1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 STATISTIC(NumStoreSPILLVSRRCAsVec, 50 "Number of spillvsrrc spilled to stack as vec"); 51 STATISTIC(NumStoreSPILLVSRRCAsGpr, 52 "Number of spillvsrrc spilled to stack as gpr"); 53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 54 STATISTIC(CmpIselsConverted, 55 "Number of ISELs that depend on comparison of constants converted"); 56 STATISTIC(MissedConvertibleImmediateInstrs, 57 "Number of compare-immediate instructions fed by constants"); 58 STATISTIC(NumRcRotatesConvertedToRcAnd, 59 "Number of record-form rotates converted to record-form andi"); 60 61 static cl:: 62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 63 cl::desc("Disable analysis for CTR loops")); 64 65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 66 cl::desc("Disable compare instruction optimization"), cl::Hidden); 67 68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 70 cl::Hidden); 71 72 static cl::opt<bool> 73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 74 cl::desc("Use the old (incorrect) instruction latency calculation")); 75 76 // Index into the OpcodesForSpill array. 77 enum SpillOpcodeKey { 78 SOK_Int4Spill, 79 SOK_Int8Spill, 80 SOK_Float8Spill, 81 SOK_Float4Spill, 82 SOK_CRSpill, 83 SOK_CRBitSpill, 84 SOK_VRVectorSpill, 85 SOK_VSXVectorSpill, 86 SOK_VectorFloat8Spill, 87 SOK_VectorFloat4Spill, 88 SOK_VRSaveSpill, 89 SOK_QuadFloat8Spill, 90 SOK_QuadFloat4Spill, 91 SOK_QuadBitSpill, 92 SOK_SpillToVSR, 93 SOK_SPESpill, 94 SOK_SPE4Spill, 95 SOK_LastOpcodeSpill // This must be last on the enum. 96 }; 97 98 // Pin the vtable to this file. 99 void PPCInstrInfo::anchor() {} 100 101 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 102 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 103 /* CatchRetOpcode */ -1, 104 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 105 Subtarget(STI), RI(STI.getTargetMachine()) {} 106 107 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 108 /// this target when scheduling the DAG. 109 ScheduleHazardRecognizer * 110 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 111 const ScheduleDAG *DAG) const { 112 unsigned Directive = 113 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 114 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 115 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 116 const InstrItineraryData *II = 117 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 118 return new ScoreboardHazardRecognizer(II, DAG); 119 } 120 121 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 122 } 123 124 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 125 /// to use for this target when scheduling the DAG. 126 ScheduleHazardRecognizer * 127 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 128 const ScheduleDAG *DAG) const { 129 unsigned Directive = 130 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 131 132 // FIXME: Leaving this as-is until we have POWER9 scheduling info 133 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 134 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 135 136 // Most subtargets use a PPC970 recognizer. 137 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 138 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 139 assert(DAG->TII && "No InstrInfo?"); 140 141 return new PPCHazardRecognizer970(*DAG); 142 } 143 144 return new ScoreboardHazardRecognizer(II, DAG); 145 } 146 147 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 148 const MachineInstr &MI, 149 unsigned *PredCost) const { 150 if (!ItinData || UseOldLatencyCalc) 151 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 152 153 // The default implementation of getInstrLatency calls getStageLatency, but 154 // getStageLatency does not do the right thing for us. While we have 155 // itinerary, most cores are fully pipelined, and so the itineraries only 156 // express the first part of the pipeline, not every stage. Instead, we need 157 // to use the listed output operand cycle number (using operand 0 here, which 158 // is an output). 159 160 unsigned Latency = 1; 161 unsigned DefClass = MI.getDesc().getSchedClass(); 162 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 163 const MachineOperand &MO = MI.getOperand(i); 164 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 165 continue; 166 167 int Cycle = ItinData->getOperandCycle(DefClass, i); 168 if (Cycle < 0) 169 continue; 170 171 Latency = std::max(Latency, (unsigned) Cycle); 172 } 173 174 return Latency; 175 } 176 177 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 178 const MachineInstr &DefMI, unsigned DefIdx, 179 const MachineInstr &UseMI, 180 unsigned UseIdx) const { 181 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 182 UseMI, UseIdx); 183 184 if (!DefMI.getParent()) 185 return Latency; 186 187 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 188 unsigned Reg = DefMO.getReg(); 189 190 bool IsRegCR; 191 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 192 const MachineRegisterInfo *MRI = 193 &DefMI.getParent()->getParent()->getRegInfo(); 194 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 195 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 196 } else { 197 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 198 PPC::CRBITRCRegClass.contains(Reg); 199 } 200 201 if (UseMI.isBranch() && IsRegCR) { 202 if (Latency < 0) 203 Latency = getInstrLatency(ItinData, DefMI); 204 205 // On some cores, there is an additional delay between writing to a condition 206 // register, and using it from a branch. 207 unsigned Directive = Subtarget.getDarwinDirective(); 208 switch (Directive) { 209 default: break; 210 case PPC::DIR_7400: 211 case PPC::DIR_750: 212 case PPC::DIR_970: 213 case PPC::DIR_E5500: 214 case PPC::DIR_PWR4: 215 case PPC::DIR_PWR5: 216 case PPC::DIR_PWR5X: 217 case PPC::DIR_PWR6: 218 case PPC::DIR_PWR6X: 219 case PPC::DIR_PWR7: 220 case PPC::DIR_PWR8: 221 // FIXME: Is this needed for POWER9? 222 Latency += 2; 223 break; 224 } 225 } 226 227 return Latency; 228 } 229 230 // This function does not list all associative and commutative operations, but 231 // only those worth feeding through the machine combiner in an attempt to 232 // reduce the critical path. Mostly, this means floating-point operations, 233 // because they have high latencies (compared to other operations, such and 234 // and/or, which are also associative and commutative, but have low latencies). 235 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 236 switch (Inst.getOpcode()) { 237 // FP Add: 238 case PPC::FADD: 239 case PPC::FADDS: 240 // FP Multiply: 241 case PPC::FMUL: 242 case PPC::FMULS: 243 // Altivec Add: 244 case PPC::VADDFP: 245 // VSX Add: 246 case PPC::XSADDDP: 247 case PPC::XVADDDP: 248 case PPC::XVADDSP: 249 case PPC::XSADDSP: 250 // VSX Multiply: 251 case PPC::XSMULDP: 252 case PPC::XVMULDP: 253 case PPC::XVMULSP: 254 case PPC::XSMULSP: 255 // QPX Add: 256 case PPC::QVFADD: 257 case PPC::QVFADDS: 258 case PPC::QVFADDSs: 259 // QPX Multiply: 260 case PPC::QVFMUL: 261 case PPC::QVFMULS: 262 case PPC::QVFMULSs: 263 return true; 264 default: 265 return false; 266 } 267 } 268 269 bool PPCInstrInfo::getMachineCombinerPatterns( 270 MachineInstr &Root, 271 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 272 // Using the machine combiner in this way is potentially expensive, so 273 // restrict to when aggressive optimizations are desired. 274 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 275 return false; 276 277 // FP reassociation is only legal when we don't need strict IEEE semantics. 278 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 279 return false; 280 281 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 282 } 283 284 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 285 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 286 unsigned &SrcReg, unsigned &DstReg, 287 unsigned &SubIdx) const { 288 switch (MI.getOpcode()) { 289 default: return false; 290 case PPC::EXTSW: 291 case PPC::EXTSW_32: 292 case PPC::EXTSW_32_64: 293 SrcReg = MI.getOperand(1).getReg(); 294 DstReg = MI.getOperand(0).getReg(); 295 SubIdx = PPC::sub_32; 296 return true; 297 } 298 } 299 300 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 301 int &FrameIndex) const { 302 unsigned Opcode = MI.getOpcode(); 303 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 304 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 305 306 if (End != std::find(OpcodesForSpill, End, Opcode)) { 307 // Check for the operands added by addFrameReference (the immediate is the 308 // offset which defaults to 0). 309 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 310 MI.getOperand(2).isFI()) { 311 FrameIndex = MI.getOperand(2).getIndex(); 312 return MI.getOperand(0).getReg(); 313 } 314 } 315 return 0; 316 } 317 318 // For opcodes with the ReMaterializable flag set, this function is called to 319 // verify the instruction is really rematable. 320 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 321 AliasAnalysis *AA) const { 322 switch (MI.getOpcode()) { 323 default: 324 // This function should only be called for opcodes with the ReMaterializable 325 // flag set. 326 llvm_unreachable("Unknown rematerializable operation!"); 327 break; 328 case PPC::LI: 329 case PPC::LI8: 330 case PPC::LIS: 331 case PPC::LIS8: 332 case PPC::QVGPCI: 333 case PPC::ADDIStocHA: 334 case PPC::ADDItocL: 335 case PPC::LOAD_STACK_GUARD: 336 return true; 337 } 338 return false; 339 } 340 341 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 342 int &FrameIndex) const { 343 unsigned Opcode = MI.getOpcode(); 344 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 345 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 346 347 if (End != std::find(OpcodesForSpill, End, Opcode)) { 348 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 349 MI.getOperand(2).isFI()) { 350 FrameIndex = MI.getOperand(2).getIndex(); 351 return MI.getOperand(0).getReg(); 352 } 353 } 354 return 0; 355 } 356 357 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 358 unsigned OpIdx1, 359 unsigned OpIdx2) const { 360 MachineFunction &MF = *MI.getParent()->getParent(); 361 362 // Normal instructions can be commuted the obvious way. 363 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 364 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 365 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 366 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 367 // changing the relative order of the mask operands might change what happens 368 // to the high-bits of the mask (and, thus, the result). 369 370 // Cannot commute if it has a non-zero rotate count. 371 if (MI.getOperand(3).getImm() != 0) 372 return nullptr; 373 374 // If we have a zero rotate count, we have: 375 // M = mask(MB,ME) 376 // Op0 = (Op1 & ~M) | (Op2 & M) 377 // Change this to: 378 // M = mask((ME+1)&31, (MB-1)&31) 379 // Op0 = (Op2 & ~M) | (Op1 & M) 380 381 // Swap op1/op2 382 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 383 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 384 unsigned Reg0 = MI.getOperand(0).getReg(); 385 unsigned Reg1 = MI.getOperand(1).getReg(); 386 unsigned Reg2 = MI.getOperand(2).getReg(); 387 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 388 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 389 bool Reg1IsKill = MI.getOperand(1).isKill(); 390 bool Reg2IsKill = MI.getOperand(2).isKill(); 391 bool ChangeReg0 = false; 392 // If machine instrs are no longer in two-address forms, update 393 // destination register as well. 394 if (Reg0 == Reg1) { 395 // Must be two address instruction! 396 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 397 "Expecting a two-address instruction!"); 398 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 399 Reg2IsKill = false; 400 ChangeReg0 = true; 401 } 402 403 // Masks. 404 unsigned MB = MI.getOperand(4).getImm(); 405 unsigned ME = MI.getOperand(5).getImm(); 406 407 // We can't commute a trivial mask (there is no way to represent an all-zero 408 // mask). 409 if (MB == 0 && ME == 31) 410 return nullptr; 411 412 if (NewMI) { 413 // Create a new instruction. 414 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 415 bool Reg0IsDead = MI.getOperand(0).isDead(); 416 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 417 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 418 .addReg(Reg2, getKillRegState(Reg2IsKill)) 419 .addReg(Reg1, getKillRegState(Reg1IsKill)) 420 .addImm((ME + 1) & 31) 421 .addImm((MB - 1) & 31); 422 } 423 424 if (ChangeReg0) { 425 MI.getOperand(0).setReg(Reg2); 426 MI.getOperand(0).setSubReg(SubReg2); 427 } 428 MI.getOperand(2).setReg(Reg1); 429 MI.getOperand(1).setReg(Reg2); 430 MI.getOperand(2).setSubReg(SubReg1); 431 MI.getOperand(1).setSubReg(SubReg2); 432 MI.getOperand(2).setIsKill(Reg1IsKill); 433 MI.getOperand(1).setIsKill(Reg2IsKill); 434 435 // Swap the mask around. 436 MI.getOperand(4).setImm((ME + 1) & 31); 437 MI.getOperand(5).setImm((MB - 1) & 31); 438 return &MI; 439 } 440 441 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 442 unsigned &SrcOpIdx2) const { 443 // For VSX A-Type FMA instructions, it is the first two operands that can be 444 // commuted, however, because the non-encoded tied input operand is listed 445 // first, the operands to swap are actually the second and third. 446 447 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 448 if (AltOpc == -1) 449 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 450 451 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 452 // and SrcOpIdx2. 453 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 454 } 455 456 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 457 MachineBasicBlock::iterator MI) const { 458 // This function is used for scheduling, and the nop wanted here is the type 459 // that terminates dispatch groups on the POWER cores. 460 unsigned Directive = Subtarget.getDarwinDirective(); 461 unsigned Opcode; 462 switch (Directive) { 463 default: Opcode = PPC::NOP; break; 464 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 465 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 466 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 467 // FIXME: Update when POWER9 scheduling model is ready. 468 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 469 } 470 471 DebugLoc DL; 472 BuildMI(MBB, MI, DL, get(Opcode)); 473 } 474 475 /// Return the noop instruction to use for a noop. 476 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 477 NopInst.setOpcode(PPC::NOP); 478 } 479 480 // Branch analysis. 481 // Note: If the condition register is set to CTR or CTR8 then this is a 482 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 483 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 484 MachineBasicBlock *&TBB, 485 MachineBasicBlock *&FBB, 486 SmallVectorImpl<MachineOperand> &Cond, 487 bool AllowModify) const { 488 bool isPPC64 = Subtarget.isPPC64(); 489 490 // If the block has no terminators, it just falls into the block after it. 491 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 492 if (I == MBB.end()) 493 return false; 494 495 if (!isUnpredicatedTerminator(*I)) 496 return false; 497 498 if (AllowModify) { 499 // If the BB ends with an unconditional branch to the fallthrough BB, 500 // we eliminate the branch instruction. 501 if (I->getOpcode() == PPC::B && 502 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 503 I->eraseFromParent(); 504 505 // We update iterator after deleting the last branch. 506 I = MBB.getLastNonDebugInstr(); 507 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 508 return false; 509 } 510 } 511 512 // Get the last instruction in the block. 513 MachineInstr &LastInst = *I; 514 515 // If there is only one terminator instruction, process it. 516 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 517 if (LastInst.getOpcode() == PPC::B) { 518 if (!LastInst.getOperand(0).isMBB()) 519 return true; 520 TBB = LastInst.getOperand(0).getMBB(); 521 return false; 522 } else if (LastInst.getOpcode() == PPC::BCC) { 523 if (!LastInst.getOperand(2).isMBB()) 524 return true; 525 // Block ends with fall-through condbranch. 526 TBB = LastInst.getOperand(2).getMBB(); 527 Cond.push_back(LastInst.getOperand(0)); 528 Cond.push_back(LastInst.getOperand(1)); 529 return false; 530 } else if (LastInst.getOpcode() == PPC::BC) { 531 if (!LastInst.getOperand(1).isMBB()) 532 return true; 533 // Block ends with fall-through condbranch. 534 TBB = LastInst.getOperand(1).getMBB(); 535 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 536 Cond.push_back(LastInst.getOperand(0)); 537 return false; 538 } else if (LastInst.getOpcode() == PPC::BCn) { 539 if (!LastInst.getOperand(1).isMBB()) 540 return true; 541 // Block ends with fall-through condbranch. 