1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/RegisterPressure.h"
33 #include "llvm/CodeGen/ScheduleDAG.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/MCInst.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/TargetRegistry.h"
42 #include "llvm/Support/raw_ostream.h"
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "ppc-instr-info"
47 
48 #define GET_INSTRMAP_INFO
49 #define GET_INSTRINFO_CTOR_DTOR
50 #include "PPCGenInstrInfo.inc"
51 
52 STATISTIC(NumStoreSPILLVSRRCAsVec,
53           "Number of spillvsrrc spilled to stack as vec");
54 STATISTIC(NumStoreSPILLVSRRCAsGpr,
55           "Number of spillvsrrc spilled to stack as gpr");
56 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
57 STATISTIC(CmpIselsConverted,
58           "Number of ISELs that depend on comparison of constants converted");
59 STATISTIC(MissedConvertibleImmediateInstrs,
60           "Number of compare-immediate instructions fed by constants");
61 STATISTIC(NumRcRotatesConvertedToRcAnd,
62           "Number of record-form rotates converted to record-form andi");
63 
64 static cl::
65 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
66             cl::desc("Disable analysis for CTR loops"));
67 
68 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
69 cl::desc("Disable compare instruction optimization"), cl::Hidden);
70 
71 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
73 cl::Hidden);
74 
75 static cl::opt<bool>
76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
77   cl::desc("Use the old (incorrect) instruction latency calculation"));
78 
79 static cl::opt<float>
80     FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5),
81                 cl::desc("register pressure factor for the transformations."));
82 
83 static cl::opt<bool> EnableFMARegPressureReduction(
84     "ppc-fma-rp-reduction", cl::Hidden, cl::init(true),
85     cl::desc("enable register pressure reduce in machine combiner pass."));
86 
87 // Pin the vtable to this file.
88 void PPCInstrInfo::anchor() {}
89 
90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
91     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
92                       /* CatchRetOpcode */ -1,
93                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
94       Subtarget(STI), RI(STI.getTargetMachine()) {}
95 
96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
97 /// this target when scheduling the DAG.
98 ScheduleHazardRecognizer *
99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
100                                            const ScheduleDAG *DAG) const {
101   unsigned Directive =
102       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
103   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
104       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
105     const InstrItineraryData *II =
106         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
107     return new ScoreboardHazardRecognizer(II, DAG);
108   }
109 
110   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
111 }
112 
113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
114 /// to use for this target when scheduling the DAG.
115 ScheduleHazardRecognizer *
116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
117                                                  const ScheduleDAG *DAG) const {
118   unsigned Directive =
119       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
120 
121   // FIXME: Leaving this as-is until we have POWER9 scheduling info
122   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
123     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
124 
125   // Most subtargets use a PPC970 recognizer.
126   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
127       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
128     assert(DAG->TII && "No InstrInfo?");
129 
130     return new PPCHazardRecognizer970(*DAG);
131   }
132 
133   return new ScoreboardHazardRecognizer(II, DAG);
134 }
135 
136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
137                                        const MachineInstr &MI,
138                                        unsigned *PredCost) const {
139   if (!ItinData || UseOldLatencyCalc)
140     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
141 
142   // The default implementation of getInstrLatency calls getStageLatency, but
143   // getStageLatency does not do the right thing for us. While we have
144   // itinerary, most cores are fully pipelined, and so the itineraries only
145   // express the first part of the pipeline, not every stage. Instead, we need
146   // to use the listed output operand cycle number (using operand 0 here, which
147   // is an output).
148 
149   unsigned Latency = 1;
150   unsigned DefClass = MI.getDesc().getSchedClass();
151   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
152     const MachineOperand &MO = MI.getOperand(i);
153     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
154       continue;
155 
156     int Cycle = ItinData->getOperandCycle(DefClass, i);
157     if (Cycle < 0)
158       continue;
159 
160     Latency = std::max(Latency, (unsigned) Cycle);
161   }
162 
163   return Latency;
164 }
165 
166 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
167                                     const MachineInstr &DefMI, unsigned DefIdx,
168                                     const MachineInstr &UseMI,
169                                     unsigned UseIdx) const {
170   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
171                                                    UseMI, UseIdx);
172 
173   if (!DefMI.getParent())
174     return Latency;
175 
176   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
177   Register Reg = DefMO.getReg();
178 
179   bool IsRegCR;
180   if (Register::isVirtualRegister(Reg)) {
181     const MachineRegisterInfo *MRI =
182         &DefMI.getParent()->getParent()->getRegInfo();
183     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
184               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
185   } else {
186     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
187               PPC::CRBITRCRegClass.contains(Reg);
188   }
189 
190   if (UseMI.isBranch() && IsRegCR) {
191     if (Latency < 0)
192       Latency = getInstrLatency(ItinData, DefMI);
193 
194     // On some cores, there is an additional delay between writing to a condition
195     // register, and using it from a branch.
196     unsigned Directive = Subtarget.getCPUDirective();
197     switch (Directive) {
198     default: break;
199     case PPC::DIR_7400:
200     case PPC::DIR_750:
201     case PPC::DIR_970:
202     case PPC::DIR_E5500:
203     case PPC::DIR_PWR4:
204     case PPC::DIR_PWR5:
205     case PPC::DIR_PWR5X:
206     case PPC::DIR_PWR6:
207     case PPC::DIR_PWR6X:
208     case PPC::DIR_PWR7:
209     case PPC::DIR_PWR8:
210     // FIXME: Is this needed for POWER9?
211       Latency += 2;
212       break;
213     }
214   }
215 
216   return Latency;
217 }
218 
219 /// This is an architecture-specific helper function of reassociateOps.
220 /// Set special operand attributes for new instructions after reassociation.
221 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
222                                          MachineInstr &OldMI2,
223                                          MachineInstr &NewMI1,
224                                          MachineInstr &NewMI2) const {
225   // Propagate FP flags from the original instructions.
226   // But clear poison-generating flags because those may not be valid now.
227   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
228   NewMI1.setFlags(IntersectedFlags);
229   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
230   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
231   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
232 
233   NewMI2.setFlags(IntersectedFlags);
234   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
235   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
236   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
237 }
238 
239 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
240                                          uint16_t Flags) const {
241   MI.setFlags(Flags);
242   MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
243   MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
244   MI.clearFlag(MachineInstr::MIFlag::IsExact);
245 }
246 
247 // This function does not list all associative and commutative operations, but
248 // only those worth feeding through the machine combiner in an attempt to
249 // reduce the critical path. Mostly, this means floating-point operations,
250 // because they have high latencies(>=5) (compared to other operations, such as
251 // and/or, which are also associative and commutative, but have low latencies).
252 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
253   switch (Inst.getOpcode()) {
254   // Floating point:
255   // FP Add:
256   case PPC::FADD:
257   case PPC::FADDS:
258   // FP Multiply:
259   case PPC::FMUL:
260   case PPC::FMULS:
261   // Altivec Add:
262   case PPC::VADDFP:
263   // VSX Add:
264   case PPC::XSADDDP:
265   case PPC::XVADDDP:
266   case PPC::XVADDSP:
267   case PPC::XSADDSP:
268   // VSX Multiply:
269   case PPC::XSMULDP:
270   case PPC::XVMULDP:
271   case PPC::XVMULSP:
272   case PPC::XSMULSP:
273     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
274            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
275   // Fixed point:
276   // Multiply:
277   case PPC::MULHD:
278   case PPC::MULLD:
279   case PPC::MULHW:
280   case PPC::MULLW:
281     return true;
282   default:
283     return false;
284   }
285 }
286 
287 #define InfoArrayIdxFMAInst 0
288 #define InfoArrayIdxFAddInst 1
289 #define InfoArrayIdxFMULInst 2
290 #define InfoArrayIdxAddOpIdx 3
291 #define InfoArrayIdxMULOpIdx 4
292 #define InfoArrayIdxFSubInst 5
293 // Array keeps info for FMA instructions:
294 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
295 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
296 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
297 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
298 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
299 //                                second MUL operand index is plus 1;
300 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
301 static const uint16_t FMAOpIdxInfo[][6] = {
302     // FIXME: Add more FMA instructions like XSNMADDADP and so on.
303     {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP},
304     {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP},
305     {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP},
306     {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP},
307     {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB},
308     {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}};
309 
310 // Check if an opcode is a FMA instruction. If it is, return the index in array
311 // FMAOpIdxInfo. Otherwise, return -1.
312 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
313   for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
314     if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
315       return I;
316   return -1;
317 }
318 
319 // On PowerPC target, we have two kinds of patterns related to FMA:
320 // 1: Improve ILP.
321 // Try to reassociate FMA chains like below:
322 //
323 // Pattern 1:
324 //   A =  FADD X,  Y          (Leaf)
325 //   B =  FMA  A,  M21,  M22  (Prev)
326 //   C =  FMA  B,  M31,  M32  (Root)
327 // -->
328 //   A =  FMA  X,  M21,  M22
329 //   B =  FMA  Y,  M31,  M32
330 //   C =  FADD A,  B
331 //
332 // Pattern 2:
333 //   A =  FMA  X,  M11,  M12  (Leaf)
334 //   B =  FMA  A,  M21,  M22  (Prev)
335 //   C =  FMA  B,  M31,  M32  (Root)
336 // -->
337 //   A =  FMUL M11,  M12
338 //   B =  FMA  X,  M21,  M22
339 //   D =  FMA  A,  M31,  M32
340 //   C =  FADD B,  D
341 //
342 // breaking the dependency between A and B, allowing FMA to be executed in
343 // parallel (or back-to-back in a pipeline) instead of depending on each other.
344 //
345 // 2: Reduce register pressure.
346 // Try to reassociate FMA with FSUB and a constant like below:
347 // C is a floating point const.
348 //
349 // Pattern 1:
350 //   A = FSUB  X,  Y      (Leaf)
351 //   D = FMA   B,  C,  A  (Root)
352 // -->
353 //   A = FMA   B,  Y,  -C
354 //   D = FMA   A,  X,  C
355 //
356 // Pattern 2:
357 //   A = FSUB  X,  Y      (Leaf)
358 //   D = FMA   B,  A,  C  (Root)
359 // -->
360 //   A = FMA   B,  Y,  -C
361 //   D = FMA   A,  X,  C
362 //
363 //  Before the transformation, A must be assigned with different hardware
364 //  register with D. After the transformation, A and D must be assigned with
365 //  same hardware register due to TIE attribute of FMA instructions.
366 //
367 bool PPCInstrInfo::getFMAPatterns(
368     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
369     bool DoRegPressureReduce) const {
370   MachineBasicBlock *MBB = Root.getParent();
371   const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
372   const TargetRegisterInfo *TRI = &getRegisterInfo();
373 
374   auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
375     for (const auto &MO : Instr.explicit_operands())
376       if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
377         return false;
378     return true;
379   };
380 
381   auto IsReassociableAddOrSub = [&](const MachineInstr &Instr,
382                                     unsigned OpType) {
383     if (Instr.getOpcode() !=
384         FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType])
385       return false;
386 
387     // Instruction can be reassociated.
388     // fast math flags may prohibit reassociation.
389     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
390           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
391       return false;
392 
393     // Instruction operands are virtual registers for reassociation.
394     if (!IsAllOpsVirtualReg(Instr))
395       return false;
396 
397     // For register pressure reassociation, the FSub must have only one use as
398     // we want to delete the sub to save its def.
399     if (OpType == InfoArrayIdxFSubInst &&
400         !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg()))
401       return false;
402 
403     return true;
404   };
405 
406   auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
407                                int16_t &MulOpIdx, bool IsLeaf) {
408     int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
409     if (Idx < 0)
410       return false;
411 
412     // Instruction can be reassociated.
413     // fast math flags may prohibit reassociation.
414     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
415           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
416       return false;
417 
418     // Instruction operands are virtual registers for reassociation.
419     if (!IsAllOpsVirtualReg(Instr))
420       return false;
421 
422     MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
423     if (IsLeaf)
424       return true;
425 
426     AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
427 
428     const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
429     MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg());
430     // If 'add' operand's def is not in current block, don't do ILP related opt.
431     if (!MIAdd || MIAdd->getParent() != MBB)
432       return false;
433 
434     // If this is not Leaf FMA Instr, its 'add' operand should only have one use
435     // as this fma will be changed later.
436     return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg());
437   };
438 
439   int16_t AddOpIdx = -1;
440   int16_t MulOpIdx = -1;
441 
442   bool IsUsedOnceL = false;
443   bool IsUsedOnceR = false;
444   MachineInstr *MULInstrL = nullptr;
445   MachineInstr *MULInstrR = nullptr;
446 
447   auto IsRPReductionCandidate = [&]() {
448     // Currently, we only support float and double.
449     // FIXME: add support for other types.
450     unsigned Opcode = Root.getOpcode();
451     if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP)
452       return false;
453 
454     // Root must be a valid FMA like instruction.
455     // Treat it as leaf as we don't care its add operand.
456     if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) {
457       assert((MulOpIdx >= 0) && "mul operand index not right!");
458       Register MULRegL = TRI->lookThruSingleUseCopyChain(
459           Root.getOperand(MulOpIdx).getReg(), MRI);
460       Register MULRegR = TRI->lookThruSingleUseCopyChain(
461           Root.getOperand(MulOpIdx + 1).getReg(), MRI);
462       if (!MULRegL && !MULRegR)
463         return false;
464 
465       if (MULRegL && !MULRegR) {
466         MULRegR =
467             TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI);
468         IsUsedOnceL = true;
469       } else if (!MULRegL && MULRegR) {
470         MULRegL =
471             TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI);
472         IsUsedOnceR = true;
473       } else {
474         IsUsedOnceL = true;
475         IsUsedOnceR = true;
476       }
477 
478       if (!Register::isVirtualRegister(MULRegL) ||
479           !Register::isVirtualRegister(MULRegR))
480         return false;
481 
482       MULInstrL = MRI->getVRegDef(MULRegL);
483       MULInstrR = MRI->getVRegDef(MULRegR);
484       return true;
485     }
486     return false;
487   };
488 
489   // Register pressure fma reassociation patterns.
490   if (DoRegPressureReduce && IsRPReductionCandidate()) {
491     assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!");
492     // Register pressure pattern 1
493     if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR &&
494         IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) {
495       LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
496       Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA);
497       return true;
498     }
499 
500     // Register pressure pattern 2
501     if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL &&
502          IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) {
503       LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
504       Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC);
505       return true;
506     }
507   }
508 
509   // ILP fma reassociation patterns.
510   // Root must be a valid FMA like instruction.
511   AddOpIdx = -1;
512   if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false))
513     return false;
514 
515   assert((AddOpIdx >= 0) && "add operand index not right!");
516 
517   Register RegB = Root.getOperand(AddOpIdx).getReg();
518   MachineInstr *Prev = MRI->getUniqueVRegDef(RegB);
519 
520   // Prev must be a valid FMA like instruction.
521   AddOpIdx = -1;
522   if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false))
523     return false;
524 
525   assert((AddOpIdx >= 0) && "add operand index not right!");
526 
527   Register RegA = Prev->getOperand(AddOpIdx).getReg();
528   MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA);
529   AddOpIdx = -1;
530   if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) {
531     Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
532     LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
533     return true;
534   }
535   if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) {
536     Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
537     LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
538     return true;
539   }
540   return false;
541 }
542 
543 void PPCInstrInfo::finalizeInsInstrs(
544     MachineInstr &Root, MachineCombinerPattern &P,
545     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
546   assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!");
547 
548   MachineFunction *MF = Root.getMF();
549   MachineRegisterInfo *MRI = &MF->getRegInfo();
550   const TargetRegisterInfo *TRI = &getRegisterInfo();
551   MachineConstantPool *MCP = MF->getConstantPool();
552 
553   int16_t Idx = getFMAOpIdxInfo(Root.getOpcode());
554   if (Idx < 0)
555     return;
556 
557   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
558 
559   // For now we only need to fix up placeholder for register pressure reduce
560   // patterns.
561   Register ConstReg = 0;
562   switch (P) {
563   case MachineCombinerPattern::REASSOC_XY_BCA:
564     ConstReg =
565         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI);
566     break;
567   case MachineCombinerPattern::REASSOC_XY_BAC:
568     ConstReg =
569         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI);
570     break;
571   default:
572     // Not register pressure reduce patterns.
573     return;
574   }
575 
576   MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg);
577   // Get const value from const pool.
578   const Constant *C = getConstantFromConstantPool(ConstDefInstr);
579   assert(isa<llvm::ConstantFP>(C) && "not a valid constant!");
580 
581   // Get negative fp const.
582   APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF());
583   F1.changeSign();
584   Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1);
585   Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType());
586 
587   // Put negative fp const into constant pool.
588   unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment);
589 
590   MachineOperand *Placeholder = nullptr;
591   // Record the placeholder PPC::ZERO8 we add in reassociateFMA.
592   for (auto *Inst : InsInstrs) {
593     for (MachineOperand &Operand : Inst->explicit_operands()) {
594       assert(Operand.isReg() && "Invalid instruction in InsInstrs!");
595       if (Operand.getReg() == PPC::ZERO8) {
596         Placeholder = &Operand;
597         break;
598       }
599     }
600   }
601 
602   assert(Placeholder && "Placeholder does not exist!");
603 
604   // Generate instructions to load the const fp from constant pool.
605   // We only support PPC64 and medium code model.
606   Register LoadNewConst =
607       generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs);
608 
609   // Fill the placeholder with the new load from constant pool.
610   Placeholder->setReg(LoadNewConst);
611 }
612 
613 bool PPCInstrInfo::shouldReduceRegisterPressure(
614     MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const {
615 
616   if (!EnableFMARegPressureReduction)
617     return false;
618 
619   // Currently, we only enable register pressure reducing in machine combiner
620   // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
621   // support.
622   //
623   // So we need following instructions to access a TOC entry:
624   //
625   // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
626   // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
627   //   killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
628   //
629   // FIXME: add more supported targets, like Small and Large code model, PPC32,
630   // AIX.
631   if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
632         Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium))
633     return false;
634 
635   const TargetRegisterInfo *TRI = &getRegisterInfo();
636   MachineFunction *MF = MBB->getParent();
637   MachineRegisterInfo *MRI = &MF->getRegInfo();
638 
639   auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> {
640     RegionPressure Pressure;
641     RegPressureTracker RPTracker(Pressure);
642 
643     // Initialize the register pressure tracker.
644     RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(),
645                    /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
646 
647     for (MachineBasicBlock::iterator MII = MBB->instr_end(),
648                                      MIE = MBB->instr_begin();
649          MII != MIE; --MII) {
650       MachineInstr &MI = *std::prev(MII);
651       if (MI.isDebugValue() || MI.isDebugLabel())
652         continue;
653       RegisterOperands RegOpers;
654       RegOpers.collect(MI, *TRI, *MRI, false, false);
655       RPTracker.recedeSkipDebugValues();
656       assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
657       RPTracker.recede(RegOpers);
658     }
659 
660     // Close the RPTracker to finalize live ins.
661     RPTracker.closeRegion();
662 
663     return RPTracker.getPressure().MaxSetPressure;
664   };
665 
666   // For now we only care about float and double type fma.
667   unsigned VSSRCLimit = TRI->getRegPressureSetLimit(
668       *MBB->getParent(), PPC::RegisterPressureSets::VSSRC);
669 
670   // Only reduce register pressure when pressure is high.
671   return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] >
672          (float)VSSRCLimit * FMARPFactor;
673 }
674 
675 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const {
676   // I has only one memory operand which is load from constant pool.
677   if (!I->hasOneMemOperand())
678     return false;
679 
680   MachineMemOperand *Op = I->memoperands()[0];
681   return Op->isLoad() && Op->getPseudoValue() &&
682          Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool;
683 }
684 
685 Register PPCInstrInfo::generateLoadForNewConst(
686     unsigned Idx, MachineInstr *MI, Type *Ty,
687     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
688   // Now we only support PPC64, Medium code model and P9 with vector.
689   // We have immutable pattern to access const pool. See function
690   // shouldReduceRegisterPressure.
691   assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
692           Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) &&
693          "Target not supported!\n");
694 
695   MachineFunction *MF = MI->getMF();
696   MachineRegisterInfo *MRI = &MF->getRegInfo();
697 
698   // Generate ADDIStocHA8
699   Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
700   MachineInstrBuilder TOCOffset =
701       BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1)
702           .addReg(PPC::X2)
703           .addConstantPoolIndex(Idx);
704 
705   assert((Ty->isFloatTy() || Ty->isDoubleTy()) &&
706          "Only float and double are supported!");
707 
708   unsigned LoadOpcode;
709   // Should be float type or double type.
710   if (Ty->isFloatTy())
711     LoadOpcode = PPC::DFLOADf32;
712   else
713     LoadOpcode = PPC::DFLOADf64;
714 
715   const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
716   Register VReg2 = MRI->createVirtualRegister(RC);
717   MachineMemOperand *MMO = MF->getMachineMemOperand(
718       MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad,
719       Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty));
720 
721   // Generate Load from constant pool.
722   MachineInstrBuilder Load =
723       BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2)
724           .addConstantPoolIndex(Idx)
725           .addReg(VReg1, getKillRegState(true))
726           .addMemOperand(MMO);
727 
728   Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO);
729 
730   // Insert the toc load instructions into InsInstrs.
731   InsInstrs.insert(InsInstrs.begin(), Load);
732   InsInstrs.insert(InsInstrs.begin(), TOCOffset);
733   return VReg2;
734 }
735 
736 // This function returns the const value in constant pool if the \p I is a load
737 // from constant pool.
738 const Constant *
739 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const {
740   MachineFunction *MF = I->getMF();
741   MachineRegisterInfo *MRI = &MF->getRegInfo();
742   MachineConstantPool *MCP = MF->getConstantPool();
743   assert(I->mayLoad() && "Should be a load instruction.\n");
744   for (auto MO : I->uses()) {
745     if (!MO.isReg())
746       continue;
747     Register Reg = MO.getReg();
748     if (Reg == 0 || !Register::isVirtualRegister(Reg))
749       continue;
750     // Find the toc address.
751     MachineInstr *DefMI = MRI->getVRegDef(Reg);
752     for (auto MO2 : DefMI->uses())
753       if (MO2.isCPI())
754         return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal;
755   }
756   return nullptr;
757 }
758 
759 bool PPCInstrInfo::getMachineCombinerPatterns(
760     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
761     bool DoRegPressureReduce) const {
762   // Using the machine combiner in this way is potentially expensive, so
763   // restrict to when aggressive optimizations are desired.
