1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Index into the OpcodesForSpill array. 76 enum SpillOpcodeKey { 77 SOK_Int4Spill, 78 SOK_Int8Spill, 79 SOK_Float8Spill, 80 SOK_Float4Spill, 81 SOK_CRSpill, 82 SOK_CRBitSpill, 83 SOK_VRVectorSpill, 84 SOK_VSXVectorSpill, 85 SOK_VectorFloat8Spill, 86 SOK_VectorFloat4Spill, 87 SOK_VRSaveSpill, 88 SOK_QuadFloat8Spill, 89 SOK_QuadFloat4Spill, 90 SOK_QuadBitSpill, 91 SOK_SpillToVSR, 92 SOK_SPESpill, 93 SOK_SPE4Spill, 94 SOK_LastOpcodeSpill // This must be last on the enum. 95 }; 96 97 // Pin the vtable to this file. 98 void PPCInstrInfo::anchor() {} 99 100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 101 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 102 /* CatchRetOpcode */ -1, 103 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 104 Subtarget(STI), RI(STI.getTargetMachine()) {} 105 106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 107 /// this target when scheduling the DAG. 108 ScheduleHazardRecognizer * 109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 110 const ScheduleDAG *DAG) const { 111 unsigned Directive = 112 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 113 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 114 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 115 const InstrItineraryData *II = 116 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 117 return new ScoreboardHazardRecognizer(II, DAG); 118 } 119 120 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 121 } 122 123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 124 /// to use for this target when scheduling the DAG. 125 ScheduleHazardRecognizer * 126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 127 const ScheduleDAG *DAG) const { 128 unsigned Directive = 129 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 130 131 // FIXME: Leaving this as-is until we have POWER9 scheduling info 132 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 133 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 134 135 // Most subtargets use a PPC970 recognizer. 136 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 137 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 138 assert(DAG->TII && "No InstrInfo?"); 139 140 return new PPCHazardRecognizer970(*DAG); 141 } 142 143 return new ScoreboardHazardRecognizer(II, DAG); 144 } 145 146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 147 const MachineInstr &MI, 148 unsigned *PredCost) const { 149 if (!ItinData || UseOldLatencyCalc) 150 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 151 152 // The default implementation of getInstrLatency calls getStageLatency, but 153 // getStageLatency does not do the right thing for us. While we have 154 // itinerary, most cores are fully pipelined, and so the itineraries only 155 // express the first part of the pipeline, not every stage. Instead, we need 156 // to use the listed output operand cycle number (using operand 0 here, which 157 // is an output). 158 159 unsigned Latency = 1; 160 unsigned DefClass = MI.getDesc().getSchedClass(); 161 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 162 const MachineOperand &MO = MI.getOperand(i); 163 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 164 continue; 165 166 int Cycle = ItinData->getOperandCycle(DefClass, i); 167 if (Cycle < 0) 168 continue; 169 170 Latency = std::max(Latency, (unsigned) Cycle); 171 } 172 173 return Latency; 174 } 175 176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 177 const MachineInstr &DefMI, unsigned DefIdx, 178 const MachineInstr &UseMI, 179 unsigned UseIdx) const { 180 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 181 UseMI, UseIdx); 182 183 if (!DefMI.getParent()) 184 return Latency; 185 186 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 187 unsigned Reg = DefMO.getReg(); 188 189 bool IsRegCR; 190 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 191 const MachineRegisterInfo *MRI = 192 &DefMI.getParent()->getParent()->getRegInfo(); 193 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 194 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 195 } else { 196 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 197 PPC::CRBITRCRegClass.contains(Reg); 198 } 199 200 if (UseMI.isBranch() && IsRegCR) { 201 if (Latency < 0) 202 Latency = getInstrLatency(ItinData, DefMI); 203 204 // On some cores, there is an additional delay between writing to a condition 205 // register, and using it from a branch. 206 unsigned Directive = Subtarget.getDarwinDirective(); 207 switch (Directive) { 208 default: break; 209 case PPC::DIR_7400: 210 case PPC::DIR_750: 211 case PPC::DIR_970: 212 case PPC::DIR_E5500: 213 case PPC::DIR_PWR4: 214 case PPC::DIR_PWR5: 215 case PPC::DIR_PWR5X: 216 case PPC::DIR_PWR6: 217 case PPC::DIR_PWR6X: 218 case PPC::DIR_PWR7: 219 case PPC::DIR_PWR8: 220 // FIXME: Is this needed for POWER9? 221 Latency += 2; 222 break; 223 } 224 } 225 226 return Latency; 227 } 228 229 // This function does not list all associative and commutative operations, but 230 // only those worth feeding through the machine combiner in an attempt to 231 // reduce the critical path. Mostly, this means floating-point operations, 232 // because they have high latencies (compared to other operations, such and 233 // and/or, which are also associative and commutative, but have low latencies). 234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 235 switch (Inst.getOpcode()) { 236 // FP Add: 237 case PPC::FADD: 238 case PPC::FADDS: 239 // FP Multiply: 240 case PPC::FMUL: 241 case PPC::FMULS: 242 // Altivec Add: 243 case PPC::VADDFP: 244 // VSX Add: 245 case PPC::XSADDDP: 246 case PPC::XVADDDP: 247 case PPC::XVADDSP: 248 case PPC::XSADDSP: 249 // VSX Multiply: 250 case PPC::XSMULDP: 251 case PPC::XVMULDP: 252 case PPC::XVMULSP: 253 case PPC::XSMULSP: 254 // QPX Add: 255 case PPC::QVFADD: 256 case PPC::QVFADDS: 257 case PPC::QVFADDSs: 258 // QPX Multiply: 259 case PPC::QVFMUL: 260 case PPC::QVFMULS: 261 case PPC::QVFMULSs: 262 return true; 263 default: 264 return false; 265 } 266 } 267 268 bool PPCInstrInfo::getMachineCombinerPatterns( 269 MachineInstr &Root, 270 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 271 // Using the machine combiner in this way is potentially expensive, so 272 // restrict to when aggressive optimizations are desired. 273 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 274 return false; 275 276 // FP reassociation is only legal when we don't need strict IEEE semantics. 277 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 278 return false; 279 280 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 281 } 282 283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 285 unsigned &SrcReg, unsigned &DstReg, 286 unsigned &SubIdx) const { 287 switch (MI.getOpcode()) { 288 default: return false; 289 case PPC::EXTSW: 290 case PPC::EXTSW_32: 291 case PPC::EXTSW_32_64: 292 SrcReg = MI.getOperand(1).getReg(); 293 DstReg = MI.getOperand(0).getReg(); 294 SubIdx = PPC::sub_32; 295 return true; 296 } 297 } 298 299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 300 int &FrameIndex) const { 301 unsigned Opcode = MI.getOpcode(); 302 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 303 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 304 305 if (End != std::find(OpcodesForSpill, End, Opcode)) { 306 // Check for the operands added by addFrameReference (the immediate is the 307 // offset which defaults to 0). 308 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 309 MI.getOperand(2).isFI()) { 310 FrameIndex = MI.getOperand(2).getIndex(); 311 return MI.getOperand(0).getReg(); 312 } 313 } 314 return 0; 315 } 316 317 // For opcodes with the ReMaterializable flag set, this function is called to 318 // verify the instruction is really rematable. 319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 320 AliasAnalysis *AA) const { 321 switch (MI.getOpcode()) { 322 default: 323 // This function should only be called for opcodes with the ReMaterializable 324 // flag set. 325 llvm_unreachable("Unknown rematerializable operation!"); 326 break; 327 case PPC::LI: 328 case PPC::LI8: 329 case PPC::LIS: 330 case PPC::LIS8: 331 case PPC::QVGPCI: 332 case PPC::ADDIStocHA: 333 case PPC::ADDItocL: 334 case PPC::LOAD_STACK_GUARD: 335 return true; 336 } 337 return false; 338 } 339 340 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 341 int &FrameIndex) const { 342 unsigned Opcode = MI.getOpcode(); 343 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 344 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 345 346 if (End != std::find(OpcodesForSpill, End, Opcode)) { 347 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 348 MI.getOperand(2).isFI()) { 349 FrameIndex = MI.getOperand(2).getIndex(); 350 return MI.getOperand(0).getReg(); 351 } 352 } 353 return 0; 354 } 355 356 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 357 unsigned OpIdx1, 358 unsigned OpIdx2) const { 359 MachineFunction &MF = *MI.getParent()->getParent(); 360 361 // Normal instructions can be commuted the obvious way. 362 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 363 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 364 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 365 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 366 // changing the relative order of the mask operands might change what happens 367 // to the high-bits of the mask (and, thus, the result). 368 369 // Cannot commute if it has a non-zero rotate count. 370 if (MI.getOperand(3).getImm() != 0) 371 return nullptr; 372 373 // If we have a zero rotate count, we have: 374 // M = mask(MB,ME) 375 // Op0 = (Op1 & ~M) | (Op2 & M) 376 // Change this to: 377 // M = mask((ME+1)&31, (MB-1)&31) 378 // Op0 = (Op2 & ~M) | (Op1 & M) 379 380 // Swap op1/op2 381 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 382 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 383 unsigned Reg0 = MI.getOperand(0).getReg(); 384 unsigned Reg1 = MI.getOperand(1).getReg(); 385 unsigned Reg2 = MI.getOperand(2).getReg(); 386 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 387 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 388 bool Reg1IsKill = MI.getOperand(1).isKill(); 389 bool Reg2IsKill = MI.getOperand(2).isKill(); 390 bool ChangeReg0 = false; 391 // If machine instrs are no longer in two-address forms, update 392 // destination register as well. 393 if (Reg0 == Reg1) { 394 // Must be two address instruction! 395 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 396 "Expecting a two-address instruction!"); 397 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 398 Reg2IsKill = false; 399 ChangeReg0 = true; 400 } 401 402 // Masks. 403 unsigned MB = MI.getOperand(4).getImm(); 404 unsigned ME = MI.getOperand(5).getImm(); 405 406 // We can't commute a trivial mask (there is no way to represent an all-zero 407 // mask). 408 if (MB == 0 && ME == 31) 409 return nullptr; 410 411 if (NewMI) { 412 // Create a new instruction. 413 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 414 bool Reg0IsDead = MI.getOperand(0).isDead(); 415 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 416 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 417 .addReg(Reg2, getKillRegState(Reg2IsKill)) 418 .addReg(Reg1, getKillRegState(Reg1IsKill)) 419 .addImm((ME + 1) & 31) 420 .addImm((MB - 1) & 31); 421 } 422 423 if (ChangeReg0) { 424 MI.getOperand(0).setReg(Reg2); 425 MI.getOperand(0).setSubReg(SubReg2); 426 } 427 MI.getOperand(2).setReg(Reg1); 428 MI.getOperand(1).setReg(Reg2); 429 MI.getOperand(2).setSubReg(SubReg1); 430 MI.getOperand(1).setSubReg(SubReg2); 431 MI.getOperand(2).setIsKill(Reg1IsKill); 432 MI.getOperand(1).setIsKill(Reg2IsKill); 433 434 // Swap the mask around. 435 MI.getOperand(4).setImm((ME + 1) & 31); 436 MI.getOperand(5).setImm((MB - 1) & 31); 437 return &MI; 438 } 439 440 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 441 unsigned &SrcOpIdx2) const { 442 // For VSX A-Type FMA instructions, it is the first two operands that can be 443 // commuted, however, because the non-encoded tied input operand is listed 444 // first, the operands to swap are actually the second and third. 445 446 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 447 if (AltOpc == -1) 448 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 449 450 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 451 // and SrcOpIdx2. 452 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 453 } 454 455 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 456 MachineBasicBlock::iterator MI) const { 457 // This function is used for scheduling, and the nop wanted here is the type 458 // that terminates dispatch groups on the POWER cores. 459 unsigned Directive = Subtarget.getDarwinDirective(); 460 unsigned Opcode; 461 switch (Directive) { 462 default: Opcode = PPC::NOP; break; 463 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 464 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 465 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 466 // FIXME: Update when POWER9 scheduling model is ready. 467 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 468 } 469 470 DebugLoc DL; 471 BuildMI(MBB, MI, DL, get(Opcode)); 472 } 473 474 /// Return the noop instruction to use for a noop. 475 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 476 NopInst.setOpcode(PPC::NOP); 477 } 478 479 // Branch analysis. 480 // Note: If the condition register is set to CTR or CTR8 then this is a 481 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 482 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 483 MachineBasicBlock *&TBB, 484 MachineBasicBlock *&FBB, 485 SmallVectorImpl<MachineOperand> &Cond, 486 bool AllowModify) const { 487 bool isPPC64 = Subtarget.isPPC64(); 488 489 // If the block has no terminators, it just falls into the block after it. 490 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 491 if (I == MBB.end()) 492 return false; 493 494 if (!isUnpredicatedTerminator(*I)) 495 return false; 496 497 if (AllowModify) { 498 // If the BB ends with an unconditional branch to the fallthrough BB, 499 // we eliminate the branch instruction. 500 if (I->getOpcode() == PPC::B && 501 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 502 I->eraseFromParent(); 503 504 // We update iterator after deleting the last branch. 505 I = MBB.getLastNonDebugInstr(); 506 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 507 return false; 508 } 509 } 510 511 // Get the last instruction in the block. 512 MachineInstr &LastInst = *I; 513 514 // If there is only one terminator instruction, process it. 515 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 516 if (LastInst.getOpcode() == PPC::B) { 517 if (!LastInst.getOperand(0).isMBB()) 518 return true; 519 TBB = LastInst.getOperand(0).getMBB(); 520 return false; 521 } else if (LastInst.getOpcode() == PPC::BCC) { 522 if (!LastInst.getOperand(2).isMBB()) 523 return true; 524 // Block ends with fall-through condbranch. 525 TBB = LastInst.getOperand(2).getMBB(); 526 Cond.push_back(LastInst.getOperand(0)); 527 Cond.push_back(LastInst.getOperand(1)); 528 return false; 529 } else if (LastInst.getOpcode() == PPC::BC) { 530 if (!LastInst.getOperand(1).isMBB()) 531 return true; 532 // Block ends with fall-through condbranch. 533 TBB = LastInst.getOperand(1).getMBB(); 534 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 535 Cond.push_back(LastInst.getOperand(0)); 536 return false; 537 } else if (LastInst.getOpcode() == PPC::BCn) { 538 if (!LastInst.getOperand(1).isMBB()) 539 return true; 540 // Block ends with fall-through condbranch. 541 TBB = LastInst.getOperand(1).getMBB(); 542 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 543 Cond.push_back(LastInst.getOperand(0)); 544 return false; 545 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 546 LastInst.getOpcode() == PPC::BDNZ) { 547 if (!LastInst.getOperand(0).isMBB()) 548 return true; 549 if (DisableCTRLoopAnal) 550 return true; 551 TBB = LastInst.getOperand(0).getMBB(); 552 Cond.push_back(MachineOperand::CreateImm(1)); 553 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 554 true)); 555 return false; 556 } else if (LastInst.getOpcode() == PPC::BDZ8 || 557 LastInst.getOpcode() == PPC::BDZ) { 558 if (!LastInst.getOperand(0).isMBB()) 559 return true; 560 if (DisableCTRLoopAnal) 561 return true; 562 TBB = LastInst.getOperand(0).getMBB(); 563 Cond.push_back(MachineOperand::CreateImm(0)); 564 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 565 true)); 566 return false; 567 } 568 569 // Otherwise, don't know what this is. 570 return true; 571 } 572 573 // Get the instruction before it if it's a terminator. 