1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 STATISTIC(NumStoreSPILLVSRRCAsVec,
50           "Number of spillvsrrc spilled to stack as vec");
51 STATISTIC(NumStoreSPILLVSRRCAsGpr,
52           "Number of spillvsrrc spilled to stack as gpr");
53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
54 STATISTIC(CmpIselsConverted,
55           "Number of ISELs that depend on comparison of constants converted");
56 STATISTIC(MissedConvertibleImmediateInstrs,
57           "Number of compare-immediate instructions fed by constants");
58 STATISTIC(NumRcRotatesConvertedToRcAnd,
59           "Number of record-form rotates converted to record-form andi");
60 
61 static cl::
62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
63             cl::desc("Disable analysis for CTR loops"));
64 
65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
66 cl::desc("Disable compare instruction optimization"), cl::Hidden);
67 
68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
70 cl::Hidden);
71 
72 static cl::opt<bool>
73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
74   cl::desc("Use the old (incorrect) instruction latency calculation"));
75 
76 // Pin the vtable to this file.
77 void PPCInstrInfo::anchor() {}
78 
79 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
80     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
81                       /* CatchRetOpcode */ -1,
82                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
83       Subtarget(STI), RI(STI.getTargetMachine()) {}
84 
85 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
86 /// this target when scheduling the DAG.
87 ScheduleHazardRecognizer *
88 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
89                                            const ScheduleDAG *DAG) const {
90   unsigned Directive =
91       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
92   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
93       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
94     const InstrItineraryData *II =
95         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
96     return new ScoreboardHazardRecognizer(II, DAG);
97   }
98 
99   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
100 }
101 
102 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
103 /// to use for this target when scheduling the DAG.
104 ScheduleHazardRecognizer *
105 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
106                                                  const ScheduleDAG *DAG) const {
107   unsigned Directive =
108       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
109 
110   // FIXME: Leaving this as-is until we have POWER9 scheduling info
111   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
112     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
113 
114   // Most subtargets use a PPC970 recognizer.
115   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
116       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
117     assert(DAG->TII && "No InstrInfo?");
118 
119     return new PPCHazardRecognizer970(*DAG);
120   }
121 
122   return new ScoreboardHazardRecognizer(II, DAG);
123 }
124 
125 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
126                                        const MachineInstr &MI,
127                                        unsigned *PredCost) const {
128   if (!ItinData || UseOldLatencyCalc)
129     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
130 
131   // The default implementation of getInstrLatency calls getStageLatency, but
132   // getStageLatency does not do the right thing for us. While we have
133   // itinerary, most cores are fully pipelined, and so the itineraries only
134   // express the first part of the pipeline, not every stage. Instead, we need
135   // to use the listed output operand cycle number (using operand 0 here, which
136   // is an output).
137 
138   unsigned Latency = 1;
139   unsigned DefClass = MI.getDesc().getSchedClass();
140   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
141     const MachineOperand &MO = MI.getOperand(i);
142     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
143       continue;
144 
145     int Cycle = ItinData->getOperandCycle(DefClass, i);
146     if (Cycle < 0)
147       continue;
148 
149     Latency = std::max(Latency, (unsigned) Cycle);
150   }
151 
152   return Latency;
153 }
154 
155 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
156                                     const MachineInstr &DefMI, unsigned DefIdx,
157                                     const MachineInstr &UseMI,
158                                     unsigned UseIdx) const {
159   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
160                                                    UseMI, UseIdx);
161 
162   if (!DefMI.getParent())
163     return Latency;
164 
165   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
166   Register Reg = DefMO.getReg();
167 
168   bool IsRegCR;
169   if (Register::isVirtualRegister(Reg)) {
170     const MachineRegisterInfo *MRI =
171         &DefMI.getParent()->getParent()->getRegInfo();
172     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
173               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
174   } else {
175     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
176               PPC::CRBITRCRegClass.contains(Reg);
177   }
178 
179   if (UseMI.isBranch() && IsRegCR) {
180     if (Latency < 0)
181       Latency = getInstrLatency(ItinData, DefMI);
182 
183     // On some cores, there is an additional delay between writing to a condition
184     // register, and using it from a branch.
