1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Pin the vtable to this file. 76 void PPCInstrInfo::anchor() {} 77 78 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 79 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 80 /* CatchRetOpcode */ -1, 81 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 82 Subtarget(STI), RI(STI.getTargetMachine()) {} 83 84 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 85 /// this target when scheduling the DAG. 86 ScheduleHazardRecognizer * 87 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 88 const ScheduleDAG *DAG) const { 89 unsigned Directive = 90 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 91 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 92 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 93 const InstrItineraryData *II = 94 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 95 return new ScoreboardHazardRecognizer(II, DAG); 96 } 97 98 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 99 } 100 101 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 102 /// to use for this target when scheduling the DAG. 103 ScheduleHazardRecognizer * 104 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 105 const ScheduleDAG *DAG) const { 106 unsigned Directive = 107 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 108 109 // FIXME: Leaving this as-is until we have POWER9 scheduling info 110 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 111 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 112 113 // Most subtargets use a PPC970 recognizer. 114 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 115 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 116 assert(DAG->TII && "No InstrInfo?"); 117 118 return new PPCHazardRecognizer970(*DAG); 119 } 120 121 return new ScoreboardHazardRecognizer(II, DAG); 122 } 123 124 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 125 const MachineInstr &MI, 126 unsigned *PredCost) const { 127 if (!ItinData || UseOldLatencyCalc) 128 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 129 130 // The default implementation of getInstrLatency calls getStageLatency, but 131 // getStageLatency does not do the right thing for us. While we have 132 // itinerary, most cores are fully pipelined, and so the itineraries only 133 // express the first part of the pipeline, not every stage. Instead, we need 134 // to use the listed output operand cycle number (using operand 0 here, which 135 // is an output). 136 137 unsigned Latency = 1; 138 unsigned DefClass = MI.getDesc().getSchedClass(); 139 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 140 const MachineOperand &MO = MI.getOperand(i); 141 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 142 continue; 143 144 int Cycle = ItinData->getOperandCycle(DefClass, i); 145 if (Cycle < 0) 146 continue; 147 148 Latency = std::max(Latency, (unsigned) Cycle); 149 } 150 151 return Latency; 152 } 153 154 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 155 const MachineInstr &DefMI, unsigned DefIdx, 156 const MachineInstr &UseMI, 157 unsigned UseIdx) const { 158 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 159 UseMI, UseIdx); 160 161 if (!DefMI.getParent()) 162 return Latency; 163 164 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 165 Register Reg = DefMO.getReg(); 166 167 bool IsRegCR; 168 if (Register::isVirtualRegister(Reg)) { 169 const MachineRegisterInfo *MRI = 170 &DefMI.getParent()->getParent()->getRegInfo(); 171 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 172 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 173 } else { 174 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 175 PPC::CRBITRCRegClass.contains(Reg); 176 } 177 178 if (UseMI.isBranch() && IsRegCR) { 179 if (Latency < 0) 180 Latency = getInstrLatency(ItinData, DefMI); 181 182 // On some cores, there is an additional delay between writing to a condition 183 // register, and using it from a branch. 184 unsigned Directive = Subtarget.getCPUDirective(); 185 switch (Directive) { 186 default: break; 187 case PPC::DIR_7400: 188 case PPC::DIR_750: 189 case PPC::DIR_970: 190 case PPC::DIR_E5500: 191 case PPC::DIR_PWR4: 192 case PPC::DIR_PWR5: 193 case PPC::DIR_PWR5X: 194 case PPC::DIR_PWR6: 195 case PPC::DIR_PWR6X: 196 case PPC::DIR_PWR7: 197 case PPC::DIR_PWR8: 198 // FIXME: Is this needed for POWER9? 199 Latency += 2; 200 break; 201 } 202 } 203 204 return Latency; 205 } 206 207 /// This is an architecture-specific helper function of reassociateOps. 208 /// Set special operand attributes for new instructions after reassociation. 209 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 210 MachineInstr &OldMI2, 211 MachineInstr &NewMI1, 212 MachineInstr &NewMI2) const { 213 // Propagate FP flags from the original instructions. 214 // But clear poison-generating flags because those may not be valid now. 215 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 216 NewMI1.setFlags(IntersectedFlags); 217 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 218 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 219 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 220 221 NewMI2.setFlags(IntersectedFlags); 222 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 223 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 224 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 225 } 226 227 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 228 uint16_t Flags) const { 229 MI.setFlags(Flags); 230 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 231 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 232 MI.clearFlag(MachineInstr::MIFlag::IsExact); 233 } 234 235 // This function does not list all associative and commutative operations, but 236 // only those worth feeding through the machine combiner in an attempt to 237 // reduce the critical path. Mostly, this means floating-point operations, 238 // because they have high latencies (compared to other operations, such and 239 // and/or, which are also associative and commutative, but have low latencies). 240 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 241 switch (Inst.getOpcode()) { 242 // FP Add: 243 case PPC::FADD: 244 case PPC::FADDS: 245 // FP Multiply: 246 case PPC::FMUL: 247 case PPC::FMULS: 248 // Altivec Add: 249 case PPC::VADDFP: 250 // VSX Add: 251 case PPC::XSADDDP: 252 case PPC::XVADDDP: 253 case PPC::XVADDSP: 254 case PPC::XSADDSP: 255 // VSX Multiply: 256 case PPC::XSMULDP: 257 case PPC::XVMULDP: 258 case PPC::XVMULSP: 259 case PPC::XSMULSP: 260 // QPX Add: 261 case PPC::QVFADD: 262 case PPC::QVFADDS: 263 case PPC::QVFADDSs: 264 // QPX Multiply: 265 case PPC::QVFMUL: 266 case PPC::QVFMULS: 267 case PPC::QVFMULSs: 268 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 269 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 270 default: 271 return false; 272 } 273 } 274 275 bool PPCInstrInfo::getMachineCombinerPatterns( 276 MachineInstr &Root, 277 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 278 // Using the machine combiner in this way is potentially expensive, so 279 // restrict to when aggressive optimizations are desired. 280 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 281 return false; 282 283 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 284 } 285 286 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 287 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 288 Register &SrcReg, Register &DstReg, 289 unsigned &SubIdx) const { 290 switch (MI.getOpcode()) { 291 default: return false; 292 case PPC::EXTSW: 293 case PPC::EXTSW_32: 294 case PPC::EXTSW_32_64: 295 SrcReg = MI.getOperand(1).getReg(); 296 DstReg = MI.getOperand(0).getReg(); 297 SubIdx = PPC::sub_32; 298 return true; 299 } 300 } 301 302 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 303 int &FrameIndex) const { 304 unsigned Opcode = MI.getOpcode(); 305 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 306 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 307 308 if (End != std::find(OpcodesForSpill, End, Opcode)) { 309 // Check for the operands added by addFrameReference (the immediate is the 310 // offset which defaults to 0). 311 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 312 MI.getOperand(2).isFI()) { 313 FrameIndex = MI.getOperand(2).getIndex(); 314 return MI.getOperand(0).getReg(); 315 } 316 } 317 return 0; 318 } 319 320 // For opcodes with the ReMaterializable flag set, this function is called to 321 // verify the instruction is really rematable. 322 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 323 AliasAnalysis *AA) const { 324 switch (MI.getOpcode()) { 325 default: 326 // This function should only be called for opcodes with the ReMaterializable 327 // flag set. 328 llvm_unreachable("Unknown rematerializable operation!"); 329 break; 330 case PPC::LI: 331 case PPC::LI8: 332 case PPC::LIS: 333 case PPC::LIS8: 334 case PPC::QVGPCI: 335 case PPC::ADDIStocHA: 336 case PPC::ADDIStocHA8: 337 case PPC::ADDItocL: 338 case PPC::LOAD_STACK_GUARD: 339 case PPC::XXLXORz: 340 case PPC::XXLXORspz: 341 case PPC::XXLXORdpz: 342 case PPC::XXLEQVOnes: 343 case PPC::V_SET0B: 344 case PPC::V_SET0H: 345 case PPC::V_SET0: 346 case PPC::V_SETALLONESB: 347 case PPC::V_SETALLONESH: 348 case PPC::V_SETALLONES: 349 case PPC::CRSET: 350 case PPC::CRUNSET: 351 return true; 352 } 353 return false; 354 } 355 356 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 357 int &FrameIndex) const { 358 unsigned Opcode = MI.getOpcode(); 359 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 360 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 361 362 if (End != std::find(OpcodesForSpill, End, Opcode)) { 363 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 364 MI.getOperand(2).isFI()) { 365 FrameIndex = MI.getOperand(2).getIndex(); 366 return MI.getOperand(0).getReg(); 367 } 368 } 369 return 0; 370 } 371 372 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 373 unsigned OpIdx1, 374 unsigned OpIdx2) const { 375 MachineFunction &MF = *MI.getParent()->getParent(); 376 377 // Normal instructions can be commuted the obvious way. 378 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 379 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 380 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 381 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 382 // changing the relative order of the mask operands might change what happens 383 // to the high-bits of the mask (and, thus, the result). 384 385 // Cannot commute if it has a non-zero rotate count. 386 if (MI.getOperand(3).getImm() != 0) 387 return nullptr; 388 389 // If we have a zero rotate count, we have: 390 // M = mask(MB,ME) 391 // Op0 = (Op1 & ~M) | (Op2 & M) 392 // Change this to: 393 // M = mask((ME+1)&31, (MB-1)&31) 394 // Op0 = (Op2 & ~M) | (Op1 & M) 395 396 // Swap op1/op2 397 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 398 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 399 Register Reg0 = MI.getOperand(0).getReg(); 400 Register Reg1 = MI.getOperand(1).getReg(); 401 Register Reg2 = MI.getOperand(2).getReg(); 402 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 403 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 404 bool Reg1IsKill = MI.getOperand(1).isKill(); 405 bool Reg2IsKill = MI.getOperand(2).isKill(); 406 bool ChangeReg0 = false; 407 // If machine instrs are no longer in two-address forms, update 408 // destination register as well. 409 if (Reg0 == Reg1) { 410 // Must be two address instruction! 411 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 412 "Expecting a two-address instruction!"); 413 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 414 Reg2IsKill = false; 415 ChangeReg0 = true; 416 } 417 418 // Masks. 419 unsigned MB = MI.getOperand(4).getImm(); 420 unsigned ME = MI.getOperand(5).getImm(); 421 422 // We can't commute a trivial mask (there is no way to represent an all-zero 423 // mask). 424 if (MB == 0 && ME == 31) 425 return nullptr; 426 427 if (NewMI) { 428 // Create a new instruction. 429 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 430 bool Reg0IsDead = MI.getOperand(0).isDead(); 431 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 432 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 433 .addReg(Reg2, getKillRegState(Reg2IsKill)) 434 .addReg(Reg1, getKillRegState(Reg1IsKill)) 435 .addImm((ME + 1) & 31) 436 .addImm((MB - 1) & 31); 437 } 438 439 if (ChangeReg0) { 440 MI.getOperand(0).setReg(Reg2); 441 MI.getOperand(0).setSubReg(SubReg2); 442 } 443 MI.getOperand(2).setReg(Reg1); 444 MI.getOperand(1).setReg(Reg2); 445 MI.getOperand(2).setSubReg(SubReg1); 446 MI.getOperand(1).setSubReg(SubReg2); 447 MI.getOperand(2).setIsKill(Reg1IsKill); 448 MI.getOperand(1).setIsKill(Reg2IsKill); 449 450 // Swap the mask around. 451 MI.getOperand(4).setImm((ME + 1) & 31); 452 MI.getOperand(5).setImm((MB - 1) & 31); 453 return &MI; 454 } 455 456 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 457 unsigned &SrcOpIdx1, 458 unsigned &SrcOpIdx2) const { 459 // For VSX A-Type FMA instructions, it is the first two operands that can be 460 // commuted, however, because the non-encoded tied input operand is listed 461 // first, the operands to swap are actually the second and third. 462 463 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 464 if (AltOpc == -1) 465 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 466 467 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 468 // and SrcOpIdx2. 469 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 470 } 471 472 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 473 MachineBasicBlock::iterator MI) const { 474 // This function is used for scheduling, and the nop wanted here is the type 475 // that terminates dispatch groups on the POWER cores. 476 unsigned Directive = Subtarget.getCPUDirective(); 477 unsigned Opcode; 478 switch (Directive) { 479 default: Opcode = PPC::NOP; break; 480 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 481 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 482 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 483 // FIXME: Update when POWER9 scheduling model is ready. 484 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 485 } 486 487 DebugLoc DL; 488 BuildMI(MBB, MI, DL, get(Opcode)); 489 } 490 491 /// Return the noop instruction to use for a noop. 492 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 493 NopInst.setOpcode(PPC::NOP); 494 } 495 496 // Branch analysis. 497 // Note: If the condition register is set to CTR or CTR8 then this is a 498 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 499 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 500 MachineBasicBlock *&TBB, 501 MachineBasicBlock *&FBB, 502 SmallVectorImpl<MachineOperand> &Cond, 503 bool AllowModify) const { 504 bool isPPC64 = Subtarget.isPPC64(); 505 506 // If the block has no terminators, it just falls into the block after it. 507 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 508 if (I == MBB.end()) 509 return false; 510 511 if (!isUnpredicatedTerminator(*I)) 512 return false; 513 514 if (AllowModify) { 515 // If the BB ends with an unconditional branch to the fallthrough BB, 516 // we eliminate the branch instruction. 517 if (I->getOpcode() == PPC::B && 518 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 519 I->eraseFromParent(); 520 521 // We update iterator after deleting the last branch. 522 I = MBB.getLastNonDebugInstr(); 523 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 524 return false; 525 } 526 } 527 528 // Get the last instruction in the block. 529 MachineInstr &LastInst = *I; 530 531 // If there is only one terminator instruction, process it. 532 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 533 if (LastInst.getOpcode() == PPC::B) { 534 if (!LastInst.getOperand(0).isMBB()) 535 return true; 536 TBB = LastInst.getOperand(0).getMBB(); 537 return false; 538 } else if (LastInst.getOpcode() == PPC::BCC) { 539 if (!LastInst.getOperand(2).isMBB()) 540 return true; 541 // Block ends with fall-through condbranch. 542 TBB = LastInst.getOperand(2).getMBB(); 543 Cond.push_back(LastInst.getOperand(0)); 544 Cond.push_back(LastInst.getOperand(1)); 545 return false; 546 } else if (LastInst.getOpcode() == PPC::BC) { 547 if (!LastInst.getOperand(1).isMBB()) 548 return true; 549 // Block ends with fall-through condbranch. 550 TBB = LastInst.getOperand(1).getMBB(); 551 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 552 Cond.push_back(LastInst.getOperand(0)); 553 return false; 554 } else if (LastInst.getOpcode() == PPC::BCn) { 555 if (!LastInst.getOperand(1).isMBB()) 556 return true; 557 // Block ends with fall-through condbranch. 558 TBB = LastInst.getOperand(1).getMBB(); 559 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 560 Cond.push_back(LastInst.getOperand(0)); 561 return false; 562 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 563 LastInst.getOpcode() == PPC::BDNZ) { 564 if (!LastInst.getOperand(0).isMBB()) 565 return true; 566 if (DisableCTRLoopAnal) 567 return true; 568 TBB = LastInst.getOperand(0).getMBB(); 569 Cond.push_back(MachineOperand::CreateImm(1)); 570 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 571 true)); 572 return false; 573 } else if (LastInst.getOpcode() == PPC::BDZ8 || 574 LastInst.getOpcode() == PPC::BDZ) { 575 if (!LastInst.getOperand(0).isMBB()) 576 return true; 577 if (DisableCTRLoopAnal) 578 return true; 579 TBB = LastInst.getOperand(0).getMBB(); 580 Cond.push_back(MachineOperand::CreateImm(0)); 581 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 582 true)); 583 return false; 584 } 585 586 // Otherwise, don't know what this is. 587 return true; 588 } 589 590 // Get the instruction before it if it's a terminator. 