case PPC::STDX:
3287       III.ImmOpcode = PPC::STD;
3288       III.ImmMustBeMultipleOf = 4;
3289       break;
3290     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3291     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3292     }
3293     break;
3294   case PPC::LBZUX:
3295   case PPC::LBZUX8:
3296   case PPC::LHZUX:
3297   case PPC::LHZUX8:
3298   case PPC::LHAUX:
3299   case PPC::LHAUX8:
3300   case PPC::LWZUX:
3301   case PPC::LWZUX8:
3302   case PPC::LDUX:
3303   case PPC::LFSUX:
3304   case PPC::LFDUX:
3305   case PPC::STBUX:
3306   case PPC::STBUX8:
3307   case PPC::STHUX:
3308   case PPC::STHUX8:
3309   case PPC::STWUX:
3310   case PPC::STWUX8:
3311   case PPC::STDUX:
3312   case PPC::STFSUX:
3313   case PPC::STFDUX:
3314     III.SignedImm = true;
3315     III.ZeroIsSpecialOrig = 2;
3316     III.ZeroIsSpecialNew = 3;
3317     III.IsCommutative = false;
3318     III.IsSummingOperands = true;
3319     III.ImmOpNo = 2;
3320     III.OpNoForForwarding = 3;
3321     switch(Opc) {
3322     default: llvm_unreachable("Unknown opcode");
3323     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3324     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3325     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3326     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3327     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3328     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3329     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3330     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3331     case PPC::LDUX:
3332       III.ImmOpcode = PPC::LDU;
3333       III.ImmMustBeMultipleOf = 4;
3334       break;
3335     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3336     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3337     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3338     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3339     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3340     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3341     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3342     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3343     case PPC::STDUX:
3344       III.ImmOpcode = PPC::STDU;
3345       III.ImmMustBeMultipleOf = 4;
3346       break;
3347     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3348     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3349     }
3350     break;
3351   // Power9 and up only. For some of these, the X-Form version has access to all
3352   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3353   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3354   // into or stored from is one of the VR registers.
3355   case PPC::LXVX:
3356   case PPC::LXSSPX:
3357   case PPC::LXSDX:
3358   case PPC::STXVX:
3359   case PPC::STXSSPX:
3360   case PPC::STXSDX:
3361   case PPC::XFLOADf32:
3362   case PPC::XFLOADf64:
3363   case PPC::XFSTOREf32:
3364   case PPC::XFSTOREf64:
3365     if (!Subtarget.hasP9Vector())
3366       return false;
3367     III.SignedImm = true;
3368     III.ZeroIsSpecialOrig = 1;
3369     III.ZeroIsSpecialNew = 2;
3370     III.IsCommutative = true;
3371     III.IsSummingOperands = true;
3372     III.ImmOpNo = 1;
3373     III.OpNoForForwarding = 2;
3374     III.ImmMustBeMultipleOf = 4;
3375     switch(Opc) {
3376     default: llvm_unreachable("Unknown opcode");
3377     case PPC::LXVX:
3378       III.ImmOpcode = PPC::LXV;
3379       III.ImmMustBeMultipleOf = 16;
3380       break;
3381     case PPC::LXSSPX:
3382       if (PostRA) {
3383         if (IsVFReg)
3384           III.ImmOpcode = PPC::LXSSP;
3385         else {
3386           III.ImmOpcode = PPC::LFS;
3387           III.ImmMustBeMultipleOf = 1;
3388         }
3389         break;
3390       }
3391       LLVM_FALLTHROUGH;
3392     case PPC::XFLOADf32:
3393       III.ImmOpcode = PPC::DFLOADf32;
3394       break;
3395     case PPC::LXSDX:
3396       if (PostRA) {
3397         if (IsVFReg)
3398           III.ImmOpcode = PPC::LXSD;
3399         else {
3400           III.ImmOpcode = PPC::LFD;
3401           III.ImmMustBeMultipleOf = 1;
3402         }
3403         break;
3404       }
3405       LLVM_FALLTHROUGH;
3406     case PPC::XFLOADf64:
3407       III.ImmOpcode = PPC::DFLOADf64;
3408       break;
3409     case PPC::STXVX:
3410       III.ImmOpcode = PPC::STXV;
3411       III.ImmMustBeMultipleOf = 16;
3412       break;
3413     case PPC::STXSSPX:
3414       if (PostRA) {
3415         if (IsVFReg)
3416           III.ImmOpcode = PPC::STXSSP;
3417         else {
3418           III.ImmOpcode = PPC::STFS;
3419           III.ImmMustBeMultipleOf = 1;
3420         }
3421         break;
3422       }
3423       LLVM_FALLTHROUGH;
3424     case PPC::XFSTOREf32:
3425       III.ImmOpcode = PPC::DFSTOREf32;
3426       break;
3427     case PPC::STXSDX:
3428       if (PostRA) {
3429         if (IsVFReg)
3430           III.ImmOpcode = PPC::STXSD;
3431         else {
3432           III.ImmOpcode = PPC::STFD;
3433           III.ImmMustBeMultipleOf = 1;
3434         }
3435         break;
3436       }
3437       LLVM_FALLTHROUGH;
3438     case PPC::XFSTOREf64:
3439       III.ImmOpcode = PPC::DFSTOREf64;
3440       break;
3441     }
3442     break;
3443   }
3444   return true;
3445 }
3446 
3447 // Utility function for swaping two arbitrary operands of an instruction.