764   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
765     return false;
766 
767   if (getFMAPatterns(Root, Patterns, DoRegPressureReduce))
768     return true;
769 
770   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
771                                                      DoRegPressureReduce);
772 }
773 
774 void PPCInstrInfo::genAlternativeCodeSequence(
775     MachineInstr &Root, MachineCombinerPattern Pattern,
776     SmallVectorImpl<MachineInstr *> &InsInstrs,
777     SmallVectorImpl<MachineInstr *> &DelInstrs,
778     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
779   switch (Pattern) {
780   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
781   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
782   case MachineCombinerPattern::REASSOC_XY_BCA:
783   case MachineCombinerPattern::REASSOC_XY_BAC:
784     reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
785     break;
786   default:
787     // Reassociate default patterns.
788     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
789                                                 DelInstrs, InstrIdxForVirtReg);
790     break;
791   }
792 }
793 
794 void PPCInstrInfo::reassociateFMA(
795     MachineInstr &Root, MachineCombinerPattern Pattern,
796     SmallVectorImpl<MachineInstr *> &InsInstrs,
797     SmallVectorImpl<MachineInstr *> &DelInstrs,
798     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
799   MachineFunction *MF = Root.getMF();
800   MachineRegisterInfo &MRI = MF->getRegInfo();
801   const TargetRegisterInfo *TRI = &getRegisterInfo();
802   MachineOperand &OpC = Root.getOperand(0);
803   Register RegC = OpC.getReg();
804   const TargetRegisterClass *RC = MRI.getRegClass(RegC);
805   MRI.constrainRegClass(RegC, RC);
806 
807   unsigned FmaOp = Root.getOpcode();
808   int16_t Idx = getFMAOpIdxInfo(FmaOp);
809   assert(Idx >= 0 && "Root must be a FMA instruction");
810 
811   bool IsILPReassociate =
812       (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) ||
813       (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
814 
815   uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
816   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
817 
818   MachineInstr *Prev = nullptr;
819   MachineInstr *Leaf = nullptr;
820   switch (Pattern) {
821   default:
822     llvm_unreachable("not recognized pattern!");
823   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
824   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
825     Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
826     Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
827     break;
828   case MachineCombinerPattern::REASSOC_XY_BAC: {
829     Register MULReg =
830         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI);
831     Leaf = MRI.getVRegDef(MULReg);
832     break;
833   }
834   case MachineCombinerPattern::REASSOC_XY_BCA: {
835     Register MULReg = TRI->lookThruCopyLike(
836         Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI);
837     Leaf = MRI.getVRegDef(MULReg);
838     break;
839   }
840   }
841 
842   uint16_t IntersectedFlags = 0;
843   if (IsILPReassociate)
844     IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
845   else
846     IntersectedFlags = Root.getFlags() & Leaf->getFlags();
847 
848   auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
849                             bool &KillFlag) {
850     Reg = Operand.getReg();
851     MRI.constrainRegClass(Reg, RC);
852     KillFlag = Operand.isKill();
853   };
854 
855   auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
856                              Register &MulOp2, Register &AddOp,
857                              bool &MulOp1KillFlag, bool &MulOp2KillFlag,
858                              bool &AddOpKillFlag) {
859     GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
860     GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
861     GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag);
862   };
863 
864   Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11,
865       RegA21, RegB;
866   bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
867        KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false,
868        KillA11 = false, KillA21 = false, KillB = false;
869 
870   GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB);
871 
872   if (IsILPReassociate)
873     GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21);
874 
875   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
876     GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11);
877     GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
878   } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
879     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
880     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
881   } else {
882     // Get FSUB instruction info.
883     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
884     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
885   }
886 
887   // Create new virtual registers for the new results instead of
888   // recycling legacy ones because the MachineCombiner's computation of the
889   // critical path requires a new register definition rather than an existing
890   // one.
891   // For register pressure reassociation, we only need create one virtual
892   // register for the new fma.
893   Register NewVRA = MRI.createVirtualRegister(RC);
894   InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
895 
896   Register NewVRB = 0;
897   if (IsILPReassociate) {
898     NewVRB = MRI.createVirtualRegister(RC);
899     InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
900   }
901 
902   Register NewVRD = 0;
903   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
904     NewVRD = MRI.createVirtualRegister(RC);
905     InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
906   }
907 
908   auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
909                                 Register RegMul1, bool KillRegMul1,
910                                 Register RegMul2, bool KillRegMul2) {
911     MI->getOperand(AddOpIdx).setReg(RegAdd);
912     MI->getOperand(AddOpIdx).setIsKill(KillAdd);
913     MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
914     MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
915     MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
916     MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
917   };
918 
919   MachineInstrBuilder NewARegPressure, NewCRegPressure;
920   switch (Pattern) {
921   default:
922     llvm_unreachable("not recognized pattern!");
923   case MachineCombinerPattern::REASSOC_XY_AMM_BMM: {
924     // Create new instructions for insertion.
925     MachineInstrBuilder MINewB =
926         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
927             .addReg(RegX, getKillRegState(KillX))
928             .addReg(RegM21, getKillRegState(KillM21))
929             .addReg(RegM22, getKillRegState(KillM22));
930     MachineInstrBuilder MINewA =
931         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
932             .addReg(RegY, getKillRegState(KillY))
933             .addReg(RegM31, getKillRegState(KillM31))
934             .addReg(RegM32, getKillRegState(KillM32));
935     // If AddOpIdx is not 1, adjust the order.
936     if (AddOpIdx != 1) {
937       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
938       AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
939     }
940 
941     MachineInstrBuilder MINewC =
942         BuildMI(*MF, Root.getDebugLoc(),
943                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
944             .addReg(NewVRB, getKillRegState(true))
945             .addReg(NewVRA, getKillRegState(true));
946 
947     // Update flags for newly created instructions.
948     setSpecialOperandAttr(*MINewA, IntersectedFlags);
949     setSpecialOperandAttr(*MINewB, IntersectedFlags);
950     setSpecialOperandAttr(*MINewC, IntersectedFlags);
951 
952     // Record new instructions for insertion.
953     InsInstrs.push_back(MINewA);
954     InsInstrs.push_back(MINewB);
955     InsInstrs.push_back(MINewC);
956     break;
957   }
958   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: {
959     assert(NewVRD && "new FMA register not created!");
960     // Create new instructions for insertion.
961     MachineInstrBuilder MINewA =
962         BuildMI(*MF, Leaf->getDebugLoc(),
963                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
964             .addReg(RegM11, getKillRegState(KillM11))
965             .addReg(RegM12, getKillRegState(KillM12));
966     MachineInstrBuilder MINewB =
967         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
968             .addReg(RegX, getKillRegState(KillX))
969             .addReg(RegM21, getKillRegState(KillM21))
970             .addReg(RegM22, getKillRegState(KillM22));
971     MachineInstrBuilder MINewD =
972         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
973             .addReg(NewVRA, getKillRegState(true))
974             .addReg(RegM31, getKillRegState(KillM31))
975             .addReg(RegM32, getKillRegState(KillM32));
976     // If AddOpIdx is not 1, adjust the order.
977     if (AddOpIdx != 1) {
978       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
979       AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
980                          KillM32);
981     }
982 
983     MachineInstrBuilder MINewC =
984         BuildMI(*MF, Root.getDebugLoc(),
985                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
986             .addReg(NewVRB, getKillRegState(true))
987             .addReg(NewVRD, getKillRegState(true));
988 
989     // Update flags for newly created instructions.
990     setSpecialOperandAttr(*MINewA, IntersectedFlags);
991     setSpecialOperandAttr(*MINewB, IntersectedFlags);
992     setSpecialOperandAttr(*MINewD, IntersectedFlags);
993     setSpecialOperandAttr(*MINewC, IntersectedFlags);
994 
995     // Record new instructions for insertion.
996     InsInstrs.push_back(MINewA);
997     InsInstrs.push_back(MINewB);
998     InsInstrs.push_back(MINewD);
999     InsInstrs.push_back(MINewC);
1000     break;
1001   }
1002   case MachineCombinerPattern::REASSOC_XY_BAC:
1003   case MachineCombinerPattern::REASSOC_XY_BCA: {
1004     Register VarReg;
1005     bool KillVarReg = false;
1006     if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) {
1007       VarReg = RegM31;
1008       KillVarReg = KillM31;
1009     } else {
1010       VarReg = RegM32;
1011       KillVarReg = KillM32;
1012     }
1013     // We don't want to get negative const from memory pool too early, as the
1014     // created entry will not be deleted even if it has no users. Since all
1015     // operand of Leaf and Root are virtual register, we use zero register
1016     // here as a placeholder. When the InsInstrs is selected in
1017     // MachineCombiner, we call finalizeInsInstrs to replace the zero register
1018     // with a virtual register which is a load from constant pool.
1019     NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
1020                           .addReg(RegB, getKillRegState(RegB))
1021                           .addReg(RegY, getKillRegState(KillY))
1022                           .addReg(PPC::ZERO8);
1023     NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC)
1024                           .addReg(NewVRA, getKillRegState(true))
1025                           .addReg(RegX, getKillRegState(KillX))
1026                           .addReg(VarReg, getKillRegState(KillVarReg));
1027     // For now, we only support xsmaddadp/xsmaddasp, their add operand are
1028     // both at index 1, no need to adjust.
1029     // FIXME: when add more fma instructions support, like fma/fmas, adjust
1030     // the operand index here.
1031     break;
1032   }
1033   }
1034 
1035   if (!IsILPReassociate) {
1036     setSpecialOperandAttr(*NewARegPressure, IntersectedFlags);
1037     setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags);
1038 
1039     InsInstrs.push_back(NewARegPressure);
1040     InsInstrs.push_back(NewCRegPressure);
1041   }
1042 
1043   assert(!InsInstrs.empty() &&
1044          "Insertion instructions set should not be empty!");
1045 
1046   // Record old instructions for deletion.
1047   DelInstrs.push_back(Leaf);
1048   if (IsILPReassociate)
1049     DelInstrs.push_back(Prev);
1050   DelInstrs.push_back(&Root);
1051 }
1052 
1053 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
1054 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1055                                          Register &SrcReg, Register &DstReg,
1056                                          unsigned &SubIdx) const {
1057   switch (MI.getOpcode()) {
1058   default: return false;
1059   case PPC::EXTSW:
1060   case PPC::EXTSW_32:
1061   case PPC::EXTSW_32_64:
1062     SrcReg = MI.getOperand(1).getReg();
1063     DstReg = MI.getOperand(0).getReg();
1064     SubIdx = PPC::sub_32;
1065     return true;
1066   }
1067 }
1068 
1069 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1070                                            int &FrameIndex) const {
1071   unsigned Opcode = MI.getOpcode();
1072   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1073   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
1074 
1075   if (End != std::find(OpcodesForSpill, End, Opcode)) {
1076     // Check for the operands added by addFrameReference (the immediate is the
1077     // offset which defaults to 0).
1078     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1079         MI.getOperand(2).isFI()) {
1080       FrameIndex = MI.getOperand(2).getIndex();
1081       return MI.getOperand(0).getReg();
1082     }
1083   }
1084   return 0;
1085 }
1086 
1087 // For opcodes with the ReMaterializable flag set, this function is called to
1088 // verify the instruction is really rematable.
1089 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
1090                                                      AliasAnalysis *AA) const {
1091   switch (MI.getOpcode()) {
1092   default:
1093     // This function should only be called for opcodes with the ReMaterializable
1094     // flag set.
1095     llvm_unreachable("Unknown rematerializable operation!");
1096     break;
1097   case PPC::LI:
1098   case PPC::LI8:
1099   case PPC::PLI:
1100   case PPC::PLI8:
1101   case PPC::LIS:
1102   case PPC::LIS8:
1103   case PPC::ADDIStocHA:
1104   case PPC::ADDIStocHA8:
1105   case PPC::ADDItocL:
1106   case PPC::LOAD_STACK_GUARD:
1107   case PPC::XXLXORz:
1108   case PPC::XXLXORspz:
1109   case PPC::XXLXORdpz:
1110   case PPC::XXLEQVOnes:
1111   case PPC::XXSPLTI32DX:
1112   case PPC::V_SET0B:
1113   case PPC::V_SET0H:
1114   case PPC::V_SET0:
1115   case PPC::V_SETALLONESB:
1116   case PPC::V_SETALLONESH:
1117   case PPC::V_SETALLONES:
1118   case PPC::CRSET:
1119   case PPC::CRUNSET:
1120   case PPC::XXSETACCZ:
1121     return true;
1122   }
1123   return false;
1124 }
1125 
1126 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1127                                           int &FrameIndex) const {
1128   unsigned Opcode = MI.getOpcode();
1129   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1130   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
1131 
1132   if (End != std::find(OpcodesForSpill, End, Opcode)) {
1133     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1134         MI.getOperand(2).isFI()) {
1135       FrameIndex = MI.getOperand(2).getIndex();
1136       return MI.getOperand(0).getReg();
1137     }
1138   }
1139   return 0;
1140 }
1141 
1142 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1143                                                    unsigned OpIdx1,
1144                                                    unsigned OpIdx2) const {
1145   MachineFunction &MF = *MI.getParent()->getParent();
1146 
1147   // Normal instructions can be commuted the obvious way.
1148   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
1149     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1150   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
1151   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
1152   // changing the relative order of the mask operands might change what happens
1153   // to the high-bits of the mask (and, thus, the result).
1154 
1155   // Cannot commute if it has a non-zero rotate count.
1156   if (MI.getOperand(3).getImm() != 0)
1157     return nullptr;
1158 
1159   // If we have a zero rotate count, we have:
1160   //   M = mask(MB,ME)
1161   //   Op0 = (Op1 & ~M) | (Op2 & M)
1162   // Change this to:
1163   //   M = mask((ME+1)&31, (MB-1)&31)
1164   //   Op0 = (Op2 & ~M) | (Op1 & M)
1165 
1166   // Swap op1/op2
1167   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
1168          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
1169   Register Reg0 = MI.getOperand(0).getReg();
1170   Register Reg1 = MI.getOperand(1).getReg();
1171   Register Reg2 = MI.getOperand(2).getReg();
1172   unsigned SubReg1 = MI.getOperand(1).getSubReg();
1173   unsigned SubReg2 = MI.getOperand(2).getSubReg();
1174   bool Reg1IsKill = MI.getOperand(1).isKill();
1175   bool Reg2IsKill = MI.getOperand(2).isKill();
1176   bool ChangeReg0 = false;
1177   // If machine instrs are no longer in two-address forms, update
1178   // destination register as well.
1179   if (Reg0 == Reg1) {
1180     // Must be two address instruction!
1181     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
1182            "Expecting a two-address instruction!");
1183     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
1184     Reg2IsKill = false;
1185     ChangeReg0 = true;
1186   }
1187 
1188   // Masks.
1189   unsigned MB = MI.getOperand(4).getImm();
1190   unsigned ME = MI.getOperand(5).getImm();
1191 
1192   // We can't commute a trivial mask (there is no way to represent an all-zero
1193   // mask).
1194   if (MB == 0 && ME == 31)
1195     return nullptr;
1196 
1197   if (NewMI) {
1198     // Create a new instruction.
1199     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
1200     bool Reg0IsDead = MI.getOperand(0).isDead();
1201     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
1202         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
1203         .addReg(Reg2, getKillRegState(Reg2IsKill))
1204         .addReg(Reg1, getKillRegState(Reg1IsKill))
1205         .addImm((ME + 1) & 31)
1206         .addImm((MB - 1) & 31);
1207   }
1208 
1209   if (ChangeReg0) {
1210     MI.getOperand(0).setReg(Reg2);
1211     MI.getOperand(0).setSubReg(SubReg2);
1212   }
1213   MI.getOperand(2).setReg(Reg1);
1214   MI.getOperand(1).setReg(Reg2);
1215   MI.getOperand(2).setSubReg(SubReg1);
1216   MI.getOperand(1).setSubReg(SubReg2);
1217   MI.getOperand(2).setIsKill(Reg1IsKill);
1218   MI.getOperand(1).setIsKill(Reg2IsKill);
1219 
1220   // Swap the mask around.
1221   MI.getOperand(4).setImm((ME + 1) & 31);
1222   MI.getOperand(5).setImm((MB - 1) & 31);
1223   return &MI;
1224 }
1225 
1226 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1227                                          unsigned &SrcOpIdx1,
1228                                          unsigned &SrcOpIdx2) const {
1229   // For VSX A-Type FMA instructions, it is the first two operands that can be
1230   // commuted, however, because the non-encoded tied input operand is listed
1231   // first, the operands to swap are actually the second and third.
1232 
1233   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
1234   if (AltOpc == -1)
1235     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1236 
1237   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
1238   // and SrcOpIdx2.
1239   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
1240 }
1241 
1242 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
1243                               MachineBasicBlock::iterator MI) const {
1244   // This function is used for scheduling, and the nop wanted here is the type
1245   // that terminates dispatch groups on the POWER cores.
1246   unsigned Directive = Subtarget.getCPUDirective();
1247   unsigned Opcode;
1248   switch (Directive) {
1249   default:            Opcode = PPC::NOP; break;
1250   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
1251   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
1252   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
1253   // FIXME: Update when POWER9 scheduling model is ready.
1254   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
1255   }
1256 
1257   DebugLoc DL;
1258   BuildMI(MBB, MI, DL, get(Opcode));
1259 }
1260 
1261 /// Return the noop instruction to use for a noop.
1262 MCInst PPCInstrInfo::getNop() const {
1263   MCInst Nop;
1264   Nop.setOpcode(PPC::NOP);
1265   return Nop;
1266 }
1267 
1268 // Branch analysis.
1269 // Note: If the condition register is set to CTR or CTR8 then this is a
1270 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
1271 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
1272                                  MachineBasicBlock *&TBB,
1273                                  MachineBasicBlock *&FBB,
1274                                  SmallVectorImpl<MachineOperand> &Cond,
1275                                  bool AllowModify) const {
1276   bool isPPC64 = Subtarget.isPPC64();
1277 
1278   // If the block has no terminators, it just falls into the block after it.
1279   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1280   if (I == MBB.end())
1281     return false;
1282 
1283   if (!isUnpredicatedTerminator(*I))
1284     return false;
1285 
1286   if (AllowModify) {
1287     // If the BB ends with an unconditional branch to the fallthrough BB,
1288     // we eliminate the branch instruction.
1289     if (I->getOpcode() == PPC::B &&
1290         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1291       I->eraseFromParent();
1292 
1293       // We update iterator after deleting the last branch.
1294       I = MBB.getLastNonDebugInstr();
1295       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
1296         return false;
1297     }
1298   }
1299 
1300   // Get the last instruction in the block.
1301   MachineInstr &LastInst = *I;
1302 
1303   // If there is only one terminator instruction, process it.
1304   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
1305     if (LastInst.getOpcode() == PPC::B) {
1306       if (!LastInst.getOperand(0).isMBB())
1307         return true;
1308       TBB = LastInst.getOperand(0).getMBB();
1309       return false;
1310     } else if (LastInst.getOpcode() == PPC::BCC) {
1311       if (!LastInst.getOperand(2).isMBB())
1312         return true;
1313       // Block ends with fall-through condbranch.
1314       TBB = LastInst.getOperand(2).getMBB();
1315       Cond.push_back(LastInst.getOperand(0));
1316       Cond.push_back(LastInst.getOperand(1));
1317       return false;
1318     } else if (LastInst.getOpcode() == PPC::BC) {
1319       if (!LastInst.getOperand(1).isMBB())
1320         return true;
1321       // Block ends with fall-through condbranch.
1322       TBB = LastInst.getOperand(1).getMBB();
1323       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1324       Cond.push_back(LastInst.getOperand(0));
1325       return false;
1326     } else if (LastInst.getOpcode() == PPC::BCn) {
1327       if (!LastInst.getOperand(1).isMBB())
1328         return true;
1329       // Block ends with fall-through condbranch.
1330       TBB = LastInst.getOperand(1).getMBB();
1331       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1332       Cond.push_back(LastInst.getOperand(0));
1333       return false;
1334     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
1335                LastInst.getOpcode() == PPC::BDNZ) {
1336       if (!LastInst.getOperand(0).isMBB())
1337         return true;
1338       if (DisableCTRLoopAnal)
1339         return true;
1340       TBB = LastInst.getOperand(0).getMBB();
1341       Cond.push_back(MachineOperand::CreateImm(1));
1342       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1343                                                true));
1344       return false;
1345     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
1346                LastInst.getOpcode() == PPC::BDZ) {
1347       if (!LastInst.getOperand(0).isMBB())
1348         return true;
1349       if (DisableCTRLoopAnal)
1350         return true;
1351       TBB = LastInst.getOperand(0).getMBB();
1352       Cond.push_back(MachineOperand::CreateImm(0));
1353       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1354                                                true));
1355       return false;
1356     }
1357 
1358     // Otherwise, don't know what this is.
1359     return true;
1360   }
1361 
1362   // Get the instruction before it if it's a terminator.
1363   MachineInstr &SecondLastInst = *I;
1364 
1365   // If there are three terminators, we don't know what sort of block this is.
1366   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
1367     return true;
1368 
1369   // If the block ends with PPC::B and PPC:BCC, handle it.
1370   if (SecondLastInst.getOpcode() == PPC::BCC &&
1371       LastInst.getOpcode() == PPC::B) {
1372     if (!SecondLastInst.getOperand(2).isMBB() ||
1373         !LastInst.getOperand(0).isMBB())
1374       return true;
1375     TBB = SecondLastInst.getOperand(2).getMBB();
1376     Cond.push_back(SecondLastInst.getOperand(0));
1377     Cond.push_back(SecondLastInst.getOperand(1));
1378     FBB = LastInst.getOperand(0).getMBB();
1379     return false;
1380   } else if (SecondLastInst.getOpcode() == PPC::BC &&
1381              LastInst.getOpcode() == PPC::B) {
1382     if (!SecondLastInst.getOperand(1).isMBB() ||
1383         !LastInst.getOperand(0).isMBB())
1384       return true;
1385     TBB = SecondLastInst.getOperand(1).getMBB();
1386     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1387     Cond.push_back(SecondLastInst.getOperand(0));
1388     FBB = LastInst.getOperand(0).getMBB();
1389     return false;
1390   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
1391              LastInst.getOpcode() == PPC::B) {
1392     if (!SecondLastInst.getOperand(1).isMBB() ||
1393         !LastInst.getOperand(0).isMBB())
1394       return true;
1395     TBB = SecondLastInst.getOperand(1).getMBB();
1396     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1397     Cond.push_back(SecondLastInst.getOperand(0));
1398     FBB = LastInst.getOperand(0).getMBB();
1399     return false;
1400   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
1401               SecondLastInst.getOpcode() == PPC::BDNZ) &&
1402              LastInst.getOpcode() == PPC::B) {
1403     if (!SecondLastInst.getOperand(0).isMBB() ||
1404         !LastInst.getOperand(0).isMBB())
1405       return true;
1406     if (DisableCTRLoopAnal)
1407       return true;
1408     TBB = SecondLastInst.getOperand(0).getMBB();
1409     Cond.push_back(MachineOperand::CreateImm(1));
1410     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1411                                              true));
1412     FBB = LastInst.getOperand(0).getMBB();
1413     return false;
1414   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
1415               SecondLastInst.getOpcode() == PPC::BDZ) &&
1416              LastInst.getOpcode() == PPC::B) {
1417     if (!SecondLastInst.getOperand(0).isMBB() ||
1418         !LastInst.getOperand(0).isMBB())
1419       return true;
1420     if (DisableCTRLoopAnal)
1421       return true;
1422     TBB = SecondLastInst.getOperand(0).getMBB();
1423     Cond.push_back(MachineOperand::CreateImm(0));
1424     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1425                                              true));
1426     FBB = LastInst.getOperand(0).getMBB();
1427     return false;
1428   }
1429 
1430   // If the block ends with two PPC:Bs, handle it.  The second one is not
1431   // executed, so remove it.
