1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/RegisterPressure.h" 33 #include "llvm/CodeGen/ScheduleDAG.h" 34 #include "llvm/CodeGen/SlotIndexes.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCInst.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Support/raw_ostream.h" 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "ppc-instr-info" 47 48 #define GET_INSTRMAP_INFO 49 #define GET_INSTRINFO_CTOR_DTOR 50 #include "PPCGenInstrInfo.inc" 51 52 STATISTIC(NumStoreSPILLVSRRCAsVec, 53 "Number of spillvsrrc spilled to stack as vec"); 54 STATISTIC(NumStoreSPILLVSRRCAsGpr, 55 "Number of spillvsrrc spilled to stack as gpr"); 56 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 57 STATISTIC(CmpIselsConverted, 58 "Number of ISELs that depend on comparison of constants converted"); 59 STATISTIC(MissedConvertibleImmediateInstrs, 60 "Number of compare-immediate instructions fed by constants"); 61 STATISTIC(NumRcRotatesConvertedToRcAnd, 62 "Number of record-form rotates converted to record-form andi"); 63 64 static cl:: 65 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 66 cl::desc("Disable analysis for CTR loops")); 67 68 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 69 cl::desc("Disable compare instruction optimization"), cl::Hidden); 70 71 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 73 cl::Hidden); 74 75 static cl::opt<bool> 76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 77 cl::desc("Use the old (incorrect) instruction latency calculation")); 78 79 static cl::opt<float> 80 FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), 81 cl::desc("register pressure factor for the transformations.")); 82 83 static cl::opt<bool> EnableFMARegPressureReduction( 84 "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), 85 cl::desc("enable register pressure reduce in machine combiner pass.")); 86 87 // Pin the vtable to this file. 88 void PPCInstrInfo::anchor() {} 89 90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 91 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 92 /* CatchRetOpcode */ -1, 93 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 94 Subtarget(STI), RI(STI.getTargetMachine()) {} 95 96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 97 /// this target when scheduling the DAG. 98 ScheduleHazardRecognizer * 99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 100 const ScheduleDAG *DAG) const { 101 unsigned Directive = 102 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 103 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 104 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 105 const InstrItineraryData *II = 106 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 107 return new ScoreboardHazardRecognizer(II, DAG); 108 } 109 110 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 111 } 112 113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 114 /// to use for this target when scheduling the DAG. 115 ScheduleHazardRecognizer * 116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 117 const ScheduleDAG *DAG) const { 118 unsigned Directive = 119 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 120 121 // FIXME: Leaving this as-is until we have POWER9 scheduling info 122 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 123 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 124 125 // Most subtargets use a PPC970 recognizer. 126 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 127 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 128 assert(DAG->TII && "No InstrInfo?"); 129 130 return new PPCHazardRecognizer970(*DAG); 131 } 132 133 return new ScoreboardHazardRecognizer(II, DAG); 134 } 135 136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 137 const MachineInstr &MI, 138 unsigned *PredCost) const { 139 if (!ItinData || UseOldLatencyCalc) 140 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 141 142 // The default implementation of getInstrLatency calls getStageLatency, but 143 // getStageLatency does not do the right thing for us. While we have 144 // itinerary, most cores are fully pipelined, and so the itineraries only 145 // express the first part of the pipeline, not every stage. Instead, we need 146 // to use the listed output operand cycle number (using operand 0 here, which 147 // is an output). 148 149 unsigned Latency = 1; 150 unsigned DefClass = MI.getDesc().getSchedClass(); 151 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 152 const MachineOperand &MO = MI.getOperand(i); 153 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 154 continue; 155 156 int Cycle = ItinData->getOperandCycle(DefClass, i); 157 if (Cycle < 0) 158 continue; 159 160 Latency = std::max(Latency, (unsigned) Cycle); 161 } 162 163 return Latency; 164 } 165 166 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 167 const MachineInstr &DefMI, unsigned DefIdx, 168 const MachineInstr &UseMI, 169 unsigned UseIdx) const { 170 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 171 UseMI, UseIdx); 172 173 if (!DefMI.getParent()) 174 return Latency; 175 176 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 177 Register Reg = DefMO.getReg(); 178 179 bool IsRegCR; 180 if (Register::isVirtualRegister(Reg)) { 181 const MachineRegisterInfo *MRI = 182 &DefMI.getParent()->getParent()->getRegInfo(); 183 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 184 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 185 } else { 186 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 187 PPC::CRBITRCRegClass.contains(Reg); 188 } 189 190 if (UseMI.isBranch() && IsRegCR) { 191 if (Latency < 0) 192 Latency = getInstrLatency(ItinData, DefMI); 193 194 // On some cores, there is an additional delay between writing to a condition 195 // register, and using it from a branch. 196 unsigned Directive = Subtarget.getCPUDirective(); 197 switch (Directive) { 198 default: break; 199 case PPC::DIR_7400: 200 case PPC::DIR_750: 201 case PPC::DIR_970: 202 case PPC::DIR_E5500: 203 case PPC::DIR_PWR4: 204 case PPC::DIR_PWR5: 205 case PPC::DIR_PWR5X: 206 case PPC::DIR_PWR6: 207 case PPC::DIR_PWR6X: 208 case PPC::DIR_PWR7: 209 case PPC::DIR_PWR8: 210 // FIXME: Is this needed for POWER9? 211 Latency += 2; 212 break; 213 } 214 } 215 216 return Latency; 217 } 218 219 /// This is an architecture-specific helper function of reassociateOps. 220 /// Set special operand attributes for new instructions after reassociation. 221 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 222 MachineInstr &OldMI2, 223 MachineInstr &NewMI1, 224 MachineInstr &NewMI2) const { 225 // Propagate FP flags from the original instructions. 226 // But clear poison-generating flags because those may not be valid now. 227 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 228 NewMI1.setFlags(IntersectedFlags); 229 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 230 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 231 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 232 233 NewMI2.setFlags(IntersectedFlags); 234 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 235 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 236 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 237 } 238 239 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 240 uint16_t Flags) const { 241 MI.setFlags(Flags); 242 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 243 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 244 MI.clearFlag(MachineInstr::MIFlag::IsExact); 245 } 246 247 // This function does not list all associative and commutative operations, but 248 // only those worth feeding through the machine combiner in an attempt to 249 // reduce the critical path. Mostly, this means floating-point operations, 250 // because they have high latencies(>=5) (compared to other operations, such as 251 // and/or, which are also associative and commutative, but have low latencies). 252 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 253 switch (Inst.getOpcode()) { 254 // Floating point: 255 // FP Add: 256 case PPC::FADD: 257 case PPC::FADDS: 258 // FP Multiply: 259 case PPC::FMUL: 260 case PPC::FMULS: 261 // Altivec Add: 262 case PPC::VADDFP: 263 // VSX Add: 264 case PPC::XSADDDP: 265 case PPC::XVADDDP: 266 case PPC::XVADDSP: 267 case PPC::XSADDSP: 268 // VSX Multiply: 269 case PPC::XSMULDP: 270 case PPC::XVMULDP: 271 case PPC::XVMULSP: 272 case PPC::XSMULSP: 273 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 274 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 275 // Fixed point: 276 // Multiply: 277 case PPC::MULHD: 278 case PPC::MULLD: 279 case PPC::MULHW: 280 case PPC::MULLW: 281 return true; 282 default: 283 return false; 284 } 285 } 286 287 #define InfoArrayIdxFMAInst 0 288 #define InfoArrayIdxFAddInst 1 289 #define InfoArrayIdxFMULInst 2 290 #define InfoArrayIdxAddOpIdx 3 291 #define InfoArrayIdxMULOpIdx 4 292 #define InfoArrayIdxFSubInst 5 293 // Array keeps info for FMA instructions: 294 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 295 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; 296 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; 297 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 298 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 299 // second MUL operand index is plus 1; 300 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. 301 static const uint16_t FMAOpIdxInfo[][6] = { 302 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 303 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, 304 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, 305 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, 306 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, 307 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, 308 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; 309 310 // Check if an opcode is a FMA instruction. If it is, return the index in array 311 // FMAOpIdxInfo. Otherwise, return -1. 312 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 313 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) 314 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 315 return I; 316 return -1; 317 } 318 319 // On PowerPC target, we have two kinds of patterns related to FMA: 320 // 1: Improve ILP. 321 // Try to reassociate FMA chains like below: 322 // 323 // Pattern 1: 324 // A = FADD X, Y (Leaf) 325 // B = FMA A, M21, M22 (Prev) 326 // C = FMA B, M31, M32 (Root) 327 // --> 328 // A = FMA X, M21, M22 329 // B = FMA Y, M31, M32 330 // C = FADD A, B 331 // 332 // Pattern 2: 333 // A = FMA X, M11, M12 (Leaf) 334 // B = FMA A, M21, M22 (Prev) 335 // C = FMA B, M31, M32 (Root) 336 // --> 337 // A = FMUL M11, M12 338 // B = FMA X, M21, M22 339 // D = FMA A, M31, M32 340 // C = FADD B, D 341 // 342 // breaking the dependency between A and B, allowing FMA to be executed in 343 // parallel (or back-to-back in a pipeline) instead of depending on each other. 344 // 345 // 2: Reduce register pressure. 346 // Try to reassociate FMA with FSUB and a constant like below: 347 // C is a floating point const. 348 // 349 // Pattern 1: 350 // A = FSUB X, Y (Leaf) 351 // D = FMA B, C, A (Root) 352 // --> 353 // A = FMA B, Y, -C 354 // D = FMA A, X, C 355 // 356 // Pattern 2: 357 // A = FSUB X, Y (Leaf) 358 // D = FMA B, A, C (Root) 359 // --> 360 // A = FMA B, Y, -C 361 // D = FMA A, X, C 362 // 363 // Before the transformation, A must be assigned with different hardware 364 // register with D. After the transformation, A and D must be assigned with 365 // same hardware register due to TIE attribute of FMA instructions. 366 // 367 bool PPCInstrInfo::getFMAPatterns( 368 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 369 bool DoRegPressureReduce) const { 370 MachineBasicBlock *MBB = Root.getParent(); 371 const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); 372 const TargetRegisterInfo *TRI = &getRegisterInfo(); 373 374 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 375 for (const auto &MO : Instr.explicit_operands()) 376 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 377 return false; 378 return true; 379 }; 380 381 auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, 382 unsigned OpType) { 383 if (Instr.getOpcode() != 384 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) 385 return false; 386 387 // Instruction can be reassociated. 388 // fast math flags may prohibit reassociation. 389 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 390 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 391 return false; 392 393 // Instruction operands are virtual registers for reassociation. 394 if (!IsAllOpsVirtualReg(Instr)) 395 return false; 396 397 // For register pressure reassociation, the FSub must have only one use as 398 // we want to delete the sub to save its def. 399 if (OpType == InfoArrayIdxFSubInst && 400 !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) 401 return false; 402 403 return true; 404 }; 405 406 auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 407 int16_t &MulOpIdx, bool IsLeaf) { 408 int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); 409 if (Idx < 0) 410 return false; 411 412 // Instruction can be reassociated. 413 // fast math flags may prohibit reassociation. 414 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 415 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 416 return false; 417 418 // Instruction operands are virtual registers for reassociation. 419 if (!IsAllOpsVirtualReg(Instr)) 420 return false; 421 422 MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 423 if (IsLeaf) 424 return true; 425 426 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 427 428 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 429 MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); 430 // If 'add' operand's def is not in current block, don't do ILP related opt. 431 if (!MIAdd || MIAdd->getParent() != MBB) 432 return false; 433 434 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 435 // as this fma will be changed later. 436 return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); 437 }; 438 439 int16_t AddOpIdx = -1; 440 int16_t MulOpIdx = -1; 441 442 bool IsUsedOnceL = false; 443 bool IsUsedOnceR = false; 444 MachineInstr *MULInstrL = nullptr; 445 MachineInstr *MULInstrR = nullptr; 446 447 auto IsRPReductionCandidate = [&]() { 448 // Currently, we only support float and double. 449 // FIXME: add support for other types. 450 unsigned Opcode = Root.getOpcode(); 451 if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) 452 return false; 453 454 // Root must be a valid FMA like instruction. 455 // Treat it as leaf as we don't care its add operand. 456 if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { 457 assert((MulOpIdx >= 0) && "mul operand index not right!"); 458 Register MULRegL = TRI->lookThruSingleUseCopyChain( 459 Root.getOperand(MulOpIdx).getReg(), MRI); 460 Register MULRegR = TRI->lookThruSingleUseCopyChain( 461 Root.getOperand(MulOpIdx + 1).getReg(), MRI); 462 if (!MULRegL && !MULRegR) 463 return false; 464 465 if (MULRegL && !MULRegR) { 466 MULRegR = 467 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); 468 IsUsedOnceL = true; 469 } else if (!MULRegL && MULRegR) { 470 MULRegL = 471 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); 472 IsUsedOnceR = true; 473 } else { 474 IsUsedOnceL = true; 475 IsUsedOnceR = true; 476 } 477 478 if (!Register::isVirtualRegister(MULRegL) || 479 !Register::isVirtualRegister(MULRegR)) 480 return false; 481 482 MULInstrL = MRI->getVRegDef(MULRegL); 483 MULInstrR = MRI->getVRegDef(MULRegR); 484 return true; 485 } 486 return false; 487 }; 488 489 // Register pressure fma reassociation patterns. 490 if (DoRegPressureReduce && IsRPReductionCandidate()) { 491 assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); 492 // Register pressure pattern 1 493 if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && 494 IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { 495 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); 496 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); 497 return true; 498 } 499 500 // Register pressure pattern 2 501 if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && 502 IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { 503 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); 504 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); 505 return true; 506 } 507 } 508 509 // ILP fma reassociation patterns. 510 // Root must be a valid FMA like instruction. 511 AddOpIdx = -1; 512 if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) 513 return false; 514 515 assert((AddOpIdx >= 0) && "add operand index not right!"); 516 517 Register RegB = Root.getOperand(AddOpIdx).getReg(); 518 MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); 519 520 // Prev must be a valid FMA like instruction. 521 AddOpIdx = -1; 522 if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) 523 return false; 524 525 assert((AddOpIdx >= 0) && "add operand index not right!"); 526 527 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 528 MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); 529 AddOpIdx = -1; 530 if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { 531 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 532 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); 533 return true; 534 } 535 if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { 536 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 537 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); 538 return true; 539 } 540 return false; 541 } 542 543 void PPCInstrInfo::finalizeInsInstrs( 544 MachineInstr &Root, MachineCombinerPattern &P, 545 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 546 assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); 547 548 MachineFunction *MF = Root.getMF(); 549 MachineRegisterInfo *MRI = &MF->getRegInfo(); 550 const TargetRegisterInfo *TRI = &getRegisterInfo(); 551 MachineConstantPool *MCP = MF->getConstantPool(); 552 553 int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); 554 if (Idx < 0) 555 return; 556 557 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 558 559 // For now we only need to fix up placeholder for register pressure reduce 560 // patterns. 561 Register ConstReg = 0; 562 switch (P) { 563 case MachineCombinerPattern::REASSOC_XY_BCA: 564 ConstReg = 565 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); 566 break; 567 case MachineCombinerPattern::REASSOC_XY_BAC: 568 ConstReg = 569 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); 570 break; 571 default: 572 // Not register pressure reduce patterns. 573 return; 574 } 575 576 MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); 577 // Get const value from const pool. 578 const Constant *C = getConstantFromConstantPool(ConstDefInstr); 579 assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); 580 581 // Get negative fp const. 582 APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); 583 F1.changeSign(); 584 Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); 585 Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); 586 587 // Put negative fp const into constant pool. 588 unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); 589 590 MachineOperand *Placeholder = nullptr; 591 // Record the placeholder PPC::ZERO8 we add in reassociateFMA. 592 for (auto *Inst : InsInstrs) { 593 for (MachineOperand &Operand : Inst->explicit_operands()) { 594 assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); 595 if (Operand.getReg() == PPC::ZERO8) { 596 Placeholder = &Operand; 597 break; 598 } 599 } 600 } 601 602 assert(Placeholder && "Placeholder does not exist!"); 603 604 // Generate instructions to load the const fp from constant pool. 605 // We only support PPC64 and medium code model. 606 Register LoadNewConst = 607 generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); 608 609 // Fill the placeholder with the new load from constant pool. 610 Placeholder->setReg(LoadNewConst); 611 } 612 613 bool PPCInstrInfo::shouldReduceRegisterPressure( 614 MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const { 615 616 if (!EnableFMARegPressureReduction) 617 return false; 618 619 // Currently, we only enable register pressure reducing in machine combiner 620 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector 621 // support. 622 // 623 // So we need following instructions to access a TOC entry: 624 // 625 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 626 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, 627 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) 628 // 629 // FIXME: add more supported targets, like Small and Large code model, PPC32, 630 // AIX. 631 if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && 632 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) 633 return false; 634 635 const TargetRegisterInfo *TRI = &getRegisterInfo(); 636 MachineFunction *MF = MBB->getParent(); 637 MachineRegisterInfo *MRI = &MF->getRegInfo(); 638 639 auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> { 640 RegionPressure Pressure; 641 RegPressureTracker RPTracker(Pressure); 642 643 // Initialize the register pressure tracker. 644 RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), 645 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 646 647 for (MachineBasicBlock::iterator MII = MBB->instr_end(), 648 MIE = MBB->instr_begin(); 649 MII != MIE; --MII) { 650 MachineInstr &MI = *std::prev(MII); 651 if (MI.isDebugValue() || MI.isDebugLabel()) 652 continue; 653 RegisterOperands RegOpers; 654 RegOpers.collect(MI, *TRI, *MRI, false, false); 655 RPTracker.recedeSkipDebugValues(); 656 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 657 RPTracker.recede(RegOpers); 658 } 659 660 // Close the RPTracker to finalize live ins. 661 RPTracker.closeRegion(); 662 663 return RPTracker.getPressure().MaxSetPressure; 664 }; 665 666 // For now we only care about float and double type fma. 667 unsigned VSSRCLimit = TRI->getRegPressureSetLimit( 668 *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); 669 670 // Only reduce register pressure when pressure is high. 671 return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > 672 (float)VSSRCLimit * FMARPFactor; 673 } 674 675 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { 676 // I has only one memory operand which is load from constant pool. 677 if (!I->hasOneMemOperand()) 678 return false; 679 680 MachineMemOperand *Op = I->memoperands()[0]; 681 return Op->isLoad() && Op->getPseudoValue() && 682 Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; 683 } 684 685 Register PPCInstrInfo::generateLoadForNewConst( 686 unsigned Idx, MachineInstr *MI, Type *Ty, 687 SmallVectorImpl<MachineInstr *> &InsInstrs) const { 688 // Now we only support PPC64, Medium code model and P9 with vector. 689 // We have immutable pattern to access const pool. See function 690 // shouldReduceRegisterPressure. 691 assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && 692 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && 693 "Target not supported!\n"); 694 695 MachineFunction *MF = MI->getMF(); 696 MachineRegisterInfo *MRI = &MF->getRegInfo(); 697 698 // Generate ADDIStocHA8 699 Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 700 MachineInstrBuilder TOCOffset = 701 BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) 702 .addReg(PPC::X2) 703 .addConstantPoolIndex(Idx); 704 705 assert((Ty->isFloatTy() || Ty->isDoubleTy()) && 706 "Only float and double are supported!"); 707 708 unsigned LoadOpcode; 709 // Should be float type or double type. 710 if (Ty->isFloatTy()) 711 LoadOpcode = PPC::DFLOADf32; 712 else 713 LoadOpcode = PPC::DFLOADf64; 714 715 const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); 716 Register VReg2 = MRI->createVirtualRegister(RC); 717 MachineMemOperand *MMO = MF->getMachineMemOperand( 718 MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, 719 Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); 720 721 // Generate Load from constant pool. 722 MachineInstrBuilder Load = 723 BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) 724 .addConstantPoolIndex(Idx) 725 .addReg(VReg1, getKillRegState(true)) 726 .addMemOperand(MMO); 727 728 Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); 729 730 // Insert the toc load instructions into InsInstrs. 731 InsInstrs.insert(InsInstrs.begin(), Load); 732 InsInstrs.insert(InsInstrs.begin(), TOCOffset); 733 return VReg2; 734 } 735 736 // This function returns the const value in constant pool if the \p I is a load 737 // from constant pool. 738 const Constant * 739 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { 740 MachineFunction *MF = I->getMF(); 741 MachineRegisterInfo *MRI = &MF->getRegInfo(); 742 MachineConstantPool *MCP = MF->getConstantPool(); 743 assert(I->mayLoad() && "Should be a load instruction.