542 TBB = LastInst.getOperand(1).getMBB(); 543 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 544 Cond.push_back(LastInst.getOperand(0)); 545 return false; 546 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 547 LastInst.getOpcode() == PPC::BDNZ) { 548 if (!LastInst.getOperand(0).isMBB()) 549 return true; 550 if (DisableCTRLoopAnal) 551 return true; 552 TBB = LastInst.getOperand(0).getMBB(); 553 Cond.push_back(MachineOperand::CreateImm(1)); 554 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 555 true)); 556 return false; 557 } else if (LastInst.getOpcode() == PPC::BDZ8 || 558 LastInst.getOpcode() == PPC::BDZ) { 559 if (!LastInst.getOperand(0).isMBB()) 560 return true; 561 if (DisableCTRLoopAnal) 562 return true; 563 TBB = LastInst.getOperand(0).getMBB(); 564 Cond.push_back(MachineOperand::CreateImm(0)); 565 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 566 true)); 567 return false; 568 } 569 570 // Otherwise, don't know what this is. 571 return true; 572 } 573 574 // Get the instruction before it if it's a terminator. 575 MachineInstr &SecondLastInst = *I; 576 577 // If there are three terminators, we don't know what sort of block this is. 578 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 579 return true; 580 581 // If the block ends with PPC::B and PPC:BCC, handle it. 582 if (SecondLastInst.getOpcode() == PPC::BCC && 583 LastInst.getOpcode() == PPC::B) { 584 if (!SecondLastInst.getOperand(2).isMBB() || 585 !LastInst.getOperand(0).isMBB()) 586 return true; 587 TBB = SecondLastInst.getOperand(2).getMBB(); 588 Cond.push_back(SecondLastInst.getOperand(0)); 589 Cond.push_back(SecondLastInst.getOperand(1)); 590 FBB = LastInst.getOperand(0).getMBB(); 591 return false; 592 } else if (SecondLastInst.getOpcode() == PPC::BC && 593 LastInst.getOpcode() == PPC::B) { 594 if (!SecondLastInst.getOperand(1).isMBB() || 595 !LastInst.getOperand(0).isMBB()) 596 return true; 597 TBB = SecondLastInst.getOperand(1).getMBB(); 598 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 599 Cond.push_back(SecondLastInst.getOperand(0)); 600 FBB = LastInst.getOperand(0).getMBB(); 601 return false; 602 } else if (SecondLastInst.getOpcode() == PPC::BCn && 603 LastInst.getOpcode() == PPC::B) { 604 if (!SecondLastInst.getOperand(1).isMBB() || 605 !LastInst.getOperand(0).isMBB()) 606 return true; 607 TBB = SecondLastInst.getOperand(1).getMBB(); 608 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 609 Cond.push_back(SecondLastInst.getOperand(0)); 610 FBB = LastInst.getOperand(0).getMBB(); 611 return false; 612 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 613 SecondLastInst.getOpcode() == PPC::BDNZ) && 614 LastInst.getOpcode() == PPC::B) { 615 if (!SecondLastInst.getOperand(0).isMBB() || 616 !LastInst.getOperand(0).isMBB()) 617 return true; 618 if (DisableCTRLoopAnal) 619 return true; 620 TBB = SecondLastInst.getOperand(0).getMBB(); 621 Cond.push_back(MachineOperand::CreateImm(1)); 622 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 623 true)); 624 FBB = LastInst.getOperand(0).getMBB(); 625 return false; 626 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 627 SecondLastInst.getOpcode() == PPC::BDZ) && 628 LastInst.getOpcode() == PPC::B) { 629 if (!SecondLastInst.getOperand(0).isMBB() || 630 !LastInst.getOperand(0).isMBB()) 631 return true; 632 if (DisableCTRLoopAnal) 633 return true; 634 TBB = SecondLastInst.getOperand(0).getMBB(); 635 Cond.push_back(MachineOperand::CreateImm(0)); 636 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 637 true)); 638 FBB = LastInst.getOperand(0).getMBB(); 639 return false; 640 } 641 642 // If the block ends with two PPC:Bs, handle it. The second one is not 643 // executed, so remove it. 644 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 645 if (!SecondLastInst.getOperand(0).isMBB()) 646 return true; 647 TBB = SecondLastInst.getOperand(0).getMBB(); 648 I = LastInst; 649 if (AllowModify) 650 I->eraseFromParent(); 651 return false; 652 } 653 654 // Otherwise, can't handle this. 655 return true; 656 } 657 658 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 659 int *BytesRemoved) const { 660 assert(!BytesRemoved && "code size not handled"); 661 662 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 663 if (I == MBB.end()) 664 return 0; 665 666 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 667 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 668 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 669 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 670 return 0; 671 672 // Remove the branch. 673 I->eraseFromParent(); 674 675 I = MBB.end(); 676 677 if (I == MBB.begin()) return 1; 678 --I; 679 if (I->getOpcode() != PPC::BCC && 680 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 681 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 682 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 683 return 1; 684 685 // Remove the branch. 686 I->eraseFromParent(); 687 return 2; 688 } 689 690 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 691 MachineBasicBlock *TBB, 692 MachineBasicBlock *FBB, 693 ArrayRef<MachineOperand> Cond, 694 const DebugLoc &DL, 695 int *BytesAdded) const { 696 // Shouldn't be a fall through. 697 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 698 assert((Cond.size() == 2 || Cond.size() == 0) && 699 "PPC branch conditions have two components!"); 700 assert(!BytesAdded && "code size not handled"); 701 702 bool isPPC64 = Subtarget.isPPC64(); 703 704 // One-way branch. 705 if (!FBB) { 706 if (Cond.empty()) // Unconditional branch 707 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 708 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 709 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 710 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 711 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 712 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 713 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 714 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 715 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 716 else // Conditional branch 717 BuildMI(&MBB, DL, get(PPC::BCC)) 718 .addImm(Cond[0].getImm()) 719 .add(Cond[1]) 720 .addMBB(TBB); 721 return 1; 722 } 723 724 // Two-way Conditional Branch. 725 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 726 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 727 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 728 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 729 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 730 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 731 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 732 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 733 else 734 BuildMI(&MBB, DL, get(PPC::BCC)) 735 .addImm(Cond[0].getImm()) 736 .add(Cond[1]) 737 .addMBB(TBB); 738 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 739 return 2; 740 } 741 742 // Select analysis. 743 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 744 ArrayRef<MachineOperand> Cond, 745 unsigned TrueReg, unsigned FalseReg, 746 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 747 if (Cond.size() != 2) 748 return false; 749 750 // If this is really a bdnz-like condition, then it cannot be turned into a 751 // select. 752 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 753 return false; 754 755 // Check register classes. 756 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 757 const TargetRegisterClass *RC = 758 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 759 if (!RC) 760 return false; 761 762 // isel is for regular integer GPRs only. 763 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 764 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 765 !PPC::G8RCRegClass.hasSubClassEq(RC) && 766 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 767 return false; 768 769 // FIXME: These numbers are for the A2, how well they work for other cores is 770 // an open question. On the A2, the isel instruction has a 2-cycle latency 771 // but single-cycle throughput. These numbers are used in combination with 772 // the MispredictPenalty setting from the active SchedMachineModel. 773 CondCycles = 1; 774 TrueCycles = 1; 775 FalseCycles = 1; 776 777 return true; 778 } 779 780 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 781 MachineBasicBlock::iterator MI, 782 const DebugLoc &dl, unsigned DestReg, 783 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 784 unsigned FalseReg) const { 785 assert(Cond.size() == 2 && 786 "PPC branch conditions have two components!"); 787 788 // Get the register classes. 789 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 790 const TargetRegisterClass *RC = 791 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 792 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 793 794 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 795 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 796 assert((Is64Bit || 797 PPC::GPRCRegClass.hasSubClassEq(RC) || 798 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 799 "isel is for regular integer GPRs only"); 800 801 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 802 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 803 804 unsigned SubIdx = 0; 805 bool SwapOps = false; 806 switch (SelectPred) { 807 case PPC::PRED_EQ: 808 case PPC::PRED_EQ_MINUS: 809 case PPC::PRED_EQ_PLUS: 810 SubIdx = PPC::sub_eq; SwapOps = false; break; 811 case PPC::PRED_NE: 812 case PPC::PRED_NE_MINUS: 813 case PPC::PRED_NE_PLUS: 814 SubIdx = PPC::sub_eq; SwapOps = true; break; 815 case PPC::PRED_LT: 816 case PPC::PRED_LT_MINUS: 817 case PPC::PRED_LT_PLUS: 818 SubIdx = PPC::sub_lt; SwapOps = false; break; 819 case PPC::PRED_GE: 820 case PPC::PRED_GE_MINUS: 821 case PPC::PRED_GE_PLUS: 822 SubIdx = PPC::sub_lt; SwapOps = true; break; 823 case PPC::PRED_GT: 824 case PPC::PRED_GT_MINUS: 825 case PPC::PRED_GT_PLUS: 826 SubIdx = PPC::sub_gt; SwapOps = false; break; 827 case PPC::PRED_LE: 828 case PPC::PRED_LE_MINUS: 829 case PPC::PRED_LE_PLUS: 830 SubIdx = PPC::sub_gt; SwapOps = true; break; 831 case PPC::PRED_UN: 832 case PPC::PRED_UN_MINUS: 833 case PPC::PRED_UN_PLUS: 834 SubIdx = PPC::sub_un; SwapOps = false; break; 835 case PPC::PRED_NU: 836 case PPC::PRED_NU_MINUS: 837 case PPC::PRED_NU_PLUS: 838 SubIdx = PPC::sub_un; SwapOps = true; break; 839 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 840 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 841 } 842 843 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 844 SecondReg = SwapOps ? TrueReg : FalseReg; 845 846 // The first input register of isel cannot be r0. If it is a member 847 // of a register class that can be r0, then copy it first (the 848 // register allocator should eliminate the copy). 849 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 850 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 851 const TargetRegisterClass *FirstRC = 852 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 853 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 854 unsigned OldFirstReg = FirstReg; 855 FirstReg = MRI.createVirtualRegister(FirstRC); 856 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 857 .addReg(OldFirstReg); 858 } 859 860 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 861 .addReg(FirstReg).addReg(SecondReg) 862 .addReg(Cond[1].getReg(), 0, SubIdx); 863 } 864 865 static unsigned getCRBitValue(unsigned CRBit) { 866 unsigned Ret = 4; 867 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 868 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 869 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 870 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 871 Ret = 3; 872 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 873 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 874 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 875 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 876 Ret = 2; 877 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 878 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 879 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 880 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 881 Ret = 1; 882 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 883 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 884 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 885 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 886 Ret = 0; 887 888 assert(Ret != 4 && "Invalid CR bit register"); 889 return Ret; 890 } 891 892 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 893 MachineBasicBlock::iterator I, 894 const DebugLoc &DL, unsigned DestReg, 895 unsigned SrcReg, bool KillSrc) const { 896 // We can end up with self copies and similar things as a result of VSX copy 897 // legalization. Promote them here. 898 const TargetRegisterInfo *TRI = &getRegisterInfo(); 899 if (PPC::F8RCRegClass.contains(DestReg) && 900 PPC::VSRCRegClass.contains(SrcReg)) { 901 unsigned SuperReg = 902 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 903 904 if (VSXSelfCopyCrash && SrcReg == SuperReg) 905 llvm_unreachable("nop VSX copy"); 906 907 DestReg = SuperReg; 908 } else if (PPC::F8RCRegClass.contains(SrcReg) && 909 PPC::VSRCRegClass.contains(DestReg)) { 910 unsigned SuperReg = 911 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 912 913 if (VSXSelfCopyCrash && DestReg == SuperReg) 914 llvm_unreachable("nop VSX copy"); 915 916 SrcReg = SuperReg; 917 } 918 919 // Different class register copy 920 if (PPC::CRBITRCRegClass.contains(SrcReg) && 921 PPC::GPRCRegClass.contains(DestReg)) { 922 unsigned CRReg = getCRFromCRBit(SrcReg); 923 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 924 getKillRegState(KillSrc); 925 // Rotate the CR bit in the CR fields to be the least significant bit and 926 // then mask with 0x1 (MB = ME = 31). 927 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 928 .addReg(DestReg, RegState::Kill) 929 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 930 .addImm(31) 931 .addImm(31); 932 return; 933 } else if (PPC::CRRCRegClass.contains(SrcReg) && 934 PPC::G8RCRegClass.contains(DestReg)) { 935 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 936 getKillRegState(KillSrc); 937 return; 938 } else if (PPC::CRRCRegClass.contains(SrcReg) && 939 PPC::GPRCRegClass.contains(DestReg)) { 940 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 941 getKillRegState(KillSrc); 942 return; 943 } else if (PPC::G8RCRegClass.contains(SrcReg) && 944 PPC::VSFRCRegClass.contains(DestReg)) { 945 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 946 NumGPRtoVSRSpill++; 947 getKillRegState(KillSrc); 948 return; 949 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 950 PPC::G8RCRegClass.contains(DestReg)) { 951 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 952 getKillRegState(KillSrc); 953 return; 954 } else if (PPC::SPERCRegClass.contains(SrcReg) && 955 PPC::SPE4RCRegClass.contains(DestReg)) { 956 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 957 getKillRegState(KillSrc); 958 return; 959 } else if (PPC::SPE4RCRegClass.contains(SrcReg) && 960 PPC::SPERCRegClass.contains(DestReg)) { 961 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 962 getKillRegState(KillSrc); 963 return; 964 } 965 966 967 unsigned Opc; 968 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 969 Opc = PPC::OR; 970 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 971 Opc = PPC::OR8; 972 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 973 Opc = PPC::FMR; 974 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 975 Opc = PPC::MCRF; 976 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 977 Opc = PPC::VOR; 978 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 979 // There are two different ways this can be done: 980 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 981 // issue in VSU pipeline 0. 982 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 983 // can go to either pipeline. 984 // We'll always use xxlor here, because in practically all cases where 985 // copies are generated, they are close enough to some use that the 986 // lower-latency form is preferable. 