1432   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
1433     if (!SecondLastInst.getOperand(0).isMBB())
1434       return true;
1435     TBB = SecondLastInst.getOperand(0).getMBB();
1436     I = LastInst;
1437     if (AllowModify)
1438       I->eraseFromParent();
1439     return false;
1440   }
1441 
1442   // Otherwise, can't handle this.
1443   return true;
1444 }
1445 
1446 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
1447                                     int *BytesRemoved) const {
1448   assert(!BytesRemoved && "code size not handled");
1449 
1450   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1451   if (I == MBB.end())
1452     return 0;
1453 
1454   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1455       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1456       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1457       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1458     return 0;
1459 
1460   // Remove the branch.
1461   I->eraseFromParent();
1462 
1463   I = MBB.end();
1464 
1465   if (I == MBB.begin()) return 1;
1466   --I;
1467   if (I->getOpcode() != PPC::BCC &&
1468       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1469       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1470       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1471     return 1;
1472 
1473   // Remove the branch.
1474   I->eraseFromParent();
1475   return 2;
1476 }
1477 
1478 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1479                                     MachineBasicBlock *TBB,
1480                                     MachineBasicBlock *FBB,
1481                                     ArrayRef<MachineOperand> Cond,
1482                                     const DebugLoc &DL,
1483                                     int *BytesAdded) const {
1484   // Shouldn't be a fall through.
1485   assert(TBB && "insertBranch must not be told to insert a fallthrough");
1486   assert((Cond.size() == 2 || Cond.size() == 0) &&
1487          "PPC branch conditions have two components!");
1488   assert(!BytesAdded && "code size not handled");
1489 
1490   bool isPPC64 = Subtarget.isPPC64();
1491 
1492   // One-way branch.
1493   if (!FBB) {
1494     if (Cond.empty())   // Unconditional branch
1495       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1496     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1497       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1498                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1499                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1500     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1501       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1502     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1503       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1504     else                // Conditional branch
1505       BuildMI(&MBB, DL, get(PPC::BCC))
1506           .addImm(Cond[0].getImm())
1507           .add(Cond[1])
1508           .addMBB(TBB);
1509     return 1;
1510   }
1511 
1512   // Two-way Conditional Branch.
1513   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1514     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1515                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1516                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1517   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1518     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1519   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1520     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1521   else
1522     BuildMI(&MBB, DL, get(PPC::BCC))
1523         .addImm(Cond[0].getImm())
1524         .add(Cond[1])
1525         .addMBB(TBB);
1526   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1527   return 2;
1528 }
1529 
1530 // Select analysis.
1531 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1532                                    ArrayRef<MachineOperand> Cond,
1533                                    Register DstReg, Register TrueReg,
1534                                    Register FalseReg, int &CondCycles,
1535                                    int &TrueCycles, int &FalseCycles) const {
1536   if (Cond.size() != 2)
1537     return false;
1538 
1539   // If this is really a bdnz-like condition, then it cannot be turned into a
1540   // select.
1541   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1542     return false;
1543 
1544   // Check register classes.
1545   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1546   const TargetRegisterClass *RC =
1547     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1548   if (!RC)
1549     return false;
1550 
1551   // isel is for regular integer GPRs only.
1552   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1553       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1554       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1555       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1556     return false;
1557 
1558   // FIXME: These numbers are for the A2, how well they work for other cores is
1559   // an open question. On the A2, the isel instruction has a 2-cycle latency
1560   // but single-cycle throughput. These numbers are used in combination with
1561   // the MispredictPenalty setting from the active SchedMachineModel.
1562   CondCycles = 1;
1563   TrueCycles = 1;
1564   FalseCycles = 1;
1565 
1566   return true;
1567 }
1568 
1569 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1570                                 MachineBasicBlock::iterator MI,
1571                                 const DebugLoc &dl, Register DestReg,
1572                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
1573                                 Register FalseReg) const {
1574   assert(Cond.size() == 2 &&
1575          "PPC branch conditions have two components!");
1576 
1577   // Get the register classes.
1578   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1579   const TargetRegisterClass *RC =
1580     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1581   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1582 
1583   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1584                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1585   assert((Is64Bit ||
1586           PPC::GPRCRegClass.hasSubClassEq(RC) ||
1587           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1588          "isel is for regular integer GPRs only");
1589 
1590   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1591   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1592 
1593   unsigned SubIdx = 0;
1594   bool SwapOps = false;
1595   switch (SelectPred) {
1596   case PPC::PRED_EQ:
1597   case PPC::PRED_EQ_MINUS:
1598   case PPC::PRED_EQ_PLUS:
1599       SubIdx = PPC::sub_eq; SwapOps = false; break;
1600   case PPC::PRED_NE:
1601   case PPC::PRED_NE_MINUS:
1602   case PPC::PRED_NE_PLUS:
1603       SubIdx = PPC::sub_eq; SwapOps = true; break;
1604   case PPC::PRED_LT:
1605   case PPC::PRED_LT_MINUS:
1606   case PPC::PRED_LT_PLUS:
1607       SubIdx = PPC::sub_lt; SwapOps = false; break;
1608   case PPC::PRED_GE:
1609   case PPC::PRED_GE_MINUS:
1610   case PPC::PRED_GE_PLUS:
1611       SubIdx = PPC::sub_lt; SwapOps = true; break;
1612   case PPC::PRED_GT:
1613   case PPC::PRED_GT_MINUS:
1614   case PPC::PRED_GT_PLUS:
1615       SubIdx = PPC::sub_gt; SwapOps = false; break;
1616   case PPC::PRED_LE:
1617   case PPC::PRED_LE_MINUS:
1618   case PPC::PRED_LE_PLUS:
1619       SubIdx = PPC::sub_gt; SwapOps = true; break;
1620   case PPC::PRED_UN:
1621   case PPC::PRED_UN_MINUS:
1622   case PPC::PRED_UN_PLUS:
1623       SubIdx = PPC::sub_un; SwapOps = false; break;
1624   case PPC::PRED_NU:
1625   case PPC::PRED_NU_MINUS:
1626   case PPC::PRED_NU_PLUS:
1627       SubIdx = PPC::sub_un; SwapOps = true; break;
1628   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
1629   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1630   }
1631 
1632   Register FirstReg =  SwapOps ? FalseReg : TrueReg,
1633            SecondReg = SwapOps ? TrueReg  : FalseReg;
1634 
1635   // The first input register of isel cannot be r0. If it is a member
1636   // of a register class that can be r0, then copy it first (the
1637   // register allocator should eliminate the copy).
1638   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1639       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1640     const TargetRegisterClass *FirstRC =
1641       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1642         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1643     Register OldFirstReg = FirstReg;
1644     FirstReg = MRI.createVirtualRegister(FirstRC);
1645     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1646       .addReg(OldFirstReg);
1647   }
1648 
1649   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1650     .addReg(FirstReg).addReg(SecondReg)
1651     .addReg(Cond[1].getReg(), 0, SubIdx);
1652 }
1653 
1654 static unsigned getCRBitValue(unsigned CRBit) {
1655   unsigned Ret = 4;
1656   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1657       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1658       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1659       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1660     Ret = 3;
1661   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1662       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1663       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1664       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1665     Ret = 2;
1666   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1667       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1668       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1669       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1670     Ret = 1;
1671   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1672       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1673       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1674       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1675     Ret = 0;
1676 
1677   assert(Ret != 4 && "Invalid CR bit register");
1678   return Ret;
1679 }
1680 
1681 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1682                                MachineBasicBlock::iterator I,
1683                                const DebugLoc &DL, MCRegister DestReg,
1684                                MCRegister SrcReg, bool KillSrc) const {
1685   // We can end up with self copies and similar things as a result of VSX copy
1686   // legalization. Promote them here.
1687   const TargetRegisterInfo *TRI = &getRegisterInfo();
1688   if (PPC::F8RCRegClass.contains(DestReg) &&
1689       PPC::VSRCRegClass.contains(SrcReg)) {
1690     MCRegister SuperReg =
1691         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1692 
1693     if (VSXSelfCopyCrash && SrcReg == SuperReg)
1694       llvm_unreachable("nop VSX copy");
1695 
1696     DestReg = SuperReg;
1697   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1698              PPC::VSRCRegClass.contains(DestReg)) {
1699     MCRegister SuperReg =
1700         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1701 
1702     if (VSXSelfCopyCrash && DestReg == SuperReg)
1703       llvm_unreachable("nop VSX copy");
1704 
1705     SrcReg = SuperReg;
1706   }
1707 
1708   // Different class register copy
1709   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1710       PPC::GPRCRegClass.contains(DestReg)) {
1711     MCRegister CRReg = getCRFromCRBit(SrcReg);
1712     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1713     getKillRegState(KillSrc);
1714     // Rotate the CR bit in the CR fields to be the least significant bit and
1715     // then mask with 0x1 (MB = ME = 31).
1716     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1717        .addReg(DestReg, RegState::Kill)
1718        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1719        .addImm(31)
1720        .addImm(31);
1721     return;
1722   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1723              (PPC::G8RCRegClass.contains(DestReg) ||
1724               PPC::GPRCRegClass.contains(DestReg))) {
1725     bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
1726     unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
1727     unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
1728     unsigned CRNum = TRI->getEncodingValue(SrcReg);
1729     BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
1730     getKillRegState(KillSrc);
1731     if (CRNum == 7)
1732       return;
1733     // Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
1734     BuildMI(MBB, I, DL, get(ShCode), DestReg)
1735         .addReg(DestReg, RegState::Kill)
1736         .addImm(CRNum * 4 + 4)
1737         .addImm(28)
1738         .addImm(31);
1739     return;
1740   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1741              PPC::VSFRCRegClass.contains(DestReg)) {
1742     assert(Subtarget.hasDirectMove() &&
1743            "Subtarget doesn't support directmove, don't know how to copy.");
1744     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1745     NumGPRtoVSRSpill++;
1746     getKillRegState(KillSrc);
1747     return;
1748   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1749              PPC::G8RCRegClass.contains(DestReg)) {
1750     assert(Subtarget.hasDirectMove() &&
1751            "Subtarget doesn't support directmove, don't know how to copy.");
1752     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1753     getKillRegState(KillSrc);
1754     return;
1755   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1756              PPC::GPRCRegClass.contains(DestReg)) {
1757     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1758     getKillRegState(KillSrc);
1759     return;
1760   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1761              PPC::SPERCRegClass.contains(DestReg)) {
1762     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1763     getKillRegState(KillSrc);
1764     return;
1765   }
1766 
1767   unsigned Opc;
1768   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1769     Opc = PPC::OR;
1770   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1771     Opc = PPC::OR8;
1772   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1773     Opc = PPC::FMR;
1774   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1775     Opc = PPC::MCRF;
1776   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1777     Opc = PPC::VOR;
1778   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1779     // There are two different ways this can be done:
1780     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1781     //      issue in VSU pipeline 0.
1782     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1783     //      can go to either pipeline.
1784     // We'll always use xxlor here, because in practically all cases where
1785     // copies are generated, they are close enough to some use that the
1786     // lower-latency form is preferable.
1787     Opc = PPC::XXLOR;
1788   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1789            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1790     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1791   else if (Subtarget.pairedVectorMemops() &&
1792            PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
1793     if (SrcReg > PPC::VSRp15)
1794       SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
1795     else
1796       SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1797     if (DestReg > PPC::VSRp15)
1798       DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
1799     else
1800       DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
1801     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
1802       addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1803     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
1804       addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
1805     return;
1806   }
1807   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1808     Opc = PPC::CROR;
1809   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1810     Opc = PPC::EVOR;
1811   else if ((PPC::ACCRCRegClass.contains(DestReg) ||
1812             PPC::UACCRCRegClass.contains(DestReg)) &&
1813            (PPC::ACCRCRegClass.contains(SrcReg) ||
1814             PPC::UACCRCRegClass.contains(SrcReg))) {
1815     // If primed, de-prime the source register, copy the individual registers
1816     // and prime the destination if needed. The vector subregisters are
1817     // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
1818     // source is primed, we need to re-prime it after the copy as well.
1819     PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
1820     bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
1821     bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1822     MCRegister VSLSrcReg =
1823         PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1824     MCRegister VSLDestReg =
1825         PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1826     if (SrcPrimed)
1827       BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1828     for (unsigned Idx = 0; Idx < 4; Idx++)
1829       BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
1830           .addReg(VSLSrcReg + Idx)
1831           .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
1832     if (DestPrimed)
1833       BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
1834     if (SrcPrimed && !KillSrc)
1835       BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1836     return;
1837   } else
1838     llvm_unreachable("Impossible reg-to-reg copy");
1839 
1840   const MCInstrDesc &MCID = get(Opc);
1841   if (MCID.getNumOperands() == 3)
1842     BuildMI(MBB, I, DL, MCID, DestReg)
1843       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1844   else
1845     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1846 }
1847 
1848 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
1849   int OpcodeIndex = 0;
1850 
1851   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1852       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1853     OpcodeIndex = SOK_Int4Spill;
1854   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1855              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1856     OpcodeIndex = SOK_Int8Spill;
1857   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1858     OpcodeIndex = SOK_Float8Spill;
1859   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1860     OpcodeIndex = SOK_Float4Spill;
1861   } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1862     OpcodeIndex = SOK_SPESpill;
1863   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1864     OpcodeIndex = SOK_CRSpill;
1865   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1866     OpcodeIndex = SOK_CRBitSpill;
1867   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1868     OpcodeIndex = SOK_VRVectorSpill;
1869   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1870     OpcodeIndex = SOK_VSXVectorSpill;
1871   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1872     OpcodeIndex = SOK_VectorFloat8Spill;
1873   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1874     OpcodeIndex = SOK_VectorFloat4Spill;
1875   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1876     OpcodeIndex = SOK_SpillToVSR;
1877   } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
1878     assert(Subtarget.pairedVectorMemops() &&
1879            "Register unexpected when paired memops are disabled.");
1880     OpcodeIndex = SOK_AccumulatorSpill;
1881   } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
1882     assert(Subtarget.pairedVectorMemops() &&
1883            "Register unexpected when paired memops are disabled.");
1884     OpcodeIndex = SOK_UAccumulatorSpill;
1885   } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
1886     assert(Subtarget.pairedVectorMemops() &&
1887            "Register unexpected when paired memops are disabled.");
1888     OpcodeIndex = SOK_PairedVecSpill;
1889   } else {
1890     llvm_unreachable("Unknown regclass!");
1891   }
1892   return OpcodeIndex;
1893 }
1894 
1895 unsigned
1896 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1897   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1898   return OpcodesForSpill[getSpillIndex(RC)];
1899 }
1900 
1901 unsigned
1902 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1903   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1904   return OpcodesForSpill[getSpillIndex(RC)];
1905 }
1906 
1907 void PPCInstrInfo::StoreRegToStackSlot(
1908     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1909     const TargetRegisterClass *RC,
1910     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1911   unsigned Opcode = getStoreOpcodeForSpill(RC);
1912   DebugLoc DL;
1913 
1914   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1915   FuncInfo->setHasSpills();
1916 
1917   NewMIs.push_back(addFrameReference(
1918       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1919       FrameIdx));
1920 
1921   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1922       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1923     FuncInfo->setSpillsCR();
1924 
1925   if (isXFormMemOp(Opcode))
1926     FuncInfo->setHasNonRISpills();
1927 }
1928 
1929 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1930     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1931     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1932     const TargetRegisterInfo *TRI) const {
1933   MachineFunction &MF = *MBB.getParent();
1934   SmallVector<MachineInstr *, 4> NewMIs;
1935 
1936   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1937 
1938   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1939     MBB.insert(MI, NewMIs[i]);
1940 
1941   const MachineFrameInfo &MFI = MF.getFrameInfo();
1942   MachineMemOperand *MMO = MF.getMachineMemOperand(
1943       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1944       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1945       MFI.getObjectAlign(FrameIdx));
1946   NewMIs.back()->addMemOperand(MF, MMO);
1947 }
1948 
1949 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1950                                        MachineBasicBlock::iterator MI,
1951                                        Register SrcReg, bool isKill,
1952                                        int FrameIdx,
1953                                        const TargetRegisterClass *RC,
1954                                        const TargetRegisterInfo *TRI) const {
1955   // We need to avoid a situation in which the value from a VRRC register is
1956   // spilled using an Altivec instruction and reloaded into a VSRC register
1957   // using a VSX instruction. The issue with this is that the VSX
1958   // load/store instructions swap the doublewords in the vector and the Altivec
1959   // ones don't. The register classes on the spill/reload may be different if
1960   // the register is defined using an Altivec instruction and is then used by a
1961   // VSX instruction.
1962   RC = updatedRC(RC);
1963   storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1964 }
1965 
1966 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1967                                         unsigned DestReg, int FrameIdx,
1968                                         const TargetRegisterClass *RC,
1969                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1970                                         const {
1971   unsigned Opcode = getLoadOpcodeForSpill(RC);
1972   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1973                                      FrameIdx));
1974   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1975 
1976   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1977       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1978     FuncInfo->setSpillsCR();
1979 
1980   if (isXFormMemOp(Opcode))
1981     FuncInfo->setHasNonRISpills();
1982 }
1983 
1984 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
1985     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
1986     int FrameIdx, const TargetRegisterClass *RC,
1987     const TargetRegisterInfo *TRI) const {
1988   MachineFunction &MF = *MBB.getParent();
1989   SmallVector<MachineInstr*, 4> NewMIs;
1990   DebugLoc DL;
1991   if (MI != MBB.end()) DL = MI->getDebugLoc();
1992 
1993   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1994   FuncInfo->setHasSpills();
1995 
1996   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1997 
1998   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1999     MBB.insert(MI, NewMIs[i]);
2000 
2001   const MachineFrameInfo &MFI = MF.getFrameInfo();
2002   MachineMemOperand *MMO = MF.getMachineMemOperand(
2003       MachinePointerInfo::getFixedStack(MF, FrameIdx),
2004       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
2005       MFI.getObjectAlign(FrameIdx));
2006   NewMIs.back()->addMemOperand(MF, MMO);
2007 }
2008 
2009 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2010                                         MachineBasicBlock::iterator MI,
2011                                         Register DestReg, int FrameIdx,
2012                                         const TargetRegisterClass *RC,
2013                                         const TargetRegisterInfo *TRI) const {
2014   // We need to avoid a situation in which the value from a VRRC register is
2015   // spilled using an Altivec instruction and reloaded into a VSRC register
2016   // using a VSX instruction. The issue with this is that the VSX
2017   // load/store instructions swap the doublewords in the vector and the Altivec
2018   // ones don't. The register classes on the spill/reload may be different if
2019   // the register is defined using an Altivec instruction and is then used by a
2020   // VSX instruction.
2021   RC = updatedRC(RC);
2022 
2023   loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
2024 }
2025 
2026 bool PPCInstrInfo::
2027 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2028   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
2029   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
2030     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
2031   else
2032     // Leave the CR# the same, but invert the condition.
2033     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
2034   return false;
2035 }
2036 
2037 // For some instructions, it is legal to fold ZERO into the RA register field.
2038 // This function performs that fold by replacing the operand with PPC::ZERO,
2039 // it does not consider whether the load immediate zero is no longer in use.
2040 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2041                                      Register Reg) const {
2042   // A zero immediate should always be loaded with a single li.
2043   unsigned DefOpc = DefMI.getOpcode();
2044   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
2045     return false;
2046   if (!DefMI.getOperand(1).isImm())
2047     return false;
2048   if (DefMI.getOperand(1).getImm() != 0)
2049     return false;
2050 
2051   // Note that we cannot here invert the arguments of an isel in order to fold
2052   // a ZERO into what is presented as the second argument. All we have here
2053   // is the condition bit, and that might come from a CR-logical bit operation.
2054 
2055   const MCInstrDesc &UseMCID = UseMI.getDesc();
2056 
2057   // Only fold into real machine instructions.
2058   if (UseMCID.isPseudo())
2059     return false;
2060 
2061   // We need to find which of the User's operands is to be folded, that will be
2062   // the operand that matches the given register ID.
2063   unsigned UseIdx;
2064   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
2065     if (UseMI.getOperand(UseIdx).isReg() &&
2066         UseMI.getOperand(UseIdx).getReg() == Reg)
2067       break;
2068 
2069   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
2070   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
2071 
2072   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
2073 
2074   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
2075   // register (which might also be specified as a pointer class kind).
2076   if (UseInfo->isLookupPtrRegClass()) {
2077     if (UseInfo->RegClass /* Kind */ != 1)
2078       return false;
2079   } else {
2080     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
2081         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
2082       return false;
2083   }
2084 
2085   // Make sure this is not tied to an output register (or otherwise
2086   // constrained). This is true for ST?UX registers, for example, which
2087   // are tied to their output registers.
2088   if (UseInfo->Constraints != 0)
2089     return false;
2090 
2091   MCRegister ZeroReg;
2092   if (UseInfo->isLookupPtrRegClass()) {
2093     bool isPPC64 = Subtarget.isPPC64();
2094     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
2095   } else {
2096     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
2097               PPC::ZERO8 : PPC::ZERO;
2098   }
2099 
2100   UseMI.getOperand(UseIdx).setReg(ZeroReg);
2101   return true;
2102 }
2103 
2104 // Folds zero into instructions which have a load immediate zero as an operand
2105 // but also recognize zero as immediate zero. If the definition of the load
2106 // has no more users it is deleted.