\n"); 744 for (auto MO : I->uses()) { 745 if (!MO.isReg()) 746 continue; 747 Register Reg = MO.getReg(); 748 if (Reg == 0 || !Register::isVirtualRegister(Reg)) 749 continue; 750 // Find the toc address. 751 MachineInstr *DefMI = MRI->getVRegDef(Reg); 752 for (auto MO2 : DefMI->uses()) 753 if (MO2.isCPI()) 754 return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; 755 } 756 return nullptr; 757 } 758 759 bool PPCInstrInfo::getMachineCombinerPatterns( 760 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 761 bool DoRegPressureReduce) const { 762 // Using the machine combiner in this way is potentially expensive, so 763 // restrict to when aggressive optimizations are desired. 764 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 765 return false; 766 767 if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) 768 return true; 769 770 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 771 DoRegPressureReduce); 772 } 773 774 void PPCInstrInfo::genAlternativeCodeSequence( 775 MachineInstr &Root, MachineCombinerPattern Pattern, 776 SmallVectorImpl<MachineInstr *> &InsInstrs, 777 SmallVectorImpl<MachineInstr *> &DelInstrs, 778 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 779 switch (Pattern) { 780 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 781 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 782 case MachineCombinerPattern::REASSOC_XY_BCA: 783 case MachineCombinerPattern::REASSOC_XY_BAC: 784 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 785 break; 786 default: 787 // Reassociate default patterns. 788 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 789 DelInstrs, InstrIdxForVirtReg); 790 break; 791 } 792 } 793 794 void PPCInstrInfo::reassociateFMA( 795 MachineInstr &Root, MachineCombinerPattern Pattern, 796 SmallVectorImpl<MachineInstr *> &InsInstrs, 797 SmallVectorImpl<MachineInstr *> &DelInstrs, 798 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 799 MachineFunction *MF = Root.getMF(); 800 MachineRegisterInfo &MRI = MF->getRegInfo(); 801 const TargetRegisterInfo *TRI = &getRegisterInfo(); 802 MachineOperand &OpC = Root.getOperand(0); 803 Register RegC = OpC.getReg(); 804 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 805 MRI.constrainRegClass(RegC, RC); 806 807 unsigned FmaOp = Root.getOpcode(); 808 int16_t Idx = getFMAOpIdxInfo(FmaOp); 809 assert(Idx >= 0 && "Root must be a FMA instruction"); 810 811 bool IsILPReassociate = 812 (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || 813 (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 814 815 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 816 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 817 818 MachineInstr *Prev = nullptr; 819 MachineInstr *Leaf = nullptr; 820 switch (Pattern) { 821 default: 822 llvm_unreachable("not recognized pattern!"); 823 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 824 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 825 Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 826 Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 827 break; 828 case MachineCombinerPattern::REASSOC_XY_BAC: { 829 Register MULReg = 830 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); 831 Leaf = MRI.getVRegDef(MULReg); 832 break; 833 } 834 case MachineCombinerPattern::REASSOC_XY_BCA: { 835 Register MULReg = TRI->lookThruCopyLike( 836 Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); 837 Leaf = MRI.getVRegDef(MULReg); 838 break; 839 } 840 } 841 842 uint16_t IntersectedFlags = 0; 843 if (IsILPReassociate) 844 IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 845 else 846 IntersectedFlags = Root.getFlags() & Leaf->getFlags(); 847 848 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 849 bool &KillFlag) { 850 Reg = Operand.getReg(); 851 MRI.constrainRegClass(Reg, RC); 852 KillFlag = Operand.isKill(); 853 }; 854 855 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 856 Register &MulOp2, Register &AddOp, 857 bool &MulOp1KillFlag, bool &MulOp2KillFlag, 858 bool &AddOpKillFlag) { 859 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 860 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 861 GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); 862 }; 863 864 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, 865 RegA21, RegB; 866 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 867 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, 868 KillA11 = false, KillA21 = false, KillB = false; 869 870 GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); 871 872 if (IsILPReassociate) 873 GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); 874 875 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 876 GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); 877 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 878 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 879 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 880 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 881 } else { 882 // Get FSUB instruction info. 883 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 884 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 885 } 886 887 // Create new virtual registers for the new results instead of 888 // recycling legacy ones because the MachineCombiner's computation of the 889 // critical path requires a new register definition rather than an existing 890 // one. 891 // For register pressure reassociation, we only need create one virtual 892 // register for the new fma. 893 Register NewVRA = MRI.createVirtualRegister(RC); 894 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 895 896 Register NewVRB = 0; 897 if (IsILPReassociate) { 898 NewVRB = MRI.createVirtualRegister(RC); 899 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 900 } 901 902 Register NewVRD = 0; 903 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 904 NewVRD = MRI.createVirtualRegister(RC); 905 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 906 } 907 908 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 909 Register RegMul1, bool KillRegMul1, 910 Register RegMul2, bool KillRegMul2) { 911 MI->getOperand(AddOpIdx).setReg(RegAdd); 912 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 913 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 914 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 915 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 916 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 917 }; 918 919 MachineInstrBuilder NewARegPressure, NewCRegPressure; 920 switch (Pattern) { 921 default: 922 llvm_unreachable("not recognized pattern!"); 923 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { 924 // Create new instructions for insertion. 925 MachineInstrBuilder MINewB = 926 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 927 .addReg(RegX, getKillRegState(KillX)) 928 .addReg(RegM21, getKillRegState(KillM21)) 929 .addReg(RegM22, getKillRegState(KillM22)); 930 MachineInstrBuilder MINewA = 931 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 932 .addReg(RegY, getKillRegState(KillY)) 933 .addReg(RegM31, getKillRegState(KillM31)) 934 .addReg(RegM32, getKillRegState(KillM32)); 935 // If AddOpIdx is not 1, adjust the order. 936 if (AddOpIdx != 1) { 937 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 938 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 939 } 940 941 MachineInstrBuilder MINewC = 942 BuildMI(*MF, Root.getDebugLoc(), 943 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 944 .addReg(NewVRB, getKillRegState(true)) 945 .addReg(NewVRA, getKillRegState(true)); 946 947 // Update flags for newly created instructions. 948 setSpecialOperandAttr(*MINewA, IntersectedFlags); 949 setSpecialOperandAttr(*MINewB, IntersectedFlags); 950 setSpecialOperandAttr(*MINewC, IntersectedFlags); 951 952 // Record new instructions for insertion. 953 InsInstrs.push_back(MINewA); 954 InsInstrs.push_back(MINewB); 955 InsInstrs.push_back(MINewC); 956 break; 957 } 958 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { 959 assert(NewVRD && "new FMA register not created!"); 960 // Create new instructions for insertion. 961 MachineInstrBuilder MINewA = 962 BuildMI(*MF, Leaf->getDebugLoc(), 963 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 964 .addReg(RegM11, getKillRegState(KillM11)) 965 .addReg(RegM12, getKillRegState(KillM12)); 966 MachineInstrBuilder MINewB = 967 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 968 .addReg(RegX, getKillRegState(KillX)) 969 .addReg(RegM21, getKillRegState(KillM21)) 970 .addReg(RegM22, getKillRegState(KillM22)); 971 MachineInstrBuilder MINewD = 972 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 973 .addReg(NewVRA, getKillRegState(true)) 974 .addReg(RegM31, getKillRegState(KillM31)) 975 .addReg(RegM32, getKillRegState(KillM32)); 976 // If AddOpIdx is not 1, adjust the order. 977 if (AddOpIdx != 1) { 978 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 979 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 980 KillM32); 981 } 982 983 MachineInstrBuilder MINewC = 984 BuildMI(*MF, Root.getDebugLoc(), 985 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 986 .addReg(NewVRB, getKillRegState(true)) 987 .addReg(NewVRD, getKillRegState(true)); 988 989 // Update flags for newly created instructions. 990 setSpecialOperandAttr(*MINewA, IntersectedFlags); 991 setSpecialOperandAttr(*MINewB, IntersectedFlags); 992 setSpecialOperandAttr(*MINewD, IntersectedFlags); 993 setSpecialOperandAttr(*MINewC, IntersectedFlags); 994 995 // Record new instructions for insertion. 996 InsInstrs.push_back(MINewA); 997 InsInstrs.push_back(MINewB); 998 InsInstrs.push_back(MINewD); 999 InsInstrs.push_back(MINewC); 1000 break; 1001 } 1002 case MachineCombinerPattern::REASSOC_XY_BAC: 1003 case MachineCombinerPattern::REASSOC_XY_BCA: { 1004 Register VarReg; 1005 bool KillVarReg = false; 1006 if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { 1007 VarReg = RegM31; 1008 KillVarReg = KillM31; 1009 } else { 1010 VarReg = RegM32; 1011 KillVarReg = KillM32; 1012 } 1013 // We don't want to get negative const from memory pool too early, as the 1014 // created entry will not be deleted even if it has no users. Since all 1015 // operand of Leaf and Root are virtual register, we use zero register 1016 // here as a placeholder. When the InsInstrs is selected in 1017 // MachineCombiner, we call finalizeInsInstrs to replace the zero register 1018 // with a virtual register which is a load from constant pool. 1019 NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 1020 .addReg(RegB, getKillRegState(RegB)) 1021 .addReg(RegY, getKillRegState(KillY)) 1022 .addReg(PPC::ZERO8); 1023 NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) 1024 .addReg(NewVRA, getKillRegState(true)) 1025 .addReg(RegX, getKillRegState(KillX)) 1026 .addReg(VarReg, getKillRegState(KillVarReg)); 1027 // For now, we only support xsmaddadp/xsmaddasp, their add operand are 1028 // both at index 1, no need to adjust. 1029 // FIXME: when add more fma instructions support, like fma/fmas, adjust 1030 // the operand index here. 1031 break; 1032 } 1033 } 1034 1035 if (!IsILPReassociate) { 1036 setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); 1037 setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); 1038 1039 InsInstrs.push_back(NewARegPressure); 1040 InsInstrs.push_back(NewCRegPressure); 1041 } 1042 1043 assert(!InsInstrs.empty() && 1044 "Insertion instructions set should not be empty!"); 1045 1046 // Record old instructions for deletion. 1047 DelInstrs.push_back(Leaf); 1048 if (IsILPReassociate) 1049 DelInstrs.push_back(Prev); 1050 DelInstrs.push_back(&Root); 1051 } 1052 1053 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 1054 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 1055 Register &SrcReg, Register &DstReg, 1056 unsigned &SubIdx) const { 1057 switch (MI.getOpcode()) { 1058 default: return false; 1059 case PPC::EXTSW: 1060 case PPC::EXTSW_32: 1061 case PPC::EXTSW_32_64: 1062 SrcReg = MI.getOperand(1).getReg(); 1063 DstReg = MI.getOperand(0).getReg(); 1064 SubIdx = PPC::sub_32; 1065 return true; 1066 } 1067 } 1068 1069 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1070 int &FrameIndex) const { 1071 unsigned Opcode = MI.getOpcode(); 1072 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1073 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 1074 1075 if (End != std::find(OpcodesForSpill, End, Opcode)) { 1076 // Check for the operands added by addFrameReference (the immediate is the 1077 // offset which defaults to 0). 1078 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1079 MI.getOperand(2).isFI()) { 1080 FrameIndex = MI.getOperand(2).getIndex(); 1081 return MI.getOperand(0).getReg(); 1082 } 1083 } 1084 return 0; 1085 } 1086 1087 // For opcodes with the ReMaterializable flag set, this function is called to 1088 // verify the instruction is really rematable. 1089 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 1090 AliasAnalysis *AA) const { 1091 switch (MI.getOpcode()) { 1092 default: 1093 // This function should only be called for opcodes with the ReMaterializable 1094 // flag set. 1095 llvm_unreachable("Unknown rematerializable operation!"); 1096 break; 1097 case PPC::LI: 1098 case PPC::LI8: 1099 case PPC::PLI: 1100 case PPC::PLI8: 1101 case PPC::LIS: 1102 case PPC::LIS8: 1103 case PPC::ADDIStocHA: 1104 case PPC::ADDIStocHA8: 1105 case PPC::ADDItocL: 1106 case PPC::LOAD_STACK_GUARD: 1107 case PPC::XXLXORz: 1108 case PPC::XXLXORspz: 1109 case PPC::XXLXORdpz: 1110 case PPC::XXLEQVOnes: 1111 case PPC::XXSPLTI32DX: 1112 case PPC::V_SET0B: 1113 case PPC::V_SET0H: 1114 case PPC::V_SET0: 1115 case PPC::V_SETALLONESB: 1116 case PPC::V_SETALLONESH: 1117 case PPC::V_SETALLONES: 1118 case PPC::CRSET: 1119 case PPC::CRUNSET: 1120 case PPC::XXSETACCZ: 1121 return true; 1122 } 1123 return false; 1124 } 1125 1126 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1127 int &FrameIndex) const { 1128 unsigned Opcode = MI.getOpcode(); 1129 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1130 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 1131 1132 if (End != std::find(OpcodesForSpill, End, Opcode)) { 1133 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 1134 MI.getOperand(2).isFI()) { 1135 FrameIndex = MI.getOperand(2).getIndex(); 1136 return MI.getOperand(0).getReg(); 1137 } 1138 } 1139 return 0; 1140 } 1141 1142 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1143 unsigned OpIdx1, 1144 unsigned OpIdx2) const { 1145 MachineFunction &MF = *MI.getParent()->getParent(); 1146 1147 // Normal instructions can be commuted the obvious way. 1148 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 1149 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1150 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 1151 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 1152 // changing the relative order of the mask operands might change what happens 1153 // to the high-bits of the mask (and, thus, the result). 1154 1155 // Cannot commute if it has a non-zero rotate count. 1156 if (MI.getOperand(3).getImm() != 0) 1157 return nullptr; 1158 1159 // If we have a zero rotate count, we have: 1160 // M = mask(MB,ME) 1161 // Op0 = (Op1 & ~M) | (Op2 & M) 1162 // Change this to: 1163 // M = mask((ME+1)&31, (MB-1)&31) 1164 // Op0 = (Op2 & ~M) | (Op1 & M) 1165 1166 // Swap op1/op2 1167 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 1168 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 1169 Register Reg0 = MI.getOperand(0).getReg(); 1170 Register Reg1 = MI.getOperand(1).getReg(); 1171 Register Reg2 = MI.getOperand(2).getReg(); 1172 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 1173 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 1174 bool Reg1IsKill = MI.getOperand(1).isKill(); 1175 bool Reg2IsKill = MI.getOperand(2).isKill(); 1176 bool ChangeReg0 = false; 1177 // If machine instrs are no longer in two-address forms, update 1178 // destination register as well. 1179 if (Reg0 == Reg1) { 1180 // Must be two address instruction! 1181 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 1182 "Expecting a two-address instruction!"); 1183 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 1184 Reg2IsKill = false; 1185 ChangeReg0 = true; 1186 } 1187 1188 // Masks. 1189 unsigned MB = MI.getOperand(4).getImm(); 1190 unsigned ME = MI.getOperand(5).getImm(); 1191 1192 // We can't commute a trivial mask (there is no way to represent an all-zero 1193 // mask). 1194 if (MB == 0 && ME == 31) 1195 return nullptr; 1196 1197 if (NewMI) { 1198 // Create a new instruction. 1199 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 1200 bool Reg0IsDead = MI.getOperand(0).isDead(); 1201 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 1202 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 1203 .addReg(Reg2, getKillRegState(Reg2IsKill)) 1204 .addReg(Reg1, getKillRegState(Reg1IsKill)) 1205 .addImm((ME + 1) & 31) 1206 .addImm((MB - 1) & 31); 1207 } 1208 1209 if (ChangeReg0) { 1210 MI.getOperand(0).setReg(Reg2); 1211 MI.getOperand(0).setSubReg(SubReg2); 1212 } 1213 MI.getOperand(2).setReg(Reg1); 1214 MI.getOperand(1).setReg(Reg2); 1215 MI.getOperand(2).setSubReg(SubReg1); 1216 MI.getOperand(1).setSubReg(SubReg2); 1217 MI.getOperand(2).setIsKill(Reg1IsKill); 1218 MI.getOperand(1).setIsKill(Reg2IsKill); 1219 1220 // Swap the mask around. 1221 MI.getOperand(4).setImm((ME + 1) & 31); 1222 MI.getOperand(5).setImm((MB - 1) & 31); 1223 return &MI; 1224 } 1225 1226 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 1227 unsigned &SrcOpIdx1, 1228 unsigned &SrcOpIdx2) const { 1229 // For VSX A-Type FMA instructions, it is the first two operands that can be 1230 // commuted, however, because the non-encoded tied input operand is listed 1231 // first, the operands to swap are actually the second and third. 1232 1233 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 1234 if (AltOpc == -1) 1235 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 1236 1237 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 1238 // and SrcOpIdx2. 1239 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 1240 } 1241 1242 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 1243 MachineBasicBlock::iterator MI) const { 1244 // This function is used for scheduling, and the nop wanted here is the type 1245 // that terminates dispatch groups on the POWER cores. 1246 unsigned Directive = Subtarget.getCPUDirective(); 1247 unsigned Opcode; 1248 switch (Directive) { 1249 default: Opcode = PPC::NOP; break; 1250 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 1251 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 1252 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 1253 // FIXME: Update when POWER9 scheduling model is ready. 1254 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 1255 } 1256 1257 DebugLoc DL; 1258 BuildMI(MBB, MI, DL, get(Opcode)); 1259 } 1260 1261 /// Return the noop instruction to use for a noop. 1262 MCInst PPCInstrInfo::getNop() const { 1263 MCInst Nop; 1264 Nop.setOpcode(PPC::NOP); 1265 return Nop; 1266 } 1267 1268 // Branch analysis. 1269 // Note: If the condition register is set to CTR or CTR8 then this is a 1270 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 1271 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 1272 MachineBasicBlock *&TBB, 1273 MachineBasicBlock *&FBB, 1274 SmallVectorImpl<MachineOperand> &Cond, 1275 bool AllowModify) const { 1276 bool isPPC64 = Subtarget.isPPC64(); 1277 1278 // If the block has no terminators, it just falls into the block after it. 1279 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1280 if (I == MBB.end()) 1281 return false; 1282 1283 if (!isUnpredicatedTerminator(*I)) 1284 return false; 1285 1286 if (AllowModify) { 1287 // If the BB ends with an unconditional branch to the fallthrough BB, 1288 // we eliminate the branch instruction. 1289 if (I->getOpcode() == PPC::B && 1290 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 1291 I->eraseFromParent(); 1292 1293 // We update iterator after deleting the last branch. 1294 I = MBB.getLastNonDebugInstr(); 1295 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 1296 return false; 1297 } 1298 } 1299 1300 // Get the last instruction in the block. 1301 MachineInstr &LastInst = *I; 1302 1303 // If there is only one terminator instruction, process it. 1304 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 1305 if (LastInst.getOpcode() == PPC::B) { 1306 if (!LastInst.getOperand(0).isMBB()) 1307 return true; 1308 TBB = LastInst.getOperand(0).getMBB(); 1309 return false; 1310 } else if (LastInst.getOpcode() == PPC::BCC) { 1311 if (!LastInst.getOperand(2).isMBB()) 1312 return true; 1313 // Block ends with fall-through condbranch. 1314 TBB = LastInst.getOperand(2).getMBB(); 1315 Cond.push_back(LastInst.getOperand(0)); 1316 Cond.push_back(LastInst.getOperand(1)); 1317 return false; 1318 } else if (LastInst.getOpcode() == PPC::BC) { 1319 if (!LastInst.getOperand(1).isMBB()) 1320 return true; 1321 // Block ends with fall-through condbranch. 1322 TBB = LastInst.getOperand(1).getMBB(); 1323 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1324 Cond.push_back(LastInst.getOperand(0)); 1325 return false; 1326 } else if (LastInst.getOpcode() == PPC::BCn) { 1327 if (!LastInst.getOperand(1).isMBB()) 1328 return true; 1329 // Block ends with fall-through condbranch. 1330 TBB = LastInst.getOperand(1).getMBB(); 1331 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1332 Cond.push_back(LastInst.getOperand(0)); 1333 return false; 1334 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 1335 LastInst.getOpcode() == PPC::BDNZ) { 1336 if (!LastInst.getOperand(0).isMBB()) 1337 return true; 1338 if (DisableCTRLoopAnal) 1339 return true; 1340 TBB = LastInst.getOperand(0).getMBB(); 1341 Cond.push_back(MachineOperand::CreateImm(1)); 1342 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1343 true)); 1344 return false; 1345 } else if (LastInst.getOpcode() == PPC::BDZ8 || 1346 LastInst.getOpcode() == PPC::BDZ) { 1347 if (!LastInst.getOperand(0).isMBB()) 1348 return true; 1349 if (DisableCTRLoopAnal) 1350 return true; 1351 TBB = LastInst.getOperand(0).getMBB(); 1352 Cond.push_back(MachineOperand::CreateImm(0)); 1353 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1354 true)); 1355 return false; 1356 } 1357 1358 // Otherwise, don't know what this is. 1359 return true; 1360 } 1361 1362 // Get the instruction before it if it's a terminator. 1363 MachineInstr &SecondLastInst = *I; 1364 1365 // If there are three terminators, we don't know what sort of block this is. 1366 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 1367 return true; 1368 1369 // If the block ends with PPC::B and PPC:BCC, handle it. 1370 if (SecondLastInst.getOpcode() == PPC::BCC && 1371 LastInst.getOpcode() == PPC::B) { 1372 if (!SecondLastInst.getOperand(2).isMBB() || 1373 !LastInst.getOperand(0).isMBB()) 1374 return true; 1375 TBB = SecondLastInst.getOperand(2).getMBB(); 1376 Cond.push_back(SecondLastInst.getOperand(0)); 1377 Cond.push_back(SecondLastInst.getOperand(1)); 1378 FBB = LastInst.getOperand(0).getMBB(); 1379 return false; 1380 } else if (SecondLastInst.getOpcode() == PPC::BC && 1381 LastInst.getOpcode() == PPC::B) { 1382 if (!SecondLastInst.getOperand(1).isMBB() || 1383 !LastInst.getOperand(0).isMBB()) 1384 return true; 1385 TBB = SecondLastInst.getOperand(1).getMBB(); 1386 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 1387 Cond.push_back(SecondLastInst.getOperand(0)); 1388 FBB = LastInst.getOperand(0).getMBB(); 1389 return false; 1390 } else if (SecondLastInst.getOpcode() == PPC::BCn && 1391 LastInst.getOpcode() == PPC::B) { 1392 if (!SecondLastInst.getOperand(1).isMBB() || 1393 !LastInst.getOperand(0).isMBB()) 1394 return true; 1395 TBB = SecondLastInst.getOperand(1).getMBB(); 1396 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 1397 Cond.push_back(SecondLastInst.getOperand(0)); 1398 FBB = LastInst.getOperand(0).getMBB(); 1399 return false; 1400 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 1401 SecondLastInst.getOpcode() == PPC::BDNZ) && 1402 LastInst.getOpcode() == PPC::B) { 1403 if (!SecondLastInst.getOperand(0).isMBB() || 1404 !LastInst.getOperand(0).isMBB()) 1405 return true; 1406 if (DisableCTRLoopAnal) 1407 return true; 1408 TBB = SecondLastInst.getOperand(0).getMBB(); 1409 Cond.push_back(MachineOperand::CreateImm(1)); 1410 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1411 true)); 1412 FBB = LastInst.getOperand(0).getMBB(); 1413 return false; 1414 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 1415 SecondLastInst.getOpcode() == PPC::BDZ) && 1416 LastInst.getOpcode() == PPC::B) { 1417 if (!SecondLastInst.getOperand(0).isMBB() || 1418 !LastInst.getOperand(0).isMBB()) 1419 return true; 1420 if (DisableCTRLoopAnal) 1421 return true; 1422 TBB = SecondLastInst.getOperand(0).getMBB(); 1423 Cond.push_back(MachineOperand::CreateImm(0)); 1424 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 1425 true)); 1426 FBB = LastInst.getOperand(0).getMBB(); 1427 return false; 1428 } 1429 1430 // If the block ends with two PPC:Bs, handle it. The second one is not 1431 // executed, so remove it. 1432 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 1433 if (!SecondLastInst.getOperand(0).isMBB()) 1434 return true; 1435 TBB = SecondLastInst.getOperand(0).getMBB(); 1436 I = LastInst; 1437 if (AllowModify) 1438 I->eraseFromParent(); 1439 return false; 1440 } 1441 1442 // Otherwise, can't handle this. 1443 return true; 1444 } 1445 1446 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 1447 int *BytesRemoved) const { 1448 assert(!BytesRemoved && "code size not handled"); 1449 1450 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1451 if (I == MBB.end()) 1452 return 0; 1453 1454 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1455 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1456 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1457 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1458 return 0; 1459 1460 // Remove the branch. 