185     unsigned Directive = Subtarget.getCPUDirective();
186     switch (Directive) {
187     default: break;
188     case PPC::DIR_7400:
189     case PPC::DIR_750:
190     case PPC::DIR_970:
191     case PPC::DIR_E5500:
192     case PPC::DIR_PWR4:
193     case PPC::DIR_PWR5:
194     case PPC::DIR_PWR5X:
195     case PPC::DIR_PWR6:
196     case PPC::DIR_PWR6X:
197     case PPC::DIR_PWR7:
198     case PPC::DIR_PWR8:
199     // FIXME: Is this needed for POWER9?
200       Latency += 2;
201       break;
202     }
203   }
204 
205   return Latency;
206 }
207 
208 /// This is an architecture-specific helper function of reassociateOps.
209 /// Set special operand attributes for new instructions after reassociation.
210 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
211                                          MachineInstr &OldMI2,
212                                          MachineInstr &NewMI1,
213                                          MachineInstr &NewMI2) const {
214   // Propagate FP flags from the original instructions.
215   // But clear poison-generating flags because those may not be valid now.
216   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
217   NewMI1.setFlags(IntersectedFlags);
218   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
219   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
220   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
221 
222   NewMI2.setFlags(IntersectedFlags);
223   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
224   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
225   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
226 }
227 
228 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
229                                          uint16_t Flags) const {
230   MI.setFlags(Flags);
231   MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
232   MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
233   MI.clearFlag(MachineInstr::MIFlag::IsExact);
234 }
235 
236 // This function does not list all associative and commutative operations, but
237 // only those worth feeding through the machine combiner in an attempt to
238 // reduce the critical path. Mostly, this means floating-point operations,
239 // because they have high latencies(>=5) (compared to other operations, such as
240 // and/or, which are also associative and commutative, but have low latencies).
241 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
242   switch (Inst.getOpcode()) {
243   // Floating point:
244   // FP Add:
245   case PPC::FADD:
246   case PPC::FADDS:
247   // FP Multiply:
248   case PPC::FMUL:
249   case PPC::FMULS:
250   // Altivec Add:
251   case PPC::VADDFP:
252   // VSX Add:
253   case PPC::XSADDDP:
254   case PPC::XVADDDP:
255   case PPC::XVADDSP:
256   case PPC::XSADDSP:
257   // VSX Multiply:
258   case PPC::XSMULDP:
259   case PPC::XVMULDP:
260   case PPC::XVMULSP:
261   case PPC::XSMULSP:
262     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
263            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
264   // Fixed point:
265   // Multiply:
266   case PPC::MULHD:
267   case PPC::MULLD:
268   case PPC::MULHW:
269   case PPC::MULLW:
270     return true;
271   default:
272     return false;
273   }
274 }
275 
276 #define InfoArrayIdxFMAInst 0
277 #define InfoArrayIdxFAddInst 1
278 #define InfoArrayIdxFMULInst 2
279 #define InfoArrayIdxAddOpIdx 3
280 #define InfoArrayIdxMULOpIdx 4
281 // Array keeps info for FMA instructions:
282 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
283 // Index 1(InfoArrayIdxFAddInst): ADD instruction assoaicted with FMA;
284 // Index 2(InfoArrayIdxFMULInst): MUL instruction assoaicted with FMA;
285 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
286 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
287 //                                second MUL operand index is plus 1.
288 static const uint16_t FMAOpIdxInfo[][5] = {
289     // FIXME: Add more FMA instructions like XSNMADDADP and so on.
290     {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2},
291     {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2},
292     {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2},
293     {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2},
294     {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1},
295     {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1}};
296 
297 // Check if an opcode is a FMA instruction. If it is, return the index in array
298 // FMAOpIdxInfo. Otherwise, return -1.