3448 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3449   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3450 
3451   unsigned MaxOp = std::max(Op1, Op2);
3452   unsigned MinOp = std::min(Op1, Op2);
3453   MachineOperand MOp1 = MI.getOperand(MinOp);
3454   MachineOperand MOp2 = MI.getOperand(MaxOp);
3455   MI.RemoveOperand(std::max(Op1, Op2));
3456   MI.RemoveOperand(std::min(Op1, Op2));
3457 
3458   // If the operands we are swapping are the two at the end (the common case)
3459   // we can just remove both and add them in the opposite order.
3460   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3461     MI.addOperand(MOp2);
3462     MI.addOperand(MOp1);
3463   } else {
3464     // Store all operands in a temporary vector, remove them and re-add in the
3465     // right order.
3466     SmallVector<MachineOperand, 2> MOps;
3467     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3468     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3469       MOps.push_back(MI.getOperand(i));
3470       MI.RemoveOperand(i);
3471     }
3472     // MOp2 needs to be added next.
3473     MI.addOperand(MOp2);
3474     // Now add the rest.
3475     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3476       if (i == MaxOp)
3477         MI.addOperand(MOp1);
3478       else {
3479         MI.addOperand(MOps.back());
3480         MOps.pop_back();
3481       }
3482     }
3483   }
3484 }
3485 
3486 // Check if the 'MI' that has the index OpNoForForwarding
3487 // meets the requirement described in the ImmInstrInfo.
3488 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3489                                                const ImmInstrInfo &III,
3490                                                unsigned OpNoForForwarding
3491                                                ) const {
3492   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3493   // would not work pre-RA, we can only do the check post RA.
3494   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3495   if (MRI.isSSA())
3496     return false;
3497 
3498   // Cannot do the transform if MI isn't summing the operands.
3499   if (!III.IsSummingOperands)
3500     return false;
3501 
3502   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3503   if (!III.ZeroIsSpecialOrig)
3504     return false;
3505 
3506   // We cannot do the transform if the operand we are trying to replace
3507   // isn't the same as the operand the instruction allows.
3508   if (OpNoForForwarding != III.OpNoForForwarding)
3509     return false;
3510 
3511   // Check if the instruction we are trying to transform really has
3512   // the special zero register as its operand.
3513   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3514       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3515     return false;
3516 
3517   // This machine instruction is convertible if it is,
3518   // 1. summing the operands.
3519   // 2. one of the operands is special zero register.
3520   // 3. the operand we are trying to replace is allowed by the MI.
3521   return true;
3522 }
3523 
3524 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3525 // accordingly.
3526 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3527                                                const ImmInstrInfo &III,
3528                                                MachineOperand *&ImmMO,
3529                                                MachineOperand *&RegMO) const {
3530   unsigned Opc = DefMI.getOpcode();
3531   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3532     return false;
3533 
3534   assert(DefMI.getNumOperands() >= 3 &&
3535          "Add inst must have at least three operands");
3536   RegMO = &DefMI.getOperand(1);
3537   ImmMO = &DefMI.getOperand(2);
3538 
3539   // This DefMI is elgible for forwarding if it is:
3540   // 1. add inst
3541   // 2. one of the operands is Imm/CPI/Global.