987 Opc = PPC::XXLOR; 988 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 989 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 990 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 991 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 992 Opc = PPC::QVFMR; 993 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 994 Opc = PPC::QVFMRs; 995 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 996 Opc = PPC::QVFMRb; 997 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 998 Opc = PPC::CROR; 999 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1000 Opc = PPC::EVOR; 1001 else 1002 llvm_unreachable("Impossible reg-to-reg copy"); 1003 1004 const MCInstrDesc &MCID = get(Opc); 1005 if (MCID.getNumOperands() == 3) 1006 BuildMI(MBB, I, DL, MCID, DestReg) 1007 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1008 else 1009 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1010 } 1011 1012 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1013 const TargetRegisterClass *RC) 1014 const { 1015 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1016 int OpcodeIndex = 0; 1017 1018 if (RC != nullptr) { 1019 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1020 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1021 OpcodeIndex = SOK_Int4Spill; 1022 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1023 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1024 OpcodeIndex = SOK_Int8Spill; 1025 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1026 OpcodeIndex = SOK_Float8Spill; 1027 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1028 OpcodeIndex = SOK_Float4Spill; 1029 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1030 OpcodeIndex = SOK_SPESpill; 1031 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { 1032 OpcodeIndex = SOK_SPE4Spill; 1033 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1034 OpcodeIndex = SOK_CRSpill; 1035 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1036 OpcodeIndex = SOK_CRBitSpill; 1037 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1038 OpcodeIndex = SOK_VRVectorSpill; 1039 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1040 OpcodeIndex = SOK_VSXVectorSpill; 1041 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1042 OpcodeIndex = SOK_VectorFloat8Spill; 1043 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1044 OpcodeIndex = SOK_VectorFloat4Spill; 1045 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1046 OpcodeIndex = SOK_VRSaveSpill; 1047 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1048 OpcodeIndex = SOK_QuadFloat8Spill; 1049 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1050 OpcodeIndex = SOK_QuadFloat4Spill; 1051 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1052 OpcodeIndex = SOK_QuadBitSpill; 1053 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1054 OpcodeIndex = SOK_SpillToVSR; 1055 } else { 1056 llvm_unreachable("Unknown regclass!"); 1057 } 1058 } else { 1059 if (PPC::GPRCRegClass.contains(Reg) || 1060 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1061 OpcodeIndex = SOK_Int4Spill; 1062 } else if (PPC::G8RCRegClass.contains(Reg) || 1063 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1064 OpcodeIndex = SOK_Int8Spill; 1065 } else if (PPC::F8RCRegClass.contains(Reg)) { 1066 OpcodeIndex = SOK_Float8Spill; 1067 } else if (PPC::F4RCRegClass.contains(Reg)) { 1068 OpcodeIndex = SOK_Float4Spill; 1069 } else if (PPC::CRRCRegClass.contains(Reg)) { 1070 OpcodeIndex = SOK_CRSpill; 1071 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1072 OpcodeIndex = SOK_CRBitSpill; 1073 } else if (PPC::VRRCRegClass.contains(Reg)) { 1074 OpcodeIndex = SOK_VRVectorSpill; 1075 } else if (PPC::VSRCRegClass.contains(Reg)) { 1076 OpcodeIndex = SOK_VSXVectorSpill; 1077 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1078 OpcodeIndex = SOK_VectorFloat8Spill; 1079 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1080 OpcodeIndex = SOK_VectorFloat4Spill; 1081 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1082 OpcodeIndex = SOK_VRSaveSpill; 1083 } else if (PPC::QFRCRegClass.contains(Reg)) { 1084 OpcodeIndex = SOK_QuadFloat8Spill; 1085 } else if (PPC::QSRCRegClass.contains(Reg)) { 1086 OpcodeIndex = SOK_QuadFloat4Spill; 1087 } else if (PPC::QBRCRegClass.contains(Reg)) { 1088 OpcodeIndex = SOK_QuadBitSpill; 1089 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1090 OpcodeIndex = SOK_SpillToVSR; 1091 } else { 1092 llvm_unreachable("Unknown regclass!"); 1093 } 1094 } 1095 return OpcodesForSpill[OpcodeIndex]; 1096 } 1097 1098 unsigned 1099 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1100 const TargetRegisterClass *RC) const { 1101 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1102 int OpcodeIndex = 0; 1103 1104 if (RC != nullptr) { 1105 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1106 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1107 OpcodeIndex = SOK_Int4Spill; 1108 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1109 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1110 OpcodeIndex = SOK_Int8Spill; 1111 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1112 OpcodeIndex = SOK_Float8Spill; 1113 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1114 OpcodeIndex = SOK_Float4Spill; 1115 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1116 OpcodeIndex = SOK_SPESpill; 1117 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { 1118 OpcodeIndex = SOK_SPE4Spill; 1119 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1120 OpcodeIndex = SOK_CRSpill; 1121 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1122 OpcodeIndex = SOK_CRBitSpill; 1123 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1124 OpcodeIndex = SOK_VRVectorSpill; 1125 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1126 OpcodeIndex = SOK_VSXVectorSpill; 1127 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1128 OpcodeIndex = SOK_VectorFloat8Spill; 1129 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1130 OpcodeIndex = SOK_VectorFloat4Spill; 1131 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1132 OpcodeIndex = SOK_VRSaveSpill; 1133 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1134 OpcodeIndex = SOK_QuadFloat8Spill; 1135 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1136 OpcodeIndex = SOK_QuadFloat4Spill; 1137 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1138 OpcodeIndex = SOK_QuadBitSpill; 1139 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1140 OpcodeIndex = SOK_SpillToVSR; 1141 } else { 1142 llvm_unreachable("Unknown regclass!"); 1143 } 1144 } else { 1145 if (PPC::GPRCRegClass.contains(Reg) || 1146 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1147 OpcodeIndex = SOK_Int4Spill; 1148 } else if (PPC::G8RCRegClass.contains(Reg) || 1149 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1150 OpcodeIndex = SOK_Int8Spill; 1151 } else if (PPC::F8RCRegClass.contains(Reg)) { 1152 OpcodeIndex = SOK_Float8Spill; 1153 } else if (PPC::F4RCRegClass.contains(Reg)) { 1154 OpcodeIndex = SOK_Float4Spill; 1155 } else if (PPC::CRRCRegClass.contains(Reg)) { 1156 OpcodeIndex = SOK_CRSpill; 1157 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1158 OpcodeIndex = SOK_CRBitSpill; 1159 } else if (PPC::VRRCRegClass.contains(Reg)) { 1160 OpcodeIndex = SOK_VRVectorSpill; 1161 } else if (PPC::VSRCRegClass.contains(Reg)) { 1162 OpcodeIndex = SOK_VSXVectorSpill; 1163 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1164 OpcodeIndex = SOK_VectorFloat8Spill; 1165 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1166 OpcodeIndex = SOK_VectorFloat4Spill; 1167 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1168 OpcodeIndex = SOK_VRSaveSpill; 1169 } else if (PPC::QFRCRegClass.contains(Reg)) { 1170 OpcodeIndex = SOK_QuadFloat8Spill; 1171 } else if (PPC::QSRCRegClass.contains(Reg)) { 1172 OpcodeIndex = SOK_QuadFloat4Spill; 1173 } else if (PPC::QBRCRegClass.contains(Reg)) { 1174 OpcodeIndex = SOK_QuadBitSpill; 1175 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1176 OpcodeIndex = SOK_SpillToVSR; 1177 } else { 1178 llvm_unreachable("Unknown regclass!"); 1179 } 1180 } 1181 return OpcodesForSpill[OpcodeIndex]; 1182 } 1183 1184 void PPCInstrInfo::StoreRegToStackSlot( 1185 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1186 const TargetRegisterClass *RC, 1187 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1188 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1189 DebugLoc DL; 1190 1191 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1192 FuncInfo->setHasSpills(); 1193 1194 NewMIs.push_back(addFrameReference( 1195 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1196 FrameIdx)); 1197 1198 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1199 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1200 FuncInfo->setSpillsCR(); 1201 1202 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1203 FuncInfo->setSpillsVRSAVE(); 1204 1205 if (isXFormMemOp(Opcode)) 1206 FuncInfo->setHasNonRISpills(); 1207 } 1208 1209 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1210 MachineBasicBlock::iterator MI, 1211 unsigned SrcReg, bool isKill, 1212 int FrameIdx, 1213 const TargetRegisterClass *RC, 1214 const TargetRegisterInfo *TRI) const { 1215 MachineFunction &MF = *MBB.getParent(); 1216 SmallVector<MachineInstr *, 4> NewMIs; 1217 1218 // We need to avoid a situation in which the value from a VRRC register is 1219 // spilled using an Altivec instruction and reloaded into a VSRC register 1220 // using a VSX instruction. The issue with this is that the VSX 1221 // load/store instructions swap the doublewords in the vector and the Altivec 1222 // ones don't. The register classes on the spill/reload may be different if 1223 // the register is defined using an Altivec instruction and is then used by a 1224 // VSX instruction. 1225 RC = updatedRC(RC); 1226 1227 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1228 1229 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1230 MBB.insert(MI, NewMIs[i]); 1231 1232 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1233 MachineMemOperand *MMO = MF.getMachineMemOperand( 1234 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1235 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1236 MFI.getObjectAlignment(FrameIdx)); 1237 NewMIs.back()->addMemOperand(MF, MMO); 1238 } 1239 1240 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1241 unsigned DestReg, int FrameIdx, 1242 const TargetRegisterClass *RC, 1243 SmallVectorImpl<MachineInstr *> &NewMIs) 1244 const { 1245 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1246 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1247 FrameIdx)); 1248 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1249 1250 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1251 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1252 FuncInfo->setSpillsCR(); 1253 1254 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1255 FuncInfo->setSpillsVRSAVE(); 1256 1257 if (isXFormMemOp(Opcode)) 1258 FuncInfo->setHasNonRISpills(); 1259 } 1260 1261 void 1262 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1263 MachineBasicBlock::iterator MI, 1264 unsigned DestReg, int FrameIdx, 1265 const TargetRegisterClass *RC, 1266 const TargetRegisterInfo *TRI) const { 1267 MachineFunction &MF = *MBB.getParent(); 1268 SmallVector<MachineInstr*, 4> NewMIs; 1269 DebugLoc DL; 1270 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1271 1272 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1273 FuncInfo->setHasSpills(); 1274 1275 // We need to avoid a situation in which the value from a VRRC register is 1276 // spilled using an Altivec instruction and reloaded into a VSRC register 1277 // using a VSX instruction. The issue with this is that the VSX 1278 // load/store instructions swap the doublewords in the vector and the Altivec 1279 // ones don't. The register classes on the spill/reload may be different if 1280 // the register is defined using an Altivec instruction and is then used by a 1281 // VSX instruction. 1282 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1283 RC = &PPC::VSRCRegClass; 1284 1285 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1286 1287 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1288 MBB.insert(MI, NewMIs[i]); 1289 1290 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1291 MachineMemOperand *MMO = MF.getMachineMemOperand( 1292 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1293 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1294 MFI.getObjectAlignment(FrameIdx)); 1295 NewMIs.back()->addMemOperand(MF, MMO); 1296 } 1297 1298 bool PPCInstrInfo:: 1299 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1300 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1301 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1302 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1303 else 1304 // Leave the CR# the same, but invert the condition. 1305 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1306 return false; 1307 } 1308 1309 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1310 unsigned Reg, MachineRegisterInfo *MRI) const { 1311 // For some instructions, it is legal to fold ZERO into the RA register field. 1312 // A zero immediate should always be loaded with a single li. 1313 unsigned DefOpc = DefMI.getOpcode(); 1314 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1315 return false; 1316 if (!DefMI.getOperand(1).isImm()) 1317 return false; 1318 if (DefMI.getOperand(1).getImm() != 0) 1319 return false; 1320 1321 // Note that we cannot here invert the arguments of an isel in order to fold 1322 // a ZERO into what is presented as the second argument. All we have here 1323 // is the condition bit, and that might come from a CR-logical bit operation. 1324 1325 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1326 1327 // Only fold into real machine instructions. 1328 if (UseMCID.isPseudo()) 1329 return false; 1330 1331 unsigned UseIdx; 1332 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1333 if (UseMI.getOperand(UseIdx).isReg() && 1334 UseMI.getOperand(UseIdx).getReg() == Reg) 1335 break; 1336 1337 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1338 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1339 1340 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1341 1342 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1343 // register (which might also be specified as a pointer class kind). 1344 if (UseInfo->isLookupPtrRegClass()) { 1345 if (UseInfo->RegClass /* Kind */ != 1) 1346 return false; 1347 } else { 1348 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1349 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1350 return false; 1351 } 1352 1353 // Make sure this is not tied to an output register (or otherwise 1354 // constrained). This is true for ST?UX registers, for example, which 1355 // are tied to their output registers. 1356 if (UseInfo->Constraints != 0) 1357 return false; 1358 1359 unsigned ZeroReg; 1360 if (UseInfo->isLookupPtrRegClass()) { 1361 bool isPPC64 = Subtarget.isPPC64(); 1362 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1363 } else { 1364 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1365 PPC::ZERO8 : PPC::ZERO; 1366 } 1367 1368 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1369 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1370 1371 if (DeleteDef) 1372 DefMI.eraseFromParent(); 1373 1374 return true; 1375 } 1376 1377 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1378 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1379 I != IE; ++I) 1380 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1381 return true; 1382 return false; 1383 } 1384 1385 // We should make sure that, if we're going to predicate both sides of a 1386 // condition (a diamond), that both sides don't define the counter register. We 1387 // can predicate counter-decrement-based branches, but while that predicates 1388 // the branching, it does not predicate the counter decrement. If we tried to 1389 // merge the triangle into one predicated block, we'd decrement the counter 1390 // twice. 1391 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1392 unsigned NumT, unsigned ExtraT, 1393 MachineBasicBlock &FMBB, 1394 unsigned NumF, unsigned ExtraF, 1395 BranchProbability Probability) const { 1396 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1397 } 1398 1399 1400 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1401 // The predicated branches are identified by their type, not really by the 1402 // explicit presence of a predicate. Furthermore, some of them can be 1403 // predicated more than once. Because if conversion won't try to predicate 1404 // any instruction which already claims to be predicated (by returning true 1405 // here), always return false. In doing so, we let isPredicable() be the 1406 // final word on whether not the instruction can be (further) predicated. 