1461 I->eraseFromParent(); 1462 1463 I = MBB.end(); 1464 1465 if (I == MBB.begin()) return 1; 1466 --I; 1467 if (I->getOpcode() != PPC::BCC && 1468 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1469 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1470 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1471 return 1; 1472 1473 // Remove the branch. 1474 I->eraseFromParent(); 1475 return 2; 1476 } 1477 1478 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1479 MachineBasicBlock *TBB, 1480 MachineBasicBlock *FBB, 1481 ArrayRef<MachineOperand> Cond, 1482 const DebugLoc &DL, 1483 int *BytesAdded) const { 1484 // Shouldn't be a fall through. 1485 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1486 assert((Cond.size() == 2 || Cond.size() == 0) && 1487 "PPC branch conditions have two components!"); 1488 assert(!BytesAdded && "code size not handled"); 1489 1490 bool isPPC64 = Subtarget.isPPC64(); 1491 1492 // One-way branch. 1493 if (!FBB) { 1494 if (Cond.empty()) // Unconditional branch 1495 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1496 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1497 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1498 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1499 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1500 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1501 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1502 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1503 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1504 else // Conditional branch 1505 BuildMI(&MBB, DL, get(PPC::BCC)) 1506 .addImm(Cond[0].getImm()) 1507 .add(Cond[1]) 1508 .addMBB(TBB); 1509 return 1; 1510 } 1511 1512 // Two-way Conditional Branch. 1513 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1514 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1515 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1516 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1517 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1518 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1519 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1520 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1521 else 1522 BuildMI(&MBB, DL, get(PPC::BCC)) 1523 .addImm(Cond[0].getImm()) 1524 .add(Cond[1]) 1525 .addMBB(TBB); 1526 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1527 return 2; 1528 } 1529 1530 // Select analysis. 1531 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1532 ArrayRef<MachineOperand> Cond, 1533 Register DstReg, Register TrueReg, 1534 Register FalseReg, int &CondCycles, 1535 int &TrueCycles, int &FalseCycles) const { 1536 if (Cond.size() != 2) 1537 return false; 1538 1539 // If this is really a bdnz-like condition, then it cannot be turned into a 1540 // select. 1541 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1542 return false; 1543 1544 // Check register classes. 1545 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1546 const TargetRegisterClass *RC = 1547 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1548 if (!RC) 1549 return false; 1550 1551 // isel is for regular integer GPRs only. 1552 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1553 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1554 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1555 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1556 return false; 1557 1558 // FIXME: These numbers are for the A2, how well they work for other cores is 1559 // an open question. On the A2, the isel instruction has a 2-cycle latency 1560 // but single-cycle throughput. These numbers are used in combination with 1561 // the MispredictPenalty setting from the active SchedMachineModel. 1562 CondCycles = 1; 1563 TrueCycles = 1; 1564 FalseCycles = 1; 1565 1566 return true; 1567 } 1568 1569 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1570 MachineBasicBlock::iterator MI, 1571 const DebugLoc &dl, Register DestReg, 1572 ArrayRef<MachineOperand> Cond, Register TrueReg, 1573 Register FalseReg) const { 1574 assert(Cond.size() == 2 && 1575 "PPC branch conditions have two components!"); 1576 1577 // Get the register classes. 1578 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1579 const TargetRegisterClass *RC = 1580 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1581 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1582 1583 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1584 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1585 assert((Is64Bit || 1586 PPC::GPRCRegClass.hasSubClassEq(RC) || 1587 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1588 "isel is for regular integer GPRs only"); 1589 1590 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1591 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1592 1593 unsigned SubIdx = 0; 1594 bool SwapOps = false; 1595 switch (SelectPred) { 1596 case PPC::PRED_EQ: 1597 case PPC::PRED_EQ_MINUS: 1598 case PPC::PRED_EQ_PLUS: 1599 SubIdx = PPC::sub_eq; SwapOps = false; break; 1600 case PPC::PRED_NE: 1601 case PPC::PRED_NE_MINUS: 1602 case PPC::PRED_NE_PLUS: 1603 SubIdx = PPC::sub_eq; SwapOps = true; break; 1604 case PPC::PRED_LT: 1605 case PPC::PRED_LT_MINUS: 1606 case PPC::PRED_LT_PLUS: 1607 SubIdx = PPC::sub_lt; SwapOps = false; break; 1608 case PPC::PRED_GE: 1609 case PPC::PRED_GE_MINUS: 1610 case PPC::PRED_GE_PLUS: 1611 SubIdx = PPC::sub_lt; SwapOps = true; break; 1612 case PPC::PRED_GT: 1613 case PPC::PRED_GT_MINUS: 1614 case PPC::PRED_GT_PLUS: 1615 SubIdx = PPC::sub_gt; SwapOps = false; break; 1616 case PPC::PRED_LE: 1617 case PPC::PRED_LE_MINUS: 1618 case PPC::PRED_LE_PLUS: 1619 SubIdx = PPC::sub_gt; SwapOps = true; break; 1620 case PPC::PRED_UN: 1621 case PPC::PRED_UN_MINUS: 1622 case PPC::PRED_UN_PLUS: 1623 SubIdx = PPC::sub_un; SwapOps = false; break; 1624 case PPC::PRED_NU: 1625 case PPC::PRED_NU_MINUS: 1626 case PPC::PRED_NU_PLUS: 1627 SubIdx = PPC::sub_un; SwapOps = true; break; 1628 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1629 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1630 } 1631 1632 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1633 SecondReg = SwapOps ? TrueReg : FalseReg; 1634 1635 // The first input register of isel cannot be r0. If it is a member 1636 // of a register class that can be r0, then copy it first (the 1637 // register allocator should eliminate the copy). 1638 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1639 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1640 const TargetRegisterClass *FirstRC = 1641 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1642 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1643 Register OldFirstReg = FirstReg; 1644 FirstReg = MRI.createVirtualRegister(FirstRC); 1645 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1646 .addReg(OldFirstReg); 1647 } 1648 1649 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1650 .addReg(FirstReg).addReg(SecondReg) 1651 .addReg(Cond[1].getReg(), 0, SubIdx); 1652 } 1653 1654 static unsigned getCRBitValue(unsigned CRBit) { 1655 unsigned Ret = 4; 1656 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1657 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1658 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1659 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1660 Ret = 3; 1661 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1662 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1663 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1664 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1665 Ret = 2; 1666 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1667 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1668 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1669 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1670 Ret = 1; 1671 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1672 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1673 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1674 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1675 Ret = 0; 1676 1677 assert(Ret != 4 && "Invalid CR bit register"); 1678 return Ret; 1679 } 1680 1681 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1682 MachineBasicBlock::iterator I, 1683 const DebugLoc &DL, MCRegister DestReg, 1684 MCRegister SrcReg, bool KillSrc) const { 1685 // We can end up with self copies and similar things as a result of VSX copy 1686 // legalization. Promote them here. 1687 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1688 if (PPC::F8RCRegClass.contains(DestReg) && 1689 PPC::VSRCRegClass.contains(SrcReg)) { 1690 MCRegister SuperReg = 1691 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1692 1693 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1694 llvm_unreachable("nop VSX copy"); 1695 1696 DestReg = SuperReg; 1697 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1698 PPC::VSRCRegClass.contains(DestReg)) { 1699 MCRegister SuperReg = 1700 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1701 1702 if (VSXSelfCopyCrash && DestReg == SuperReg) 1703 llvm_unreachable("nop VSX copy"); 1704 1705 SrcReg = SuperReg; 1706 } 1707 1708 // Different class register copy 1709 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1710 PPC::GPRCRegClass.contains(DestReg)) { 1711 MCRegister CRReg = getCRFromCRBit(SrcReg); 1712 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1713 getKillRegState(KillSrc); 1714 // Rotate the CR bit in the CR fields to be the least significant bit and 1715 // then mask with 0x1 (MB = ME = 31). 1716 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1717 .addReg(DestReg, RegState::Kill) 1718 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1719 .addImm(31) 1720 .addImm(31); 1721 return; 1722 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1723 (PPC::G8RCRegClass.contains(DestReg) || 1724 PPC::GPRCRegClass.contains(DestReg))) { 1725 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); 1726 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; 1727 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; 1728 unsigned CRNum = TRI->getEncodingValue(SrcReg); 1729 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); 1730 getKillRegState(KillSrc); 1731 if (CRNum == 7) 1732 return; 1733 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. 1734 BuildMI(MBB, I, DL, get(ShCode), DestReg) 1735 .addReg(DestReg, RegState::Kill) 1736 .addImm(CRNum * 4 + 4) 1737 .addImm(28) 1738 .addImm(31); 1739 return; 1740 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1741 PPC::VSFRCRegClass.contains(DestReg)) { 1742 assert(Subtarget.hasDirectMove() && 1743 "Subtarget doesn't support directmove, don't know how to copy."); 1744 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1745 NumGPRtoVSRSpill++; 1746 getKillRegState(KillSrc); 1747 return; 1748 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1749 PPC::G8RCRegClass.contains(DestReg)) { 1750 assert(Subtarget.hasDirectMove() && 1751 "Subtarget doesn't support directmove, don't know how to copy."); 1752 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1753 getKillRegState(KillSrc); 1754 return; 1755 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1756 PPC::GPRCRegClass.contains(DestReg)) { 1757 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1758 getKillRegState(KillSrc); 1759 return; 1760 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1761 PPC::SPERCRegClass.contains(DestReg)) { 1762 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1763 getKillRegState(KillSrc); 1764 return; 1765 } 1766 1767 unsigned Opc; 1768 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1769 Opc = PPC::OR; 1770 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1771 Opc = PPC::OR8; 1772 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1773 Opc = PPC::FMR; 1774 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1775 Opc = PPC::MCRF; 1776 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1777 Opc = PPC::VOR; 1778 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1779 // There are two different ways this can be done: 1780 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1781 // issue in VSU pipeline 0. 1782 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1783 // can go to either pipeline. 1784 // We'll always use xxlor here, because in practically all cases where 1785 // copies are generated, they are close enough to some use that the 1786 // lower-latency form is preferable. 1787 Opc = PPC::XXLOR; 1788 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1789 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1790 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1791 else if (Subtarget.pairedVectorMemops() && 1792 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { 1793 if (SrcReg > PPC::VSRp15) 1794 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; 1795 else 1796 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1797 if (DestReg > PPC::VSRp15) 1798 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; 1799 else 1800 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; 1801 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). 1802 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1803 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). 1804 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); 1805 return; 1806 } 1807 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1808 Opc = PPC::CROR; 1809 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1810 Opc = PPC::EVOR; 1811 else if ((PPC::ACCRCRegClass.contains(DestReg) || 1812 PPC::UACCRCRegClass.contains(DestReg)) && 1813 (PPC::ACCRCRegClass.contains(SrcReg) || 1814 PPC::UACCRCRegClass.contains(SrcReg))) { 1815 // If primed, de-prime the source register, copy the individual registers 1816 // and prime the destination if needed. The vector subregisters are 1817 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the 1818 // source is primed, we need to re-prime it after the copy as well. 1819 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); 1820 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); 1821 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1822 MCRegister VSLSrcReg = 1823 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1824 MCRegister VSLDestReg = 1825 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; 1826 if (SrcPrimed) 1827 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1828 for (unsigned Idx = 0; Idx < 4; Idx++) 1829 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) 1830 .addReg(VSLSrcReg + Idx) 1831 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); 1832 if (DestPrimed) 1833 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); 1834 if (SrcPrimed && !KillSrc) 1835 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1836 return; 1837 } else 1838 llvm_unreachable("Impossible reg-to-reg copy"); 1839 1840 const MCInstrDesc &MCID = get(Opc); 1841 if (MCID.getNumOperands() == 3) 1842 BuildMI(MBB, I, DL, MCID, DestReg) 1843 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1844 else 1845 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1846 } 1847 1848 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { 1849 int OpcodeIndex = 0; 1850 1851 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1852 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1853 OpcodeIndex = SOK_Int4Spill; 1854 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1855 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1856 OpcodeIndex = SOK_Int8Spill; 1857 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1858 OpcodeIndex = SOK_Float8Spill; 1859 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1860 OpcodeIndex = SOK_Float4Spill; 1861 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1862 OpcodeIndex = SOK_SPESpill; 1863 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1864 OpcodeIndex = SOK_CRSpill; 1865 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1866 OpcodeIndex = SOK_CRBitSpill; 1867 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1868 OpcodeIndex = SOK_VRVectorSpill; 1869 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1870 OpcodeIndex = SOK_VSXVectorSpill; 1871 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1872 OpcodeIndex = SOK_VectorFloat8Spill; 1873 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1874 OpcodeIndex = SOK_VectorFloat4Spill; 1875 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1876 OpcodeIndex = SOK_SpillToVSR; 1877 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { 1878 assert(Subtarget.pairedVectorMemops() && 1879 "Register unexpected when paired memops are disabled."); 1880 OpcodeIndex = SOK_AccumulatorSpill; 1881 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { 1882 assert(Subtarget.pairedVectorMemops() && 1883 "Register unexpected when paired memops are disabled."); 1884 OpcodeIndex = SOK_UAccumulatorSpill; 1885 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { 1886 assert(Subtarget.pairedVectorMemops() && 1887 "Register unexpected when paired memops are disabled."); 1888 OpcodeIndex = SOK_PairedVecSpill; 1889 } else { 1890 llvm_unreachable("Unknown regclass!"); 1891 } 1892 return OpcodeIndex; 1893 } 1894 1895 unsigned 1896 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1897 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1898 return OpcodesForSpill[getSpillIndex(RC)]; 1899 } 1900 1901 unsigned 1902 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1903 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1904 return OpcodesForSpill[getSpillIndex(RC)]; 1905 } 1906 1907 void PPCInstrInfo::StoreRegToStackSlot( 1908 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1909 const TargetRegisterClass *RC, 1910 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1911 unsigned Opcode = getStoreOpcodeForSpill(RC); 1912 DebugLoc DL; 1913 1914 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1915 FuncInfo->setHasSpills(); 1916 1917 NewMIs.push_back(addFrameReference( 1918 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1919 FrameIdx)); 1920 1921 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1922 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1923 FuncInfo->setSpillsCR(); 1924 1925 if (isXFormMemOp(Opcode)) 1926 FuncInfo->setHasNonRISpills(); 1927 } 1928 1929 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1930 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1931 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1932 const TargetRegisterInfo *TRI) const { 1933 MachineFunction &MF = *MBB.getParent(); 1934 SmallVector<MachineInstr *, 4> NewMIs; 1935 1936 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1937 1938 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1939 MBB.insert(MI, NewMIs[i]); 1940 1941 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1942 MachineMemOperand *MMO = MF.getMachineMemOperand( 1943 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1944 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1945 MFI.getObjectAlign(FrameIdx)); 1946 NewMIs.back()->addMemOperand(MF, MMO); 1947 } 1948 1949 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1950 MachineBasicBlock::iterator MI, 1951 Register SrcReg, bool isKill, 1952 int FrameIdx, 1953 const TargetRegisterClass *RC, 1954 const TargetRegisterInfo *TRI) const { 1955 // We need to avoid a situation in which the value from a VRRC register is 1956 // spilled using an Altivec instruction and reloaded into a VSRC register 1957 // using a VSX instruction. The issue with this is that the VSX 1958 // load/store instructions swap the doublewords in the vector and the Altivec 1959 // ones don't. The register classes on the spill/reload may be different if 1960 // the register is defined using an Altivec instruction and is then used by a 1961 // VSX instruction. 1962 RC = updatedRC(RC); 1963 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1964 } 1965 1966 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1967 unsigned DestReg, int FrameIdx, 1968 const TargetRegisterClass *RC, 1969 SmallVectorImpl<MachineInstr *> &NewMIs) 1970 const { 1971 unsigned Opcode = getLoadOpcodeForSpill(RC); 1972 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1973 FrameIdx)); 1974 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1975 1976 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1977 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1978 FuncInfo->setSpillsCR(); 1979 1980 if (isXFormMemOp(Opcode)) 1981 FuncInfo->setHasNonRISpills(); 1982 } 1983 1984 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1985 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1986 int FrameIdx, const TargetRegisterClass *RC, 1987 const TargetRegisterInfo *TRI) const { 1988 MachineFunction &MF = *MBB.getParent(); 1989 SmallVector<MachineInstr*, 4> NewMIs; 1990 DebugLoc DL; 1991 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1992 1993 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1994 FuncInfo->setHasSpills(); 1995 1996 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1997 1998 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1999 MBB.insert(MI, NewMIs[i]); 2000 2001 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2002 MachineMemOperand *MMO = MF.getMachineMemOperand( 2003 MachinePointerInfo::getFixedStack(MF, FrameIdx), 2004 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 2005 MFI.getObjectAlign(FrameIdx)); 2006 NewMIs.back()->addMemOperand(MF, MMO); 2007 } 2008 2009 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2010 MachineBasicBlock::iterator MI, 2011 Register DestReg, int FrameIdx, 2012 const TargetRegisterClass *RC, 2013 const TargetRegisterInfo *TRI) const { 2014 // We need to avoid a situation in which the value from a VRRC register is 2015 // spilled using an Altivec instruction and reloaded into a VSRC register 2016 // using a VSX instruction. The issue with this is that the VSX 2017 // load/store instructions swap the doublewords in the vector and the Altivec 2018 // ones don't. The register classes on the spill/reload may be different if 2019 // the register is defined using an Altivec instruction and is then used by a 2020 // VSX instruction. 2021 RC = updatedRC(RC); 2022 2023 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 2024 } 2025 2026 bool PPCInstrInfo:: 2027 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 2028 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 2029 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 2030 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 2031 else 2032 // Leave the CR# the same, but invert the condition. 2033 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 2034 return false; 2035 } 2036 2037 // For some instructions, it is legal to fold ZERO into the RA register field. 2038 // This function performs that fold by replacing the operand with PPC::ZERO, 2039 // it does not consider whether the load immediate zero is no longer in use. 2040 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2041 Register Reg) const { 2042 // A zero immediate should always be loaded with a single li. 2043 unsigned DefOpc = DefMI.getOpcode(); 2044 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 2045 return false; 2046 if (!DefMI.getOperand(1).isImm()) 2047 return false; 2048 if (DefMI.getOperand(1).getImm() != 0) 2049 return false; 2050 2051 // Note that we cannot here invert the arguments of an isel in order to fold 2052 // a ZERO into what is presented as the second argument. All we have here 2053 // is the condition bit, and that might come from a CR-logical bit operation. 2054 2055 const MCInstrDesc &UseMCID = UseMI.getDesc(); 2056 2057 // Only fold into real machine instructions. 