591 MachineInstr &SecondLastInst = *I; 592 593 // If there are three terminators, we don't know what sort of block this is. 594 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 595 return true; 596 597 // If the block ends with PPC::B and PPC:BCC, handle it. 598 if (SecondLastInst.getOpcode() == PPC::BCC && 599 LastInst.getOpcode() == PPC::B) { 600 if (!SecondLastInst.getOperand(2).isMBB() || 601 !LastInst.getOperand(0).isMBB()) 602 return true; 603 TBB = SecondLastInst.getOperand(2).getMBB(); 604 Cond.push_back(SecondLastInst.getOperand(0)); 605 Cond.push_back(SecondLastInst.getOperand(1)); 606 FBB = LastInst.getOperand(0).getMBB(); 607 return false; 608 } else if (SecondLastInst.getOpcode() == PPC::BC && 609 LastInst.getOpcode() == PPC::B) { 610 if (!SecondLastInst.getOperand(1).isMBB() || 611 !LastInst.getOperand(0).isMBB()) 612 return true; 613 TBB = SecondLastInst.getOperand(1).getMBB(); 614 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 615 Cond.push_back(SecondLastInst.getOperand(0)); 616 FBB = LastInst.getOperand(0).getMBB(); 617 return false; 618 } else if (SecondLastInst.getOpcode() == PPC::BCn && 619 LastInst.getOpcode() == PPC::B) { 620 if (!SecondLastInst.getOperand(1).isMBB() || 621 !LastInst.getOperand(0).isMBB()) 622 return true; 623 TBB = SecondLastInst.getOperand(1).getMBB(); 624 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 625 Cond.push_back(SecondLastInst.getOperand(0)); 626 FBB = LastInst.getOperand(0).getMBB(); 627 return false; 628 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 629 SecondLastInst.getOpcode() == PPC::BDNZ) && 630 LastInst.getOpcode() == PPC::B) { 631 if (!SecondLastInst.getOperand(0).isMBB() || 632 !LastInst.getOperand(0).isMBB()) 633 return true; 634 if (DisableCTRLoopAnal) 635 return true; 636 TBB = SecondLastInst.getOperand(0).getMBB(); 637 Cond.push_back(MachineOperand::CreateImm(1)); 638 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 639 true)); 640 FBB = LastInst.getOperand(0).getMBB(); 641 return false; 642 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 643 SecondLastInst.getOpcode() == PPC::BDZ) && 644 LastInst.getOpcode() == PPC::B) { 645 if (!SecondLastInst.getOperand(0).isMBB() || 646 !LastInst.getOperand(0).isMBB()) 647 return true; 648 if (DisableCTRLoopAnal) 649 return true; 650 TBB = SecondLastInst.getOperand(0).getMBB(); 651 Cond.push_back(MachineOperand::CreateImm(0)); 652 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 653 true)); 654 FBB = LastInst.getOperand(0).getMBB(); 655 return false; 656 } 657 658 // If the block ends with two PPC:Bs, handle it. The second one is not 659 // executed, so remove it. 660 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 661 if (!SecondLastInst.getOperand(0).isMBB()) 662 return true; 663 TBB = SecondLastInst.getOperand(0).getMBB(); 664 I = LastInst; 665 if (AllowModify) 666 I->eraseFromParent(); 667 return false; 668 } 669 670 // Otherwise, can't handle this. 671 return true; 672 } 673 674 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 675 int *BytesRemoved) const { 676 assert(!BytesRemoved && "code size not handled"); 677 678 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 679 if (I == MBB.end()) 680 return 0; 681 682 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 683 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 684 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 685 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 686 return 0; 687 688 // Remove the branch. 689 I->eraseFromParent(); 690 691 I = MBB.end(); 692 693 if (I == MBB.begin()) return 1; 694 --I; 695 if (I->getOpcode() != PPC::BCC && 696 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 697 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 698 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 699 return 1; 700 701 // Remove the branch. 702 I->eraseFromParent(); 703 return 2; 704 } 705 706 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 707 MachineBasicBlock *TBB, 708 MachineBasicBlock *FBB, 709 ArrayRef<MachineOperand> Cond, 710 const DebugLoc &DL, 711 int *BytesAdded) const { 712 // Shouldn't be a fall through. 713 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 714 assert((Cond.size() == 2 || Cond.size() == 0) && 715 "PPC branch conditions have two components!"); 716 assert(!BytesAdded && "code size not handled"); 717 718 bool isPPC64 = Subtarget.isPPC64(); 719 720 // One-way branch. 721 if (!FBB) { 722 if (Cond.empty()) // Unconditional branch 723 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 724 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 725 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 726 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 727 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 728 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 729 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 730 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 731 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 732 else // Conditional branch 733 BuildMI(&MBB, DL, get(PPC::BCC)) 734 .addImm(Cond[0].getImm()) 735 .add(Cond[1]) 736 .addMBB(TBB); 737 return 1; 738 } 739 740 // Two-way Conditional Branch. 741 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 742 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 743 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 744 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 745 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 746 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 747 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 748 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 749 else 750 BuildMI(&MBB, DL, get(PPC::BCC)) 751 .addImm(Cond[0].getImm()) 752 .add(Cond[1]) 753 .addMBB(TBB); 754 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 755 return 2; 756 } 757 758 // Select analysis. 759 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 760 ArrayRef<MachineOperand> Cond, 761 Register DstReg, Register TrueReg, 762 Register FalseReg, int &CondCycles, 763 int &TrueCycles, int &FalseCycles) const { 764 if (Cond.size() != 2) 765 return false; 766 767 // If this is really a bdnz-like condition, then it cannot be turned into a 768 // select. 769 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 770 return false; 771 772 // Check register classes. 773 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 774 const TargetRegisterClass *RC = 775 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 776 if (!RC) 777 return false; 778 779 // isel is for regular integer GPRs only. 780 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 781 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 782 !PPC::G8RCRegClass.hasSubClassEq(RC) && 783 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 784 return false; 785 786 // FIXME: These numbers are for the A2, how well they work for other cores is 787 // an open question. On the A2, the isel instruction has a 2-cycle latency 788 // but single-cycle throughput. These numbers are used in combination with 789 // the MispredictPenalty setting from the active SchedMachineModel. 790 CondCycles = 1; 791 TrueCycles = 1; 792 FalseCycles = 1; 793 794 return true; 795 } 796 797 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 798 MachineBasicBlock::iterator MI, 799 const DebugLoc &dl, Register DestReg, 800 ArrayRef<MachineOperand> Cond, Register TrueReg, 801 Register FalseReg) const { 802 assert(Cond.size() == 2 && 803 "PPC branch conditions have two components!"); 804 805 // Get the register classes. 806 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 807 const TargetRegisterClass *RC = 808 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 809 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 810 811 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 812 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 813 assert((Is64Bit || 814 PPC::GPRCRegClass.hasSubClassEq(RC) || 815 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 816 "isel is for regular integer GPRs only"); 817 818 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 819 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 820 821 unsigned SubIdx = 0; 822 bool SwapOps = false; 823 switch (SelectPred) { 824 case PPC::PRED_EQ: 825 case PPC::PRED_EQ_MINUS: 826 case PPC::PRED_EQ_PLUS: 827 SubIdx = PPC::sub_eq; SwapOps = false; break; 828 case PPC::PRED_NE: 829 case PPC::PRED_NE_MINUS: 830 case PPC::PRED_NE_PLUS: 831 SubIdx = PPC::sub_eq; SwapOps = true; break; 832 case PPC::PRED_LT: 833 case PPC::PRED_LT_MINUS: 834 case PPC::PRED_LT_PLUS: 835 SubIdx = PPC::sub_lt; SwapOps = false; break; 836 case PPC::PRED_GE: 837 case PPC::PRED_GE_MINUS: 838 case PPC::PRED_GE_PLUS: 839 SubIdx = PPC::sub_lt; SwapOps = true; break; 840 case PPC::PRED_GT: 841 case PPC::PRED_GT_MINUS: 842 case PPC::PRED_GT_PLUS: 843 SubIdx = PPC::sub_gt; SwapOps = false; break; 844 case PPC::PRED_LE: 845 case PPC::PRED_LE_MINUS: 846 case PPC::PRED_LE_PLUS: 847 SubIdx = PPC::sub_gt; SwapOps = true; break; 848 case PPC::PRED_UN: 849 case PPC::PRED_UN_MINUS: 850 case PPC::PRED_UN_PLUS: 851 SubIdx = PPC::sub_un; SwapOps = false; break; 852 case PPC::PRED_NU: 853 case PPC::PRED_NU_MINUS: 854 case PPC::PRED_NU_PLUS: 855 SubIdx = PPC::sub_un; SwapOps = true; break; 856 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 857 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 858 } 859 860 Register FirstReg = SwapOps ? FalseReg : TrueReg, 861 SecondReg = SwapOps ? TrueReg : FalseReg; 862 863 // The first input register of isel cannot be r0. If it is a member 864 // of a register class that can be r0, then copy it first (the 865 // register allocator should eliminate the copy). 866 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 867 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 868 const TargetRegisterClass *FirstRC = 869 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 870 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 871 Register OldFirstReg = FirstReg; 872 FirstReg = MRI.createVirtualRegister(FirstRC); 873 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 874 .addReg(OldFirstReg); 875 } 876 877 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 878 .addReg(FirstReg).addReg(SecondReg) 879 .addReg(Cond[1].getReg(), 0, SubIdx); 880 } 881 882 static unsigned getCRBitValue(unsigned CRBit) { 883 unsigned Ret = 4; 884 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 885 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 886 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 887 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 888 Ret = 3; 889 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 890 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 891 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 892 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 893 Ret = 2; 894 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 895 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 896 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 897 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 898 Ret = 1; 899 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 900 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 901 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 902 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 903 Ret = 0; 904 905 assert(Ret != 4 && "Invalid CR bit register"); 906 return Ret; 907 } 908 909 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 910 MachineBasicBlock::iterator I, 911 const DebugLoc &DL, MCRegister DestReg, 912 MCRegister SrcReg, bool KillSrc) const { 913 // We can end up with self copies and similar things as a result of VSX copy 914 // legalization. Promote them here. 915 const TargetRegisterInfo *TRI = &getRegisterInfo(); 916 if (PPC::F8RCRegClass.contains(DestReg) && 917 PPC::VSRCRegClass.contains(SrcReg)) { 918 MCRegister SuperReg = 919 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 920 921 if (VSXSelfCopyCrash && SrcReg == SuperReg) 922 llvm_unreachable("nop VSX copy"); 923 924 DestReg = SuperReg; 925 } else if (PPC::F8RCRegClass.contains(SrcReg) && 926 PPC::VSRCRegClass.contains(DestReg)) { 927 MCRegister SuperReg = 928 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 929 930 if (VSXSelfCopyCrash && DestReg == SuperReg) 931 llvm_unreachable("nop VSX copy"); 932 933 SrcReg = SuperReg; 934 } 935 936 // Different class register copy 937 if (PPC::CRBITRCRegClass.contains(SrcReg) && 938 PPC::GPRCRegClass.contains(DestReg)) { 939 MCRegister CRReg = getCRFromCRBit(SrcReg); 940 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 941 getKillRegState(KillSrc); 942 // Rotate the CR bit in the CR fields to be the least significant bit and 943 // then mask with 0x1 (MB = ME = 31). 944 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 945 .addReg(DestReg, RegState::Kill) 946 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 947 .addImm(31) 948 .addImm(31); 949 return; 950 } else if (PPC::CRRCRegClass.contains(SrcReg) && 951 PPC::G8RCRegClass.contains(DestReg)) { 952 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 953 getKillRegState(KillSrc); 954 return; 955 } else if (PPC::CRRCRegClass.contains(SrcReg) && 956 PPC::GPRCRegClass.contains(DestReg)) { 957 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 958 getKillRegState(KillSrc); 959 return; 960 } else if (PPC::G8RCRegClass.contains(SrcReg) && 961 PPC::VSFRCRegClass.contains(DestReg)) { 962 assert(Subtarget.hasDirectMove() && 963 "Subtarget doesn't support directmove, don't know how to copy."); 964 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 965 NumGPRtoVSRSpill++; 966 getKillRegState(KillSrc); 967 return; 968 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 969 PPC::G8RCRegClass.contains(DestReg)) { 970 assert(Subtarget.hasDirectMove() && 971 "Subtarget doesn't support directmove, don't know how to copy."); 972 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 973 getKillRegState(KillSrc); 974 return; 975 } else if (PPC::SPERCRegClass.contains(SrcReg) && 976 PPC::GPRCRegClass.contains(DestReg)) { 977 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 978 getKillRegState(KillSrc); 979 return; 980 } else if (PPC::GPRCRegClass.contains(SrcReg) && 981 PPC::SPERCRegClass.contains(DestReg)) { 982 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 983 getKillRegState(KillSrc); 984 return; 985 } 986 987 unsigned Opc; 988 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 989 Opc = PPC::OR; 990 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 991 Opc = PPC::OR8; 992 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 993 Opc = PPC::FMR; 994 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 995 Opc = PPC::MCRF; 996 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 997 Opc = PPC::VOR; 998 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 999 // There are two different ways this can be done: 1000 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1001 // issue in VSU pipeline 0. 1002 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1003 // can go to either pipeline. 1004 // We'll always use xxlor here, because in practically all cases where 1005 // copies are generated, they are close enough to some use that the 1006 // lower-latency form is preferable. 1007 Opc = PPC::XXLOR; 1008 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1009 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1010 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1011 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1012 Opc = PPC::QVFMR; 1013 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1014 Opc = PPC::QVFMRs; 1015 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1016 Opc = PPC::QVFMRb; 1017 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1018 Opc = PPC::CROR; 1019 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1020 Opc = PPC::EVOR; 1021 else 1022 llvm_unreachable("Impossible reg-to-reg copy"); 1023 1024 const MCInstrDesc &MCID = get(Opc); 1025 if (MCID.getNumOperands() == 3) 1026 BuildMI(MBB, I, DL, MCID, DestReg) 1027 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1028 else 1029 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1030 } 1031 1032 static unsigned getSpillIndex(const TargetRegisterClass *RC) { 1033 int OpcodeIndex = 0; 1034 1035 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1036 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1037 OpcodeIndex = SOK_Int4Spill; 1038 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1039 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1040 OpcodeIndex = SOK_Int8Spill; 1041 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1042 OpcodeIndex = SOK_Float8Spill; 1043 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1044 OpcodeIndex = SOK_Float4Spill; 1045 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1046 OpcodeIndex = SOK_SPESpill; 1047 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1048 OpcodeIndex = SOK_CRSpill; 1049 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1050 OpcodeIndex = SOK_CRBitSpill; 1051 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1052 OpcodeIndex = SOK_VRVectorSpill; 1053 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1054 OpcodeIndex = SOK_VSXVectorSpill; 1055 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1056 OpcodeIndex = SOK_VectorFloat8Spill; 1057 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1058 OpcodeIndex = SOK_VectorFloat4Spill; 1059 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1060 OpcodeIndex = SOK_VRSaveSpill; 1061 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1062 OpcodeIndex = SOK_QuadFloat8Spill; 1063 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1064 OpcodeIndex = SOK_QuadFloat4Spill; 1065 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1066 OpcodeIndex = SOK_QuadBitSpill; 1067 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1068 OpcodeIndex = SOK_SpillToVSR; 1069 } else { 1070 llvm_unreachable("Unknown regclass!"); 1071 } 1072 return OpcodeIndex; 1073 } 1074 1075 unsigned 1076 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1077 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1078 return OpcodesForSpill[getSpillIndex(RC)]; 1079 } 1080 1081 unsigned 1082 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1083 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1084 return OpcodesForSpill[getSpillIndex(RC)]; 1085 } 1086 1087 void PPCInstrInfo::StoreRegToStackSlot( 1088 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1089 const TargetRegisterClass *RC, 1090 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1091 unsigned Opcode = getStoreOpcodeForSpill(RC); 1092 DebugLoc DL; 1093 1094 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1095 FuncInfo->setHasSpills(); 1096 1097 NewMIs.push_back(addFrameReference( 1098 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1099 FrameIdx)); 1100 1101 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1102 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1103 FuncInfo->setSpillsCR(); 1104 1105 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1106 FuncInfo->setSpillsVRSAVE(); 1107 1108 if (isXFormMemOp(Opcode)) 1109 FuncInfo->setHasNonRISpills(); 1110 } 1111 1112 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1113 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1114 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1115 const TargetRegisterInfo *TRI) const { 1116 MachineFunction &MF = *MBB.getParent(); 1117 SmallVector<MachineInstr *, 4> NewMIs; 1118 1119 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1120 1121 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1122 MBB.insert(MI, NewMIs[i]); 1123 1124 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1125 MachineMemOperand *MMO = MF.getMachineMemOperand( 1126 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1127 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1128 MFI.getObjectAlign(FrameIdx)); 1129 NewMIs.back()->addMemOperand(MF, MMO); 1130 } 1131 1132 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1133 MachineBasicBlock::iterator MI, 1134 Register SrcReg, bool isKill, 1135 int FrameIdx, 1136 const TargetRegisterClass *RC, 1137 const TargetRegisterInfo *TRI) const { 1138 // We need to avoid a situation in which the value from a VRRC register is 1139 // spilled using an Altivec instruction and reloaded into a VSRC register 1140 // using a VSX instruction. The issue with this is that the VSX 1141 // load/store instructions swap the doublewords in the vector and the Altivec 1142 // ones don't. The register classes on the spill/reload may be different if 1143 // the register is defined using an Altivec instruction and is then used by a 1144 // VSX instruction. 