574 MachineInstr &SecondLastInst = *I; 575 576 // If there are three terminators, we don't know what sort of block this is. 577 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 578 return true; 579 580 // If the block ends with PPC::B and PPC:BCC, handle it. 581 if (SecondLastInst.getOpcode() == PPC::BCC && 582 LastInst.getOpcode() == PPC::B) { 583 if (!SecondLastInst.getOperand(2).isMBB() || 584 !LastInst.getOperand(0).isMBB()) 585 return true; 586 TBB = SecondLastInst.getOperand(2).getMBB(); 587 Cond.push_back(SecondLastInst.getOperand(0)); 588 Cond.push_back(SecondLastInst.getOperand(1)); 589 FBB = LastInst.getOperand(0).getMBB(); 590 return false; 591 } else if (SecondLastInst.getOpcode() == PPC::BC && 592 LastInst.getOpcode() == PPC::B) { 593 if (!SecondLastInst.getOperand(1).isMBB() || 594 !LastInst.getOperand(0).isMBB()) 595 return true; 596 TBB = SecondLastInst.getOperand(1).getMBB(); 597 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 598 Cond.push_back(SecondLastInst.getOperand(0)); 599 FBB = LastInst.getOperand(0).getMBB(); 600 return false; 601 } else if (SecondLastInst.getOpcode() == PPC::BCn && 602 LastInst.getOpcode() == PPC::B) { 603 if (!SecondLastInst.getOperand(1).isMBB() || 604 !LastInst.getOperand(0).isMBB()) 605 return true; 606 TBB = SecondLastInst.getOperand(1).getMBB(); 607 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 608 Cond.push_back(SecondLastInst.getOperand(0)); 609 FBB = LastInst.getOperand(0).getMBB(); 610 return false; 611 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 612 SecondLastInst.getOpcode() == PPC::BDNZ) && 613 LastInst.getOpcode() == PPC::B) { 614 if (!SecondLastInst.getOperand(0).isMBB() || 615 !LastInst.getOperand(0).isMBB()) 616 return true; 617 if (DisableCTRLoopAnal) 618 return true; 619 TBB = SecondLastInst.getOperand(0).getMBB(); 620 Cond.push_back(MachineOperand::CreateImm(1)); 621 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 622 true)); 623 FBB = LastInst.getOperand(0).getMBB(); 624 return false; 625 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 626 SecondLastInst.getOpcode() == PPC::BDZ) && 627 LastInst.getOpcode() == PPC::B) { 628 if (!SecondLastInst.getOperand(0).isMBB() || 629 !LastInst.getOperand(0).isMBB()) 630 return true; 631 if (DisableCTRLoopAnal) 632 return true; 633 TBB = SecondLastInst.getOperand(0).getMBB(); 634 Cond.push_back(MachineOperand::CreateImm(0)); 635 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 636 true)); 637 FBB = LastInst.getOperand(0).getMBB(); 638 return false; 639 } 640 641 // If the block ends with two PPC:Bs, handle it. The second one is not 642 // executed, so remove it. 643 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 644 if (!SecondLastInst.getOperand(0).isMBB()) 645 return true; 646 TBB = SecondLastInst.getOperand(0).getMBB(); 647 I = LastInst; 648 if (AllowModify) 649 I->eraseFromParent(); 650 return false; 651 } 652 653 // Otherwise, can't handle this. 654 return true; 655 } 656 657 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 658 int *BytesRemoved) const { 659 assert(!BytesRemoved && "code size not handled"); 660 661 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 662 if (I == MBB.end()) 663 return 0; 664 665 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 666 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 667 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 668 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 669 return 0; 670 671 // Remove the branch. 672 I->eraseFromParent(); 673 674 I = MBB.end(); 675 676 if (I == MBB.begin()) return 1; 677 --I; 678 if (I->getOpcode() != PPC::BCC && 679 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 680 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 681 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 682 return 1; 683 684 // Remove the branch. 685 I->eraseFromParent(); 686 return 2; 687 } 688 689 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 690 MachineBasicBlock *TBB, 691 MachineBasicBlock *FBB, 692 ArrayRef<MachineOperand> Cond, 693 const DebugLoc &DL, 694 int *BytesAdded) const { 695 // Shouldn't be a fall through. 696 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 697 assert((Cond.size() == 2 || Cond.size() == 0) && 698 "PPC branch conditions have two components!"); 699 assert(!BytesAdded && "code size not handled"); 700 701 bool isPPC64 = Subtarget.isPPC64(); 702 703 // One-way branch. 704 if (!FBB) { 705 if (Cond.empty()) // Unconditional branch 706 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 707 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 708 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 709 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 710 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 711 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 712 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 713 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 714 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 715 else // Conditional branch 716 BuildMI(&MBB, DL, get(PPC::BCC)) 717 .addImm(Cond[0].getImm()) 718 .add(Cond[1]) 719 .addMBB(TBB); 720 return 1; 721 } 722 723 // Two-way Conditional Branch. 724 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 725 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 726 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 727 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 728 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 729 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 730 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 731 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 732 else 733 BuildMI(&MBB, DL, get(PPC::BCC)) 734 .addImm(Cond[0].getImm()) 735 .add(Cond[1]) 736 .addMBB(TBB); 737 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 738 return 2; 739 } 740 741 // Select analysis. 742 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 743 ArrayRef<MachineOperand> Cond, 744 unsigned TrueReg, unsigned FalseReg, 745 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 746 if (Cond.size() != 2) 747 return false; 748 749 // If this is really a bdnz-like condition, then it cannot be turned into a 750 // select. 751 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 752 return false; 753 754 // Check register classes. 755 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 756 const TargetRegisterClass *RC = 757 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 758 if (!RC) 759 return false; 760 761 // isel is for regular integer GPRs only. 762 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 763 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 764 !PPC::G8RCRegClass.hasSubClassEq(RC) && 765 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 766 return false; 767 768 // FIXME: These numbers are for the A2, how well they work for other cores is 769 // an open question. On the A2, the isel instruction has a 2-cycle latency 770 // but single-cycle throughput. These numbers are used in combination with 771 // the MispredictPenalty setting from the active SchedMachineModel. 772 CondCycles = 1; 773 TrueCycles = 1; 774 FalseCycles = 1; 775 776 return true; 777 } 778 779 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 780 MachineBasicBlock::iterator MI, 781 const DebugLoc &dl, unsigned DestReg, 782 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 783 unsigned FalseReg) const { 784 assert(Cond.size() == 2 && 785 "PPC branch conditions have two components!"); 786 787 // Get the register classes. 788 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 789 const TargetRegisterClass *RC = 790 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 791 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 792 793 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 794 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 795 assert((Is64Bit || 796 PPC::GPRCRegClass.hasSubClassEq(RC) || 797 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 798 "isel is for regular integer GPRs only"); 799 800 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 801 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 802 803 unsigned SubIdx = 0; 804 bool SwapOps = false; 805 switch (SelectPred) { 806 case PPC::PRED_EQ: 807 case PPC::PRED_EQ_MINUS: 808 case PPC::PRED_EQ_PLUS: 809 SubIdx = PPC::sub_eq; SwapOps = false; break; 810 case PPC::PRED_NE: 811 case PPC::PRED_NE_MINUS: 812 case PPC::PRED_NE_PLUS: 813 SubIdx = PPC::sub_eq; SwapOps = true; break; 814 case PPC::PRED_LT: 815 case PPC::PRED_LT_MINUS: 816 case PPC::PRED_LT_PLUS: 817 SubIdx = PPC::sub_lt; SwapOps = false; break; 818 case PPC::PRED_GE: 819 case PPC::PRED_GE_MINUS: 820 case PPC::PRED_GE_PLUS: 821 SubIdx = PPC::sub_lt; SwapOps = true; break; 822 case PPC::PRED_GT: 823 case PPC::PRED_GT_MINUS: 824 case PPC::PRED_GT_PLUS: 825 SubIdx = PPC::sub_gt; SwapOps = false; break; 826 case PPC::PRED_LE: 827 case PPC::PRED_LE_MINUS: 828 case PPC::PRED_LE_PLUS: 829 SubIdx = PPC::sub_gt; SwapOps = true; break; 830 case PPC::PRED_UN: 831 case PPC::PRED_UN_MINUS: 832 case PPC::PRED_UN_PLUS: 833 SubIdx = PPC::sub_un; SwapOps = false; break; 834 case PPC::PRED_NU: 835 case PPC::PRED_NU_MINUS: 836 case PPC::PRED_NU_PLUS: 837 SubIdx = PPC::sub_un; SwapOps = true; break; 838 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 839 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 840 } 841 842 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 843 SecondReg = SwapOps ? TrueReg : FalseReg; 844 845 // The first input register of isel cannot be r0. If it is a member 846 // of a register class that can be r0, then copy it first (the 847 // register allocator should eliminate the copy). 848 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 849 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 850 const TargetRegisterClass *FirstRC = 851 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 852 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 853 unsigned OldFirstReg = FirstReg; 854 FirstReg = MRI.createVirtualRegister(FirstRC); 855 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 856 .addReg(OldFirstReg); 857 } 858 859 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 860 .addReg(FirstReg).addReg(SecondReg) 861 .addReg(Cond[1].getReg(), 0, SubIdx); 862 } 863 864 static unsigned getCRBitValue(unsigned CRBit) { 865 unsigned Ret = 4; 866 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 867 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 868 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 869 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 870 Ret = 3; 871 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 872 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 873 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 874 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 875 Ret = 2; 876 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 877 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 878 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 879 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 880 Ret = 1; 881 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 882 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 883 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 884 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 885 Ret = 0; 886 887 assert(Ret != 4 && "Invalid CR bit register"); 888 return Ret; 889 } 890 891 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 892 MachineBasicBlock::iterator I, 893 const DebugLoc &DL, unsigned DestReg, 894 unsigned SrcReg, bool KillSrc) const { 895 // We can end up with self copies and similar things as a result of VSX copy 896 // legalization. Promote them here. 897 const TargetRegisterInfo *TRI = &getRegisterInfo(); 898 if (PPC::F8RCRegClass.contains(DestReg) && 899 PPC::VSRCRegClass.contains(SrcReg)) { 900 unsigned SuperReg = 901 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 902 903 if (VSXSelfCopyCrash && SrcReg == SuperReg) 904 llvm_unreachable("nop VSX copy"); 905 906 DestReg = SuperReg; 907 } else if (PPC::F8RCRegClass.contains(SrcReg) && 908 PPC::VSRCRegClass.contains(DestReg)) { 909 unsigned SuperReg = 910 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 911 912 if (VSXSelfCopyCrash && DestReg == SuperReg) 913 llvm_unreachable("nop VSX copy"); 914 915 SrcReg = SuperReg; 916 } 917 918 // Different class register copy 919 if (PPC::CRBITRCRegClass.contains(SrcReg) && 920 PPC::GPRCRegClass.contains(DestReg)) { 921 unsigned CRReg = getCRFromCRBit(SrcReg); 922 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 923 getKillRegState(KillSrc); 924 // Rotate the CR bit in the CR fields to be the least significant bit and 925 // then mask with 0x1 (MB = ME = 31). 926 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 927 .addReg(DestReg, RegState::Kill) 928 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 929 .addImm(31) 930 .addImm(31); 931 return; 932 } else if (PPC::CRRCRegClass.contains(SrcReg) && 933 PPC::G8RCRegClass.contains(DestReg)) { 934 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 935 getKillRegState(KillSrc); 936 return; 937 } else if (PPC::CRRCRegClass.contains(SrcReg) && 938 PPC::GPRCRegClass.contains(DestReg)) { 939 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 940 getKillRegState(KillSrc); 941 return; 942 } else if (PPC::G8RCRegClass.contains(SrcReg) && 943 PPC::VSFRCRegClass.contains(DestReg)) { 944 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 945 NumGPRtoVSRSpill++; 946 getKillRegState(KillSrc); 947 return; 948 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 949 PPC::G8RCRegClass.contains(DestReg)) { 950 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 951 getKillRegState(KillSrc); 952 return; 953 } else if (PPC::SPERCRegClass.contains(SrcReg) && 954 PPC::SPE4RCRegClass.contains(DestReg)) { 955 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 956 getKillRegState(KillSrc); 957 return; 958 } else if (PPC::SPE4RCRegClass.contains(SrcReg) && 959 PPC::SPERCRegClass.contains(DestReg)) { 960 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 961 getKillRegState(KillSrc); 962 return; 963 } 964 965 966 unsigned Opc; 967 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 968 Opc = PPC::OR; 969 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 970 Opc = PPC::OR8; 971 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 972 Opc = PPC::FMR; 973 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 974 Opc = PPC::MCRF; 975 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 976 Opc = PPC::VOR; 977 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 978 // There are two different ways this can be done: 979 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 980 // issue in VSU pipeline 0. 981 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 982 // can go to either pipeline. 983 // We'll always use xxlor here, because in practically all cases where 984 // copies are generated, they are close enough to some use that the 985 // lower-latency form is preferable. 986 Opc = PPC::XXLOR; 987 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 988 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 989 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 990 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 991 Opc = PPC::QVFMR; 992 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 993 Opc = PPC::QVFMRs; 994 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 995 Opc = PPC::QVFMRb; 996 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 997 Opc = PPC::CROR; 998 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 999 Opc = PPC::EVOR; 1000 else 1001 llvm_unreachable("Impossible reg-to-reg copy"); 1002 1003 const MCInstrDesc &MCID = get(Opc); 1004 if (MCID.getNumOperands() == 3) 1005 BuildMI(MBB, I, DL, MCID, DestReg) 1006 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1007 else 1008 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1009 } 1010 1011 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1012 const TargetRegisterClass *RC) 1013 const { 1014 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1015 int OpcodeIndex = 0; 1016 1017 if (RC != nullptr) { 1018 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1019 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1020 OpcodeIndex = SOK_Int4Spill; 1021 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1022 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1023 OpcodeIndex = SOK_Int8Spill; 1024 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1025 OpcodeIndex = SOK_Float8Spill; 1026 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1027 OpcodeIndex = SOK_Float4Spill; 1028 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1029 OpcodeIndex = SOK_SPESpill; 1030 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { 1031 OpcodeIndex = SOK_SPE4Spill; 1032 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1033 OpcodeIndex = SOK_CRSpill; 1034 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1035 OpcodeIndex = SOK_CRBitSpill; 1036 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1037 OpcodeIndex = SOK_VRVectorSpill; 1038 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1039 OpcodeIndex = SOK_VSXVectorSpill; 1040 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1041 OpcodeIndex = SOK_VectorFloat8Spill; 1042 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1043 OpcodeIndex = SOK_VectorFloat4Spill; 1044 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1045 OpcodeIndex = SOK_VRSaveSpill; 1046 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1047 OpcodeIndex = SOK_QuadFloat8Spill; 1048 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1049 OpcodeIndex = SOK_QuadFloat4Spill; 1050 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1051 OpcodeIndex = SOK_QuadBitSpill; 1052 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1053 OpcodeIndex = SOK_SpillToVSR; 1054 } else { 1055 llvm_unreachable("Unknown regclass!"); 1056 } 1057 } else { 1058 if (PPC::GPRCRegClass.contains(Reg) || 