2058 if (UseMCID.isPseudo()) 2059 return false; 2060 2061 // We need to find which of the User's operands is to be folded, that will be 2062 // the operand that matches the given register ID. 2063 unsigned UseIdx; 2064 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 2065 if (UseMI.getOperand(UseIdx).isReg() && 2066 UseMI.getOperand(UseIdx).getReg() == Reg) 2067 break; 2068 2069 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 2070 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 2071 2072 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 2073 2074 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 2075 // register (which might also be specified as a pointer class kind). 2076 if (UseInfo->isLookupPtrRegClass()) { 2077 if (UseInfo->RegClass /* Kind */ != 1) 2078 return false; 2079 } else { 2080 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 2081 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 2082 return false; 2083 } 2084 2085 // Make sure this is not tied to an output register (or otherwise 2086 // constrained). This is true for ST?UX registers, for example, which 2087 // are tied to their output registers. 2088 if (UseInfo->Constraints != 0) 2089 return false; 2090 2091 MCRegister ZeroReg; 2092 if (UseInfo->isLookupPtrRegClass()) { 2093 bool isPPC64 = Subtarget.isPPC64(); 2094 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 2095 } else { 2096 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 2097 PPC::ZERO8 : PPC::ZERO; 2098 } 2099 2100 UseMI.getOperand(UseIdx).setReg(ZeroReg); 2101 return true; 2102 } 2103 2104 // Folds zero into instructions which have a load immediate zero as an operand 2105 // but also recognize zero as immediate zero. If the definition of the load 2106 // has no more users it is deleted. 2107 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2108 Register Reg, MachineRegisterInfo *MRI) const { 2109 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 2110 if (MRI->use_nodbg_empty(Reg)) 2111 DefMI.eraseFromParent(); 2112 return Changed; 2113 } 2114 2115 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 2116 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 2117 I != IE; ++I) 2118 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 2119 return true; 2120 return false; 2121 } 2122 2123 // We should make sure that, if we're going to predicate both sides of a 2124 // condition (a diamond), that both sides don't define the counter register. We 2125 // can predicate counter-decrement-based branches, but while that predicates 2126 // the branching, it does not predicate the counter decrement. If we tried to 2127 // merge the triangle into one predicated block, we'd decrement the counter 2128 // twice. 2129 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 2130 unsigned NumT, unsigned ExtraT, 2131 MachineBasicBlock &FMBB, 2132 unsigned NumF, unsigned ExtraF, 2133 BranchProbability Probability) const { 2134 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 2135 } 2136 2137 2138 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 2139 // The predicated branches are identified by their type, not really by the 2140 // explicit presence of a predicate. Furthermore, some of them can be 2141 // predicated more than once. Because if conversion won't try to predicate 2142 // any instruction which already claims to be predicated (by returning true 2143 // here), always return false. In doing so, we let isPredicable() be the 2144 // final word on whether not the instruction can be (further) predicated. 2145 2146 return false; 2147 } 2148 2149 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2150 const MachineBasicBlock *MBB, 2151 const MachineFunction &MF) const { 2152 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 2153 // across them, since some FP operations may change content of FPSCR. 2154 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 2155 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 2156 return true; 2157 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 2158 } 2159 2160 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 2161 ArrayRef<MachineOperand> Pred) const { 2162 unsigned OpC = MI.getOpcode(); 2163 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 2164 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2165 bool isPPC64 = Subtarget.isPPC64(); 2166 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 2167 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 2168 // Need add Def and Use for CTR implicit operand. 2169 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2170 .addReg(Pred[1].getReg(), RegState::Implicit) 2171 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2172 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2173 MI.setDesc(get(PPC::BCLR)); 2174 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2175 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2176 MI.setDesc(get(PPC::BCLRn)); 2177 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2178 } else { 2179 MI.setDesc(get(PPC::BCCLR)); 2180 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2181 .addImm(Pred[0].getImm()) 2182 .add(Pred[1]); 2183 } 2184 2185 return true; 2186 } else if (OpC == PPC::B) { 2187 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 2188 bool isPPC64 = Subtarget.isPPC64(); 2189 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 2190 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 2191 // Need add Def and Use for CTR implicit operand. 2192 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2193 .addReg(Pred[1].getReg(), RegState::Implicit) 2194 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 2195 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2196 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2197 MI.RemoveOperand(0); 2198 2199 MI.setDesc(get(PPC::BC)); 2200 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2201 .add(Pred[1]) 2202 .addMBB(MBB); 2203 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2204 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2205 MI.RemoveOperand(0); 2206 2207 MI.setDesc(get(PPC::BCn)); 2208 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2209 .add(Pred[1]) 2210 .addMBB(MBB); 2211 } else { 2212 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 2213 MI.RemoveOperand(0); 2214 2215 MI.setDesc(get(PPC::BCC)); 2216 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2217 .addImm(Pred[0].getImm()) 2218 .add(Pred[1]) 2219 .addMBB(MBB); 2220 } 2221 2222 return true; 2223 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 2224 OpC == PPC::BCTRL8) { 2225 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 2226 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 2227 2228 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 2229 bool isPPC64 = Subtarget.isPPC64(); 2230 2231 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 2232 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 2233 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 2234 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2235 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 2236 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 2237 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 2238 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 2239 } else { 2240 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 2241 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 2242 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2243 .addImm(Pred[0].getImm()) 2244 .add(Pred[1]); 2245 } 2246 2247 // Need add Def and Use for LR implicit operand. 2248 if (setLR) 2249 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2250 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 2251 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 2252 2253 return true; 2254 } 2255 2256 return false; 2257 } 2258 2259 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 2260 ArrayRef<MachineOperand> Pred2) const { 2261 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 2262 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 2263 2264 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 2265 return false; 2266 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 2267 return false; 2268 2269 // P1 can only subsume P2 if they test the same condition register. 2270 if (Pred1[1].getReg() != Pred2[1].getReg()) 2271 return false; 2272 2273 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 2274 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 2275 2276 if (P1 == P2) 2277 return true; 2278 2279 // Does P1 subsume P2, e.g. GE subsumes GT. 2280 if (P1 == PPC::PRED_LE && 2281 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 2282 return true; 2283 if (P1 == PPC::PRED_GE && 2284 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 2285 return true; 2286 2287 return false; 2288 } 2289 2290 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, 2291 std::vector<MachineOperand> &Pred, 2292 bool SkipDead) const { 2293 // Note: At the present time, the contents of Pred from this function is 2294 // unused by IfConversion. This implementation follows ARM by pushing the 2295 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 2296 // predicate, instructions defining CTR or CTR8 are also included as 2297 // predicate-defining instructions. 2298 2299 const TargetRegisterClass *RCs[] = 2300 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 2301 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 2302 2303 bool Found = false; 2304 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2305 const MachineOperand &MO = MI.getOperand(i); 2306 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 2307 const TargetRegisterClass *RC = RCs[c]; 2308 if (MO.isReg()) { 2309 if (MO.isDef() && RC->contains(MO.getReg())) { 2310 Pred.push_back(MO); 2311 Found = true; 2312 } 2313 } else if (MO.isRegMask()) { 2314 for (TargetRegisterClass::iterator I = RC->begin(), 2315 IE = RC->end(); I != IE; ++I) 2316 if (MO.clobbersPhysReg(*I)) { 2317 Pred.push_back(MO); 2318 Found = true; 2319 } 2320 } 2321 } 2322 } 2323 2324 return Found; 2325 } 2326 2327 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2328 Register &SrcReg2, int &Mask, 2329 int &Value) const { 2330 unsigned Opc = MI.getOpcode(); 2331 2332 switch (Opc) { 2333 default: return false; 2334 case PPC::CMPWI: 2335 case PPC::CMPLWI: 2336 case PPC::CMPDI: 2337 case PPC::CMPLDI: 2338 SrcReg = MI.getOperand(1).getReg(); 2339 SrcReg2 = 0; 2340 Value = MI.getOperand(2).getImm(); 2341 Mask = 0xFFFF; 2342 return true; 2343 case PPC::CMPW: 2344 case PPC::CMPLW: 2345 case PPC::CMPD: 2346 case PPC::CMPLD: 2347 case PPC::FCMPUS: 2348 case PPC::FCMPUD: 2349 SrcReg = MI.getOperand(1).getReg(); 2350 SrcReg2 = MI.getOperand(2).getReg(); 2351 Value = 0; 2352 Mask = 0; 2353 return true; 2354 } 2355 } 2356 2357 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 2358 Register SrcReg2, int Mask, int Value, 2359 const MachineRegisterInfo *MRI) const { 2360 if (DisableCmpOpt) 2361 return false; 2362 2363 int OpC = CmpInstr.getOpcode(); 2364 Register CRReg = CmpInstr.getOperand(0).getReg(); 2365 2366 // FP record forms set CR1 based on the exception status bits, not a 2367 // comparison with zero. 2368 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 2369 return false; 2370 2371 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2372 // The record forms set the condition register based on a signed comparison 2373 // with zero (so says the ISA manual). This is not as straightforward as it 2374 // seems, however, because this is always a 64-bit comparison on PPC64, even 2375 // for instructions that are 32-bit in nature (like slw for example). 2376 // So, on PPC32, for unsigned comparisons, we can use the record forms only 2377 // for equality checks (as those don't depend on the sign). On PPC64, 2378 // we are restricted to equality for unsigned 64-bit comparisons and for 2379 // signed 32-bit comparisons the applicability is more restricted. 2380 bool isPPC64 = Subtarget.isPPC64(); 2381 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 2382 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 2383 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 2384 2385 // Look through copies unless that gets us to a physical register. 2386 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 2387 if (ActualSrc.isVirtual()) 2388 SrcReg = ActualSrc; 2389 2390 // Get the unique definition of SrcReg. 2391 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2392 if (!MI) return false; 2393 2394 bool equalityOnly = false; 2395 bool noSub = false; 2396 if (isPPC64) { 2397 if (is32BitSignedCompare) { 2398 // We can perform this optimization only if MI is sign-extending. 2399 if (isSignExtended(*MI)) 2400 noSub = true; 2401 else 2402 return false; 2403 } else if (is32BitUnsignedCompare) { 2404 // We can perform this optimization, equality only, if MI is 2405 // zero-extending. 2406 if (isZeroExtended(*MI)) { 2407 noSub = true; 2408 equalityOnly = true; 2409 } else 2410 return false; 2411 } else 2412 equalityOnly = is64BitUnsignedCompare; 2413 } else 2414 equalityOnly = is32BitUnsignedCompare; 2415 2416 if (equalityOnly) { 2417 // We need to check the uses of the condition register in order to reject 2418 // non-equality comparisons. 2419 for (MachineRegisterInfo::use_instr_iterator 2420 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2421 I != IE; ++I) { 2422 MachineInstr *UseMI = &*I; 2423 if (UseMI->getOpcode() == PPC::BCC) { 2424 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2425 unsigned PredCond = PPC::getPredicateCondition(Pred); 2426 // We ignore hint bits when checking for non-equality comparisons. 2427 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 2428 return false; 2429 } else if (UseMI->getOpcode() == PPC::ISEL || 2430 UseMI->getOpcode() == PPC::ISEL8) { 2431 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 2432 if (SubIdx != PPC::sub_eq) 2433 return false; 2434 } else 2435 return false; 2436 } 2437 } 2438 2439 MachineBasicBlock::iterator I = CmpInstr; 2440 2441 // Scan forward to find the first use of the compare. 2442 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 2443 ++I) { 2444 bool FoundUse = false; 2445 for (MachineRegisterInfo::use_instr_iterator 2446 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 2447 J != JE; ++J) 2448 if (&*J == &*I) { 2449 FoundUse = true; 2450 break; 2451 } 2452 2453 if (FoundUse) 2454 break; 2455 } 2456 2457 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 2458 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 2459 2460 // There are two possible candidates which can be changed to set CR[01]. 2461 // One is MI, the other is a SUB instruction. 2462 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2463 MachineInstr *Sub = nullptr; 2464 if (SrcReg2 != 0) 2465 // MI is not a candidate for CMPrr. 2466 MI = nullptr; 2467 // FIXME: Conservatively refuse to convert an instruction which isn't in the 2468 // same BB as the comparison. This is to allow the check below to avoid calls 2469 // (and other explicit clobbers); instead we should really check for these 2470 // more explicitly (in at least a few predecessors). 2471 else if (MI->getParent() != CmpInstr.getParent()) 2472 return false; 2473 else if (Value != 0) { 2474 // The record-form instructions set CR bit based on signed comparison 2475 // against 0. We try to convert a compare against 1 or -1 into a compare 2476 // against 0 to exploit record-form instructions. For example, we change 2477 // the condition "greater than -1" into "greater than or equal to 0" 2478 // and "less than 1" into "less than or equal to 0". 2479 2480 // Since we optimize comparison based on a specific branch condition, 2481 // we don't optimize if condition code is used by more than once. 2482 if (equalityOnly || !MRI->hasOneUse(CRReg)) 2483 return false; 2484 2485 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 2486 if (UseMI->getOpcode() != PPC::BCC) 2487 return false; 2488 2489 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 2490 unsigned PredCond = PPC::getPredicateCondition(Pred); 2491 unsigned PredHint = PPC::getPredicateHint(Pred); 2492 int16_t Immed = (int16_t)Value; 2493 2494 // When modifying the condition in the predicate, we propagate hint bits 2495 // from the original predicate to the new one. 2496 if (Immed == -1 && PredCond == PPC::PRED_GT) 2497 // We convert "greater than -1" into "greater than or equal to 0", 2498 // since we are assuming signed comparison by !equalityOnly 2499 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 2500 else if (Immed == -1 && PredCond == PPC::PRED_LE) 2501 // We convert "less than or equal to -1" into "less than 0". 2502 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2503 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2504 // We convert "less than 1" into "less than or equal to 0". 2505 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2506 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2507 // We convert "greater than or equal to 1" into "greater than 0". 2508 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2509 else 2510 return false; 2511 2512 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 2513 } 2514 2515 // Search for Sub. 2516 --I; 2517 2518 // Get ready to iterate backward from CmpInstr. 2519 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2520 2521 for (; I != E && !noSub; --I) { 2522 const MachineInstr &Instr = *I; 2523 unsigned IOpC = Instr.getOpcode(); 2524 2525 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2526 Instr.readsRegister(PPC::CR0, TRI))) 2527 // This instruction modifies or uses the record condition register after 2528 // the one we want to change. While we could do this transformation, it 2529 // would likely not be profitable. This transformation removes one 2530 // instruction, and so even forcing RA to generate one move probably 2531 // makes it unprofitable. 2532 return false; 2533 2534 // Check whether CmpInstr can be made redundant by the current instruction. 2535 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2536 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2537 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2538 ((Instr.getOperand(1).getReg() == SrcReg && 2539 Instr.getOperand(2).getReg() == SrcReg2) || 2540 (Instr.getOperand(1).getReg() == SrcReg2 && 2541 Instr.getOperand(2).getReg() == SrcReg))) { 2542 Sub = &*I; 2543 break; 2544 } 2545 2546 if (I == B) 2547 // The 'and' is below the comparison instruction. 2548 return false; 2549 } 2550 2551 // Return false if no candidates exist. 2552 if (!MI && !Sub) 2553 return false; 2554 2555 // The single candidate is called MI. 2556 if (!MI) MI = Sub; 2557 2558 int NewOpC = -1; 2559 int MIOpC = MI->getOpcode(); 2560 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2561 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2562 NewOpC = MIOpC; 2563 else { 2564 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2565 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2566 NewOpC = MIOpC; 2567 } 2568 2569 // FIXME: On the non-embedded POWER architectures, only some of the record 2570 // forms are fast, and we should use only the fast ones. 2571 2572 // The defining instruction has a record form (or is already a record 2573 // form). It is possible, however, that we'll need to reverse the condition 2574 // code of the users. 2575 if (NewOpC == -1) 2576 return false; 2577 2578 // This transformation should not be performed if `nsw` is missing and is not 2579 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in 2580 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in 2581 // CRReg can reflect if compared values are equal, this optz is still valid. 2582 if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && 2583 Sub && !Sub->getFlag(MachineInstr::NoSWrap)) 2584 return false; 2585 2586 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2587 // needs to be updated to be based on SUB. Push the condition code 2588 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2589 // condition code of these operands will be modified. 2590 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2591 // comparison against 0, which may modify predicate. 2592 bool ShouldSwap = false; 2593 if (Sub && Value == 0) { 2594 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2595 Sub->getOperand(2).getReg() == SrcReg; 2596 2597 // The operands to subf are the opposite of sub, so only in the fixed-point 2598 // case, invert the order. 2599 ShouldSwap = !ShouldSwap; 2600 } 2601 2602 if (ShouldSwap) 2603 for (MachineRegisterInfo::use_instr_iterator 2604 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2605 I != IE; ++I) { 2606 MachineInstr *UseMI = &*I; 2607 if (UseMI->getOpcode() == PPC::BCC) { 2608 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2609 unsigned PredCond = PPC::getPredicateCondition(Pred); 2610 assert((!equalityOnly || 2611 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2612 "Invalid predicate for equality-only optimization"); 2613 (void)PredCond; // To suppress warning in release build. 2614 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2615 PPC::getSwappedPredicate(Pred))); 2616 } else if (UseMI->getOpcode() == PPC::ISEL || 2617 UseMI->getOpcode() == PPC::ISEL8) { 2618 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2619 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2620 "Invalid CR bit for equality-only optimization"); 2621 2622 if (NewSubReg == PPC::sub_lt) 2623 NewSubReg = PPC::sub_gt; 2624 else if (NewSubReg == PPC::sub_gt) 2625 NewSubReg = PPC::sub_lt; 2626 2627 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2628 NewSubReg)); 2629 } else // We need to abort on a user we don't understand. 2630 return false; 2631 } 2632 assert(!(Value != 0 && ShouldSwap) && 2633 "Non-zero immediate support and ShouldSwap" 2634 "may conflict in updating predicate"); 2635 2636 // Create a new virtual register to hold the value of the CR set by the 2637 // record-form instruction. If the instruction was not previously in 2638 // record form, then set the kill flag on the CR. 2639 CmpInstr.eraseFromParent(); 2640 2641 MachineBasicBlock::iterator MII = MI; 2642 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2643 get(TargetOpcode::COPY), CRReg) 2644 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2645 2646 // Even if CR0 register were dead before, it is alive now since the 2647 // instruction we just built uses it. 2648 MI->clearRegisterDeads(PPC::CR0); 2649 2650 if (MIOpC != NewOpC) { 2651 // We need to be careful here: we're replacing one instruction with 2652 // another, and we need to make sure that we get all of the right 2653 // implicit uses and defs. On the other hand, the caller may be holding 2654 // an iterator to this instruction, and so we can't delete it (this is 2655 // specifically the case if this is the instruction directly after the 2656 // compare). 2657 2658 // Rotates are expensive instructions. If we're emitting a record-form 2659 // rotate that can just be an andi/andis, we should just emit that. 2660 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2661 Register GPRRes = MI->getOperand(0).getReg(); 2662 int64_t SH = MI->getOperand(2).getImm(); 2663 int64_t MB = MI->getOperand(3).getImm(); 2664 int64_t ME = MI->getOperand(4).getImm(); 2665 // We can only do this if both the start and end of the mask are in the 2666 // same halfword. 2667 bool MBInLoHWord = MB >= 16; 2668 bool MEInLoHWord = ME >= 16; 2669 uint64_t Mask = ~0LLU; 2670 2671 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2672 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2673 // The mask value needs to shift right 16 if we're emitting andis. 2674 Mask >>= MBInLoHWord ? 0 : 16; 2675 NewOpC = MIOpC == PPC::RLWINM 2676 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2677 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2678 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2679 (ME - MB + 1 == SH) && (MB >= 16)) { 2680 // If we are rotating by the exact number of bits as are in the mask 2681 // and the mask is in the least significant bits of the register, 2682 // that's just an andis. (as long as the GPR result has no uses). 2683 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2684 Mask >>= 16; 2685 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2686 } 2687 // If we've set the mask, we can transform. 2688 if (Mask != ~0LLU) { 2689 MI->RemoveOperand(4); 2690 MI->RemoveOperand(3); 2691 MI->getOperand(2).setImm(Mask); 2692 NumRcRotatesConvertedToRcAnd++; 2693 } 2694 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2695 int64_t MB = MI->getOperand(3).getImm(); 2696 if (MB >= 48) { 2697 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2698 NewOpC = PPC::ANDI8_rec; 2699 MI->RemoveOperand(3); 2700 MI->getOperand(2).setImm(Mask); 2701 NumRcRotatesConvertedToRcAnd++; 2702 } 2703 } 2704 2705 const MCInstrDesc &NewDesc = get(NewOpC); 2706 MI->setDesc(NewDesc); 2707 2708 if (NewDesc.ImplicitDefs) 2709 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2710 *ImpDefs; ++ImpDefs) 2711 if (!MI->definesRegister(*ImpDefs)) 2712 MI->addOperand(*MI->getParent()->getParent(), 2713 MachineOperand::CreateReg(*ImpDefs, true, true)); 2714 if (NewDesc.ImplicitUses) 2715 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2716 *ImpUses; ++ImpUses) 2717 if (!MI->readsRegister(*ImpUses)) 2718 MI->addOperand(*MI->getParent()->getParent(), 2719 MachineOperand::CreateReg(*ImpUses, false, true)); 2720 } 2721 assert(MI->definesRegister(PPC::CR0) && 2722 "Record-form instruction does not define cr0?"); 2723 2724 // Modify the condition code of operands in OperandsToUpdate. 