1145 RC = updatedRC(RC); 1146 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1147 } 1148 1149 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1150 unsigned DestReg, int FrameIdx, 1151 const TargetRegisterClass *RC, 1152 SmallVectorImpl<MachineInstr *> &NewMIs) 1153 const { 1154 unsigned Opcode = getLoadOpcodeForSpill(RC); 1155 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1156 FrameIdx)); 1157 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1158 1159 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1160 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1161 FuncInfo->setSpillsCR(); 1162 1163 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1164 FuncInfo->setSpillsVRSAVE(); 1165 1166 if (isXFormMemOp(Opcode)) 1167 FuncInfo->setHasNonRISpills(); 1168 } 1169 1170 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1171 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1172 int FrameIdx, const TargetRegisterClass *RC, 1173 const TargetRegisterInfo *TRI) const { 1174 MachineFunction &MF = *MBB.getParent(); 1175 SmallVector<MachineInstr*, 4> NewMIs; 1176 DebugLoc DL; 1177 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1178 1179 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1180 FuncInfo->setHasSpills(); 1181 1182 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1183 1184 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1185 MBB.insert(MI, NewMIs[i]); 1186 1187 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1188 MachineMemOperand *MMO = MF.getMachineMemOperand( 1189 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1190 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1191 MFI.getObjectAlign(FrameIdx)); 1192 NewMIs.back()->addMemOperand(MF, MMO); 1193 } 1194 1195 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1196 MachineBasicBlock::iterator MI, 1197 Register DestReg, int FrameIdx, 1198 const TargetRegisterClass *RC, 1199 const TargetRegisterInfo *TRI) const { 1200 // We need to avoid a situation in which the value from a VRRC register is 1201 // spilled using an Altivec instruction and reloaded into a VSRC register 1202 // using a VSX instruction. The issue with this is that the VSX 1203 // load/store instructions swap the doublewords in the vector and the Altivec 1204 // ones don't. The register classes on the spill/reload may be different if 1205 // the register is defined using an Altivec instruction and is then used by a 1206 // VSX instruction. 1207 RC = updatedRC(RC); 1208 1209 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 1210 } 1211 1212 bool PPCInstrInfo:: 1213 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1214 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1215 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1216 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1217 else 1218 // Leave the CR# the same, but invert the condition. 1219 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1220 return false; 1221 } 1222 1223 // For some instructions, it is legal to fold ZERO into the RA register field. 1224 // This function performs that fold by replacing the operand with PPC::ZERO, 1225 // it does not consider whether the load immediate zero is no longer in use. 1226 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1227 Register Reg) const { 1228 // A zero immediate should always be loaded with a single li. 1229 unsigned DefOpc = DefMI.getOpcode(); 1230 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1231 return false; 1232 if (!DefMI.getOperand(1).isImm()) 1233 return false; 1234 if (DefMI.getOperand(1).getImm() != 0) 1235 return false; 1236 1237 // Note that we cannot here invert the arguments of an isel in order to fold 1238 // a ZERO into what is presented as the second argument. All we have here 1239 // is the condition bit, and that might come from a CR-logical bit operation. 1240 1241 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1242 1243 // Only fold into real machine instructions. 1244 if (UseMCID.isPseudo()) 1245 return false; 1246 1247 // We need to find which of the User's operands is to be folded, that will be 1248 // the operand that matches the given register ID. 1249 unsigned UseIdx; 1250 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1251 if (UseMI.getOperand(UseIdx).isReg() && 1252 UseMI.getOperand(UseIdx).getReg() == Reg) 1253 break; 1254 1255 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1256 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1257 1258 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1259 1260 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1261 // register (which might also be specified as a pointer class kind). 1262 if (UseInfo->isLookupPtrRegClass()) { 1263 if (UseInfo->RegClass /* Kind */ != 1) 1264 return false; 1265 } else { 1266 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1267 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1268 return false; 1269 } 1270 1271 // Make sure this is not tied to an output register (or otherwise 1272 // constrained). This is true for ST?UX registers, for example, which 1273 // are tied to their output registers. 1274 if (UseInfo->Constraints != 0) 1275 return false; 1276 1277 MCRegister ZeroReg; 1278 if (UseInfo->isLookupPtrRegClass()) { 1279 bool isPPC64 = Subtarget.isPPC64(); 1280 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1281 } else { 1282 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1283 PPC::ZERO8 : PPC::ZERO; 1284 } 1285 1286 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1287 return true; 1288 } 1289 1290 // Folds zero into instructions which have a load immediate zero as an operand 1291 // but also recognize zero as immediate zero. If the definition of the load 1292 // has no more users it is deleted. 1293 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1294 Register Reg, MachineRegisterInfo *MRI) const { 1295 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 1296 if (MRI->use_nodbg_empty(Reg)) 1297 DefMI.eraseFromParent(); 1298 return Changed; 1299 } 1300 1301 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1302 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1303 I != IE; ++I) 1304 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1305 return true; 1306 return false; 1307 } 1308 1309 // We should make sure that, if we're going to predicate both sides of a 1310 // condition (a diamond), that both sides don't define the counter register. We 1311 // can predicate counter-decrement-based branches, but while that predicates 1312 // the branching, it does not predicate the counter decrement. If we tried to 1313 // merge the triangle into one predicated block, we'd decrement the counter 1314 // twice. 1315 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1316 unsigned NumT, unsigned ExtraT, 1317 MachineBasicBlock &FMBB, 1318 unsigned NumF, unsigned ExtraF, 1319 BranchProbability Probability) const { 1320 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1321 } 1322 1323 1324 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1325 // The predicated branches are identified by their type, not really by the 1326 // explicit presence of a predicate. Furthermore, some of them can be 1327 // predicated more than once. Because if conversion won't try to predicate 1328 // any instruction which already claims to be predicated (by returning true 1329 // here), always return false. In doing so, we let isPredicable() be the 1330 // final word on whether not the instruction can be (further) predicated. 1331 1332 return false; 1333 } 1334 1335 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1336 ArrayRef<MachineOperand> Pred) const { 1337 unsigned OpC = MI.getOpcode(); 1338 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1339 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1340 bool isPPC64 = Subtarget.isPPC64(); 1341 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1342 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1343 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1344 MI.setDesc(get(PPC::BCLR)); 1345 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1346 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1347 MI.setDesc(get(PPC::BCLRn)); 1348 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1349 } else { 1350 MI.setDesc(get(PPC::BCCLR)); 1351 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1352 .addImm(Pred[0].getImm()) 1353 .add(Pred[1]); 1354 } 1355 1356 return true; 1357 } else if (OpC == PPC::B) { 1358 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1359 bool isPPC64 = Subtarget.isPPC64(); 1360 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1361 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1362 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1363 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1364 MI.RemoveOperand(0); 1365 1366 MI.setDesc(get(PPC::BC)); 1367 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1368 .add(Pred[1]) 1369 .addMBB(MBB); 1370 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1371 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1372 MI.RemoveOperand(0); 1373 1374 MI.setDesc(get(PPC::BCn)); 1375 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1376 .add(Pred[1]) 1377 .addMBB(MBB); 1378 } else { 1379 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1380 MI.RemoveOperand(0); 1381 1382 MI.setDesc(get(PPC::BCC)); 1383 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1384 .addImm(Pred[0].getImm()) 1385 .add(Pred[1]) 1386 .addMBB(MBB); 1387 } 1388 1389 return true; 1390 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1391 OpC == PPC::BCTRL8) { 1392 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1393 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1394 1395 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1396 bool isPPC64 = Subtarget.isPPC64(); 1397 1398 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1399 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1400 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1401 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1402 return true; 1403 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1404 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1405 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1406 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1407 return true; 1408 } 1409 1410 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1411 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1412 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1413 .addImm(Pred[0].getImm()) 1414 .add(Pred[1]); 1415 return true; 1416 } 1417 1418 return false; 1419 } 1420 1421 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1422 ArrayRef<MachineOperand> Pred2) const { 1423 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1424 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1425 1426 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1427 return false; 1428 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1429 return false; 1430 1431 // P1 can only subsume P2 if they test the same condition register. 1432 if (Pred1[1].getReg() != Pred2[1].getReg()) 1433 return false; 1434 1435 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1436 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1437 1438 if (P1 == P2) 1439 return true; 1440 1441 // Does P1 subsume P2, e.g. GE subsumes GT. 1442 if (P1 == PPC::PRED_LE && 1443 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1444 return true; 1445 if (P1 == PPC::PRED_GE && 1446 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1447 return true; 1448 1449 return false; 1450 } 1451 1452 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1453 std::vector<MachineOperand> &Pred) const { 1454 // Note: At the present time, the contents of Pred from this function is 1455 // unused by IfConversion. This implementation follows ARM by pushing the 1456 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1457 // predicate, instructions defining CTR or CTR8 are also included as 1458 // predicate-defining instructions. 1459 1460 const TargetRegisterClass *RCs[] = 1461 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1462 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1463 1464 bool Found = false; 1465 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1466 const MachineOperand &MO = MI.getOperand(i); 1467 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1468 const TargetRegisterClass *RC = RCs[c]; 1469 if (MO.isReg()) { 1470 if (MO.isDef() && RC->contains(MO.getReg())) { 1471 Pred.push_back(MO); 1472 Found = true; 1473 } 1474 } else if (MO.isRegMask()) { 1475 for (TargetRegisterClass::iterator I = RC->begin(), 1476 IE = RC->end(); I != IE; ++I) 1477 if (MO.clobbersPhysReg(*I)) { 1478 Pred.push_back(MO); 1479 Found = true; 1480 } 1481 } 1482 } 1483 } 1484 1485 return Found; 1486 } 1487 1488 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1489 Register &SrcReg2, int &Mask, 1490 int &Value) const { 1491 unsigned Opc = MI.getOpcode(); 1492 1493 switch (Opc) { 1494 default: return false; 1495 case PPC::CMPWI: 1496 case PPC::CMPLWI: 1497 case PPC::CMPDI: 1498 case PPC::CMPLDI: 1499 SrcReg = MI.getOperand(1).getReg(); 1500 SrcReg2 = 0; 1501 Value = MI.getOperand(2).getImm(); 1502 Mask = 0xFFFF; 1503 return true; 1504 case PPC::CMPW: 1505 case PPC::CMPLW: 1506 case PPC::CMPD: 1507 case PPC::CMPLD: 1508 case PPC::FCMPUS: 1509 case PPC::FCMPUD: 1510 SrcReg = MI.getOperand(1).getReg(); 1511 SrcReg2 = MI.getOperand(2).getReg(); 1512 Value = 0; 1513 Mask = 0; 1514 return true; 1515 } 1516 } 1517 1518 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 1519 Register SrcReg2, int Mask, int Value, 1520 const MachineRegisterInfo *MRI) const { 1521 if (DisableCmpOpt) 1522 return false; 1523 1524 int OpC = CmpInstr.getOpcode(); 1525 Register CRReg = CmpInstr.getOperand(0).getReg(); 1526 1527 // FP record forms set CR1 based on the exception status bits, not a 1528 // comparison with zero. 1529 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1530 return false; 1531 1532 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1533 // The record forms set the condition register based on a signed comparison 1534 // with zero (so says the ISA manual). This is not as straightforward as it 1535 // seems, however, because this is always a 64-bit comparison on PPC64, even 1536 // for instructions that are 32-bit in nature (like slw for example). 1537 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1538 // for equality checks (as those don't depend on the sign). On PPC64, 1539 // we are restricted to equality for unsigned 64-bit comparisons and for 1540 // signed 32-bit comparisons the applicability is more restricted. 1541 bool isPPC64 = Subtarget.isPPC64(); 1542 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1543 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1544 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1545 1546 // Look through copies unless that gets us to a physical register. 1547 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1548 if (ActualSrc.isVirtual()) 1549 SrcReg = ActualSrc; 1550 1551 // Get the unique definition of SrcReg. 1552 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1553 if (!MI) return false; 1554 1555 bool equalityOnly = false; 1556 bool noSub = false; 1557 if (isPPC64) { 1558 if (is32BitSignedCompare) { 1559 // We can perform this optimization only if MI is sign-extending. 1560 if (isSignExtended(*MI)) 1561 noSub = true; 1562 else 1563 return false; 1564 } else if (is32BitUnsignedCompare) { 1565 // We can perform this optimization, equality only, if MI is 1566 // zero-extending. 1567 if (isZeroExtended(*MI)) { 1568 noSub = true; 1569 equalityOnly = true; 1570 } else 1571 return false; 1572 } else 1573 equalityOnly = is64BitUnsignedCompare; 1574 } else 1575 equalityOnly = is32BitUnsignedCompare; 1576 1577 if (equalityOnly) { 1578 // We need to check the uses of the condition register in order to reject 1579 // non-equality comparisons. 1580 for (MachineRegisterInfo::use_instr_iterator 1581 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1582 I != IE; ++I) { 1583 MachineInstr *UseMI = &*I; 1584 if (UseMI->getOpcode() == PPC::BCC) { 1585 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1586 unsigned PredCond = PPC::getPredicateCondition(Pred); 1587 // We ignore hint bits when checking for non-equality comparisons. 1588 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1589 return false; 1590 } else if (UseMI->getOpcode() == PPC::ISEL || 1591 UseMI->getOpcode() == PPC::ISEL8) { 1592 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1593 if (SubIdx != PPC::sub_eq) 1594 return false; 1595 } else 1596 return false; 1597 } 1598 } 1599 1600 MachineBasicBlock::iterator I = CmpInstr; 1601 1602 // Scan forward to find the first use of the compare. 