3542   return isAnImmediateOperand(*ImmMO);
3543 }
3544 
3545 bool PPCInstrInfo::isRegElgibleForForwarding(
3546     const MachineOperand &RegMO, const MachineInstr &DefMI,
3547     const MachineInstr &MI, bool KillDefMI,
3548     bool &IsFwdFeederRegKilled) const {
3549   // x = addi y, imm
3550   // ...
3551   // z = lfdx 0, x   -> z = lfd imm(y)
3552   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3553   // of "y" between the DEF of "x" and "z".
3554   // The query is only valid post RA.
3555   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3556   if (MRI.isSSA())
3557     return false;
3558 
3559   Register Reg = RegMO.getReg();
3560 
3561   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3562   MachineBasicBlock::const_reverse_iterator It = MI;
3563   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3564   It++;
3565   for (; It != E; ++It) {
3566     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3567       return false;
3568     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3569       IsFwdFeederRegKilled = true;
3570     // Made it to DefMI without encountering a clobber.
3571     if ((&*It) == &DefMI)
3572       break;
3573   }
3574   assert((&*It) == &DefMI && "DefMI is missing");
3575 
3576   // If DefMI also defines the register to be forwarded, we can only forward it
3577   // if DefMI is being erased.
3578   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3579     return KillDefMI;
3580 
3581   return true;
3582 }
3583 
3584 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3585                                              const MachineInstr &DefMI,
3586                                              const ImmInstrInfo &III,
3587                                              int64_t &Imm) const {
3588   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3589   if (DefMI.getOpcode() == PPC::ADDItocL) {
3590     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3591     // However, we know that, it is 16-bit width, and has the alignment of 4.
3592     // Check if the instruction met the requirement.
3593     if (III.ImmMustBeMultipleOf > 4 ||
3594        III.TruncateImmTo || III.ImmWidth != 16)
3595       return false;
3596 
3597     // Going from XForm to DForm loads means that the displacement needs to be
3598     // not just an immediate but also a multiple of 4, or 16 depending on the
3599     // load. A DForm load cannot be represented if it is a multiple of say 2.
3600     // XForm loads do not have this restriction.
3601     if (ImmMO.isGlobal() &&
3602         ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3603       return false;
3604 
3605     return true;
3606   }
3607 
3608   if (ImmMO.isImm()) {
3609     // It is Imm, we need to check if the Imm fit the range.
3610     int64_t Immediate = ImmMO.getImm();
3611     // Sign-extend to 64-bits.
3612     Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3613       (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3614 
3615     if (Imm % III.ImmMustBeMultipleOf)
3616       return false;
3617     if (III.TruncateImmTo)
3618       Imm &= ((1 << III.TruncateImmTo) - 1);
3619     if (III.SignedImm) {
3620       APInt ActualValue(64, Imm, true);
3621       if (!ActualValue.isSignedIntN(III.ImmWidth))
3622         return false;
3623     } else {
3624       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3625       if ((uint64_t)Imm > UnsignedMax)
3626         return false;
3627     }
3628   }
3629   else
3630     return false;
3631 
3632   // This ImmMO is forwarded if it meets the requriement describle
3633   // in ImmInstrInfo
3634   return true;
3635 }
3636 
3637 // If an X-Form instruction is fed by an add-immediate and one of its operands
3638 // is the literal zero, attempt to forward the source of the add-immediate to
3639 // the corresponding D-Form instruction with the displacement coming from
3640 // the immediate being added.
3641 bool PPCInstrInfo::transformToImmFormFedByAdd(
3642     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3643     MachineInstr &DefMI, bool KillDefMI) const {
3644   //         RegMO ImmMO
3645   //           |    |
3646   // x = addi reg, imm  <----- DefMI
3647   // y = op    0 ,  x   <----- MI
3648   //                |
3649   //         OpNoForForwarding
3650   // Check if the MI meet the requirement described in the III.
3651   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3652     return false;
3653 
3654   // Check if the DefMI meet the requirement
3655   // described in the III. If yes, set the ImmMO and RegMO accordingly.
3656   MachineOperand *ImmMO = nullptr;
3657   MachineOperand *RegMO = nullptr;
3658   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3659     return false;
3660   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3661 
3662   // As we get the Imm operand now, we need to check if the ImmMO meet
3663   // the requirement described in the III. If yes set the Imm.