1059 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1060 OpcodeIndex = SOK_Int4Spill; 1061 } else if (PPC::G8RCRegClass.contains(Reg) || 1062 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1063 OpcodeIndex = SOK_Int8Spill; 1064 } else if (PPC::F8RCRegClass.contains(Reg)) { 1065 OpcodeIndex = SOK_Float8Spill; 1066 } else if (PPC::F4RCRegClass.contains(Reg)) { 1067 OpcodeIndex = SOK_Float4Spill; 1068 } else if (PPC::SPERCRegClass.contains(Reg)) { 1069 OpcodeIndex = SOK_SPESpill; 1070 } else if (PPC::SPE4RCRegClass.contains(Reg)) { 1071 OpcodeIndex = SOK_SPE4Spill; 1072 } else if (PPC::CRRCRegClass.contains(Reg)) { 1073 OpcodeIndex = SOK_CRSpill; 1074 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1075 OpcodeIndex = SOK_CRBitSpill; 1076 } else if (PPC::VRRCRegClass.contains(Reg)) { 1077 OpcodeIndex = SOK_VRVectorSpill; 1078 } else if (PPC::VSRCRegClass.contains(Reg)) { 1079 OpcodeIndex = SOK_VSXVectorSpill; 1080 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1081 OpcodeIndex = SOK_VectorFloat8Spill; 1082 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1083 OpcodeIndex = SOK_VectorFloat4Spill; 1084 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1085 OpcodeIndex = SOK_VRSaveSpill; 1086 } else if (PPC::QFRCRegClass.contains(Reg)) { 1087 OpcodeIndex = SOK_QuadFloat8Spill; 1088 } else if (PPC::QSRCRegClass.contains(Reg)) { 1089 OpcodeIndex = SOK_QuadFloat4Spill; 1090 } else if (PPC::QBRCRegClass.contains(Reg)) { 1091 OpcodeIndex = SOK_QuadBitSpill; 1092 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1093 OpcodeIndex = SOK_SpillToVSR; 1094 } else { 1095 llvm_unreachable("Unknown regclass!"); 1096 } 1097 } 1098 return OpcodesForSpill[OpcodeIndex]; 1099 } 1100 1101 unsigned 1102 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1103 const TargetRegisterClass *RC) const { 1104 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1105 int OpcodeIndex = 0; 1106 1107 if (RC != nullptr) { 1108 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1109 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1110 OpcodeIndex = SOK_Int4Spill; 1111 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1112 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1113 OpcodeIndex = SOK_Int8Spill; 1114 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1115 OpcodeIndex = SOK_Float8Spill; 1116 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1117 OpcodeIndex = SOK_Float4Spill; 1118 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1119 OpcodeIndex = SOK_SPESpill; 1120 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { 1121 OpcodeIndex = SOK_SPE4Spill; 1122 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1123 OpcodeIndex = SOK_CRSpill; 1124 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1125 OpcodeIndex = SOK_CRBitSpill; 1126 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1127 OpcodeIndex = SOK_VRVectorSpill; 1128 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1129 OpcodeIndex = SOK_VSXVectorSpill; 1130 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1131 OpcodeIndex = SOK_VectorFloat8Spill; 1132 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1133 OpcodeIndex = SOK_VectorFloat4Spill; 1134 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1135 OpcodeIndex = SOK_VRSaveSpill; 1136 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1137 OpcodeIndex = SOK_QuadFloat8Spill; 1138 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1139 OpcodeIndex = SOK_QuadFloat4Spill; 1140 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1141 OpcodeIndex = SOK_QuadBitSpill; 1142 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1143 OpcodeIndex = SOK_SpillToVSR; 1144 } else { 1145 llvm_unreachable("Unknown regclass!"); 1146 } 1147 } else { 1148 if (PPC::GPRCRegClass.contains(Reg) || 1149 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1150 OpcodeIndex = SOK_Int4Spill; 1151 } else if (PPC::G8RCRegClass.contains(Reg) || 1152 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1153 OpcodeIndex = SOK_Int8Spill; 1154 } else if (PPC::F8RCRegClass.contains(Reg)) { 1155 OpcodeIndex = SOK_Float8Spill; 1156 } else if (PPC::F4RCRegClass.contains(Reg)) { 1157 OpcodeIndex = SOK_Float4Spill; 1158 } else if (PPC::SPERCRegClass.contains(Reg)) { 1159 OpcodeIndex = SOK_SPESpill; 1160 } else if (PPC::SPE4RCRegClass.contains(Reg)) { 1161 OpcodeIndex = SOK_SPE4Spill; 1162 } else if (PPC::CRRCRegClass.contains(Reg)) { 1163 OpcodeIndex = SOK_CRSpill; 1164 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1165 OpcodeIndex = SOK_CRBitSpill; 1166 } else if (PPC::VRRCRegClass.contains(Reg)) { 1167 OpcodeIndex = SOK_VRVectorSpill; 1168 } else if (PPC::VSRCRegClass.contains(Reg)) { 1169 OpcodeIndex = SOK_VSXVectorSpill; 1170 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1171 OpcodeIndex = SOK_VectorFloat8Spill; 1172 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1173 OpcodeIndex = SOK_VectorFloat4Spill; 1174 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1175 OpcodeIndex = SOK_VRSaveSpill; 1176 } else if (PPC::QFRCRegClass.contains(Reg)) { 1177 OpcodeIndex = SOK_QuadFloat8Spill; 1178 } else if (PPC::QSRCRegClass.contains(Reg)) { 1179 OpcodeIndex = SOK_QuadFloat4Spill; 1180 } else if (PPC::QBRCRegClass.contains(Reg)) { 1181 OpcodeIndex = SOK_QuadBitSpill; 1182 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1183 OpcodeIndex = SOK_SpillToVSR; 1184 } else { 1185 llvm_unreachable("Unknown regclass!"); 1186 } 1187 } 1188 return OpcodesForSpill[OpcodeIndex]; 1189 } 1190 1191 void PPCInstrInfo::StoreRegToStackSlot( 1192 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1193 const TargetRegisterClass *RC, 1194 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1195 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1196 DebugLoc DL; 1197 1198 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1199 FuncInfo->setHasSpills(); 1200 1201 NewMIs.push_back(addFrameReference( 1202 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1203 FrameIdx)); 1204 1205 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1206 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1207 FuncInfo->setSpillsCR(); 1208 1209 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1210 FuncInfo->setSpillsVRSAVE(); 1211 1212 if (isXFormMemOp(Opcode)) 1213 FuncInfo->setHasNonRISpills(); 1214 } 1215 1216 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1217 MachineBasicBlock::iterator MI, 1218 unsigned SrcReg, bool isKill, 1219 int FrameIdx, 1220 const TargetRegisterClass *RC, 1221 const TargetRegisterInfo *TRI) const { 1222 MachineFunction &MF = *MBB.getParent(); 1223 SmallVector<MachineInstr *, 4> NewMIs; 1224 1225 // We need to avoid a situation in which the value from a VRRC register is 1226 // spilled using an Altivec instruction and reloaded into a VSRC register 1227 // using a VSX instruction. The issue with this is that the VSX 1228 // load/store instructions swap the doublewords in the vector and the Altivec 1229 // ones don't. The register classes on the spill/reload may be different if 1230 // the register is defined using an Altivec instruction and is then used by a 1231 // VSX instruction. 1232 RC = updatedRC(RC); 1233 1234 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1235 1236 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1237 MBB.insert(MI, NewMIs[i]); 1238 1239 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1240 MachineMemOperand *MMO = MF.getMachineMemOperand( 1241 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1242 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1243 MFI.getObjectAlignment(FrameIdx)); 1244 NewMIs.back()->addMemOperand(MF, MMO); 1245 } 1246 1247 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1248 unsigned DestReg, int FrameIdx, 1249 const TargetRegisterClass *RC, 1250 SmallVectorImpl<MachineInstr *> &NewMIs) 1251 const { 1252 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1253 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1254 FrameIdx)); 1255 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1256 1257 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1258 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1259 FuncInfo->setSpillsCR(); 1260 1261 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1262 FuncInfo->setSpillsVRSAVE(); 1263 1264 if (isXFormMemOp(Opcode)) 1265 FuncInfo->setHasNonRISpills(); 1266 } 1267 1268 void 1269 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1270 MachineBasicBlock::iterator MI, 1271 unsigned DestReg, int FrameIdx, 1272 const TargetRegisterClass *RC, 1273 const TargetRegisterInfo *TRI) const { 1274 MachineFunction &MF = *MBB.getParent(); 1275 SmallVector<MachineInstr*, 4> NewMIs; 1276 DebugLoc DL; 1277 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1278 1279 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1280 FuncInfo->setHasSpills(); 1281 1282 // We need to avoid a situation in which the value from a VRRC register is 1283 // spilled using an Altivec instruction and reloaded into a VSRC register 1284 // using a VSX instruction. The issue with this is that the VSX 1285 // load/store instructions swap the doublewords in the vector and the Altivec 1286 // ones don't. The register classes on the spill/reload may be different if 1287 // the register is defined using an Altivec instruction and is then used by a 1288 // VSX instruction. 1289 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1290 RC = &PPC::VSRCRegClass; 1291 1292 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1293 1294 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1295 MBB.insert(MI, NewMIs[i]); 1296 1297 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1298 MachineMemOperand *MMO = MF.getMachineMemOperand( 1299 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1300 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1301 MFI.getObjectAlignment(FrameIdx)); 1302 NewMIs.back()->addMemOperand(MF, MMO); 1303 } 1304 1305 bool PPCInstrInfo:: 1306 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1307 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1308 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1309 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1310 else 1311 // Leave the CR# the same, but invert the condition. 1312 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1313 return false; 1314 } 1315 1316 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1317 unsigned Reg, MachineRegisterInfo *MRI) const { 1318 // For some instructions, it is legal to fold ZERO into the RA register field. 1319 // A zero immediate should always be loaded with a single li. 1320 unsigned DefOpc = DefMI.getOpcode(); 1321 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1322 return false; 1323 if (!DefMI.getOperand(1).isImm()) 1324 return false; 1325 if (DefMI.getOperand(1).getImm() != 0) 1326 return false; 1327 1328 // Note that we cannot here invert the arguments of an isel in order to fold 1329 // a ZERO into what is presented as the second argument. All we have here 1330 // is the condition bit, and that might come from a CR-logical bit operation. 1331 1332 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1333 1334 // Only fold into real machine instructions. 1335 if (UseMCID.isPseudo()) 1336 return false; 1337 1338 unsigned UseIdx; 1339 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1340 if (UseMI.getOperand(UseIdx).isReg() && 1341 UseMI.getOperand(UseIdx).getReg() == Reg) 1342 break; 1343 1344 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1345 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1346 1347 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1348 1349 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1350 // register (which might also be specified as a pointer class kind). 1351 if (UseInfo->isLookupPtrRegClass()) { 1352 if (UseInfo->RegClass /* Kind */ != 1) 1353 return false; 1354 } else { 1355 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1356 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1357 return false; 1358 } 1359 1360 // Make sure this is not tied to an output register (or otherwise 1361 // constrained). This is true for ST?UX registers, for example, which 1362 // are tied to their output registers. 1363 if (UseInfo->Constraints != 0) 1364 return false; 1365 1366 unsigned ZeroReg; 1367 if (UseInfo->isLookupPtrRegClass()) { 1368 bool isPPC64 = Subtarget.isPPC64(); 1369 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1370 } else { 1371 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1372 PPC::ZERO8 : PPC::ZERO; 1373 } 1374 1375 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1376 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1377 1378 if (DeleteDef) 1379 DefMI.eraseFromParent(); 1380 1381 return true; 1382 } 1383 1384 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1385 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1386 I != IE; ++I) 1387 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1388 return true; 1389 return false; 1390 } 1391 1392 // We should make sure that, if we're going to predicate both sides of a 1393 // condition (a diamond), that both sides don't define the counter register. We 1394 // can predicate counter-decrement-based branches, but while that predicates 1395 // the branching, it does not predicate the counter decrement. If we tried to 1396 // merge the triangle into one predicated block, we'd decrement the counter 1397 // twice. 1398 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1399 unsigned NumT, unsigned ExtraT, 1400 MachineBasicBlock &FMBB, 1401 unsigned NumF, unsigned ExtraF, 1402 BranchProbability Probability) const { 1403 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1404 } 1405 1406 1407 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1408 // The predicated branches are identified by their type, not really by the 1409 // explicit presence of a predicate. Furthermore, some of them can be 1410 // predicated more than once. Because if conversion won't try to predicate 1411 // any instruction which already claims to be predicated (by returning true 1412 // here), always return false. In doing so, we let isPredicable() be the 1413 // final word on whether not the instruction can be (further) predicated. 1414 1415 return false; 1416 } 1417 1418 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1419 if (!MI.isTerminator()) 1420 return false; 1421 1422 // Conditional branch is a special case. 1423 if (MI.isBranch() && !MI.isBarrier()) 1424 return true; 1425 1426 return !isPredicated(MI); 1427 } 1428 1429 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1430 ArrayRef<MachineOperand> Pred) const { 1431 unsigned OpC = MI.getOpcode(); 1432 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1433 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1434 bool isPPC64 = Subtarget.isPPC64(); 1435 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1436 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1437 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1438 MI.setDesc(get(PPC::BCLR)); 1439 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1440 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1441 MI.setDesc(get(PPC::BCLRn)); 1442 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1443 } else { 1444 MI.setDesc(get(PPC::BCCLR)); 1445 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1446 .addImm(Pred[0].getImm()) 1447 .add(Pred[1]); 1448 } 1449 1450 return true; 1451 } else if (OpC == PPC::B) { 1452 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1453 bool isPPC64 = Subtarget.isPPC64(); 1454 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1455 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1456 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1457 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1458 MI.RemoveOperand(0); 1459 1460 MI.setDesc(get(PPC::BC)); 1461 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1462 .add(Pred[1]) 1463 .addMBB(MBB); 1464 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1465 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1466 MI.RemoveOperand(0); 1467 1468 MI.setDesc(get(PPC::BCn)); 1469 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1470 .add(Pred[1]) 1471 .addMBB(MBB); 1472 } else { 1473 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1474 MI.RemoveOperand(0); 1475 1476 MI.setDesc(get(PPC::BCC)); 1477 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1478 .addImm(Pred[0].getImm()) 1479 .add(Pred[1]) 1480 .addMBB(MBB); 1481 } 1482 1483 return true; 1484 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1485 OpC == PPC::BCTRL8) { 1486 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1487 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1488 1489 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1490 bool isPPC64 = Subtarget.isPPC64(); 1491 1492 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1493 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1494 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1495 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1496 return true; 1497 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1498 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1499 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1500 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1501 return true; 1502 } 1503 1504 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1505 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1506 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1507 .addImm(Pred[0].getImm()) 1508 .add(Pred[1]); 1509 return true; 1510 } 1511 1512 return false; 1513 } 1514 1515 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1516 ArrayRef<MachineOperand> Pred2) const { 1517 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1518 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1519 1520 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1521 return false; 1522 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1523 return false; 1524 1525 // P1 can only subsume P2 if they test the same condition register. 