1603 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1604 ++I) { 1605 bool FoundUse = false; 1606 for (MachineRegisterInfo::use_instr_iterator 1607 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1608 J != JE; ++J) 1609 if (&*J == &*I) { 1610 FoundUse = true; 1611 break; 1612 } 1613 1614 if (FoundUse) 1615 break; 1616 } 1617 1618 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1619 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1620 1621 // There are two possible candidates which can be changed to set CR[01]. 1622 // One is MI, the other is a SUB instruction. 1623 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1624 MachineInstr *Sub = nullptr; 1625 if (SrcReg2 != 0) 1626 // MI is not a candidate for CMPrr. 1627 MI = nullptr; 1628 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1629 // same BB as the comparison. This is to allow the check below to avoid calls 1630 // (and other explicit clobbers); instead we should really check for these 1631 // more explicitly (in at least a few predecessors). 1632 else if (MI->getParent() != CmpInstr.getParent()) 1633 return false; 1634 else if (Value != 0) { 1635 // The record-form instructions set CR bit based on signed comparison 1636 // against 0. We try to convert a compare against 1 or -1 into a compare 1637 // against 0 to exploit record-form instructions. For example, we change 1638 // the condition "greater than -1" into "greater than or equal to 0" 1639 // and "less than 1" into "less than or equal to 0". 1640 1641 // Since we optimize comparison based on a specific branch condition, 1642 // we don't optimize if condition code is used by more than once. 1643 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1644 return false; 1645 1646 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1647 if (UseMI->getOpcode() != PPC::BCC) 1648 return false; 1649 1650 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1651 unsigned PredCond = PPC::getPredicateCondition(Pred); 1652 unsigned PredHint = PPC::getPredicateHint(Pred); 1653 int16_t Immed = (int16_t)Value; 1654 1655 // When modifying the condition in the predicate, we propagate hint bits 1656 // from the original predicate to the new one. 1657 if (Immed == -1 && PredCond == PPC::PRED_GT) 1658 // We convert "greater than -1" into "greater than or equal to 0", 1659 // since we are assuming signed comparison by !equalityOnly 1660 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1661 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1662 // We convert "less than or equal to -1" into "less than 0". 1663 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1664 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1665 // We convert "less than 1" into "less than or equal to 0". 1666 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1667 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1668 // We convert "greater than or equal to 1" into "greater than 0". 1669 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1670 else 1671 return false; 1672 1673 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 1674 } 1675 1676 // Search for Sub. 1677 --I; 1678 1679 // Get ready to iterate backward from CmpInstr. 1680 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1681 1682 for (; I != E && !noSub; --I) { 1683 const MachineInstr &Instr = *I; 1684 unsigned IOpC = Instr.getOpcode(); 1685 1686 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1687 Instr.readsRegister(PPC::CR0, TRI))) 1688 // This instruction modifies or uses the record condition register after 1689 // the one we want to change. While we could do this transformation, it 1690 // would likely not be profitable. This transformation removes one 1691 // instruction, and so even forcing RA to generate one move probably 1692 // makes it unprofitable. 1693 return false; 1694 1695 // Check whether CmpInstr can be made redundant by the current instruction. 1696 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1697 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1698 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1699 ((Instr.getOperand(1).getReg() == SrcReg && 1700 Instr.getOperand(2).getReg() == SrcReg2) || 1701 (Instr.getOperand(1).getReg() == SrcReg2 && 1702 Instr.getOperand(2).getReg() == SrcReg))) { 1703 Sub = &*I; 1704 break; 1705 } 1706 1707 if (I == B) 1708 // The 'and' is below the comparison instruction. 1709 return false; 1710 } 1711 1712 // Return false if no candidates exist. 1713 if (!MI && !Sub) 1714 return false; 1715 1716 // The single candidate is called MI. 1717 if (!MI) MI = Sub; 1718 1719 int NewOpC = -1; 1720 int MIOpC = MI->getOpcode(); 1721 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 1722 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 1723 NewOpC = MIOpC; 1724 else { 1725 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1726 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1727 NewOpC = MIOpC; 1728 } 1729 1730 // FIXME: On the non-embedded POWER architectures, only some of the record 1731 // forms are fast, and we should use only the fast ones. 1732 1733 // The defining instruction has a record form (or is already a record 1734 // form). It is possible, however, that we'll need to reverse the condition 1735 // code of the users. 1736 if (NewOpC == -1) 1737 return false; 1738 1739 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1740 // needs to be updated to be based on SUB. Push the condition code 1741 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1742 // condition code of these operands will be modified. 1743 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1744 // comparison against 0, which may modify predicate. 1745 bool ShouldSwap = false; 1746 if (Sub && Value == 0) { 1747 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1748 Sub->getOperand(2).getReg() == SrcReg; 1749 1750 // The operands to subf are the opposite of sub, so only in the fixed-point 1751 // case, invert the order. 1752 ShouldSwap = !ShouldSwap; 1753 } 1754 1755 if (ShouldSwap) 1756 for (MachineRegisterInfo::use_instr_iterator 1757 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1758 I != IE; ++I) { 1759 MachineInstr *UseMI = &*I; 1760 if (UseMI->getOpcode() == PPC::BCC) { 1761 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1762 unsigned PredCond = PPC::getPredicateCondition(Pred); 1763 assert((!equalityOnly || 1764 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1765 "Invalid predicate for equality-only optimization"); 1766 (void)PredCond; // To suppress warning in release build. 1767 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1768 PPC::getSwappedPredicate(Pred))); 1769 } else if (UseMI->getOpcode() == PPC::ISEL || 1770 UseMI->getOpcode() == PPC::ISEL8) { 1771 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1772 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1773 "Invalid CR bit for equality-only optimization"); 1774 1775 if (NewSubReg == PPC::sub_lt) 1776 NewSubReg = PPC::sub_gt; 1777 else if (NewSubReg == PPC::sub_gt) 1778 NewSubReg = PPC::sub_lt; 1779 1780 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1781 NewSubReg)); 1782 } else // We need to abort on a user we don't understand. 1783 return false; 1784 } 1785 assert(!(Value != 0 && ShouldSwap) && 1786 "Non-zero immediate support and ShouldSwap" 1787 "may conflict in updating predicate"); 1788 1789 // Create a new virtual register to hold the value of the CR set by the 1790 // record-form instruction. If the instruction was not previously in 1791 // record form, then set the kill flag on the CR. 1792 CmpInstr.eraseFromParent(); 1793 1794 MachineBasicBlock::iterator MII = MI; 1795 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1796 get(TargetOpcode::COPY), CRReg) 1797 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1798 1799 // Even if CR0 register were dead before, it is alive now since the 1800 // instruction we just built uses it. 1801 MI->clearRegisterDeads(PPC::CR0); 1802 1803 if (MIOpC != NewOpC) { 1804 // We need to be careful here: we're replacing one instruction with 1805 // another, and we need to make sure that we get all of the right 1806 // implicit uses and defs. On the other hand, the caller may be holding 1807 // an iterator to this instruction, and so we can't delete it (this is 1808 // specifically the case if this is the instruction directly after the 1809 // compare). 1810 1811 // Rotates are expensive instructions. If we're emitting a record-form 1812 // rotate that can just be an andi/andis, we should just emit that. 1813 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1814 Register GPRRes = MI->getOperand(0).getReg(); 1815 int64_t SH = MI->getOperand(2).getImm(); 1816 int64_t MB = MI->getOperand(3).getImm(); 1817 int64_t ME = MI->getOperand(4).getImm(); 1818 // We can only do this if both the start and end of the mask are in the 1819 // same halfword. 1820 bool MBInLoHWord = MB >= 16; 1821 bool MEInLoHWord = ME >= 16; 1822 uint64_t Mask = ~0LLU; 1823 1824 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1825 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1826 // The mask value needs to shift right 16 if we're emitting andis. 1827 Mask >>= MBInLoHWord ? 0 : 16; 1828 NewOpC = MIOpC == PPC::RLWINM 1829 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 1830 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 1831 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1832 (ME - MB + 1 == SH) && (MB >= 16)) { 1833 // If we are rotating by the exact number of bits as are in the mask 1834 // and the mask is in the least significant bits of the register, 1835 // that's just an andis. (as long as the GPR result has no uses). 1836 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1837 Mask >>= 16; 1838 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 1839 } 1840 // If we've set the mask, we can transform. 1841 if (Mask != ~0LLU) { 1842 MI->RemoveOperand(4); 1843 MI->RemoveOperand(3); 1844 MI->getOperand(2).setImm(Mask); 1845 NumRcRotatesConvertedToRcAnd++; 1846 } 1847 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1848 int64_t MB = MI->getOperand(3).getImm(); 1849 if (MB >= 48) { 1850 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1851 NewOpC = PPC::ANDI8_rec; 1852 MI->RemoveOperand(3); 1853 MI->getOperand(2).setImm(Mask); 1854 NumRcRotatesConvertedToRcAnd++; 1855 } 1856 } 1857 1858 const MCInstrDesc &NewDesc = get(NewOpC); 1859 MI->setDesc(NewDesc); 1860 1861 if (NewDesc.ImplicitDefs) 1862 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1863 *ImpDefs; ++ImpDefs) 1864 if (!MI->definesRegister(*ImpDefs)) 1865 MI->addOperand(*MI->getParent()->getParent(), 1866 MachineOperand::CreateReg(*ImpDefs, true, true)); 1867 if (NewDesc.ImplicitUses) 1868 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1869 *ImpUses; ++ImpUses) 1870 if (!MI->readsRegister(*ImpUses)) 1871 MI->addOperand(*MI->getParent()->getParent(), 1872 MachineOperand::CreateReg(*ImpUses, false, true)); 1873 } 1874 assert(MI->definesRegister(PPC::CR0) && 1875 "Record-form instruction does not define cr0?"); 1876 1877 // Modify the condition code of operands in OperandsToUpdate. 1878 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1879 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1880 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1881 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1882 1883 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1884 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1885 1886 return true; 1887 } 1888 1889 /// GetInstSize - Return the number of bytes of code the specified 1890 /// instruction may be. This returns the maximum number of bytes. 1891 /// 1892 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1893 unsigned Opcode = MI.getOpcode(); 1894 1895 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 1896 const MachineFunction *MF = MI.getParent()->getParent(); 1897 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1898 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1899 } else if (Opcode == TargetOpcode::STACKMAP) { 1900 StackMapOpers Opers(&MI); 1901 return Opers.getNumPatchBytes(); 1902 } else if (Opcode == TargetOpcode::PATCHPOINT) { 1903 PatchPointOpers Opers(&MI); 1904 return Opers.getNumPatchBytes(); 1905 } else { 1906 return get(Opcode).getSize(); 1907 } 1908 } 1909 1910 std::pair<unsigned, unsigned> 1911 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 1912 const unsigned Mask = PPCII::MO_ACCESS_MASK; 1913 return std::make_pair(TF & Mask, TF & ~Mask); 1914 } 1915 1916 ArrayRef<std::pair<unsigned, const char *>> 1917 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 1918 using namespace PPCII; 1919 static const std::pair<unsigned, const char *> TargetFlags[] = { 1920 {MO_LO, "ppc-lo"}, 1921 {MO_HA, "ppc-ha"}, 1922 {MO_TPREL_LO, "ppc-tprel-lo"}, 1923 {MO_TPREL_HA, "ppc-tprel-ha"}, 1924 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 1925 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 1926 {MO_TOC_LO, "ppc-toc-lo"}, 1927 {MO_TLS, "ppc-tls"}}; 1928 return makeArrayRef(TargetFlags); 1929 } 1930 1931 ArrayRef<std::pair<unsigned, const char *>> 1932 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 1933 using namespace PPCII; 1934 static const std::pair<unsigned, const char *> TargetFlags[] = { 1935 {MO_PLT, "ppc-plt"}, 1936 {MO_PIC_FLAG, "ppc-pic"}, 1937 {MO_PCREL_FLAG, "ppc-pcrel"}, 1938 {MO_GOT_FLAG, "ppc-got"}}; 1939 return makeArrayRef(TargetFlags); 1940 } 1941 1942 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 1943 // The VSX versions have the advantage of a full 64-register target whereas 1944 // the FP ones have the advantage of lower latency and higher throughput. So 1945 // what we are after is using the faster instructions in low register pressure 1946 // situations and using the larger register file in high register pressure 1947 // situations. 1948 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 1949 unsigned UpperOpcode, LowerOpcode; 1950 switch (MI.getOpcode()) { 1951 case PPC::DFLOADf32: 1952 UpperOpcode = PPC::LXSSP; 1953 LowerOpcode = PPC::LFS; 1954 break; 1955 case PPC::DFLOADf64: 1956 UpperOpcode = PPC::LXSD; 1957 LowerOpcode = PPC::LFD; 1958 break; 1959 case PPC::DFSTOREf32: 1960 UpperOpcode = PPC::STXSSP; 1961 LowerOpcode = PPC::STFS; 1962 break; 1963 case PPC::DFSTOREf64: 1964 UpperOpcode = PPC::STXSD; 1965 LowerOpcode = PPC::STFD; 1966 break; 1967 case PPC::XFLOADf32: 1968 UpperOpcode = PPC::LXSSPX; 1969 LowerOpcode = PPC::LFSX; 1970 break; 1971 case PPC::XFLOADf64: 1972 UpperOpcode = PPC::LXSDX; 1973 LowerOpcode = PPC::LFDX; 1974 break; 1975 case PPC::XFSTOREf32: 1976 UpperOpcode = PPC::STXSSPX; 1977 LowerOpcode = PPC::STFSX; 1978 break; 1979 case PPC::XFSTOREf64: 1980 UpperOpcode = PPC::STXSDX; 1981 LowerOpcode = PPC::STFDX; 1982 break; 1983 case PPC::LIWAX: 1984 UpperOpcode = PPC::LXSIWAX; 1985 LowerOpcode = PPC::LFIWAX; 1986 break; 1987 case PPC::LIWZX: 1988 UpperOpcode = PPC::LXSIWZX; 1989 LowerOpcode = PPC::LFIWZX; 1990 break; 1991 case PPC::STIWX: 1992 UpperOpcode = PPC::STXSIWX; 1993 LowerOpcode = PPC::STFIWX; 1994 break; 1995 default: 1996 llvm_unreachable("Unknown Operation!"); 1997 } 1998 1999 Register TargetReg = MI.getOperand(0).getReg(); 2000 unsigned Opcode; 2001 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2002 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2003 Opcode = LowerOpcode; 2004 else 2005 Opcode = UpperOpcode; 2006 MI.setDesc(get(Opcode)); 2007 return true; 2008 } 2009 2010 static bool isAnImmediateOperand(const MachineOperand &MO) { 2011 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2012 } 2013 2014 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2015 auto &MBB = *MI.getParent(); 2016 auto DL = MI.getDebugLoc(); 2017 2018 switch (MI.getOpcode()) { 2019 case TargetOpcode::LOAD_STACK_GUARD: { 2020 assert(Subtarget.isTargetLinux() && 2021 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2022 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2023 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2024 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2025 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2026 .addImm(Offset) 2027 .addReg(Reg); 2028 return true; 2029 } 2030 case PPC::DFLOADf32: 2031 case PPC::DFLOADf64: 2032 case PPC::DFSTOREf32: 2033 case PPC::DFSTOREf64: { 2034 assert(Subtarget.hasP9Vector() && 2035 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2036 assert(MI.getOperand(2).isReg() && 2037 isAnImmediateOperand(MI.getOperand(1)) && 2038 "D-form op must have register and immediate operands"); 2039 return expandVSXMemPseudo(MI); 2040 } 2041 case PPC::XFLOADf32: 2042 case PPC::XFSTOREf32: 2043 case PPC::LIWAX: 2044 case PPC::LIWZX: 2045 case PPC::STIWX: { 2046 assert(Subtarget.hasP8Vector() && 2047 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2048 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2049 "X-form op must have register and register operands"); 2050 return expandVSXMemPseudo(MI); 2051 } 2052 case PPC::XFLOADf64: 2053 case PPC::XFSTOREf64: { 2054 assert(Subtarget.hasVSX() && 2055 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2056 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2057 "X-form op must have register and register operands"); 2058 return expandVSXMemPseudo(MI); 2059 } 2060 case PPC::SPILLTOVSR_LD: { 2061 Register TargetReg = MI.getOperand(0).getReg(); 2062 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2063 MI.setDesc(get(PPC::DFLOADf64)); 2064 return expandPostRAPseudo(MI); 2065 } 2066 else 2067 MI.setDesc(get(PPC::LD)); 2068 return true; 2069 } 2070 case PPC::SPILLTOVSR_ST: { 2071 Register SrcReg = MI.getOperand(0).getReg(); 2072 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2073 NumStoreSPILLVSRRCAsVec++; 2074 MI.setDesc(get(PPC::DFSTOREf64)); 2075 return expandPostRAPseudo(MI); 2076 } else { 2077 NumStoreSPILLVSRRCAsGpr++; 2078 MI.setDesc(get(PPC::STD)); 2079 } 2080 return true; 2081 } 2082 case PPC::SPILLTOVSR_LDX: { 2083 Register TargetReg = MI.getOperand(0).getReg(); 2084 if (PPC::VSFRCRegClass.contains(TargetReg)) 2085 MI.setDesc(get(PPC::LXSDX)); 2086 else 2087 MI.setDesc(get(PPC::LDX)); 2088 return true; 2089 } 2090 case PPC::SPILLTOVSR_STX: { 2091 Register SrcReg = MI.getOperand(0).getReg(); 2092 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2093 NumStoreSPILLVSRRCAsVec++; 2094 MI.setDesc(get(PPC::STXSDX)); 2095 } else { 2096 NumStoreSPILLVSRRCAsGpr++; 2097 MI.setDesc(get(PPC::STDX)); 2098 } 2099 return true; 2100 } 2101 2102 case PPC::CFENCE8: { 2103 auto Val = MI.getOperand(0).getReg(); 2104 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2105 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2106 .addImm(PPC::PRED_NE_MINUS) 2107 .addReg(PPC::CR7) 2108 .addImm(1); 2109 MI.setDesc(get(PPC::ISYNC)); 2110 MI.RemoveOperand(0); 2111 return true; 2112 } 2113 } 2114 return false; 2115 } 2116 2117 // Essentially a compile-time implementation of a compare->isel sequence. 