1407 1408 return false; 1409 } 1410 1411 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1412 if (!MI.isTerminator()) 1413 return false; 1414 1415 // Conditional branch is a special case. 1416 if (MI.isBranch() && !MI.isBarrier()) 1417 return true; 1418 1419 return !isPredicated(MI); 1420 } 1421 1422 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1423 ArrayRef<MachineOperand> Pred) const { 1424 unsigned OpC = MI.getOpcode(); 1425 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1426 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1427 bool isPPC64 = Subtarget.isPPC64(); 1428 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1429 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1430 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1431 MI.setDesc(get(PPC::BCLR)); 1432 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1433 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1434 MI.setDesc(get(PPC::BCLRn)); 1435 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1436 } else { 1437 MI.setDesc(get(PPC::BCCLR)); 1438 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1439 .addImm(Pred[0].getImm()) 1440 .add(Pred[1]); 1441 } 1442 1443 return true; 1444 } else if (OpC == PPC::B) { 1445 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1446 bool isPPC64 = Subtarget.isPPC64(); 1447 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1448 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1449 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1450 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1451 MI.RemoveOperand(0); 1452 1453 MI.setDesc(get(PPC::BC)); 1454 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1455 .add(Pred[1]) 1456 .addMBB(MBB); 1457 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1458 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1459 MI.RemoveOperand(0); 1460 1461 MI.setDesc(get(PPC::BCn)); 1462 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1463 .add(Pred[1]) 1464 .addMBB(MBB); 1465 } else { 1466 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1467 MI.RemoveOperand(0); 1468 1469 MI.setDesc(get(PPC::BCC)); 1470 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1471 .addImm(Pred[0].getImm()) 1472 .add(Pred[1]) 1473 .addMBB(MBB); 1474 } 1475 1476 return true; 1477 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1478 OpC == PPC::BCTRL8) { 1479 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1480 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1481 1482 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1483 bool isPPC64 = Subtarget.isPPC64(); 1484 1485 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1486 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1487 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1488 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1489 return true; 1490 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1491 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1492 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1493 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1494 return true; 1495 } 1496 1497 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1498 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1499 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1500 .addImm(Pred[0].getImm()) 1501 .add(Pred[1]); 1502 return true; 1503 } 1504 1505 return false; 1506 } 1507 1508 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1509 ArrayRef<MachineOperand> Pred2) const { 1510 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1511 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1512 1513 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1514 return false; 1515 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1516 return false; 1517 1518 // P1 can only subsume P2 if they test the same condition register. 1519 if (Pred1[1].getReg() != Pred2[1].getReg()) 1520 return false; 1521 1522 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1523 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1524 1525 if (P1 == P2) 1526 return true; 1527 1528 // Does P1 subsume P2, e.g. GE subsumes GT. 1529 if (P1 == PPC::PRED_LE && 1530 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1531 return true; 1532 if (P1 == PPC::PRED_GE && 1533 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1534 return true; 1535 1536 return false; 1537 } 1538 1539 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1540 std::vector<MachineOperand> &Pred) const { 1541 // Note: At the present time, the contents of Pred from this function is 1542 // unused by IfConversion. This implementation follows ARM by pushing the 1543 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1544 // predicate, instructions defining CTR or CTR8 are also included as 1545 // predicate-defining instructions. 1546 1547 const TargetRegisterClass *RCs[] = 1548 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1549 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1550 1551 bool Found = false; 1552 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1553 const MachineOperand &MO = MI.getOperand(i); 1554 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1555 const TargetRegisterClass *RC = RCs[c]; 1556 if (MO.isReg()) { 1557 if (MO.isDef() && RC->contains(MO.getReg())) { 1558 Pred.push_back(MO); 1559 Found = true; 1560 } 1561 } else if (MO.isRegMask()) { 1562 for (TargetRegisterClass::iterator I = RC->begin(), 1563 IE = RC->end(); I != IE; ++I) 1564 if (MO.clobbersPhysReg(*I)) { 1565 Pred.push_back(MO); 1566 Found = true; 1567 } 1568 } 1569 } 1570 } 1571 1572 return Found; 1573 } 1574 1575 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1576 unsigned OpC = MI.getOpcode(); 1577 switch (OpC) { 1578 default: 1579 return false; 1580 case PPC::B: 1581 case PPC::BLR: 1582 case PPC::BLR8: 1583 case PPC::BCTR: 1584 case PPC::BCTR8: 1585 case PPC::BCTRL: 1586 case PPC::BCTRL8: 1587 return true; 1588 } 1589 } 1590 1591 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1592 unsigned &SrcReg2, int &Mask, 1593 int &Value) const { 1594 unsigned Opc = MI.getOpcode(); 1595 1596 switch (Opc) { 1597 default: return false; 1598 case PPC::CMPWI: 1599 case PPC::CMPLWI: 1600 case PPC::CMPDI: 1601 case PPC::CMPLDI: 1602 SrcReg = MI.getOperand(1).getReg(); 1603 SrcReg2 = 0; 1604 Value = MI.getOperand(2).getImm(); 1605 Mask = 0xFFFF; 1606 return true; 1607 case PPC::CMPW: 1608 case PPC::CMPLW: 1609 case PPC::CMPD: 1610 case PPC::CMPLD: 1611 case PPC::FCMPUS: 1612 case PPC::FCMPUD: 1613 SrcReg = MI.getOperand(1).getReg(); 1614 SrcReg2 = MI.getOperand(2).getReg(); 1615 Value = 0; 1616 Mask = 0; 1617 return true; 1618 } 1619 } 1620 1621 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1622 unsigned SrcReg2, int Mask, int Value, 1623 const MachineRegisterInfo *MRI) const { 1624 if (DisableCmpOpt) 1625 return false; 1626 1627 int OpC = CmpInstr.getOpcode(); 1628 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1629 1630 // FP record forms set CR1 based on the exception status bits, not a 1631 // comparison with zero. 1632 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1633 return false; 1634 1635 // The record forms set the condition register based on a signed comparison 1636 // with zero (so says the ISA manual). This is not as straightforward as it 1637 // seems, however, because this is always a 64-bit comparison on PPC64, even 1638 // for instructions that are 32-bit in nature (like slw for example). 1639 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1640 // for equality checks (as those don't depend on the sign). On PPC64, 1641 // we are restricted to equality for unsigned 64-bit comparisons and for 1642 // signed 32-bit comparisons the applicability is more restricted. 1643 bool isPPC64 = Subtarget.isPPC64(); 1644 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1645 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1646 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1647 1648 // Get the unique definition of SrcReg. 1649 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1650 if (!MI) return false; 1651 1652 bool equalityOnly = false; 1653 bool noSub = false; 1654 if (isPPC64) { 1655 if (is32BitSignedCompare) { 1656 // We can perform this optimization only if MI is sign-extending. 1657 if (isSignExtended(*MI)) 1658 noSub = true; 1659 else 1660 return false; 1661 } else if (is32BitUnsignedCompare) { 1662 // We can perform this optimization, equality only, if MI is 1663 // zero-extending. 1664 if (isZeroExtended(*MI)) { 1665 noSub = true; 1666 equalityOnly = true; 1667 } else 1668 return false; 1669 } else 1670 equalityOnly = is64BitUnsignedCompare; 1671 } else 1672 equalityOnly = is32BitUnsignedCompare; 1673 1674 if (equalityOnly) { 1675 // We need to check the uses of the condition register in order to reject 1676 // non-equality comparisons. 1677 for (MachineRegisterInfo::use_instr_iterator 1678 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1679 I != IE; ++I) { 1680 MachineInstr *UseMI = &*I; 1681 if (UseMI->getOpcode() == PPC::BCC) { 1682 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1683 unsigned PredCond = PPC::getPredicateCondition(Pred); 1684 // We ignore hint bits when checking for non-equality comparisons. 1685 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1686 return false; 1687 } else if (UseMI->getOpcode() == PPC::ISEL || 1688 UseMI->getOpcode() == PPC::ISEL8) { 1689 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1690 if (SubIdx != PPC::sub_eq) 1691 return false; 1692 } else 1693 return false; 1694 } 1695 } 1696 1697 MachineBasicBlock::iterator I = CmpInstr; 1698 1699 // Scan forward to find the first use of the compare. 1700 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1701 ++I) { 1702 bool FoundUse = false; 1703 for (MachineRegisterInfo::use_instr_iterator 1704 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1705 J != JE; ++J) 1706 if (&*J == &*I) { 1707 FoundUse = true; 1708 break; 1709 } 1710 1711 if (FoundUse) 1712 break; 1713 } 1714 1715 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1716 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1717 1718 // There are two possible candidates which can be changed to set CR[01]. 1719 // One is MI, the other is a SUB instruction. 1720 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1721 MachineInstr *Sub = nullptr; 1722 if (SrcReg2 != 0) 1723 // MI is not a candidate for CMPrr. 1724 MI = nullptr; 1725 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1726 // same BB as the comparison. This is to allow the check below to avoid calls 1727 // (and other explicit clobbers); instead we should really check for these 1728 // more explicitly (in at least a few predecessors). 1729 else if (MI->getParent() != CmpInstr.getParent()) 1730 return false; 1731 else if (Value != 0) { 1732 // The record-form instructions set CR bit based on signed comparison 1733 // against 0. We try to convert a compare against 1 or -1 into a compare 1734 // against 0 to exploit record-form instructions. For example, we change 1735 // the condition "greater than -1" into "greater than or equal to 0" 1736 // and "less than 1" into "less than or equal to 0". 1737 1738 // Since we optimize comparison based on a specific branch condition, 1739 // we don't optimize if condition code is used by more than once. 1740 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1741 return false; 1742 1743 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1744 if (UseMI->getOpcode() != PPC::BCC) 1745 return false; 1746 1747 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1748 PPC::Predicate NewPred = Pred; 1749 unsigned PredCond = PPC::getPredicateCondition(Pred); 1750 unsigned PredHint = PPC::getPredicateHint(Pred); 1751 int16_t Immed = (int16_t)Value; 1752 1753 // When modifying the condition in the predicate, we propagate hint bits 1754 // from the original predicate to the new one. 1755 if (Immed == -1 && PredCond == PPC::PRED_GT) 1756 // We convert "greater than -1" into "greater than or equal to 0", 1757 // since we are assuming signed comparison by !equalityOnly 1758 NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1759 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1760 // We convert "less than or equal to -1" into "less than 0". 1761 NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1762 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1763 // We convert "less than 1" into "less than or equal to 0". 1764 NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1765 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1766 // We convert "greater than or equal to 1" into "greater than 0". 1767 NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1768 else 1769 return false; 1770 1771 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1772 NewPred)); 1773 } 1774 1775 // Search for Sub. 1776 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1777 --I; 1778 1779 // Get ready to iterate backward from CmpInstr. 1780 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1781 1782 for (; I != E && !noSub; --I) { 1783 const MachineInstr &Instr = *I; 1784 unsigned IOpC = Instr.getOpcode(); 1785 1786 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1787 Instr.readsRegister(PPC::CR0, TRI))) 1788 // This instruction modifies or uses the record condition register after 1789 // the one we want to change. While we could do this transformation, it 1790 // would likely not be profitable. This transformation removes one 1791 // instruction, and so even forcing RA to generate one move probably 1792 // makes it unprofitable. 1793 return false; 1794 1795 // Check whether CmpInstr can be made redundant by the current instruction. 1796 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1797 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1798 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1799 ((Instr.getOperand(1).getReg() == SrcReg && 1800 Instr.getOperand(2).getReg() == SrcReg2) || 1801 (Instr.getOperand(1).getReg() == SrcReg2 && 1802 Instr.getOperand(2).getReg() == SrcReg))) { 1803 Sub = &*I; 1804 break; 1805 } 1806 1807 if (I == B) 1808 // The 'and' is below the comparison instruction. 1809 return false; 1810 } 1811 1812 // Return false if no candidates exist. 1813 if (!MI && !Sub) 1814 return false; 1815 1816 // The single candidate is called MI. 1817 if (!MI) MI = Sub; 1818 1819 int NewOpC = -1; 1820 int MIOpC = MI->getOpcode(); 1821 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 || 1822 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8) 1823 NewOpC = MIOpC; 1824 else { 1825 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1826 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1827 NewOpC = MIOpC; 1828 } 1829 1830 // FIXME: On the non-embedded POWER architectures, only some of the record 1831 // forms are fast, and we should use only the fast ones. 1832 1833 // The defining instruction has a record form (or is already a record 1834 // form). It is possible, however, that we'll need to reverse the condition 1835 // code of the users. 1836 if (NewOpC == -1) 1837 return false; 1838 1839 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1840 // needs to be updated to be based on SUB. Push the condition code 1841 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1842 // condition code of these operands will be modified. 1843 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1844 // comparison against 0, which may modify predicate. 1845 bool ShouldSwap = false; 1846 if (Sub && Value == 0) { 1847 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1848 Sub->getOperand(2).getReg() == SrcReg; 1849 1850 // The operands to subf are the opposite of sub, so only in the fixed-point 1851 // case, invert the order. 1852 ShouldSwap = !ShouldSwap; 1853 } 1854 1855 if (ShouldSwap) 1856 for (MachineRegisterInfo::use_instr_iterator 1857 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1858 I != IE; ++I) { 1859 MachineInstr *UseMI = &*I; 1860 if (UseMI->getOpcode() == PPC::BCC) { 1861 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1862 unsigned PredCond = PPC::getPredicateCondition(Pred); 1863 assert((!equalityOnly || 1864 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1865 "Invalid predicate for equality-only optimization"); 1866 (void)PredCond; // To suppress warning in release build. 1867 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1868 PPC::getSwappedPredicate(Pred))); 1869 } else if (UseMI->getOpcode() == PPC::ISEL || 1870 UseMI->getOpcode() == PPC::ISEL8) { 1871 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1872 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1873 "Invalid CR bit for equality-only optimization"); 1874 1875 if (NewSubReg == PPC::sub_lt) 1876 NewSubReg = PPC::sub_gt; 1877 else if (NewSubReg == PPC::sub_gt) 1878 NewSubReg = PPC::sub_lt; 1879 1880 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1881 NewSubReg)); 1882 } else // We need to abort on a user we don't understand. 1883 return false; 1884 } 1885 assert(!(Value != 0 && ShouldSwap) && 1886 "Non-zero immediate support and ShouldSwap" 1887 "may conflict in updating predicate"); 1888 1889 // Create a new virtual register to hold the value of the CR set by the 1890 // record-form instruction. If the instruction was not previously in 1891 // record form, then set the kill flag on the CR. 1892 CmpInstr.eraseFromParent(); 1893 1894 MachineBasicBlock::iterator MII = MI; 1895 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1896 get(TargetOpcode::COPY), CRReg) 1897 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1898 1899 // Even if CR0 register were dead before, it is alive now since the 1900 // instruction we just built uses it. 1901 MI->clearRegisterDeads(PPC::CR0); 1902 1903 if (MIOpC != NewOpC) { 1904 // We need to be careful here: we're replacing one instruction with 1905 // another, and we need to make sure that we get all of the right 1906 // implicit uses and defs. On the other hand, the caller may be holding 1907 // an iterator to this instruction, and so we can't delete it (this is 1908 // specifically the case if this is the instruction directly after the 1909 // compare). 