3664   int64_t Imm = 0;
3665   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3666     return false;
3667 
3668   bool IsFwdFeederRegKilled = false;
3669   // Check if the RegMO can be forwarded to MI.
3670   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3671                                  IsFwdFeederRegKilled))
3672     return false;
3673 
3674   // Get killed info in case fixup needed after transformation.
3675   unsigned ForwardKilledOperandReg = ~0U;
3676   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3677   bool PostRA = !MRI.isSSA();
3678   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3679     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3680 
3681   // We know that, the MI and DefMI both meet the pattern, and
3682   // the Imm also meet the requirement with the new Imm-form.
3683   // It is safe to do the transformation now.
3684   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3685   LLVM_DEBUG(MI.dump());
3686   LLVM_DEBUG(dbgs() << "Fed by:\n");
3687   LLVM_DEBUG(DefMI.dump());
3688 
3689   // Update the base reg first.
3690   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3691                                                         false, false,
3692                                                         RegMO->isKill());
3693 
3694   // Then, update the imm.
3695   if (ImmMO->isImm()) {
3696     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3697     // directly.
3698     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3699   }
3700   else {
3701     // Otherwise, it is Constant Pool Index(CPI) or Global,
3702     // which is relocation in fact. We need to replace the special zero
3703     // register with ImmMO.
3704     // Before that, we need to fixup the target flags for imm.
3705     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3706     if (DefMI.getOpcode() == PPC::ADDItocL)
3707       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3708 
3709     // MI didn't have the interface such as MI.setOperand(i) though
3710     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3711     // ImmMO, we need to remove ZERO operand and all the operands behind it,
3712     // and, add the ImmMO, then, move back all the operands behind ZERO.
3713     SmallVector<MachineOperand, 2> MOps;
3714     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3715       MOps.push_back(MI.getOperand(i));
3716       MI.RemoveOperand(i);
3717     }
3718 
3719     // Remove the last MO in the list, which is ZERO operand in fact.
3720     MOps.pop_back();
3721     // Add the imm operand.
3722     MI.addOperand(*ImmMO);
3723     // Now add the rest back.
3724     for (auto &MO : MOps)
3725       MI.addOperand(MO);
3726   }
3727 
3728   // Update the opcode.
3729   MI.setDesc(get(III.ImmOpcode));
3730 
3731   // Fix up killed/dead flag after transformation.
3732   // Pattern 1:
3733   // x = ADD KilledFwdFeederReg, imm
3734   // n = opn KilledFwdFeederReg(killed), regn
3735   // y = XOP 0, x
3736   // Pattern 2:
3737   // x = ADD reg(killed), imm
3738   // y = XOP 0, x
3739   if (IsFwdFeederRegKilled || RegMO->isKill())
3740     fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3741   // Pattern 3:
3742   // ForwardKilledOperandReg = ADD reg, imm
3743   // y = XOP 0, ForwardKilledOperandReg(killed)
3744   if (ForwardKilledOperandReg != ~0U)
3745     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3746 
3747   LLVM_DEBUG(dbgs() << "With:\n");
3748   LLVM_DEBUG(MI.dump());
3749 
3750   return true;
3751 }
3752 
3753 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3754                                              const ImmInstrInfo &III,
3755                                              unsigned ConstantOpNo,
3756                                              MachineInstr &DefMI,
3757                                              int64_t Imm) const {
3758   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3759   bool PostRA = !MRI.isSSA();
3760   // Exit early if we can't convert this.
3761   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3762     return false;
3763   if (Imm % III.ImmMustBeMultipleOf)
3764     return false;
3765   if (III.TruncateImmTo)
3766     Imm &= ((1 << III.TruncateImmTo) - 1);
3767   if (III.SignedImm) {
3768     APInt ActualValue(64, Imm, true);
3769     if (!ActualValue.isSignedIntN(III.ImmWidth))
3770       return false;
3771   } else {
3772     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3773     if ((uint64_t)Imm > UnsignedMax)
3774       return false;
3775   }
3776 
3777   // If we're post-RA, the instructions don't agree on whether register zero is
3778   // special, we can transform this as long as the register operand that will
3779   // end up in the location where zero is special isn't R0.