2118 // It takes two constants to compare, along with the true/false registers 2119 // and the comparison type (as a subreg to a CR field) and returns one 2120 // of the true/false registers, depending on the comparison results. 2121 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2122 unsigned TrueReg, unsigned FalseReg, 2123 unsigned CRSubReg) { 2124 // Signed comparisons. The immediates are assumed to be sign-extended. 2125 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2126 switch (CRSubReg) { 2127 default: llvm_unreachable("Unknown integer comparison type."); 2128 case PPC::sub_lt: 2129 return Imm1 < Imm2 ? TrueReg : FalseReg; 2130 case PPC::sub_gt: 2131 return Imm1 > Imm2 ? TrueReg : FalseReg; 2132 case PPC::sub_eq: 2133 return Imm1 == Imm2 ? TrueReg : FalseReg; 2134 } 2135 } 2136 // Unsigned comparisons. 2137 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2138 switch (CRSubReg) { 2139 default: llvm_unreachable("Unknown integer comparison type."); 2140 case PPC::sub_lt: 2141 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2142 case PPC::sub_gt: 2143 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2144 case PPC::sub_eq: 2145 return Imm1 == Imm2 ? TrueReg : FalseReg; 2146 } 2147 } 2148 return PPC::NoRegister; 2149 } 2150 2151 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2152 unsigned OpNo, 2153 int64_t Imm) const { 2154 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2155 // Replace the REG with the Immediate. 2156 Register InUseReg = MI.getOperand(OpNo).getReg(); 2157 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2158 2159 if (MI.implicit_operands().empty()) 2160 return; 2161 2162 // We need to make sure that the MI didn't have any implicit use 2163 // of this REG any more. 2164 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2165 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2166 if (UseOpIdx >= 0) { 2167 MachineOperand &MO = MI.getOperand(UseOpIdx); 2168 if (MO.isImplicit()) 2169 // The operands must always be in the following order: 2170 // - explicit reg defs, 2171 // - other explicit operands (reg uses, immediates, etc.), 2172 // - implicit reg defs 2173 // - implicit reg uses 2174 // Therefore, removing the implicit operand won't change the explicit 2175 // operands layout. 2176 MI.RemoveOperand(UseOpIdx); 2177 } 2178 } 2179 2180 // Replace an instruction with one that materializes a constant (and sets 2181 // CR0 if the original instruction was a record-form instruction). 2182 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2183 const LoadImmediateInfo &LII) const { 2184 // Remove existing operands. 2185 int OperandToKeep = LII.SetCR ? 1 : 0; 2186 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2187 MI.RemoveOperand(i); 2188 2189 // Replace the instruction. 2190 if (LII.SetCR) { 2191 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2192 // Set the immediate. 2193 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2194 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2195 return; 2196 } 2197 else 2198 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2199 2200 // Set the immediate. 2201 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2202 .addImm(LII.Imm); 2203 } 2204 2205 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2206 bool &SeenIntermediateUse) const { 2207 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2208 "Should be called after register allocation."); 2209 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2210 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2211 It++; 2212 SeenIntermediateUse = false; 2213 for (; It != E; ++It) { 2214 if (It->modifiesRegister(Reg, TRI)) 2215 return &*It; 2216 if (It->readsRegister(Reg, TRI)) 2217 SeenIntermediateUse = true; 2218 } 2219 return nullptr; 2220 } 2221 2222 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2223 MachineInstr &MI, 2224 unsigned &OpNoForForwarding, 2225 bool &SeenIntermediateUse) const { 2226 OpNoForForwarding = ~0U; 2227 MachineInstr *DefMI = nullptr; 2228 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2229 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2230 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2231 // within the basic block to see if the register is defined using an LI/LI8. 2232 if (MRI->isSSA()) { 2233 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2234 if (!MI.getOperand(i).isReg()) 2235 continue; 2236 Register Reg = MI.getOperand(i).getReg(); 2237 if (!Register::isVirtualRegister(Reg)) 2238 continue; 2239 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2240 if (Register::isVirtualRegister(TrueReg)) { 2241 DefMI = MRI->getVRegDef(TrueReg); 2242 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2243 OpNoForForwarding = i; 2244 break; 2245 } 2246 } 2247 } 2248 } else { 2249 // Looking back through the definition for each operand could be expensive, 2250 // so exit early if this isn't an instruction that either has an immediate 2251 // form or is already an immediate form that we can handle. 2252 ImmInstrInfo III; 2253 unsigned Opc = MI.getOpcode(); 2254 bool ConvertibleImmForm = 2255 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2256 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2257 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2258 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2259 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2260 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2261 Opc == PPC::RLWINM8_rec; 2262 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2263 ? isVFRegister(MI.getOperand(0).getReg()) 2264 : false; 2265 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2266 return nullptr; 2267 2268 // Don't convert or %X, %Y, %Y since that's just a register move. 2269 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2270 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2271 return nullptr; 2272 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2273 MachineOperand &MO = MI.getOperand(i); 2274 SeenIntermediateUse = false; 2275 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2276 Register Reg = MI.getOperand(i).getReg(); 2277 // If we see another use of this reg between the def and the MI, 2278 // we want to flat it so the def isn't deleted. 2279 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2280 if (DefMI) { 2281 // Is this register defined by some form of add-immediate (including 2282 // load-immediate) within this basic block? 2283 switch (DefMI->getOpcode()) { 2284 default: 2285 break; 2286 case PPC::LI: 2287 case PPC::LI8: 2288 case PPC::ADDItocL: 2289 case PPC::ADDI: 2290 case PPC::ADDI8: 2291 OpNoForForwarding = i; 2292 return DefMI; 2293 } 2294 } 2295 } 2296 } 2297 } 2298 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2299 } 2300 2301 unsigned PPCInstrInfo::getSpillTarget() const { 2302 return Subtarget.hasP9Vector() ? 1 : 0; 2303 } 2304 2305 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2306 return StoreSpillOpcodesArray[getSpillTarget()]; 2307 } 2308 2309 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2310 return LoadSpillOpcodesArray[getSpillTarget()]; 2311 } 2312 2313 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2314 unsigned RegNo) const { 2315 const MachineRegisterInfo &MRI = 2316 StartMI.getParent()->getParent()->getRegInfo(); 2317 if (MRI.isSSA()) 2318 return; 2319 2320 // Instructions between [StartMI, EndMI] should be in same basic block. 2321 assert((StartMI.getParent() == EndMI.getParent()) && 2322 "Instructions are not in same basic block"); 2323 2324 bool IsKillSet = false; 2325 2326 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2327 MachineOperand &MO = MI.getOperand(Index); 2328 if (MO.isReg() && MO.isUse() && MO.isKill() && 2329 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2330 MO.setIsKill(false); 2331 }; 2332 2333 // Set killed flag for EndMI. 2334 // No need to do anything if EndMI defines RegNo. 2335 int UseIndex = 2336 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2337 if (UseIndex != -1) { 2338 EndMI.getOperand(UseIndex).setIsKill(true); 2339 IsKillSet = true; 2340 // Clear killed flag for other EndMI operands related to RegNo. In some 2341 // upexpected cases, killed may be set multiple times for same register 2342 // operand in same MI. 2343 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2344 if (i != UseIndex) 2345 clearOperandKillInfo(EndMI, i); 2346 } 2347 2348 // Walking the inst in reverse order (EndMI -> StartMI]. 2349 MachineBasicBlock::reverse_iterator It = EndMI; 2350 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2351 // EndMI has been handled above, skip it here. 2352 It++; 2353 MachineOperand *MO = nullptr; 2354 for (; It != E; ++It) { 2355 // Skip insturctions which could not be a def/use of RegNo. 2356 if (It->isDebugInstr() || It->isPosition()) 2357 continue; 2358 2359 // Clear killed flag for all It operands related to RegNo. In some 2360 // upexpected cases, killed may be set multiple times for same register 2361 // operand in same MI. 2362 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2363 clearOperandKillInfo(*It, i); 2364 2365 // If killed is not set, set killed for its last use or set dead for its def 2366 // if no use found. 2367 if (!IsKillSet) { 2368 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2369 // Use found, set it killed. 2370 IsKillSet = true; 2371 MO->setIsKill(true); 2372 continue; 2373 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2374 &getRegisterInfo()))) { 2375 // No use found, set dead for its def. 2376 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2377 MO->setIsDead(true); 2378 break; 2379 } 2380 } 2381 2382 if ((&*It) == &StartMI) 2383 break; 2384 } 2385 // Ensure RegMo liveness is killed after EndMI. 2386 assert((IsKillSet || (MO && MO->isDead())) && 2387 "RegNo should be killed or dead"); 2388 } 2389 2390 // This opt tries to convert the following imm form to an index form to save an 2391 // add for stack variables. 2392 // Return false if no such pattern found. 2393 // 2394 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2395 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2396 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2397 // 2398 // can be converted to: 2399 // 2400 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2401 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2402 // 2403 // In order to eliminate ADD instr, make sure that: 2404 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2405 // new ADDI instr and ADDI can only take int16 Imm. 2406 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2407 // between ADDI and ADD instr since its original def in ADDI will be changed 2408 // in new ADDI instr. And also there should be no new def for it between 2409 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2410 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2411 // between ADD and Imm instr since ADD instr will be eliminated. 2412 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2413 // moved to Index instr. 2414 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2415 MachineFunction *MF = MI.getParent()->getParent(); 2416 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2417 bool PostRA = !MRI->isSSA(); 2418 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2419 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2420 // frame base(OffsetAddi) are determined. 2421 if (!PostRA) 2422 return false; 2423 unsigned ToBeDeletedReg = 0; 2424 int64_t OffsetImm = 0; 2425 unsigned XFormOpcode = 0; 2426 ImmInstrInfo III; 2427 2428 // Check if Imm instr meets requirement. 2429 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2430 III)) 2431 return false; 2432 2433 bool OtherIntermediateUse = false; 2434 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2435 2436 // Exit if there is other use between ADD and Imm instr or no def found. 2437 if (OtherIntermediateUse || !ADDMI) 2438 return false; 2439 2440 // Check if ADD instr meets requirement. 2441 if (!isADDInstrEligibleForFolding(*ADDMI)) 2442 return false; 2443 2444 unsigned ScaleRegIdx = 0; 2445 int64_t OffsetAddi = 0; 2446 MachineInstr *ADDIMI = nullptr; 2447 2448 // Check if there is a valid ToBeChangedReg in ADDMI. 2449 // 1: It must be killed. 2450 // 2: Its definition must be a valid ADDIMI. 2451 // 3: It must satify int16 offset requirement. 2452 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 2453 ScaleRegIdx = 2; 2454 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 2455 ScaleRegIdx = 1; 2456 else 2457 return false; 2458 2459 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 2460 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 2461 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 2462 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 2463 MachineBasicBlock::iterator End) { 2464 for (auto It = ++Start; It != End; It++) 2465 if (It->modifiesRegister(Reg, &getRegisterInfo())) 2466 return true; 2467 return false; 2468 }; 2469 2470 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 2471 // treated as special zero when ScaleReg is R0/X0 register. 2472 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 2473 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 2474 return false; 2475 2476 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 2477 // and Imm Instr. 2478 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 2479 return false; 2480 2481 // Now start to do the transformation. 2482 LLVM_DEBUG(dbgs() << "Replace instruction: " 2483 << "\n"); 2484 LLVM_DEBUG(ADDIMI->dump()); 2485 LLVM_DEBUG(ADDMI->dump()); 2486 LLVM_DEBUG(MI.dump()); 2487 LLVM_DEBUG(dbgs() << "with: " 2488 << "\n"); 2489 2490 // Update ADDI instr. 2491 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 2492 2493 // Update Imm instr. 2494 MI.setDesc(get(XFormOpcode)); 2495 MI.getOperand(III.ImmOpNo) 2496 .ChangeToRegister(ScaleReg, false, false, 2497 ADDMI->getOperand(ScaleRegIdx).isKill()); 2498 2499 MI.getOperand(III.OpNoForForwarding) 2500 .ChangeToRegister(ToBeChangedReg, false, false, true); 2501 2502 // Eliminate ADD instr. 2503 ADDMI->eraseFromParent(); 2504 2505 LLVM_DEBUG(ADDIMI->dump()); 2506 LLVM_DEBUG(MI.dump()); 2507 2508 return true; 2509 } 2510 2511 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 2512 int64_t &Imm) const { 2513 unsigned Opc = ADDIMI.getOpcode(); 2514 2515 // Exit if the instruction is not ADDI. 2516 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 2517 return false; 2518 2519 Imm = ADDIMI.getOperand(2).getImm(); 2520 2521 return true; 2522 } 2523 2524 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 2525 unsigned Opc = ADDMI.getOpcode(); 2526 2527 // Exit if the instruction is not ADD. 2528 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 2529 } 2530 2531 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 2532 unsigned &ToBeDeletedReg, 2533 unsigned &XFormOpcode, 2534 int64_t &OffsetImm, 2535 ImmInstrInfo &III) const { 2536 // Only handle load/store. 2537 if (!MI.mayLoadOrStore()) 2538 return false; 2539 2540 unsigned Opc = MI.getOpcode(); 2541 2542 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 2543 2544 // Exit if instruction has no index form. 2545 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 2546 return false; 2547 2548 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 2549 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 2550 III, true)) 2551 return false; 2552 2553 if (!III.IsSummingOperands) 2554 return false; 2555 2556 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 2557 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 2558 // Only support imm operands, not relocation slots or others. 2559 if (!ImmOperand.isImm()) 2560 return false; 2561 2562 assert(RegOperand.isReg() && "Instruction format is not right"); 2563 2564 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 2565 if (!RegOperand.isKill()) 2566 return false; 2567 2568 ToBeDeletedReg = RegOperand.getReg(); 2569 OffsetImm = ImmOperand.getImm(); 2570 2571 return true; 2572 } 2573 2574 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 2575 MachineInstr *&ADDIMI, 2576 int64_t &OffsetAddi, 2577 int64_t OffsetImm) const { 2578 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 2579 MachineOperand &MO = ADDMI->getOperand(Index); 2580 2581 if (!MO.isKill()) 2582 return false; 2583 2584 bool OtherIntermediateUse = false; 2585 2586 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 2587 // Currently handle only one "add + Imminstr" pair case, exit if other 2588 // intermediate use for ToBeChangedReg found. 2589 // TODO: handle the cases where there are other "add + Imminstr" pairs 2590 // with same offset in Imminstr which is like: 2591 // 2592 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2593 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 2594 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 2595 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 2596 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 2597 // 2598 // can be converted to: 2599 // 2600 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 2601 // (OffsetAddi + OffsetImm) 2602 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 2603 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 2604 2605 if (OtherIntermediateUse || !ADDIMI) 2606 return false; 2607 // Check if ADDI instr meets requirement. 2608 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 2609 return false; 2610 2611 if (isInt<16>(OffsetAddi + OffsetImm)) 2612 return true; 2613 return false; 2614 } 2615 2616 // If this instruction has an immediate form and one of its operands is a 2617 // result of a load-immediate or an add-immediate, convert it to 2618 // the immediate form if the constant is in range. 