2725 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2726 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2727 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2728 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2729 2730 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2731 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2732 2733 return true; 2734 } 2735 2736 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2737 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2738 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2739 const TargetRegisterInfo *TRI) const { 2740 const MachineOperand *BaseOp; 2741 OffsetIsScalable = false; 2742 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2743 return false; 2744 BaseOps.push_back(BaseOp); 2745 return true; 2746 } 2747 2748 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2749 const TargetRegisterInfo *TRI) { 2750 // If this is a volatile load/store, don't mess with it. 2751 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2752 return false; 2753 2754 if (LdSt.getOperand(2).isFI()) 2755 return true; 2756 2757 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2758 // Can't cluster if the instruction modifies the base register 2759 // or it is update form. e.g. ld r2,3(r2) 2760 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2761 return false; 2762 2763 return true; 2764 } 2765 2766 // Only cluster instruction pair that have the same opcode, and they are 2767 // clusterable according to PowerPC specification. 2768 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2769 const PPCSubtarget &Subtarget) { 2770 switch (FirstOpc) { 2771 default: 2772 return false; 2773 case PPC::STD: 2774 case PPC::STFD: 2775 case PPC::STXSD: 2776 case PPC::DFSTOREf64: 2777 return FirstOpc == SecondOpc; 2778 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2779 // 32bit and 64bit instruction selection. They are clusterable pair though 2780 // they are different opcode. 2781 case PPC::STW: 2782 case PPC::STW8: 2783 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2784 } 2785 } 2786 2787 bool PPCInstrInfo::shouldClusterMemOps( 2788 ArrayRef<const MachineOperand *> BaseOps1, 2789 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 2790 unsigned NumBytes) const { 2791 2792 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2793 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2794 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2795 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2796 "Only base registers and frame indices are supported."); 2797 2798 // The NumLoads means the number of loads that has been clustered. 2799 // Don't cluster memory op if there are already two ops clustered at least. 2800 if (NumLoads > 2) 2801 return false; 2802 2803 // Cluster the load/store only when they have the same base 2804 // register or FI. 2805 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2806 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2807 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2808 return false; 2809 2810 // Check if the load/store are clusterable according to the PowerPC 2811 // specification. 2812 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2813 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2814 unsigned FirstOpc = FirstLdSt.getOpcode(); 2815 unsigned SecondOpc = SecondLdSt.getOpcode(); 2816 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2817 // Cluster the load/store only when they have the same opcode, and they are 2818 // clusterable opcode according to PowerPC specification. 2819 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2820 return false; 2821 2822 // Can't cluster load/store that have ordered or volatile memory reference. 2823 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2824 !isLdStSafeToCluster(SecondLdSt, TRI)) 2825 return false; 2826 2827 int64_t Offset1 = 0, Offset2 = 0; 2828 unsigned Width1 = 0, Width2 = 0; 2829 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2830 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2831 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2832 Width1 != Width2) 2833 return false; 2834 2835 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2836 "getMemOperandWithOffsetWidth return incorrect base op"); 2837 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2838 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2839 return Offset1 + Width1 == Offset2; 2840 } 2841 2842 /// GetInstSize - Return the number of bytes of code the specified 2843 /// instruction may be. This returns the maximum number of bytes. 2844 /// 2845 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2846 unsigned Opcode = MI.getOpcode(); 2847 2848 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2849 const MachineFunction *MF = MI.getParent()->getParent(); 2850 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2851 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2852 } else if (Opcode == TargetOpcode::STACKMAP) { 2853 StackMapOpers Opers(&MI); 2854 return Opers.getNumPatchBytes(); 2855 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2856 PatchPointOpers Opers(&MI); 2857 return Opers.getNumPatchBytes(); 2858 } else { 2859 return get(Opcode).getSize(); 2860 } 2861 } 2862 2863 std::pair<unsigned, unsigned> 2864 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2865 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2866 return std::make_pair(TF & Mask, TF & ~Mask); 2867 } 2868 2869 ArrayRef<std::pair<unsigned, const char *>> 2870 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2871 using namespace PPCII; 2872 static const std::pair<unsigned, const char *> TargetFlags[] = { 2873 {MO_LO, "ppc-lo"}, 2874 {MO_HA, "ppc-ha"}, 2875 {MO_TPREL_LO, "ppc-tprel-lo"}, 2876 {MO_TPREL_HA, "ppc-tprel-ha"}, 2877 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2878 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2879 {MO_TOC_LO, "ppc-toc-lo"}, 2880 {MO_TLS, "ppc-tls"}}; 2881 return makeArrayRef(TargetFlags); 2882 } 2883 2884 ArrayRef<std::pair<unsigned, const char *>> 2885 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2886 using namespace PPCII; 2887 static const std::pair<unsigned, const char *> TargetFlags[] = { 2888 {MO_PLT, "ppc-plt"}, 2889 {MO_PIC_FLAG, "ppc-pic"}, 2890 {MO_PCREL_FLAG, "ppc-pcrel"}, 2891 {MO_GOT_FLAG, "ppc-got"}, 2892 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2893 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2894 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2895 {MO_TPREL_FLAG, "ppc-tprel"}, 2896 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2897 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2898 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; 2899 return makeArrayRef(TargetFlags); 2900 } 2901 2902 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2903 // The VSX versions have the advantage of a full 64-register target whereas 2904 // the FP ones have the advantage of lower latency and higher throughput. So 2905 // what we are after is using the faster instructions in low register pressure 2906 // situations and using the larger register file in high register pressure 2907 // situations. 2908 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2909 unsigned UpperOpcode, LowerOpcode; 2910 switch (MI.getOpcode()) { 2911 case PPC::DFLOADf32: 2912 UpperOpcode = PPC::LXSSP; 2913 LowerOpcode = PPC::LFS; 2914 break; 2915 case PPC::DFLOADf64: 2916 UpperOpcode = PPC::LXSD; 2917 LowerOpcode = PPC::LFD; 2918 break; 2919 case PPC::DFSTOREf32: 2920 UpperOpcode = PPC::STXSSP; 2921 LowerOpcode = PPC::STFS; 2922 break; 2923 case PPC::DFSTOREf64: 2924 UpperOpcode = PPC::STXSD; 2925 LowerOpcode = PPC::STFD; 2926 break; 2927 case PPC::XFLOADf32: 2928 UpperOpcode = PPC::LXSSPX; 2929 LowerOpcode = PPC::LFSX; 2930 break; 2931 case PPC::XFLOADf64: 2932 UpperOpcode = PPC::LXSDX; 2933 LowerOpcode = PPC::LFDX; 2934 break; 2935 case PPC::XFSTOREf32: 2936 UpperOpcode = PPC::STXSSPX; 2937 LowerOpcode = PPC::STFSX; 2938 break; 2939 case PPC::XFSTOREf64: 2940 UpperOpcode = PPC::STXSDX; 2941 LowerOpcode = PPC::STFDX; 2942 break; 2943 case PPC::LIWAX: 2944 UpperOpcode = PPC::LXSIWAX; 2945 LowerOpcode = PPC::LFIWAX; 2946 break; 2947 case PPC::LIWZX: 2948 UpperOpcode = PPC::LXSIWZX; 2949 LowerOpcode = PPC::LFIWZX; 2950 break; 2951 case PPC::STIWX: 2952 UpperOpcode = PPC::STXSIWX; 2953 LowerOpcode = PPC::STFIWX; 2954 break; 2955 default: 2956 llvm_unreachable("Unknown Operation!"); 2957 } 2958 2959 Register TargetReg = MI.getOperand(0).getReg(); 2960 unsigned Opcode; 2961 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2962 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2963 Opcode = LowerOpcode; 2964 else 2965 Opcode = UpperOpcode; 2966 MI.setDesc(get(Opcode)); 2967 return true; 2968 } 2969 2970 static bool isAnImmediateOperand(const MachineOperand &MO) { 2971 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2972 } 2973 2974 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2975 auto &MBB = *MI.getParent(); 2976 auto DL = MI.getDebugLoc(); 2977 2978 switch (MI.getOpcode()) { 2979 case PPC::BUILD_UACC: { 2980 MCRegister ACC = MI.getOperand(0).getReg(); 2981 MCRegister UACC = MI.getOperand(1).getReg(); 2982 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 2983 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 2984 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 2985 // FIXME: This can easily be improved to look up to the top of the MBB 2986 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 2987 // we can just re-target any such XXLOR's to DstVSR + offset. 2988 for (int VecNo = 0; VecNo < 4; VecNo++) 2989 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 2990 .addReg(SrcVSR + VecNo) 2991 .addReg(SrcVSR + VecNo); 2992 } 2993 // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers. 2994 // So after building the 4 copies, we can replace the BUILD_UACC instruction 2995 // with a NOP. 2996 LLVM_FALLTHROUGH; 2997 } 2998 case PPC::KILL_PAIR: { 2999 MI.setDesc(get(PPC::UNENCODED_NOP)); 3000 MI.RemoveOperand(1); 3001 MI.RemoveOperand(0); 3002 return true; 3003 } 3004 case TargetOpcode::LOAD_STACK_GUARD: { 3005 assert(Subtarget.isTargetLinux() && 3006 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 3007 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 3008 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 3009 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 3010 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3011 .addImm(Offset) 3012 .addReg(Reg); 3013 return true; 3014 } 3015 case PPC::DFLOADf32: 3016 case PPC::DFLOADf64: 3017 case PPC::DFSTOREf32: 3018 case PPC::DFSTOREf64: { 3019 assert(Subtarget.hasP9Vector() && 3020 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 3021 assert(MI.getOperand(2).isReg() && 3022 isAnImmediateOperand(MI.getOperand(1)) && 3023 "D-form op must have register and immediate operands"); 3024 return expandVSXMemPseudo(MI); 3025 } 3026 case PPC::XFLOADf32: 3027 case PPC::XFSTOREf32: 3028 case PPC::LIWAX: 3029 case PPC::LIWZX: 3030 case PPC::STIWX: { 3031 assert(Subtarget.hasP8Vector() && 3032 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 3033 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3034 "X-form op must have register and register operands"); 3035 return expandVSXMemPseudo(MI); 3036 } 3037 case PPC::XFLOADf64: 3038 case PPC::XFSTOREf64: { 3039 assert(Subtarget.hasVSX() && 3040 "Invalid X-Form Pseudo-ops on target that has no VSX."); 3041 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 3042 "X-form op must have register and register operands"); 3043 return expandVSXMemPseudo(MI); 3044 } 3045 case PPC::SPILLTOVSR_LD: { 3046 Register TargetReg = MI.getOperand(0).getReg(); 3047 if (PPC::VSFRCRegClass.contains(TargetReg)) { 3048 MI.setDesc(get(PPC::DFLOADf64)); 3049 return expandPostRAPseudo(MI); 3050 } 3051 else 3052 MI.setDesc(get(PPC::LD)); 3053 return true; 3054 } 3055 case PPC::SPILLTOVSR_ST: { 3056 Register SrcReg = MI.getOperand(0).getReg(); 3057 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3058 NumStoreSPILLVSRRCAsVec++; 3059 MI.setDesc(get(PPC::DFSTOREf64)); 3060 return expandPostRAPseudo(MI); 3061 } else { 3062 NumStoreSPILLVSRRCAsGpr++; 3063 MI.setDesc(get(PPC::STD)); 3064 } 3065 return true; 3066 } 3067 case PPC::SPILLTOVSR_LDX: { 3068 Register TargetReg = MI.getOperand(0).getReg(); 3069 if (PPC::VSFRCRegClass.contains(TargetReg)) 3070 MI.setDesc(get(PPC::LXSDX)); 3071 else 3072 MI.setDesc(get(PPC::LDX)); 3073 return true; 3074 } 3075 case PPC::SPILLTOVSR_STX: { 3076 Register SrcReg = MI.getOperand(0).getReg(); 3077 if (PPC::VSFRCRegClass.contains(SrcReg)) { 3078 NumStoreSPILLVSRRCAsVec++; 3079 MI.setDesc(get(PPC::STXSDX)); 3080 } else { 3081 NumStoreSPILLVSRRCAsGpr++; 3082 MI.setDesc(get(PPC::STDX)); 3083 } 3084 return true; 3085 } 3086 3087 case PPC::CFENCE8: { 3088 auto Val = MI.getOperand(0).getReg(); 3089 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 3090 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 3091 .addImm(PPC::PRED_NE_MINUS) 3092 .addReg(PPC::CR7) 3093 .addImm(1); 3094 MI.setDesc(get(PPC::ISYNC)); 3095 MI.RemoveOperand(0); 3096 return true; 3097 } 3098 } 3099 return false; 3100 } 3101 3102 // Essentially a compile-time implementation of a compare->isel sequence. 3103 // It takes two constants to compare, along with the true/false registers 3104 // and the comparison type (as a subreg to a CR field) and returns one 3105 // of the true/false registers, depending on the comparison results. 3106 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 3107 unsigned TrueReg, unsigned FalseReg, 3108 unsigned CRSubReg) { 3109 // Signed comparisons. The immediates are assumed to be sign-extended. 3110 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 3111 switch (CRSubReg) { 3112 default: llvm_unreachable("Unknown integer comparison type."); 3113 case PPC::sub_lt: 3114 return Imm1 < Imm2 ? TrueReg : FalseReg; 3115 case PPC::sub_gt: 3116 return Imm1 > Imm2 ? TrueReg : FalseReg; 3117 case PPC::sub_eq: 3118 return Imm1 == Imm2 ? TrueReg : FalseReg; 3119 } 3120 } 3121 // Unsigned comparisons. 3122 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 3123 switch (CRSubReg) { 3124 default: llvm_unreachable("Unknown integer comparison type."); 3125 case PPC::sub_lt: 3126 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 3127 case PPC::sub_gt: 3128 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 3129 case PPC::sub_eq: 3130 return Imm1 == Imm2 ? TrueReg : FalseReg; 3131 } 3132 } 3133 return PPC::NoRegister; 3134 } 3135 3136 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 3137 unsigned OpNo, 3138 int64_t Imm) const { 3139 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 3140 // Replace the REG with the Immediate. 3141 Register InUseReg = MI.getOperand(OpNo).getReg(); 3142 MI.getOperand(OpNo).ChangeToImmediate(Imm); 3143 3144 if (MI.implicit_operands().empty()) 3145 return; 3146 3147 // We need to make sure that the MI didn't have any implicit use 3148 // of this REG any more. 3149 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3150 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 3151 if (UseOpIdx >= 0) { 3152 MachineOperand &MO = MI.getOperand(UseOpIdx); 3153 if (MO.isImplicit()) 3154 // The operands must always be in the following order: 3155 // - explicit reg defs, 3156 // - other explicit operands (reg uses, immediates, etc.), 3157 // - implicit reg defs 3158 // - implicit reg uses 3159 // Therefore, removing the implicit operand won't change the explicit 3160 // operands layout. 3161 MI.RemoveOperand(UseOpIdx); 3162 } 3163 } 3164 3165 // Replace an instruction with one that materializes a constant (and sets 3166 // CR0 if the original instruction was a record-form instruction). 3167 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 3168 const LoadImmediateInfo &LII) const { 3169 // Remove existing operands. 3170 int OperandToKeep = LII.SetCR ? 1 : 0; 3171 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 3172 MI.RemoveOperand(i); 3173 3174 // Replace the instruction. 3175 if (LII.SetCR) { 3176 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3177 // Set the immediate. 3178 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3179 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 3180 return; 3181 } 3182 else 3183 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 3184 3185 // Set the immediate. 3186 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 3187 .addImm(LII.Imm); 3188 } 3189 3190 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 3191 bool &SeenIntermediateUse) const { 3192 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 3193 "Should be called after register allocation."); 3194 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3195 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 3196 It++; 3197 SeenIntermediateUse = false; 3198 for (; It != E; ++It) { 3199 if (It->modifiesRegister(Reg, TRI)) 3200 return &*It; 3201 if (It->readsRegister(Reg, TRI)) 3202 SeenIntermediateUse = true; 3203 } 3204 return nullptr; 3205 } 3206 3207 MachineInstr *PPCInstrInfo::getForwardingDefMI( 3208 MachineInstr &MI, 3209 unsigned &OpNoForForwarding, 3210 bool &SeenIntermediateUse) const { 3211 OpNoForForwarding = ~0U; 3212 MachineInstr *DefMI = nullptr; 3213 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3214 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3215 // If we're in SSA, get the defs through the MRI. Otherwise, only look 3216 // within the basic block to see if the register is defined using an 3217 // LI/LI8/ADDI/ADDI8. 3218 if (MRI->isSSA()) { 3219 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3220 if (!MI.getOperand(i).isReg()) 3221 continue; 3222 Register Reg = MI.getOperand(i).getReg(); 3223 if (!Register::isVirtualRegister(Reg)) 3224 continue; 3225 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 3226 if (Register::isVirtualRegister(TrueReg)) { 3227 DefMI = MRI->getVRegDef(TrueReg); 3228 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 || 3229 DefMI->getOpcode() == PPC::ADDI || 3230 DefMI->getOpcode() == PPC::ADDI8) { 3231 OpNoForForwarding = i; 3232 // The ADDI and LI operand maybe exist in one instruction at same 3233 // time. we prefer to fold LI operand as LI only has one Imm operand 3234 // and is more possible to be converted. So if current DefMI is 3235 // ADDI/ADDI8, we continue to find possible LI/LI8. 3236 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 3237 break; 3238 } 3239 } 3240 } 3241 } else { 3242 // Looking back through the definition for each operand could be expensive, 3243 // so exit early if this isn't an instruction that either has an immediate 3244 // form or is already an immediate form that we can handle. 3245 ImmInstrInfo III; 3246 unsigned Opc = MI.getOpcode(); 3247 bool ConvertibleImmForm = 3248 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 3249 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 3250 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 3251 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 3252 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 3253 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 3254 Opc == PPC::RLWINM8_rec; 3255 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 3256 ? isVFRegister(MI.getOperand(0).getReg()) 3257 : false; 3258 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 3259 return nullptr; 3260 3261 // Don't convert or %X, %Y, %Y since that's just a register move. 3262 if ((Opc == PPC::OR || Opc == PPC::OR8) && 3263 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 3264 return nullptr; 3265 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 3266 MachineOperand &MO = MI.getOperand(i); 3267 SeenIntermediateUse = false; 3268 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 3269 Register Reg = MI.getOperand(i).getReg(); 3270 // If we see another use of this reg between the def and the MI, 3271 // we want to flat it so the def isn't deleted. 3272 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 3273 if (DefMI) { 3274 // Is this register defined by some form of add-immediate (including 3275 // load-immediate) within this basic block? 3276 switch (DefMI->getOpcode()) { 3277 default: 3278 break; 3279 case PPC::LI: 3280 case PPC::LI8: 3281 case PPC::ADDItocL: 3282 case PPC::ADDI: 3283 case PPC::ADDI8: 3284 OpNoForForwarding = i; 3285 return DefMI; 3286 } 3287 } 3288 } 3289 } 3290 } 3291 return OpNoForForwarding == ~0U ? nullptr : DefMI; 3292 } 3293 3294 unsigned PPCInstrInfo::getSpillTarget() const { 3295 // With P10, we may need to spill paired vector registers or accumulator 3296 // registers. MMA implies paired vectors, so we can just check that. 3297 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); 3298 return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0; 3299 } 3300 3301 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 3302 return StoreSpillOpcodesArray[getSpillTarget()]; 3303 } 3304 3305 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 3306 return LoadSpillOpcodesArray[getSpillTarget()]; 3307 } 3308 3309 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, 3310 unsigned RegNo) const { 3311 // Conservatively clear kill flag for the register if the instructions are in 3312 // different basic blocks and in SSA form, because the kill flag may no longer 3313 // be right. There is no need to bother with dead flags since defs with no 3314 // uses will be handled by DCE. 3315 MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); 3316 if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { 3317 MRI.clearKillFlags(RegNo); 3318 return; 3319 } 3320 3321 // Instructions between [StartMI, EndMI] should be in same basic block. 3322 assert((StartMI->getParent() == EndMI->getParent()) && 3323 "Instructions are not in same basic block"); 3324 3325 // If before RA, StartMI may be def through COPY, we need to adjust it to the 3326 // real def. See function getForwardingDefMI. 3327 if (MRI.isSSA()) { 3328 bool Reads, Writes; 3329 std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); 3330 if (!Reads && !Writes) { 3331 assert(Register::isVirtualRegister(RegNo) && 3332 "Must be a virtual register"); 3333 // Get real def and ignore copies. 3334 StartMI = MRI.getVRegDef(RegNo); 3335 } 3336 } 3337 3338 bool IsKillSet = false; 3339 3340 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 3341 MachineOperand &MO = MI.getOperand(Index); 3342 if (MO.isReg() && MO.isUse() && MO.isKill() && 3343 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 3344 MO.setIsKill(false); 3345 }; 3346 3347 // Set killed flag for EndMI. 3348 // No need to do anything if EndMI defines RegNo. 3349 int UseIndex = 3350 EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 3351 if (UseIndex != -1) { 3352 EndMI->getOperand(UseIndex).setIsKill(true); 3353 IsKillSet = true; 3354 // Clear killed flag for other EndMI operands related to RegNo. In some 3355 // upexpected cases, killed may be set multiple times for same register 3356 // operand in same MI. 3357 for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) 3358 if (i != UseIndex) 3359 clearOperandKillInfo(*EndMI, i); 3360 } 3361 3362 // Walking the inst in reverse order (EndMI -> StartMI]. 3363 MachineBasicBlock::reverse_iterator It = *EndMI; 3364 MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); 3365 // EndMI has been handled above, skip it here. 3366 It++; 3367 MachineOperand *MO = nullptr; 3368 for (; It != E; ++It) { 3369 // Skip insturctions which could not be a def/use of RegNo. 3370 if (It->isDebugInstr() || It->isPosition()) 3371 continue; 3372 3373 // Clear killed flag for all It operands related to RegNo. In some 3374 // upexpected cases, killed may be set multiple times for same register 3375 // operand in same MI. 3376 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 3377 clearOperandKillInfo(*It, i); 3378 3379 // If killed is not set, set killed for its last use or set dead for its def 3380 // if no use found. 3381 if (!IsKillSet) { 3382 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 3383 // Use found, set it killed. 