2107 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2108                                  Register Reg, MachineRegisterInfo *MRI) const {
2109   bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
2110   if (MRI->use_nodbg_empty(Reg))
2111     DefMI.eraseFromParent();
2112   return Changed;
2113 }
2114 
2115 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
2116   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
2117        I != IE; ++I)
2118     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
2119       return true;
2120   return false;
2121 }
2122 
2123 // We should make sure that, if we're going to predicate both sides of a
2124 // condition (a diamond), that both sides don't define the counter register. We
2125 // can predicate counter-decrement-based branches, but while that predicates
2126 // the branching, it does not predicate the counter decrement. If we tried to
2127 // merge the triangle into one predicated block, we'd decrement the counter
2128 // twice.
2129 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
2130                      unsigned NumT, unsigned ExtraT,
2131                      MachineBasicBlock &FMBB,
2132                      unsigned NumF, unsigned ExtraF,
2133                      BranchProbability Probability) const {
2134   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
2135 }
2136 
2137 
2138 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
2139   // The predicated branches are identified by their type, not really by the
2140   // explicit presence of a predicate. Furthermore, some of them can be
2141   // predicated more than once. Because if conversion won't try to predicate
2142   // any instruction which already claims to be predicated (by returning true
2143   // here), always return false. In doing so, we let isPredicable() be the
2144   // final word on whether not the instruction can be (further) predicated.
2145 
2146   return false;
2147 }
2148 
2149 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2150                                         const MachineBasicBlock *MBB,
2151                                         const MachineFunction &MF) const {
2152   // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
2153   // across them, since some FP operations may change content of FPSCR.
2154   // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
2155   if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
2156     return true;
2157   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
2158 }
2159 
2160 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
2161                                         ArrayRef<MachineOperand> Pred) const {
2162   unsigned OpC = MI.getOpcode();
2163   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
2164     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2165       bool isPPC64 = Subtarget.isPPC64();
2166       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
2167                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
2168       // Need add Def and Use for CTR implicit operand.
2169       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2170           .addReg(Pred[1].getReg(), RegState::Implicit)
2171           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2172     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2173       MI.setDesc(get(PPC::BCLR));
2174       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2175     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2176       MI.setDesc(get(PPC::BCLRn));
2177       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2178     } else {
2179       MI.setDesc(get(PPC::BCCLR));
2180       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2181           .addImm(Pred[0].getImm())
2182           .add(Pred[1]);
2183     }
2184 
2185     return true;
2186   } else if (OpC == PPC::B) {
2187     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2188       bool isPPC64 = Subtarget.isPPC64();
2189       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
2190                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
2191       // Need add Def and Use for CTR implicit operand.
2192       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2193           .addReg(Pred[1].getReg(), RegState::Implicit)
2194           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2195     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2196       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2197       MI.RemoveOperand(0);
2198 
2199       MI.setDesc(get(PPC::BC));
2200       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2201           .add(Pred[1])
2202           .addMBB(MBB);
2203     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2204       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2205       MI.RemoveOperand(0);
2206 
2207       MI.setDesc(get(PPC::BCn));
2208       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2209           .add(Pred[1])
2210           .addMBB(MBB);
2211     } else {
2212       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2213       MI.RemoveOperand(0);
2214 
2215       MI.setDesc(get(PPC::BCC));
2216       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2217           .addImm(Pred[0].getImm())
2218           .add(Pred[1])
2219           .addMBB(MBB);
2220     }
2221 
2222     return true;
2223   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
2224              OpC == PPC::BCTRL8) {
2225     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
2226       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
2227 
2228     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
2229     bool isPPC64 = Subtarget.isPPC64();
2230 
2231     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2232       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
2233                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
2234       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2235     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2236       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
2237                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
2238       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2239     } else {
2240       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
2241                              : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
2242       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2243           .addImm(Pred[0].getImm())
2244           .add(Pred[1]);
2245     }
2246 
2247     // Need add Def and Use for LR implicit operand.
2248     if (setLR)
2249       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2250           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
2251           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
2252 
2253     return true;
2254   }
2255 
2256   return false;
2257 }
2258 
2259 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
2260                                      ArrayRef<MachineOperand> Pred2) const {
2261   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
2262   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
2263 
2264   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
2265     return false;
2266   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
2267     return false;
2268 
2269   // P1 can only subsume P2 if they test the same condition register.
2270   if (Pred1[1].getReg() != Pred2[1].getReg())
2271     return false;
2272 
2273   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
2274   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
2275 
2276   if (P1 == P2)
2277     return true;
2278 
2279   // Does P1 subsume P2, e.g. GE subsumes GT.
2280   if (P1 == PPC::PRED_LE &&
2281       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
2282     return true;
2283   if (P1 == PPC::PRED_GE &&
2284       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
2285     return true;
2286 
2287   return false;
2288 }
2289 
2290 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
2291                                      std::vector<MachineOperand> &Pred,
2292                                      bool SkipDead) const {
2293   // Note: At the present time, the contents of Pred from this function is
2294   // unused by IfConversion. This implementation follows ARM by pushing the
2295   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
2296   // predicate, instructions defining CTR or CTR8 are also included as
2297   // predicate-defining instructions.
2298 
2299   const TargetRegisterClass *RCs[] =
2300     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
2301       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
2302 
2303   bool Found = false;
2304   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2305     const MachineOperand &MO = MI.getOperand(i);
2306     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
2307       const TargetRegisterClass *RC = RCs[c];
2308       if (MO.isReg()) {
2309         if (MO.isDef() && RC->contains(MO.getReg())) {
2310           Pred.push_back(MO);
2311           Found = true;
2312         }
2313       } else if (MO.isRegMask()) {
2314         for (TargetRegisterClass::iterator I = RC->begin(),
2315              IE = RC->end(); I != IE; ++I)
2316           if (MO.clobbersPhysReg(*I)) {
2317             Pred.push_back(MO);
2318             Found = true;
2319           }
2320       }
2321     }
2322   }
2323 
2324   return Found;
2325 }
2326 
2327 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2328                                   Register &SrcReg2, int &Mask,
2329                                   int &Value) const {
2330   unsigned Opc = MI.getOpcode();
2331 
2332   switch (Opc) {
2333   default: return false;
2334   case PPC::CMPWI:
2335   case PPC::CMPLWI:
2336   case PPC::CMPDI:
2337   case PPC::CMPLDI:
2338     SrcReg = MI.getOperand(1).getReg();
2339     SrcReg2 = 0;
2340     Value = MI.getOperand(2).getImm();
2341     Mask = 0xFFFF;
2342     return true;
2343   case PPC::CMPW:
2344   case PPC::CMPLW:
2345   case PPC::CMPD:
2346   case PPC::CMPLD:
2347   case PPC::FCMPUS:
2348   case PPC::FCMPUD:
2349     SrcReg = MI.getOperand(1).getReg();
2350     SrcReg2 = MI.getOperand(2).getReg();
2351     Value = 0;
2352     Mask = 0;
2353     return true;
2354   }
2355 }
2356 
2357 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
2358                                         Register SrcReg2, int Mask, int Value,
2359                                         const MachineRegisterInfo *MRI) const {
2360   if (DisableCmpOpt)
2361     return false;
2362 
2363   int OpC = CmpInstr.getOpcode();
2364   Register CRReg = CmpInstr.getOperand(0).getReg();
2365 
2366   // FP record forms set CR1 based on the exception status bits, not a
2367   // comparison with zero.
2368   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
2369     return false;
2370 
2371   const TargetRegisterInfo *TRI = &getRegisterInfo();
2372   // The record forms set the condition register based on a signed comparison
2373   // with zero (so says the ISA manual). This is not as straightforward as it
2374   // seems, however, because this is always a 64-bit comparison on PPC64, even
2375   // for instructions that are 32-bit in nature (like slw for example).
2376   // So, on PPC32, for unsigned comparisons, we can use the record forms only
2377   // for equality checks (as those don't depend on the sign). On PPC64,
2378   // we are restricted to equality for unsigned 64-bit comparisons and for
2379   // signed 32-bit comparisons the applicability is more restricted.
2380   bool isPPC64 = Subtarget.isPPC64();
2381   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
2382   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
2383   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
2384 
2385   // Look through copies unless that gets us to a physical register.
2386   Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
2387   if (ActualSrc.isVirtual())
2388     SrcReg = ActualSrc;
2389 
2390   // Get the unique definition of SrcReg.
2391   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2392   if (!MI) return false;
2393 
2394   bool equalityOnly = false;
2395   bool noSub = false;
2396   if (isPPC64) {
2397     if (is32BitSignedCompare) {
2398       // We can perform this optimization only if MI is sign-extending.
2399       if (isSignExtended(*MI))
2400         noSub = true;
2401       else
2402         return false;
2403     } else if (is32BitUnsignedCompare) {
2404       // We can perform this optimization, equality only, if MI is
2405       // zero-extending.
2406       if (isZeroExtended(*MI)) {
2407         noSub = true;
2408         equalityOnly = true;
2409       } else
2410         return false;
2411     } else
2412       equalityOnly = is64BitUnsignedCompare;
2413   } else
2414     equalityOnly = is32BitUnsignedCompare;
2415 
2416   if (equalityOnly) {
2417     // We need to check the uses of the condition register in order to reject
2418     // non-equality comparisons.
2419     for (MachineRegisterInfo::use_instr_iterator
2420          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2421          I != IE; ++I) {
2422       MachineInstr *UseMI = &*I;
2423       if (UseMI->getOpcode() == PPC::BCC) {
2424         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2425         unsigned PredCond = PPC::getPredicateCondition(Pred);
2426         // We ignore hint bits when checking for non-equality comparisons.
2427         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
2428           return false;
2429       } else if (UseMI->getOpcode() == PPC::ISEL ||
2430                  UseMI->getOpcode() == PPC::ISEL8) {
2431         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
2432         if (SubIdx != PPC::sub_eq)
2433           return false;
2434       } else
2435         return false;
2436     }
2437   }
2438 
2439   MachineBasicBlock::iterator I = CmpInstr;
2440 
2441   // Scan forward to find the first use of the compare.
2442   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
2443        ++I) {
2444     bool FoundUse = false;
2445     for (MachineRegisterInfo::use_instr_iterator
2446          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
2447          J != JE; ++J)
2448       if (&*J == &*I) {
2449         FoundUse = true;
2450         break;
2451       }
2452 
2453     if (FoundUse)
2454       break;
2455   }
2456 
2457   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
2458   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
2459 
2460   // There are two possible candidates which can be changed to set CR[01].
2461   // One is MI, the other is a SUB instruction.
2462   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2463   MachineInstr *Sub = nullptr;
2464   if (SrcReg2 != 0)
2465     // MI is not a candidate for CMPrr.
2466     MI = nullptr;
2467   // FIXME: Conservatively refuse to convert an instruction which isn't in the
2468   // same BB as the comparison. This is to allow the check below to avoid calls
2469   // (and other explicit clobbers); instead we should really check for these
2470   // more explicitly (in at least a few predecessors).
2471   else if (MI->getParent() != CmpInstr.getParent())
2472     return false;
2473   else if (Value != 0) {
2474     // The record-form instructions set CR bit based on signed comparison
2475     // against 0. We try to convert a compare against 1 or -1 into a compare
2476     // against 0 to exploit record-form instructions. For example, we change
2477     // the condition "greater than -1" into "greater than or equal to 0"
2478     // and "less than 1" into "less than or equal to 0".
2479 
2480     // Since we optimize comparison based on a specific branch condition,
2481     // we don't optimize if condition code is used by more than once.
2482     if (equalityOnly || !MRI->hasOneUse(CRReg))
2483       return false;
2484 
2485     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
2486     if (UseMI->getOpcode() != PPC::BCC)
2487       return false;
2488 
2489     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2490     unsigned PredCond = PPC::getPredicateCondition(Pred);
2491     unsigned PredHint = PPC::getPredicateHint(Pred);
2492     int16_t Immed = (int16_t)Value;
2493 
2494     // When modifying the condition in the predicate, we propagate hint bits
2495     // from the original predicate to the new one.
2496     if (Immed == -1 && PredCond == PPC::PRED_GT)
2497       // We convert "greater than -1" into "greater than or equal to 0",
2498       // since we are assuming signed comparison by !equalityOnly
2499       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
2500     else if (Immed == -1 && PredCond == PPC::PRED_LE)
2501       // We convert "less than or equal to -1" into "less than 0".
2502       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2503     else if (Immed == 1 && PredCond == PPC::PRED_LT)
2504       // We convert "less than 1" into "less than or equal to 0".
2505       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2506     else if (Immed == 1 && PredCond == PPC::PRED_GE)
2507       // We convert "greater than or equal to 1" into "greater than 0".
2508       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2509     else
2510       return false;
2511 
2512     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
2513   }
2514 
2515   // Search for Sub.
2516   --I;
2517 
2518   // Get ready to iterate backward from CmpInstr.
2519   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2520 
2521   for (; I != E && !noSub; --I) {
2522     const MachineInstr &Instr = *I;
2523     unsigned IOpC = Instr.getOpcode();
2524 
2525     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2526                              Instr.readsRegister(PPC::CR0, TRI)))
2527       // This instruction modifies or uses the record condition register after
2528       // the one we want to change. While we could do this transformation, it
2529       // would likely not be profitable. This transformation removes one
2530       // instruction, and so even forcing RA to generate one move probably
2531       // makes it unprofitable.
2532       return false;
2533 
2534     // Check whether CmpInstr can be made redundant by the current instruction.
2535     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2536          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2537         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2538         ((Instr.getOperand(1).getReg() == SrcReg &&
2539           Instr.getOperand(2).getReg() == SrcReg2) ||
2540         (Instr.getOperand(1).getReg() == SrcReg2 &&
2541          Instr.getOperand(2).getReg() == SrcReg))) {
2542       Sub = &*I;
2543       break;
2544     }
2545 
2546     if (I == B)
2547       // The 'and' is below the comparison instruction.
2548       return false;
2549   }
2550 
2551   // Return false if no candidates exist.
2552   if (!MI && !Sub)
2553     return false;
2554 
2555   // The single candidate is called MI.
2556   if (!MI) MI = Sub;
2557 
2558   int NewOpC = -1;
2559   int MIOpC = MI->getOpcode();
2560   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2561       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2562     NewOpC = MIOpC;
2563   else {
2564     NewOpC = PPC::getRecordFormOpcode(MIOpC);
2565     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2566       NewOpC = MIOpC;
2567   }
2568 
2569   // FIXME: On the non-embedded POWER architectures, only some of the record
2570   // forms are fast, and we should use only the fast ones.
2571 
2572   // The defining instruction has a record form (or is already a record
2573   // form). It is possible, however, that we'll need to reverse the condition
2574   // code of the users.
2575   if (NewOpC == -1)
2576     return false;
2577 
2578   // This transformation should not be performed if `nsw` is missing and is not
2579   // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
2580   // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
2581   // CRReg can reflect if compared values are equal, this optz is still valid.
2582   if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) &&
2583       Sub && !Sub->getFlag(MachineInstr::NoSWrap))
2584     return false;
2585 
2586   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2587   // needs to be updated to be based on SUB.  Push the condition code
2588   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
2589   // condition code of these operands will be modified.
2590   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2591   // comparison against 0, which may modify predicate.
2592   bool ShouldSwap = false;
2593   if (Sub && Value == 0) {
2594     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2595       Sub->getOperand(2).getReg() == SrcReg;
2596 
2597     // The operands to subf are the opposite of sub, so only in the fixed-point
2598     // case, invert the order.
2599     ShouldSwap = !ShouldSwap;
2600   }
2601 
2602   if (ShouldSwap)
2603     for (MachineRegisterInfo::use_instr_iterator
2604          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2605          I != IE; ++I) {
2606       MachineInstr *UseMI = &*I;
2607       if (UseMI->getOpcode() == PPC::BCC) {
2608         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2609         unsigned PredCond = PPC::getPredicateCondition(Pred);
2610         assert((!equalityOnly ||
2611                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2612                "Invalid predicate for equality-only optimization");
2613         (void)PredCond; // To suppress warning in release build.
2614         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2615                                 PPC::getSwappedPredicate(Pred)));
2616       } else if (UseMI->getOpcode() == PPC::ISEL ||
2617                  UseMI->getOpcode() == PPC::ISEL8) {
2618         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2619         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2620                "Invalid CR bit for equality-only optimization");
2621 
2622         if (NewSubReg == PPC::sub_lt)
2623           NewSubReg = PPC::sub_gt;
2624         else if (NewSubReg == PPC::sub_gt)
2625           NewSubReg = PPC::sub_lt;
2626 
2627         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2628                                                  NewSubReg));
2629       } else // We need to abort on a user we don't understand.
2630         return false;
2631     }
2632   assert(!(Value != 0 && ShouldSwap) &&
2633          "Non-zero immediate support and ShouldSwap"
2634          "may conflict in updating predicate");
2635 
2636   // Create a new virtual register to hold the value of the CR set by the
2637   // record-form instruction. If the instruction was not previously in
2638   // record form, then set the kill flag on the CR.
2639   CmpInstr.eraseFromParent();
2640 
2641   MachineBasicBlock::iterator MII = MI;
2642   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2643           get(TargetOpcode::COPY), CRReg)
2644     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2645 
2646   // Even if CR0 register were dead before, it is alive now since the
2647   // instruction we just built uses it.
2648   MI->clearRegisterDeads(PPC::CR0);
2649 
2650   if (MIOpC != NewOpC) {
2651     // We need to be careful here: we're replacing one instruction with
2652     // another, and we need to make sure that we get all of the right
2653     // implicit uses and defs. On the other hand, the caller may be holding
2654     // an iterator to this instruction, and so we can't delete it (this is
2655     // specifically the case if this is the instruction directly after the
2656     // compare).
2657 
2658     // Rotates are expensive instructions. If we're emitting a record-form
2659     // rotate that can just be an andi/andis, we should just emit that.
2660     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2661       Register GPRRes = MI->getOperand(0).getReg();
2662       int64_t SH = MI->getOperand(2).getImm();
2663       int64_t MB = MI->getOperand(3).getImm();
2664       int64_t ME = MI->getOperand(4).getImm();
2665       // We can only do this if both the start and end of the mask are in the
2666       // same halfword.
2667       bool MBInLoHWord = MB >= 16;
2668       bool MEInLoHWord = ME >= 16;
2669       uint64_t Mask = ~0LLU;
2670 
2671       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2672         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2673         // The mask value needs to shift right 16 if we're emitting andis.
2674         Mask >>= MBInLoHWord ? 0 : 16;
2675         NewOpC = MIOpC == PPC::RLWINM
2676                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2677                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2678       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2679                  (ME - MB + 1 == SH) && (MB >= 16)) {
2680         // If we are rotating by the exact number of bits as are in the mask
2681         // and the mask is in the least significant bits of the register,
2682         // that's just an andis. (as long as the GPR result has no uses).
2683         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2684         Mask >>= 16;
2685         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2686       }
2687       // If we've set the mask, we can transform.
2688       if (Mask != ~0LLU) {
2689         MI->RemoveOperand(4);
2690         MI->RemoveOperand(3);
2691         MI->getOperand(2).setImm(Mask);
2692         NumRcRotatesConvertedToRcAnd++;
2693       }
2694     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2695       int64_t MB = MI->getOperand(3).getImm();
2696       if (MB >= 48) {
2697         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2698         NewOpC = PPC::ANDI8_rec;
2699         MI->RemoveOperand(3);
2700         MI->getOperand(2).setImm(Mask);
2701         NumRcRotatesConvertedToRcAnd++;
2702       }
2703     }
2704 
2705     const MCInstrDesc &NewDesc = get(NewOpC);
2706     MI->setDesc(NewDesc);
2707 
2708     if (NewDesc.ImplicitDefs)
2709       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
2710            *ImpDefs; ++ImpDefs)
2711         if (!MI->definesRegister(*ImpDefs))
2712           MI->addOperand(*MI->getParent()->getParent(),
2713                          MachineOperand::CreateReg(*ImpDefs, true, true));
2714     if (NewDesc.ImplicitUses)
2715       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
2716            *ImpUses; ++ImpUses)
2717         if (!MI->readsRegister(*ImpUses))
2718           MI->addOperand(*MI->getParent()->getParent(),
2719                          MachineOperand::CreateReg(*ImpUses, false, true));
2720   }
2721   assert(MI->definesRegister(PPC::CR0) &&
2722          "Record-form instruction does not define cr0?");
2723 
2724   // Modify the condition code of operands in OperandsToUpdate.
2725   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2726   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2727   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2728     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2729 
2730   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2731     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2732 
2733   return true;
2734 }
2735 
2736 bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2737     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2738     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2739     const TargetRegisterInfo *TRI) const {
2740   const MachineOperand *BaseOp;
2741   OffsetIsScalable = false;
2742   if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2743     return false;
2744   BaseOps.push_back(BaseOp);
2745   return true;
2746 }
2747 
2748 static bool isLdStSafeToCluster(const MachineInstr &LdSt,
2749                                 const TargetRegisterInfo *TRI) {
2750   // If this is a volatile load/store, don't mess with it.
2751   if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
2752     return false;
2753 
2754   if (LdSt.getOperand(2).isFI())
2755     return true;
2756 
2757   assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
2758   // Can't cluster if the instruction modifies the base register
2759   // or it is update form. e.g. ld r2,3(r2)
2760   if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
2761     return false;
2762 
2763   return true;
2764 }
2765 
2766 // Only cluster instruction pair that have the same opcode, and they are
2767 // clusterable according to PowerPC specification.
2768 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
2769                                      const PPCSubtarget &Subtarget) {
2770   switch (FirstOpc) {
2771   default:
2772     return false;
2773   case PPC::STD:
2774   case PPC::STFD:
2775   case PPC::STXSD:
2776   case PPC::DFSTOREf64:
2777     return FirstOpc == SecondOpc;
2778   // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2779   // 32bit and 64bit instruction selection. They are clusterable pair though
2780   // they are different opcode.
2781   case PPC::STW:
2782   case PPC::STW8:
2783     return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
2784   }
2785 }
2786 
2787 bool PPCInstrInfo::shouldClusterMemOps(
2788     ArrayRef<const MachineOperand *> BaseOps1,
2789     ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
2790     unsigned NumBytes) const {
2791 
2792   assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
2793   const MachineOperand &BaseOp1 = *BaseOps1.front();
2794   const MachineOperand &BaseOp2 = *BaseOps2.front();
2795   assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2796          "Only base registers and frame indices are supported.");
2797 
2798   // The NumLoads means the number of loads that has been clustered.
2799   // Don't cluster memory op if there are already two ops clustered at least.
2800   if (NumLoads > 2)
2801     return false;
2802 
2803   // Cluster the load/store only when they have the same base
2804   // register or FI.
2805   if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
2806       (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
2807       (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
2808     return false;
2809 
2810   // Check if the load/store are clusterable according to the PowerPC
2811   // specification.