1526 if (Pred1[1].getReg() != Pred2[1].getReg()) 1527 return false; 1528 1529 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1530 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1531 1532 if (P1 == P2) 1533 return true; 1534 1535 // Does P1 subsume P2, e.g. GE subsumes GT. 1536 if (P1 == PPC::PRED_LE && 1537 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1538 return true; 1539 if (P1 == PPC::PRED_GE && 1540 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1541 return true; 1542 1543 return false; 1544 } 1545 1546 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1547 std::vector<MachineOperand> &Pred) const { 1548 // Note: At the present time, the contents of Pred from this function is 1549 // unused by IfConversion. This implementation follows ARM by pushing the 1550 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1551 // predicate, instructions defining CTR or CTR8 are also included as 1552 // predicate-defining instructions. 1553 1554 const TargetRegisterClass *RCs[] = 1555 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1556 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1557 1558 bool Found = false; 1559 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1560 const MachineOperand &MO = MI.getOperand(i); 1561 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1562 const TargetRegisterClass *RC = RCs[c]; 1563 if (MO.isReg()) { 1564 if (MO.isDef() && RC->contains(MO.getReg())) { 1565 Pred.push_back(MO); 1566 Found = true; 1567 } 1568 } else if (MO.isRegMask()) { 1569 for (TargetRegisterClass::iterator I = RC->begin(), 1570 IE = RC->end(); I != IE; ++I) 1571 if (MO.clobbersPhysReg(*I)) { 1572 Pred.push_back(MO); 1573 Found = true; 1574 } 1575 } 1576 } 1577 } 1578 1579 return Found; 1580 } 1581 1582 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1583 unsigned OpC = MI.getOpcode(); 1584 switch (OpC) { 1585 default: 1586 return false; 1587 case PPC::B: 1588 case PPC::BLR: 1589 case PPC::BLR8: 1590 case PPC::BCTR: 1591 case PPC::BCTR8: 1592 case PPC::BCTRL: 1593 case PPC::BCTRL8: 1594 return true; 1595 } 1596 } 1597 1598 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1599 unsigned &SrcReg2, int &Mask, 1600 int &Value) const { 1601 unsigned Opc = MI.getOpcode(); 1602 1603 switch (Opc) { 1604 default: return false; 1605 case PPC::CMPWI: 1606 case PPC::CMPLWI: 1607 case PPC::CMPDI: 1608 case PPC::CMPLDI: 1609 SrcReg = MI.getOperand(1).getReg(); 1610 SrcReg2 = 0; 1611 Value = MI.getOperand(2).getImm(); 1612 Mask = 0xFFFF; 1613 return true; 1614 case PPC::CMPW: 1615 case PPC::CMPLW: 1616 case PPC::CMPD: 1617 case PPC::CMPLD: 1618 case PPC::FCMPUS: 1619 case PPC::FCMPUD: 1620 SrcReg = MI.getOperand(1).getReg(); 1621 SrcReg2 = MI.getOperand(2).getReg(); 1622 Value = 0; 1623 Mask = 0; 1624 return true; 1625 } 1626 } 1627 1628 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1629 unsigned SrcReg2, int Mask, int Value, 1630 const MachineRegisterInfo *MRI) const { 1631 if (DisableCmpOpt) 1632 return false; 1633 1634 int OpC = CmpInstr.getOpcode(); 1635 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1636 1637 // FP record forms set CR1 based on the exception status bits, not a 1638 // comparison with zero. 1639 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1640 return false; 1641 1642 // The record forms set the condition register based on a signed comparison 1643 // with zero (so says the ISA manual). This is not as straightforward as it 1644 // seems, however, because this is always a 64-bit comparison on PPC64, even 1645 // for instructions that are 32-bit in nature (like slw for example). 1646 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1647 // for equality checks (as those don't depend on the sign). On PPC64, 1648 // we are restricted to equality for unsigned 64-bit comparisons and for 1649 // signed 32-bit comparisons the applicability is more restricted. 1650 bool isPPC64 = Subtarget.isPPC64(); 1651 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1652 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1653 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1654 1655 // Get the unique definition of SrcReg. 1656 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1657 if (!MI) return false; 1658 1659 bool equalityOnly = false; 1660 bool noSub = false; 1661 if (isPPC64) { 1662 if (is32BitSignedCompare) { 1663 // We can perform this optimization only if MI is sign-extending. 1664 if (isSignExtended(*MI)) 1665 noSub = true; 1666 else 1667 return false; 1668 } else if (is32BitUnsignedCompare) { 1669 // We can perform this optimization, equality only, if MI is 1670 // zero-extending. 1671 if (isZeroExtended(*MI)) { 1672 noSub = true; 1673 equalityOnly = true; 1674 } else 1675 return false; 1676 } else 1677 equalityOnly = is64BitUnsignedCompare; 1678 } else 1679 equalityOnly = is32BitUnsignedCompare; 1680 1681 if (equalityOnly) { 1682 // We need to check the uses of the condition register in order to reject 1683 // non-equality comparisons. 1684 for (MachineRegisterInfo::use_instr_iterator 1685 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1686 I != IE; ++I) { 1687 MachineInstr *UseMI = &*I; 1688 if (UseMI->getOpcode() == PPC::BCC) { 1689 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1690 unsigned PredCond = PPC::getPredicateCondition(Pred); 1691 // We ignore hint bits when checking for non-equality comparisons. 1692 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1693 return false; 1694 } else if (UseMI->getOpcode() == PPC::ISEL || 1695 UseMI->getOpcode() == PPC::ISEL8) { 1696 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1697 if (SubIdx != PPC::sub_eq) 1698 return false; 1699 } else 1700 return false; 1701 } 1702 } 1703 1704 MachineBasicBlock::iterator I = CmpInstr; 1705 1706 // Scan forward to find the first use of the compare. 1707 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1708 ++I) { 1709 bool FoundUse = false; 1710 for (MachineRegisterInfo::use_instr_iterator 1711 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1712 J != JE; ++J) 1713 if (&*J == &*I) { 1714 FoundUse = true; 1715 break; 1716 } 1717 1718 if (FoundUse) 1719 break; 1720 } 1721 1722 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1723 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1724 1725 // There are two possible candidates which can be changed to set CR[01]. 1726 // One is MI, the other is a SUB instruction. 1727 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1728 MachineInstr *Sub = nullptr; 1729 if (SrcReg2 != 0) 1730 // MI is not a candidate for CMPrr. 1731 MI = nullptr; 1732 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1733 // same BB as the comparison. This is to allow the check below to avoid calls 1734 // (and other explicit clobbers); instead we should really check for these 1735 // more explicitly (in at least a few predecessors). 1736 else if (MI->getParent() != CmpInstr.getParent()) 1737 return false; 1738 else if (Value != 0) { 1739 // The record-form instructions set CR bit based on signed comparison 1740 // against 0. We try to convert a compare against 1 or -1 into a compare 1741 // against 0 to exploit record-form instructions. For example, we change 1742 // the condition "greater than -1" into "greater than or equal to 0" 1743 // and "less than 1" into "less than or equal to 0". 1744 1745 // Since we optimize comparison based on a specific branch condition, 1746 // we don't optimize if condition code is used by more than once. 1747 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1748 return false; 1749 1750 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1751 if (UseMI->getOpcode() != PPC::BCC) 1752 return false; 1753 1754 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1755 PPC::Predicate NewPred = Pred; 1756 unsigned PredCond = PPC::getPredicateCondition(Pred); 1757 unsigned PredHint = PPC::getPredicateHint(Pred); 1758 int16_t Immed = (int16_t)Value; 1759 1760 // When modifying the condition in the predicate, we propagate hint bits 1761 // from the original predicate to the new one. 1762 if (Immed == -1 && PredCond == PPC::PRED_GT) 1763 // We convert "greater than -1" into "greater than or equal to 0", 1764 // since we are assuming signed comparison by !equalityOnly 1765 NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1766 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1767 // We convert "less than or equal to -1" into "less than 0". 1768 NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1769 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1770 // We convert "less than 1" into "less than or equal to 0". 1771 NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1772 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1773 // We convert "greater than or equal to 1" into "greater than 0". 1774 NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1775 else 1776 return false; 1777 1778 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1779 NewPred)); 1780 } 1781 1782 // Search for Sub. 1783 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1784 --I; 1785 1786 // Get ready to iterate backward from CmpInstr. 1787 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1788 1789 for (; I != E && !noSub; --I) { 1790 const MachineInstr &Instr = *I; 1791 unsigned IOpC = Instr.getOpcode(); 1792 1793 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1794 Instr.readsRegister(PPC::CR0, TRI))) 1795 // This instruction modifies or uses the record condition register after 1796 // the one we want to change. While we could do this transformation, it 1797 // would likely not be profitable. This transformation removes one 1798 // instruction, and so even forcing RA to generate one move probably 1799 // makes it unprofitable. 1800 return false; 1801 1802 // Check whether CmpInstr can be made redundant by the current instruction. 1803 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1804 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1805 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1806 ((Instr.getOperand(1).getReg() == SrcReg && 1807 Instr.getOperand(2).getReg() == SrcReg2) || 1808 (Instr.getOperand(1).getReg() == SrcReg2 && 1809 Instr.getOperand(2).getReg() == SrcReg))) { 1810 Sub = &*I; 1811 break; 1812 } 1813 1814 if (I == B) 1815 // The 'and' is below the comparison instruction. 1816 return false; 1817 } 1818 1819 // Return false if no candidates exist. 1820 if (!MI && !Sub) 1821 return false; 1822 1823 // The single candidate is called MI. 1824 if (!MI) MI = Sub; 1825 1826 int NewOpC = -1; 1827 int MIOpC = MI->getOpcode(); 1828 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 || 1829 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8) 1830 NewOpC = MIOpC; 1831 else { 1832 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1833 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1834 NewOpC = MIOpC; 1835 } 1836 1837 // FIXME: On the non-embedded POWER architectures, only some of the record 1838 // forms are fast, and we should use only the fast ones. 1839 1840 // The defining instruction has a record form (or is already a record 1841 // form). It is possible, however, that we'll need to reverse the condition 1842 // code of the users. 1843 if (NewOpC == -1) 1844 return false; 1845 1846 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1847 // needs to be updated to be based on SUB. Push the condition code 1848 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1849 // condition code of these operands will be modified. 1850 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1851 // comparison against 0, which may modify predicate. 1852 bool ShouldSwap = false; 1853 if (Sub && Value == 0) { 1854 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1855 Sub->getOperand(2).getReg() == SrcReg; 1856 1857 // The operands to subf are the opposite of sub, so only in the fixed-point 1858 // case, invert the order. 1859 ShouldSwap = !ShouldSwap; 1860 } 1861 1862 if (ShouldSwap) 1863 for (MachineRegisterInfo::use_instr_iterator 1864 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1865 I != IE; ++I) { 1866 MachineInstr *UseMI = &*I; 1867 if (UseMI->getOpcode() == PPC::BCC) { 1868 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1869 unsigned PredCond = PPC::getPredicateCondition(Pred); 1870 assert((!equalityOnly || 1871 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1872 "Invalid predicate for equality-only optimization"); 1873 (void)PredCond; // To suppress warning in release build. 1874 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1875 PPC::getSwappedPredicate(Pred))); 1876 } else if (UseMI->getOpcode() == PPC::ISEL || 1877 UseMI->getOpcode() == PPC::ISEL8) { 1878 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1879 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1880 "Invalid CR bit for equality-only optimization"); 1881 1882 if (NewSubReg == PPC::sub_lt) 1883 NewSubReg = PPC::sub_gt; 1884 else if (NewSubReg == PPC::sub_gt) 1885 NewSubReg = PPC::sub_lt; 1886 1887 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1888 NewSubReg)); 1889 } else // We need to abort on a user we don't understand. 1890 return false; 1891 } 1892 assert(!(Value != 0 && ShouldSwap) && 1893 "Non-zero immediate support and ShouldSwap" 1894 "may conflict in updating predicate"); 1895 1896 // Create a new virtual register to hold the value of the CR set by the 1897 // record-form instruction. If the instruction was not previously in 1898 // record form, then set the kill flag on the CR. 1899 CmpInstr.eraseFromParent(); 1900 1901 MachineBasicBlock::iterator MII = MI; 1902 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1903 get(TargetOpcode::COPY), CRReg) 1904 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1905 1906 // Even if CR0 register were dead before, it is alive now since the 1907 // instruction we just built uses it. 1908 MI->clearRegisterDeads(PPC::CR0); 1909 1910 if (MIOpC != NewOpC) { 1911 // We need to be careful here: we're replacing one instruction with 1912 // another, and we need to make sure that we get all of the right 1913 // implicit uses and defs. On the other hand, the caller may be holding 1914 // an iterator to this instruction, and so we can't delete it (this is 1915 // specifically the case if this is the instruction directly after the 1916 // compare). 1917 1918 // Rotates are expensive instructions. If we're emitting a record-form 1919 // rotate that can just be an andi/andis, we should just emit that. 1920 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1921 unsigned GPRRes = MI->getOperand(0).getReg(); 1922 int64_t SH = MI->getOperand(2).getImm(); 1923 int64_t MB = MI->getOperand(3).getImm(); 1924 int64_t ME = MI->getOperand(4).getImm(); 1925 // We can only do this if both the start and end of the mask are in the 1926 // same halfword. 1927 bool MBInLoHWord = MB >= 16; 1928 bool MEInLoHWord = ME >= 16; 1929 uint64_t Mask = ~0LLU; 1930 1931 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1932 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1933 // The mask value needs to shift right 16 if we're emitting andis. 1934 Mask >>= MBInLoHWord ? 0 : 16; 1935 NewOpC = MIOpC == PPC::RLWINM ? 1936 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) : 1937 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8); 1938 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1939 (ME - MB + 1 == SH) && (MB >= 16)) { 1940 // If we are rotating by the exact number of bits as are in the mask 1941 // and the mask is in the least significant bits of the register, 1942 // that's just an andis. (as long as the GPR result has no uses). 1943 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1944 Mask >>= 16; 1945 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8; 1946 } 1947 // If we've set the mask, we can transform. 1948 if (Mask != ~0LLU) { 1949 MI->RemoveOperand(4); 1950 MI->RemoveOperand(3); 1951 MI->getOperand(2).setImm(Mask); 1952 NumRcRotatesConvertedToRcAnd++; 1953 } 1954 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1955 int64_t MB = MI->getOperand(3).getImm(); 1956 if (MB >= 48) { 1957 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1958 NewOpC = PPC::ANDIo8; 1959 MI->RemoveOperand(3); 1960 MI->getOperand(2).setImm(Mask); 1961 NumRcRotatesConvertedToRcAnd++; 1962 } 1963 } 1964 1965 const MCInstrDesc &NewDesc = get(NewOpC); 1966 MI->setDesc(NewDesc); 1967 1968 if (NewDesc.ImplicitDefs) 1969 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1970 *ImpDefs; ++ImpDefs) 1971 if (!MI->definesRegister(*ImpDefs)) 1972 MI->addOperand(*MI->getParent()->getParent(), 1973 MachineOperand::CreateReg(*ImpDefs, true, true)); 1974 if (NewDesc.ImplicitUses) 1975 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1976 *ImpUses; ++ImpUses) 1977 if (!MI->readsRegister(*ImpUses)) 1978 MI->addOperand(*MI->getParent()->getParent(), 1979 MachineOperand::CreateReg(*ImpUses, false, true)); 1980 } 1981 assert(MI->definesRegister(PPC::CR0) && 1982 "Record-form instruction does not define cr0?"); 1983 1984 // Modify the condition code of operands in OperandsToUpdate. 