3384 IsKillSet = true; 3385 MO->setIsKill(true); 3386 continue; 3387 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 3388 &getRegisterInfo()))) { 3389 // No use found, set dead for its def. 3390 assert(&*It == StartMI && "No new def between StartMI and EndMI."); 3391 MO->setIsDead(true); 3392 break; 3393 } 3394 } 3395 3396 if ((&*It) == StartMI) 3397 break; 3398 } 3399 // Ensure RegMo liveness is killed after EndMI. 3400 assert((IsKillSet || (MO && MO->isDead())) && 3401 "RegNo should be killed or dead"); 3402 } 3403 3404 // This opt tries to convert the following imm form to an index form to save an 3405 // add for stack variables. 3406 // Return false if no such pattern found. 3407 // 3408 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3409 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 3410 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 3411 // 3412 // can be converted to: 3413 // 3414 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 3415 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 3416 // 3417 // In order to eliminate ADD instr, make sure that: 3418 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 3419 // new ADDI instr and ADDI can only take int16 Imm. 3420 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 3421 // between ADDI and ADD instr since its original def in ADDI will be changed 3422 // in new ADDI instr. And also there should be no new def for it between 3423 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 3424 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 3425 // between ADD and Imm instr since ADD instr will be eliminated. 3426 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 3427 // moved to Index instr. 3428 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 3429 MachineFunction *MF = MI.getParent()->getParent(); 3430 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3431 bool PostRA = !MRI->isSSA(); 3432 // Do this opt after PEI which is after RA. The reason is stack slot expansion 3433 // in PEI may expose such opportunities since in PEI, stack slot offsets to 3434 // frame base(OffsetAddi) are determined. 3435 if (!PostRA) 3436 return false; 3437 unsigned ToBeDeletedReg = 0; 3438 int64_t OffsetImm = 0; 3439 unsigned XFormOpcode = 0; 3440 ImmInstrInfo III; 3441 3442 // Check if Imm instr meets requirement. 3443 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 3444 III)) 3445 return false; 3446 3447 bool OtherIntermediateUse = false; 3448 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 3449 3450 // Exit if there is other use between ADD and Imm instr or no def found. 3451 if (OtherIntermediateUse || !ADDMI) 3452 return false; 3453 3454 // Check if ADD instr meets requirement. 3455 if (!isADDInstrEligibleForFolding(*ADDMI)) 3456 return false; 3457 3458 unsigned ScaleRegIdx = 0; 3459 int64_t OffsetAddi = 0; 3460 MachineInstr *ADDIMI = nullptr; 3461 3462 // Check if there is a valid ToBeChangedReg in ADDMI. 3463 // 1: It must be killed. 3464 // 2: Its definition must be a valid ADDIMI. 3465 // 3: It must satify int16 offset requirement. 3466 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 3467 ScaleRegIdx = 2; 3468 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 3469 ScaleRegIdx = 1; 3470 else 3471 return false; 3472 3473 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 3474 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 3475 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 3476 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 3477 MachineBasicBlock::iterator End) { 3478 for (auto It = ++Start; It != End; It++) 3479 if (It->modifiesRegister(Reg, &getRegisterInfo())) 3480 return true; 3481 return false; 3482 }; 3483 3484 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 3485 // treated as special zero when ScaleReg is R0/X0 register. 3486 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 3487 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 3488 return false; 3489 3490 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 3491 // and Imm Instr. 3492 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 3493 return false; 3494 3495 // Now start to do the transformation. 3496 LLVM_DEBUG(dbgs() << "Replace instruction: " 3497 << "\n"); 3498 LLVM_DEBUG(ADDIMI->dump()); 3499 LLVM_DEBUG(ADDMI->dump()); 3500 LLVM_DEBUG(MI.dump()); 3501 LLVM_DEBUG(dbgs() << "with: " 3502 << "\n"); 3503 3504 // Update ADDI instr. 3505 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 3506 3507 // Update Imm instr. 3508 MI.setDesc(get(XFormOpcode)); 3509 MI.getOperand(III.ImmOpNo) 3510 .ChangeToRegister(ScaleReg, false, false, 3511 ADDMI->getOperand(ScaleRegIdx).isKill()); 3512 3513 MI.getOperand(III.OpNoForForwarding) 3514 .ChangeToRegister(ToBeChangedReg, false, false, true); 3515 3516 // Eliminate ADD instr. 3517 ADDMI->eraseFromParent(); 3518 3519 LLVM_DEBUG(ADDIMI->dump()); 3520 LLVM_DEBUG(MI.dump()); 3521 3522 return true; 3523 } 3524 3525 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3526 int64_t &Imm) const { 3527 unsigned Opc = ADDIMI.getOpcode(); 3528 3529 // Exit if the instruction is not ADDI. 3530 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3531 return false; 3532 3533 // The operand may not necessarily be an immediate - it could be a relocation. 3534 if (!ADDIMI.getOperand(2).isImm()) 3535 return false; 3536 3537 Imm = ADDIMI.getOperand(2).getImm(); 3538 3539 return true; 3540 } 3541 3542 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3543 unsigned Opc = ADDMI.getOpcode(); 3544 3545 // Exit if the instruction is not ADD. 3546 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3547 } 3548 3549 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3550 unsigned &ToBeDeletedReg, 3551 unsigned &XFormOpcode, 3552 int64_t &OffsetImm, 3553 ImmInstrInfo &III) const { 3554 // Only handle load/store. 3555 if (!MI.mayLoadOrStore()) 3556 return false; 3557 3558 unsigned Opc = MI.getOpcode(); 3559 3560 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3561 3562 // Exit if instruction has no index form. 3563 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3564 return false; 3565 3566 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3567 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 3568 III, true)) 3569 return false; 3570 3571 if (!III.IsSummingOperands) 3572 return false; 3573 3574 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3575 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3576 // Only support imm operands, not relocation slots or others. 3577 if (!ImmOperand.isImm()) 3578 return false; 3579 3580 assert(RegOperand.isReg() && "Instruction format is not right"); 3581 3582 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3583 if (!RegOperand.isKill()) 3584 return false; 3585 3586 ToBeDeletedReg = RegOperand.getReg(); 3587 OffsetImm = ImmOperand.getImm(); 3588 3589 return true; 3590 } 3591 3592 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3593 MachineInstr *&ADDIMI, 3594 int64_t &OffsetAddi, 3595 int64_t OffsetImm) const { 3596 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3597 MachineOperand &MO = ADDMI->getOperand(Index); 3598 3599 if (!MO.isKill()) 3600 return false; 3601 3602 bool OtherIntermediateUse = false; 3603 3604 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3605 // Currently handle only one "add + Imminstr" pair case, exit if other 3606 // intermediate use for ToBeChangedReg found. 3607 // TODO: handle the cases where there are other "add + Imminstr" pairs 3608 // with same offset in Imminstr which is like: 3609 // 3610 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3611 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3612 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3613 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3614 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3615 // 3616 // can be converted to: 3617 // 3618 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3619 // (OffsetAddi + OffsetImm) 3620 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3621 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3622 3623 if (OtherIntermediateUse || !ADDIMI) 3624 return false; 3625 // Check if ADDI instr meets requirement. 3626 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3627 return false; 3628 3629 if (isInt<16>(OffsetAddi + OffsetImm)) 3630 return true; 3631 return false; 3632 } 3633 3634 // If this instruction has an immediate form and one of its operands is a 3635 // result of a load-immediate or an add-immediate, convert it to 3636 // the immediate form if the constant is in range. 3637 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3638 MachineInstr **KilledDef) const { 3639 MachineFunction *MF = MI.getParent()->getParent(); 3640 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3641 bool PostRA = !MRI->isSSA(); 3642 bool SeenIntermediateUse = true; 3643 unsigned ForwardingOperand = ~0U; 3644 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3645 SeenIntermediateUse); 3646 if (!DefMI) 3647 return false; 3648 assert(ForwardingOperand < MI.getNumOperands() && 3649 "The forwarding operand needs to be valid at this point"); 3650 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3651 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3652 if (KilledDef && KillFwdDefMI) 3653 *KilledDef = DefMI; 3654 3655 // If this is a imm instruction and its register operands is produced by ADDI, 3656 // put the imm into imm inst directly. 3657 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3658 PPC::INSTRUCTION_LIST_END && 3659 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3660 return true; 3661 3662 ImmInstrInfo III; 3663 bool IsVFReg = MI.getOperand(0).isReg() 3664 ? isVFRegister(MI.getOperand(0).getReg()) 3665 : false; 3666 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3667 // If this is a reg+reg instruction that has a reg+imm form, 3668 // and one of the operands is produced by an add-immediate, 3669 // try to convert it. 3670 if (HasImmForm && 3671 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3672 KillFwdDefMI)) 3673 return true; 3674 3675 // If this is a reg+reg instruction that has a reg+imm form, 3676 // and one of the operands is produced by LI, convert it now. 3677 if (HasImmForm && 3678 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3679 return true; 3680 3681 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3682 // can be simpified to LI. 3683 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3684 return true; 3685 3686 return false; 3687 } 3688 3689 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, 3690 MachineInstr **ToErase) const { 3691 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3692 unsigned FoldingReg = MI.getOperand(1).getReg(); 3693 if (!Register::isVirtualRegister(FoldingReg)) 3694 return false; 3695 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); 3696 if (SrcMI->getOpcode() != PPC::RLWINM && 3697 SrcMI->getOpcode() != PPC::RLWINM_rec && 3698 SrcMI->getOpcode() != PPC::RLWINM8 && 3699 SrcMI->getOpcode() != PPC::RLWINM8_rec) 3700 return false; 3701 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && 3702 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && 3703 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && 3704 "Invalid PPC::RLWINM Instruction!"); 3705 uint64_t SHSrc = SrcMI->getOperand(2).getImm(); 3706 uint64_t SHMI = MI.getOperand(2).getImm(); 3707 uint64_t MBSrc = SrcMI->getOperand(3).getImm(); 3708 uint64_t MBMI = MI.getOperand(3).getImm(); 3709 uint64_t MESrc = SrcMI->getOperand(4).getImm(); 3710 uint64_t MEMI = MI.getOperand(4).getImm(); 3711 3712 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && 3713 "Invalid PPC::RLWINM Instruction!"); 3714 // If MBMI is bigger than MEMI, we always can not get run of ones. 3715 // RotatedSrcMask non-wrap: 3716 // 0........31|32........63 3717 // RotatedSrcMask: B---E B---E 3718 // MaskMI: -----------|--E B------ 3719 // Result: ----- --- (Bad candidate) 3720 // 3721 // RotatedSrcMask wrap: 3722 // 0........31|32........63 3723 // RotatedSrcMask: --E B----|--E B---- 3724 // MaskMI: -----------|--E B------ 3725 // Result: --- -----|--- ----- (Bad candidate) 3726 // 3727 // One special case is RotatedSrcMask is a full set mask. 3728 // RotatedSrcMask full: 3729 // 0........31|32........63 3730 // RotatedSrcMask: ------EB---|-------EB--- 3731 // MaskMI: -----------|--E B------ 3732 // Result: -----------|--- ------- (Good candidate) 3733 3734 // Mark special case. 3735 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); 3736 3737 // For other MBMI > MEMI cases, just return. 3738 if ((MBMI > MEMI) && !SrcMaskFull) 3739 return false; 3740 3741 // Handle MBMI <= MEMI cases. 3742 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); 3743 // In MI, we only need low 32 bits of SrcMI, just consider about low 32 3744 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, 3745 // while in PowerPC ISA, lowerest bit is at index 63. 3746 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); 3747 3748 APInt RotatedSrcMask = MaskSrc.rotl(SHMI); 3749 APInt FinalMask = RotatedSrcMask & MaskMI; 3750 uint32_t NewMB, NewME; 3751 bool Simplified = false; 3752 3753 // If final mask is 0, MI result should be 0 too. 3754 if (FinalMask.isNullValue()) { 3755 bool Is64Bit = 3756 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); 3757 Simplified = true; 3758 LLVM_DEBUG(dbgs() << "Replace Instr: "); 3759 LLVM_DEBUG(MI.dump()); 3760 3761 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { 3762 // Replace MI with "LI 0" 3763 MI.RemoveOperand(4); 3764 MI.RemoveOperand(3); 3765 MI.RemoveOperand(2); 3766 MI.getOperand(1).ChangeToImmediate(0); 3767 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); 3768 } else { 3769 // Replace MI with "ANDI_rec reg, 0" 3770 MI.RemoveOperand(4); 3771 MI.RemoveOperand(3); 3772 MI.getOperand(2).setImm(0); 3773 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 3774 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3775 if (SrcMI->getOperand(1).isKill()) { 3776 MI.getOperand(1).setIsKill(true); 3777 SrcMI->getOperand(1).setIsKill(false); 3778 } else 3779 // About to replace MI.getOperand(1), clear its kill flag. 3780 MI.getOperand(1).setIsKill(false); 3781 } 3782 3783 LLVM_DEBUG(dbgs() << "With: "); 3784 LLVM_DEBUG(MI.dump()); 3785 3786 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && 3787 NewMB <= NewME) || 3788 SrcMaskFull) { 3789 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger 3790 // than NewME. Otherwise we get a 64 bit value after folding, but MI 3791 // return a 32 bit value. 3792 Simplified = true; 3793 LLVM_DEBUG(dbgs() << "Converting Instr: "); 3794 LLVM_DEBUG(MI.dump()); 3795 3796 uint16_t NewSH = (SHSrc + SHMI) % 32; 3797 MI.getOperand(2).setImm(NewSH); 3798 // If SrcMI mask is full, no need to update MBMI and MEMI. 3799 if (!SrcMaskFull) { 3800 MI.getOperand(3).setImm(NewMB); 3801 MI.getOperand(4).setImm(NewME); 3802 } 3803 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 3804 if (SrcMI->getOperand(1).isKill()) { 3805 MI.getOperand(1).setIsKill(true); 3806 SrcMI->getOperand(1).setIsKill(false); 3807 } else 3808 // About to replace MI.getOperand(1), clear its kill flag. 3809 MI.getOperand(1).setIsKill(false); 3810 3811 LLVM_DEBUG(dbgs() << "To: "); 3812 LLVM_DEBUG(MI.dump()); 3813 } 3814 if (Simplified & MRI->use_nodbg_empty(FoldingReg) && 3815 !SrcMI->hasImplicitDef()) { 3816 // If FoldingReg has no non-debug use and it has no implicit def (it 3817 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. 3818 // Otherwise keep it. 3819 *ToErase = SrcMI; 3820 LLVM_DEBUG(dbgs() << "Delete dead instruction: "); 3821 LLVM_DEBUG(SrcMI->dump()); 3822 } 3823 return Simplified; 3824 } 3825 3826 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3827 ImmInstrInfo &III, bool PostRA) const { 3828 // The vast majority of the instructions would need their operand 2 replaced 3829 // with an immediate when switching to the reg+imm form. A marked exception 3830 // are the update form loads/stores for which a constant operand 2 would need 3831 // to turn into a displacement and move operand 1 to the operand 2 position. 3832 III.ImmOpNo = 2; 3833 III.OpNoForForwarding = 2; 3834 III.ImmWidth = 16; 3835 III.ImmMustBeMultipleOf = 1; 3836 III.TruncateImmTo = 0; 3837 III.IsSummingOperands = false; 3838 switch (Opc) { 3839 default: return false; 3840 case PPC::ADD4: 3841 case PPC::ADD8: 3842 III.SignedImm = true; 3843 III.ZeroIsSpecialOrig = 0; 3844 III.ZeroIsSpecialNew = 1; 3845 III.IsCommutative = true; 3846 III.IsSummingOperands = true; 3847 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3848 break; 3849 case PPC::ADDC: 3850 case PPC::ADDC8: 3851 III.SignedImm = true; 3852 III.ZeroIsSpecialOrig = 0; 3853 III.ZeroIsSpecialNew = 0; 3854 III.IsCommutative = true; 3855 III.IsSummingOperands = true; 3856 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3857 break; 3858 case PPC::ADDC_rec: 3859 III.SignedImm = true; 3860 III.ZeroIsSpecialOrig = 0; 3861 III.ZeroIsSpecialNew = 0; 3862 III.IsCommutative = true; 3863 III.IsSummingOperands = true; 3864 III.ImmOpcode = PPC::ADDIC_rec; 3865 break; 3866 case PPC::SUBFC: 3867 case PPC::SUBFC8: 3868 III.SignedImm = true; 3869 III.ZeroIsSpecialOrig = 0; 3870 III.ZeroIsSpecialNew = 0; 3871 III.IsCommutative = false; 3872 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3873 break; 3874 case PPC::CMPW: 3875 case PPC::CMPD: 3876 III.SignedImm = true; 3877 III.ZeroIsSpecialOrig = 0; 3878 III.ZeroIsSpecialNew = 0; 3879 III.IsCommutative = false; 3880 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3881 break; 3882 case PPC::CMPLW: 3883 case PPC::CMPLD: 3884 III.SignedImm = false; 3885 III.ZeroIsSpecialOrig = 0; 3886 III.ZeroIsSpecialNew = 0; 3887 III.IsCommutative = false; 3888 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3889 break; 3890 case PPC::AND_rec: 3891 case PPC::AND8_rec: 3892 case PPC::OR: 3893 case PPC::OR8: 3894 case PPC::XOR: 3895 case PPC::XOR8: 3896 III.SignedImm = false; 3897 III.ZeroIsSpecialOrig = 0; 3898 III.ZeroIsSpecialNew = 0; 3899 III.IsCommutative = true; 3900 switch(Opc) { 3901 default: llvm_unreachable("Unknown opcode"); 3902 case PPC::AND_rec: 3903 III.ImmOpcode = PPC::ANDI_rec; 3904 break; 3905 case PPC::AND8_rec: 3906 III.ImmOpcode = PPC::ANDI8_rec; 3907 break; 3908 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3909 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3910 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3911 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3912 } 3913 break; 3914 case PPC::RLWNM: 3915 case PPC::RLWNM8: 3916 case PPC::RLWNM_rec: 3917 case PPC::RLWNM8_rec: 3918 case PPC::SLW: 3919 case PPC::SLW8: 3920 case PPC::SLW_rec: 3921 case PPC::SLW8_rec: 3922 case PPC::SRW: 3923 case PPC::SRW8: 3924 case PPC::SRW_rec: 3925 case PPC::SRW8_rec: 3926 case PPC::SRAW: 3927 case PPC::SRAW_rec: 3928 III.SignedImm = false; 3929 III.ZeroIsSpecialOrig = 0; 3930 III.ZeroIsSpecialNew = 0; 3931 III.IsCommutative = false; 3932 // This isn't actually true, but the instructions ignore any of the 3933 // upper bits, so any immediate loaded with an LI is acceptable. 3934 // This does not apply to shift right algebraic because a value 3935 // out of range will produce a -1/0. 3936 III.ImmWidth = 16; 3937 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3938 Opc == PPC::RLWNM8_rec) 3939 III.TruncateImmTo = 5; 3940 else 3941 III.TruncateImmTo = 6; 3942 switch(Opc) { 3943 default: llvm_unreachable("Unknown opcode"); 3944 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3945 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3946 case PPC::RLWNM_rec: 3947 III.ImmOpcode = PPC::RLWINM_rec; 3948 break; 3949 case PPC::RLWNM8_rec: 3950 III.ImmOpcode = PPC::RLWINM8_rec; 3951 break; 3952 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3953 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3954 case PPC::SLW_rec: 3955 III.ImmOpcode = PPC::RLWINM_rec; 3956 break; 3957 case PPC::SLW8_rec: 3958 III.ImmOpcode = PPC::RLWINM8_rec; 3959 break; 3960 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3961 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3962 case PPC::SRW_rec: 3963 III.ImmOpcode = PPC::RLWINM_rec; 3964 break; 3965 case PPC::SRW8_rec: 3966 III.ImmOpcode = PPC::RLWINM8_rec; 3967 break; 3968 case PPC::SRAW: 3969 III.ImmWidth = 5; 3970 III.TruncateImmTo = 0; 3971 III.ImmOpcode = PPC::SRAWI; 3972 break; 3973 case PPC::SRAW_rec: 3974 III.ImmWidth = 5; 3975 III.TruncateImmTo = 0; 3976 III.ImmOpcode = PPC::SRAWI_rec; 3977 break; 3978 } 3979 break; 3980 case PPC::RLDCL: 3981 case PPC::RLDCL_rec: 3982 case PPC::RLDCR: 3983 case PPC::RLDCR_rec: 3984 case PPC::SLD: 3985 case PPC::SLD_rec: 3986 case PPC::SRD: 3987 case PPC::SRD_rec: 3988 case PPC::SRAD: 3989 case PPC::SRAD_rec: 3990 III.SignedImm = false; 3991 III.ZeroIsSpecialOrig = 0; 3992 III.ZeroIsSpecialNew = 0; 3993 III.IsCommutative = false; 3994 // This isn't actually true, but the instructions ignore any of the 3995 // upper bits, so any immediate loaded with an LI is acceptable. 3996 // This does not apply to shift right algebraic because a value 3997 // out of range will produce a -1/0. 3998 III.ImmWidth = 16; 3999 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 4000 Opc == PPC::RLDCR_rec) 4001 III.TruncateImmTo = 6; 4002 else 4003 III.TruncateImmTo = 7; 4004 switch(Opc) { 4005 default: llvm_unreachable("Unknown opcode"); 4006 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 4007 case PPC::RLDCL_rec: 4008 III.ImmOpcode = PPC::RLDICL_rec; 4009 break; 4010 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 4011 case PPC::RLDCR_rec: 4012 III.ImmOpcode = PPC::RLDICR_rec; 4013 break; 4014 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 4015 case PPC::SLD_rec: 4016 III.ImmOpcode = PPC::RLDICR_rec; 4017 break; 4018 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 4019 case PPC::SRD_rec: 4020 III.ImmOpcode = PPC::RLDICL_rec; 4021 break; 4022 case PPC::SRAD: 4023 III.ImmWidth = 6; 4024 III.TruncateImmTo = 0; 4025 III.ImmOpcode = PPC::SRADI; 4026 break; 4027 case PPC::SRAD_rec: 4028 III.ImmWidth = 6; 4029 III.TruncateImmTo = 0; 4030 III.ImmOpcode = PPC::SRADI_rec; 4031 break; 4032 } 4033 break; 4034 // Loads and stores: 4035 case PPC::LBZX: 4036 case PPC::LBZX8: 4037 case PPC::LHZX: 4038 case PPC::LHZX8: 4039 case PPC::LHAX: 4040 case PPC::LHAX8: 4041 case PPC::LWZX: 4042 case PPC::LWZX8: 4043 case PPC::LWAX: 4044 case PPC::LDX: 4045 case PPC::LFSX: 4046 case PPC::LFDX: 4047 case PPC::STBX: 4048 case PPC::STBX8: 4049 case PPC::STHX: 4050 case PPC::STHX8: 4051 case PPC::STWX: 4052 case PPC::STWX8: 4053 case PPC::STDX: 4054 case PPC::STFSX: 4055 case PPC::STFDX: 4056 III.SignedImm = true; 4057 III.ZeroIsSpecialOrig = 1; 4058 III.ZeroIsSpecialNew = 2; 4059 III.IsCommutative = true; 4060 III.IsSummingOperands = true; 4061 III.ImmOpNo = 1; 4062 III.OpNoForForwarding = 2; 4063 switch(Opc) { 4064 default: llvm_unreachable("Unknown opcode"); 4065 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 4066 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 4067 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 4068 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 4069 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 4070 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 4071 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 4072 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 4073 case PPC::LWAX: 4074 III.ImmOpcode = PPC::LWA; 4075 III.ImmMustBeMultipleOf = 4; 4076 break; 4077 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 4078 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 4079 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 4080 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 4081 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 4082 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 4083 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 4084 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 4085 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 4086 case PPC::STDX: 4087 III.ImmOpcode = PPC::STD; 4088 III.ImmMustBeMultipleOf = 4; 4089 break; 4090 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 4091 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 4092 } 4093 break; 4094 case PPC::LBZUX: 4095 case PPC::LBZUX8: 4096 case PPC::LHZUX: 4097 case PPC::LHZUX8: 4098 case PPC::LHAUX: 4099 case PPC::LHAUX8: 4100 case PPC::LWZUX: 4101 case PPC::LWZUX8: 4102 case PPC::LDUX: 4103 case PPC::LFSUX: 4104 case PPC::LFDUX: 4105 case PPC::STBUX: 4106 case PPC::STBUX8: 4107 case PPC::STHUX: 4108 case PPC::STHUX8: 4109 case PPC::STWUX: 4110 case PPC::STWUX8: 4111 case PPC::STDUX: 4112 case PPC::STFSUX: 4113 case PPC::STFDUX: 4114 III.SignedImm = true; 4115 III.ZeroIsSpecialOrig = 2; 4116 III.ZeroIsSpecialNew = 3; 4117 III.IsCommutative = false; 4118 III.IsSummingOperands = true; 4119 III.ImmOpNo = 2; 4120 III.OpNoForForwarding = 3; 4121 switch(Opc) { 4122 default: llvm_unreachable("Unknown opcode"); 4123 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 4124 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 4125 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 4126 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 4127 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 4128 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 4129 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 4130 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 4131 case PPC::LDUX: 4132 III.ImmOpcode = PPC::LDU; 4133 III.ImmMustBeMultipleOf = 4; 4134 break; 4135 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 4136 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 4137 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 4138 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 4139 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 4140 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 4141 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 4142 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 4143 case PPC::STDUX: 4144 III.ImmOpcode = PPC::STDU; 4145 III.ImmMustBeMultipleOf = 4; 4146 break; 4147 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 4148 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 4149 } 4150 break; 4151 // Power9 and up only. For some of these, the X-Form version has access to all 4152 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 4153 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 4154 // into or stored from is one of the VR registers. 