1910 1911 // Rotates are expensive instructions. If we're emitting a record-form 1912 // rotate that can just be an andi/andis, we should just emit that. 1913 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1914 unsigned GPRRes = MI->getOperand(0).getReg(); 1915 int64_t SH = MI->getOperand(2).getImm(); 1916 int64_t MB = MI->getOperand(3).getImm(); 1917 int64_t ME = MI->getOperand(4).getImm(); 1918 // We can only do this if both the start and end of the mask are in the 1919 // same halfword. 1920 bool MBInLoHWord = MB >= 16; 1921 bool MEInLoHWord = ME >= 16; 1922 uint64_t Mask = ~0LLU; 1923 1924 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1925 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1926 // The mask value needs to shift right 16 if we're emitting andis. 1927 Mask >>= MBInLoHWord ? 0 : 16; 1928 NewOpC = MIOpC == PPC::RLWINM ? 1929 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) : 1930 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8); 1931 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1932 (ME - MB + 1 == SH) && (MB >= 16)) { 1933 // If we are rotating by the exact number of bits as are in the mask 1934 // and the mask is in the least significant bits of the register, 1935 // that's just an andis. (as long as the GPR result has no uses). 1936 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1937 Mask >>= 16; 1938 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8; 1939 } 1940 // If we've set the mask, we can transform. 1941 if (Mask != ~0LLU) { 1942 MI->RemoveOperand(4); 1943 MI->RemoveOperand(3); 1944 MI->getOperand(2).setImm(Mask); 1945 NumRcRotatesConvertedToRcAnd++; 1946 } 1947 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1948 int64_t MB = MI->getOperand(3).getImm(); 1949 if (MB >= 48) { 1950 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1951 NewOpC = PPC::ANDIo8; 1952 MI->RemoveOperand(3); 1953 MI->getOperand(2).setImm(Mask); 1954 NumRcRotatesConvertedToRcAnd++; 1955 } 1956 } 1957 1958 const MCInstrDesc &NewDesc = get(NewOpC); 1959 MI->setDesc(NewDesc); 1960 1961 if (NewDesc.ImplicitDefs) 1962 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1963 *ImpDefs; ++ImpDefs) 1964 if (!MI->definesRegister(*ImpDefs)) 1965 MI->addOperand(*MI->getParent()->getParent(), 1966 MachineOperand::CreateReg(*ImpDefs, true, true)); 1967 if (NewDesc.ImplicitUses) 1968 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1969 *ImpUses; ++ImpUses) 1970 if (!MI->readsRegister(*ImpUses)) 1971 MI->addOperand(*MI->getParent()->getParent(), 1972 MachineOperand::CreateReg(*ImpUses, false, true)); 1973 } 1974 assert(MI->definesRegister(PPC::CR0) && 1975 "Record-form instruction does not define cr0?"); 1976 1977 // Modify the condition code of operands in OperandsToUpdate. 1978 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1979 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1980 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1981 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1982 1983 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1984 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1985 1986 return true; 1987 } 1988 1989 /// GetInstSize - Return the number of bytes of code the specified 1990 /// instruction may be. This returns the maximum number of bytes. 1991 /// 1992 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1993 unsigned Opcode = MI.getOpcode(); 1994 1995 if (Opcode == PPC::INLINEASM) { 1996 const MachineFunction *MF = MI.getParent()->getParent(); 1997 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1998 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1999 } else if (Opcode == TargetOpcode::STACKMAP) { 2000 StackMapOpers Opers(&MI); 2001 return Opers.getNumPatchBytes(); 2002 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2003 PatchPointOpers Opers(&MI); 2004 return Opers.getNumPatchBytes(); 2005 } else { 2006 return get(Opcode).getSize(); 2007 } 2008 } 2009 2010 std::pair<unsigned, unsigned> 2011 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2012 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2013 return std::make_pair(TF & Mask, TF & ~Mask); 2014 } 2015 2016 ArrayRef<std::pair<unsigned, const char *>> 2017 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2018 using namespace PPCII; 2019 static const std::pair<unsigned, const char *> TargetFlags[] = { 2020 {MO_LO, "ppc-lo"}, 2021 {MO_HA, "ppc-ha"}, 2022 {MO_TPREL_LO, "ppc-tprel-lo"}, 2023 {MO_TPREL_HA, "ppc-tprel-ha"}, 2024 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2025 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2026 {MO_TOC_LO, "ppc-toc-lo"}, 2027 {MO_TLS, "ppc-tls"}}; 2028 return makeArrayRef(TargetFlags); 2029 } 2030 2031 ArrayRef<std::pair<unsigned, const char *>> 2032 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2033 using namespace PPCII; 2034 static const std::pair<unsigned, const char *> TargetFlags[] = { 2035 {MO_PLT, "ppc-plt"}, 2036 {MO_PIC_FLAG, "ppc-pic"}, 2037 {MO_NLP_FLAG, "ppc-nlp"}, 2038 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 2039 return makeArrayRef(TargetFlags); 2040 } 2041 2042 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2043 // The VSX versions have the advantage of a full 64-register target whereas 2044 // the FP ones have the advantage of lower latency and higher throughput. So 2045 // what we are after is using the faster instructions in low register pressure 2046 // situations and using the larger register file in high register pressure 2047 // situations. 2048 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2049 unsigned UpperOpcode, LowerOpcode; 2050 switch (MI.getOpcode()) { 2051 case PPC::DFLOADf32: 2052 UpperOpcode = PPC::LXSSP; 2053 LowerOpcode = PPC::LFS; 2054 break; 2055 case PPC::DFLOADf64: 2056 UpperOpcode = PPC::LXSD; 2057 LowerOpcode = PPC::LFD; 2058 break; 2059 case PPC::DFSTOREf32: 2060 UpperOpcode = PPC::STXSSP; 2061 LowerOpcode = PPC::STFS; 2062 break; 2063 case PPC::DFSTOREf64: 2064 UpperOpcode = PPC::STXSD; 2065 LowerOpcode = PPC::STFD; 2066 break; 2067 case PPC::XFLOADf32: 2068 UpperOpcode = PPC::LXSSPX; 2069 LowerOpcode = PPC::LFSX; 2070 break; 2071 case PPC::XFLOADf64: 2072 UpperOpcode = PPC::LXSDX; 2073 LowerOpcode = PPC::LFDX; 2074 break; 2075 case PPC::XFSTOREf32: 2076 UpperOpcode = PPC::STXSSPX; 2077 LowerOpcode = PPC::STFSX; 2078 break; 2079 case PPC::XFSTOREf64: 2080 UpperOpcode = PPC::STXSDX; 2081 LowerOpcode = PPC::STFDX; 2082 break; 2083 case PPC::LIWAX: 2084 UpperOpcode = PPC::LXSIWAX; 2085 LowerOpcode = PPC::LFIWAX; 2086 break; 2087 case PPC::LIWZX: 2088 UpperOpcode = PPC::LXSIWZX; 2089 LowerOpcode = PPC::LFIWZX; 2090 break; 2091 case PPC::STIWX: 2092 UpperOpcode = PPC::STXSIWX; 2093 LowerOpcode = PPC::STFIWX; 2094 break; 2095 default: 2096 llvm_unreachable("Unknown Operation!"); 2097 } 2098 2099 unsigned TargetReg = MI.getOperand(0).getReg(); 2100 unsigned Opcode; 2101 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2102 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2103 Opcode = LowerOpcode; 2104 else 2105 Opcode = UpperOpcode; 2106 MI.setDesc(get(Opcode)); 2107 return true; 2108 } 2109 2110 static bool isAnImmediateOperand(const MachineOperand &MO) { 2111 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2112 } 2113 2114 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2115 auto &MBB = *MI.getParent(); 2116 auto DL = MI.getDebugLoc(); 2117 2118 switch (MI.getOpcode()) { 2119 case TargetOpcode::LOAD_STACK_GUARD: { 2120 assert(Subtarget.isTargetLinux() && 2121 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2122 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2123 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2124 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2125 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2126 .addImm(Offset) 2127 .addReg(Reg); 2128 return true; 2129 } 2130 case PPC::DFLOADf32: 2131 case PPC::DFLOADf64: 2132 case PPC::DFSTOREf32: 2133 case PPC::DFSTOREf64: { 2134 assert(Subtarget.hasP9Vector() && 2135 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2136 assert(MI.getOperand(2).isReg() && 2137 isAnImmediateOperand(MI.getOperand(1)) && 2138 "D-form op must have register and immediate operands"); 2139 return expandVSXMemPseudo(MI); 2140 } 2141 case PPC::XFLOADf32: 2142 case PPC::XFSTOREf32: 2143 case PPC::LIWAX: 2144 case PPC::LIWZX: 2145 case PPC::STIWX: { 2146 assert(Subtarget.hasP8Vector() && 2147 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2148 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2149 "X-form op must have register and register operands"); 2150 return expandVSXMemPseudo(MI); 2151 } 2152 case PPC::XFLOADf64: 2153 case PPC::XFSTOREf64: { 2154 assert(Subtarget.hasVSX() && 2155 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2156 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2157 "X-form op must have register and register operands"); 2158 return expandVSXMemPseudo(MI); 2159 } 2160 case PPC::SPILLTOVSR_LD: { 2161 unsigned TargetReg = MI.getOperand(0).getReg(); 2162 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2163 MI.setDesc(get(PPC::DFLOADf64)); 2164 return expandPostRAPseudo(MI); 2165 } 2166 else 2167 MI.setDesc(get(PPC::LD)); 2168 return true; 2169 } 2170 case PPC::SPILLTOVSR_ST: { 2171 unsigned SrcReg = MI.getOperand(0).getReg(); 2172 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2173 NumStoreSPILLVSRRCAsVec++; 2174 MI.setDesc(get(PPC::DFSTOREf64)); 2175 return expandPostRAPseudo(MI); 2176 } else { 2177 NumStoreSPILLVSRRCAsGpr++; 2178 MI.setDesc(get(PPC::STD)); 2179 } 2180 return true; 2181 } 2182 case PPC::SPILLTOVSR_LDX: { 2183 unsigned TargetReg = MI.getOperand(0).getReg(); 2184 if (PPC::VSFRCRegClass.contains(TargetReg)) 2185 MI.setDesc(get(PPC::LXSDX)); 2186 else 2187 MI.setDesc(get(PPC::LDX)); 2188 return true; 2189 } 2190 case PPC::SPILLTOVSR_STX: { 2191 unsigned SrcReg = MI.getOperand(0).getReg(); 2192 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2193 NumStoreSPILLVSRRCAsVec++; 2194 MI.setDesc(get(PPC::STXSDX)); 2195 } else { 2196 NumStoreSPILLVSRRCAsGpr++; 2197 MI.setDesc(get(PPC::STDX)); 2198 } 2199 return true; 2200 } 2201 2202 case PPC::CFENCE8: { 2203 auto Val = MI.getOperand(0).getReg(); 2204 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2205 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2206 .addImm(PPC::PRED_NE_MINUS) 2207 .addReg(PPC::CR7) 2208 .addImm(1); 2209 MI.setDesc(get(PPC::ISYNC)); 2210 MI.RemoveOperand(0); 2211 return true; 2212 } 2213 } 2214 return false; 2215 } 2216 2217 // Essentially a compile-time implementation of a compare->isel sequence. 2218 // It takes two constants to compare, along with the true/false registers 2219 // and the comparison type (as a subreg to a CR field) and returns one 2220 // of the true/false registers, depending on the comparison results. 2221 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2222 unsigned TrueReg, unsigned FalseReg, 2223 unsigned CRSubReg) { 2224 // Signed comparisons. The immediates are assumed to be sign-extended. 2225 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2226 switch (CRSubReg) { 2227 default: llvm_unreachable("Unknown integer comparison type."); 2228 case PPC::sub_lt: 2229 return Imm1 < Imm2 ? TrueReg : FalseReg; 2230 case PPC::sub_gt: 2231 return Imm1 > Imm2 ? TrueReg : FalseReg; 2232 case PPC::sub_eq: 2233 return Imm1 == Imm2 ? TrueReg : FalseReg; 2234 } 2235 } 2236 // Unsigned comparisons. 2237 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2238 switch (CRSubReg) { 2239 default: llvm_unreachable("Unknown integer comparison type."); 2240 case PPC::sub_lt: 2241 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2242 case PPC::sub_gt: 2243 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2244 case PPC::sub_eq: 2245 return Imm1 == Imm2 ? TrueReg : FalseReg; 2246 } 2247 } 2248 return PPC::NoRegister; 2249 } 2250 2251 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2252 unsigned OpNo, 2253 int64_t Imm) const { 2254 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2255 // Replace the REG with the Immediate. 2256 unsigned InUseReg = MI.getOperand(OpNo).getReg(); 2257 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2258 2259 if (empty(MI.implicit_operands())) 2260 return; 2261 2262 // We need to make sure that the MI didn't have any implicit use 2263 // of this REG any more. 2264 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2265 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2266 if (UseOpIdx >= 0) { 2267 MachineOperand &MO = MI.getOperand(UseOpIdx); 2268 if (MO.isImplicit()) 2269 // The operands must always be in the following order: 2270 // - explicit reg defs, 2271 // - other explicit operands (reg uses, immediates, etc.), 2272 // - implicit reg defs 2273 // - implicit reg uses 2274 // Therefore, removing the implicit operand won't change the explicit 2275 // operands layout. 2276 MI.RemoveOperand(UseOpIdx); 2277 } 2278 } 2279 2280 // Replace an instruction with one that materializes a constant (and sets 2281 // CR0 if the original instruction was a record-form instruction). 2282 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2283 const LoadImmediateInfo &LII) const { 2284 // Remove existing operands. 2285 int OperandToKeep = LII.SetCR ? 1 : 0; 2286 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2287 MI.RemoveOperand(i); 2288 2289 // Replace the instruction. 2290 if (LII.SetCR) { 2291 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo)); 2292 // Set the immediate. 2293 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2294 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2295 return; 2296 } 2297 else 2298 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2299 2300 // Set the immediate. 2301 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2302 .addImm(LII.Imm); 2303 } 2304 2305 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2306 MachineInstr &MI, 2307 unsigned &OpNoForForwarding, 2308 bool &SeenIntermediateUse) const { 2309 OpNoForForwarding = ~0U; 2310 MachineInstr *DefMI = nullptr; 2311 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2312 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2313 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2314 // within the basic block to see if the register is defined using an LI/LI8. 2315 if (MRI->isSSA()) { 2316 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2317 if (!MI.getOperand(i).isReg()) 2318 continue; 2319 unsigned Reg = MI.getOperand(i).getReg(); 2320 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 2321 continue; 2322 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2323 if (TargetRegisterInfo::isVirtualRegister(TrueReg)) { 2324 DefMI = MRI->getVRegDef(TrueReg); 2325 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2326 OpNoForForwarding = i; 2327 break; 2328 } 2329 } 2330 } 2331 } else { 2332 // Looking back through the definition for each operand could be expensive, 2333 // so exit early if this isn't an instruction that either has an immediate 2334 // form or is already an immediate form that we can handle. 2335 ImmInstrInfo III; 2336 unsigned Opc = MI.getOpcode(); 2337 bool ConvertibleImmForm = 2338 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || 2339 Opc == PPC::CMPDI || Opc == PPC::CMPLDI || 2340 Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2341 Opc == PPC::ORI || Opc == PPC::ORI8 || 2342 Opc == PPC::XORI || Opc == PPC::XORI8 || 2343 Opc == PPC::RLDICL || Opc == PPC::RLDICLo || 2344 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2345 Opc == PPC::RLWINM || Opc == PPC::RLWINMo || 2346 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2347 if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm) 2348 return nullptr; 2349 2350 // Don't convert or %X, %Y, %Y since that's just a register move. 2351 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2352 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2353 return nullptr; 2354 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2355 MachineOperand &MO = MI.getOperand(i); 2356 SeenIntermediateUse = false; 2357 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2358 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2359 It++; 2360 unsigned Reg = MI.getOperand(i).getReg(); 2361 // MachineInstr::readsRegister only returns true if the machine 2362 // instruction reads the exact register or its super-register. It 2363 // does not consider uses of sub-registers which seems like strange 2364 // behaviour. Nonetheless, if we end up with a 64-bit register here, 2365 // get the corresponding 32-bit register to check. 2366 if (PPC::G8RCRegClass.contains(Reg)) 2367 Reg = Reg - PPC::X0 + PPC::R0; 2368 2369 // Is this register defined by some form of add-immediate (including 2370 // load-immediate) within this basic block? 