299 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
300   for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
301     if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
302       return I;
303   return -1;
304 }
305 
306 // Try to reassociate FMA chains like below:
307 //
308 // Pattern 1:
309 //   A =  FADD X,  Y          (Leaf)
310 //   B =  FMA  A,  M21,  M22  (Prev)
311 //   C =  FMA  B,  M31,  M32  (Root)
312 // -->
313 //   A =  FMA  X,  M21,  M22
314 //   B =  FMA  Y,  M31,  M32
315 //   C =  FADD A,  B
316 //
317 // Pattern 2:
318 //   A =  FMA  X,  M11,  M12  (Leaf)
319 //   B =  FMA  A,  M21,  M22  (Prev)
320 //   C =  FMA  B,  M31,  M32  (Root)
321 // -->
322 //   A =  FMUL M11,  M12
323 //   B =  FMA  X,  M21,  M22
324 //   D =  FMA  A,  M31,  M32
325 //   C =  FADD B,  D
326 //
327 // breaking the dependency between A and B, allowing FMA to be executed in
328 // parallel (or back-to-back in a pipeline) instead of depending on each other.
329 bool PPCInstrInfo::getFMAPatterns(
330     MachineInstr &Root,
331     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
332   MachineBasicBlock *MBB = Root.getParent();
333   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
334 
335   auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
336     for (const auto &MO : Instr.explicit_operands())
337       if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
338         return false;
339     return true;
340   };
341 
342   auto IsReassociable = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
343                             bool IsLeaf, bool IsAdd) {
344     int16_t Idx = -1;
345     if (!IsAdd) {
346       Idx = getFMAOpIdxInfo(Instr.getOpcode());
347       if (Idx < 0)
348         return false;
349     } else if (Instr.getOpcode() !=
350                FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())]
351                            [InfoArrayIdxFAddInst])
352       return false;
353 
354     // Instruction can be reassociated.
355     // fast math flags may prohibit reassociation.
356     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
357           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
358       return false;
359 
360     // Instruction operands are virtual registers for reassociation.
361     if (!IsAllOpsVirtualReg(Instr))
362       return false;
363 
364     if (IsAdd && IsLeaf)
365       return true;
366 
367     AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
368 
369     const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
370     MachineInstr *MIAdd = MRI.getUniqueVRegDef(OpAdd.getReg());
371     // If 'add' operand's def is not in current block, don't do ILP related opt.
372     if (!MIAdd || MIAdd->getParent() != MBB)
373       return false;
374 
375     // If this is not Leaf FMA Instr, its 'add' operand should only have one use
376     // as this fma will be changed later.
377     return IsLeaf ? true : MRI.hasOneNonDBGUse(OpAdd.getReg());
378   };
379 
380   int16_t AddOpIdx = -1;
381   // Root must be a valid FMA like instruction.
382   if (!IsReassociable(Root, AddOpIdx, false, false))
383     return false;
384 
385   assert((AddOpIdx >= 0) && "add operand index not right!");
386 
387   Register RegB = Root.getOperand(AddOpIdx).getReg();
388   MachineInstr *Prev = MRI.getUniqueVRegDef(RegB);
389 
390   // Prev must be a valid FMA like instruction.
391   AddOpIdx = -1;
392   if (!IsReassociable(*Prev, AddOpIdx, false, false))
393     return false;
394 
395   assert((AddOpIdx >= 0) && "add operand index not right!");
396 
397   Register RegA = Prev->getOperand(AddOpIdx).getReg();
398   MachineInstr *Leaf = MRI.getUniqueVRegDef(RegA);
399   AddOpIdx = -1;
400   if (IsReassociable(*Leaf, AddOpIdx, true, false)) {
401     Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
402     return true;
403   }
404   if (IsReassociable(*Leaf, AddOpIdx, true, true)) {
405     Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
406     return true;
407   }
408   return false;
409 }
410 
411 bool PPCInstrInfo::getMachineCombinerPatterns(
412     MachineInstr &Root,
413     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
414   // Using the machine combiner in this way is potentially expensive, so
415   // restrict to when aggressive optimizations are desired.