3780   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3781     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3782       III.ZeroIsSpecialNew + 1;
3783     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3784     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3785     // If R0 is in the operand where zero is special for the new instruction,
3786     // it is unsafe to transform if the constant operand isn't that operand.
3787     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3788         ConstantOpNo != III.ZeroIsSpecialNew)
3789       return false;
3790     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3791         ConstantOpNo != PosForOrigZero)
3792       return false;
3793   }
3794 
3795   // Get killed info in case fixup needed after transformation.
3796   unsigned ForwardKilledOperandReg = ~0U;
3797   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3798     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3799 
3800   unsigned Opc = MI.getOpcode();
3801   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
3802                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
3803                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
3804                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
3805   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
3806                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
3807   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
3808                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
3809   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
3810                     Opc == PPC::SRD_rec;
3811 
3812   MI.setDesc(get(III.ImmOpcode));
3813   if (ConstantOpNo == III.OpNoForForwarding) {
3814     // Converting shifts to immediate form is a bit tricky since they may do
3815     // one of three things:
3816     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3817     // 2. If the shift amount is zero, the result is unchanged (save for maybe
3818     //    setting CR0)
3819     // 3. If the shift amount is in [1, OpSize), it's just a shift
3820     if (SpecialShift32 || SpecialShift64) {
3821       LoadImmediateInfo LII;
3822       LII.Imm = 0;
3823       LII.SetCR = SetCR;
3824       LII.Is64Bit = SpecialShift64;
3825       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3826       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3827         replaceInstrWithLI(MI, LII);
3828       // Shifts by zero don't change the value. If we don't need to set CR0,
3829       // just convert this to a COPY. Can't do this post-RA since we've already
3830       // cleaned up the copies.
3831       else if (!SetCR && ShAmt == 0 && !PostRA) {
3832         MI.RemoveOperand(2);
3833         MI.setDesc(get(PPC::COPY));
3834       } else {
3835         // The 32 bit and 64 bit instructions are quite different.
3836         if (SpecialShift32) {
3837           // Left shifts use (N, 0, 31-N).
3838           // Right shifts use (32-N, N, 31) if 0 < N < 32.
3839           //              use (0, 0, 31)    if N == 0.
3840           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
3841           uint64_t MB = RightShift ? ShAmt : 0;
3842           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3843           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3844           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3845             .addImm(ME);
3846         } else {
3847           // Left shifts use (N, 63-N).
3848           // Right shifts use (64-N, N) if 0 < N < 64.
3849           //              use (0, 0)    if N == 0.
3850           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
3851           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3852           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3853           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3854         }
3855       }
3856     } else
3857       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3858   }
3859   // Convert commutative instructions (switch the operands and convert the
3860   // desired one to an immediate.
3861   else if (III.IsCommutative) {
3862     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3863     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3864   } else
3865     llvm_unreachable("Should have exited early!");
3866 
3867   // For instructions for which the constant register replaces a different
3868   // operand than where the immediate goes, we need to swap them.
3869   if (III.OpNoForForwarding != III.ImmOpNo)
3870     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3871 
3872   // If the special R0/X0 register index are different for original instruction
3873   // and new instruction, we need to fix up the register class in new
3874   // instruction.
3875   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3876     if (III.ZeroIsSpecialNew) {
3877       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3878       // need to fix up register class.
3879       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3880       if (Register::isVirtualRegister(RegToModify)) {
3881         const TargetRegisterClass *NewRC =
3882           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3883           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3884         MRI.setRegClass(RegToModify, NewRC);
3885       }
3886     }
3887   }
3888 
3889   // Fix up killed/dead flag after transformation.
3890   // Pattern:
3891   // ForwardKilledOperandReg = LI imm
3892   // y = XOP reg, ForwardKilledOperandReg(killed)
3893   if (ForwardKilledOperandReg != ~0U)
3894     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3895   return true;
3896 }
3897 
3898 const TargetRegisterClass *
3899 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3900   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3901     return &PPC::VSRCRegClass;
3902   return RC;
3903 }
3904 
3905 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3906   return PPC::getRecordFormOpcode(Opcode);
3907 }
3908 
3909 // This function returns true if the machine instruction
3910 // always outputs a value by sign-extending a 32 bit value,
3911 // i.e. 0 to 31-th bits are same as 32-th bit.