2812   const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2813   const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2814   unsigned FirstOpc = FirstLdSt.getOpcode();
2815   unsigned SecondOpc = SecondLdSt.getOpcode();
2816   const TargetRegisterInfo *TRI = &getRegisterInfo();
2817   // Cluster the load/store only when they have the same opcode, and they are
2818   // clusterable opcode according to PowerPC specification.
2819   if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
2820     return false;
2821 
2822   // Can't cluster load/store that have ordered or volatile memory reference.
2823   if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
2824       !isLdStSafeToCluster(SecondLdSt, TRI))
2825     return false;
2826 
2827   int64_t Offset1 = 0, Offset2 = 0;
2828   unsigned Width1 = 0, Width2 = 0;
2829   const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
2830   if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
2831       !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
2832       Width1 != Width2)
2833     return false;
2834 
2835   assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
2836          "getMemOperandWithOffsetWidth return incorrect base op");
2837   // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2838   assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2839   return Offset1 + Width1 == Offset2;
2840 }
2841 
2842 /// GetInstSize - Return the number of bytes of code the specified
2843 /// instruction may be.  This returns the maximum number of bytes.
2844 ///
2845 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2846   unsigned Opcode = MI.getOpcode();
2847 
2848   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2849     const MachineFunction *MF = MI.getParent()->getParent();
2850     const char *AsmStr = MI.getOperand(0).getSymbolName();
2851     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2852   } else if (Opcode == TargetOpcode::STACKMAP) {
2853     StackMapOpers Opers(&MI);
2854     return Opers.getNumPatchBytes();
2855   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2856     PatchPointOpers Opers(&MI);
2857     return Opers.getNumPatchBytes();
2858   } else {
2859     return get(Opcode).getSize();
2860   }
2861 }
2862 
2863 std::pair<unsigned, unsigned>
2864 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2865   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2866   return std::make_pair(TF & Mask, TF & ~Mask);
2867 }
2868 
2869 ArrayRef<std::pair<unsigned, const char *>>
2870 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2871   using namespace PPCII;
2872   static const std::pair<unsigned, const char *> TargetFlags[] = {
2873       {MO_LO, "ppc-lo"},
2874       {MO_HA, "ppc-ha"},
2875       {MO_TPREL_LO, "ppc-tprel-lo"},
2876       {MO_TPREL_HA, "ppc-tprel-ha"},
2877       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2878       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2879       {MO_TOC_LO, "ppc-toc-lo"},
2880       {MO_TLS, "ppc-tls"}};
2881   return makeArrayRef(TargetFlags);
2882 }
2883 
2884 ArrayRef<std::pair<unsigned, const char *>>
2885 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2886   using namespace PPCII;
2887   static const std::pair<unsigned, const char *> TargetFlags[] = {
2888       {MO_PLT, "ppc-plt"},
2889       {MO_PIC_FLAG, "ppc-pic"},
2890       {MO_PCREL_FLAG, "ppc-pcrel"},
2891       {MO_GOT_FLAG, "ppc-got"},
2892       {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
2893       {MO_TLSGD_FLAG, "ppc-tlsgd"},
2894       {MO_TLSLD_FLAG, "ppc-tlsld"},
2895       {MO_TPREL_FLAG, "ppc-tprel"},
2896       {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
2897       {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
2898       {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}};
2899   return makeArrayRef(TargetFlags);
2900 }
2901 
2902 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2903 // The VSX versions have the advantage of a full 64-register target whereas
2904 // the FP ones have the advantage of lower latency and higher throughput. So
2905 // what we are after is using the faster instructions in low register pressure
2906 // situations and using the larger register file in high register pressure
2907 // situations.
2908 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2909     unsigned UpperOpcode, LowerOpcode;
2910     switch (MI.getOpcode()) {
2911     case PPC::DFLOADf32:
2912       UpperOpcode = PPC::LXSSP;
2913       LowerOpcode = PPC::LFS;
2914       break;
2915     case PPC::DFLOADf64:
2916       UpperOpcode = PPC::LXSD;
2917       LowerOpcode = PPC::LFD;
2918       break;
2919     case PPC::DFSTOREf32:
2920       UpperOpcode = PPC::STXSSP;
2921       LowerOpcode = PPC::STFS;
2922       break;
2923     case PPC::DFSTOREf64:
2924       UpperOpcode = PPC::STXSD;
2925       LowerOpcode = PPC::STFD;
2926       break;
2927     case PPC::XFLOADf32:
2928       UpperOpcode = PPC::LXSSPX;
2929       LowerOpcode = PPC::LFSX;
2930       break;
2931     case PPC::XFLOADf64:
2932       UpperOpcode = PPC::LXSDX;
2933       LowerOpcode = PPC::LFDX;
2934       break;
2935     case PPC::XFSTOREf32:
2936       UpperOpcode = PPC::STXSSPX;
2937       LowerOpcode = PPC::STFSX;
2938       break;
2939     case PPC::XFSTOREf64:
2940       UpperOpcode = PPC::STXSDX;
2941       LowerOpcode = PPC::STFDX;
2942       break;
2943     case PPC::LIWAX:
2944       UpperOpcode = PPC::LXSIWAX;
2945       LowerOpcode = PPC::LFIWAX;
2946       break;
2947     case PPC::LIWZX:
2948       UpperOpcode = PPC::LXSIWZX;
2949       LowerOpcode = PPC::LFIWZX;
2950       break;
2951     case PPC::STIWX:
2952       UpperOpcode = PPC::STXSIWX;
2953       LowerOpcode = PPC::STFIWX;
2954       break;
2955     default:
2956       llvm_unreachable("Unknown Operation!");
2957     }
2958 
2959     Register TargetReg = MI.getOperand(0).getReg();
2960     unsigned Opcode;
2961     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2962         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2963       Opcode = LowerOpcode;
2964     else
2965       Opcode = UpperOpcode;
2966     MI.setDesc(get(Opcode));
2967     return true;
2968 }
2969 
2970 static bool isAnImmediateOperand(const MachineOperand &MO) {
2971   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2972 }
2973 
2974 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2975   auto &MBB = *MI.getParent();
2976   auto DL = MI.getDebugLoc();
2977 
2978   switch (MI.getOpcode()) {
2979   case PPC::BUILD_UACC: {
2980     MCRegister ACC = MI.getOperand(0).getReg();
2981     MCRegister UACC = MI.getOperand(1).getReg();
2982     if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
2983       MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
2984       MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
2985       // FIXME: This can easily be improved to look up to the top of the MBB
2986       // to see if the inputs are XXLOR's. If they are and SrcReg is killed,
2987       // we can just re-target any such XXLOR's to DstVSR + offset.
2988       for (int VecNo = 0; VecNo < 4; VecNo++)
2989         BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
2990             .addReg(SrcVSR + VecNo)
2991             .addReg(SrcVSR + VecNo);
2992     }
2993     // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers.
2994     // So after building the 4 copies, we can replace the BUILD_UACC instruction
2995     // with a NOP.
2996     LLVM_FALLTHROUGH;
2997   }
2998   case PPC::KILL_PAIR: {
2999     MI.setDesc(get(PPC::UNENCODED_NOP));
3000     MI.RemoveOperand(1);
3001     MI.RemoveOperand(0);
3002     return true;
3003   }
3004   case TargetOpcode::LOAD_STACK_GUARD: {
3005     assert(Subtarget.isTargetLinux() &&
3006            "Only Linux target is expected to contain LOAD_STACK_GUARD");
3007     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
3008     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
3009     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
3010     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3011         .addImm(Offset)
3012         .addReg(Reg);
3013     return true;
3014   }
3015   case PPC::DFLOADf32:
3016   case PPC::DFLOADf64:
3017   case PPC::DFSTOREf32:
3018   case PPC::DFSTOREf64: {
3019     assert(Subtarget.hasP9Vector() &&
3020            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
3021     assert(MI.getOperand(2).isReg() &&
3022            isAnImmediateOperand(MI.getOperand(1)) &&
3023            "D-form op must have register and immediate operands");
3024     return expandVSXMemPseudo(MI);
3025   }
3026   case PPC::XFLOADf32:
3027   case PPC::XFSTOREf32:
3028   case PPC::LIWAX:
3029   case PPC::LIWZX:
3030   case PPC::STIWX: {
3031     assert(Subtarget.hasP8Vector() &&
3032            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
3033     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3034            "X-form op must have register and register operands");
3035     return expandVSXMemPseudo(MI);
3036   }
3037   case PPC::XFLOADf64:
3038   case PPC::XFSTOREf64: {
3039     assert(Subtarget.hasVSX() &&
3040            "Invalid X-Form Pseudo-ops on target that has no VSX.");
3041     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3042            "X-form op must have register and register operands");
3043     return expandVSXMemPseudo(MI);
3044   }
3045   case PPC::SPILLTOVSR_LD: {
3046     Register TargetReg = MI.getOperand(0).getReg();
3047     if (PPC::VSFRCRegClass.contains(TargetReg)) {
3048       MI.setDesc(get(PPC::DFLOADf64));
3049       return expandPostRAPseudo(MI);
3050     }
3051     else
3052       MI.setDesc(get(PPC::LD));
3053     return true;
3054   }
3055   case PPC::SPILLTOVSR_ST: {
3056     Register SrcReg = MI.getOperand(0).getReg();
3057     if (PPC::VSFRCRegClass.contains(SrcReg)) {
3058       NumStoreSPILLVSRRCAsVec++;
3059       MI.setDesc(get(PPC::DFSTOREf64));
3060       return expandPostRAPseudo(MI);
3061     } else {
3062       NumStoreSPILLVSRRCAsGpr++;
3063       MI.setDesc(get(PPC::STD));
3064     }
3065     return true;
3066   }
3067   case PPC::SPILLTOVSR_LDX: {
3068     Register TargetReg = MI.getOperand(0).getReg();
3069     if (PPC::VSFRCRegClass.contains(TargetReg))
3070       MI.setDesc(get(PPC::LXSDX));
3071     else
3072       MI.setDesc(get(PPC::LDX));
3073     return true;
3074   }
3075   case PPC::SPILLTOVSR_STX: {
3076     Register SrcReg = MI.getOperand(0).getReg();
3077     if (PPC::VSFRCRegClass.contains(SrcReg)) {
3078       NumStoreSPILLVSRRCAsVec++;
3079       MI.setDesc(get(PPC::STXSDX));
3080     } else {
3081       NumStoreSPILLVSRRCAsGpr++;
3082       MI.setDesc(get(PPC::STDX));
3083     }
3084     return true;
3085   }
3086 
3087   case PPC::CFENCE8: {
3088     auto Val = MI.getOperand(0).getReg();
3089     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
3090     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
3091         .addImm(PPC::PRED_NE_MINUS)
3092         .addReg(PPC::CR7)
3093         .addImm(1);
3094     MI.setDesc(get(PPC::ISYNC));
3095     MI.RemoveOperand(0);
3096     return true;
3097   }
3098   }
3099   return false;
3100 }
3101 
3102 // Essentially a compile-time implementation of a compare->isel sequence.
3103 // It takes two constants to compare, along with the true/false registers
3104 // and the comparison type (as a subreg to a CR field) and returns one
3105 // of the true/false registers, depending on the comparison results.
3106 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
3107                           unsigned TrueReg, unsigned FalseReg,
3108                           unsigned CRSubReg) {
3109   // Signed comparisons. The immediates are assumed to be sign-extended.
3110   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
3111     switch (CRSubReg) {
3112     default: llvm_unreachable("Unknown integer comparison type.");
3113     case PPC::sub_lt:
3114       return Imm1 < Imm2 ? TrueReg : FalseReg;
3115     case PPC::sub_gt:
3116       return Imm1 > Imm2 ? TrueReg : FalseReg;
3117     case PPC::sub_eq:
3118       return Imm1 == Imm2 ? TrueReg : FalseReg;
3119     }
3120   }
3121   // Unsigned comparisons.
3122   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
3123     switch (CRSubReg) {
3124     default: llvm_unreachable("Unknown integer comparison type.");
3125     case PPC::sub_lt:
3126       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
3127     case PPC::sub_gt:
3128       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
3129     case PPC::sub_eq:
3130       return Imm1 == Imm2 ? TrueReg : FalseReg;
3131     }
3132   }
3133   return PPC::NoRegister;
3134 }
3135 
3136 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
3137                                               unsigned OpNo,
3138                                               int64_t Imm) const {
3139   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
3140   // Replace the REG with the Immediate.
3141   Register InUseReg = MI.getOperand(OpNo).getReg();
3142   MI.getOperand(OpNo).ChangeToImmediate(Imm);
3143 
3144   if (MI.implicit_operands().empty())
3145     return;
3146 
3147   // We need to make sure that the MI didn't have any implicit use
3148   // of this REG any more.
3149   const TargetRegisterInfo *TRI = &getRegisterInfo();
3150   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
3151   if (UseOpIdx >= 0) {
3152     MachineOperand &MO = MI.getOperand(UseOpIdx);
3153     if (MO.isImplicit())
3154       // The operands must always be in the following order:
3155       // - explicit reg defs,
3156       // - other explicit operands (reg uses, immediates, etc.),
3157       // - implicit reg defs
3158       // - implicit reg uses
3159       // Therefore, removing the implicit operand won't change the explicit
3160       // operands layout.
3161       MI.RemoveOperand(UseOpIdx);
3162   }
3163 }
3164 
3165 // Replace an instruction with one that materializes a constant (and sets
3166 // CR0 if the original instruction was a record-form instruction).
3167 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
3168                                       const LoadImmediateInfo &LII) const {
3169   // Remove existing operands.
3170   int OperandToKeep = LII.SetCR ? 1 : 0;
3171   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
3172     MI.RemoveOperand(i);
3173 
3174   // Replace the instruction.
3175   if (LII.SetCR) {
3176     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3177     // Set the immediate.
3178     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3179         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
3180     return;
3181   }
3182   else
3183     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
3184 
3185   // Set the immediate.
3186   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3187       .addImm(LII.Imm);
3188 }
3189 
3190 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
3191                                            bool &SeenIntermediateUse) const {
3192   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
3193          "Should be called after register allocation.");
3194   const TargetRegisterInfo *TRI = &getRegisterInfo();
3195   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
3196   It++;
3197   SeenIntermediateUse = false;
3198   for (; It != E; ++It) {
3199     if (It->modifiesRegister(Reg, TRI))
3200       return &*It;
3201     if (It->readsRegister(Reg, TRI))
3202       SeenIntermediateUse = true;
3203   }
3204   return nullptr;
3205 }
3206 
3207 MachineInstr *PPCInstrInfo::getForwardingDefMI(
3208   MachineInstr &MI,
3209   unsigned &OpNoForForwarding,
3210   bool &SeenIntermediateUse) const {
3211   OpNoForForwarding = ~0U;
3212   MachineInstr *DefMI = nullptr;
3213   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3214   const TargetRegisterInfo *TRI = &getRegisterInfo();
3215   // If we're in SSA, get the defs through the MRI. Otherwise, only look
3216   // within the basic block to see if the register is defined using an
3217   // LI/LI8/ADDI/ADDI8.
3218   if (MRI->isSSA()) {
3219     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3220       if (!MI.getOperand(i).isReg())
3221         continue;
3222       Register Reg = MI.getOperand(i).getReg();
3223       if (!Register::isVirtualRegister(Reg))
3224         continue;
3225       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
3226       if (Register::isVirtualRegister(TrueReg)) {
3227         DefMI = MRI->getVRegDef(TrueReg);
3228         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
3229             DefMI->getOpcode() == PPC::ADDI ||
3230             DefMI->getOpcode() == PPC::ADDI8) {
3231           OpNoForForwarding = i;
3232           // The ADDI and LI operand maybe exist in one instruction at same
3233           // time. we prefer to fold LI operand as LI only has one Imm operand
3234           // and is more possible to be converted. So if current DefMI is
3235           // ADDI/ADDI8, we continue to find possible LI/LI8.
3236           if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
3237             break;
3238         }
3239       }
3240     }
3241   } else {
3242     // Looking back through the definition for each operand could be expensive,
3243     // so exit early if this isn't an instruction that either has an immediate
3244     // form or is already an immediate form that we can handle.
3245     ImmInstrInfo III;
3246     unsigned Opc = MI.getOpcode();
3247     bool ConvertibleImmForm =
3248         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
3249         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
3250         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
3251         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
3252         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
3253         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
3254         Opc == PPC::RLWINM8_rec;
3255     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
3256                        ? isVFRegister(MI.getOperand(0).getReg())
3257                        : false;
3258     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
3259       return nullptr;
3260 
3261     // Don't convert or %X, %Y, %Y since that's just a register move.
3262     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
3263         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
3264       return nullptr;
3265     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3266       MachineOperand &MO = MI.getOperand(i);
3267       SeenIntermediateUse = false;
3268       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
3269         Register Reg = MI.getOperand(i).getReg();
3270         // If we see another use of this reg between the def and the MI,
3271         // we want to flat it so the def isn't deleted.
3272         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
3273         if (DefMI) {
3274           // Is this register defined by some form of add-immediate (including
3275           // load-immediate) within this basic block?
3276           switch (DefMI->getOpcode()) {
3277           default:
3278             break;
3279           case PPC::LI:
3280           case PPC::LI8:
3281           case PPC::ADDItocL:
3282           case PPC::ADDI:
3283           case PPC::ADDI8:
3284             OpNoForForwarding = i;
3285             return DefMI;
3286           }
3287         }
3288       }
3289     }
3290   }
3291   return OpNoForForwarding == ~0U ? nullptr : DefMI;
3292 }
3293 
3294 unsigned PPCInstrInfo::getSpillTarget() const {
3295   // With P10, we may need to spill paired vector registers or accumulator
3296   // registers. MMA implies paired vectors, so we can just check that.
3297   bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
3298   return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0;
3299 }
3300 
3301 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
3302   return StoreSpillOpcodesArray[getSpillTarget()];
3303 }
3304 
3305 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
3306   return LoadSpillOpcodesArray[getSpillTarget()];
3307 }
3308 
3309 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
3310                                      unsigned RegNo) const {
3311   // Conservatively clear kill flag for the register if the instructions are in
3312   // different basic blocks and in SSA form, because the kill flag may no longer
3313   // be right. There is no need to bother with dead flags since defs with no
3314   // uses will be handled by DCE.
3315   MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
3316   if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
3317     MRI.clearKillFlags(RegNo);
3318     return;
3319   }
3320 
3321   // Instructions between [StartMI, EndMI] should be in same basic block.
3322   assert((StartMI->getParent() == EndMI->getParent()) &&
3323          "Instructions are not in same basic block");
3324 
3325   // If before RA, StartMI may be def through COPY, we need to adjust it to the
3326   // real def. See function getForwardingDefMI.
3327   if (MRI.isSSA()) {
3328     bool Reads, Writes;
3329     std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
3330     if (!Reads && !Writes) {
3331       assert(Register::isVirtualRegister(RegNo) &&
3332              "Must be a virtual register");
3333       // Get real def and ignore copies.
3334       StartMI = MRI.getVRegDef(RegNo);
3335     }
3336   }
3337 
3338   bool IsKillSet = false;
3339 
3340   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
3341     MachineOperand &MO = MI.getOperand(Index);
3342     if (MO.isReg() && MO.isUse() && MO.isKill() &&
3343         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
3344       MO.setIsKill(false);
3345   };
3346 
3347   // Set killed flag for EndMI.
3348   // No need to do anything if EndMI defines RegNo.
3349   int UseIndex =
3350       EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
3351   if (UseIndex != -1) {
3352     EndMI->getOperand(UseIndex).setIsKill(true);
3353     IsKillSet = true;
3354     // Clear killed flag for other EndMI operands related to RegNo. In some
3355     // upexpected cases, killed may be set multiple times for same register
3356     // operand in same MI.
3357     for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
3358       if (i != UseIndex)
3359         clearOperandKillInfo(*EndMI, i);
3360   }
3361 
3362   // Walking the inst in reverse order (EndMI -> StartMI].
3363   MachineBasicBlock::reverse_iterator It = *EndMI;
3364   MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
3365   // EndMI has been handled above, skip it here.
3366   It++;
3367   MachineOperand *MO = nullptr;
3368   for (; It != E; ++It) {
3369     // Skip insturctions which could not be a def/use of RegNo.
3370     if (It->isDebugInstr() || It->isPosition())
3371       continue;
3372 
3373     // Clear killed flag for all It operands related to RegNo. In some
3374     // upexpected cases, killed may be set multiple times for same register
3375     // operand in same MI.
3376     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
3377         clearOperandKillInfo(*It, i);
3378 
3379     // If killed is not set, set killed for its last use or set dead for its def
3380     // if no use found.
3381     if (!IsKillSet) {
3382       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
3383         // Use found, set it killed.
3384         IsKillSet = true;
3385         MO->setIsKill(true);
3386         continue;
3387       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
3388                                                   &getRegisterInfo()))) {
3389         // No use found, set dead for its def.
3390         assert(&*It == StartMI && "No new def between StartMI and EndMI.");
3391         MO->setIsDead(true);
3392         break;
3393       }
3394     }
3395 
3396     if ((&*It) == StartMI)
3397       break;
3398   }
3399   // Ensure RegMo liveness is killed after EndMI.
3400   assert((IsKillSet || (MO && MO->isDead())) &&
3401          "RegNo should be killed or dead");
3402 }
3403 
3404 // This opt tries to convert the following imm form to an index form to save an
3405 // add for stack variables.
3406 // Return false if no such pattern found.
3407 //
3408 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3409 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
3410 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
3411 //
3412 // can be converted to:
3413 //
3414 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
3415 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
3416 //
3417 // In order to eliminate ADD instr, make sure that:
3418 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
3419 //    new ADDI instr and ADDI can only take int16 Imm.
3420 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
3421 //    between ADDI and ADD instr since its original def in ADDI will be changed
3422 //    in new ADDI instr. And also there should be no new def for it between
3423 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
3424 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
3425 //    between ADD and Imm instr since ADD instr will be eliminated.
3426 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
3427 //    moved to Index instr.
3428 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
3429   MachineFunction *MF = MI.getParent()->getParent();
3430   MachineRegisterInfo *MRI = &MF->getRegInfo();
3431   bool PostRA = !MRI->isSSA();
3432   // Do this opt after PEI which is after RA. The reason is stack slot expansion
3433   // in PEI may expose such opportunities since in PEI, stack slot offsets to
3434   // frame base(OffsetAddi) are determined.
3435   if (!PostRA)
3436     return false;
3437   unsigned ToBeDeletedReg = 0;
3438   int64_t OffsetImm = 0;
3439   unsigned XFormOpcode = 0;
3440   ImmInstrInfo III;
3441 
3442   // Check if Imm instr meets requirement.
3443   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
3444                                     III))
3445     return false;
3446 
3447   bool OtherIntermediateUse = false;
3448   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
3449 
3450   // Exit if there is other use between ADD and Imm instr or no def found.