416   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
417     return false;
418 
419   if (getFMAPatterns(Root, Patterns))
420     return true;
421 
422   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
423 }
424 
425 void PPCInstrInfo::genAlternativeCodeSequence(
426     MachineInstr &Root, MachineCombinerPattern Pattern,
427     SmallVectorImpl<MachineInstr *> &InsInstrs,
428     SmallVectorImpl<MachineInstr *> &DelInstrs,
429     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
430   switch (Pattern) {
431   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
432   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
433     reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
434     break;
435   default:
436     // Reassociate default patterns.
437     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
438                                                 DelInstrs, InstrIdxForVirtReg);
439     break;
440   }
441 }
442 
443 // Currently, only handle two patterns REASSOC_XY_AMM_BMM and
444 // REASSOC_XMM_AMM_BMM. See comments for getFMAPatterns.
445 void PPCInstrInfo::reassociateFMA(
446     MachineInstr &Root, MachineCombinerPattern Pattern,
447     SmallVectorImpl<MachineInstr *> &InsInstrs,
448     SmallVectorImpl<MachineInstr *> &DelInstrs,
449     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
450   MachineFunction *MF = Root.getMF();
451   MachineRegisterInfo &MRI = MF->getRegInfo();
452   MachineOperand &OpC = Root.getOperand(0);
453   Register RegC = OpC.getReg();
454   const TargetRegisterClass *RC = MRI.getRegClass(RegC);
455   MRI.constrainRegClass(RegC, RC);
456 
457   unsigned FmaOp = Root.getOpcode();
458   int16_t Idx = getFMAOpIdxInfo(FmaOp);
459   assert(Idx >= 0 && "Root must be a FMA instruction");
460 
461   uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
462   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
463   MachineInstr *Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
464   MachineInstr *Leaf =
465       MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
466   uint16_t IntersectedFlags =
467       Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
468 
469   auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
470                             bool &KillFlag) {
471     Reg = Operand.getReg();
472     MRI.constrainRegClass(Reg, RC);
473     KillFlag = Operand.isKill();
474   };
475 
476   auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
477                              Register &MulOp2, bool &MulOp1KillFlag,
478                              bool &MulOp2KillFlag) {
479     GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
480     GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
481   };
482 
483   Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32;
484   bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
485        KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false;
486 
487   GetFMAInstrInfo(Root, RegM31, RegM32, KillM31, KillM32);
488   GetFMAInstrInfo(*Prev, RegM21, RegM22, KillM21, KillM22);
489 
490   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
491     GetFMAInstrInfo(*Leaf, RegM11, RegM12, KillM11, KillM12);
492     GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
493   } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
494     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
495     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
496   }
497 
498   // Create new virtual registers for the new results instead of
499   // recycling legacy ones because the MachineCombiner's computation of the
500   // critical path requires a new register definition rather than an existing
501   // one.
502   Register NewVRA = MRI.createVirtualRegister(RC);
503   InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
504 
505   Register NewVRB = MRI.createVirtualRegister(RC);
506   InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
507 
508   Register NewVRD = 0;
509   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
510     NewVRD = MRI.createVirtualRegister(RC);
511     InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
512   }
513 
514   auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
515                                 Register RegMul1, bool KillRegMul1,
516                                 Register RegMul2, bool KillRegMul2) {
517     MI->getOperand(AddOpIdx).setReg(RegAdd);
518     MI->getOperand(AddOpIdx).setIsKill(KillAdd);
519     MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
520     MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
521     MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
522     MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
523   };
524 
525   if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
526     // Create new instructions for insertion.
527     MachineInstrBuilder MINewB =
528         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
529             .addReg(RegX, getKillRegState(KillX))
530             .addReg(RegM21, getKillRegState(KillM21))
531             .addReg(RegM22, getKillRegState(KillM22));
532     MachineInstrBuilder MINewA =
533         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
534             .addReg(RegY, getKillRegState(KillY))
535             .addReg(RegM31, getKillRegState(KillM31))
536             .addReg(RegM32, getKillRegState(KillM32));
537     // If AddOpIdx is not 1, adjust the order.