3912 static bool isSignExtendingOp(const MachineInstr &MI) {
3913   int Opcode = MI.getOpcode();
3914   if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
3915       Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
3916       Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
3917       Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3918       Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
3919       Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3920       Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
3921       Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3922       Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
3923       Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3924       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
3925       Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
3926       Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
3927       Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
3928       Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
3929       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3930       Opcode == PPC::EXTSB8_32_64)
3931     return true;
3932 
3933   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3934     return true;
3935 
3936   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
3937        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
3938       MI.getOperand(3).getImm() > 0 &&
3939       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3940     return true;
3941 
3942   return false;
3943 }
3944 
3945 // This function returns true if the machine instruction
3946 // always outputs zeros in higher 32 bits.
3947 static bool isZeroExtendingOp(const MachineInstr &MI) {
3948   int Opcode = MI.getOpcode();
3949   // The 16-bit immediate is sign-extended in li/lis.
3950   // If the most significant bit is zero, all higher bits are zero.
3951   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
3952       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3953     int64_t Imm = MI.getOperand(1).getImm();
3954     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3955       return true;
3956   }
3957 
3958   // We have some variations of rotate-and-mask instructions
3959   // that clear higher 32-bits.
3960   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
3961        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
3962        Opcode == PPC::RLDICL_32_64) &&
3963       MI.getOperand(3).getImm() >= 32)
3964     return true;
3965 
3966   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
3967       MI.getOperand(3).getImm() >= 32 &&
3968       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3969     return true;
3970 
3971   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
3972        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
3973        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3974       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3975     return true;
3976 
3977   // There are other instructions that clear higher 32-bits.
3978   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
3979       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
3980       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3981       Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
3982       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
3983       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
3984       Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
3985       Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
3986       Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
3987       Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
3988       Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
3989       Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3990       Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
3991       Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3992       Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
3993       Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
3994       Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
3995       Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3996       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3997       Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
3998       Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
3999       Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
4000       Opcode == PPC::MFVSRWZ)
4001     return true;
4002 
4003   return false;
4004 }
4005 
4006 // This function returns true if the input MachineInstr is a TOC save
4007 // instruction.
4008 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
4009   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
4010     return false;
4011   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4012   unsigned StackOffset = MI.getOperand(1).getImm();
4013   Register StackReg = MI.getOperand(2).getReg();
4014   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
4015     return true;
4016 
4017   return false;
4018 }
4019 
4020 // We limit the max depth to track incoming values of PHIs or binary ops
4021 // (e.g. AND) to avoid excessive cost.
4022 const unsigned MAX_DEPTH = 1;
4023 
4024 bool
4025 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
4026                                    const unsigned Depth) const {
4027   const MachineFunction *MF = MI.getParent()->getParent();
4028   const MachineRegisterInfo *MRI = &MF->getRegInfo();
4029 
4030   // If we know this instruction returns sign- or zero-extended result,
4031   // return true.
4032   if (SignExt ? isSignExtendingOp(MI):
4033                 isZeroExtendingOp(MI))
4034     return true;
4035 
4036   switch (MI.getOpcode()) {
4037   case PPC::COPY: {
4038     Register SrcReg = MI.getOperand(1).getReg();
4039 
4040     // In both ELFv1 and v2 ABI, method parameters and the return value
4041     // are sign- or zero-extended.
4042     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
4043       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
4044       // We check the ZExt/SExt flags for a method parameter.
4045       if (MI.getParent()->getBasicBlock() ==
4046           &MF->getFunction().getEntryBlock()) {
4047         Register VReg = MI.getOperand(0).getReg();
4048         if (MF->getRegInfo().isLiveIn(VReg))
4049           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
4050                            FuncInfo->isLiveInZExt(VReg);
4051       }
4052 
4053       // For a method return value, we check the ZExt/SExt flags in attribute.
4054       // We assume the following code sequence for method call.
4055       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
4056       //   BL8_NOP @func,...