2371 for ( ; It != E; ++It) { 2372 if (It->modifiesRegister(Reg, &getRegisterInfo())) { 2373 switch (It->getOpcode()) { 2374 default: break; 2375 case PPC::LI: 2376 case PPC::LI8: 2377 case PPC::ADDItocL: 2378 case PPC::ADDI: 2379 case PPC::ADDI8: 2380 OpNoForForwarding = i; 2381 return &*It; 2382 } 2383 break; 2384 } else if (It->readsRegister(Reg, &getRegisterInfo())) 2385 // If we see another use of this reg between the def and the MI, 2386 // we want to flat it so the def isn't deleted. 2387 SeenIntermediateUse = true; 2388 } 2389 } 2390 } 2391 } 2392 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2393 } 2394 2395 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2396 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2397 // Power 8 2398 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2399 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2400 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2401 PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW}, 2402 // Power 9 2403 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2404 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2405 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2406 PPC::SPILLTOVSR_ST}}; 2407 2408 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2409 } 2410 2411 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2412 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2413 // Power 8 2414 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2415 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2416 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2417 PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ}, 2418 // Power 9 2419 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2420 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2421 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2422 PPC::SPILLTOVSR_LD}}; 2423 2424 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2425 } 2426 2427 // If this instruction has an immediate form and one of its operands is a 2428 // result of a load-immediate or an add-immediate, convert it to 2429 // the immediate form if the constant is in range. 2430 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2431 MachineInstr **KilledDef) const { 2432 MachineFunction *MF = MI.getParent()->getParent(); 2433 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2434 bool PostRA = !MRI->isSSA(); 2435 bool SeenIntermediateUse = true; 2436 unsigned ForwardingOperand = ~0U; 2437 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2438 SeenIntermediateUse); 2439 if (!DefMI) 2440 return false; 2441 assert(ForwardingOperand < MI.getNumOperands() && 2442 "The forwarding operand needs to be valid at this point"); 2443 bool KillFwdDefMI = !SeenIntermediateUse && 2444 MI.getOperand(ForwardingOperand).isKill(); 2445 if (KilledDef && KillFwdDefMI) 2446 *KilledDef = DefMI; 2447 2448 ImmInstrInfo III; 2449 bool HasImmForm = instrHasImmForm(MI, III, PostRA); 2450 // If this is a reg+reg instruction that has a reg+imm form, 2451 // and one of the operands is produced by an add-immediate, 2452 // try to convert it. 2453 if (HasImmForm && transformToImmFormFedByAdd(MI, III, ForwardingOperand, 2454 *DefMI, KillFwdDefMI)) 2455 return true; 2456 2457 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2458 !DefMI->getOperand(1).isImm()) 2459 return false; 2460 2461 int64_t Immediate = DefMI->getOperand(1).getImm(); 2462 // Sign-extend to 64-bits. 2463 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2464 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2465 2466 // If this is a reg+reg instruction that has a reg+imm form, 2467 // and one of the operands is produced by LI, convert it now. 2468 if (HasImmForm) 2469 return transformToImmFormFedByLI(MI, III, ForwardingOperand, SExtImm); 2470 2471 bool ReplaceWithLI = false; 2472 bool Is64BitLI = false; 2473 int64_t NewImm = 0; 2474 bool SetCR = false; 2475 unsigned Opc = MI.getOpcode(); 2476 switch (Opc) { 2477 default: return false; 2478 2479 // FIXME: Any branches conditional on such a comparison can be made 2480 // unconditional. At this time, this happens too infrequently to be worth 2481 // the implementation effort, but if that ever changes, we could convert 2482 // such a pattern here. 2483 case PPC::CMPWI: 2484 case PPC::CMPLWI: 2485 case PPC::CMPDI: 2486 case PPC::CMPLDI: { 2487 // Doing this post-RA would require dataflow analysis to reliably find uses 2488 // of the CR register set by the compare. 2489 if (PostRA) 2490 return false; 2491 // If a compare-immediate is fed by an immediate and is itself an input of 2492 // an ISEL (the most common case) into a COPY of the correct register. 2493 bool Changed = false; 2494 unsigned DefReg = MI.getOperand(0).getReg(); 2495 int64_t Comparand = MI.getOperand(2).getImm(); 2496 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2497 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2498 2499 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2500 unsigned UseOpc = CompareUseMI.getOpcode(); 2501 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2502 continue; 2503 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2504 unsigned TrueReg = CompareUseMI.getOperand(1).getReg(); 2505 unsigned FalseReg = CompareUseMI.getOperand(2).getReg(); 2506 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2507 FalseReg, CRSubReg); 2508 if (RegToCopy == PPC::NoRegister) 2509 continue; 2510 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2511 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2512 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2513 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2514 CompareUseMI.RemoveOperand(3); 2515 CompareUseMI.RemoveOperand(2); 2516 continue; 2517 } 2518 LLVM_DEBUG( 2519 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2520 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2521 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2522 // Convert to copy and remove unneeded operands. 2523 CompareUseMI.setDesc(get(PPC::COPY)); 2524 CompareUseMI.RemoveOperand(3); 2525 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2526 CmpIselsConverted++; 2527 Changed = true; 2528 LLVM_DEBUG(CompareUseMI.dump()); 2529 } 2530 if (Changed) 2531 return true; 2532 // This may end up incremented multiple times since this function is called 2533 // during a fixed-point transformation, but it is only meant to indicate the 2534 // presence of this opportunity. 2535 MissedConvertibleImmediateInstrs++; 2536 return false; 2537 } 2538 2539 // Immediate forms - may simply be convertable to an LI. 2540 case PPC::ADDI: 2541 case PPC::ADDI8: { 2542 // Does the sum fit in a 16-bit signed field? 2543 int64_t Addend = MI.getOperand(2).getImm(); 2544 if (isInt<16>(Addend + SExtImm)) { 2545 ReplaceWithLI = true; 2546 Is64BitLI = Opc == PPC::ADDI8; 2547 NewImm = Addend + SExtImm; 2548 break; 2549 } 2550 return false; 2551 } 2552 case PPC::RLDICL: 2553 case PPC::RLDICLo: 2554 case PPC::RLDICL_32: 2555 case PPC::RLDICL_32_64: { 2556 // Use APInt's rotate function. 2557 int64_t SH = MI.getOperand(2).getImm(); 2558 int64_t MB = MI.getOperand(3).getImm(); 2559 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ? 2560 64 : 32, SExtImm, true); 2561 InVal = InVal.rotl(SH); 2562 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2563 InVal &= Mask; 2564 // Can't replace negative values with an LI as that will sign-extend 2565 // and not clear the left bits. If we're setting the CR bit, we will use 2566 // ANDIo which won't sign extend, so that's safe. 2567 if (isUInt<15>(InVal.getSExtValue()) || 2568 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) { 2569 ReplaceWithLI = true; 2570 Is64BitLI = Opc != PPC::RLDICL_32; 2571 NewImm = InVal.getSExtValue(); 2572 SetCR = Opc == PPC::RLDICLo; 2573 break; 2574 } 2575 return false; 2576 } 2577 case PPC::RLWINM: 2578 case PPC::RLWINM8: 2579 case PPC::RLWINMo: 2580 case PPC::RLWINM8o: { 2581 int64_t SH = MI.getOperand(2).getImm(); 2582 int64_t MB = MI.getOperand(3).getImm(); 2583 int64_t ME = MI.getOperand(4).getImm(); 2584 APInt InVal(32, SExtImm, true); 2585 InVal = InVal.rotl(SH); 2586 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2587 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2588 InVal &= Mask; 2589 // Can't replace negative values with an LI as that will sign-extend 2590 // and not clear the left bits. If we're setting the CR bit, we will use 2591 // ANDIo which won't sign extend, so that's safe. 2592 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2593 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) && 2594 isUInt<16>(InVal.getSExtValue())); 2595 if (ValueFits) { 2596 ReplaceWithLI = true; 2597 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2598 NewImm = InVal.getSExtValue(); 2599 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o; 2600 break; 2601 } 2602 return false; 2603 } 2604 case PPC::ORI: 2605 case PPC::ORI8: 2606 case PPC::XORI: 2607 case PPC::XORI8: { 2608 int64_t LogicalImm = MI.getOperand(2).getImm(); 2609 int64_t Result = 0; 2610 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2611 Result = LogicalImm | SExtImm; 2612 else 2613 Result = LogicalImm ^ SExtImm; 2614 if (isInt<16>(Result)) { 2615 ReplaceWithLI = true; 2616 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2617 NewImm = Result; 2618 break; 2619 } 2620 return false; 2621 } 2622 } 2623 2624 if (ReplaceWithLI) { 2625 // We need to be careful with CR-setting instructions we're replacing. 2626 if (SetCR) { 2627 // We don't know anything about uses when we're out of SSA, so only 2628 // replace if the new immediate will be reproduced. 2629 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2630 if (PostRA && ImmChanged) 2631 return false; 2632 2633 if (!PostRA) { 2634 // If the defining load-immediate has no other uses, we can just replace 2635 // the immediate with the new immediate. 2636 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2637 DefMI->getOperand(1).setImm(NewImm); 2638 2639 // If we're not using the GPR result of the CR-setting instruction, we 2640 // just need to and with zero/non-zero depending on the new immediate. 2641 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2642 if (NewImm) { 2643 assert(Immediate && "Transformation converted zero to non-zero?"); 2644 NewImm = Immediate; 2645 } 2646 } 2647 else if (ImmChanged) 2648 return false; 2649 } 2650 } 2651 2652 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2653 LLVM_DEBUG(MI.dump()); 2654 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2655 LLVM_DEBUG(DefMI->dump()); 2656 LoadImmediateInfo LII; 2657 LII.Imm = NewImm; 2658 LII.Is64Bit = Is64BitLI; 2659 LII.SetCR = SetCR; 2660 // If we're setting the CR, the original load-immediate must be kept (as an 2661 // operand to ANDIo/ANDI8o). 2662 if (KilledDef && SetCR) 2663 *KilledDef = nullptr; 2664 replaceInstrWithLI(MI, LII); 2665 LLVM_DEBUG(dbgs() << "With:\n"); 2666 LLVM_DEBUG(MI.dump()); 2667 return true; 2668 } 2669 return false; 2670 } 2671 2672 static bool isVFReg(unsigned Reg) { 2673 return PPC::VFRCRegClass.contains(Reg); 2674 } 2675 2676 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI, 2677 ImmInstrInfo &III, bool PostRA) const { 2678 unsigned Opc = MI.getOpcode(); 2679 // The vast majority of the instructions would need their operand 2 replaced 2680 // with an immediate when switching to the reg+imm form. A marked exception 2681 // are the update form loads/stores for which a constant operand 2 would need 2682 // to turn into a displacement and move operand 1 to the operand 2 position. 2683 III.ImmOpNo = 2; 2684 III.OpNoForForwarding = 2; 2685 III.ImmWidth = 16; 2686 III.ImmMustBeMultipleOf = 1; 2687 III.TruncateImmTo = 0; 2688 III.IsSummingOperands = false; 2689 switch (Opc) { 2690 default: return false; 2691 case PPC::ADD4: 2692 case PPC::ADD8: 2693 III.SignedImm = true; 2694 III.ZeroIsSpecialOrig = 0; 2695 III.ZeroIsSpecialNew = 1; 2696 III.IsCommutative = true; 2697 III.IsSummingOperands = true; 2698 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 2699 break; 2700 case PPC::ADDC: 2701 case PPC::ADDC8: 2702 III.SignedImm = true; 2703 III.ZeroIsSpecialOrig = 0; 2704 III.ZeroIsSpecialNew = 0; 2705 III.IsCommutative = true; 2706 III.IsSummingOperands = true; 2707 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 2708 break; 2709 case PPC::ADDCo: 2710 III.SignedImm = true; 2711 III.ZeroIsSpecialOrig = 0; 2712 III.ZeroIsSpecialNew = 0; 2713 III.IsCommutative = true; 2714 III.IsSummingOperands = true; 2715 III.ImmOpcode = PPC::ADDICo; 2716 break; 2717 case PPC::SUBFC: 2718 case PPC::SUBFC8: 2719 III.SignedImm = true; 2720 III.ZeroIsSpecialOrig = 0; 2721 III.ZeroIsSpecialNew = 0; 2722 III.IsCommutative = false; 2723 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 2724 break; 2725 case PPC::CMPW: 2726 case PPC::CMPD: 2727 III.SignedImm = true; 2728 III.ZeroIsSpecialOrig = 0; 2729 III.ZeroIsSpecialNew = 0; 2730 III.IsCommutative = false; 2731 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 2732 break; 2733 case PPC::CMPLW: 2734 case PPC::CMPLD: 2735 III.SignedImm = false; 2736 III.ZeroIsSpecialOrig = 0; 2737 III.ZeroIsSpecialNew = 0; 2738 III.IsCommutative = false; 2739 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 2740 break; 2741 case PPC::ANDo: 2742 case PPC::AND8o: 2743 case PPC::OR: 2744 case PPC::OR8: 2745 case PPC::XOR: 2746 case PPC::XOR8: 2747 III.SignedImm = false; 2748 III.ZeroIsSpecialOrig = 0; 2749 III.ZeroIsSpecialNew = 0; 2750 III.IsCommutative = true; 2751 switch(Opc) { 2752 default: llvm_unreachable("Unknown opcode"); 2753 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break; 2754 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break; 2755 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 2756 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 2757 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 2758 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 2759 } 2760 break; 2761 case PPC::RLWNM: 2762 case PPC::RLWNM8: 2763 case PPC::RLWNMo: 2764 case PPC::RLWNM8o: 2765 case PPC::SLW: 2766 case PPC::SLW8: 2767 case PPC::SLWo: 2768 case PPC::SLW8o: 2769 case PPC::SRW: 2770 case PPC::SRW8: 2771 case PPC::SRWo: 2772 case PPC::SRW8o: 2773 case PPC::SRAW: 2774 case PPC::SRAWo: 2775 III.SignedImm = false; 2776 III.ZeroIsSpecialOrig = 0; 2777 III.ZeroIsSpecialNew = 0; 2778 III.IsCommutative = false; 2779 // This isn't actually true, but the instructions ignore any of the 2780 // upper bits, so any immediate loaded with an LI is acceptable. 2781 // This does not apply to shift right algebraic because a value 2782 // out of range will produce a -1/0. 2783 III.ImmWidth = 16; 2784 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || 2785 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o) 2786 III.TruncateImmTo = 5; 2787 else 2788 III.TruncateImmTo = 6; 2789 switch(Opc) { 2790 default: llvm_unreachable("Unknown opcode"); 2791 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 2792 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 2793 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break; 2794 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break; 2795 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 2796 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 2797 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break; 2798 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2799 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 2800 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 2801 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break; 2802 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2803 case PPC::SRAW: 2804 III.ImmWidth = 5; 2805 III.TruncateImmTo = 0; 2806 III.ImmOpcode = PPC::SRAWI; 2807 break; 2808 case PPC::SRAWo: 2809 III.ImmWidth = 5; 2810 III.TruncateImmTo = 0; 2811 III.ImmOpcode = PPC::SRAWIo; 2812 break; 2813 } 2814 break; 2815 case PPC::RLDCL: 2816 case PPC::RLDCLo: 2817 case PPC::RLDCR: 2818 case PPC::RLDCRo: 2819 case PPC::SLD: 2820 case PPC::SLDo: 2821 case PPC::SRD: 2822 case PPC::SRDo: 2823 case PPC::SRAD: 2824 case PPC::SRADo: 2825 III.SignedImm = false; 2826 III.ZeroIsSpecialOrig = 0; 2827 III.ZeroIsSpecialNew = 0; 2828 III.IsCommutative = false; 2829 // This isn't actually true, but the instructions ignore any of the 2830 // upper bits, so any immediate loaded with an LI is acceptable. 2831 // This does not apply to shift right algebraic because a value 2832 // out of range will produce a -1/0. 