538     if (AddOpIdx != 1) {
539       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
540       AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
541     }
542 
543     MachineInstrBuilder MINewC =
544         BuildMI(*MF, Root.getDebugLoc(),
545                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
546             .addReg(NewVRB, getKillRegState(true))
547             .addReg(NewVRA, getKillRegState(true));
548 
549     // Update flags for newly created instructions.
550     setSpecialOperandAttr(*MINewA, IntersectedFlags);
551     setSpecialOperandAttr(*MINewB, IntersectedFlags);
552     setSpecialOperandAttr(*MINewC, IntersectedFlags);
553 
554     // Record new instructions for insertion.
555     InsInstrs.push_back(MINewA);
556     InsInstrs.push_back(MINewB);
557     InsInstrs.push_back(MINewC);
558   } else if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
559     assert(NewVRD && "new FMA register not created!");
560     // Create new instructions for insertion.
561     MachineInstrBuilder MINewA =
562         BuildMI(*MF, Leaf->getDebugLoc(),
563                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
564             .addReg(RegM11, getKillRegState(KillM11))
565             .addReg(RegM12, getKillRegState(KillM12));
566     MachineInstrBuilder MINewB =
567         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
568             .addReg(RegX, getKillRegState(KillX))
569             .addReg(RegM21, getKillRegState(KillM21))
570             .addReg(RegM22, getKillRegState(KillM22));
571     MachineInstrBuilder MINewD =
572         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
573             .addReg(NewVRA, getKillRegState(true))
574             .addReg(RegM31, getKillRegState(KillM31))
575             .addReg(RegM32, getKillRegState(KillM32));
576     // If AddOpIdx is not 1, adjust the order.
577     if (AddOpIdx != 1) {
578       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
579       AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
580                          KillM32);
581     }
582 
583     MachineInstrBuilder MINewC =
584         BuildMI(*MF, Root.getDebugLoc(),
585                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
586             .addReg(NewVRB, getKillRegState(true))
587             .addReg(NewVRD, getKillRegState(true));
588 
589     // Update flags for newly created instructions.
590     setSpecialOperandAttr(*MINewA, IntersectedFlags);
591     setSpecialOperandAttr(*MINewB, IntersectedFlags);
592     setSpecialOperandAttr(*MINewD, IntersectedFlags);
593     setSpecialOperandAttr(*MINewC, IntersectedFlags);
594 
595     // Record new instructions for insertion.
596     InsInstrs.push_back(MINewA);
597     InsInstrs.push_back(MINewB);
598     InsInstrs.push_back(MINewD);
599     InsInstrs.push_back(MINewC);
600   }
601 
602   assert(!InsInstrs.empty() &&
603          "Insertion instructions set should not be empty!");
604 
605   // Record old instructions for deletion.
606   DelInstrs.push_back(Leaf);
607   DelInstrs.push_back(Prev);
608   DelInstrs.push_back(&Root);
609 }
610 
611 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
612 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
613                                          Register &SrcReg, Register &DstReg,
614                                          unsigned &SubIdx) const {
615   switch (MI.getOpcode()) {
616   default: return false;
617   case PPC::EXTSW:
618   case PPC::EXTSW_32:
619   case PPC::EXTSW_32_64:
620     SrcReg = MI.getOperand(1).getReg();
621     DstReg = MI.getOperand(0).getReg();
622     SubIdx = PPC::sub_32;
623     return true;
624   }
625 }
626 
627 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
628                                            int &FrameIndex) const {
629   unsigned Opcode = MI.getOpcode();
630   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
631   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
632 
633   if (End != std::find(OpcodesForSpill, End, Opcode)) {
634     // Check for the operands added by addFrameReference (the immediate is the
635     // offset which defaults to 0).
636     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
637         MI.getOperand(2).isFI()) {
638       FrameIndex = MI.getOperand(2).getIndex();
639       return MI.getOperand(0).getReg();
640     }
641   }
642   return 0;
643 }
644 
645 // For opcodes with the ReMaterializable flag set, this function is called to
646 // verify the instruction is really rematable.