4155 case PPC::LXVX: 4156 case PPC::LXSSPX: 4157 case PPC::LXSDX: 4158 case PPC::STXVX: 4159 case PPC::STXSSPX: 4160 case PPC::STXSDX: 4161 case PPC::XFLOADf32: 4162 case PPC::XFLOADf64: 4163 case PPC::XFSTOREf32: 4164 case PPC::XFSTOREf64: 4165 if (!Subtarget.hasP9Vector()) 4166 return false; 4167 III.SignedImm = true; 4168 III.ZeroIsSpecialOrig = 1; 4169 III.ZeroIsSpecialNew = 2; 4170 III.IsCommutative = true; 4171 III.IsSummingOperands = true; 4172 III.ImmOpNo = 1; 4173 III.OpNoForForwarding = 2; 4174 III.ImmMustBeMultipleOf = 4; 4175 switch(Opc) { 4176 default: llvm_unreachable("Unknown opcode"); 4177 case PPC::LXVX: 4178 III.ImmOpcode = PPC::LXV; 4179 III.ImmMustBeMultipleOf = 16; 4180 break; 4181 case PPC::LXSSPX: 4182 if (PostRA) { 4183 if (IsVFReg) 4184 III.ImmOpcode = PPC::LXSSP; 4185 else { 4186 III.ImmOpcode = PPC::LFS; 4187 III.ImmMustBeMultipleOf = 1; 4188 } 4189 break; 4190 } 4191 LLVM_FALLTHROUGH; 4192 case PPC::XFLOADf32: 4193 III.ImmOpcode = PPC::DFLOADf32; 4194 break; 4195 case PPC::LXSDX: 4196 if (PostRA) { 4197 if (IsVFReg) 4198 III.ImmOpcode = PPC::LXSD; 4199 else { 4200 III.ImmOpcode = PPC::LFD; 4201 III.ImmMustBeMultipleOf = 1; 4202 } 4203 break; 4204 } 4205 LLVM_FALLTHROUGH; 4206 case PPC::XFLOADf64: 4207 III.ImmOpcode = PPC::DFLOADf64; 4208 break; 4209 case PPC::STXVX: 4210 III.ImmOpcode = PPC::STXV; 4211 III.ImmMustBeMultipleOf = 16; 4212 break; 4213 case PPC::STXSSPX: 4214 if (PostRA) { 4215 if (IsVFReg) 4216 III.ImmOpcode = PPC::STXSSP; 4217 else { 4218 III.ImmOpcode = PPC::STFS; 4219 III.ImmMustBeMultipleOf = 1; 4220 } 4221 break; 4222 } 4223 LLVM_FALLTHROUGH; 4224 case PPC::XFSTOREf32: 4225 III.ImmOpcode = PPC::DFSTOREf32; 4226 break; 4227 case PPC::STXSDX: 4228 if (PostRA) { 4229 if (IsVFReg) 4230 III.ImmOpcode = PPC::STXSD; 4231 else { 4232 III.ImmOpcode = PPC::STFD; 4233 III.ImmMustBeMultipleOf = 1; 4234 } 4235 break; 4236 } 4237 LLVM_FALLTHROUGH; 4238 case PPC::XFSTOREf64: 4239 III.ImmOpcode = PPC::DFSTOREf64; 4240 break; 4241 } 4242 break; 4243 } 4244 return true; 4245 } 4246 4247 // Utility function for swaping two arbitrary operands of an instruction. 4248 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 4249 assert(Op1 != Op2 && "Cannot swap operand with itself."); 4250 4251 unsigned MaxOp = std::max(Op1, Op2); 4252 unsigned MinOp = std::min(Op1, Op2); 4253 MachineOperand MOp1 = MI.getOperand(MinOp); 4254 MachineOperand MOp2 = MI.getOperand(MaxOp); 4255 MI.RemoveOperand(std::max(Op1, Op2)); 4256 MI.RemoveOperand(std::min(Op1, Op2)); 4257 4258 // If the operands we are swapping are the two at the end (the common case) 4259 // we can just remove both and add them in the opposite order. 4260 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 4261 MI.addOperand(MOp2); 4262 MI.addOperand(MOp1); 4263 } else { 4264 // Store all operands in a temporary vector, remove them and re-add in the 4265 // right order. 4266 SmallVector<MachineOperand, 2> MOps; 4267 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 4268 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 4269 MOps.push_back(MI.getOperand(i)); 4270 MI.RemoveOperand(i); 4271 } 4272 // MOp2 needs to be added next. 4273 MI.addOperand(MOp2); 4274 // Now add the rest. 4275 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 4276 if (i == MaxOp) 4277 MI.addOperand(MOp1); 4278 else { 4279 MI.addOperand(MOps.back()); 4280 MOps.pop_back(); 4281 } 4282 } 4283 } 4284 } 4285 4286 // Check if the 'MI' that has the index OpNoForForwarding 4287 // meets the requirement described in the ImmInstrInfo. 4288 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 4289 const ImmInstrInfo &III, 4290 unsigned OpNoForForwarding 4291 ) const { 4292 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 4293 // would not work pre-RA, we can only do the check post RA. 4294 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4295 if (MRI.isSSA()) 4296 return false; 4297 4298 // Cannot do the transform if MI isn't summing the operands. 4299 if (!III.IsSummingOperands) 4300 return false; 4301 4302 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 4303 if (!III.ZeroIsSpecialOrig) 4304 return false; 4305 4306 // We cannot do the transform if the operand we are trying to replace 4307 // isn't the same as the operand the instruction allows. 4308 if (OpNoForForwarding != III.OpNoForForwarding) 4309 return false; 4310 4311 // Check if the instruction we are trying to transform really has 4312 // the special zero register as its operand. 4313 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 4314 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 4315 return false; 4316 4317 // This machine instruction is convertible if it is, 4318 // 1. summing the operands. 4319 // 2. one of the operands is special zero register. 4320 // 3. the operand we are trying to replace is allowed by the MI. 4321 return true; 4322 } 4323 4324 // Check if the DefMI is the add inst and set the ImmMO and RegMO 4325 // accordingly. 4326 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 4327 const ImmInstrInfo &III, 4328 MachineOperand *&ImmMO, 4329 MachineOperand *&RegMO) const { 4330 unsigned Opc = DefMI.getOpcode(); 4331 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 4332 return false; 4333 4334 assert(DefMI.getNumOperands() >= 3 && 4335 "Add inst must have at least three operands"); 4336 RegMO = &DefMI.getOperand(1); 4337 ImmMO = &DefMI.getOperand(2); 4338 4339 // Before RA, ADDI first operand could be a frame index. 4340 if (!RegMO->isReg()) 4341 return false; 4342 4343 // This DefMI is elgible for forwarding if it is: 4344 // 1. add inst 4345 // 2. one of the operands is Imm/CPI/Global. 4346 return isAnImmediateOperand(*ImmMO); 4347 } 4348 4349 bool PPCInstrInfo::isRegElgibleForForwarding( 4350 const MachineOperand &RegMO, const MachineInstr &DefMI, 4351 const MachineInstr &MI, bool KillDefMI, 4352 bool &IsFwdFeederRegKilled) const { 4353 // x = addi y, imm 4354 // ... 4355 // z = lfdx 0, x -> z = lfd imm(y) 4356 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 4357 // of "y" between the DEF of "x" and "z". 4358 // The query is only valid post RA. 4359 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4360 if (MRI.isSSA()) 4361 return false; 4362 4363 Register Reg = RegMO.getReg(); 4364 4365 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 4366 MachineBasicBlock::const_reverse_iterator It = MI; 4367 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 4368 It++; 4369 for (; It != E; ++It) { 4370 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4371 return false; 4372 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 4373 IsFwdFeederRegKilled = true; 4374 // Made it to DefMI without encountering a clobber. 4375 if ((&*It) == &DefMI) 4376 break; 4377 } 4378 assert((&*It) == &DefMI && "DefMI is missing"); 4379 4380 // If DefMI also defines the register to be forwarded, we can only forward it 4381 // if DefMI is being erased. 4382 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 4383 return KillDefMI; 4384 4385 return true; 4386 } 4387 4388 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 4389 const MachineInstr &DefMI, 4390 const ImmInstrInfo &III, 4391 int64_t &Imm, 4392 int64_t BaseImm) const { 4393 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 4394 if (DefMI.getOpcode() == PPC::ADDItocL) { 4395 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 4396 // However, we know that, it is 16-bit width, and has the alignment of 4. 4397 // Check if the instruction met the requirement. 4398 if (III.ImmMustBeMultipleOf > 4 || 4399 III.TruncateImmTo || III.ImmWidth != 16) 4400 return false; 4401 4402 // Going from XForm to DForm loads means that the displacement needs to be 4403 // not just an immediate but also a multiple of 4, or 16 depending on the 4404 // load. A DForm load cannot be represented if it is a multiple of say 2. 4405 // XForm loads do not have this restriction. 4406 if (ImmMO.isGlobal()) { 4407 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 4408 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 4409 return false; 4410 } 4411 4412 return true; 4413 } 4414 4415 if (ImmMO.isImm()) { 4416 // It is Imm, we need to check if the Imm fit the range. 4417 // Sign-extend to 64-bits. 4418 // DefMI may be folded with another imm form instruction, the result Imm is 4419 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 4420 APInt ActualValue(64, ImmMO.getImm() + BaseImm, true); 4421 if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth)) 4422 return false; 4423 if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth)) 4424 return false; 4425 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 4426 4427 if (Imm % III.ImmMustBeMultipleOf) 4428 return false; 4429 if (III.TruncateImmTo) 4430 Imm &= ((1 << III.TruncateImmTo) - 1); 4431 } 4432 else 4433 return false; 4434 4435 // This ImmMO is forwarded if it meets the requriement describle 4436 // in ImmInstrInfo 4437 return true; 4438 } 4439 4440 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 4441 unsigned OpNoForForwarding, 4442 MachineInstr **KilledDef) const { 4443 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4444 !DefMI.getOperand(1).isImm()) 4445 return false; 4446 4447 MachineFunction *MF = MI.getParent()->getParent(); 4448 MachineRegisterInfo *MRI = &MF->getRegInfo(); 4449 bool PostRA = !MRI->isSSA(); 4450 4451 int64_t Immediate = DefMI.getOperand(1).getImm(); 4452 // Sign-extend to 64-bits. 4453 int64_t SExtImm = SignExtend64<16>(Immediate); 4454 4455 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 4456 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4457 4458 bool ReplaceWithLI = false; 4459 bool Is64BitLI = false; 4460 int64_t NewImm = 0; 4461 bool SetCR = false; 4462 unsigned Opc = MI.getOpcode(); 4463 switch (Opc) { 4464 default: 4465 return false; 4466 4467 // FIXME: Any branches conditional on such a comparison can be made 4468 // unconditional. At this time, this happens too infrequently to be worth 4469 // the implementation effort, but if that ever changes, we could convert 4470 // such a pattern here. 4471 case PPC::CMPWI: 4472 case PPC::CMPLWI: 4473 case PPC::CMPDI: 4474 case PPC::CMPLDI: { 4475 // Doing this post-RA would require dataflow analysis to reliably find uses 4476 // of the CR register set by the compare. 4477 // No need to fixup killed/dead flag since this transformation is only valid 4478 // before RA. 4479 if (PostRA) 4480 return false; 4481 // If a compare-immediate is fed by an immediate and is itself an input of 4482 // an ISEL (the most common case) into a COPY of the correct register. 4483 bool Changed = false; 4484 Register DefReg = MI.getOperand(0).getReg(); 4485 int64_t Comparand = MI.getOperand(2).getImm(); 4486 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 4487 ? (Comparand | 0xFFFFFFFFFFFF0000) 4488 : Comparand; 4489 4490 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 4491 unsigned UseOpc = CompareUseMI.getOpcode(); 4492 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 4493 continue; 4494 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 4495 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 4496 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 4497 unsigned RegToCopy = 4498 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 4499 if (RegToCopy == PPC::NoRegister) 4500 continue; 4501 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 4502 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 4503 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 4504 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 4505 CompareUseMI.RemoveOperand(3); 4506 CompareUseMI.RemoveOperand(2); 4507 continue; 4508 } 4509 LLVM_DEBUG( 4510 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 4511 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 4512 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 4513 // Convert to copy and remove unneeded operands. 4514 CompareUseMI.setDesc(get(PPC::COPY)); 4515 CompareUseMI.RemoveOperand(3); 4516 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 4517 CmpIselsConverted++; 4518 Changed = true; 4519 LLVM_DEBUG(CompareUseMI.dump()); 4520 } 4521 if (Changed) 4522 return true; 4523 // This may end up incremented multiple times since this function is called 4524 // during a fixed-point transformation, but it is only meant to indicate the 4525 // presence of this opportunity. 4526 MissedConvertibleImmediateInstrs++; 4527 return false; 4528 } 4529 4530 // Immediate forms - may simply be convertable to an LI. 4531 case PPC::ADDI: 4532 case PPC::ADDI8: { 4533 // Does the sum fit in a 16-bit signed field? 4534 int64_t Addend = MI.getOperand(2).getImm(); 4535 if (isInt<16>(Addend + SExtImm)) { 4536 ReplaceWithLI = true; 4537 Is64BitLI = Opc == PPC::ADDI8; 4538 NewImm = Addend + SExtImm; 4539 break; 4540 } 4541 return false; 4542 } 4543 case PPC::SUBFIC: 4544 case PPC::SUBFIC8: { 4545 // Only transform this if the CARRY implicit operand is dead. 4546 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 4547 return false; 4548 int64_t Minuend = MI.getOperand(2).getImm(); 4549 if (isInt<16>(Minuend - SExtImm)) { 4550 ReplaceWithLI = true; 4551 Is64BitLI = Opc == PPC::SUBFIC8; 4552 NewImm = Minuend - SExtImm; 4553 break; 4554 } 4555 return false; 4556 } 4557 case PPC::RLDICL: 4558 case PPC::RLDICL_rec: 4559 case PPC::RLDICL_32: 4560 case PPC::RLDICL_32_64: { 4561 // Use APInt's rotate function. 4562 int64_t SH = MI.getOperand(2).getImm(); 4563 int64_t MB = MI.getOperand(3).getImm(); 4564 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 4565 SExtImm, true); 4566 InVal = InVal.rotl(SH); 4567 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 4568 InVal &= Mask; 4569 // Can't replace negative values with an LI as that will sign-extend 4570 // and not clear the left bits. If we're setting the CR bit, we will use 4571 // ANDI_rec which won't sign extend, so that's safe. 4572 if (isUInt<15>(InVal.getSExtValue()) || 4573 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 4574 ReplaceWithLI = true; 4575 Is64BitLI = Opc != PPC::RLDICL_32; 4576 NewImm = InVal.getSExtValue(); 4577 SetCR = Opc == PPC::RLDICL_rec; 4578 break; 4579 } 4580 return false; 4581 } 4582 case PPC::RLWINM: 4583 case PPC::RLWINM8: 4584 case PPC::RLWINM_rec: 4585 case PPC::RLWINM8_rec: { 4586 int64_t SH = MI.getOperand(2).getImm(); 4587 int64_t MB = MI.getOperand(3).getImm(); 4588 int64_t ME = MI.getOperand(4).getImm(); 4589 APInt InVal(32, SExtImm, true); 4590 InVal = InVal.rotl(SH); 4591 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 4592 InVal &= Mask; 4593 // Can't replace negative values with an LI as that will sign-extend 4594 // and not clear the left bits. If we're setting the CR bit, we will use 4595 // ANDI_rec which won't sign extend, so that's safe. 4596 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 4597 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 4598 isUInt<16>(InVal.getSExtValue())); 4599 if (ValueFits) { 4600 ReplaceWithLI = true; 4601 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 4602 NewImm = InVal.getSExtValue(); 4603 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 4604 break; 4605 } 4606 return false; 4607 } 4608 case PPC::ORI: 4609 case PPC::ORI8: 4610 case PPC::XORI: 4611 case PPC::XORI8: { 4612 int64_t LogicalImm = MI.getOperand(2).getImm(); 4613 int64_t Result = 0; 4614 if (Opc == PPC::ORI || Opc == PPC::ORI8) 4615 Result = LogicalImm | SExtImm; 4616 else 4617 Result = LogicalImm ^ SExtImm; 4618 if (isInt<16>(Result)) { 4619 ReplaceWithLI = true; 4620 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 4621 NewImm = Result; 4622 break; 4623 } 4624 return false; 4625 } 4626 } 4627 4628 if (ReplaceWithLI) { 4629 // We need to be careful with CR-setting instructions we're replacing. 4630 if (SetCR) { 4631 // We don't know anything about uses when we're out of SSA, so only 4632 // replace if the new immediate will be reproduced. 4633 bool ImmChanged = (SExtImm & NewImm) != NewImm; 4634 if (PostRA && ImmChanged) 4635 return false; 4636 4637 if (!PostRA) { 4638 // If the defining load-immediate has no other uses, we can just replace 4639 // the immediate with the new immediate. 4640 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 4641 DefMI.getOperand(1).setImm(NewImm); 4642 4643 // If we're not using the GPR result of the CR-setting instruction, we 4644 // just need to and with zero/non-zero depending on the new immediate. 4645 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 4646 if (NewImm) { 4647 assert(Immediate && "Transformation converted zero to non-zero?"); 4648 NewImm = Immediate; 4649 } 4650 } else if (ImmChanged) 4651 return false; 4652 } 4653 } 4654 4655 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4656 LLVM_DEBUG(MI.dump()); 4657 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4658 LLVM_DEBUG(DefMI.dump()); 4659 LoadImmediateInfo LII; 4660 LII.Imm = NewImm; 4661 LII.Is64Bit = Is64BitLI; 4662 LII.SetCR = SetCR; 4663 // If we're setting the CR, the original load-immediate must be kept (as an 4664 // operand to ANDI_rec/ANDI8_rec). 4665 if (KilledDef && SetCR) 4666 *KilledDef = nullptr; 4667 replaceInstrWithLI(MI, LII); 4668 4669 // Fixup killed/dead flag after transformation. 4670 // Pattern: 4671 // ForwardingOperandReg = LI imm1 4672 // y = op2 imm2, ForwardingOperandReg(killed) 4673 if (IsForwardingOperandKilled) 4674 fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); 4675 4676 LLVM_DEBUG(dbgs() << "With:\n"); 4677 LLVM_DEBUG(MI.dump()); 4678 return true; 4679 } 4680 return false; 4681 } 4682 4683 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4684 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4685 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4686 bool PostRA = !MRI->isSSA(); 4687 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4688 // for post-ra. 4689 if (PostRA) 4690 return false; 4691 4692 // Only handle load/store. 4693 if (!MI.mayLoadOrStore()) 4694 return false; 4695 4696 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4697 4698 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4699 "MI must have x-form opcode"); 4700 4701 // get Imm Form info. 4702 ImmInstrInfo III; 4703 bool IsVFReg = MI.getOperand(0).isReg() 4704 ? isVFRegister(MI.getOperand(0).getReg()) 4705 : false; 4706 4707 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4708 return false; 4709 4710 if (!III.IsSummingOperands) 4711 return false; 4712 4713 if (OpNoForForwarding != III.OpNoForForwarding) 4714 return false; 4715 4716 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4717 if (!ImmOperandMI.isImm()) 4718 return false; 4719 4720 // Check DefMI. 4721 MachineOperand *ImmMO = nullptr; 4722 MachineOperand *RegMO = nullptr; 4723 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4724 return false; 4725 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4726 4727 // Check Imm. 4728 // Set ImmBase from imm instruction as base and get new Imm inside 4729 // isImmElgibleForForwarding. 4730 int64_t ImmBase = ImmOperandMI.getImm(); 4731 int64_t Imm = 0; 4732 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4733 return false; 4734 4735 // Get killed info in case fixup needed after transformation. 4736 unsigned ForwardKilledOperandReg = ~0U; 4737 if (MI.getOperand(III.OpNoForForwarding).isKill()) 4738 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 4739 4740 // Do the transform 4741 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4742 LLVM_DEBUG(MI.dump()); 4743 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4744 LLVM_DEBUG(DefMI.dump()); 4745 4746 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4747 if (RegMO->isKill()) { 4748 MI.getOperand(III.OpNoForForwarding).setIsKill(true); 4749 // Clear the killed flag in RegMO. Doing this here can handle some cases 4750 // that DefMI and MI are not in same basic block. 4751 RegMO->setIsKill(false); 4752 } 4753 MI.getOperand(III.ImmOpNo).setImm(Imm); 4754 4755 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 4756 if (DefMI.getParent() == MI.getParent()) { 4757 // Check if reg is killed between MI and DefMI. 4758 auto IsKilledFor = [&](unsigned Reg) { 4759 MachineBasicBlock::const_reverse_iterator It = MI; 4760 MachineBasicBlock::const_reverse_iterator E = DefMI; 4761 It++; 4762 for (; It != E; ++It) { 4763 if (It->killsRegister(Reg)) 4764 return true; 4765 } 4766 return false; 4767 }; 4768 4769 // Update kill flag 4770 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 4771 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4772 if (ForwardKilledOperandReg != ~0U) 4773 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4774 } 4775 4776 LLVM_DEBUG(dbgs() << "With:\n"); 4777 LLVM_DEBUG(MI.dump()); 4778 return true; 4779 } 4780 4781 // If an X-Form instruction is fed by an add-immediate and one of its operands 4782 // is the literal zero, attempt to forward the source of the add-immediate to 4783 // the corresponding D-Form instruction with the displacement coming from 4784 // the immediate being added. 4785 bool PPCInstrInfo::transformToImmFormFedByAdd( 4786 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4787 MachineInstr &DefMI, bool KillDefMI) const { 4788 // RegMO ImmMO 4789 // | | 4790 // x = addi reg, imm <----- DefMI 4791 // y = op 0 , x <----- MI 4792 // | 4793 // OpNoForForwarding 4794 // Check if the MI meet the requirement described in the III. 4795 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4796 return false; 4797 4798 // Check if the DefMI meet the requirement 4799 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4800 MachineOperand *ImmMO = nullptr; 4801 MachineOperand *RegMO = nullptr; 4802 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4803 return false; 4804 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4805 4806 // As we get the Imm operand now, we need to check if the ImmMO meet 4807 // the requirement described in the III. If yes set the Imm. 4808 int64_t Imm = 0; 4809 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4810 return false; 4811 4812 bool IsFwdFeederRegKilled = false; 4813 // Check if the RegMO can be forwarded to MI. 4814 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4815 IsFwdFeederRegKilled)) 4816 return false; 4817 4818 // Get killed info in case fixup needed after transformation. 4819 unsigned ForwardKilledOperandReg = ~0U; 4820 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4821 bool PostRA = !MRI.isSSA(); 4822 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 4823 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4824 4825 // We know that, the MI and DefMI both meet the pattern, and 4826 // the Imm also meet the requirement with the new Imm-form. 4827 // It is safe to do the transformation now. 4828 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4829 LLVM_DEBUG(MI.dump()); 4830 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4831 LLVM_DEBUG(DefMI.dump()); 4832 4833 // Update the base reg first. 4834 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4835 false, false, 4836 RegMO->isKill()); 4837 4838 // Then, update the imm. 4839 if (ImmMO->isImm()) { 4840 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4841 // directly. 4842 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4843 } 4844 else { 4845 // Otherwise, it is Constant Pool Index(CPI) or Global, 4846 // which is relocation in fact. We need to replace the special zero 4847 // register with ImmMO. 