4057       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
4058       //   %5 = COPY %x3; G8RC:%5
4059       if (SrcReg == PPC::X3) {
4060         const MachineBasicBlock *MBB = MI.getParent();
4061         MachineBasicBlock::const_instr_iterator II =
4062           MachineBasicBlock::const_instr_iterator(&MI);
4063         if (II != MBB->instr_begin() &&
4064             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
4065           const MachineInstr &CallMI = *(--II);
4066           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
4067             const Function *CalleeFn =
4068               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
4069             if (!CalleeFn)
4070               return false;
4071             const IntegerType *IntTy =
4072               dyn_cast<IntegerType>(CalleeFn->getReturnType());
4073             const AttributeSet &Attrs =
4074               CalleeFn->getAttributes().getRetAttributes();
4075             if (IntTy && IntTy->getBitWidth() <= 32)
4076               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
4077                                                   Attribute::ZExt);
4078           }
4079         }
4080       }
4081     }
4082 
4083     // If this is a copy from another register, we recursively check source.
4084     if (!Register::isVirtualRegister(SrcReg))
4085       return false;
4086     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4087     if (SrcMI != NULL)
4088       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4089 
4090     return false;
4091   }
4092 
4093   case PPC::ANDI_rec:
4094   case PPC::ANDIS_rec:
4095   case PPC::ORI:
4096   case PPC::ORIS:
4097   case PPC::XORI:
4098   case PPC::XORIS:
4099   case PPC::ANDI8_rec:
4100   case PPC::ANDIS8_rec:
4101   case PPC::ORI8:
4102   case PPC::ORIS8:
4103   case PPC::XORI8:
4104   case PPC::XORIS8: {
4105     // logical operation with 16-bit immediate does not change the upper bits.
4106     // So, we track the operand register as we do for register copy.
4107     Register SrcReg = MI.getOperand(1).getReg();
4108     if (!Register::isVirtualRegister(SrcReg))
4109       return false;
4110     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4111     if (SrcMI != NULL)
4112       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4113 
4114     return false;
4115   }
4116 
4117   // If all incoming values are sign-/zero-extended,
4118   // the output of OR, ISEL or PHI is also sign-/zero-extended.
4119   case PPC::OR:
4120   case PPC::OR8:
4121   case PPC::ISEL:
4122   case PPC::PHI: {
4123     if (Depth >= MAX_DEPTH)
4124       return false;
4125 
4126     // The input registers for PHI are operand 1, 3, ...
4127     // The input registers for others are operand 1 and 2.
4128     unsigned E = 3, D = 1;
4129     if (MI.getOpcode() == PPC::PHI) {
4130       E = MI.getNumOperands();
4131       D = 2;
4132     }
4133 
4134     for (unsigned I = 1; I != E; I += D) {
4135       if (MI.getOperand(I).isReg()) {
4136         Register SrcReg = MI.getOperand(I).getReg();
4137         if (!Register::isVirtualRegister(SrcReg))
4138           return false;
4139         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4140         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
4141           return false;
4142       }
4143       else
4144         return false;
4145     }
4146     return true;
4147   }
4148 
4149   // If at least one of the incoming values of an AND is zero extended
4150   // then the output is also zero-extended. If both of the incoming values
4151   // are sign-extended then the output is also sign extended.
4152   case PPC::AND:
4153   case PPC::AND8: {
4154     if (Depth >= MAX_DEPTH)
4155        return false;
4156 
4157     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
4158 
4159     Register SrcReg1 = MI.getOperand(1).getReg();
4160     Register SrcReg2 = MI.getOperand(2).getReg();
4161 
4162     if (!Register::isVirtualRegister(SrcReg1) ||
4163         !Register::isVirtualRegister(SrcReg2))
4164       return false;
4165 
4166     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
4167     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
4168     if (!MISrc1 || !MISrc2)
4169         return false;
4170 
4171     if(SignExt)
4172         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
4173                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4174     else
4175         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
4176                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4177   }
4178 
4179   default:
4180     break;
4181   }
4182   return false;
4183 }
4184 
4185 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
4186   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
4187 }
4188 
4189 namespace {
4190 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
4191   MachineInstr *Loop, *EndLoop, *LoopCount;
4192   MachineFunction *MF;
4193   const TargetInstrInfo *TII;
4194   int64_t TripCount;
4195 
4196 public:
4197   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
4198                        MachineInstr *LoopCount)
4199       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
4200         MF(Loop->getParent()->getParent()),
4201         TII(MF->getSubtarget().getInstrInfo()) {
4202     // Inspect the Loop instruction up-front, as it may be deleted when we call
4203     // createTripCountGreaterCondition.