647 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
648                                                      AliasAnalysis *AA) const {
649   switch (MI.getOpcode()) {
650   default:
651     // This function should only be called for opcodes with the ReMaterializable
652     // flag set.
653     llvm_unreachable("Unknown rematerializable operation!");
654     break;
655   case PPC::LI:
656   case PPC::LI8:
657   case PPC::LIS:
658   case PPC::LIS8:
659   case PPC::ADDIStocHA:
660   case PPC::ADDIStocHA8:
661   case PPC::ADDItocL:
662   case PPC::LOAD_STACK_GUARD:
663   case PPC::XXLXORz:
664   case PPC::XXLXORspz:
665   case PPC::XXLXORdpz:
666   case PPC::XXLEQVOnes:
667   case PPC::V_SET0B:
668   case PPC::V_SET0H:
669   case PPC::V_SET0:
670   case PPC::V_SETALLONESB:
671   case PPC::V_SETALLONESH:
672   case PPC::V_SETALLONES:
673   case PPC::CRSET:
674   case PPC::CRUNSET:
675     return true;
676   }
677   return false;
678 }
679 
680 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
681                                           int &FrameIndex) const {
682   unsigned Opcode = MI.getOpcode();
683   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
684   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
685 
686   if (End != std::find(OpcodesForSpill, End, Opcode)) {
687     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
688         MI.getOperand(2).isFI()) {
689       FrameIndex = MI.getOperand(2).getIndex();
690       return MI.getOperand(0).getReg();
691     }
692   }
693   return 0;
694 }
695 
696 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
697                                                    unsigned OpIdx1,
698                                                    unsigned OpIdx2) const {
699   MachineFunction &MF = *MI.getParent()->getParent();
700 
701   // Normal instructions can be commuted the obvious way.
702   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
703     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
704   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
705   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
706   // changing the relative order of the mask operands might change what happens
707   // to the high-bits of the mask (and, thus, the result).
708 
709   // Cannot commute if it has a non-zero rotate count.
710   if (MI.getOperand(3).getImm() != 0)
711     return nullptr;
712 
713   // If we have a zero rotate count, we have:
714   //   M = mask(MB,ME)
715   //   Op0 = (Op1 & ~M) | (Op2 & M)
716   // Change this to:
717   //   M = mask((ME+1)&31, (MB-1)&31)
718   //   Op0 = (Op2 & ~M) | (Op1 & M)
719 
720   // Swap op1/op2
721   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
722          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
723   Register Reg0 = MI.getOperand(0).getReg();
724   Register Reg1 = MI.getOperand(1).getReg();
725   Register Reg2 = MI.getOperand(2).getReg();
726   unsigned SubReg1 = MI.getOperand(1).getSubReg();
727   unsigned SubReg2 = MI.getOperand(2).getSubReg();
728   bool Reg1IsKill = MI.getOperand(1).isKill();
729   bool Reg2IsKill = MI.getOperand(2).isKill();
730   bool ChangeReg0 = false;
731   // If machine instrs are no longer in two-address forms, update
732   // destination register as well.
733   if (Reg0 == Reg1) {
734     // Must be two address instruction!
735     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
736            "Expecting a two-address instruction!");
737     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
738     Reg2IsKill = false;
739     ChangeReg0 = true;
740   }
741 
742   // Masks.
743   unsigned MB = MI.getOperand(4).getImm();
744   unsigned ME = MI.getOperand(5).getImm();
745 
746   // We can't commute a trivial mask (there is no way to represent an all-zero
747   // mask).
748   if (MB == 0 && ME == 31)
749     return nullptr;
750 
751   if (NewMI) {
752     // Create a new instruction.