4848 // Before that, we need to fixup the target flags for imm. 4849 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4850 if (DefMI.getOpcode() == PPC::ADDItocL) 4851 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4852 4853 // MI didn't have the interface such as MI.setOperand(i) though 4854 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4855 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4856 // and, add the ImmMO, then, move back all the operands behind ZERO. 4857 SmallVector<MachineOperand, 2> MOps; 4858 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4859 MOps.push_back(MI.getOperand(i)); 4860 MI.RemoveOperand(i); 4861 } 4862 4863 // Remove the last MO in the list, which is ZERO operand in fact. 4864 MOps.pop_back(); 4865 // Add the imm operand. 4866 MI.addOperand(*ImmMO); 4867 // Now add the rest back. 4868 for (auto &MO : MOps) 4869 MI.addOperand(MO); 4870 } 4871 4872 // Update the opcode. 4873 MI.setDesc(get(III.ImmOpcode)); 4874 4875 // Fix up killed/dead flag after transformation. 4876 // Pattern 1: 4877 // x = ADD KilledFwdFeederReg, imm 4878 // n = opn KilledFwdFeederReg(killed), regn 4879 // y = XOP 0, x 4880 // Pattern 2: 4881 // x = ADD reg(killed), imm 4882 // y = XOP 0, x 4883 if (IsFwdFeederRegKilled || RegMO->isKill()) 4884 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4885 // Pattern 3: 4886 // ForwardKilledOperandReg = ADD reg, imm 4887 // y = XOP 0, ForwardKilledOperandReg(killed) 4888 if (ForwardKilledOperandReg != ~0U) 4889 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4890 4891 LLVM_DEBUG(dbgs() << "With:\n"); 4892 LLVM_DEBUG(MI.dump()); 4893 4894 return true; 4895 } 4896 4897 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4898 const ImmInstrInfo &III, 4899 unsigned ConstantOpNo, 4900 MachineInstr &DefMI) const { 4901 // DefMI must be LI or LI8. 4902 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4903 !DefMI.getOperand(1).isImm()) 4904 return false; 4905 4906 // Get Imm operand and Sign-extend to 64-bits. 4907 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4908 4909 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4910 bool PostRA = !MRI.isSSA(); 4911 // Exit early if we can't convert this. 4912 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4913 return false; 4914 if (Imm % III.ImmMustBeMultipleOf) 4915 return false; 4916 if (III.TruncateImmTo) 4917 Imm &= ((1 << III.TruncateImmTo) - 1); 4918 if (III.SignedImm) { 4919 APInt ActualValue(64, Imm, true); 4920 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4921 return false; 4922 } else { 4923 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4924 if ((uint64_t)Imm > UnsignedMax) 4925 return false; 4926 } 4927 4928 // If we're post-RA, the instructions don't agree on whether register zero is 4929 // special, we can transform this as long as the register operand that will 4930 // end up in the location where zero is special isn't R0. 4931 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4932 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4933 III.ZeroIsSpecialNew + 1; 4934 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4935 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4936 // If R0 is in the operand where zero is special for the new instruction, 4937 // it is unsafe to transform if the constant operand isn't that operand. 4938 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4939 ConstantOpNo != III.ZeroIsSpecialNew) 4940 return false; 4941 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4942 ConstantOpNo != PosForOrigZero) 4943 return false; 4944 } 4945 4946 // Get killed info in case fixup needed after transformation. 4947 unsigned ForwardKilledOperandReg = ~0U; 4948 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 4949 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 4950 4951 unsigned Opc = MI.getOpcode(); 4952 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4953 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4954 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4955 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4956 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4957 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4958 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4959 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4960 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4961 Opc == PPC::SRD_rec; 4962 4963 MI.setDesc(get(III.ImmOpcode)); 4964 if (ConstantOpNo == III.OpNoForForwarding) { 4965 // Converting shifts to immediate form is a bit tricky since they may do 4966 // one of three things: 4967 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4968 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4969 // setting CR0) 4970 // 3. If the shift amount is in [1, OpSize), it's just a shift 4971 if (SpecialShift32 || SpecialShift64) { 4972 LoadImmediateInfo LII; 4973 LII.Imm = 0; 4974 LII.SetCR = SetCR; 4975 LII.Is64Bit = SpecialShift64; 4976 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4977 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4978 replaceInstrWithLI(MI, LII); 4979 // Shifts by zero don't change the value. If we don't need to set CR0, 4980 // just convert this to a COPY. Can't do this post-RA since we've already 4981 // cleaned up the copies. 4982 else if (!SetCR && ShAmt == 0 && !PostRA) { 4983 MI.RemoveOperand(2); 4984 MI.setDesc(get(PPC::COPY)); 4985 } else { 4986 // The 32 bit and 64 bit instructions are quite different. 4987 if (SpecialShift32) { 4988 // Left shifts use (N, 0, 31-N). 4989 // Right shifts use (32-N, N, 31) if 0 < N < 32. 4990 // use (0, 0, 31) if N == 0. 4991 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 4992 uint64_t MB = RightShift ? ShAmt : 0; 4993 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 4994 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4995 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 4996 .addImm(ME); 4997 } else { 4998 // Left shifts use (N, 63-N). 4999 // Right shifts use (64-N, N) if 0 < N < 64. 5000 // use (0, 0) if N == 0. 5001 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 5002 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 5003 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 5004 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 5005 } 5006 } 5007 } else 5008 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5009 } 5010 // Convert commutative instructions (switch the operands and convert the 5011 // desired one to an immediate. 5012 else if (III.IsCommutative) { 5013 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 5014 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 5015 } else 5016 llvm_unreachable("Should have exited early!"); 5017 5018 // For instructions for which the constant register replaces a different 5019 // operand than where the immediate goes, we need to swap them. 5020 if (III.OpNoForForwarding != III.ImmOpNo) 5021 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 5022 5023 // If the special R0/X0 register index are different for original instruction 5024 // and new instruction, we need to fix up the register class in new 5025 // instruction. 5026 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 5027 if (III.ZeroIsSpecialNew) { 5028 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 5029 // need to fix up register class. 5030 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 5031 if (Register::isVirtualRegister(RegToModify)) { 5032 const TargetRegisterClass *NewRC = 5033 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 5034 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 5035 MRI.setRegClass(RegToModify, NewRC); 5036 } 5037 } 5038 } 5039 5040 // Fix up killed/dead flag after transformation. 5041 // Pattern: 5042 // ForwardKilledOperandReg = LI imm 5043 // y = XOP reg, ForwardKilledOperandReg(killed) 5044 if (ForwardKilledOperandReg != ~0U) 5045 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 5046 return true; 5047 } 5048 5049 const TargetRegisterClass * 5050 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 5051 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 5052 return &PPC::VSRCRegClass; 5053 return RC; 5054 } 5055 5056 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 5057 return PPC::getRecordFormOpcode(Opcode); 5058 } 5059 5060 // This function returns true if the machine instruction 5061 // always outputs a value by sign-extending a 32 bit value, 5062 // i.e. 0 to 31-th bits are same as 32-th bit. 5063 static bool isSignExtendingOp(const MachineInstr &MI) { 5064 int Opcode = MI.getOpcode(); 5065 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 5066 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 5067 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 5068 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 5069 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 5070 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 5071 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 5072 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 5073 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 5074 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 5075 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 5076 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 5077 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 5078 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 5079 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 5080 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 5081 Opcode == PPC::EXTSB8_32_64) 5082 return true; 5083 5084 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 5085 return true; 5086 5087 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5088 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 5089 MI.getOperand(3).getImm() > 0 && 5090 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 5091 return true; 5092 5093 return false; 5094 } 5095 5096 // This function returns true if the machine instruction 5097 // always outputs zeros in higher 32 bits. 5098 static bool isZeroExtendingOp(const MachineInstr &MI) { 5099 int Opcode = MI.getOpcode(); 5100 // The 16-bit immediate is sign-extended in li/lis. 5101 // If the most significant bit is zero, all higher bits are zero. 5102 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 5103 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 5104 int64_t Imm = MI.getOperand(1).getImm(); 5105 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 5106 return true; 5107 } 5108 5109 // We have some variations of rotate-and-mask instructions 5110 // that clear higher 32-bits. 5111 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 5112 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 5113 Opcode == PPC::RLDICL_32_64) && 5114 MI.getOperand(3).getImm() >= 32) 5115 return true; 5116 5117 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 5118 MI.getOperand(3).getImm() >= 32 && 5119 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 5120 return true; 5121 5122 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 5123 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 5124 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 5125 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 5126 return true; 5127 5128 // There are other instructions that clear higher 32-bits. 5129 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 5130 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 5131 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 5132 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 5133 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 5134 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 5135 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 5136 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 5137 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 5138 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 5139 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 5140 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 5141 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 5142 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 5143 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 5144 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 5145 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 5146 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 5147 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 5148 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 5149 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 5150 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 5151 Opcode == PPC::MFVSRWZ) 5152 return true; 5153 5154 return false; 5155 } 5156 5157 // This function returns true if the input MachineInstr is a TOC save 5158 // instruction. 5159 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 5160 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 5161 return false; 5162 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5163 unsigned StackOffset = MI.getOperand(1).getImm(); 5164 Register StackReg = MI.getOperand(2).getReg(); 5165 Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 5166 if (StackReg == SPReg && StackOffset == TOCSaveOffset) 5167 return true; 5168 5169 return false; 5170 } 5171 5172 // We limit the max depth to track incoming values of PHIs or binary ops 5173 // (e.g. AND) to avoid excessive cost. 5174 const unsigned MAX_DEPTH = 1; 5175 5176 bool 5177 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 5178 const unsigned Depth) const { 5179 const MachineFunction *MF = MI.getParent()->getParent(); 5180 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 5181 5182 // If we know this instruction returns sign- or zero-extended result, 5183 // return true. 5184 if (SignExt ? isSignExtendingOp(MI): 5185 isZeroExtendingOp(MI)) 5186 return true; 5187 5188 switch (MI.getOpcode()) { 5189 case PPC::COPY: { 5190 Register SrcReg = MI.getOperand(1).getReg(); 5191 5192 // In both ELFv1 and v2 ABI, method parameters and the return value 5193 // are sign- or zero-extended. 5194 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 5195 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 5196 // We check the ZExt/SExt flags for a method parameter. 5197 if (MI.getParent()->getBasicBlock() == 5198 &MF->getFunction().getEntryBlock()) { 5199 Register VReg = MI.getOperand(0).getReg(); 5200 if (MF->getRegInfo().isLiveIn(VReg)) 5201 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 5202 FuncInfo->isLiveInZExt(VReg); 5203 } 5204 5205 // For a method return value, we check the ZExt/SExt flags in attribute. 5206 // We assume the following code sequence for method call. 5207 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 5208 // BL8_NOP @func,... 5209 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 5210 // %5 = COPY %x3; G8RC:%5 5211 if (SrcReg == PPC::X3) { 5212 const MachineBasicBlock *MBB = MI.getParent(); 5213 MachineBasicBlock::const_instr_iterator II = 5214 MachineBasicBlock::const_instr_iterator(&MI); 5215 if (II != MBB->instr_begin() && 5216 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 5217 const MachineInstr &CallMI = *(--II); 5218 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 5219 const Function *CalleeFn = 5220 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 5221 if (!CalleeFn) 5222 return false; 5223 const IntegerType *IntTy = 5224 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 5225 const AttributeSet &Attrs = 5226 CalleeFn->getAttributes().getRetAttributes(); 5227 if (IntTy && IntTy->getBitWidth() <= 32) 5228 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 5229 Attribute::ZExt); 5230 } 5231 } 5232 } 5233 } 5234 5235 // If this is a copy from another register, we recursively check source. 5236 if (!Register::isVirtualRegister(SrcReg)) 5237 return false; 5238 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5239 if (SrcMI != NULL) 5240 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 5241 5242 return false; 5243 } 5244 5245 case PPC::ANDI_rec: 5246 case PPC::ANDIS_rec: 5247 case PPC::ORI: 5248 case PPC::ORIS: 5249 case PPC::XORI: 5250 case PPC::XORIS: 5251 case PPC::ANDI8_rec: 5252 case PPC::ANDIS8_rec: 5253 case PPC::ORI8: 5254 case PPC::ORIS8: 5255 case PPC::XORI8: 5256 case PPC::XORIS8: { 5257 // logical operation with 16-bit immediate does not change the upper bits. 5258 // So, we track the operand register as we do for register copy. 5259 Register SrcReg = MI.getOperand(1).getReg(); 5260 if (!Register::isVirtualRegister(SrcReg)) 5261 return false; 5262 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5263 if (SrcMI != NULL) 5264 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 5265 5266 return false; 5267 } 5268 5269 // If all incoming values are sign-/zero-extended, 5270 // the output of OR, ISEL or PHI is also sign-/zero-extended. 5271 case PPC::OR: 5272 case PPC::OR8: 5273 case PPC::ISEL: 5274 case PPC::PHI: { 5275 if (Depth >= MAX_DEPTH) 5276 return false; 5277 5278 // The input registers for PHI are operand 1, 3, ... 5279 // The input registers for others are operand 1 and 2. 5280 unsigned E = 3, D = 1; 5281 if (MI.getOpcode() == PPC::PHI) { 5282 E = MI.getNumOperands(); 5283 D = 2; 5284 } 5285 5286 for (unsigned I = 1; I != E; I += D) { 5287 if (MI.getOperand(I).isReg()) { 5288 Register SrcReg = MI.getOperand(I).getReg(); 5289 if (!Register::isVirtualRegister(SrcReg)) 5290 return false; 5291 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 5292 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 5293 return false; 5294 } 5295 else 5296 return false; 5297 } 5298 return true; 5299 } 5300 5301 // If at least one of the incoming values of an AND is zero extended 5302 // then the output is also zero-extended. If both of the incoming values 5303 // are sign-extended then the output is also sign extended. 5304 case PPC::AND: 5305 case PPC::AND8: { 5306 if (Depth >= MAX_DEPTH) 5307 return false; 5308 5309 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 5310 5311 Register SrcReg1 = MI.getOperand(1).getReg(); 5312 Register SrcReg2 = MI.getOperand(2).getReg(); 5313 5314 if (!Register::isVirtualRegister(SrcReg1) || 5315 !Register::isVirtualRegister(SrcReg2)) 5316 return false; 5317 5318 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 5319 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 5320 if (!MISrc1 || !MISrc2) 5321 return false; 5322 5323 if(SignExt) 5324 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 5325 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 5326 else 5327 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 5328 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 5329 } 5330 5331 default: 5332 break; 5333 } 5334 return false; 5335 } 5336 5337 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 5338 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 5339 } 5340 5341 namespace { 5342 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 5343 MachineInstr *Loop, *EndLoop, *LoopCount; 5344 MachineFunction *MF; 5345 const TargetInstrInfo *TII; 5346 int64_t TripCount; 5347 5348 public: 5349 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 5350 MachineInstr *LoopCount) 5351 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 5352 MF(Loop->getParent()->getParent()), 5353 TII(MF->getSubtarget().getInstrInfo()) { 5354 // Inspect the Loop instruction up-front, as it may be deleted when we call 5355 // createTripCountGreaterCondition. 5356 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 5357 TripCount = LoopCount->getOperand(1).getImm(); 5358 else 5359 TripCount = -1; 5360 } 5361 5362 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 5363 // Only ignore the terminator. 5364 return MI == EndLoop; 5365 } 5366 5367 Optional<bool> 5368 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 5369 SmallVectorImpl<MachineOperand> &Cond) override { 5370 if (TripCount == -1) { 5371 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5372 // so we don't need to generate any thing here. 5373 Cond.push_back(MachineOperand::CreateImm(0)); 5374 Cond.push_back(MachineOperand::CreateReg( 5375 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 5376 true)); 5377 return {}; 5378 } 5379 5380 return TripCount > TC; 5381 } 5382 5383 void setPreheader(MachineBasicBlock *NewPreheader) override { 5384 // Do nothing. We want the LOOP setup instruction to stay in the *old* 5385 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 5386 } 5387 5388 void adjustTripCount(int TripCountAdjust) override { 5389 // If the loop trip count is a compile-time value, then just change the 5390 // value. 5391 if (LoopCount->getOpcode() == PPC::LI8 || 5392 LoopCount->getOpcode() == PPC::LI) { 5393 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 5394 LoopCount->getOperand(1).setImm(TripCount); 5395 return; 5396 } 5397 5398 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 5399 // so we don't need to generate any thing here. 5400 } 5401 5402 void disposed() override { 5403 Loop->eraseFromParent(); 5404 // Ensure the loop setup instruction is deleted too. 5405 LoopCount->eraseFromParent(); 5406 } 5407 }; 5408 } // namespace 5409 5410 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 5411 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 5412 // We really "analyze" only hardware loops right now. 5413 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 5414 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 5415 if (Preheader == LoopBB) 5416 Preheader = *std::next(LoopBB->pred_begin()); 5417 MachineFunction *MF = Preheader->getParent(); 5418 5419 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 5420 SmallPtrSet<MachineBasicBlock *, 8> Visited; 5421 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 5422 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 5423 MachineRegisterInfo &MRI = MF->getRegInfo(); 5424 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 5425 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 5426 } 5427 } 5428 return nullptr; 5429 } 5430 5431 MachineInstr *PPCInstrInfo::findLoopInstr( 5432 MachineBasicBlock &PreHeader, 5433 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 5434 5435 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 5436 5437 // The loop set-up instruction should be in preheader 5438 for (auto &I : PreHeader.instrs()) 5439 if (I.getOpcode() == LOOPi) 5440 return &I; 5441 return nullptr; 5442 } 5443 5444 // Return true if get the base operand, byte offset of an instruction and the 5445 // memory width. Width is the size of memory that is being loaded/stored. 5446 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 5447 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 5448 unsigned &Width, const TargetRegisterInfo *TRI) const { 5449 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 5450 return false; 5451 5452 // Handle only loads/stores with base register followed by immediate offset. 5453 if (!LdSt.getOperand(1).isImm() || 5454 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5455 return false; 5456 if (!LdSt.getOperand(1).isImm() || 5457 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 5458 return false; 5459 5460 if (!LdSt.hasOneMemOperand()) 5461 return false; 5462 5463 Width = (*LdSt.memoperands_begin())->getSize(); 5464 Offset = LdSt.getOperand(1).getImm(); 5465 BaseReg = &LdSt.getOperand(2); 5466 return true; 5467 } 5468 5469 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 5470 const MachineInstr &MIa, const MachineInstr &MIb) const { 5471 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 5472 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 5473 5474 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 5475 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 5476 return false; 5477 5478 // Retrieve the base register, offset from the base register and width. Width 5479 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 5480 // base registers are identical, and the offset of a lower memory access + 5481 // the width doesn't overlap the offset of a higher memory access, 5482 // then the memory accesses are different. 5483 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5484 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 5485 int64_t OffsetA = 0, OffsetB = 0; 5486 unsigned int WidthA = 0, WidthB = 0; 5487 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 5488 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 5489 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 5490 int LowOffset = std::min(OffsetA, OffsetB); 5491 int HighOffset = std::max(OffsetA, OffsetB); 5492 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 5493 if (LowOffset + LowWidth <= HighOffset) 5494 return true; 5495 } 5496 } 5497 return false; 5498 } 5499