4204     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
4205       TripCount = LoopCount->getOperand(1).getImm();
4206     else
4207       TripCount = -1;
4208   }
4209 
4210   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
4211     // Only ignore the terminator.
4212     return MI == EndLoop;
4213   }
4214 
4215   Optional<bool>
4216   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
4217                                   SmallVectorImpl<MachineOperand> &Cond) override {
4218     if (TripCount == -1) {
4219       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4220       // so we don't need to generate any thing here.
4221       Cond.push_back(MachineOperand::CreateImm(0));
4222       Cond.push_back(MachineOperand::CreateReg(
4223           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
4224           true));
4225       return {};
4226     }
4227 
4228     return TripCount > TC;
4229   }
4230 
4231   void setPreheader(MachineBasicBlock *NewPreheader) override {
4232     // Do nothing. We want the LOOP setup instruction to stay in the *old*
4233     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
4234   }
4235 
4236   void adjustTripCount(int TripCountAdjust) override {
4237     // If the loop trip count is a compile-time value, then just change the
4238     // value.
4239     if (LoopCount->getOpcode() == PPC::LI8 ||
4240         LoopCount->getOpcode() == PPC::LI) {
4241       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
4242       LoopCount->getOperand(1).setImm(TripCount);
4243       return;
4244     }
4245 
4246     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4247     // so we don't need to generate any thing here.
4248   }
4249 
4250   void disposed() override {
4251     Loop->eraseFromParent();
4252     // Ensure the loop setup instruction is deleted too.
4253     LoopCount->eraseFromParent();
4254   }
4255 };
4256 } // namespace
4257 
4258 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4259 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
4260   // We really "analyze" only hardware loops right now.
4261   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
4262   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
4263   if (Preheader == LoopBB)
4264     Preheader = *std::next(LoopBB->pred_begin());
4265   MachineFunction *MF = Preheader->getParent();
4266 
4267   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
4268     SmallPtrSet<MachineBasicBlock *, 8> Visited;
4269     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
4270       Register LoopCountReg = LoopInst->getOperand(0).getReg();
4271       MachineRegisterInfo &MRI = MF->getRegInfo();
4272       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
4273       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
4274     }
4275   }
4276   return nullptr;
4277 }
4278 
4279 MachineInstr *PPCInstrInfo::findLoopInstr(
4280     MachineBasicBlock &PreHeader,
4281     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
4282 
4283   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
4284 
4285   // The loop set-up instruction should be in preheader
4286   for (auto &I : PreHeader.instrs())
4287     if (I.getOpcode() == LOOPi)
4288       return &I;
4289   return nullptr;
4290 }
4291 
4292 // Return true if get the base operand, byte offset of an instruction and the
4293 // memory width. Width is the size of memory that is being loaded/stored.
4294 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4295     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
4296     unsigned &Width, const TargetRegisterInfo *TRI) const {
4297   if (!LdSt.mayLoadOrStore())
4298     return false;
4299 
4300   // Handle only loads/stores with base register followed by immediate offset.
4301   if (LdSt.getNumExplicitOperands() != 3)
4302     return false;
4303   if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg())
4304     return false;
4305 
4306   if (!LdSt.hasOneMemOperand())
4307     return false;
4308 
4309   Width = (*LdSt.memoperands_begin())->getSize();
4310   Offset = LdSt.getOperand(1).getImm();
4311   BaseReg = &LdSt.getOperand(2);
4312   return true;
4313 }
4314 
4315 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4316     const MachineInstr &MIa, const MachineInstr &MIb) const {
4317   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4318   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4319 
4320   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4321       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4322     return false;
4323 
4324   // Retrieve the base register, offset from the base register and width. Width
4325   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
4326   // base registers are identical, and the offset of a lower memory access +
4327   // the width doesn't overlap the offset of a higher memory access,
4328   // then the memory accesses are different.
4329   const TargetRegisterInfo *TRI = &getRegisterInfo();
4330   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4331   int64_t OffsetA = 0, OffsetB = 0;
4332   unsigned int WidthA = 0, WidthB = 0;
4333   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4334       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4335     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4336       int LowOffset = std::min(OffsetA, OffsetB);
4337       int HighOffset = std::max(OffsetA, OffsetB);
4338       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4339       if (LowOffset + LowWidth <= HighOffset)
4340         return true;
4341     }
4342   }
4343   return false;
4344 }
4345