2619 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2620 MachineInstr **KilledDef) const { 2621 MachineFunction *MF = MI.getParent()->getParent(); 2622 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2623 bool PostRA = !MRI->isSSA(); 2624 bool SeenIntermediateUse = true; 2625 unsigned ForwardingOperand = ~0U; 2626 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2627 SeenIntermediateUse); 2628 if (!DefMI) 2629 return false; 2630 assert(ForwardingOperand < MI.getNumOperands() && 2631 "The forwarding operand needs to be valid at this point"); 2632 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2633 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2634 Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2635 if (KilledDef && KillFwdDefMI) 2636 *KilledDef = DefMI; 2637 2638 ImmInstrInfo III; 2639 bool IsVFReg = MI.getOperand(0).isReg() 2640 ? isVFRegister(MI.getOperand(0).getReg()) 2641 : false; 2642 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 2643 // If this is a reg+reg instruction that has a reg+imm form, 2644 // and one of the operands is produced by an add-immediate, 2645 // try to convert it. 2646 if (HasImmForm && 2647 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2648 KillFwdDefMI)) 2649 return true; 2650 2651 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2652 !DefMI->getOperand(1).isImm()) 2653 return false; 2654 2655 int64_t Immediate = DefMI->getOperand(1).getImm(); 2656 // Sign-extend to 64-bits. 2657 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2658 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2659 2660 // If this is a reg+reg instruction that has a reg+imm form, 2661 // and one of the operands is produced by LI, convert it now. 2662 if (HasImmForm) 2663 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2664 2665 bool ReplaceWithLI = false; 2666 bool Is64BitLI = false; 2667 int64_t NewImm = 0; 2668 bool SetCR = false; 2669 unsigned Opc = MI.getOpcode(); 2670 switch (Opc) { 2671 default: return false; 2672 2673 // FIXME: Any branches conditional on such a comparison can be made 2674 // unconditional. At this time, this happens too infrequently to be worth 2675 // the implementation effort, but if that ever changes, we could convert 2676 // such a pattern here. 2677 case PPC::CMPWI: 2678 case PPC::CMPLWI: 2679 case PPC::CMPDI: 2680 case PPC::CMPLDI: { 2681 // Doing this post-RA would require dataflow analysis to reliably find uses 2682 // of the CR register set by the compare. 2683 // No need to fixup killed/dead flag since this transformation is only valid 2684 // before RA. 2685 if (PostRA) 2686 return false; 2687 // If a compare-immediate is fed by an immediate and is itself an input of 2688 // an ISEL (the most common case) into a COPY of the correct register. 2689 bool Changed = false; 2690 Register DefReg = MI.getOperand(0).getReg(); 2691 int64_t Comparand = MI.getOperand(2).getImm(); 2692 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2693 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2694 2695 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2696 unsigned UseOpc = CompareUseMI.getOpcode(); 2697 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2698 continue; 2699 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2700 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 2701 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 2702 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2703 FalseReg, CRSubReg); 2704 if (RegToCopy == PPC::NoRegister) 2705 continue; 2706 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2707 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2708 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2709 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2710 CompareUseMI.RemoveOperand(3); 2711 CompareUseMI.RemoveOperand(2); 2712 continue; 2713 } 2714 LLVM_DEBUG( 2715 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2716 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2717 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2718 // Convert to copy and remove unneeded operands. 2719 CompareUseMI.setDesc(get(PPC::COPY)); 2720 CompareUseMI.RemoveOperand(3); 2721 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2722 CmpIselsConverted++; 2723 Changed = true; 2724 LLVM_DEBUG(CompareUseMI.dump()); 2725 } 2726 if (Changed) 2727 return true; 2728 // This may end up incremented multiple times since this function is called 2729 // during a fixed-point transformation, but it is only meant to indicate the 2730 // presence of this opportunity. 2731 MissedConvertibleImmediateInstrs++; 2732 return false; 2733 } 2734 2735 // Immediate forms - may simply be convertable to an LI. 2736 case PPC::ADDI: 2737 case PPC::ADDI8: { 2738 // Does the sum fit in a 16-bit signed field? 2739 int64_t Addend = MI.getOperand(2).getImm(); 2740 if (isInt<16>(Addend + SExtImm)) { 2741 ReplaceWithLI = true; 2742 Is64BitLI = Opc == PPC::ADDI8; 2743 NewImm = Addend + SExtImm; 2744 break; 2745 } 2746 return false; 2747 } 2748 case PPC::RLDICL: 2749 case PPC::RLDICL_rec: 2750 case PPC::RLDICL_32: 2751 case PPC::RLDICL_32_64: { 2752 // Use APInt's rotate function. 2753 int64_t SH = MI.getOperand(2).getImm(); 2754 int64_t MB = MI.getOperand(3).getImm(); 2755 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 2756 SExtImm, true); 2757 InVal = InVal.rotl(SH); 2758 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 2759 InVal &= Mask; 2760 // Can't replace negative values with an LI as that will sign-extend 2761 // and not clear the left bits. If we're setting the CR bit, we will use 2762 // ANDI_rec which won't sign extend, so that's safe. 2763 if (isUInt<15>(InVal.getSExtValue()) || 2764 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 2765 ReplaceWithLI = true; 2766 Is64BitLI = Opc != PPC::RLDICL_32; 2767 NewImm = InVal.getSExtValue(); 2768 SetCR = Opc == PPC::RLDICL_rec; 2769 break; 2770 } 2771 return false; 2772 } 2773 case PPC::RLWINM: 2774 case PPC::RLWINM8: 2775 case PPC::RLWINM_rec: 2776 case PPC::RLWINM8_rec: { 2777 int64_t SH = MI.getOperand(2).getImm(); 2778 int64_t MB = MI.getOperand(3).getImm(); 2779 int64_t ME = MI.getOperand(4).getImm(); 2780 APInt InVal(32, SExtImm, true); 2781 InVal = InVal.rotl(SH); 2782 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2783 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2784 InVal &= Mask; 2785 // Can't replace negative values with an LI as that will sign-extend 2786 // and not clear the left bits. If we're setting the CR bit, we will use 2787 // ANDI_rec which won't sign extend, so that's safe. 2788 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2789 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 2790 isUInt<16>(InVal.getSExtValue())); 2791 if (ValueFits) { 2792 ReplaceWithLI = true; 2793 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 2794 NewImm = InVal.getSExtValue(); 2795 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 2796 break; 2797 } 2798 return false; 2799 } 2800 case PPC::ORI: 2801 case PPC::ORI8: 2802 case PPC::XORI: 2803 case PPC::XORI8: { 2804 int64_t LogicalImm = MI.getOperand(2).getImm(); 2805 int64_t Result = 0; 2806 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2807 Result = LogicalImm | SExtImm; 2808 else 2809 Result = LogicalImm ^ SExtImm; 2810 if (isInt<16>(Result)) { 2811 ReplaceWithLI = true; 2812 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2813 NewImm = Result; 2814 break; 2815 } 2816 return false; 2817 } 2818 } 2819 2820 if (ReplaceWithLI) { 2821 // We need to be careful with CR-setting instructions we're replacing. 2822 if (SetCR) { 2823 // We don't know anything about uses when we're out of SSA, so only 2824 // replace if the new immediate will be reproduced. 2825 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2826 if (PostRA && ImmChanged) 2827 return false; 2828 2829 if (!PostRA) { 2830 // If the defining load-immediate has no other uses, we can just replace 2831 // the immediate with the new immediate. 2832 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2833 DefMI->getOperand(1).setImm(NewImm); 2834 2835 // If we're not using the GPR result of the CR-setting instruction, we 2836 // just need to and with zero/non-zero depending on the new immediate. 2837 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2838 if (NewImm) { 2839 assert(Immediate && "Transformation converted zero to non-zero?"); 2840 NewImm = Immediate; 2841 } 2842 } 2843 else if (ImmChanged) 2844 return false; 2845 } 2846 } 2847 2848 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2849 LLVM_DEBUG(MI.dump()); 2850 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2851 LLVM_DEBUG(DefMI->dump()); 2852 LoadImmediateInfo LII; 2853 LII.Imm = NewImm; 2854 LII.Is64Bit = Is64BitLI; 2855 LII.SetCR = SetCR; 2856 // If we're setting the CR, the original load-immediate must be kept (as an 2857 // operand to ANDI_rec/ANDI8_rec). 2858 if (KilledDef && SetCR) 2859 *KilledDef = nullptr; 2860 replaceInstrWithLI(MI, LII); 2861 2862 // Fixup killed/dead flag after transformation. 2863 // Pattern: 2864 // ForwardingOperandReg = LI imm1 2865 // y = op2 imm2, ForwardingOperandReg(killed) 2866 if (IsForwardingOperandKilled) 2867 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 2868 2869 LLVM_DEBUG(dbgs() << "With:\n"); 2870 LLVM_DEBUG(MI.dump()); 2871 return true; 2872 } 2873 return false; 2874 } 2875 2876 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 2877 ImmInstrInfo &III, bool PostRA) const { 2878 // The vast majority of the instructions would need their operand 2 replaced 2879 // with an immediate when switching to the reg+imm form. A marked exception 2880 // are the update form loads/stores for which a constant operand 2 would need 2881 // to turn into a displacement and move operand 1 to the operand 2 position. 2882 III.ImmOpNo = 2; 2883 III.OpNoForForwarding = 2; 2884 III.ImmWidth = 16; 2885 III.ImmMustBeMultipleOf = 1; 2886 III.TruncateImmTo = 0; 2887 III.IsSummingOperands = false; 2888 switch (Opc) { 2889 default: return false; 2890 case PPC::ADD4: 2891 case PPC::ADD8: 2892 III.SignedImm = true; 2893 III.ZeroIsSpecialOrig = 0; 2894 III.ZeroIsSpecialNew = 1; 2895 III.IsCommutative = true; 2896 III.IsSummingOperands = true; 2897 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 2898 break; 2899 case PPC::ADDC: 2900 case PPC::ADDC8: 2901 III.SignedImm = true; 2902 III.ZeroIsSpecialOrig = 0; 2903 III.ZeroIsSpecialNew = 0; 2904 III.IsCommutative = true; 2905 III.IsSummingOperands = true; 2906 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 2907 break; 2908 case PPC::ADDC_rec: 2909 III.SignedImm = true; 2910 III.ZeroIsSpecialOrig = 0; 2911 III.ZeroIsSpecialNew = 0; 2912 III.IsCommutative = true; 2913 III.IsSummingOperands = true; 2914 III.ImmOpcode = PPC::ADDIC_rec; 2915 break; 2916 case PPC::SUBFC: 2917 case PPC::SUBFC8: 2918 III.SignedImm = true; 2919 III.ZeroIsSpecialOrig = 0; 2920 III.ZeroIsSpecialNew = 0; 2921 III.IsCommutative = false; 2922 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 2923 break; 2924 case PPC::CMPW: 2925 case PPC::CMPD: 2926 III.SignedImm = true; 2927 III.ZeroIsSpecialOrig = 0; 2928 III.ZeroIsSpecialNew = 0; 2929 III.IsCommutative = false; 2930 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 2931 break; 2932 case PPC::CMPLW: 2933 case PPC::CMPLD: 2934 III.SignedImm = false; 2935 III.ZeroIsSpecialOrig = 0; 2936 III.ZeroIsSpecialNew = 0; 2937 III.IsCommutative = false; 2938 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 2939 break; 2940 case PPC::AND_rec: 2941 case PPC::AND8_rec: 2942 case PPC::OR: 2943 case PPC::OR8: 2944 case PPC::XOR: 2945 case PPC::XOR8: 2946 III.SignedImm = false; 2947 III.ZeroIsSpecialOrig = 0; 2948 III.ZeroIsSpecialNew = 0; 2949 III.IsCommutative = true; 2950 switch(Opc) { 2951 default: llvm_unreachable("Unknown opcode"); 2952 case PPC::AND_rec: 2953 III.ImmOpcode = PPC::ANDI_rec; 2954 break; 2955 case PPC::AND8_rec: 2956 III.ImmOpcode = PPC::ANDI8_rec; 2957 break; 2958 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 2959 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 2960 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 2961 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 2962 } 2963 break; 2964 case PPC::RLWNM: 2965 case PPC::RLWNM8: 2966 case PPC::RLWNM_rec: 2967 case PPC::RLWNM8_rec: 2968 case PPC::SLW: 2969 case PPC::SLW8: 2970 case PPC::SLW_rec: 2971 case PPC::SLW8_rec: 2972 case PPC::SRW: 2973 case PPC::SRW8: 2974 case PPC::SRW_rec: 2975 case PPC::SRW8_rec: 2976 case PPC::SRAW: 2977 case PPC::SRAW_rec: 2978 III.SignedImm = false; 2979 III.ZeroIsSpecialOrig = 0; 2980 III.ZeroIsSpecialNew = 0; 2981 III.IsCommutative = false; 2982 // This isn't actually true, but the instructions ignore any of the 2983 // upper bits, so any immediate loaded with an LI is acceptable. 2984 // This does not apply to shift right algebraic because a value 2985 // out of range will produce a -1/0. 2986 III.ImmWidth = 16; 2987 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 2988 Opc == PPC::RLWNM8_rec) 2989 III.TruncateImmTo = 5; 2990 else 2991 III.TruncateImmTo = 6; 2992 switch(Opc) { 2993 default: llvm_unreachable("Unknown opcode"); 2994 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 2995 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 2996 case PPC::RLWNM_rec: 2997 III.ImmOpcode = PPC::RLWINM_rec; 2998 break; 2999 case PPC::RLWNM8_rec: 3000 III.ImmOpcode = PPC::RLWINM8_rec; 3001 break; 3002 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3003 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3004 case PPC::SLW_rec: 3005 III.ImmOpcode = PPC::RLWINM_rec; 3006 break; 3007 case PPC::SLW8_rec: 3008 III.ImmOpcode = PPC::RLWINM8_rec; 3009 break; 3010 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3011 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3012 case PPC::SRW_rec: 3013 III.ImmOpcode = PPC::RLWINM_rec; 3014 break; 3015 case PPC::SRW8_rec: 3016 III.ImmOpcode = PPC::RLWINM8_rec; 3017 break; 3018 case PPC::SRAW: 3019 III.ImmWidth = 5; 3020 III.TruncateImmTo = 0; 3021 III.ImmOpcode = PPC::SRAWI; 3022 break; 3023 case PPC::SRAW_rec: 3024 III.ImmWidth = 5; 3025 III.TruncateImmTo = 0; 3026 III.ImmOpcode = PPC::SRAWI_rec; 3027 break; 3028 } 3029 break; 3030 case PPC::RLDCL: 3031 case PPC::RLDCL_rec: 3032 case PPC::RLDCR: 3033 case PPC::RLDCR_rec: 3034 case PPC::SLD: 3035 case PPC::SLD_rec: 3036 case PPC::SRD: 3037 case PPC::SRD_rec: 3038 case PPC::SRAD: 3039 case PPC::SRAD_rec: 3040 III.SignedImm = false; 3041 III.ZeroIsSpecialOrig = 0; 3042 III.ZeroIsSpecialNew = 0; 3043 III.IsCommutative = false; 3044 // This isn't actually true, but the instructions ignore any of the 3045 // upper bits, so any immediate loaded with an LI is acceptable. 3046 // This does not apply to shift right algebraic because a value 3047 // out of range will produce a -1/0. 3048 III.ImmWidth = 16; 3049 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3050 Opc == PPC::RLDCR_rec) 3051 III.TruncateImmTo = 6; 3052 else 3053 III.TruncateImmTo = 7; 3054 switch(Opc) { 3055 default: llvm_unreachable("Unknown opcode"); 3056 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3057 case PPC::RLDCL_rec: 3058 III.ImmOpcode = PPC::RLDICL_rec; 3059 break; 3060 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3061 case PPC::RLDCR_rec: 3062 III.ImmOpcode = PPC::RLDICR_rec; 3063 break; 3064 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3065 case PPC::SLD_rec: 3066 III.ImmOpcode = PPC::RLDICR_rec; 3067 break; 3068 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3069 case PPC::SRD_rec: 3070 III.ImmOpcode = PPC::RLDICL_rec; 3071 break; 3072 case PPC::SRAD: 3073 III.ImmWidth = 6; 3074 III.TruncateImmTo = 0; 3075 III.ImmOpcode = PPC::SRADI; 3076 break; 3077 case PPC::SRAD_rec: 3078 III.ImmWidth = 6; 3079 III.TruncateImmTo = 0; 3080 III.ImmOpcode = PPC::SRADI_rec; 3081 break; 3082 } 3083 break; 3084 // Loads and stores: 3085 case PPC::LBZX: 3086 case PPC::LBZX8: 3087 case PPC::LHZX: 3088 case PPC::LHZX8: 3089 case PPC::LHAX: 3090 case PPC::LHAX8: 3091 case PPC::LWZX: 3092 case PPC::LWZX8: 3093 case PPC::LWAX: 3094 case PPC::LDX: 3095 case PPC::LFSX: 3096 case PPC::LFDX: 3097 case PPC::STBX: 3098 case PPC::STBX8: 3099 case PPC::STHX: 3100 case PPC::STHX8: 3101 case PPC::STWX: 3102 case PPC::STWX8: 3103 case PPC::STDX: 3104 case PPC::STFSX: 3105 case PPC::STFDX: 3106 III.SignedImm = true; 3107 III.ZeroIsSpecialOrig = 1; 3108 III.ZeroIsSpecialNew = 2; 3109 III.IsCommutative = true; 3110 III.IsSummingOperands = true; 3111 III.ImmOpNo = 1; 3112 III.OpNoForForwarding = 2; 3113 switch(Opc) { 3114 default: llvm_unreachable("Unknown opcode"); 3115 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3116 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3117 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3118 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3119 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3120 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3121 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3122 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3123 case PPC::LWAX: 3124 III.ImmOpcode = PPC::LWA; 3125 III.ImmMustBeMultipleOf = 4; 3126 break; 3127 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3128 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3129 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3130 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3131 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3132 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3133 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3134 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3135 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3136 case PPC::STDX: 3137 III.ImmOpcode = PPC::STD; 3138 III.ImmMustBeMultipleOf = 4; 3139 break; 3140 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3141 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3142 } 3143 break; 3144 case PPC::LBZUX: 3145 case PPC::LBZUX8: 3146 case PPC::LHZUX: 3147 case PPC::LHZUX8: 3148 case PPC::LHAUX: 3149 case PPC::LHAUX8: 3150 case PPC::LWZUX: 3151 case PPC::LWZUX8: 3152 case PPC::LDUX: 3153 case PPC::LFSUX: 3154 case PPC::LFDUX: 3155 case PPC::STBUX: 3156 case PPC::STBUX8: 3157 case PPC::STHUX: 3158 case PPC::STHUX8: 3159 case PPC::STWUX: 3160 case PPC::STWUX8: 3161 case PPC::STDUX: 3162 case PPC::STFSUX: 3163 case PPC::STFDUX: 3164 III.SignedImm = true; 3165 III.ZeroIsSpecialOrig = 2; 3166 III.ZeroIsSpecialNew = 3; 3167 III.IsCommutative = false; 3168 III.IsSummingOperands = true; 3169 III.ImmOpNo = 2; 3170 III.OpNoForForwarding = 3; 3171 switch(Opc) { 3172 default: llvm_unreachable("Unknown opcode"); 3173 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3174 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3175 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3176 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3177 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3178 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3179 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3180 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3181 case PPC::LDUX: 3182 III.ImmOpcode = PPC::LDU; 3183 III.ImmMustBeMultipleOf = 4; 3184 break; 3185 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3186 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3187 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3188 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3189 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3190 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3191 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3192 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3193 case PPC::STDUX: 3194 III.ImmOpcode = PPC::STDU; 3195 III.ImmMustBeMultipleOf = 4; 3196 break; 3197 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3198 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3199 } 3200 break; 3201 // Power9 and up only. For some of these, the X-Form version has access to all 3202 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3203 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3204 // into or stored from is one of the VR registers. 