1985 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1986 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1987 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1988 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1989 1990 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1991 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1992 1993 return true; 1994 } 1995 1996 /// GetInstSize - Return the number of bytes of code the specified 1997 /// instruction may be. This returns the maximum number of bytes. 1998 /// 1999 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2000 unsigned Opcode = MI.getOpcode(); 2001 2002 if (Opcode == PPC::INLINEASM) { 2003 const MachineFunction *MF = MI.getParent()->getParent(); 2004 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2005 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2006 } else if (Opcode == TargetOpcode::STACKMAP) { 2007 StackMapOpers Opers(&MI); 2008 return Opers.getNumPatchBytes(); 2009 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2010 PatchPointOpers Opers(&MI); 2011 return Opers.getNumPatchBytes(); 2012 } else { 2013 return get(Opcode).getSize(); 2014 } 2015 } 2016 2017 std::pair<unsigned, unsigned> 2018 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2019 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2020 return std::make_pair(TF & Mask, TF & ~Mask); 2021 } 2022 2023 ArrayRef<std::pair<unsigned, const char *>> 2024 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2025 using namespace PPCII; 2026 static const std::pair<unsigned, const char *> TargetFlags[] = { 2027 {MO_LO, "ppc-lo"}, 2028 {MO_HA, "ppc-ha"}, 2029 {MO_TPREL_LO, "ppc-tprel-lo"}, 2030 {MO_TPREL_HA, "ppc-tprel-ha"}, 2031 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2032 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2033 {MO_TOC_LO, "ppc-toc-lo"}, 2034 {MO_TLS, "ppc-tls"}}; 2035 return makeArrayRef(TargetFlags); 2036 } 2037 2038 ArrayRef<std::pair<unsigned, const char *>> 2039 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2040 using namespace PPCII; 2041 static const std::pair<unsigned, const char *> TargetFlags[] = { 2042 {MO_PLT, "ppc-plt"}, 2043 {MO_PIC_FLAG, "ppc-pic"}, 2044 {MO_NLP_FLAG, "ppc-nlp"}, 2045 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 2046 return makeArrayRef(TargetFlags); 2047 } 2048 2049 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2050 // The VSX versions have the advantage of a full 64-register target whereas 2051 // the FP ones have the advantage of lower latency and higher throughput. So 2052 // what we are after is using the faster instructions in low register pressure 2053 // situations and using the larger register file in high register pressure 2054 // situations. 2055 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2056 unsigned UpperOpcode, LowerOpcode; 2057 switch (MI.getOpcode()) { 2058 case PPC::DFLOADf32: 2059 UpperOpcode = PPC::LXSSP; 2060 LowerOpcode = PPC::LFS; 2061 break; 2062 case PPC::DFLOADf64: 2063 UpperOpcode = PPC::LXSD; 2064 LowerOpcode = PPC::LFD; 2065 break; 2066 case PPC::DFSTOREf32: 2067 UpperOpcode = PPC::STXSSP; 2068 LowerOpcode = PPC::STFS; 2069 break; 2070 case PPC::DFSTOREf64: 2071 UpperOpcode = PPC::STXSD; 2072 LowerOpcode = PPC::STFD; 2073 break; 2074 case PPC::XFLOADf32: 2075 UpperOpcode = PPC::LXSSPX; 2076 LowerOpcode = PPC::LFSX; 2077 break; 2078 case PPC::XFLOADf64: 2079 UpperOpcode = PPC::LXSDX; 2080 LowerOpcode = PPC::LFDX; 2081 break; 2082 case PPC::XFSTOREf32: 2083 UpperOpcode = PPC::STXSSPX; 2084 LowerOpcode = PPC::STFSX; 2085 break; 2086 case PPC::XFSTOREf64: 2087 UpperOpcode = PPC::STXSDX; 2088 LowerOpcode = PPC::STFDX; 2089 break; 2090 case PPC::LIWAX: 2091 UpperOpcode = PPC::LXSIWAX; 2092 LowerOpcode = PPC::LFIWAX; 2093 break; 2094 case PPC::LIWZX: 2095 UpperOpcode = PPC::LXSIWZX; 2096 LowerOpcode = PPC::LFIWZX; 2097 break; 2098 case PPC::STIWX: 2099 UpperOpcode = PPC::STXSIWX; 2100 LowerOpcode = PPC::STFIWX; 2101 break; 2102 default: 2103 llvm_unreachable("Unknown Operation!"); 2104 } 2105 2106 unsigned TargetReg = MI.getOperand(0).getReg(); 2107 unsigned Opcode; 2108 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2109 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2110 Opcode = LowerOpcode; 2111 else 2112 Opcode = UpperOpcode; 2113 MI.setDesc(get(Opcode)); 2114 return true; 2115 } 2116 2117 static bool isAnImmediateOperand(const MachineOperand &MO) { 2118 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2119 } 2120 2121 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2122 auto &MBB = *MI.getParent(); 2123 auto DL = MI.getDebugLoc(); 2124 2125 switch (MI.getOpcode()) { 2126 case TargetOpcode::LOAD_STACK_GUARD: { 2127 assert(Subtarget.isTargetLinux() && 2128 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2129 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2130 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2131 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2132 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2133 .addImm(Offset) 2134 .addReg(Reg); 2135 return true; 2136 } 2137 case PPC::DFLOADf32: 2138 case PPC::DFLOADf64: 2139 case PPC::DFSTOREf32: 2140 case PPC::DFSTOREf64: { 2141 assert(Subtarget.hasP9Vector() && 2142 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2143 assert(MI.getOperand(2).isReg() && 2144 isAnImmediateOperand(MI.getOperand(1)) && 2145 "D-form op must have register and immediate operands"); 2146 return expandVSXMemPseudo(MI); 2147 } 2148 case PPC::XFLOADf32: 2149 case PPC::XFSTOREf32: 2150 case PPC::LIWAX: 2151 case PPC::LIWZX: 2152 case PPC::STIWX: { 2153 assert(Subtarget.hasP8Vector() && 2154 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2155 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2156 "X-form op must have register and register operands"); 2157 return expandVSXMemPseudo(MI); 2158 } 2159 case PPC::XFLOADf64: 2160 case PPC::XFSTOREf64: { 2161 assert(Subtarget.hasVSX() && 2162 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2163 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2164 "X-form op must have register and register operands"); 2165 return expandVSXMemPseudo(MI); 2166 } 2167 case PPC::SPILLTOVSR_LD: { 2168 unsigned TargetReg = MI.getOperand(0).getReg(); 2169 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2170 MI.setDesc(get(PPC::DFLOADf64)); 2171 return expandPostRAPseudo(MI); 2172 } 2173 else 2174 MI.setDesc(get(PPC::LD)); 2175 return true; 2176 } 2177 case PPC::SPILLTOVSR_ST: { 2178 unsigned SrcReg = MI.getOperand(0).getReg(); 2179 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2180 NumStoreSPILLVSRRCAsVec++; 2181 MI.setDesc(get(PPC::DFSTOREf64)); 2182 return expandPostRAPseudo(MI); 2183 } else { 2184 NumStoreSPILLVSRRCAsGpr++; 2185 MI.setDesc(get(PPC::STD)); 2186 } 2187 return true; 2188 } 2189 case PPC::SPILLTOVSR_LDX: { 2190 unsigned TargetReg = MI.getOperand(0).getReg(); 2191 if (PPC::VSFRCRegClass.contains(TargetReg)) 2192 MI.setDesc(get(PPC::LXSDX)); 2193 else 2194 MI.setDesc(get(PPC::LDX)); 2195 return true; 2196 } 2197 case PPC::SPILLTOVSR_STX: { 2198 unsigned SrcReg = MI.getOperand(0).getReg(); 2199 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2200 NumStoreSPILLVSRRCAsVec++; 2201 MI.setDesc(get(PPC::STXSDX)); 2202 } else { 2203 NumStoreSPILLVSRRCAsGpr++; 2204 MI.setDesc(get(PPC::STDX)); 2205 } 2206 return true; 2207 } 2208 2209 case PPC::CFENCE8: { 2210 auto Val = MI.getOperand(0).getReg(); 2211 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2212 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2213 .addImm(PPC::PRED_NE_MINUS) 2214 .addReg(PPC::CR7) 2215 .addImm(1); 2216 MI.setDesc(get(PPC::ISYNC)); 2217 MI.RemoveOperand(0); 2218 return true; 2219 } 2220 } 2221 return false; 2222 } 2223 2224 // Essentially a compile-time implementation of a compare->isel sequence. 2225 // It takes two constants to compare, along with the true/false registers 2226 // and the comparison type (as a subreg to a CR field) and returns one 2227 // of the true/false registers, depending on the comparison results. 2228 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2229 unsigned TrueReg, unsigned FalseReg, 2230 unsigned CRSubReg) { 2231 // Signed comparisons. The immediates are assumed to be sign-extended. 2232 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2233 switch (CRSubReg) { 2234 default: llvm_unreachable("Unknown integer comparison type."); 2235 case PPC::sub_lt: 2236 return Imm1 < Imm2 ? TrueReg : FalseReg; 2237 case PPC::sub_gt: 2238 return Imm1 > Imm2 ? TrueReg : FalseReg; 2239 case PPC::sub_eq: 2240 return Imm1 == Imm2 ? TrueReg : FalseReg; 2241 } 2242 } 2243 // Unsigned comparisons. 2244 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2245 switch (CRSubReg) { 2246 default: llvm_unreachable("Unknown integer comparison type."); 2247 case PPC::sub_lt: 2248 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2249 case PPC::sub_gt: 2250 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2251 case PPC::sub_eq: 2252 return Imm1 == Imm2 ? TrueReg : FalseReg; 2253 } 2254 } 2255 return PPC::NoRegister; 2256 } 2257 2258 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2259 unsigned OpNo, 2260 int64_t Imm) const { 2261 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2262 // Replace the REG with the Immediate. 2263 unsigned InUseReg = MI.getOperand(OpNo).getReg(); 2264 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2265 2266 if (empty(MI.implicit_operands())) 2267 return; 2268 2269 // We need to make sure that the MI didn't have any implicit use 2270 // of this REG any more. 2271 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2272 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2273 if (UseOpIdx >= 0) { 2274 MachineOperand &MO = MI.getOperand(UseOpIdx); 2275 if (MO.isImplicit()) 2276 // The operands must always be in the following order: 2277 // - explicit reg defs, 2278 // - other explicit operands (reg uses, immediates, etc.), 2279 // - implicit reg defs 2280 // - implicit reg uses 2281 // Therefore, removing the implicit operand won't change the explicit 2282 // operands layout. 2283 MI.RemoveOperand(UseOpIdx); 2284 } 2285 } 2286 2287 // Replace an instruction with one that materializes a constant (and sets 2288 // CR0 if the original instruction was a record-form instruction). 2289 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2290 const LoadImmediateInfo &LII) const { 2291 // Remove existing operands. 2292 int OperandToKeep = LII.SetCR ? 1 : 0; 2293 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2294 MI.RemoveOperand(i); 2295 2296 // Replace the instruction. 2297 if (LII.SetCR) { 2298 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo)); 2299 // Set the immediate. 2300 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2301 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2302 return; 2303 } 2304 else 2305 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2306 2307 // Set the immediate. 2308 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2309 .addImm(LII.Imm); 2310 } 2311 2312 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2313 MachineInstr &MI, 2314 unsigned &OpNoForForwarding, 2315 bool &SeenIntermediateUse) const { 2316 OpNoForForwarding = ~0U; 2317 MachineInstr *DefMI = nullptr; 2318 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2319 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2320 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2321 // within the basic block to see if the register is defined using an LI/LI8. 2322 if (MRI->isSSA()) { 2323 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2324 if (!MI.getOperand(i).isReg()) 2325 continue; 2326 unsigned Reg = MI.getOperand(i).getReg(); 2327 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 2328 continue; 2329 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2330 if (TargetRegisterInfo::isVirtualRegister(TrueReg)) { 2331 DefMI = MRI->getVRegDef(TrueReg); 2332 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2333 OpNoForForwarding = i; 2334 break; 2335 } 2336 } 2337 } 2338 } else { 2339 // Looking back through the definition for each operand could be expensive, 2340 // so exit early if this isn't an instruction that either has an immediate 2341 // form or is already an immediate form that we can handle. 2342 ImmInstrInfo III; 2343 unsigned Opc = MI.getOpcode(); 2344 bool ConvertibleImmForm = 2345 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || 2346 Opc == PPC::CMPDI || Opc == PPC::CMPLDI || 2347 Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2348 Opc == PPC::ORI || Opc == PPC::ORI8 || 2349 Opc == PPC::XORI || Opc == PPC::XORI8 || 2350 Opc == PPC::RLDICL || Opc == PPC::RLDICLo || 2351 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2352 Opc == PPC::RLWINM || Opc == PPC::RLWINMo || 2353 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2354 if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm) 2355 return nullptr; 2356 2357 // Don't convert or %X, %Y, %Y since that's just a register move. 2358 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2359 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2360 return nullptr; 2361 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2362 MachineOperand &MO = MI.getOperand(i); 2363 SeenIntermediateUse = false; 2364 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2365 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2366 It++; 2367 unsigned Reg = MI.getOperand(i).getReg(); 2368 2369 // Is this register defined by some form of add-immediate (including 2370 // load-immediate) within this basic block? 2371 for ( ; It != E; ++It) { 2372 if (It->modifiesRegister(Reg, &getRegisterInfo())) { 2373 switch (It->getOpcode()) { 2374 default: break; 2375 case PPC::LI: 2376 case PPC::LI8: 2377 case PPC::ADDItocL: 2378 case PPC::ADDI: 2379 case PPC::ADDI8: 2380 OpNoForForwarding = i; 2381 return &*It; 2382 } 2383 break; 2384 } else if (It->readsRegister(Reg, &getRegisterInfo())) 2385 // If we see another use of this reg between the def and the MI, 2386 // we want to flat it so the def isn't deleted. 2387 SeenIntermediateUse = true; 2388 } 2389 } 2390 } 2391 } 2392 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2393 } 2394 2395 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2396 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2397 // Power 8 2398 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2399 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2400 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2401 PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW}, 2402 // Power 9 2403 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2404 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2405 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2406 PPC::SPILLTOVSR_ST}}; 2407 2408 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2409 } 2410 2411 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2412 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2413 // Power 8 2414 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2415 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2416 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2417 PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ}, 2418 // Power 9 2419 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2420 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2421 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2422 PPC::SPILLTOVSR_LD}}; 2423 2424 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2425 } 2426 2427 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2428 unsigned RegNo) const { 2429 const MachineRegisterInfo &MRI = 2430 StartMI.getParent()->getParent()->getRegInfo(); 2431 if (MRI.isSSA()) 2432 return; 2433 2434 // Instructions between [StartMI, EndMI] should be in same basic block. 2435 assert((StartMI.getParent() == EndMI.getParent()) && 2436 "Instructions are not in same basic block"); 2437 2438 bool IsKillSet = false; 2439 2440 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2441 MachineOperand &MO = MI.getOperand(Index); 2442 if (MO.isReg() && MO.isUse() && MO.isKill() && 2443 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2444 MO.setIsKill(false); 2445 }; 2446 2447 // Set killed flag for EndMI. 2448 // No need to do anything if EndMI defines RegNo. 2449 int UseIndex = 2450 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2451 if (UseIndex != -1) { 2452 EndMI.getOperand(UseIndex).setIsKill(true); 2453 IsKillSet = true; 2454 // Clear killed flag for other EndMI operands related to RegNo. In some 2455 // upexpected cases, killed may be set multiple times for same register 2456 // operand in same MI. 2457 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2458 if (i != UseIndex) 2459 clearOperandKillInfo(EndMI, i); 2460 } 2461 2462 // Walking the inst in reverse order (EndMI -> StartMI]. 