753     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
754     bool Reg0IsDead = MI.getOperand(0).isDead();
755     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
756         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
757         .addReg(Reg2, getKillRegState(Reg2IsKill))
758         .addReg(Reg1, getKillRegState(Reg1IsKill))
759         .addImm((ME + 1) & 31)
760         .addImm((MB - 1) & 31);
761   }
762 
763   if (ChangeReg0) {
764     MI.getOperand(0).setReg(Reg2);
765     MI.getOperand(0).setSubReg(SubReg2);
766   }
767   MI.getOperand(2).setReg(Reg1);
768   MI.getOperand(1).setReg(Reg2);
769   MI.getOperand(2).setSubReg(SubReg1);
770   MI.getOperand(1).setSubReg(SubReg2);
771   MI.getOperand(2).setIsKill(Reg1IsKill);
772   MI.getOperand(1).setIsKill(Reg2IsKill);
773 
774   // Swap the mask around.
775   MI.getOperand(4).setImm((ME + 1) & 31);
776   MI.getOperand(5).setImm((MB - 1) & 31);
777   return &MI;
778 }
779 
780 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
781                                          unsigned &SrcOpIdx1,
782                                          unsigned &SrcOpIdx2) const {
783   // For VSX A-Type FMA instructions, it is the first two operands that can be
784   // commuted, however, because the non-encoded tied input operand is listed
785   // first, the operands to swap are actually the second and third.
786 
787   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
788   if (AltOpc == -1)
789     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
790 
791   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
792   // and SrcOpIdx2.
793   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
794 }
795 
796 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
797                               MachineBasicBlock::iterator MI) const {
798   // This function is used for scheduling, and the nop wanted here is the type
799   // that terminates dispatch groups on the POWER cores.
800   unsigned Directive = Subtarget.getCPUDirective();
801   unsigned Opcode;
802   switch (Directive) {
803   default:            Opcode = PPC::NOP; break;
804   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
805   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
806   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
807   // FIXME: Update when POWER9 scheduling model is ready.
808   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
809   }
810 
811   DebugLoc DL;
812   BuildMI(MBB, MI, DL, get(Opcode));
813 }
814 
815 /// Return the noop instruction to use for a noop.
816 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
817   NopInst.setOpcode(PPC::NOP);
818 }
819 
820 // Branch analysis.
821 // Note: If the condition register is set to CTR or CTR8 then this is a
822 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
823 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
824                                  MachineBasicBlock *&TBB,
825                                  MachineBasicBlock *&FBB,
826                                  SmallVectorImpl<MachineOperand> &Cond,
827                                  bool AllowModify) const {
828   bool isPPC64 = Subtarget.isPPC64();
829 
830   // If the block has no terminators, it just falls into the block after it.
831   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
832   if (I == MBB.end())
833     return false;
834 
835   if (!isUnpredicatedTerminator(*I))
836     return false;
837 
838   if (AllowModify) {
839     // If the BB ends with an unconditional branch to the fallthrough BB,
840     // we eliminate the branch instruction.
841     if (I->getOpcode() == PPC::B &&
842         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
843       I->eraseFromParent();
844 
845       // We update iterator after deleting the last branch.
846       I = MBB.getLastNonDebugInstr();
847       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
848         return false;
849     }
850   }
851 
852   // Get the last instruction in the block.
853   MachineInstr &LastInst = *I;
854 
855   // If there is only one terminator instruction, process it.
856   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
857     if (LastInst.getOpcode() == PPC::B) {
858       if (!LastInst.getOperand(0).isMBB())
859         return true;
860       TBB = LastInst.getOperand(0).getMBB();
861       return false;
862     } else if (LastInst.getOpcode() == PPC::BCC) {
863       if (!LastInst.getOperand(2).isMBB())
864         return true;
865       // Block ends with fall-through condbranch.
866       TBB = LastInst.getOperand(2).getMBB();
867       Cond.push_back(LastInst.getOperand(0));
868       Cond.push_back(LastInst.getOperand(1));
869       return false;
870     } else if (LastInst.getOpcode() == PPC::BC) {
871       if (!LastInst.getOperand(1).isMBB())
872         return true;
873       // Block ends with fall-through condbranch.