3205 case PPC::LXVX: 3206 case PPC::LXSSPX: 3207 case PPC::LXSDX: 3208 case PPC::STXVX: 3209 case PPC::STXSSPX: 3210 case PPC::STXSDX: 3211 case PPC::XFLOADf32: 3212 case PPC::XFLOADf64: 3213 case PPC::XFSTOREf32: 3214 case PPC::XFSTOREf64: 3215 if (!Subtarget.hasP9Vector()) 3216 return false; 3217 III.SignedImm = true; 3218 III.ZeroIsSpecialOrig = 1; 3219 III.ZeroIsSpecialNew = 2; 3220 III.IsCommutative = true; 3221 III.IsSummingOperands = true; 3222 III.ImmOpNo = 1; 3223 III.OpNoForForwarding = 2; 3224 III.ImmMustBeMultipleOf = 4; 3225 switch(Opc) { 3226 default: llvm_unreachable("Unknown opcode"); 3227 case PPC::LXVX: 3228 III.ImmOpcode = PPC::LXV; 3229 III.ImmMustBeMultipleOf = 16; 3230 break; 3231 case PPC::LXSSPX: 3232 if (PostRA) { 3233 if (IsVFReg) 3234 III.ImmOpcode = PPC::LXSSP; 3235 else { 3236 III.ImmOpcode = PPC::LFS; 3237 III.ImmMustBeMultipleOf = 1; 3238 } 3239 break; 3240 } 3241 LLVM_FALLTHROUGH; 3242 case PPC::XFLOADf32: 3243 III.ImmOpcode = PPC::DFLOADf32; 3244 break; 3245 case PPC::LXSDX: 3246 if (PostRA) { 3247 if (IsVFReg) 3248 III.ImmOpcode = PPC::LXSD; 3249 else { 3250 III.ImmOpcode = PPC::LFD; 3251 III.ImmMustBeMultipleOf = 1; 3252 } 3253 break; 3254 } 3255 LLVM_FALLTHROUGH; 3256 case PPC::XFLOADf64: 3257 III.ImmOpcode = PPC::DFLOADf64; 3258 break; 3259 case PPC::STXVX: 3260 III.ImmOpcode = PPC::STXV; 3261 III.ImmMustBeMultipleOf = 16; 3262 break; 3263 case PPC::STXSSPX: 3264 if (PostRA) { 3265 if (IsVFReg) 3266 III.ImmOpcode = PPC::STXSSP; 3267 else { 3268 III.ImmOpcode = PPC::STFS; 3269 III.ImmMustBeMultipleOf = 1; 3270 } 3271 break; 3272 } 3273 LLVM_FALLTHROUGH; 3274 case PPC::XFSTOREf32: 3275 III.ImmOpcode = PPC::DFSTOREf32; 3276 break; 3277 case PPC::STXSDX: 3278 if (PostRA) { 3279 if (IsVFReg) 3280 III.ImmOpcode = PPC::STXSD; 3281 else { 3282 III.ImmOpcode = PPC::STFD; 3283 III.ImmMustBeMultipleOf = 1; 3284 } 3285 break; 3286 } 3287 LLVM_FALLTHROUGH; 3288 case PPC::XFSTOREf64: 3289 III.ImmOpcode = PPC::DFSTOREf64; 3290 break; 3291 } 3292 break; 3293 } 3294 return true; 3295 } 3296 3297 // Utility function for swaping two arbitrary operands of an instruction. 3298 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3299 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3300 3301 unsigned MaxOp = std::max(Op1, Op2); 3302 unsigned MinOp = std::min(Op1, Op2); 3303 MachineOperand MOp1 = MI.getOperand(MinOp); 3304 MachineOperand MOp2 = MI.getOperand(MaxOp); 3305 MI.RemoveOperand(std::max(Op1, Op2)); 3306 MI.RemoveOperand(std::min(Op1, Op2)); 3307 3308 // If the operands we are swapping are the two at the end (the common case) 3309 // we can just remove both and add them in the opposite order. 3310 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3311 MI.addOperand(MOp2); 3312 MI.addOperand(MOp1); 3313 } else { 3314 // Store all operands in a temporary vector, remove them and re-add in the 3315 // right order. 3316 SmallVector<MachineOperand, 2> MOps; 3317 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3318 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3319 MOps.push_back(MI.getOperand(i)); 3320 MI.RemoveOperand(i); 3321 } 3322 // MOp2 needs to be added next. 3323 MI.addOperand(MOp2); 3324 // Now add the rest. 3325 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3326 if (i == MaxOp) 3327 MI.addOperand(MOp1); 3328 else { 3329 MI.addOperand(MOps.back()); 3330 MOps.pop_back(); 3331 } 3332 } 3333 } 3334 } 3335 3336 // Check if the 'MI' that has the index OpNoForForwarding 3337 // meets the requirement described in the ImmInstrInfo. 3338 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3339 const ImmInstrInfo &III, 3340 unsigned OpNoForForwarding 3341 ) const { 3342 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3343 // would not work pre-RA, we can only do the check post RA. 3344 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3345 if (MRI.isSSA()) 3346 return false; 3347 3348 // Cannot do the transform if MI isn't summing the operands. 3349 if (!III.IsSummingOperands) 3350 return false; 3351 3352 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3353 if (!III.ZeroIsSpecialOrig) 3354 return false; 3355 3356 // We cannot do the transform if the operand we are trying to replace 3357 // isn't the same as the operand the instruction allows. 3358 if (OpNoForForwarding != III.OpNoForForwarding) 3359 return false; 3360 3361 // Check if the instruction we are trying to transform really has 3362 // the special zero register as its operand. 3363 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3364 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3365 return false; 3366 3367 // This machine instruction is convertible if it is, 3368 // 1. summing the operands. 3369 // 2. one of the operands is special zero register. 3370 // 3. the operand we are trying to replace is allowed by the MI. 3371 return true; 3372 } 3373 3374 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3375 // accordingly. 3376 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3377 const ImmInstrInfo &III, 3378 MachineOperand *&ImmMO, 3379 MachineOperand *&RegMO) const { 3380 unsigned Opc = DefMI.getOpcode(); 3381 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3382 return false; 3383 3384 assert(DefMI.getNumOperands() >= 3 && 3385 "Add inst must have at least three operands"); 3386 RegMO = &DefMI.getOperand(1); 3387 ImmMO = &DefMI.getOperand(2); 3388 3389 // This DefMI is elgible for forwarding if it is: 3390 // 1. add inst 3391 // 2. one of the operands is Imm/CPI/Global. 3392 return isAnImmediateOperand(*ImmMO); 3393 } 3394 3395 bool PPCInstrInfo::isRegElgibleForForwarding( 3396 const MachineOperand &RegMO, const MachineInstr &DefMI, 3397 const MachineInstr &MI, bool KillDefMI, 3398 bool &IsFwdFeederRegKilled) const { 3399 // x = addi y, imm 3400 // ... 3401 // z = lfdx 0, x -> z = lfd imm(y) 3402 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3403 // of "y" between the DEF of "x" and "z". 3404 // The query is only valid post RA. 3405 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3406 if (MRI.isSSA()) 3407 return false; 3408 3409 Register Reg = RegMO.getReg(); 3410 3411 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3412 MachineBasicBlock::const_reverse_iterator It = MI; 3413 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3414 It++; 3415 for (; It != E; ++It) { 3416 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3417 return false; 3418 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3419 IsFwdFeederRegKilled = true; 3420 // Made it to DefMI without encountering a clobber. 3421 if ((&*It) == &DefMI) 3422 break; 3423 } 3424 assert((&*It) == &DefMI && "DefMI is missing"); 3425 3426 // If DefMI also defines the register to be forwarded, we can only forward it 3427 // if DefMI is being erased. 3428 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3429 return KillDefMI; 3430 3431 return true; 3432 } 3433 3434 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3435 const MachineInstr &DefMI, 3436 const ImmInstrInfo &III, 3437 int64_t &Imm) const { 3438 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3439 if (DefMI.getOpcode() == PPC::ADDItocL) { 3440 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3441 // However, we know that, it is 16-bit width, and has the alignment of 4. 3442 // Check if the instruction met the requirement. 3443 if (III.ImmMustBeMultipleOf > 4 || 3444 III.TruncateImmTo || III.ImmWidth != 16) 3445 return false; 3446 3447 // Going from XForm to DForm loads means that the displacement needs to be 3448 // not just an immediate but also a multiple of 4, or 16 depending on the 3449 // load. A DForm load cannot be represented if it is a multiple of say 2. 3450 // XForm loads do not have this restriction. 3451 if (ImmMO.isGlobal() && 3452 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3453 return false; 3454 3455 return true; 3456 } 3457 3458 if (ImmMO.isImm()) { 3459 // It is Imm, we need to check if the Imm fit the range. 3460 int64_t Immediate = ImmMO.getImm(); 3461 // Sign-extend to 64-bits. 3462 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3463 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3464 3465 if (Imm % III.ImmMustBeMultipleOf) 3466 return false; 3467 if (III.TruncateImmTo) 3468 Imm &= ((1 << III.TruncateImmTo) - 1); 3469 if (III.SignedImm) { 3470 APInt ActualValue(64, Imm, true); 3471 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3472 return false; 3473 } else { 3474 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3475 if ((uint64_t)Imm > UnsignedMax) 3476 return false; 3477 } 3478 } 3479 else 3480 return false; 3481 3482 // This ImmMO is forwarded if it meets the requriement describle 3483 // in ImmInstrInfo 3484 return true; 3485 } 3486 3487 // If an X-Form instruction is fed by an add-immediate and one of its operands 3488 // is the literal zero, attempt to forward the source of the add-immediate to 3489 // the corresponding D-Form instruction with the displacement coming from 3490 // the immediate being added. 3491 bool PPCInstrInfo::transformToImmFormFedByAdd( 3492 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3493 MachineInstr &DefMI, bool KillDefMI) const { 3494 // RegMO ImmMO 3495 // | | 3496 // x = addi reg, imm <----- DefMI 3497 // y = op 0 , x <----- MI 3498 // | 3499 // OpNoForForwarding 3500 // Check if the MI meet the requirement described in the III. 3501 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3502 return false; 3503 3504 // Check if the DefMI meet the requirement 3505 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3506 MachineOperand *ImmMO = nullptr; 3507 MachineOperand *RegMO = nullptr; 3508 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3509 return false; 3510 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3511 3512 // As we get the Imm operand now, we need to check if the ImmMO meet 3513 // the requirement described in the III. If yes set the Imm. 3514 int64_t Imm = 0; 3515 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3516 return false; 3517 3518 bool IsFwdFeederRegKilled = false; 3519 // Check if the RegMO can be forwarded to MI. 3520 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3521 IsFwdFeederRegKilled)) 3522 return false; 3523 3524 // Get killed info in case fixup needed after transformation. 3525 unsigned ForwardKilledOperandReg = ~0U; 3526 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3527 bool PostRA = !MRI.isSSA(); 3528 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3529 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3530 3531 // We know that, the MI and DefMI both meet the pattern, and 3532 // the Imm also meet the requirement with the new Imm-form. 3533 // It is safe to do the transformation now. 3534 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3535 LLVM_DEBUG(MI.dump()); 3536 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3537 LLVM_DEBUG(DefMI.dump()); 3538 3539 // Update the base reg first. 3540 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3541 false, false, 3542 RegMO->isKill()); 3543 3544 // Then, update the imm. 3545 if (ImmMO->isImm()) { 3546 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3547 // directly. 3548 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3549 } 3550 else { 3551 // Otherwise, it is Constant Pool Index(CPI) or Global, 3552 // which is relocation in fact. We need to replace the special zero 3553 // register with ImmMO. 3554 // Before that, we need to fixup the target flags for imm. 3555 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3556 if (DefMI.getOpcode() == PPC::ADDItocL) 3557 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3558 3559 // MI didn't have the interface such as MI.setOperand(i) though 3560 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3561 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3562 // and, add the ImmMO, then, move back all the operands behind ZERO. 3563 SmallVector<MachineOperand, 2> MOps; 3564 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3565 MOps.push_back(MI.getOperand(i)); 3566 MI.RemoveOperand(i); 3567 } 3568 3569 // Remove the last MO in the list, which is ZERO operand in fact. 3570 MOps.pop_back(); 3571 // Add the imm operand. 3572 MI.addOperand(*ImmMO); 3573 // Now add the rest back. 3574 for (auto &MO : MOps) 3575 MI.addOperand(MO); 3576 } 3577 3578 // Update the opcode. 3579 MI.setDesc(get(III.ImmOpcode)); 3580 3581 // Fix up killed/dead flag after transformation. 3582 // Pattern 1: 3583 // x = ADD KilledFwdFeederReg, imm 3584 // n = opn KilledFwdFeederReg(killed), regn 3585 // y = XOP 0, x 3586 // Pattern 2: 3587 // x = ADD reg(killed), imm 3588 // y = XOP 0, x 3589 if (IsFwdFeederRegKilled || RegMO->isKill()) 3590 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3591 // Pattern 3: 3592 // ForwardKilledOperandReg = ADD reg, imm 3593 // y = XOP 0, ForwardKilledOperandReg(killed) 3594 if (ForwardKilledOperandReg != ~0U) 3595 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3596 3597 LLVM_DEBUG(dbgs() << "With:\n"); 3598 LLVM_DEBUG(MI.dump()); 3599 3600 return true; 3601 } 3602 3603 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3604 const ImmInstrInfo &III, 3605 unsigned ConstantOpNo, 3606 MachineInstr &DefMI, 3607 int64_t Imm) const { 3608 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3609 bool PostRA = !MRI.isSSA(); 3610 // Exit early if we can't convert this. 3611 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3612 return false; 3613 if (Imm % III.ImmMustBeMultipleOf) 3614 return false; 3615 if (III.TruncateImmTo) 3616 Imm &= ((1 << III.TruncateImmTo) - 1); 3617 if (III.SignedImm) { 3618 APInt ActualValue(64, Imm, true); 3619 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3620 return false; 3621 } else { 3622 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3623 if ((uint64_t)Imm > UnsignedMax) 3624 return false; 3625 } 3626 3627 // If we're post-RA, the instructions don't agree on whether register zero is 3628 // special, we can transform this as long as the register operand that will 3629 // end up in the location where zero is special isn't R0. 3630 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3631 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3632 III.ZeroIsSpecialNew + 1; 3633 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3634 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3635 // If R0 is in the operand where zero is special for the new instruction, 3636 // it is unsafe to transform if the constant operand isn't that operand. 3637 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3638 ConstantOpNo != III.ZeroIsSpecialNew) 3639 return false; 3640 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3641 ConstantOpNo != PosForOrigZero) 3642 return false; 3643 } 3644 3645 // Get killed info in case fixup needed after transformation. 3646 unsigned ForwardKilledOperandReg = ~0U; 3647 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3648 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3649 3650 unsigned Opc = MI.getOpcode(); 3651 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 3652 Opc == PPC::SRW || Opc == PPC::SRW_rec || 3653 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 3654 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 3655 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 3656 Opc == PPC::SRD || Opc == PPC::SRD_rec; 3657 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 3658 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 3659 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 3660 Opc == PPC::SRD_rec; 3661 3662 MI.setDesc(get(III.ImmOpcode)); 3663 if (ConstantOpNo == III.OpNoForForwarding) { 3664 // Converting shifts to immediate form is a bit tricky since they may do 3665 // one of three things: 3666 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3667 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3668 // setting CR0) 3669 // 3. If the shift amount is in [1, OpSize), it's just a shift 3670 if (SpecialShift32 || SpecialShift64) { 3671 LoadImmediateInfo LII; 3672 LII.Imm = 0; 3673 LII.SetCR = SetCR; 3674 LII.Is64Bit = SpecialShift64; 3675 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3676 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3677 replaceInstrWithLI(MI, LII); 3678 // Shifts by zero don't change the value. If we don't need to set CR0, 3679 // just convert this to a COPY. Can't do this post-RA since we've already 3680 // cleaned up the copies. 3681 else if (!SetCR && ShAmt == 0 && !PostRA) { 3682 MI.RemoveOperand(2); 3683 MI.setDesc(get(PPC::COPY)); 3684 } else { 3685 // The 32 bit and 64 bit instructions are quite different. 3686 if (SpecialShift32) { 3687 // Left shifts use (N, 0, 31-N). 3688 // Right shifts use (32-N, N, 31) if 0 < N < 32. 3689 // use (0, 0, 31) if N == 0. 3690 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 3691 uint64_t MB = RightShift ? ShAmt : 0; 3692 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3693 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3694 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3695 .addImm(ME); 3696 } else { 3697 // Left shifts use (N, 63-N). 3698 // Right shifts use (64-N, N) if 0 < N < 64. 