2463 MachineBasicBlock::reverse_iterator It = EndMI; 2464 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2465 // EndMI has been handled above, skip it here. 2466 It++; 2467 MachineOperand *MO = nullptr; 2468 for (; It != E; ++It) { 2469 // Skip insturctions which could not be a def/use of RegNo. 2470 if (It->isDebugInstr() || It->isPosition()) 2471 continue; 2472 2473 // Clear killed flag for all It operands related to RegNo. In some 2474 // upexpected cases, killed may be set multiple times for same register 2475 // operand in same MI. 2476 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2477 clearOperandKillInfo(*It, i); 2478 2479 // If killed is not set, set killed for its last use or set dead for its def 2480 // if no use found. 2481 if (!IsKillSet) { 2482 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2483 // Use found, set it killed. 2484 IsKillSet = true; 2485 MO->setIsKill(true); 2486 continue; 2487 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2488 &getRegisterInfo()))) { 2489 // No use found, set dead for its def. 2490 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2491 MO->setIsDead(true); 2492 break; 2493 } 2494 } 2495 2496 if ((&*It) == &StartMI) 2497 break; 2498 } 2499 // Ensure RegMo liveness is killed after EndMI. 2500 assert((IsKillSet || (MO && MO->isDead())) && 2501 "RegNo should be killed or dead"); 2502 } 2503 2504 // If this instruction has an immediate form and one of its operands is a 2505 // result of a load-immediate or an add-immediate, convert it to 2506 // the immediate form if the constant is in range. 2507 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2508 MachineInstr **KilledDef) const { 2509 MachineFunction *MF = MI.getParent()->getParent(); 2510 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2511 bool PostRA = !MRI->isSSA(); 2512 bool SeenIntermediateUse = true; 2513 unsigned ForwardingOperand = ~0U; 2514 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2515 SeenIntermediateUse); 2516 if (!DefMI) 2517 return false; 2518 assert(ForwardingOperand < MI.getNumOperands() && 2519 "The forwarding operand needs to be valid at this point"); 2520 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2521 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2522 unsigned ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2523 if (KilledDef && KillFwdDefMI) 2524 *KilledDef = DefMI; 2525 2526 ImmInstrInfo III; 2527 bool HasImmForm = instrHasImmForm(MI, III, PostRA); 2528 // If this is a reg+reg instruction that has a reg+imm form, 2529 // and one of the operands is produced by an add-immediate, 2530 // try to convert it. 2531 if (HasImmForm && 2532 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2533 KillFwdDefMI)) 2534 return true; 2535 2536 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2537 !DefMI->getOperand(1).isImm()) 2538 return false; 2539 2540 int64_t Immediate = DefMI->getOperand(1).getImm(); 2541 // Sign-extend to 64-bits. 2542 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2543 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2544 2545 // If this is a reg+reg instruction that has a reg+imm form, 2546 // and one of the operands is produced by LI, convert it now. 2547 if (HasImmForm) 2548 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2549 2550 bool ReplaceWithLI = false; 2551 bool Is64BitLI = false; 2552 int64_t NewImm = 0; 2553 bool SetCR = false; 2554 unsigned Opc = MI.getOpcode(); 2555 switch (Opc) { 2556 default: return false; 2557 2558 // FIXME: Any branches conditional on such a comparison can be made 2559 // unconditional. At this time, this happens too infrequently to be worth 2560 // the implementation effort, but if that ever changes, we could convert 2561 // such a pattern here. 2562 case PPC::CMPWI: 2563 case PPC::CMPLWI: 2564 case PPC::CMPDI: 2565 case PPC::CMPLDI: { 2566 // Doing this post-RA would require dataflow analysis to reliably find uses 2567 // of the CR register set by the compare. 2568 // No need to fixup killed/dead flag since this transformation is only valid 2569 // before RA. 2570 if (PostRA) 2571 return false; 2572 // If a compare-immediate is fed by an immediate and is itself an input of 2573 // an ISEL (the most common case) into a COPY of the correct register. 2574 bool Changed = false; 2575 unsigned DefReg = MI.getOperand(0).getReg(); 2576 int64_t Comparand = MI.getOperand(2).getImm(); 2577 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2578 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2579 2580 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2581 unsigned UseOpc = CompareUseMI.getOpcode(); 2582 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2583 continue; 2584 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2585 unsigned TrueReg = CompareUseMI.getOperand(1).getReg(); 2586 unsigned FalseReg = CompareUseMI.getOperand(2).getReg(); 2587 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2588 FalseReg, CRSubReg); 2589 if (RegToCopy == PPC::NoRegister) 2590 continue; 2591 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2592 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2593 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2594 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2595 CompareUseMI.RemoveOperand(3); 2596 CompareUseMI.RemoveOperand(2); 2597 continue; 2598 } 2599 LLVM_DEBUG( 2600 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2601 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2602 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2603 // Convert to copy and remove unneeded operands. 2604 CompareUseMI.setDesc(get(PPC::COPY)); 2605 CompareUseMI.RemoveOperand(3); 2606 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2607 CmpIselsConverted++; 2608 Changed = true; 2609 LLVM_DEBUG(CompareUseMI.dump()); 2610 } 2611 if (Changed) 2612 return true; 2613 // This may end up incremented multiple times since this function is called 2614 // during a fixed-point transformation, but it is only meant to indicate the 2615 // presence of this opportunity. 2616 MissedConvertibleImmediateInstrs++; 2617 return false; 2618 } 2619 2620 // Immediate forms - may simply be convertable to an LI. 2621 case PPC::ADDI: 2622 case PPC::ADDI8: { 2623 // Does the sum fit in a 16-bit signed field? 2624 int64_t Addend = MI.getOperand(2).getImm(); 2625 if (isInt<16>(Addend + SExtImm)) { 2626 ReplaceWithLI = true; 2627 Is64BitLI = Opc == PPC::ADDI8; 2628 NewImm = Addend + SExtImm; 2629 break; 2630 } 2631 return false; 2632 } 2633 case PPC::RLDICL: 2634 case PPC::RLDICLo: 2635 case PPC::RLDICL_32: 2636 case PPC::RLDICL_32_64: { 2637 // Use APInt's rotate function. 2638 int64_t SH = MI.getOperand(2).getImm(); 2639 int64_t MB = MI.getOperand(3).getImm(); 2640 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ? 2641 64 : 32, SExtImm, true); 2642 InVal = InVal.rotl(SH); 2643 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2644 InVal &= Mask; 2645 // Can't replace negative values with an LI as that will sign-extend 2646 // and not clear the left bits. If we're setting the CR bit, we will use 2647 // ANDIo which won't sign extend, so that's safe. 2648 if (isUInt<15>(InVal.getSExtValue()) || 2649 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) { 2650 ReplaceWithLI = true; 2651 Is64BitLI = Opc != PPC::RLDICL_32; 2652 NewImm = InVal.getSExtValue(); 2653 SetCR = Opc == PPC::RLDICLo; 2654 break; 2655 } 2656 return false; 2657 } 2658 case PPC::RLWINM: 2659 case PPC::RLWINM8: 2660 case PPC::RLWINMo: 2661 case PPC::RLWINM8o: { 2662 int64_t SH = MI.getOperand(2).getImm(); 2663 int64_t MB = MI.getOperand(3).getImm(); 2664 int64_t ME = MI.getOperand(4).getImm(); 2665 APInt InVal(32, SExtImm, true); 2666 InVal = InVal.rotl(SH); 2667 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2668 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2669 InVal &= Mask; 2670 // Can't replace negative values with an LI as that will sign-extend 2671 // and not clear the left bits. If we're setting the CR bit, we will use 2672 // ANDIo which won't sign extend, so that's safe. 2673 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2674 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) && 2675 isUInt<16>(InVal.getSExtValue())); 2676 if (ValueFits) { 2677 ReplaceWithLI = true; 2678 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2679 NewImm = InVal.getSExtValue(); 2680 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o; 2681 break; 2682 } 2683 return false; 2684 } 2685 case PPC::ORI: 2686 case PPC::ORI8: 2687 case PPC::XORI: 2688 case PPC::XORI8: { 2689 int64_t LogicalImm = MI.getOperand(2).getImm(); 2690 int64_t Result = 0; 2691 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2692 Result = LogicalImm | SExtImm; 2693 else 2694 Result = LogicalImm ^ SExtImm; 2695 if (isInt<16>(Result)) { 2696 ReplaceWithLI = true; 2697 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2698 NewImm = Result; 2699 break; 2700 } 2701 return false; 2702 } 2703 } 2704 2705 if (ReplaceWithLI) { 2706 // We need to be careful with CR-setting instructions we're replacing. 2707 if (SetCR) { 2708 // We don't know anything about uses when we're out of SSA, so only 2709 // replace if the new immediate will be reproduced. 2710 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2711 if (PostRA && ImmChanged) 2712 return false; 2713 2714 if (!PostRA) { 2715 // If the defining load-immediate has no other uses, we can just replace 2716 // the immediate with the new immediate. 2717 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2718 DefMI->getOperand(1).setImm(NewImm); 2719 2720 // If we're not using the GPR result of the CR-setting instruction, we 2721 // just need to and with zero/non-zero depending on the new immediate. 2722 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2723 if (NewImm) { 2724 assert(Immediate && "Transformation converted zero to non-zero?"); 2725 NewImm = Immediate; 2726 } 2727 } 2728 else if (ImmChanged) 2729 return false; 2730 } 2731 } 2732 2733 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2734 LLVM_DEBUG(MI.dump()); 2735 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2736 LLVM_DEBUG(DefMI->dump()); 2737 LoadImmediateInfo LII; 2738 LII.Imm = NewImm; 2739 LII.Is64Bit = Is64BitLI; 2740 LII.SetCR = SetCR; 2741 // If we're setting the CR, the original load-immediate must be kept (as an 2742 // operand to ANDIo/ANDI8o). 2743 if (KilledDef && SetCR) 2744 *KilledDef = nullptr; 2745 replaceInstrWithLI(MI, LII); 2746 2747 // Fixup killed/dead flag after transformation. 2748 // Pattern: 2749 // ForwardingOperandReg = LI imm1 2750 // y = op2 imm2, ForwardingOperandReg(killed) 2751 if (IsForwardingOperandKilled) 2752 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 2753 2754 LLVM_DEBUG(dbgs() << "With:\n"); 2755 LLVM_DEBUG(MI.dump()); 2756 return true; 2757 } 2758 return false; 2759 } 2760 2761 static bool isVFReg(unsigned Reg) { 2762 return PPC::VFRCRegClass.contains(Reg); 2763 } 2764 2765 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI, 2766 ImmInstrInfo &III, bool PostRA) const { 2767 unsigned Opc = MI.getOpcode(); 2768 // The vast majority of the instructions would need their operand 2 replaced 2769 // with an immediate when switching to the reg+imm form. A marked exception 2770 // are the update form loads/stores for which a constant operand 2 would need 2771 // to turn into a displacement and move operand 1 to the operand 2 position. 2772 III.ImmOpNo = 2; 2773 III.OpNoForForwarding = 2; 2774 III.ImmWidth = 16; 2775 III.ImmMustBeMultipleOf = 1; 2776 III.TruncateImmTo = 0; 2777 III.IsSummingOperands = false; 2778 switch (Opc) { 2779 default: return false; 2780 case PPC::ADD4: 2781 case PPC::ADD8: 2782 III.SignedImm = true; 2783 III.ZeroIsSpecialOrig = 0; 2784 III.ZeroIsSpecialNew = 1; 2785 III.IsCommutative = true; 2786 III.IsSummingOperands = true; 2787 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 2788 break; 2789 case PPC::ADDC: 2790 case PPC::ADDC8: 2791 III.SignedImm = true; 2792 III.ZeroIsSpecialOrig = 0; 2793 III.ZeroIsSpecialNew = 0; 2794 III.IsCommutative = true; 2795 III.IsSummingOperands = true; 2796 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 2797 break; 2798 case PPC::ADDCo: 2799 III.SignedImm = true; 2800 III.ZeroIsSpecialOrig = 0; 2801 III.ZeroIsSpecialNew = 0; 2802 III.IsCommutative = true; 2803 III.IsSummingOperands = true; 2804 III.ImmOpcode = PPC::ADDICo; 2805 break; 2806 case PPC::SUBFC: 2807 case PPC::SUBFC8: 2808 III.SignedImm = true; 2809 III.ZeroIsSpecialOrig = 0; 2810 III.ZeroIsSpecialNew = 0; 2811 III.IsCommutative = false; 2812 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 2813 break; 2814 case PPC::CMPW: 2815 case PPC::CMPD: 2816 III.SignedImm = true; 2817 III.ZeroIsSpecialOrig = 0; 2818 III.ZeroIsSpecialNew = 0; 2819 III.IsCommutative = false; 2820 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 2821 break; 2822 case PPC::CMPLW: 2823 case PPC::CMPLD: 2824 III.SignedImm = false; 2825 III.ZeroIsSpecialOrig = 0; 2826 III.ZeroIsSpecialNew = 0; 2827 III.IsCommutative = false; 2828 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 2829 break; 2830 case PPC::ANDo: 2831 case PPC::AND8o: 2832 case PPC::OR: 2833 case PPC::OR8: 2834 case PPC::XOR: 2835 case PPC::XOR8: 2836 III.SignedImm = false; 2837 III.ZeroIsSpecialOrig = 0; 2838 III.ZeroIsSpecialNew = 0; 2839 III.IsCommutative = true; 2840 switch(Opc) { 2841 default: llvm_unreachable("Unknown opcode"); 2842 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break; 2843 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break; 2844 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 2845 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 2846 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 2847 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 2848 } 2849 break; 2850 case PPC::RLWNM: 2851 case PPC::RLWNM8: 2852 case PPC::RLWNMo: 2853 case PPC::RLWNM8o: 2854 case PPC::SLW: 2855 case PPC::SLW8: 2856 case PPC::SLWo: 2857 case PPC::SLW8o: 2858 case PPC::SRW: 2859 case PPC::SRW8: 2860 case PPC::SRWo: 2861 case PPC::SRW8o: 2862 case PPC::SRAW: 2863 case PPC::SRAWo: 2864 III.SignedImm = false; 2865 III.ZeroIsSpecialOrig = 0; 2866 III.ZeroIsSpecialNew = 0; 2867 III.IsCommutative = false; 2868 // This isn't actually true, but the instructions ignore any of the 2869 // upper bits, so any immediate loaded with an LI is acceptable. 2870 // This does not apply to shift right algebraic because a value 2871 // out of range will produce a -1/0. 2872 III.ImmWidth = 16; 2873 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || 2874 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o) 2875 III.TruncateImmTo = 5; 2876 else 2877 III.TruncateImmTo = 6; 2878 switch(Opc) { 2879 default: llvm_unreachable("Unknown opcode"); 2880 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 2881 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 2882 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break; 2883 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break; 2884 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 2885 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 2886 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break; 2887 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2888 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 2889 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 2890 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break; 2891 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2892 case PPC::SRAW: 2893 III.ImmWidth = 5; 2894 III.TruncateImmTo = 0; 2895 III.ImmOpcode = PPC::SRAWI; 2896 break; 2897 case PPC::SRAWo: 2898 III.ImmWidth = 5; 2899 III.TruncateImmTo = 0; 2900 III.ImmOpcode = PPC::SRAWIo; 2901 break; 2902 } 2903 break; 2904 case PPC::RLDCL: 2905 case PPC::RLDCLo: 2906 case PPC::RLDCR: 2907 case PPC::RLDCRo: 2908 case PPC::SLD: 2909 case PPC::SLDo: 2910 case PPC::SRD: 2911 case PPC::SRDo: 2912 case PPC::SRAD: 2913 case PPC::SRADo: 2914 III.SignedImm = false; 2915 III.ZeroIsSpecialOrig = 0; 2916 III.ZeroIsSpecialNew = 0; 2917 III.IsCommutative = false; 2918 // This isn't actually true, but the instructions ignore any of the 2919 // upper bits, so any immediate loaded with an LI is acceptable. 2920 // This does not apply to shift right algebraic because a value 2921 // out of range will produce a -1/0. 