3451   if (OtherIntermediateUse || !ADDMI)
3452     return false;
3453 
3454   // Check if ADD instr meets requirement.
3455   if (!isADDInstrEligibleForFolding(*ADDMI))
3456     return false;
3457 
3458   unsigned ScaleRegIdx = 0;
3459   int64_t OffsetAddi = 0;
3460   MachineInstr *ADDIMI = nullptr;
3461 
3462   // Check if there is a valid ToBeChangedReg in ADDMI.
3463   // 1: It must be killed.
3464   // 2: Its definition must be a valid ADDIMI.
3465   // 3: It must satify int16 offset requirement.
3466   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
3467     ScaleRegIdx = 2;
3468   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
3469     ScaleRegIdx = 1;
3470   else
3471     return false;
3472 
3473   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
3474   unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
3475   unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
3476   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
3477                        MachineBasicBlock::iterator End) {
3478     for (auto It = ++Start; It != End; It++)
3479       if (It->modifiesRegister(Reg, &getRegisterInfo()))
3480         return true;
3481     return false;
3482   };
3483 
3484   // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
3485   // treated as special zero when ScaleReg is R0/X0 register.
3486   if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
3487       (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
3488     return false;
3489 
3490   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
3491   // and Imm Instr.
3492   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
3493     return false;
3494 
3495   // Now start to do the transformation.
3496   LLVM_DEBUG(dbgs() << "Replace instruction: "
3497                     << "\n");
3498   LLVM_DEBUG(ADDIMI->dump());
3499   LLVM_DEBUG(ADDMI->dump());
3500   LLVM_DEBUG(MI.dump());
3501   LLVM_DEBUG(dbgs() << "with: "
3502                     << "\n");
3503 
3504   // Update ADDI instr.
3505   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
3506 
3507   // Update Imm instr.
3508   MI.setDesc(get(XFormOpcode));
3509   MI.getOperand(III.ImmOpNo)
3510       .ChangeToRegister(ScaleReg, false, false,
3511                         ADDMI->getOperand(ScaleRegIdx).isKill());
3512 
3513   MI.getOperand(III.OpNoForForwarding)
3514       .ChangeToRegister(ToBeChangedReg, false, false, true);
3515 
3516   // Eliminate ADD instr.
3517   ADDMI->eraseFromParent();
3518 
3519   LLVM_DEBUG(ADDIMI->dump());
3520   LLVM_DEBUG(MI.dump());
3521 
3522   return true;
3523 }
3524 
3525 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
3526                                                  int64_t &Imm) const {
3527   unsigned Opc = ADDIMI.getOpcode();
3528 
3529   // Exit if the instruction is not ADDI.
3530   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
3531     return false;
3532 
3533   // The operand may not necessarily be an immediate - it could be a relocation.
3534   if (!ADDIMI.getOperand(2).isImm())
3535     return false;
3536 
3537   Imm = ADDIMI.getOperand(2).getImm();
3538 
3539   return true;
3540 }
3541 
3542 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
3543   unsigned Opc = ADDMI.getOpcode();
3544 
3545   // Exit if the instruction is not ADD.
3546   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
3547 }
3548 
3549 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
3550                                                 unsigned &ToBeDeletedReg,
3551                                                 unsigned &XFormOpcode,
3552                                                 int64_t &OffsetImm,
3553                                                 ImmInstrInfo &III) const {
3554   // Only handle load/store.
3555   if (!MI.mayLoadOrStore())
3556     return false;
3557 
3558   unsigned Opc = MI.getOpcode();
3559 
3560   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
3561 
3562   // Exit if instruction has no index form.
3563   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
3564     return false;
3565 
3566   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3567   if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
3568                        III, true))
3569     return false;
3570 
3571   if (!III.IsSummingOperands)
3572     return false;
3573 
3574   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
3575   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
3576   // Only support imm operands, not relocation slots or others.
3577   if (!ImmOperand.isImm())
3578     return false;
3579 
3580   assert(RegOperand.isReg() && "Instruction format is not right");
3581 
3582   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3583   if (!RegOperand.isKill())
3584     return false;
3585 
3586   ToBeDeletedReg = RegOperand.getReg();
3587   OffsetImm = ImmOperand.getImm();
3588 
3589   return true;
3590 }
3591 
3592 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
3593                                          MachineInstr *&ADDIMI,
3594                                          int64_t &OffsetAddi,
3595                                          int64_t OffsetImm) const {
3596   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
3597   MachineOperand &MO = ADDMI->getOperand(Index);
3598 
3599   if (!MO.isKill())
3600     return false;
3601 
3602   bool OtherIntermediateUse = false;
3603 
3604   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
3605   // Currently handle only one "add + Imminstr" pair case, exit if other
3606   // intermediate use for ToBeChangedReg found.
3607   // TODO: handle the cases where there are other "add + Imminstr" pairs
3608   // with same offset in Imminstr which is like:
3609   //
3610   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
3611   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3612   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
3613   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3614   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
3615   //
3616   // can be converted to:
3617   //
3618   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3619   //                                       (OffsetAddi + OffsetImm)
3620   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
3621   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
3622 
3623   if (OtherIntermediateUse || !ADDIMI)
3624     return false;
3625   // Check if ADDI instr meets requirement.
3626   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
3627     return false;
3628 
3629   if (isInt<16>(OffsetAddi + OffsetImm))
3630     return true;
3631   return false;
3632 }
3633 
3634 // If this instruction has an immediate form and one of its operands is a
3635 // result of a load-immediate or an add-immediate, convert it to
3636 // the immediate form if the constant is in range.
3637 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
3638                                           MachineInstr **KilledDef) const {
3639   MachineFunction *MF = MI.getParent()->getParent();
3640   MachineRegisterInfo *MRI = &MF->getRegInfo();
3641   bool PostRA = !MRI->isSSA();
3642   bool SeenIntermediateUse = true;
3643   unsigned ForwardingOperand = ~0U;
3644   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
3645                                            SeenIntermediateUse);
3646   if (!DefMI)
3647     return false;
3648   assert(ForwardingOperand < MI.getNumOperands() &&
3649          "The forwarding operand needs to be valid at this point");
3650   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
3651   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
3652   if (KilledDef && KillFwdDefMI)
3653     *KilledDef = DefMI;
3654 
3655   // If this is a imm instruction and its register operands is produced by ADDI,
3656   // put the imm into imm inst directly.
3657   if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
3658           PPC::INSTRUCTION_LIST_END &&
3659       transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
3660     return true;
3661 
3662   ImmInstrInfo III;
3663   bool IsVFReg = MI.getOperand(0).isReg()
3664                      ? isVFRegister(MI.getOperand(0).getReg())
3665                      : false;
3666   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3667   // If this is a reg+reg instruction that has a reg+imm form,
3668   // and one of the operands is produced by an add-immediate,
3669   // try to convert it.
3670   if (HasImmForm &&
3671       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3672                                  KillFwdDefMI))
3673     return true;
3674 
3675   // If this is a reg+reg instruction that has a reg+imm form,
3676   // and one of the operands is produced by LI, convert it now.
3677   if (HasImmForm &&
3678       transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3679     return true;
3680 
3681   // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3682   // can be simpified to LI.
3683   if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3684     return true;
3685 
3686   return false;
3687 }
3688 
3689 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI,
3690                                  MachineInstr **ToErase) const {
3691   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3692   unsigned FoldingReg = MI.getOperand(1).getReg();
3693   if (!Register::isVirtualRegister(FoldingReg))
3694     return false;
3695   MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
3696   if (SrcMI->getOpcode() != PPC::RLWINM &&
3697       SrcMI->getOpcode() != PPC::RLWINM_rec &&
3698       SrcMI->getOpcode() != PPC::RLWINM8 &&
3699       SrcMI->getOpcode() != PPC::RLWINM8_rec)
3700     return false;
3701   assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
3702           MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
3703           SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
3704          "Invalid PPC::RLWINM Instruction!");
3705   uint64_t SHSrc = SrcMI->getOperand(2).getImm();
3706   uint64_t SHMI = MI.getOperand(2).getImm();
3707   uint64_t MBSrc = SrcMI->getOperand(3).getImm();
3708   uint64_t MBMI = MI.getOperand(3).getImm();
3709   uint64_t MESrc = SrcMI->getOperand(4).getImm();
3710   uint64_t MEMI = MI.getOperand(4).getImm();
3711 
3712   assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
3713          "Invalid PPC::RLWINM Instruction!");
3714   // If MBMI is bigger than MEMI, we always can not get run of ones.
3715   // RotatedSrcMask non-wrap:
3716   //                 0........31|32........63
3717   // RotatedSrcMask:   B---E        B---E
3718   // MaskMI:         -----------|--E  B------
3719   // Result:           -----          ---      (Bad candidate)
3720   //
3721   // RotatedSrcMask wrap:
3722   //                 0........31|32........63
3723   // RotatedSrcMask: --E   B----|--E    B----
3724   // MaskMI:         -----------|--E  B------
3725   // Result:         ---   -----|---    -----  (Bad candidate)
3726   //
3727   // One special case is RotatedSrcMask is a full set mask.
3728   // RotatedSrcMask full:
3729   //                 0........31|32........63
3730   // RotatedSrcMask: ------EB---|-------EB---
3731   // MaskMI:         -----------|--E  B------
3732   // Result:         -----------|---  -------  (Good candidate)
3733 
3734   // Mark special case.
3735   bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
3736 
3737   // For other MBMI > MEMI cases, just return.
3738   if ((MBMI > MEMI) && !SrcMaskFull)
3739     return false;
3740 
3741   // Handle MBMI <= MEMI cases.
3742   APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
3743   // In MI, we only need low 32 bits of SrcMI, just consider about low 32
3744   // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
3745   // while in PowerPC ISA, lowerest bit is at index 63.
3746   APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
3747 
3748   APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
3749   APInt FinalMask = RotatedSrcMask & MaskMI;
3750   uint32_t NewMB, NewME;
3751   bool Simplified = false;
3752 
3753   // If final mask is 0, MI result should be 0 too.
3754   if (FinalMask.isNullValue()) {
3755     bool Is64Bit =
3756         (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec);
3757     Simplified = true;
3758     LLVM_DEBUG(dbgs() << "Replace Instr: ");
3759     LLVM_DEBUG(MI.dump());
3760 
3761     if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
3762       // Replace MI with "LI 0"
3763       MI.RemoveOperand(4);
3764       MI.RemoveOperand(3);
3765       MI.RemoveOperand(2);
3766       MI.getOperand(1).ChangeToImmediate(0);
3767       MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
3768     } else {
3769       // Replace MI with "ANDI_rec reg, 0"
3770       MI.RemoveOperand(4);
3771       MI.RemoveOperand(3);
3772       MI.getOperand(2).setImm(0);
3773       MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3774       MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3775       if (SrcMI->getOperand(1).isKill()) {
3776         MI.getOperand(1).setIsKill(true);
3777         SrcMI->getOperand(1).setIsKill(false);
3778       } else
3779         // About to replace MI.getOperand(1), clear its kill flag.
3780         MI.getOperand(1).setIsKill(false);
3781     }
3782 
3783     LLVM_DEBUG(dbgs() << "With: ");
3784     LLVM_DEBUG(MI.dump());
3785 
3786   } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
3787               NewMB <= NewME) ||
3788              SrcMaskFull) {
3789     // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
3790     // than NewME. Otherwise we get a 64 bit value after folding, but MI
3791     // return a 32 bit value.
3792     Simplified = true;
3793     LLVM_DEBUG(dbgs() << "Converting Instr: ");
3794     LLVM_DEBUG(MI.dump());
3795 
3796     uint16_t NewSH = (SHSrc + SHMI) % 32;
3797     MI.getOperand(2).setImm(NewSH);
3798     // If SrcMI mask is full, no need to update MBMI and MEMI.
3799     if (!SrcMaskFull) {
3800       MI.getOperand(3).setImm(NewMB);
3801       MI.getOperand(4).setImm(NewME);
3802     }
3803     MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3804     if (SrcMI->getOperand(1).isKill()) {
3805       MI.getOperand(1).setIsKill(true);
3806       SrcMI->getOperand(1).setIsKill(false);
3807     } else
3808       // About to replace MI.getOperand(1), clear its kill flag.
3809       MI.getOperand(1).setIsKill(false);
3810 
3811     LLVM_DEBUG(dbgs() << "To: ");
3812     LLVM_DEBUG(MI.dump());
3813   }
3814   if (Simplified & MRI->use_nodbg_empty(FoldingReg) &&
3815       !SrcMI->hasImplicitDef()) {
3816     // If FoldingReg has no non-debug use and it has no implicit def (it
3817     // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
3818     // Otherwise keep it.
3819     *ToErase = SrcMI;
3820     LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
3821     LLVM_DEBUG(SrcMI->dump());
3822   }
3823   return Simplified;
3824 }
3825 
3826 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3827                                    ImmInstrInfo &III, bool PostRA) const {
3828   // The vast majority of the instructions would need their operand 2 replaced
3829   // with an immediate when switching to the reg+imm form. A marked exception
3830   // are the update form loads/stores for which a constant operand 2 would need
3831   // to turn into a displacement and move operand 1 to the operand 2 position.
3832   III.ImmOpNo = 2;
3833   III.OpNoForForwarding = 2;
3834   III.ImmWidth = 16;
3835   III.ImmMustBeMultipleOf = 1;
3836   III.TruncateImmTo = 0;
3837   III.IsSummingOperands = false;
3838   switch (Opc) {
3839   default: return false;
3840   case PPC::ADD4:
3841   case PPC::ADD8:
3842     III.SignedImm = true;
3843     III.ZeroIsSpecialOrig = 0;
3844     III.ZeroIsSpecialNew = 1;
3845     III.IsCommutative = true;
3846     III.IsSummingOperands = true;
3847     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3848     break;
3849   case PPC::ADDC:
3850   case PPC::ADDC8:
3851     III.SignedImm = true;
3852     III.ZeroIsSpecialOrig = 0;
3853     III.ZeroIsSpecialNew = 0;
3854     III.IsCommutative = true;
3855     III.IsSummingOperands = true;
3856     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3857     break;
3858   case PPC::ADDC_rec:
3859     III.SignedImm = true;
3860     III.ZeroIsSpecialOrig = 0;
3861     III.ZeroIsSpecialNew = 0;
3862     III.IsCommutative = true;
3863     III.IsSummingOperands = true;
3864     III.ImmOpcode = PPC::ADDIC_rec;
3865     break;
3866   case PPC::SUBFC:
3867   case PPC::SUBFC8:
3868     III.SignedImm = true;
3869     III.ZeroIsSpecialOrig = 0;
3870     III.ZeroIsSpecialNew = 0;
3871     III.IsCommutative = false;
3872     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3873     break;
3874   case PPC::CMPW:
3875   case PPC::CMPD:
3876     III.SignedImm = true;
3877     III.ZeroIsSpecialOrig = 0;
3878     III.ZeroIsSpecialNew = 0;
3879     III.IsCommutative = false;
3880     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3881     break;
3882   case PPC::CMPLW:
3883   case PPC::CMPLD:
3884     III.SignedImm = false;
3885     III.ZeroIsSpecialOrig = 0;
3886     III.ZeroIsSpecialNew = 0;
3887     III.IsCommutative = false;
3888     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3889     break;
3890   case PPC::AND_rec:
3891   case PPC::AND8_rec:
3892   case PPC::OR:
3893   case PPC::OR8:
3894   case PPC::XOR:
3895   case PPC::XOR8:
3896     III.SignedImm = false;
3897     III.ZeroIsSpecialOrig = 0;
3898     III.ZeroIsSpecialNew = 0;
3899     III.IsCommutative = true;
3900     switch(Opc) {
3901     default: llvm_unreachable("Unknown opcode");
3902     case PPC::AND_rec:
3903       III.ImmOpcode = PPC::ANDI_rec;
3904       break;
3905     case PPC::AND8_rec:
3906       III.ImmOpcode = PPC::ANDI8_rec;
3907       break;
3908     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3909     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3910     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3911     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3912     }
3913     break;
3914   case PPC::RLWNM:
3915   case PPC::RLWNM8:
3916   case PPC::RLWNM_rec:
3917   case PPC::RLWNM8_rec:
3918   case PPC::SLW:
3919   case PPC::SLW8:
3920   case PPC::SLW_rec:
3921   case PPC::SLW8_rec:
3922   case PPC::SRW:
3923   case PPC::SRW8:
3924   case PPC::SRW_rec:
3925   case PPC::SRW8_rec:
3926   case PPC::SRAW:
3927   case PPC::SRAW_rec:
3928     III.SignedImm = false;
3929     III.ZeroIsSpecialOrig = 0;
3930     III.ZeroIsSpecialNew = 0;
3931     III.IsCommutative = false;
3932     // This isn't actually true, but the instructions ignore any of the
3933     // upper bits, so any immediate loaded with an LI is acceptable.
3934     // This does not apply to shift right algebraic because a value
3935     // out of range will produce a -1/0.
3936     III.ImmWidth = 16;
3937     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3938         Opc == PPC::RLWNM8_rec)
3939       III.TruncateImmTo = 5;
3940     else
3941       III.TruncateImmTo = 6;
3942     switch(Opc) {
3943     default: llvm_unreachable("Unknown opcode");
3944     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3945     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3946     case PPC::RLWNM_rec:
3947       III.ImmOpcode = PPC::RLWINM_rec;
3948       break;
3949     case PPC::RLWNM8_rec:
3950       III.ImmOpcode = PPC::RLWINM8_rec;
3951       break;
3952     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3953     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3954     case PPC::SLW_rec:
3955       III.ImmOpcode = PPC::RLWINM_rec;
3956       break;
3957     case PPC::SLW8_rec:
3958       III.ImmOpcode = PPC::RLWINM8_rec;
3959       break;
3960     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3961     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3962     case PPC::SRW_rec:
3963       III.ImmOpcode = PPC::RLWINM_rec;
3964       break;
3965     case PPC::SRW8_rec:
3966       III.ImmOpcode = PPC::RLWINM8_rec;
3967       break;
3968     case PPC::SRAW:
3969       III.ImmWidth = 5;
3970       III.TruncateImmTo = 0;
3971       III.ImmOpcode = PPC::SRAWI;
3972       break;
3973     case PPC::SRAW_rec:
3974       III.ImmWidth = 5;
3975       III.TruncateImmTo = 0;
3976       III.ImmOpcode = PPC::SRAWI_rec;
3977       break;
3978     }
3979     break;
3980   case PPC::RLDCL:
3981   case PPC::RLDCL_rec:
3982   case PPC::RLDCR:
3983   case PPC::RLDCR_rec:
3984   case PPC::SLD:
3985   case PPC::SLD_rec:
3986   case PPC::SRD:
3987   case PPC::SRD_rec:
3988   case PPC::SRAD:
3989   case PPC::SRAD_rec:
3990     III.SignedImm = false;
3991     III.ZeroIsSpecialOrig = 0;
3992     III.ZeroIsSpecialNew = 0;
3993     III.IsCommutative = false;
3994     // This isn't actually true, but the instructions ignore any of the
3995     // upper bits, so any immediate loaded with an LI is acceptable.
3996     // This does not apply to shift right algebraic because a value
3997     // out of range will produce a -1/0.
3998     III.ImmWidth = 16;
3999     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
4000         Opc == PPC::RLDCR_rec)
4001       III.TruncateImmTo = 6;
4002     else
4003       III.TruncateImmTo = 7;
4004     switch(Opc) {
4005     default: llvm_unreachable("Unknown opcode");
4006     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
4007     case PPC::RLDCL_rec:
4008       III.ImmOpcode = PPC::RLDICL_rec;
4009       break;
4010     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
4011     case PPC::RLDCR_rec:
4012       III.ImmOpcode = PPC::RLDICR_rec;
4013       break;
4014     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
4015     case PPC::SLD_rec:
4016       III.ImmOpcode = PPC::RLDICR_rec;
4017       break;
4018     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
4019     case PPC::SRD_rec:
4020       III.ImmOpcode = PPC::RLDICL_rec;
4021       break;
4022     case PPC::SRAD:
4023       III.ImmWidth = 6;
4024       III.TruncateImmTo = 0;
4025       III.ImmOpcode = PPC::SRADI;
4026        break;
4027     case PPC::SRAD_rec:
4028       III.ImmWidth = 6;
4029       III.TruncateImmTo = 0;
4030       III.ImmOpcode = PPC::SRADI_rec;
4031       break;
4032     }
4033     break;
4034   // Loads and stores:
4035   case PPC::LBZX:
4036   case PPC::LBZX8:
4037   case PPC::LHZX:
4038   case PPC::LHZX8:
4039   case PPC::LHAX:
4040   case PPC::LHAX8:
4041   case PPC::LWZX:
4042   case PPC::LWZX8:
4043   case PPC::LWAX:
4044   case PPC::LDX:
4045   case PPC::LFSX:
4046   case PPC::LFDX:
4047   case PPC::STBX:
4048   case PPC::STBX8:
4049   case PPC::STHX:
4050   case PPC::STHX8:
4051   case PPC::STWX:
4052   case PPC::STWX8:
4053   case PPC::STDX:
4054   case PPC::STFSX:
4055   case PPC::STFDX:
4056     III.SignedImm = true;
4057     III.ZeroIsSpecialOrig = 1;
4058     III.ZeroIsSpecialNew = 2;
4059     III.IsCommutative = true;
4060     III.IsSummingOperands = true;
4061     III.ImmOpNo = 1;
4062     III.OpNoForForwarding = 2;
4063     switch(Opc) {
4064     default: llvm_unreachable("Unknown opcode");
4065     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
4066     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
4067     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
4068     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
4069     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
4070     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
4071     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
4072     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
4073     case PPC::LWAX:
4074       III.ImmOpcode = PPC::LWA;
4075       III.ImmMustBeMultipleOf = 4;
4076       break;
4077     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
4078     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
4079     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
4080     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
4081     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
4082     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
4083     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
4084     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
4085     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
4086     case PPC::STDX:
4087       III.ImmOpcode = PPC::STD;
4088       III.ImmMustBeMultipleOf = 4;
4089       break;
4090     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
4091     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
4092     }
4093     break;
4094   case PPC::LBZUX:
4095   case PPC::LBZUX8:
4096   case PPC::LHZUX:
4097   case PPC::LHZUX8:
4098   case PPC::LHAUX:
4099   case PPC::LHAUX8:
4100   case PPC::LWZUX:
4101   case PPC::LWZUX8:
4102   case PPC::LDUX:
4103   case PPC::LFSUX:
4104   case PPC::LFDUX:
4105   case PPC::STBUX:
4106   case PPC::STBUX8:
4107   case PPC::STHUX:
4108   case PPC::STHUX8:
4109   case PPC::STWUX:
4110   case PPC::STWUX8:
4111   case PPC::STDUX:
4112   case PPC::STFSUX:
4113   case PPC::STFDUX:
4114     III.SignedImm = true;
4115     III.ZeroIsSpecialOrig = 2;
4116     III.ZeroIsSpecialNew = 3;
4117     III.IsCommutative = false;
4118     III.IsSummingOperands = true;
4119     III.ImmOpNo = 2;
4120     III.OpNoForForwarding = 3;
4121     switch(Opc) {
4122     default: llvm_unreachable("Unknown opcode");
4123     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
4124     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
4125     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
4126     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
4127     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
4128     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
4129     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
4130     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
4131     case PPC::LDUX:
4132       III.ImmOpcode = PPC::LDU;
4133       III.ImmMustBeMultipleOf = 4;
4134       break;
4135     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
4136     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
4137     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
4138     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
4139     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
4140     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
4141     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
4142     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
4143     case PPC::STDUX:
4144       III.ImmOpcode = PPC::STDU;
4145       III.ImmMustBeMultipleOf = 4;
4146       break;
4147     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
4148     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
4149     }
4150     break;
4151   // Power9 and up only. For some of these, the X-Form version has access to all
4152   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
4153   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
4154   // into or stored from is one of the VR registers.