2833 III.ImmWidth = 16; 2834 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo || 2835 Opc == PPC::RLDCR || Opc == PPC::RLDCRo) 2836 III.TruncateImmTo = 6; 2837 else 2838 III.TruncateImmTo = 7; 2839 switch(Opc) { 2840 default: llvm_unreachable("Unknown opcode"); 2841 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 2842 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break; 2843 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 2844 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break; 2845 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 2846 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break; 2847 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 2848 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break; 2849 case PPC::SRAD: 2850 III.ImmWidth = 6; 2851 III.TruncateImmTo = 0; 2852 III.ImmOpcode = PPC::SRADI; 2853 break; 2854 case PPC::SRADo: 2855 III.ImmWidth = 6; 2856 III.TruncateImmTo = 0; 2857 III.ImmOpcode = PPC::SRADIo; 2858 break; 2859 } 2860 break; 2861 // Loads and stores: 2862 case PPC::LBZX: 2863 case PPC::LBZX8: 2864 case PPC::LHZX: 2865 case PPC::LHZX8: 2866 case PPC::LHAX: 2867 case PPC::LHAX8: 2868 case PPC::LWZX: 2869 case PPC::LWZX8: 2870 case PPC::LWAX: 2871 case PPC::LDX: 2872 case PPC::LFSX: 2873 case PPC::LFDX: 2874 case PPC::STBX: 2875 case PPC::STBX8: 2876 case PPC::STHX: 2877 case PPC::STHX8: 2878 case PPC::STWX: 2879 case PPC::STWX8: 2880 case PPC::STDX: 2881 case PPC::STFSX: 2882 case PPC::STFDX: 2883 III.SignedImm = true; 2884 III.ZeroIsSpecialOrig = 1; 2885 III.ZeroIsSpecialNew = 2; 2886 III.IsCommutative = true; 2887 III.IsSummingOperands = true; 2888 III.ImmOpNo = 1; 2889 III.OpNoForForwarding = 2; 2890 switch(Opc) { 2891 default: llvm_unreachable("Unknown opcode"); 2892 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 2893 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 2894 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 2895 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 2896 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 2897 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 2898 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 2899 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 2900 case PPC::LWAX: 2901 III.ImmOpcode = PPC::LWA; 2902 III.ImmMustBeMultipleOf = 4; 2903 break; 2904 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 2905 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 2906 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 2907 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 2908 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 2909 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 2910 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 2911 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 2912 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 2913 case PPC::STDX: 2914 III.ImmOpcode = PPC::STD; 2915 III.ImmMustBeMultipleOf = 4; 2916 break; 2917 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 2918 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 2919 } 2920 break; 2921 case PPC::LBZUX: 2922 case PPC::LBZUX8: 2923 case PPC::LHZUX: 2924 case PPC::LHZUX8: 2925 case PPC::LHAUX: 2926 case PPC::LHAUX8: 2927 case PPC::LWZUX: 2928 case PPC::LWZUX8: 2929 case PPC::LDUX: 2930 case PPC::LFSUX: 2931 case PPC::LFDUX: 2932 case PPC::STBUX: 2933 case PPC::STBUX8: 2934 case PPC::STHUX: 2935 case PPC::STHUX8: 2936 case PPC::STWUX: 2937 case PPC::STWUX8: 2938 case PPC::STDUX: 2939 case PPC::STFSUX: 2940 case PPC::STFDUX: 2941 III.SignedImm = true; 2942 III.ZeroIsSpecialOrig = 2; 2943 III.ZeroIsSpecialNew = 3; 2944 III.IsCommutative = false; 2945 III.IsSummingOperands = true; 2946 III.ImmOpNo = 2; 2947 III.OpNoForForwarding = 3; 2948 switch(Opc) { 2949 default: llvm_unreachable("Unknown opcode"); 2950 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 2951 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 2952 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 2953 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 2954 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 2955 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 2956 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 2957 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 2958 case PPC::LDUX: 2959 III.ImmOpcode = PPC::LDU; 2960 III.ImmMustBeMultipleOf = 4; 2961 break; 2962 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 2963 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 2964 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 2965 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 2966 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 2967 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 2968 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 2969 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 2970 case PPC::STDUX: 2971 III.ImmOpcode = PPC::STDU; 2972 III.ImmMustBeMultipleOf = 4; 2973 break; 2974 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 2975 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 2976 } 2977 break; 2978 // Power9 and up only. For some of these, the X-Form version has access to all 2979 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 2980 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 2981 // into or stored from is one of the VR registers. 2982 case PPC::LXVX: 2983 case PPC::LXSSPX: 2984 case PPC::LXSDX: 2985 case PPC::STXVX: 2986 case PPC::STXSSPX: 2987 case PPC::STXSDX: 2988 case PPC::XFLOADf32: 2989 case PPC::XFLOADf64: 2990 case PPC::XFSTOREf32: 2991 case PPC::XFSTOREf64: 2992 if (!Subtarget.hasP9Vector()) 2993 return false; 2994 III.SignedImm = true; 2995 III.ZeroIsSpecialOrig = 1; 2996 III.ZeroIsSpecialNew = 2; 2997 III.IsCommutative = true; 2998 III.IsSummingOperands = true; 2999 III.ImmOpNo = 1; 3000 III.OpNoForForwarding = 2; 3001 III.ImmMustBeMultipleOf = 4; 3002 switch(Opc) { 3003 default: llvm_unreachable("Unknown opcode"); 3004 case PPC::LXVX: 3005 III.ImmOpcode = PPC::LXV; 3006 III.ImmMustBeMultipleOf = 16; 3007 break; 3008 case PPC::LXSSPX: 3009 if (PostRA) { 3010 if (isVFReg(MI.getOperand(0).getReg())) 3011 III.ImmOpcode = PPC::LXSSP; 3012 else { 3013 III.ImmOpcode = PPC::LFS; 3014 III.ImmMustBeMultipleOf = 1; 3015 } 3016 break; 3017 } 3018 LLVM_FALLTHROUGH; 3019 case PPC::XFLOADf32: 3020 III.ImmOpcode = PPC::DFLOADf32; 3021 break; 3022 case PPC::LXSDX: 3023 if (PostRA) { 3024 if (isVFReg(MI.getOperand(0).getReg())) 3025 III.ImmOpcode = PPC::LXSD; 3026 else { 3027 III.ImmOpcode = PPC::LFD; 3028 III.ImmMustBeMultipleOf = 1; 3029 } 3030 break; 3031 } 3032 LLVM_FALLTHROUGH; 3033 case PPC::XFLOADf64: 3034 III.ImmOpcode = PPC::DFLOADf64; 3035 break; 3036 case PPC::STXVX: 3037 III.ImmOpcode = PPC::STXV; 3038 III.ImmMustBeMultipleOf = 16; 3039 break; 3040 case PPC::STXSSPX: 3041 if (PostRA) { 3042 if (isVFReg(MI.getOperand(0).getReg())) 3043 III.ImmOpcode = PPC::STXSSP; 3044 else { 3045 III.ImmOpcode = PPC::STFS; 3046 III.ImmMustBeMultipleOf = 1; 3047 } 3048 break; 3049 } 3050 LLVM_FALLTHROUGH; 3051 case PPC::XFSTOREf32: 3052 III.ImmOpcode = PPC::DFSTOREf32; 3053 break; 3054 case PPC::STXSDX: 3055 if (PostRA) { 3056 if (isVFReg(MI.getOperand(0).getReg())) 3057 III.ImmOpcode = PPC::STXSD; 3058 else { 3059 III.ImmOpcode = PPC::STFD; 3060 III.ImmMustBeMultipleOf = 1; 3061 } 3062 break; 3063 } 3064 LLVM_FALLTHROUGH; 3065 case PPC::XFSTOREf64: 3066 III.ImmOpcode = PPC::DFSTOREf64; 3067 break; 3068 } 3069 break; 3070 } 3071 return true; 3072 } 3073 3074 // Utility function for swaping two arbitrary operands of an instruction. 3075 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3076 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3077 3078 unsigned MaxOp = std::max(Op1, Op2); 3079 unsigned MinOp = std::min(Op1, Op2); 3080 MachineOperand MOp1 = MI.getOperand(MinOp); 3081 MachineOperand MOp2 = MI.getOperand(MaxOp); 3082 MI.RemoveOperand(std::max(Op1, Op2)); 3083 MI.RemoveOperand(std::min(Op1, Op2)); 3084 3085 // If the operands we are swapping are the two at the end (the common case) 3086 // we can just remove both and add them in the opposite order. 3087 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3088 MI.addOperand(MOp2); 3089 MI.addOperand(MOp1); 3090 } else { 3091 // Store all operands in a temporary vector, remove them and re-add in the 3092 // right order. 3093 SmallVector<MachineOperand, 2> MOps; 3094 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3095 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3096 MOps.push_back(MI.getOperand(i)); 3097 MI.RemoveOperand(i); 3098 } 3099 // MOp2 needs to be added next. 3100 MI.addOperand(MOp2); 3101 // Now add the rest. 3102 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3103 if (i == MaxOp) 3104 MI.addOperand(MOp1); 3105 else { 3106 MI.addOperand(MOps.back()); 3107 MOps.pop_back(); 3108 } 3109 } 3110 } 3111 } 3112 3113 // Check if the 'MI' that has the index OpNoForForwarding 3114 // meets the requirement described in the ImmInstrInfo. 3115 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3116 const ImmInstrInfo &III, 3117 unsigned OpNoForForwarding 3118 ) const { 3119 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3120 // would not work pre-RA, we can only do the check post RA. 3121 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3122 if (MRI.isSSA()) 3123 return false; 3124 3125 // Cannot do the transform if MI isn't summing the operands. 3126 if (!III.IsSummingOperands) 3127 return false; 3128 3129 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3130 if (!III.ZeroIsSpecialOrig) 3131 return false; 3132 3133 // We cannot do the transform if the operand we are trying to replace 3134 // isn't the same as the operand the instruction allows. 3135 if (OpNoForForwarding != III.OpNoForForwarding) 3136 return false; 3137 3138 // Check if the instruction we are trying to transform really has 3139 // the special zero register as its operand. 3140 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3141 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3142 return false; 3143 3144 // This machine instruction is convertible if it is, 3145 // 1. summing the operands. 3146 // 2. one of the operands is special zero register. 3147 // 3. the operand we are trying to replace is allowed by the MI. 3148 return true; 3149 } 3150 3151 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3152 // accordingly. 3153 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3154 const ImmInstrInfo &III, 3155 MachineOperand *&ImmMO, 3156 MachineOperand *&RegMO) const { 3157 unsigned Opc = DefMI.getOpcode(); 3158 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3159 return false; 3160 3161 assert(DefMI.getNumOperands() >= 3 && 3162 "Add inst must have at least three operands"); 3163 RegMO = &DefMI.getOperand(1); 3164 ImmMO = &DefMI.getOperand(2); 3165 3166 // This DefMI is elgible for forwarding if it is: 3167 // 1. add inst 3168 // 2. one of the operands is Imm/CPI/Global. 3169 return isAnImmediateOperand(*ImmMO); 3170 } 3171 3172 bool PPCInstrInfo::isRegElgibleForForwarding(const MachineOperand &RegMO, 3173 const MachineInstr &DefMI, 3174 const MachineInstr &MI, 3175 bool KillDefMI 3176 ) const { 3177 // x = addi y, imm 3178 // ... 3179 // z = lfdx 0, x -> z = lfd imm(y) 3180 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3181 // of "y" between the DEF of "x" and "z". 3182 // The query is only valid post RA. 3183 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3184 if (MRI.isSSA()) 3185 return false; 3186 3187 // MachineInstr::readsRegister only returns true if the machine 3188 // instruction reads the exact register or its super-register. It 3189 // does not consider uses of sub-registers which seems like strange 3190 // behaviour. Nonetheless, if we end up with a 64-bit register here, 3191 // get the corresponding 32-bit register to check. 3192 unsigned Reg = RegMO.getReg(); 3193 if (PPC::G8RCRegClass.contains(Reg)) 3194 Reg = Reg - PPC::X0 + PPC::R0; 3195 3196 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3197 MachineBasicBlock::const_reverse_iterator It = MI; 3198 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3199 It++; 3200 for (; It != E; ++It) { 3201 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3202 return false; 3203 // Made it to DefMI without encountering a clobber. 3204 if ((&*It) == &DefMI) 3205 break; 3206 } 3207 assert((&*It) == &DefMI && "DefMI is missing"); 3208 3209 // If DefMI also uses the register to be forwarded, we can only forward it 3210 // if DefMI is being erased. 3211 if (DefMI.readsRegister(Reg, &getRegisterInfo())) 3212 return KillDefMI; 3213 3214 return true; 3215 } 3216 3217 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3218 const MachineInstr &DefMI, 3219 const ImmInstrInfo &III, 3220 int64_t &Imm) const { 3221 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3222 if (DefMI.getOpcode() == PPC::ADDItocL) { 3223 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3224 // However, we know that, it is 16-bit width, and has the alignment of 4. 3225 // Check if the instruction met the requirement. 3226 if (III.ImmMustBeMultipleOf > 4 || 3227 III.TruncateImmTo || III.ImmWidth != 16) 3228 return false; 3229 3230 // Going from XForm to DForm loads means that the displacement needs to be 3231 // not just an immediate but also a multiple of 4, or 16 depending on the 3232 // load. A DForm load cannot be represented if it is a multiple of say 2. 3233 // XForm loads do not have this restriction. 3234 if (ImmMO.isGlobal() && 3235 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3236 return false; 3237 3238 return true; 3239 } 3240 3241 if (ImmMO.isImm()) { 3242 // It is Imm, we need to check if the Imm fit the range. 3243 int64_t Immediate = ImmMO.getImm(); 3244 // Sign-extend to 64-bits. 3245 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3246 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3247 3248 if (Imm % III.ImmMustBeMultipleOf) 3249 return false; 3250 if (III.TruncateImmTo) 3251 Imm &= ((1 << III.TruncateImmTo) - 1); 3252 if (III.SignedImm) { 3253 APInt ActualValue(64, Imm, true); 3254 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3255 return false; 3256 } else { 3257 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3258 if ((uint64_t)Imm > UnsignedMax) 3259 return false; 3260 } 3261 } 3262 else 3263 return false; 3264 3265 // This ImmMO is forwarded if it meets the requriement describle 3266 // in ImmInstrInfo 3267 return true; 3268 } 3269 3270 // If an X-Form instruction is fed by an add-immediate and one of its operands 3271 // is the literal zero, attempt to forward the source of the add-immediate to 3272 // the corresponding D-Form instruction with the displacement coming from 3273 // the immediate being added. 3274 bool PPCInstrInfo::transformToImmFormFedByAdd(MachineInstr &MI, 3275 const ImmInstrInfo &III, 3276 unsigned OpNoForForwarding, 3277 MachineInstr &DefMI, 3278 bool KillDefMI) const { 3279 // RegMO ImmMO 3280 // | | 3281 // x = addi reg, imm <----- DefMI 3282 // y = op 0 , x <----- MI 3283 // | 3284 // OpNoForForwarding 3285 // Check if the MI meet the requirement described in the III. 3286 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3287 return false; 3288 3289 // Check if the DefMI meet the requirement 3290 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3291 MachineOperand *ImmMO = nullptr; 3292 MachineOperand *RegMO = nullptr; 3293 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3294 return false; 3295 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3296 3297 // As we get the Imm operand now, we need to check if the ImmMO meet 3298 // the requirement described in the III. If yes set the Imm. 3299 int64_t Imm = 0; 3300 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3301 return false; 3302 3303 // Check if the RegMO can be forwarded to MI. 3304 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI)) 3305 return false; 3306 3307 // We know that, the MI and DefMI both meet the pattern, and 3308 // the Imm also meet the requirement with the new Imm-form. 3309 // It is safe to do the transformation now. 3310 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3311 LLVM_DEBUG(MI.dump()); 3312 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3313 LLVM_DEBUG(DefMI.dump()); 3314 3315 // Update the base reg first. 3316 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3317 false, false, 3318 RegMO->isKill()); 3319 3320 // Then, update the imm. 3321 if (ImmMO->isImm()) { 3322 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3323 // directly. 3324 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3325 } 3326 else { 3327 // Otherwise, it is Constant Pool Index(CPI) or Global, 3328 // which is relocation in fact. We need to replace the special zero 3329 // register with ImmMO. 3330 // Before that, we need to fixup the target flags for imm. 3331 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3332 if (DefMI.getOpcode() == PPC::ADDItocL) 3333 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3334 3335 // MI didn't have the interface such as MI.setOperand(i) though 3336 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3337 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3338 // and, add the ImmMO, then, move back all the operands behind ZERO. 3339 SmallVector<MachineOperand, 2> MOps; 3340 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3341 MOps.push_back(MI.getOperand(i)); 3342 MI.RemoveOperand(i); 3343 } 3344 3345 // Remove the last MO in the list, which is ZERO operand in fact. 3346 MOps.pop_back(); 3347 // Add the imm operand. 