2922 III.ImmWidth = 16; 2923 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo || 2924 Opc == PPC::RLDCR || Opc == PPC::RLDCRo) 2925 III.TruncateImmTo = 6; 2926 else 2927 III.TruncateImmTo = 7; 2928 switch(Opc) { 2929 default: llvm_unreachable("Unknown opcode"); 2930 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 2931 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break; 2932 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 2933 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break; 2934 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 2935 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break; 2936 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 2937 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break; 2938 case PPC::SRAD: 2939 III.ImmWidth = 6; 2940 III.TruncateImmTo = 0; 2941 III.ImmOpcode = PPC::SRADI; 2942 break; 2943 case PPC::SRADo: 2944 III.ImmWidth = 6; 2945 III.TruncateImmTo = 0; 2946 III.ImmOpcode = PPC::SRADIo; 2947 break; 2948 } 2949 break; 2950 // Loads and stores: 2951 case PPC::LBZX: 2952 case PPC::LBZX8: 2953 case PPC::LHZX: 2954 case PPC::LHZX8: 2955 case PPC::LHAX: 2956 case PPC::LHAX8: 2957 case PPC::LWZX: 2958 case PPC::LWZX8: 2959 case PPC::LWAX: 2960 case PPC::LDX: 2961 case PPC::LFSX: 2962 case PPC::LFDX: 2963 case PPC::STBX: 2964 case PPC::STBX8: 2965 case PPC::STHX: 2966 case PPC::STHX8: 2967 case PPC::STWX: 2968 case PPC::STWX8: 2969 case PPC::STDX: 2970 case PPC::STFSX: 2971 case PPC::STFDX: 2972 III.SignedImm = true; 2973 III.ZeroIsSpecialOrig = 1; 2974 III.ZeroIsSpecialNew = 2; 2975 III.IsCommutative = true; 2976 III.IsSummingOperands = true; 2977 III.ImmOpNo = 1; 2978 III.OpNoForForwarding = 2; 2979 switch(Opc) { 2980 default: llvm_unreachable("Unknown opcode"); 2981 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 2982 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 2983 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 2984 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 2985 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 2986 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 2987 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 2988 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 2989 case PPC::LWAX: 2990 III.ImmOpcode = PPC::LWA; 2991 III.ImmMustBeMultipleOf = 4; 2992 break; 2993 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 2994 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 2995 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 2996 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 2997 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 2998 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 2999 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3000 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3001 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3002 case PPC::STDX: 3003 III.ImmOpcode = PPC::STD; 3004 III.ImmMustBeMultipleOf = 4; 3005 break; 3006 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3007 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3008 } 3009 break; 3010 case PPC::LBZUX: 3011 case PPC::LBZUX8: 3012 case PPC::LHZUX: 3013 case PPC::LHZUX8: 3014 case PPC::LHAUX: 3015 case PPC::LHAUX8: 3016 case PPC::LWZUX: 3017 case PPC::LWZUX8: 3018 case PPC::LDUX: 3019 case PPC::LFSUX: 3020 case PPC::LFDUX: 3021 case PPC::STBUX: 3022 case PPC::STBUX8: 3023 case PPC::STHUX: 3024 case PPC::STHUX8: 3025 case PPC::STWUX: 3026 case PPC::STWUX8: 3027 case PPC::STDUX: 3028 case PPC::STFSUX: 3029 case PPC::STFDUX: 3030 III.SignedImm = true; 3031 III.ZeroIsSpecialOrig = 2; 3032 III.ZeroIsSpecialNew = 3; 3033 III.IsCommutative = false; 3034 III.IsSummingOperands = true; 3035 III.ImmOpNo = 2; 3036 III.OpNoForForwarding = 3; 3037 switch(Opc) { 3038 default: llvm_unreachable("Unknown opcode"); 3039 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3040 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3041 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3042 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3043 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3044 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3045 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3046 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3047 case PPC::LDUX: 3048 III.ImmOpcode = PPC::LDU; 3049 III.ImmMustBeMultipleOf = 4; 3050 break; 3051 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3052 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3053 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3054 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3055 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3056 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3057 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3058 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3059 case PPC::STDUX: 3060 III.ImmOpcode = PPC::STDU; 3061 III.ImmMustBeMultipleOf = 4; 3062 break; 3063 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3064 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3065 } 3066 break; 3067 // Power9 and up only. For some of these, the X-Form version has access to all 3068 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3069 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3070 // into or stored from is one of the VR registers. 3071 case PPC::LXVX: 3072 case PPC::LXSSPX: 3073 case PPC::LXSDX: 3074 case PPC::STXVX: 3075 case PPC::STXSSPX: 3076 case PPC::STXSDX: 3077 case PPC::XFLOADf32: 3078 case PPC::XFLOADf64: 3079 case PPC::XFSTOREf32: 3080 case PPC::XFSTOREf64: 3081 if (!Subtarget.hasP9Vector()) 3082 return false; 3083 III.SignedImm = true; 3084 III.ZeroIsSpecialOrig = 1; 3085 III.ZeroIsSpecialNew = 2; 3086 III.IsCommutative = true; 3087 III.IsSummingOperands = true; 3088 III.ImmOpNo = 1; 3089 III.OpNoForForwarding = 2; 3090 III.ImmMustBeMultipleOf = 4; 3091 switch(Opc) { 3092 default: llvm_unreachable("Unknown opcode"); 3093 case PPC::LXVX: 3094 III.ImmOpcode = PPC::LXV; 3095 III.ImmMustBeMultipleOf = 16; 3096 break; 3097 case PPC::LXSSPX: 3098 if (PostRA) { 3099 if (isVFReg(MI.getOperand(0).getReg())) 3100 III.ImmOpcode = PPC::LXSSP; 3101 else { 3102 III.ImmOpcode = PPC::LFS; 3103 III.ImmMustBeMultipleOf = 1; 3104 } 3105 break; 3106 } 3107 LLVM_FALLTHROUGH; 3108 case PPC::XFLOADf32: 3109 III.ImmOpcode = PPC::DFLOADf32; 3110 break; 3111 case PPC::LXSDX: 3112 if (PostRA) { 3113 if (isVFReg(MI.getOperand(0).getReg())) 3114 III.ImmOpcode = PPC::LXSD; 3115 else { 3116 III.ImmOpcode = PPC::LFD; 3117 III.ImmMustBeMultipleOf = 1; 3118 } 3119 break; 3120 } 3121 LLVM_FALLTHROUGH; 3122 case PPC::XFLOADf64: 3123 III.ImmOpcode = PPC::DFLOADf64; 3124 break; 3125 case PPC::STXVX: 3126 III.ImmOpcode = PPC::STXV; 3127 III.ImmMustBeMultipleOf = 16; 3128 break; 3129 case PPC::STXSSPX: 3130 if (PostRA) { 3131 if (isVFReg(MI.getOperand(0).getReg())) 3132 III.ImmOpcode = PPC::STXSSP; 3133 else { 3134 III.ImmOpcode = PPC::STFS; 3135 III.ImmMustBeMultipleOf = 1; 3136 } 3137 break; 3138 } 3139 LLVM_FALLTHROUGH; 3140 case PPC::XFSTOREf32: 3141 III.ImmOpcode = PPC::DFSTOREf32; 3142 break; 3143 case PPC::STXSDX: 3144 if (PostRA) { 3145 if (isVFReg(MI.getOperand(0).getReg())) 3146 III.ImmOpcode = PPC::STXSD; 3147 else { 3148 III.ImmOpcode = PPC::STFD; 3149 III.ImmMustBeMultipleOf = 1; 3150 } 3151 break; 3152 } 3153 LLVM_FALLTHROUGH; 3154 case PPC::XFSTOREf64: 3155 III.ImmOpcode = PPC::DFSTOREf64; 3156 break; 3157 } 3158 break; 3159 } 3160 return true; 3161 } 3162 3163 // Utility function for swaping two arbitrary operands of an instruction. 3164 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3165 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3166 3167 unsigned MaxOp = std::max(Op1, Op2); 3168 unsigned MinOp = std::min(Op1, Op2); 3169 MachineOperand MOp1 = MI.getOperand(MinOp); 3170 MachineOperand MOp2 = MI.getOperand(MaxOp); 3171 MI.RemoveOperand(std::max(Op1, Op2)); 3172 MI.RemoveOperand(std::min(Op1, Op2)); 3173 3174 // If the operands we are swapping are the two at the end (the common case) 3175 // we can just remove both and add them in the opposite order. 3176 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3177 MI.addOperand(MOp2); 3178 MI.addOperand(MOp1); 3179 } else { 3180 // Store all operands in a temporary vector, remove them and re-add in the 3181 // right order. 3182 SmallVector<MachineOperand, 2> MOps; 3183 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3184 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3185 MOps.push_back(MI.getOperand(i)); 3186 MI.RemoveOperand(i); 3187 } 3188 // MOp2 needs to be added next. 3189 MI.addOperand(MOp2); 3190 // Now add the rest. 3191 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3192 if (i == MaxOp) 3193 MI.addOperand(MOp1); 3194 else { 3195 MI.addOperand(MOps.back()); 3196 MOps.pop_back(); 3197 } 3198 } 3199 } 3200 } 3201 3202 // Check if the 'MI' that has the index OpNoForForwarding 3203 // meets the requirement described in the ImmInstrInfo. 3204 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3205 const ImmInstrInfo &III, 3206 unsigned OpNoForForwarding 3207 ) const { 3208 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3209 // would not work pre-RA, we can only do the check post RA. 3210 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3211 if (MRI.isSSA()) 3212 return false; 3213 3214 // Cannot do the transform if MI isn't summing the operands. 3215 if (!III.IsSummingOperands) 3216 return false; 3217 3218 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3219 if (!III.ZeroIsSpecialOrig) 3220 return false; 3221 3222 // We cannot do the transform if the operand we are trying to replace 3223 // isn't the same as the operand the instruction allows. 3224 if (OpNoForForwarding != III.OpNoForForwarding) 3225 return false; 3226 3227 // Check if the instruction we are trying to transform really has 3228 // the special zero register as its operand. 3229 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3230 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3231 return false; 3232 3233 // This machine instruction is convertible if it is, 3234 // 1. summing the operands. 3235 // 2. one of the operands is special zero register. 3236 // 3. the operand we are trying to replace is allowed by the MI. 3237 return true; 3238 } 3239 3240 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3241 // accordingly. 3242 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3243 const ImmInstrInfo &III, 3244 MachineOperand *&ImmMO, 3245 MachineOperand *&RegMO) const { 3246 unsigned Opc = DefMI.getOpcode(); 3247 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3248 return false; 3249 3250 assert(DefMI.getNumOperands() >= 3 && 3251 "Add inst must have at least three operands"); 3252 RegMO = &DefMI.getOperand(1); 3253 ImmMO = &DefMI.getOperand(2); 3254 3255 // This DefMI is elgible for forwarding if it is: 3256 // 1. add inst 3257 // 2. one of the operands is Imm/CPI/Global. 3258 return isAnImmediateOperand(*ImmMO); 3259 } 3260 3261 bool PPCInstrInfo::isRegElgibleForForwarding( 3262 const MachineOperand &RegMO, const MachineInstr &DefMI, 3263 const MachineInstr &MI, bool KillDefMI, 3264 bool &IsFwdFeederRegKilled) const { 3265 // x = addi y, imm 3266 // ... 3267 // z = lfdx 0, x -> z = lfd imm(y) 3268 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3269 // of "y" between the DEF of "x" and "z". 3270 // The query is only valid post RA. 3271 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3272 if (MRI.isSSA()) 3273 return false; 3274 3275 unsigned Reg = RegMO.getReg(); 3276 3277 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3278 MachineBasicBlock::const_reverse_iterator It = MI; 3279 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3280 It++; 3281 for (; It != E; ++It) { 3282 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3283 return false; 3284 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3285 IsFwdFeederRegKilled = true; 3286 // Made it to DefMI without encountering a clobber. 3287 if ((&*It) == &DefMI) 3288 break; 3289 } 3290 assert((&*It) == &DefMI && "DefMI is missing"); 3291 3292 // If DefMI also defines the register to be forwarded, we can only forward it 3293 // if DefMI is being erased. 3294 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3295 return KillDefMI; 3296 3297 return true; 3298 } 3299 3300 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3301 const MachineInstr &DefMI, 3302 const ImmInstrInfo &III, 3303 int64_t &Imm) const { 3304 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3305 if (DefMI.getOpcode() == PPC::ADDItocL) { 3306 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3307 // However, we know that, it is 16-bit width, and has the alignment of 4. 3308 // Check if the instruction met the requirement. 3309 if (III.ImmMustBeMultipleOf > 4 || 3310 III.TruncateImmTo || III.ImmWidth != 16) 3311 return false; 3312 3313 // Going from XForm to DForm loads means that the displacement needs to be 3314 // not just an immediate but also a multiple of 4, or 16 depending on the 3315 // load. A DForm load cannot be represented if it is a multiple of say 2. 3316 // XForm loads do not have this restriction. 3317 if (ImmMO.isGlobal() && 3318 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3319 return false; 3320 3321 return true; 3322 } 3323 3324 if (ImmMO.isImm()) { 3325 // It is Imm, we need to check if the Imm fit the range. 3326 int64_t Immediate = ImmMO.getImm(); 3327 // Sign-extend to 64-bits. 3328 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3329 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3330 3331 if (Imm % III.ImmMustBeMultipleOf) 3332 return false; 3333 if (III.TruncateImmTo) 3334 Imm &= ((1 << III.TruncateImmTo) - 1); 3335 if (III.SignedImm) { 3336 APInt ActualValue(64, Imm, true); 3337 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3338 return false; 3339 } else { 3340 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3341 if ((uint64_t)Imm > UnsignedMax) 3342 return false; 3343 } 3344 } 3345 else 3346 return false; 3347 3348 // This ImmMO is forwarded if it meets the requriement describle 3349 // in ImmInstrInfo 3350 return true; 3351 } 3352 3353 // If an X-Form instruction is fed by an add-immediate and one of its operands 3354 // is the literal zero, attempt to forward the source of the add-immediate to 3355 // the corresponding D-Form instruction with the displacement coming from 3356 // the immediate being added. 3357 bool PPCInstrInfo::transformToImmFormFedByAdd( 3358 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3359 MachineInstr &DefMI, bool KillDefMI) const { 3360 // RegMO ImmMO 3361 // | | 3362 // x = addi reg, imm <----- DefMI 3363 // y = op 0 , x <----- MI 3364 // | 3365 // OpNoForForwarding 3366 // Check if the MI meet the requirement described in the III. 3367 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3368 return false; 3369 3370 // Check if the DefMI meet the requirement 3371 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3372 MachineOperand *ImmMO = nullptr; 3373 MachineOperand *RegMO = nullptr; 3374 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3375 return false; 3376 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3377 3378 // As we get the Imm operand now, we need to check if the ImmMO meet 3379 // the requirement described in the III. If yes set the Imm. 3380 int64_t Imm = 0; 3381 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3382 return false; 3383 3384 bool IsFwdFeederRegKilled = false; 3385 // Check if the RegMO can be forwarded to MI. 3386 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3387 IsFwdFeederRegKilled)) 3388 return false; 3389 3390 // Get killed info in case fixup needed after transformation. 3391 unsigned ForwardKilledOperandReg = ~0U; 3392 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3393 bool PostRA = !MRI.isSSA(); 3394 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3395 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3396 3397 // We know that, the MI and DefMI both meet the pattern, and 3398 // the Imm also meet the requirement with the new Imm-form. 3399 // It is safe to do the transformation now. 3400 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3401 LLVM_DEBUG(MI.dump()); 3402 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3403 LLVM_DEBUG(DefMI.dump()); 3404 3405 // Update the base reg first. 3406 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3407 false, false, 3408 RegMO->isKill()); 3409 3410 // Then, update the imm. 3411 if (ImmMO->isImm()) { 3412 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3413 // directly. 3414 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3415 } 3416 else { 3417 // Otherwise, it is Constant Pool Index(CPI) or Global, 3418 // which is relocation in fact. We need to replace the special zero 3419 // register with ImmMO. 3420 // Before that, we need to fixup the target flags for imm. 3421 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3422 if (DefMI.getOpcode() == PPC::ADDItocL) 3423 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3424 3425 // MI didn't have the interface such as MI.setOperand(i) though 3426 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3427 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3428 // and, add the ImmMO, then, move back all the operands behind ZERO. 3429 SmallVector<MachineOperand, 2> MOps; 3430 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3431 MOps.push_back(MI.getOperand(i)); 3432 MI.RemoveOperand(i); 3433 } 3434 3435 // Remove the last MO in the list, which is ZERO operand in fact. 3436 MOps.pop_back(); 3437 // Add the imm operand. 3438 MI.addOperand(*ImmMO); 3439 // Now add the rest back. 3440 for (auto &MO : MOps) 3441 MI.addOperand(MO); 3442 } 3443 3444 // Update the opcode. 3445 MI.setDesc(get(III.ImmOpcode)); 3446 3447 // Fix up killed/dead flag after transformation. 