3699 // use (0, 0) if N == 0. 3700 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 3701 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3702 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3703 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3704 } 3705 } 3706 } else 3707 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3708 } 3709 // Convert commutative instructions (switch the operands and convert the 3710 // desired one to an immediate. 3711 else if (III.IsCommutative) { 3712 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3713 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3714 } else 3715 llvm_unreachable("Should have exited early!"); 3716 3717 // For instructions for which the constant register replaces a different 3718 // operand than where the immediate goes, we need to swap them. 3719 if (III.OpNoForForwarding != III.ImmOpNo) 3720 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3721 3722 // If the special R0/X0 register index are different for original instruction 3723 // and new instruction, we need to fix up the register class in new 3724 // instruction. 3725 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3726 if (III.ZeroIsSpecialNew) { 3727 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3728 // need to fix up register class. 3729 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3730 if (Register::isVirtualRegister(RegToModify)) { 3731 const TargetRegisterClass *NewRC = 3732 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3733 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3734 MRI.setRegClass(RegToModify, NewRC); 3735 } 3736 } 3737 } 3738 3739 // Fix up killed/dead flag after transformation. 3740 // Pattern: 3741 // ForwardKilledOperandReg = LI imm 3742 // y = XOP reg, ForwardKilledOperandReg(killed) 3743 if (ForwardKilledOperandReg != ~0U) 3744 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3745 return true; 3746 } 3747 3748 const TargetRegisterClass * 3749 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3750 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3751 return &PPC::VSRCRegClass; 3752 return RC; 3753 } 3754 3755 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3756 return PPC::getRecordFormOpcode(Opcode); 3757 } 3758 3759 // This function returns true if the machine instruction 3760 // always outputs a value by sign-extending a 32 bit value, 3761 // i.e. 0 to 31-th bits are same as 32-th bit. 3762 static bool isSignExtendingOp(const MachineInstr &MI) { 3763 int Opcode = MI.getOpcode(); 3764 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 3765 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 3766 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 3767 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3768 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 3769 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3770 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 3771 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3772 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 3773 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3774 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 3775 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 3776 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 3777 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 3778 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3779 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3780 Opcode == PPC::EXTSB8_32_64) 3781 return true; 3782 3783 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3784 return true; 3785 3786 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3787 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 3788 MI.getOperand(3).getImm() > 0 && 3789 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3790 return true; 3791 3792 return false; 3793 } 3794 3795 // This function returns true if the machine instruction 3796 // always outputs zeros in higher 32 bits. 3797 static bool isZeroExtendingOp(const MachineInstr &MI) { 3798 int Opcode = MI.getOpcode(); 3799 // The 16-bit immediate is sign-extended in li/lis. 3800 // If the most significant bit is zero, all higher bits are zero. 3801 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3802 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3803 int64_t Imm = MI.getOperand(1).getImm(); 3804 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3805 return true; 3806 } 3807 3808 // We have some variations of rotate-and-mask instructions 3809 // that clear higher 32-bits. 3810 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 3811 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 3812 Opcode == PPC::RLDICL_32_64) && 3813 MI.getOperand(3).getImm() >= 32) 3814 return true; 3815 3816 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 3817 MI.getOperand(3).getImm() >= 32 && 3818 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3819 return true; 3820 3821 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3822 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 3823 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3824 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3825 return true; 3826 3827 // There are other instructions that clear higher 32-bits. 3828 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 3829 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 3830 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3831 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 3832 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 3833 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 3834 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 3835 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 3836 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 3837 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3838 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 3839 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3840 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 3841 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3842 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 3843 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3844 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 3845 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3846 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3847 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 3848 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 3849 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 3850 Opcode == PPC::MFVSRWZ) 3851 return true; 3852 3853 return false; 3854 } 3855 3856 // This function returns true if the input MachineInstr is a TOC save 3857 // instruction. 3858 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3859 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3860 return false; 3861 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3862 unsigned StackOffset = MI.getOperand(1).getImm(); 3863 Register StackReg = MI.getOperand(2).getReg(); 3864 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3865 return true; 3866 3867 return false; 3868 } 3869 3870 // We limit the max depth to track incoming values of PHIs or binary ops 3871 // (e.g. AND) to avoid excessive cost. 3872 const unsigned MAX_DEPTH = 1; 3873 3874 bool 3875 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 3876 const unsigned Depth) const { 3877 const MachineFunction *MF = MI.getParent()->getParent(); 3878 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 3879 3880 // If we know this instruction returns sign- or zero-extended result, 3881 // return true. 3882 if (SignExt ? isSignExtendingOp(MI): 3883 isZeroExtendingOp(MI)) 3884 return true; 3885 3886 switch (MI.getOpcode()) { 3887 case PPC::COPY: { 3888 Register SrcReg = MI.getOperand(1).getReg(); 3889 3890 // In both ELFv1 and v2 ABI, method parameters and the return value 3891 // are sign- or zero-extended. 3892 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 3893 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 3894 // We check the ZExt/SExt flags for a method parameter. 3895 if (MI.getParent()->getBasicBlock() == 3896 &MF->getFunction().getEntryBlock()) { 3897 Register VReg = MI.getOperand(0).getReg(); 3898 if (MF->getRegInfo().isLiveIn(VReg)) 3899 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 3900 FuncInfo->isLiveInZExt(VReg); 3901 } 3902 3903 // For a method return value, we check the ZExt/SExt flags in attribute. 3904 // We assume the following code sequence for method call. 3905 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 3906 // BL8_NOP @func,... 3907 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 3908 // %5 = COPY %x3; G8RC:%5 3909 if (SrcReg == PPC::X3) { 3910 const MachineBasicBlock *MBB = MI.getParent(); 3911 MachineBasicBlock::const_instr_iterator II = 3912 MachineBasicBlock::const_instr_iterator(&MI); 3913 if (II != MBB->instr_begin() && 3914 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 3915 const MachineInstr &CallMI = *(--II); 3916 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 3917 const Function *CalleeFn = 3918 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 3919 if (!CalleeFn) 3920 return false; 3921 const IntegerType *IntTy = 3922 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 3923 const AttributeSet &Attrs = 3924 CalleeFn->getAttributes().getRetAttributes(); 3925 if (IntTy && IntTy->getBitWidth() <= 32) 3926 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 3927 Attribute::ZExt); 3928 } 3929 } 3930 } 3931 } 3932 3933 // If this is a copy from another register, we recursively check source. 3934 if (!Register::isVirtualRegister(SrcReg)) 3935 return false; 3936 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3937 if (SrcMI != NULL) 3938 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3939 3940 return false; 3941 } 3942 3943 case PPC::ANDI_rec: 3944 case PPC::ANDIS_rec: 3945 case PPC::ORI: 3946 case PPC::ORIS: 3947 case PPC::XORI: 3948 case PPC::XORIS: 3949 case PPC::ANDI8_rec: 3950 case PPC::ANDIS8_rec: 3951 case PPC::ORI8: 3952 case PPC::ORIS8: 3953 case PPC::XORI8: 3954 case PPC::XORIS8: { 3955 // logical operation with 16-bit immediate does not change the upper bits. 3956 // So, we track the operand register as we do for register copy. 3957 Register SrcReg = MI.getOperand(1).getReg(); 3958 if (!Register::isVirtualRegister(SrcReg)) 3959 return false; 3960 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3961 if (SrcMI != NULL) 3962 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3963 3964 return false; 3965 } 3966 3967 // If all incoming values are sign-/zero-extended, 3968 // the output of OR, ISEL or PHI is also sign-/zero-extended. 3969 case PPC::OR: 3970 case PPC::OR8: 3971 case PPC::ISEL: 3972 case PPC::PHI: { 3973 if (Depth >= MAX_DEPTH) 3974 return false; 3975 3976 // The input registers for PHI are operand 1, 3, ... 3977 // The input registers for others are operand 1 and 2. 3978 unsigned E = 3, D = 1; 3979 if (MI.getOpcode() == PPC::PHI) { 3980 E = MI.getNumOperands(); 3981 D = 2; 3982 } 3983 3984 for (unsigned I = 1; I != E; I += D) { 3985 if (MI.getOperand(I).isReg()) { 3986 Register SrcReg = MI.getOperand(I).getReg(); 3987 if (!Register::isVirtualRegister(SrcReg)) 3988 return false; 3989 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3990 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 3991 return false; 3992 } 3993 else 3994 return false; 3995 } 3996 return true; 3997 } 3998 3999 // If at least one of the incoming values of an AND is zero extended 4000 // then the output is also zero-extended. If both of the incoming values 4001 // are sign-extended then the output is also sign extended. 4002 case PPC::AND: 4003 case PPC::AND8: { 4004 if (Depth >= MAX_DEPTH) 4005 return false; 4006 4007 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4008 4009 Register SrcReg1 = MI.getOperand(1).getReg(); 4010 Register SrcReg2 = MI.getOperand(2).getReg(); 4011 4012 if (!Register::isVirtualRegister(SrcReg1) || 4013 !Register::isVirtualRegister(SrcReg2)) 4014 return false; 4015 4016 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4017 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4018 if (!MISrc1 || !MISrc2) 4019 return false; 4020 4021 if(SignExt) 4022 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4023 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4024 else 4025 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4026 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4027 } 4028 4029 default: 4030 break; 4031 } 4032 return false; 4033 } 4034 4035 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4036 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4037 } 4038 4039 namespace { 4040 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4041 MachineInstr *Loop, *EndLoop, *LoopCount; 4042 MachineFunction *MF; 4043 const TargetInstrInfo *TII; 4044 int64_t TripCount; 4045 4046 public: 4047 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4048 MachineInstr *LoopCount) 4049 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4050 MF(Loop->getParent()->getParent()), 4051 TII(MF->getSubtarget().getInstrInfo()) { 4052 // Inspect the Loop instruction up-front, as it may be deleted when we call 4053 // createTripCountGreaterCondition. 4054 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4055 TripCount = LoopCount->getOperand(1).getImm(); 4056 else 4057 TripCount = -1; 4058 } 4059 4060 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4061 // Only ignore the terminator. 4062 return MI == EndLoop; 4063 } 4064 4065 Optional<bool> 4066 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4067 SmallVectorImpl<MachineOperand> &Cond) override { 4068 if (TripCount == -1) { 4069 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4070 // so we don't need to generate any thing here. 4071 Cond.push_back(MachineOperand::CreateImm(0)); 4072 Cond.push_back(MachineOperand::CreateReg( 4073 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4074 true)); 4075 return {}; 4076 } 4077 4078 return TripCount > TC; 4079 } 4080 4081 void setPreheader(MachineBasicBlock *NewPreheader) override { 4082 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4083 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4084 } 4085 4086 void adjustTripCount(int TripCountAdjust) override { 4087 // If the loop trip count is a compile-time value, then just change the 4088 // value. 4089 if (LoopCount->getOpcode() == PPC::LI8 || 4090 LoopCount->getOpcode() == PPC::LI) { 4091 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4092 LoopCount->getOperand(1).setImm(TripCount); 4093 return; 4094 } 4095 4096 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4097 // so we don't need to generate any thing here. 4098 } 4099 4100 void disposed() override { 4101 Loop->eraseFromParent(); 4102 // Ensure the loop setup instruction is deleted too. 4103 LoopCount->eraseFromParent(); 4104 } 4105 }; 4106 } // namespace 4107 4108 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4109 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4110 // We really "analyze" only hardware loops right now. 4111 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4112 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4113 if (Preheader == LoopBB) 4114 Preheader = *std::next(LoopBB->pred_begin()); 4115 MachineFunction *MF = Preheader->getParent(); 4116 4117 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4118 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4119 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4120 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4121 MachineRegisterInfo &MRI = MF->getRegInfo(); 4122 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4123 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4124 } 4125 } 4126 return nullptr; 4127 } 4128 4129 MachineInstr *PPCInstrInfo::findLoopInstr( 4130 MachineBasicBlock &PreHeader, 4131 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4132 4133 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4134 4135 // The loop set-up instruction should be in preheader 4136 for (auto &I : PreHeader.instrs()) 4137 if (I.getOpcode() == LOOPi) 4138 return &I; 4139 return nullptr; 4140 } 4141 4142 // Return true if get the base operand, byte offset of an instruction and the 4143 // memory width. Width is the size of memory that is being loaded/stored. 4144 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4145 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 4146 unsigned &Width, const TargetRegisterInfo *TRI) const { 4147 if (!LdSt.mayLoadOrStore()) 4148 return false; 4149 4150 // Handle only loads/stores with base register followed by immediate offset. 4151 if (LdSt.getNumExplicitOperands() != 3) 4152 return false; 4153 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg()) 4154 return false; 4155 4156 if (!LdSt.hasOneMemOperand()) 4157 return false; 4158 4159 Width = (*LdSt.memoperands_begin())->getSize(); 4160 Offset = LdSt.getOperand(1).getImm(); 4161 BaseReg = &LdSt.getOperand(2); 4162 return true; 4163 } 4164 4165 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4166 const MachineInstr &MIa, const MachineInstr &MIb) const { 4167 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4168 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4169 4170 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4171 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4172 return false; 4173 4174 // Retrieve the base register, offset from the base register and width. Width 4175 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4176 // base registers are identical, and the offset of a lower memory access + 4177 // the width doesn't overlap the offset of a higher memory access, 4178 // then the memory accesses are different. 4179 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4180 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4181 int64_t OffsetA = 0, OffsetB = 0; 4182 unsigned int WidthA = 0, WidthB = 0; 4183 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4184 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4185 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4186 int LowOffset = std::min(OffsetA, OffsetB); 4187 int HighOffset = std::max(OffsetA, OffsetB); 4188 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4189 if (LowOffset + LowWidth <= HighOffset) 4190 return true; 4191 } 4192 } 4193 return false; 4194 } 4195