3348 MI.addOperand(*ImmMO); 3349 // Now add the rest back. 3350 for (auto &MO : MOps) 3351 MI.addOperand(MO); 3352 } 3353 3354 // Update the opcode. 3355 MI.setDesc(get(III.ImmOpcode)); 3356 3357 LLVM_DEBUG(dbgs() << "With:\n"); 3358 LLVM_DEBUG(MI.dump()); 3359 3360 return true; 3361 } 3362 3363 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3364 const ImmInstrInfo &III, 3365 unsigned ConstantOpNo, 3366 int64_t Imm) const { 3367 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3368 bool PostRA = !MRI.isSSA(); 3369 // Exit early if we can't convert this. 3370 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3371 return false; 3372 if (Imm % III.ImmMustBeMultipleOf) 3373 return false; 3374 if (III.TruncateImmTo) 3375 Imm &= ((1 << III.TruncateImmTo) - 1); 3376 if (III.SignedImm) { 3377 APInt ActualValue(64, Imm, true); 3378 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3379 return false; 3380 } else { 3381 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3382 if ((uint64_t)Imm > UnsignedMax) 3383 return false; 3384 } 3385 3386 // If we're post-RA, the instructions don't agree on whether register zero is 3387 // special, we can transform this as long as the register operand that will 3388 // end up in the location where zero is special isn't R0. 3389 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3390 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3391 III.ZeroIsSpecialNew + 1; 3392 unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3393 unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3394 // If R0 is in the operand where zero is special for the new instruction, 3395 // it is unsafe to transform if the constant operand isn't that operand. 3396 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3397 ConstantOpNo != III.ZeroIsSpecialNew) 3398 return false; 3399 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3400 ConstantOpNo != PosForOrigZero) 3401 return false; 3402 } 3403 3404 unsigned Opc = MI.getOpcode(); 3405 bool SpecialShift32 = 3406 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo; 3407 bool SpecialShift64 = 3408 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo; 3409 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo || 3410 Opc == PPC::SLDo || Opc == PPC::SRDo; 3411 bool RightShift = 3412 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo; 3413 3414 MI.setDesc(get(III.ImmOpcode)); 3415 if (ConstantOpNo == III.OpNoForForwarding) { 3416 // Converting shifts to immediate form is a bit tricky since they may do 3417 // one of three things: 3418 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3419 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3420 // setting CR0) 3421 // 3. If the shift amount is in [1, OpSize), it's just a shift 3422 if (SpecialShift32 || SpecialShift64) { 3423 LoadImmediateInfo LII; 3424 LII.Imm = 0; 3425 LII.SetCR = SetCR; 3426 LII.Is64Bit = SpecialShift64; 3427 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3428 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3429 replaceInstrWithLI(MI, LII); 3430 // Shifts by zero don't change the value. If we don't need to set CR0, 3431 // just convert this to a COPY. Can't do this post-RA since we've already 3432 // cleaned up the copies. 3433 else if (!SetCR && ShAmt == 0 && !PostRA) { 3434 MI.RemoveOperand(2); 3435 MI.setDesc(get(PPC::COPY)); 3436 } else { 3437 // The 32 bit and 64 bit instructions are quite different. 3438 if (SpecialShift32) { 3439 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31). 3440 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt; 3441 uint64_t MB = RightShift ? ShAmt : 0; 3442 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3443 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3444 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3445 .addImm(ME); 3446 } else { 3447 // Left shifts use (N, 63-N), right shifts use (64-N, N). 3448 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt; 3449 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3450 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3451 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3452 } 3453 } 3454 } else 3455 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3456 } 3457 // Convert commutative instructions (switch the operands and convert the 3458 // desired one to an immediate. 3459 else if (III.IsCommutative) { 3460 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3461 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3462 } else 3463 llvm_unreachable("Should have exited early!"); 3464 3465 // For instructions for which the constant register replaces a different 3466 // operand than where the immediate goes, we need to swap them. 3467 if (III.OpNoForForwarding != III.ImmOpNo) 3468 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3469 3470 // If the special R0/X0 register index are different for original instruction 3471 // and new instruction, we need to fix up the register class in new 3472 // instruction. 3473 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3474 if (III.ZeroIsSpecialNew) { 3475 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3476 // need to fix up register class. 3477 unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3478 if (TargetRegisterInfo::isVirtualRegister(RegToModify)) { 3479 const TargetRegisterClass *NewRC = 3480 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3481 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3482 MRI.setRegClass(RegToModify, NewRC); 3483 } 3484 } 3485 } 3486 return true; 3487 } 3488 3489 const TargetRegisterClass * 3490 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3491 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3492 return &PPC::VSRCRegClass; 3493 return RC; 3494 } 3495 3496 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3497 return PPC::getRecordFormOpcode(Opcode); 3498 } 3499 3500 // This function returns true if the machine instruction 3501 // always outputs a value by sign-extending a 32 bit value, 3502 // i.e. 0 to 31-th bits are same as 32-th bit. 3503 static bool isSignExtendingOp(const MachineInstr &MI) { 3504 int Opcode = MI.getOpcode(); 3505 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3506 Opcode == PPC::LIS || Opcode == PPC::LIS8 || 3507 Opcode == PPC::SRAW || Opcode == PPC::SRAWo || 3508 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo || 3509 Opcode == PPC::LWA || Opcode == PPC::LWAX || 3510 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3511 Opcode == PPC::LHA || Opcode == PPC::LHAX || 3512 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 || 3513 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3514 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3515 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3516 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3517 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3518 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3519 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3520 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3521 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo || 3522 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo || 3523 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 || 3524 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo || 3525 Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3526 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3527 Opcode == PPC::EXTSB8_32_64) 3528 return true; 3529 3530 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3531 return true; 3532 3533 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3534 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) && 3535 MI.getOperand(3).getImm() > 0 && 3536 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3537 return true; 3538 3539 return false; 3540 } 3541 3542 // This function returns true if the machine instruction 3543 // always outputs zeros in higher 32 bits. 3544 static bool isZeroExtendingOp(const MachineInstr &MI) { 3545 int Opcode = MI.getOpcode(); 3546 // The 16-bit immediate is sign-extended in li/lis. 3547 // If the most significant bit is zero, all higher bits are zero. 3548 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3549 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3550 int64_t Imm = MI.getOperand(1).getImm(); 3551 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3552 return true; 3553 } 3554 3555 // We have some variations of rotate-and-mask instructions 3556 // that clear higher 32-bits. 3557 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || 3558 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo || 3559 Opcode == PPC::RLDICL_32_64) && 3560 MI.getOperand(3).getImm() >= 32) 3561 return true; 3562 3563 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && 3564 MI.getOperand(3).getImm() >= 32 && 3565 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3566 return true; 3567 3568 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3569 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo || 3570 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3571 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3572 return true; 3573 3574 // There are other instructions that clear higher 32-bits. 3575 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo || 3576 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo || 3577 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3578 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo || 3579 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo || 3580 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || 3581 Opcode == PPC::SLW || Opcode == PPC::SLWo || 3582 Opcode == PPC::SRW || Opcode == PPC::SRWo || 3583 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || 3584 Opcode == PPC::SLWI || Opcode == PPC::SLWIo || 3585 Opcode == PPC::SRWI || Opcode == PPC::SRWIo || 3586 Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3587 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || 3588 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX || 3589 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3590 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3591 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3592 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3593 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || 3594 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 || 3595 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3596 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3597 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3598 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3599 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3600 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo || 3601 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo || 3602 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo || 3603 Opcode == PPC::MFVSRWZ) 3604 return true; 3605 3606 return false; 3607 } 3608 3609 // This function returns true if the input MachineInstr is a TOC save 3610 // instruction. 3611 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3612 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3613 return false; 3614 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3615 unsigned StackOffset = MI.getOperand(1).getImm(); 3616 unsigned StackReg = MI.getOperand(2).getReg(); 3617 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3618 return true; 3619 3620 return false; 3621 } 3622 3623 // We limit the max depth to track incoming values of PHIs or binary ops 3624 // (e.g. AND) to avoid excessive cost. 3625 const unsigned MAX_DEPTH = 1; 3626 3627 bool 3628 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 3629 const unsigned Depth) const { 3630 const MachineFunction *MF = MI.getParent()->getParent(); 3631 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 3632 3633 // If we know this instruction returns sign- or zero-extended result, 3634 // return true. 3635 if (SignExt ? isSignExtendingOp(MI): 3636 isZeroExtendingOp(MI)) 3637 return true; 3638 3639 switch (MI.getOpcode()) { 3640 case PPC::COPY: { 3641 unsigned SrcReg = MI.getOperand(1).getReg(); 3642 3643 // In both ELFv1 and v2 ABI, method parameters and the return value 3644 // are sign- or zero-extended. 3645 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 3646 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 3647 // We check the ZExt/SExt flags for a method parameter. 3648 if (MI.getParent()->getBasicBlock() == 3649 &MF->getFunction().getEntryBlock()) { 3650 unsigned VReg = MI.getOperand(0).getReg(); 3651 if (MF->getRegInfo().isLiveIn(VReg)) 3652 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 3653 FuncInfo->isLiveInZExt(VReg); 3654 } 3655 3656 // For a method return value, we check the ZExt/SExt flags in attribute. 3657 // We assume the following code sequence for method call. 3658 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 3659 // BL8_NOP @func,... 3660 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 3661 // %5 = COPY %x3; G8RC:%5 3662 if (SrcReg == PPC::X3) { 3663 const MachineBasicBlock *MBB = MI.getParent(); 3664 MachineBasicBlock::const_instr_iterator II = 3665 MachineBasicBlock::const_instr_iterator(&MI); 3666 if (II != MBB->instr_begin() && 3667 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 3668 const MachineInstr &CallMI = *(--II); 3669 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 3670 const Function *CalleeFn = 3671 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 3672 if (!CalleeFn) 3673 return false; 3674 const IntegerType *IntTy = 3675 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 3676 const AttributeSet &Attrs = 3677 CalleeFn->getAttributes().getRetAttributes(); 3678 if (IntTy && IntTy->getBitWidth() <= 32) 3679 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 3680 Attribute::ZExt); 3681 } 3682 } 3683 } 3684 } 3685 3686 // If this is a copy from another register, we recursively check source. 3687 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3688 return false; 3689 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3690 if (SrcMI != NULL) 3691 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3692 3693 return false; 3694 } 3695 3696 case PPC::ANDIo: 3697 case PPC::ANDISo: 3698 case PPC::ORI: 3699 case PPC::ORIS: 3700 case PPC::XORI: 3701 case PPC::XORIS: 3702 case PPC::ANDIo8: 3703 case PPC::ANDISo8: 3704 case PPC::ORI8: 3705 case PPC::ORIS8: 3706 case PPC::XORI8: 3707 case PPC::XORIS8: { 3708 // logical operation with 16-bit immediate does not change the upper bits. 3709 // So, we track the operand register as we do for register copy. 3710 unsigned SrcReg = MI.getOperand(1).getReg(); 3711 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3712 return false; 3713 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3714 if (SrcMI != NULL) 3715 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3716 3717 return false; 3718 } 3719 3720 // If all incoming values are sign-/zero-extended, 3721 // the output of OR, ISEL or PHI is also sign-/zero-extended. 3722 case PPC::OR: 3723 case PPC::OR8: 3724 case PPC::ISEL: 3725 case PPC::PHI: { 3726 if (Depth >= MAX_DEPTH) 3727 return false; 3728 3729 // The input registers for PHI are operand 1, 3, ... 3730 // The input registers for others are operand 1 and 2. 3731 unsigned E = 3, D = 1; 3732 if (MI.getOpcode() == PPC::PHI) { 3733 E = MI.getNumOperands(); 3734 D = 2; 3735 } 3736 3737 for (unsigned I = 1; I != E; I += D) { 3738 if (MI.getOperand(I).isReg()) { 3739 unsigned SrcReg = MI.getOperand(I).getReg(); 3740 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3741 return false; 3742 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3743 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 3744 return false; 3745 } 3746 else 3747 return false; 3748 } 3749 return true; 3750 } 3751 3752 // If at least one of the incoming values of an AND is zero extended 3753 // then the output is also zero-extended. If both of the incoming values 3754 // are sign-extended then the output is also sign extended. 3755 case PPC::AND: 3756 case PPC::AND8: { 3757 if (Depth >= MAX_DEPTH) 3758 return false; 3759 3760 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 3761 3762 unsigned SrcReg1 = MI.getOperand(1).getReg(); 3763 unsigned SrcReg2 = MI.getOperand(2).getReg(); 3764 3765 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) || 3766 !TargetRegisterInfo::isVirtualRegister(SrcReg2)) 3767 return false; 3768 3769 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 3770 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 3771 if (!MISrc1 || !MISrc2) 3772 return false; 3773 3774 if(SignExt) 3775 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 3776 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3777 else 3778 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 3779 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3780 } 3781 3782 default: 3783 break; 3784 } 3785 return false; 3786 } 3787