3448 // Pattern 1: 3449 // x = ADD KilledFwdFeederReg, imm 3450 // n = opn KilledFwdFeederReg(killed), regn 3451 // y = XOP 0, x 3452 // Pattern 2: 3453 // x = ADD reg(killed), imm 3454 // y = XOP 0, x 3455 if (IsFwdFeederRegKilled || RegMO->isKill()) 3456 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3457 // Pattern 3: 3458 // ForwardKilledOperandReg = ADD reg, imm 3459 // y = XOP 0, ForwardKilledOperandReg(killed) 3460 if (ForwardKilledOperandReg != ~0U) 3461 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3462 3463 LLVM_DEBUG(dbgs() << "With:\n"); 3464 LLVM_DEBUG(MI.dump()); 3465 3466 return true; 3467 } 3468 3469 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3470 const ImmInstrInfo &III, 3471 unsigned ConstantOpNo, 3472 MachineInstr &DefMI, 3473 int64_t Imm) const { 3474 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3475 bool PostRA = !MRI.isSSA(); 3476 // Exit early if we can't convert this. 3477 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3478 return false; 3479 if (Imm % III.ImmMustBeMultipleOf) 3480 return false; 3481 if (III.TruncateImmTo) 3482 Imm &= ((1 << III.TruncateImmTo) - 1); 3483 if (III.SignedImm) { 3484 APInt ActualValue(64, Imm, true); 3485 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3486 return false; 3487 } else { 3488 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3489 if ((uint64_t)Imm > UnsignedMax) 3490 return false; 3491 } 3492 3493 // If we're post-RA, the instructions don't agree on whether register zero is 3494 // special, we can transform this as long as the register operand that will 3495 // end up in the location where zero is special isn't R0. 3496 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3497 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3498 III.ZeroIsSpecialNew + 1; 3499 unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3500 unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3501 // If R0 is in the operand where zero is special for the new instruction, 3502 // it is unsafe to transform if the constant operand isn't that operand. 3503 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3504 ConstantOpNo != III.ZeroIsSpecialNew) 3505 return false; 3506 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3507 ConstantOpNo != PosForOrigZero) 3508 return false; 3509 } 3510 3511 // Get killed info in case fixup needed after transformation. 3512 unsigned ForwardKilledOperandReg = ~0U; 3513 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3514 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3515 3516 unsigned Opc = MI.getOpcode(); 3517 bool SpecialShift32 = 3518 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo; 3519 bool SpecialShift64 = 3520 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo; 3521 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo || 3522 Opc == PPC::SLDo || Opc == PPC::SRDo; 3523 bool RightShift = 3524 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo; 3525 3526 MI.setDesc(get(III.ImmOpcode)); 3527 if (ConstantOpNo == III.OpNoForForwarding) { 3528 // Converting shifts to immediate form is a bit tricky since they may do 3529 // one of three things: 3530 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3531 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3532 // setting CR0) 3533 // 3. If the shift amount is in [1, OpSize), it's just a shift 3534 if (SpecialShift32 || SpecialShift64) { 3535 LoadImmediateInfo LII; 3536 LII.Imm = 0; 3537 LII.SetCR = SetCR; 3538 LII.Is64Bit = SpecialShift64; 3539 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3540 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3541 replaceInstrWithLI(MI, LII); 3542 // Shifts by zero don't change the value. If we don't need to set CR0, 3543 // just convert this to a COPY. Can't do this post-RA since we've already 3544 // cleaned up the copies. 3545 else if (!SetCR && ShAmt == 0 && !PostRA) { 3546 MI.RemoveOperand(2); 3547 MI.setDesc(get(PPC::COPY)); 3548 } else { 3549 // The 32 bit and 64 bit instructions are quite different. 3550 if (SpecialShift32) { 3551 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31). 3552 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt; 3553 uint64_t MB = RightShift ? ShAmt : 0; 3554 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3555 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3556 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3557 .addImm(ME); 3558 } else { 3559 // Left shifts use (N, 63-N), right shifts use (64-N, N). 3560 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt; 3561 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3562 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3563 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3564 } 3565 } 3566 } else 3567 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3568 } 3569 // Convert commutative instructions (switch the operands and convert the 3570 // desired one to an immediate. 3571 else if (III.IsCommutative) { 3572 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3573 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3574 } else 3575 llvm_unreachable("Should have exited early!"); 3576 3577 // For instructions for which the constant register replaces a different 3578 // operand than where the immediate goes, we need to swap them. 3579 if (III.OpNoForForwarding != III.ImmOpNo) 3580 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3581 3582 // If the special R0/X0 register index are different for original instruction 3583 // and new instruction, we need to fix up the register class in new 3584 // instruction. 3585 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3586 if (III.ZeroIsSpecialNew) { 3587 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3588 // need to fix up register class. 3589 unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3590 if (TargetRegisterInfo::isVirtualRegister(RegToModify)) { 3591 const TargetRegisterClass *NewRC = 3592 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3593 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3594 MRI.setRegClass(RegToModify, NewRC); 3595 } 3596 } 3597 } 3598 3599 // Fix up killed/dead flag after transformation. 3600 // Pattern: 3601 // ForwardKilledOperandReg = LI imm 3602 // y = XOP reg, ForwardKilledOperandReg(killed) 3603 if (ForwardKilledOperandReg != ~0U) 3604 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3605 return true; 3606 } 3607 3608 const TargetRegisterClass * 3609 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3610 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3611 return &PPC::VSRCRegClass; 3612 return RC; 3613 } 3614 3615 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3616 return PPC::getRecordFormOpcode(Opcode); 3617 } 3618 3619 // This function returns true if the machine instruction 3620 // always outputs a value by sign-extending a 32 bit value, 3621 // i.e. 0 to 31-th bits are same as 32-th bit. 3622 static bool isSignExtendingOp(const MachineInstr &MI) { 3623 int Opcode = MI.getOpcode(); 3624 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3625 Opcode == PPC::LIS || Opcode == PPC::LIS8 || 3626 Opcode == PPC::SRAW || Opcode == PPC::SRAWo || 3627 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo || 3628 Opcode == PPC::LWA || Opcode == PPC::LWAX || 3629 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3630 Opcode == PPC::LHA || Opcode == PPC::LHAX || 3631 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 || 3632 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3633 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3634 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3635 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3636 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3637 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3638 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3639 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3640 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo || 3641 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo || 3642 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 || 3643 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo || 3644 Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3645 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3646 Opcode == PPC::EXTSB8_32_64) 3647 return true; 3648 3649 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3650 return true; 3651 3652 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3653 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) && 3654 MI.getOperand(3).getImm() > 0 && 3655 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3656 return true; 3657 3658 return false; 3659 } 3660 3661 // This function returns true if the machine instruction 3662 // always outputs zeros in higher 32 bits. 3663 static bool isZeroExtendingOp(const MachineInstr &MI) { 3664 int Opcode = MI.getOpcode(); 3665 // The 16-bit immediate is sign-extended in li/lis. 3666 // If the most significant bit is zero, all higher bits are zero. 3667 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3668 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3669 int64_t Imm = MI.getOperand(1).getImm(); 3670 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3671 return true; 3672 } 3673 3674 // We have some variations of rotate-and-mask instructions 3675 // that clear higher 32-bits. 3676 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || 3677 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo || 3678 Opcode == PPC::RLDICL_32_64) && 3679 MI.getOperand(3).getImm() >= 32) 3680 return true; 3681 3682 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && 3683 MI.getOperand(3).getImm() >= 32 && 3684 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3685 return true; 3686 3687 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3688 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo || 3689 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3690 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3691 return true; 3692 3693 // There are other instructions that clear higher 32-bits. 3694 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo || 3695 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo || 3696 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3697 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo || 3698 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo || 3699 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || 3700 Opcode == PPC::SLW || Opcode == PPC::SLWo || 3701 Opcode == PPC::SRW || Opcode == PPC::SRWo || 3702 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || 3703 Opcode == PPC::SLWI || Opcode == PPC::SLWIo || 3704 Opcode == PPC::SRWI || Opcode == PPC::SRWIo || 3705 Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3706 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || 3707 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX || 3708 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3709 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3710 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3711 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3712 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || 3713 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 || 3714 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3715 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3716 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3717 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3718 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3719 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo || 3720 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo || 3721 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo || 3722 Opcode == PPC::MFVSRWZ) 3723 return true; 3724 3725 return false; 3726 } 3727 3728 // This function returns true if the input MachineInstr is a TOC save 3729 // instruction. 3730 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3731 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3732 return false; 3733 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3734 unsigned StackOffset = MI.getOperand(1).getImm(); 3735 unsigned StackReg = MI.getOperand(2).getReg(); 3736 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3737 return true; 3738 3739 return false; 3740 } 3741 3742 // We limit the max depth to track incoming values of PHIs or binary ops 3743 // (e.g. AND) to avoid excessive cost. 3744 const unsigned MAX_DEPTH = 1; 3745 3746 bool 3747 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 3748 const unsigned Depth) const { 3749 const MachineFunction *MF = MI.getParent()->getParent(); 3750 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 3751 3752 // If we know this instruction returns sign- or zero-extended result, 3753 // return true. 3754 if (SignExt ? isSignExtendingOp(MI): 3755 isZeroExtendingOp(MI)) 3756 return true; 3757 3758 switch (MI.getOpcode()) { 3759 case PPC::COPY: { 3760 unsigned SrcReg = MI.getOperand(1).getReg(); 3761 3762 // In both ELFv1 and v2 ABI, method parameters and the return value 3763 // are sign- or zero-extended. 3764 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 3765 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 3766 // We check the ZExt/SExt flags for a method parameter. 3767 if (MI.getParent()->getBasicBlock() == 3768 &MF->getFunction().getEntryBlock()) { 3769 unsigned VReg = MI.getOperand(0).getReg(); 3770 if (MF->getRegInfo().isLiveIn(VReg)) 3771 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 3772 FuncInfo->isLiveInZExt(VReg); 3773 } 3774 3775 // For a method return value, we check the ZExt/SExt flags in attribute. 3776 // We assume the following code sequence for method call. 3777 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 3778 // BL8_NOP @func,... 3779 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 3780 // %5 = COPY %x3; G8RC:%5 3781 if (SrcReg == PPC::X3) { 3782 const MachineBasicBlock *MBB = MI.getParent(); 3783 MachineBasicBlock::const_instr_iterator II = 3784 MachineBasicBlock::const_instr_iterator(&MI); 3785 if (II != MBB->instr_begin() && 3786 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 3787 const MachineInstr &CallMI = *(--II); 3788 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 3789 const Function *CalleeFn = 3790 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 3791 if (!CalleeFn) 3792 return false; 3793 const IntegerType *IntTy = 3794 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 3795 const AttributeSet &Attrs = 3796 CalleeFn->getAttributes().getRetAttributes(); 3797 if (IntTy && IntTy->getBitWidth() <= 32) 3798 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 3799 Attribute::ZExt); 3800 } 3801 } 3802 } 3803 } 3804 3805 // If this is a copy from another register, we recursively check source. 3806 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3807 return false; 3808 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3809 if (SrcMI != NULL) 3810 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3811 3812 return false; 3813 } 3814 3815 case PPC::ANDIo: 3816 case PPC::ANDISo: 3817 case PPC::ORI: 3818 case PPC::ORIS: 3819 case PPC::XORI: 3820 case PPC::XORIS: 3821 case PPC::ANDIo8: 3822 case PPC::ANDISo8: 3823 case PPC::ORI8: 3824 case PPC::ORIS8: 3825 case PPC::XORI8: 3826 case PPC::XORIS8: { 3827 // logical operation with 16-bit immediate does not change the upper bits. 3828 // So, we track the operand register as we do for register copy. 3829 unsigned SrcReg = MI.getOperand(1).getReg(); 3830 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3831 return false; 3832 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3833 if (SrcMI != NULL) 3834 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3835 3836 return false; 3837 } 3838 3839 // If all incoming values are sign-/zero-extended, 3840 // the output of OR, ISEL or PHI is also sign-/zero-extended. 3841 case PPC::OR: 3842 case PPC::OR8: 3843 case PPC::ISEL: 3844 case PPC::PHI: { 3845 if (Depth >= MAX_DEPTH) 3846 return false; 3847 3848 // The input registers for PHI are operand 1, 3, ... 3849 // The input registers for others are operand 1 and 2. 3850 unsigned E = 3, D = 1; 3851 if (MI.getOpcode() == PPC::PHI) { 3852 E = MI.getNumOperands(); 3853 D = 2; 3854 } 3855 3856 for (unsigned I = 1; I != E; I += D) { 3857 if (MI.getOperand(I).isReg()) { 3858 unsigned SrcReg = MI.getOperand(I).getReg(); 3859 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3860 return false; 3861 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3862 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 3863 return false; 3864 } 3865 else 3866 return false; 3867 } 3868 return true; 3869 } 3870 3871 // If at least one of the incoming values of an AND is zero extended 3872 // then the output is also zero-extended. If both of the incoming values 3873 // are sign-extended then the output is also sign extended. 3874 case PPC::AND: 3875 case PPC::AND8: { 3876 if (Depth >= MAX_DEPTH) 3877 return false; 3878 3879 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 3880 3881 unsigned SrcReg1 = MI.getOperand(1).getReg(); 3882 unsigned SrcReg2 = MI.getOperand(2).getReg(); 3883 3884 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) || 3885 !TargetRegisterInfo::isVirtualRegister(SrcReg2)) 3886 return false; 3887 3888 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 3889 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 3890 if (!MISrc1 || !MISrc2) 3891 return false; 3892 3893 if(SignExt) 3894 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 3895 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3896 else 3897 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 3898 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3899 } 3900 3901 default: 3902 break; 3903 } 3904 return false; 3905 } 3906