4155   case PPC::LXVX:
4156   case PPC::LXSSPX:
4157   case PPC::LXSDX:
4158   case PPC::STXVX:
4159   case PPC::STXSSPX:
4160   case PPC::STXSDX:
4161   case PPC::XFLOADf32:
4162   case PPC::XFLOADf64:
4163   case PPC::XFSTOREf32:
4164   case PPC::XFSTOREf64:
4165     if (!Subtarget.hasP9Vector())
4166       return false;
4167     III.SignedImm = true;
4168     III.ZeroIsSpecialOrig = 1;
4169     III.ZeroIsSpecialNew = 2;
4170     III.IsCommutative = true;
4171     III.IsSummingOperands = true;
4172     III.ImmOpNo = 1;
4173     III.OpNoForForwarding = 2;
4174     III.ImmMustBeMultipleOf = 4;
4175     switch(Opc) {
4176     default: llvm_unreachable("Unknown opcode");
4177     case PPC::LXVX:
4178       III.ImmOpcode = PPC::LXV;
4179       III.ImmMustBeMultipleOf = 16;
4180       break;
4181     case PPC::LXSSPX:
4182       if (PostRA) {
4183         if (IsVFReg)
4184           III.ImmOpcode = PPC::LXSSP;
4185         else {
4186           III.ImmOpcode = PPC::LFS;
4187           III.ImmMustBeMultipleOf = 1;
4188         }
4189         break;
4190       }
4191       LLVM_FALLTHROUGH;
4192     case PPC::XFLOADf32:
4193       III.ImmOpcode = PPC::DFLOADf32;
4194       break;
4195     case PPC::LXSDX:
4196       if (PostRA) {
4197         if (IsVFReg)
4198           III.ImmOpcode = PPC::LXSD;
4199         else {
4200           III.ImmOpcode = PPC::LFD;
4201           III.ImmMustBeMultipleOf = 1;
4202         }
4203         break;
4204       }
4205       LLVM_FALLTHROUGH;
4206     case PPC::XFLOADf64:
4207       III.ImmOpcode = PPC::DFLOADf64;
4208       break;
4209     case PPC::STXVX:
4210       III.ImmOpcode = PPC::STXV;
4211       III.ImmMustBeMultipleOf = 16;
4212       break;
4213     case PPC::STXSSPX:
4214       if (PostRA) {
4215         if (IsVFReg)
4216           III.ImmOpcode = PPC::STXSSP;
4217         else {
4218           III.ImmOpcode = PPC::STFS;
4219           III.ImmMustBeMultipleOf = 1;
4220         }
4221         break;
4222       }
4223       LLVM_FALLTHROUGH;
4224     case PPC::XFSTOREf32:
4225       III.ImmOpcode = PPC::DFSTOREf32;
4226       break;
4227     case PPC::STXSDX:
4228       if (PostRA) {
4229         if (IsVFReg)
4230           III.ImmOpcode = PPC::STXSD;
4231         else {
4232           III.ImmOpcode = PPC::STFD;
4233           III.ImmMustBeMultipleOf = 1;
4234         }
4235         break;
4236       }
4237       LLVM_FALLTHROUGH;
4238     case PPC::XFSTOREf64:
4239       III.ImmOpcode = PPC::DFSTOREf64;
4240       break;
4241     }
4242     break;
4243   }
4244   return true;
4245 }
4246 
4247 // Utility function for swaping two arbitrary operands of an instruction.
4248 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
4249   assert(Op1 != Op2 && "Cannot swap operand with itself.");
4250 
4251   unsigned MaxOp = std::max(Op1, Op2);
4252   unsigned MinOp = std::min(Op1, Op2);
4253   MachineOperand MOp1 = MI.getOperand(MinOp);
4254   MachineOperand MOp2 = MI.getOperand(MaxOp);
4255   MI.RemoveOperand(std::max(Op1, Op2));
4256   MI.RemoveOperand(std::min(Op1, Op2));
4257 
4258   // If the operands we are swapping are the two at the end (the common case)
4259   // we can just remove both and add them in the opposite order.
4260   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
4261     MI.addOperand(MOp2);
4262     MI.addOperand(MOp1);
4263   } else {
4264     // Store all operands in a temporary vector, remove them and re-add in the
4265     // right order.
4266     SmallVector<MachineOperand, 2> MOps;
4267     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
4268     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
4269       MOps.push_back(MI.getOperand(i));
4270       MI.RemoveOperand(i);
4271     }
4272     // MOp2 needs to be added next.
4273     MI.addOperand(MOp2);
4274     // Now add the rest.
4275     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
4276       if (i == MaxOp)
4277         MI.addOperand(MOp1);
4278       else {
4279         MI.addOperand(MOps.back());
4280         MOps.pop_back();
4281       }
4282     }
4283   }
4284 }
4285 
4286 // Check if the 'MI' that has the index OpNoForForwarding
4287 // meets the requirement described in the ImmInstrInfo.
4288 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
4289                                                const ImmInstrInfo &III,
4290                                                unsigned OpNoForForwarding
4291                                                ) const {
4292   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
4293   // would not work pre-RA, we can only do the check post RA.
4294   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4295   if (MRI.isSSA())
4296     return false;
4297 
4298   // Cannot do the transform if MI isn't summing the operands.
4299   if (!III.IsSummingOperands)
4300     return false;
4301 
4302   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
4303   if (!III.ZeroIsSpecialOrig)
4304     return false;
4305 
4306   // We cannot do the transform if the operand we are trying to replace
4307   // isn't the same as the operand the instruction allows.
4308   if (OpNoForForwarding != III.OpNoForForwarding)
4309     return false;
4310 
4311   // Check if the instruction we are trying to transform really has
4312   // the special zero register as its operand.
4313   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
4314       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
4315     return false;
4316 
4317   // This machine instruction is convertible if it is,
4318   // 1. summing the operands.
4319   // 2. one of the operands is special zero register.
4320   // 3. the operand we are trying to replace is allowed by the MI.
4321   return true;
4322 }
4323 
4324 // Check if the DefMI is the add inst and set the ImmMO and RegMO
4325 // accordingly.
4326 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
4327                                                const ImmInstrInfo &III,
4328                                                MachineOperand *&ImmMO,
4329                                                MachineOperand *&RegMO) const {
4330   unsigned Opc = DefMI.getOpcode();
4331   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
4332     return false;
4333 
4334   assert(DefMI.getNumOperands() >= 3 &&
4335          "Add inst must have at least three operands");
4336   RegMO = &DefMI.getOperand(1);
4337   ImmMO = &DefMI.getOperand(2);
4338 
4339   // Before RA, ADDI first operand could be a frame index.
4340   if (!RegMO->isReg())
4341     return false;
4342 
4343   // This DefMI is elgible for forwarding if it is:
4344   // 1. add inst
4345   // 2. one of the operands is Imm/CPI/Global.
4346   return isAnImmediateOperand(*ImmMO);
4347 }
4348 
4349 bool PPCInstrInfo::isRegElgibleForForwarding(
4350     const MachineOperand &RegMO, const MachineInstr &DefMI,
4351     const MachineInstr &MI, bool KillDefMI,
4352     bool &IsFwdFeederRegKilled) const {
4353   // x = addi y, imm
4354   // ...
4355   // z = lfdx 0, x   -> z = lfd imm(y)
4356   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
4357   // of "y" between the DEF of "x" and "z".
4358   // The query is only valid post RA.
4359   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4360   if (MRI.isSSA())
4361     return false;
4362 
4363   Register Reg = RegMO.getReg();
4364 
4365   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
4366   MachineBasicBlock::const_reverse_iterator It = MI;
4367   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
4368   It++;
4369   for (; It != E; ++It) {
4370     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4371       return false;
4372     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4373       IsFwdFeederRegKilled = true;
4374     // Made it to DefMI without encountering a clobber.
4375     if ((&*It) == &DefMI)
4376       break;
4377   }
4378   assert((&*It) == &DefMI && "DefMI is missing");
4379 
4380   // If DefMI also defines the register to be forwarded, we can only forward it
4381   // if DefMI is being erased.
4382   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
4383     return KillDefMI;
4384 
4385   return true;
4386 }
4387 
4388 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
4389                                              const MachineInstr &DefMI,
4390                                              const ImmInstrInfo &III,
4391                                              int64_t &Imm,
4392                                              int64_t BaseImm) const {
4393   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
4394   if (DefMI.getOpcode() == PPC::ADDItocL) {
4395     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
4396     // However, we know that, it is 16-bit width, and has the alignment of 4.
4397     // Check if the instruction met the requirement.
4398     if (III.ImmMustBeMultipleOf > 4 ||
4399        III.TruncateImmTo || III.ImmWidth != 16)
4400       return false;
4401 
4402     // Going from XForm to DForm loads means that the displacement needs to be
4403     // not just an immediate but also a multiple of 4, or 16 depending on the
4404     // load. A DForm load cannot be represented if it is a multiple of say 2.
4405     // XForm loads do not have this restriction.
4406     if (ImmMO.isGlobal()) {
4407       const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
4408       if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
4409         return false;
4410     }
4411 
4412     return true;
4413   }
4414 
4415   if (ImmMO.isImm()) {
4416     // It is Imm, we need to check if the Imm fit the range.
4417     // Sign-extend to 64-bits.
4418     // DefMI may be folded with another imm form instruction, the result Imm is
4419     // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
4420     APInt ActualValue(64, ImmMO.getImm() + BaseImm, true);
4421     if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth))
4422       return false;
4423     if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth))
4424       return false;
4425     Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
4426 
4427     if (Imm % III.ImmMustBeMultipleOf)
4428       return false;
4429     if (III.TruncateImmTo)
4430       Imm &= ((1 << III.TruncateImmTo) - 1);
4431   }
4432   else
4433     return false;
4434 
4435   // This ImmMO is forwarded if it meets the requriement describle
4436   // in ImmInstrInfo
4437   return true;
4438 }
4439 
4440 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
4441                                 unsigned OpNoForForwarding,
4442                                 MachineInstr **KilledDef) const {
4443   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4444       !DefMI.getOperand(1).isImm())
4445     return false;
4446 
4447   MachineFunction *MF = MI.getParent()->getParent();
4448   MachineRegisterInfo *MRI = &MF->getRegInfo();
4449   bool PostRA = !MRI->isSSA();
4450 
4451   int64_t Immediate = DefMI.getOperand(1).getImm();
4452   // Sign-extend to 64-bits.
4453   int64_t SExtImm = SignExtend64<16>(Immediate);
4454 
4455   bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
4456   Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4457 
4458   bool ReplaceWithLI = false;
4459   bool Is64BitLI = false;
4460   int64_t NewImm = 0;
4461   bool SetCR = false;
4462   unsigned Opc = MI.getOpcode();
4463   switch (Opc) {
4464   default:
4465     return false;
4466 
4467   // FIXME: Any branches conditional on such a comparison can be made
4468   // unconditional. At this time, this happens too infrequently to be worth
4469   // the implementation effort, but if that ever changes, we could convert
4470   // such a pattern here.
4471   case PPC::CMPWI:
4472   case PPC::CMPLWI:
4473   case PPC::CMPDI:
4474   case PPC::CMPLDI: {
4475     // Doing this post-RA would require dataflow analysis to reliably find uses
4476     // of the CR register set by the compare.
4477     // No need to fixup killed/dead flag since this transformation is only valid
4478     // before RA.
4479     if (PostRA)
4480       return false;
4481     // If a compare-immediate is fed by an immediate and is itself an input of
4482     // an ISEL (the most common case) into a COPY of the correct register.
4483     bool Changed = false;
4484     Register DefReg = MI.getOperand(0).getReg();
4485     int64_t Comparand = MI.getOperand(2).getImm();
4486     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
4487                                 ? (Comparand | 0xFFFFFFFFFFFF0000)
4488                                 : Comparand;
4489 
4490     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
4491       unsigned UseOpc = CompareUseMI.getOpcode();
4492       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
4493         continue;
4494       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
4495       Register TrueReg = CompareUseMI.getOperand(1).getReg();
4496       Register FalseReg = CompareUseMI.getOperand(2).getReg();
4497       unsigned RegToCopy =
4498           selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
4499       if (RegToCopy == PPC::NoRegister)
4500         continue;
4501       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
4502       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
4503         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
4504         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
4505         CompareUseMI.RemoveOperand(3);
4506         CompareUseMI.RemoveOperand(2);
4507         continue;
4508       }
4509       LLVM_DEBUG(
4510           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
4511       LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
4512       LLVM_DEBUG(dbgs() << "Is converted to:\n");
4513       // Convert to copy and remove unneeded operands.
4514       CompareUseMI.setDesc(get(PPC::COPY));
4515       CompareUseMI.RemoveOperand(3);
4516       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
4517       CmpIselsConverted++;
4518       Changed = true;
4519       LLVM_DEBUG(CompareUseMI.dump());
4520     }
4521     if (Changed)
4522       return true;
4523     // This may end up incremented multiple times since this function is called
4524     // during a fixed-point transformation, but it is only meant to indicate the
4525     // presence of this opportunity.
4526     MissedConvertibleImmediateInstrs++;
4527     return false;
4528   }
4529 
4530   // Immediate forms - may simply be convertable to an LI.
4531   case PPC::ADDI:
4532   case PPC::ADDI8: {
4533     // Does the sum fit in a 16-bit signed field?
4534     int64_t Addend = MI.getOperand(2).getImm();
4535     if (isInt<16>(Addend + SExtImm)) {
4536       ReplaceWithLI = true;
4537       Is64BitLI = Opc == PPC::ADDI8;
4538       NewImm = Addend + SExtImm;
4539       break;
4540     }
4541     return false;
4542   }
4543   case PPC::SUBFIC:
4544   case PPC::SUBFIC8: {
4545     // Only transform this if the CARRY implicit operand is dead.
4546     if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
4547       return false;
4548     int64_t Minuend = MI.getOperand(2).getImm();
4549     if (isInt<16>(Minuend - SExtImm)) {
4550       ReplaceWithLI = true;
4551       Is64BitLI = Opc == PPC::SUBFIC8;
4552       NewImm = Minuend - SExtImm;
4553       break;
4554     }
4555     return false;
4556   }
4557   case PPC::RLDICL:
4558   case PPC::RLDICL_rec:
4559   case PPC::RLDICL_32:
4560   case PPC::RLDICL_32_64: {
4561     // Use APInt's rotate function.
4562     int64_t SH = MI.getOperand(2).getImm();
4563     int64_t MB = MI.getOperand(3).getImm();
4564     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
4565                 SExtImm, true);
4566     InVal = InVal.rotl(SH);
4567     uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
4568     InVal &= Mask;
4569     // Can't replace negative values with an LI as that will sign-extend
4570     // and not clear the left bits. If we're setting the CR bit, we will use
4571     // ANDI_rec which won't sign extend, so that's safe.
4572     if (isUInt<15>(InVal.getSExtValue()) ||
4573         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
4574       ReplaceWithLI = true;
4575       Is64BitLI = Opc != PPC::RLDICL_32;
4576       NewImm = InVal.getSExtValue();
4577       SetCR = Opc == PPC::RLDICL_rec;
4578       break;
4579     }
4580     return false;
4581   }
4582   case PPC::RLWINM:
4583   case PPC::RLWINM8:
4584   case PPC::RLWINM_rec:
4585   case PPC::RLWINM8_rec: {
4586     int64_t SH = MI.getOperand(2).getImm();
4587     int64_t MB = MI.getOperand(3).getImm();
4588     int64_t ME = MI.getOperand(4).getImm();
4589     APInt InVal(32, SExtImm, true);
4590     InVal = InVal.rotl(SH);
4591     APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
4592     InVal &= Mask;
4593     // Can't replace negative values with an LI as that will sign-extend
4594     // and not clear the left bits. If we're setting the CR bit, we will use
4595     // ANDI_rec which won't sign extend, so that's safe.
4596     bool ValueFits = isUInt<15>(InVal.getSExtValue());
4597     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
4598                   isUInt<16>(InVal.getSExtValue()));
4599     if (ValueFits) {
4600       ReplaceWithLI = true;
4601       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
4602       NewImm = InVal.getSExtValue();
4603       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
4604       break;
4605     }
4606     return false;
4607   }
4608   case PPC::ORI:
4609   case PPC::ORI8:
4610   case PPC::XORI:
4611   case PPC::XORI8: {
4612     int64_t LogicalImm = MI.getOperand(2).getImm();
4613     int64_t Result = 0;
4614     if (Opc == PPC::ORI || Opc == PPC::ORI8)
4615       Result = LogicalImm | SExtImm;
4616     else
4617       Result = LogicalImm ^ SExtImm;
4618     if (isInt<16>(Result)) {
4619       ReplaceWithLI = true;
4620       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
4621       NewImm = Result;
4622       break;
4623     }
4624     return false;
4625   }
4626   }
4627 
4628   if (ReplaceWithLI) {
4629     // We need to be careful with CR-setting instructions we're replacing.
4630     if (SetCR) {
4631       // We don't know anything about uses when we're out of SSA, so only
4632       // replace if the new immediate will be reproduced.
4633       bool ImmChanged = (SExtImm & NewImm) != NewImm;
4634       if (PostRA && ImmChanged)
4635         return false;
4636 
4637       if (!PostRA) {
4638         // If the defining load-immediate has no other uses, we can just replace
4639         // the immediate with the new immediate.
4640         if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
4641           DefMI.getOperand(1).setImm(NewImm);
4642 
4643         // If we're not using the GPR result of the CR-setting instruction, we
4644         // just need to and with zero/non-zero depending on the new immediate.
4645         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
4646           if (NewImm) {
4647             assert(Immediate && "Transformation converted zero to non-zero?");
4648             NewImm = Immediate;
4649           }
4650         } else if (ImmChanged)
4651           return false;
4652       }
4653     }
4654 
4655     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4656     LLVM_DEBUG(MI.dump());
4657     LLVM_DEBUG(dbgs() << "Fed by:\n");
4658     LLVM_DEBUG(DefMI.dump());
4659     LoadImmediateInfo LII;
4660     LII.Imm = NewImm;
4661     LII.Is64Bit = Is64BitLI;
4662     LII.SetCR = SetCR;
4663     // If we're setting the CR, the original load-immediate must be kept (as an
4664     // operand to ANDI_rec/ANDI8_rec).
4665     if (KilledDef && SetCR)
4666       *KilledDef = nullptr;
4667     replaceInstrWithLI(MI, LII);
4668 
4669     // Fixup killed/dead flag after transformation.
4670     // Pattern:
4671     // ForwardingOperandReg = LI imm1
4672     // y = op2 imm2, ForwardingOperandReg(killed)
4673     if (IsForwardingOperandKilled)
4674       fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);
4675 
4676     LLVM_DEBUG(dbgs() << "With:\n");
4677     LLVM_DEBUG(MI.dump());
4678     return true;
4679   }
4680   return false;
4681 }
4682 
4683 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4684     MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
4685   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
4686   bool PostRA = !MRI->isSSA();
4687   // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4688   // for post-ra.
4689   if (PostRA)
4690     return false;
4691 
4692   // Only handle load/store.
4693   if (!MI.mayLoadOrStore())
4694     return false;
4695 
4696   unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
4697 
4698   assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
4699          "MI must have x-form opcode");
4700 
4701   // get Imm Form info.
4702   ImmInstrInfo III;
4703   bool IsVFReg = MI.getOperand(0).isReg()
4704                      ? isVFRegister(MI.getOperand(0).getReg())
4705                      : false;
4706 
4707   if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
4708     return false;
4709 
4710   if (!III.IsSummingOperands)
4711     return false;
4712 
4713   if (OpNoForForwarding != III.OpNoForForwarding)
4714     return false;
4715 
4716   MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
4717   if (!ImmOperandMI.isImm())
4718     return false;
4719 
4720   // Check DefMI.
4721   MachineOperand *ImmMO = nullptr;
4722   MachineOperand *RegMO = nullptr;
4723   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4724     return false;
4725   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4726 
4727   // Check Imm.
4728   // Set ImmBase from imm instruction as base and get new Imm inside
4729   // isImmElgibleForForwarding.
4730   int64_t ImmBase = ImmOperandMI.getImm();
4731   int64_t Imm = 0;
4732   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
4733     return false;
4734 
4735   // Get killed info in case fixup needed after transformation.
4736   unsigned ForwardKilledOperandReg = ~0U;
4737   if (MI.getOperand(III.OpNoForForwarding).isKill())
4738     ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
4739 
4740   // Do the transform
4741   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4742   LLVM_DEBUG(MI.dump());
4743   LLVM_DEBUG(dbgs() << "Fed by:\n");
4744   LLVM_DEBUG(DefMI.dump());
4745 
4746   MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
4747   if (RegMO->isKill()) {
4748     MI.getOperand(III.OpNoForForwarding).setIsKill(true);
4749     // Clear the killed flag in RegMO. Doing this here can handle some cases
4750     // that DefMI and MI are not in same basic block.
4751     RegMO->setIsKill(false);
4752   }
4753   MI.getOperand(III.ImmOpNo).setImm(Imm);
4754 
4755   // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
4756   if (DefMI.getParent() == MI.getParent()) {
4757     // Check if reg is killed between MI and DefMI.
4758     auto IsKilledFor = [&](unsigned Reg) {
4759       MachineBasicBlock::const_reverse_iterator It = MI;
4760       MachineBasicBlock::const_reverse_iterator E = DefMI;
4761       It++;
4762       for (; It != E; ++It) {
4763         if (It->killsRegister(Reg))
4764           return true;
4765       }
4766       return false;
4767     };
4768 
4769     // Update kill flag
4770     if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
4771       fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4772     if (ForwardKilledOperandReg != ~0U)
4773       fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4774   }
4775 
4776   LLVM_DEBUG(dbgs() << "With:\n");
4777   LLVM_DEBUG(MI.dump());
4778   return true;
4779 }
4780 
4781 // If an X-Form instruction is fed by an add-immediate and one of its operands
4782 // is the literal zero, attempt to forward the source of the add-immediate to
4783 // the corresponding D-Form instruction with the displacement coming from
4784 // the immediate being added.
4785 bool PPCInstrInfo::transformToImmFormFedByAdd(
4786     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
4787     MachineInstr &DefMI, bool KillDefMI) const {
4788   //         RegMO ImmMO
4789   //           |    |
4790   // x = addi reg, imm  <----- DefMI
4791   // y = op    0 ,  x   <----- MI
4792   //                |
4793   //         OpNoForForwarding
4794   // Check if the MI meet the requirement described in the III.
4795   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
4796     return false;
4797 
4798   // Check if the DefMI meet the requirement
4799   // described in the III. If yes, set the ImmMO and RegMO accordingly.
4800   MachineOperand *ImmMO = nullptr;
4801   MachineOperand *RegMO = nullptr;
4802   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4803     return false;
4804   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4805 
4806   // As we get the Imm operand now, we need to check if the ImmMO meet
4807   // the requirement described in the III. If yes set the Imm.
4808   int64_t Imm = 0;
4809   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
4810     return false;
4811 
4812   bool IsFwdFeederRegKilled = false;
4813   // Check if the RegMO can be forwarded to MI.
4814   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
4815                                  IsFwdFeederRegKilled))
4816     return false;
4817 
4818   // Get killed info in case fixup needed after transformation.
4819   unsigned ForwardKilledOperandReg = ~0U;
4820   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4821   bool PostRA = !MRI.isSSA();
4822   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
4823     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4824 
4825   // We know that, the MI and DefMI both meet the pattern, and
4826   // the Imm also meet the requirement with the new Imm-form.
4827   // It is safe to do the transformation now.
4828   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4829   LLVM_DEBUG(MI.dump());
4830   LLVM_DEBUG(dbgs() << "Fed by:\n");
4831   LLVM_DEBUG(DefMI.dump());
4832 
4833   // Update the base reg first.
4834   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4835                                                         false, false,
4836                                                         RegMO->isKill());
4837 
4838   // Then, update the imm.
4839   if (ImmMO->isImm()) {
4840     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
4841     // directly.
4842     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
4843   }
4844   else {
4845     // Otherwise, it is Constant Pool Index(CPI) or Global,
4846     // which is relocation in fact. We need to replace the special zero
4847     // register with ImmMO.
4848     // Before that, we need to fixup the target flags for imm.
4849     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
4850     if (DefMI.getOpcode() == PPC::ADDItocL)
4851       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
4852 
4853     // MI didn't have the interface such as MI.setOperand(i) though
4854     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4855     // ImmMO, we need to remove ZERO operand and all the operands behind it,
4856     // and, add the ImmMO, then, move back all the operands behind ZERO.
4857     SmallVector<MachineOperand, 2> MOps;
4858     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
4859       MOps.push_back(MI.getOperand(i));
4860       MI.RemoveOperand(i);
4861     }
4862 
4863     // Remove the last MO in the list, which is ZERO operand in fact.
4864     MOps.pop_back();
4865     // Add the imm operand.
4866     MI.addOperand(*ImmMO);
4867     // Now add the rest back.
4868     for (auto &MO : MOps)
4869       MI.addOperand(MO);
4870   }
4871 
4872   // Update the opcode.
4873   MI.setDesc(get(III.ImmOpcode));
4874 
4875   // Fix up killed/dead flag after transformation.
4876   // Pattern 1:
4877   // x = ADD KilledFwdFeederReg, imm
4878   // n = opn KilledFwdFeederReg(killed), regn
4879   // y = XOP 0, x
4880   // Pattern 2:
4881   // x = ADD reg(killed), imm
4882   // y = XOP 0, x
4883   if (IsFwdFeederRegKilled || RegMO->isKill())
4884     fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4885   // Pattern 3:
4886   // ForwardKilledOperandReg = ADD reg, imm
4887   // y = XOP 0, ForwardKilledOperandReg(killed)
4888   if (ForwardKilledOperandReg != ~0U)
4889     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4890 
4891   LLVM_DEBUG(dbgs() << "With:\n");
4892   LLVM_DEBUG(MI.dump());
4893 
4894   return true;
4895 }
4896 
4897 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
4898                                              const ImmInstrInfo &III,
4899                                              unsigned ConstantOpNo,
4900                                              MachineInstr &DefMI) const {
4901   // DefMI must be LI or LI8.
4902   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4903       !DefMI.getOperand(1).isImm())
4904     return false;
4905 
4906   // Get Imm operand and Sign-extend to 64-bits.
4907   int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
4908 
4909   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4910   bool PostRA = !MRI.isSSA();
4911   // Exit early if we can't convert this.
4912   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
4913     return false;
4914   if (Imm % III.ImmMustBeMultipleOf)
4915     return false;
4916   if (III.TruncateImmTo)
4917     Imm &= ((1 << III.TruncateImmTo) - 1);
4918   if (III.SignedImm) {
4919     APInt ActualValue(64, Imm, true);
4920     if (!ActualValue.isSignedIntN(III.ImmWidth))
4921       return false;
4922   } else {
4923     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4924     if ((uint64_t)Imm > UnsignedMax)
4925       return false;
4926   }
4927 
4928   // If we're post-RA, the instructions don't agree on whether register zero is
4929   // special, we can transform this as long as the register operand that will
4930   // end up in the location where zero is special isn't R0.
4931   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4932     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
4933       III.ZeroIsSpecialNew + 1;
4934     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
4935     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4936     // If R0 is in the operand where zero is special for the new instruction,
4937     // it is unsafe to transform if the constant operand isn't that operand.
4938     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
4939         ConstantOpNo != III.ZeroIsSpecialNew)
4940       return false;
4941     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
4942         ConstantOpNo != PosForOrigZero)
4943       return false;
4944   }
4945 
4946   // Get killed info in case fixup needed after transformation.
4947   unsigned ForwardKilledOperandReg = ~0U;
4948   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
4949     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
4950 
4951   unsigned Opc = MI.getOpcode();
4952   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
4953                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
4954                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
4955                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
4956   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
4957                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
4958   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
4959                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
4960   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
4961                     Opc == PPC::SRD_rec;
4962 
4963   MI.setDesc(get(III.ImmOpcode));
4964   if (ConstantOpNo == III.OpNoForForwarding) {
4965     // Converting shifts to immediate form is a bit tricky since they may do
4966     // one of three things:
4967     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
4968     // 2. If the shift amount is zero, the result is unchanged (save for maybe
4969     //    setting CR0)
4970     // 3. If the shift amount is in [1, OpSize), it's just a shift
4971     if (SpecialShift32 || SpecialShift64) {
4972       LoadImmediateInfo LII;
4973       LII.Imm = 0;
4974       LII.SetCR = SetCR;
4975       LII.Is64Bit = SpecialShift64;
4976       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
4977       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
4978         replaceInstrWithLI(MI, LII);
4979       // Shifts by zero don't change the value. If we don't need to set CR0,
4980       // just convert this to a COPY. Can't do this post-RA since we've already
4981       // cleaned up the copies.
4982       else if (!SetCR && ShAmt == 0 && !PostRA) {
4983         MI.RemoveOperand(2);
4984         MI.setDesc(get(PPC::COPY));
4985       } else {
4986         // The 32 bit and 64 bit instructions are quite different.
4987         if (SpecialShift32) {
4988           // Left shifts use (N, 0, 31-N).
4989           // Right shifts use (32-N, N, 31) if 0 < N < 32.
4990           //              use (0, 0, 31)    if N == 0.
4991           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
4992           uint64_t MB = RightShift ? ShAmt : 0;
4993           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
4994           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
4995           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
4996             .addImm(ME);
4997         } else {
4998           // Left shifts use (N, 63-N).
4999           // Right shifts use (64-N, N) if 0 < N < 64.
5000           //              use (0, 0)    if N == 0.
5001           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
5002           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
5003           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5004           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
5005         }
5006       }
5007     } else
5008       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5009   }
5010   // Convert commutative instructions (switch the operands and convert the
5011   // desired one to an immediate.
5012   else if (III.IsCommutative) {
5013     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5014     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
5015   } else
5016     llvm_unreachable("Should have exited early!");
5017 
5018   // For instructions for which the constant register replaces a different
5019   // operand than where the immediate goes, we need to swap them.
5020   if (III.OpNoForForwarding != III.ImmOpNo)
5021     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
5022 
5023   // If the special R0/X0 register index are different for original instruction
5024   // and new instruction, we need to fix up the register class in new
5025   // instruction.
5026   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
5027     if (III.ZeroIsSpecialNew) {
5028       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
5029       // need to fix up register class.
5030       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
5031       if (Register::isVirtualRegister(RegToModify)) {
5032         const TargetRegisterClass *NewRC =
5033           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
5034           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
5035         MRI.setRegClass(RegToModify, NewRC);
5036       }
5037     }
5038   }
5039 
5040   // Fix up killed/dead flag after transformation.
5041   // Pattern:
5042   // ForwardKilledOperandReg = LI imm
5043   // y = XOP reg, ForwardKilledOperandReg(killed)
5044   if (ForwardKilledOperandReg != ~0U)
5045     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
5046   return true;
5047 }
5048 
5049 const TargetRegisterClass *
5050 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
5051   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
5052     return &PPC::VSRCRegClass;
5053   return RC;
5054 }
5055 
5056 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
5057   return PPC::getRecordFormOpcode(Opcode);
5058 }
5059 
5060 // This function returns true if the machine instruction
5061 // always outputs a value by sign-extending a 32 bit value,
5062 // i.e. 0 to 31-th bits are same as 32-th bit.
5063 static bool isSignExtendingOp(const MachineInstr &MI) {
5064   int Opcode = MI.getOpcode();
5065   if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
5066       Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
5067       Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
5068       Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
5069       Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
5070       Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
5071       Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
5072       Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
5073       Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
5074       Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
5075       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
5076       Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
5077       Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
5078       Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
5079       Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
5080       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
5081       Opcode == PPC::EXTSB8_32_64)
5082     return true;
5083 
5084   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
5085     return true;
5086 
5087   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5088        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
5089       MI.getOperand(3).getImm() > 0 &&
5090       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
5091     return true;
5092 
5093   return false;
5094 }
5095 
5096 // This function returns true if the machine instruction
5097 // always outputs zeros in higher 32 bits.
5098 static bool isZeroExtendingOp(const MachineInstr &MI) {
5099   int Opcode = MI.getOpcode();
5100   // The 16-bit immediate is sign-extended in li/lis.
5101   // If the most significant bit is zero, all higher bits are zero.
5102   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
5103       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
5104     int64_t Imm = MI.getOperand(1).getImm();
5105     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
5106       return true;
5107   }
5108 
5109   // We have some variations of rotate-and-mask instructions
5110   // that clear higher 32-bits.
5111   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
5112        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
5113        Opcode == PPC::RLDICL_32_64) &&
5114       MI.getOperand(3).getImm() >= 32)
5115     return true;
5116 
5117   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
5118       MI.getOperand(3).getImm() >= 32 &&
5119       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
5120     return true;
5121 
5122   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5123        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
5124        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
5125       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
5126     return true;
5127 
5128   // There are other instructions that clear higher 32-bits.
5129   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
5130       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
5131       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
5132       Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
5133       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
5134       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
5135       Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
5136       Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
5137       Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
5138       Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
5139       Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
5140       Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
5141       Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
5142       Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
5143       Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
5144       Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
5145       Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
5146       Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
5147       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
5148       Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
5149       Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
5150       Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
5151       Opcode == PPC::MFVSRWZ)
5152     return true;
5153 
5154   return false;
5155 }
5156 
5157 // This function returns true if the input MachineInstr is a TOC save
5158 // instruction.
5159 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
5160   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
5161     return false;
5162   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5163   unsigned StackOffset = MI.getOperand(1).getImm();
5164   Register StackReg = MI.getOperand(2).getReg();
5165   Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
5166   if (StackReg == SPReg && StackOffset == TOCSaveOffset)
5167     return true;
5168 
5169   return false;
5170 }
5171 
5172 // We limit the max depth to track incoming values of PHIs or binary ops
5173 // (e.g. AND) to avoid excessive cost.
5174 const unsigned MAX_DEPTH = 1;
5175 
5176 bool
5177 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
5178                                    const unsigned Depth) const {
5179   const MachineFunction *MF = MI.getParent()->getParent();
5180   const MachineRegisterInfo *MRI = &MF->getRegInfo();
5181 
5182   // If we know this instruction returns sign- or zero-extended result,
5183   // return true.
5184   if (SignExt ? isSignExtendingOp(MI):
5185                 isZeroExtendingOp(MI))
5186     return true;
5187 
5188   switch (MI.getOpcode()) {
5189   case PPC::COPY: {
5190     Register SrcReg = MI.getOperand(1).getReg();
5191 
5192     // In both ELFv1 and v2 ABI, method parameters and the return value
5193     // are sign- or zero-extended.
5194     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
5195       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
5196       // We check the ZExt/SExt flags for a method parameter.
5197       if (MI.getParent()->getBasicBlock() ==
5198           &MF->getFunction().getEntryBlock()) {
5199         Register VReg = MI.getOperand(0).getReg();
5200         if (MF->getRegInfo().isLiveIn(VReg))
5201           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
5202                            FuncInfo->isLiveInZExt(VReg);
5203       }
5204 
5205       // For a method return value, we check the ZExt/SExt flags in attribute.
5206       // We assume the following code sequence for method call.
5207       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
5208       //   BL8_NOP @func,...
5209       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
5210       //   %5 = COPY %x3; G8RC:%5
5211       if (SrcReg == PPC::X3) {
5212         const MachineBasicBlock *MBB = MI.getParent();
5213         MachineBasicBlock::const_instr_iterator II =
5214           MachineBasicBlock::const_instr_iterator(&MI);
5215         if (II != MBB->instr_begin() &&
5216             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
5217           const MachineInstr &CallMI = *(--II);
5218           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
5219             const Function *CalleeFn =
5220               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
5221             if (!CalleeFn)
5222               return false;
5223             const IntegerType *IntTy =
5224               dyn_cast<IntegerType>(CalleeFn->getReturnType());
5225             const AttributeSet &Attrs =
5226               CalleeFn->getAttributes().getRetAttributes();
5227             if (IntTy && IntTy->getBitWidth() <= 32)
5228               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
5229                                                   Attribute::ZExt);
5230           }
5231         }
5232       }
5233     }
5234 
5235     // If this is a copy from another register, we recursively check source.
5236     if (!Register::isVirtualRegister(SrcReg))
5237       return false;
5238     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5239     if (SrcMI != NULL)
5240       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
5241 
5242     return false;
5243   }
5244 
5245   case PPC::ANDI_rec:
5246   case PPC::ANDIS_rec:
5247   case PPC::ORI:
5248   case PPC::ORIS:
5249   case PPC::XORI:
5250   case PPC::XORIS:
5251   case PPC::ANDI8_rec:
5252   case PPC::ANDIS8_rec:
5253   case PPC::ORI8:
5254   case PPC::ORIS8:
5255   case PPC::XORI8:
5256   case PPC::XORIS8: {
5257     // logical operation with 16-bit immediate does not change the upper bits.
5258     // So, we track the operand register as we do for register copy.
5259     Register SrcReg = MI.getOperand(1).getReg();
5260     if (!Register::isVirtualRegister(SrcReg))
5261       return false;
5262     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5263     if (SrcMI != NULL)
5264       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
5265 
5266     return false;
5267   }
5268 
5269   // If all incoming values are sign-/zero-extended,
5270   // the output of OR, ISEL or PHI is also sign-/zero-extended.
5271   case PPC::OR:
5272   case PPC::OR8:
5273   case PPC::ISEL:
5274   case PPC::PHI: {
5275     if (Depth >= MAX_DEPTH)
5276       return false;
5277 
5278     // The input registers for PHI are operand 1, 3, ...
5279     // The input registers for others are operand 1 and 2.
5280     unsigned E = 3, D = 1;
5281     if (MI.getOpcode() == PPC::PHI) {
5282       E = MI.getNumOperands();
5283       D = 2;
5284     }
5285 
5286     for (unsigned I = 1; I != E; I += D) {
5287       if (MI.getOperand(I).isReg()) {
5288         Register SrcReg = MI.getOperand(I).getReg();
5289         if (!Register::isVirtualRegister(SrcReg))
5290           return false;
5291         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
5292         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
5293           return false;
5294       }
5295       else
5296         return false;
5297     }
5298     return true;
5299   }
5300 
5301   // If at least one of the incoming values of an AND is zero extended
5302   // then the output is also zero-extended. If both of the incoming values
5303   // are sign-extended then the output is also sign extended.
5304   case PPC::AND:
5305   case PPC::AND8: {
5306     if (Depth >= MAX_DEPTH)
5307        return false;
5308 
5309     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
5310 
5311     Register SrcReg1 = MI.getOperand(1).getReg();
5312     Register SrcReg2 = MI.getOperand(2).getReg();
5313 
5314     if (!Register::isVirtualRegister(SrcReg1) ||
5315         !Register::isVirtualRegister(SrcReg2))
5316       return false;
5317 
5318     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
5319     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
5320     if (!MISrc1 || !MISrc2)
5321         return false;
5322 
5323     if(SignExt)
5324         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
5325                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
5326     else
5327         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
5328                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
5329   }
5330 
5331   default:
5332     break;
5333   }
5334   return false;
5335 }
5336 
5337 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
5338   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
5339 }
5340 
5341 namespace {
5342 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
5343   MachineInstr *Loop, *EndLoop, *LoopCount;
5344   MachineFunction *MF;
5345   const TargetInstrInfo *TII;
5346   int64_t TripCount;
5347 
5348 public:
5349   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
5350                        MachineInstr *LoopCount)
5351       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
5352         MF(Loop->getParent()->getParent()),
5353         TII(MF->getSubtarget().getInstrInfo()) {
5354     // Inspect the Loop instruction up-front, as it may be deleted when we call
5355     // createTripCountGreaterCondition.
5356     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
5357       TripCount = LoopCount->getOperand(1).getImm();
5358     else
5359       TripCount = -1;
5360   }
5361 
5362   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
5363     // Only ignore the terminator.
5364     return MI == EndLoop;
5365   }
5366 
5367   Optional<bool>
5368   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
5369                                   SmallVectorImpl<MachineOperand> &Cond) override {
5370     if (TripCount == -1) {
5371       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5372       // so we don't need to generate any thing here.
5373       Cond.push_back(MachineOperand::CreateImm(0));
5374       Cond.push_back(MachineOperand::CreateReg(
5375           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
5376           true));
5377       return {};
5378     }
5379 
5380     return TripCount > TC;
5381   }
5382 
5383   void setPreheader(MachineBasicBlock *NewPreheader) override {
5384     // Do nothing. We want the LOOP setup instruction to stay in the *old*
5385     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
5386   }
5387 
5388   void adjustTripCount(int TripCountAdjust) override {
5389     // If the loop trip count is a compile-time value, then just change the
5390     // value.
5391     if (LoopCount->getOpcode() == PPC::LI8 ||
5392         LoopCount->getOpcode() == PPC::LI) {
5393       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
5394       LoopCount->getOperand(1).setImm(TripCount);
5395       return;
5396     }
5397 
5398     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5399     // so we don't need to generate any thing here.
5400   }
5401 
5402   void disposed() override {
5403     Loop->eraseFromParent();
5404     // Ensure the loop setup instruction is deleted too.
5405     LoopCount->eraseFromParent();
5406   }
5407 };
5408 } // namespace
5409 
5410 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
5411 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
5412   // We really "analyze" only hardware loops right now.
5413   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
5414   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
5415   if (Preheader == LoopBB)
5416     Preheader = *std::next(LoopBB->pred_begin());
5417   MachineFunction *MF = Preheader->getParent();
5418 
5419   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
5420     SmallPtrSet<MachineBasicBlock *, 8> Visited;
5421     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
5422       Register LoopCountReg = LoopInst->getOperand(0).getReg();
5423       MachineRegisterInfo &MRI = MF->getRegInfo();
5424       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
5425       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
5426     }
5427   }
5428   return nullptr;
5429 }
5430 
5431 MachineInstr *PPCInstrInfo::findLoopInstr(
5432     MachineBasicBlock &PreHeader,
5433     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
5434 
5435   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
5436 
5437   // The loop set-up instruction should be in preheader
5438   for (auto &I : PreHeader.instrs())
5439     if (I.getOpcode() == LOOPi)
5440       return &I;
5441   return nullptr;
5442 }
5443 
5444 // Return true if get the base operand, byte offset of an instruction and the
5445 // memory width. Width is the size of memory that is being loaded/stored.
5446 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
5447     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
5448     unsigned &Width, const TargetRegisterInfo *TRI) const {
5449   if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
5450     return false;
5451 
5452   // Handle only loads/stores with base register followed by immediate offset.
5453   if (!LdSt.getOperand(1).isImm() ||
5454       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5455     return false;
5456   if (!LdSt.getOperand(1).isImm() ||
5457       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5458     return false;
5459 
5460   if (!LdSt.hasOneMemOperand())
5461     return false;
5462 
5463   Width = (*LdSt.memoperands_begin())->getSize();
5464   Offset = LdSt.getOperand(1).getImm();
5465   BaseReg = &LdSt.getOperand(2);
5466   return true;
5467 }
5468 
5469 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
5470     const MachineInstr &MIa, const MachineInstr &MIb) const {
5471   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
5472   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
5473 
5474   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
5475       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
5476     return false;
5477 
5478   // Retrieve the base register, offset from the base register and width. Width
5479   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
5480   // base registers are identical, and the offset of a lower memory access +
5481   // the width doesn't overlap the offset of a higher memory access,
5482   // then the memory accesses are different.
5483   const TargetRegisterInfo *TRI = &getRegisterInfo();
5484   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
5485   int64_t OffsetA = 0, OffsetB = 0;
5486   unsigned int WidthA = 0, WidthB = 0;
5487   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
5488       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
5489     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
5490       int LowOffset = std::min(OffsetA, OffsetB);
5491       int HighOffset = std::max(OffsetA, OffsetB);
5492       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
5493       if (LowOffset + LowWidth <= HighOffset)
5494         return true;
5495     }
5496   }
5497   return false;
5498 }
5499