874       TBB = LastInst.getOperand(1).getMBB();
875       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
876       Cond.push_back(LastInst.getOperand(0));
877       return false;
878     } else if (LastInst.getOpcode() == PPC::BCn) {
879       if (!LastInst.getOperand(1).isMBB())
880         return true;
881       // Block ends with fall-through condbranch.
882       TBB = LastInst.getOperand(1).getMBB();
883       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
884       Cond.push_back(LastInst.getOperand(0));
885       return false;
886     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
887                LastInst.getOpcode() == PPC::BDNZ) {
888       if (!LastInst.getOperand(0).isMBB())
889         return true;
890       if (DisableCTRLoopAnal)
891         return true;
892       TBB = LastInst.getOperand(0).getMBB();
893       Cond.push_back(MachineOperand::CreateImm(1));
894       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
895                                                true));
896       return false;
897     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
898                LastInst.getOpcode() == PPC::BDZ) {
899       if (!LastInst.getOperand(0).isMBB())
900         return true;
901       if (DisableCTRLoopAnal)
902         return true;
903       TBB = LastInst.getOperand(0).getMBB();
904       Cond.push_back(MachineOperand::CreateImm(0));
905       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
906                                                true));
907       return false;
908     }
909 
910     // Otherwise, don't know what this is.
911     return true;
912   }
913 
914   // Get the instruction before it if it's a terminator.
915   MachineInstr &SecondLastInst = *I;
916 
917   // If there are three terminators, we don't know what sort of block this is.
918   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
919     return true;
920 
921   // If the block ends with PPC::B and PPC:BCC, handle it.
922   if (SecondLastInst.getOpcode() == PPC::BCC &&
923       LastInst.getOpcode() == PPC::B) {
924     if (!SecondLastInst.getOperand(2).isMBB() ||
925         !LastInst.getOperand(0).isMBB())
926       return true;
927     TBB = SecondLastInst.getOperand(2).getMBB();
928     Cond.push_back(SecondLastInst.getOperand(0));
929     Cond.push_back(SecondLastInst.getOperand(1));
930     FBB = LastInst.getOperand(0).getMBB();
931     return false;
932   } else if (SecondLastInst.getOpcode() == PPC::BC &&
933              LastInst.getOpcode() == PPC::B) {
934     if (!SecondLastInst.getOperand(1).isMBB() ||
935         !LastInst.getOperand(0).isMBB())
936       return true;
937     TBB = SecondLastInst.getOperand(1).getMBB();
938     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
939     Cond.push_back(SecondLastInst.getOperand(0));
940     FBB = LastInst.getOperand(0).getMBB();
941     return false;
942   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
943              LastInst.getOpcode() == PPC::B) {
944     if (!SecondLastInst.getOperand(1).isMBB() ||
945         !LastInst.getOperand(0).isMBB())
946       return true;
947     TBB = SecondLastInst.getOperand(1).getMBB();
948     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
949     Cond.push_back(SecondLastInst.getOperand(0));
950     FBB = LastInst.getOperand(0).getMBB();
951     return false;
952   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
953               SecondLastInst.getOpcode() == PPC::BDNZ) &&
954              LastInst.getOpcode() == PPC::B) {
955     if (!SecondLastInst.getOperand(0).isMBB() ||
956         !LastInst.getOperand(0).isMBB())
957       return true;
958     if (DisableCTRLoopAnal)
959       return true;
960     TBB = SecondLastInst.getOperand(0).getMBB();
961     Cond.push_back(MachineOperand::CreateImm(1));
962     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
963                                              true));
964     FBB = LastInst.getOperand(0).getMBB();
965     return false;
966   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
967               SecondLastInst.getOpcode() == PPC::BDZ) &&
968              LastInst.getOpcode() == PPC::B) {
969     if (!SecondLastInst.getOperand(0).isMBB() ||
970         !LastInst.getOperand(0).isMBB())
971       return true;
972     if (DisableCTRLoopAnal)
973       return true;
974     TBB = SecondLastInst.getOperand(0).getMBB();
975     Cond.push_back(MachineOperand::CreateImm(0));
976     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
977                                              true));
978     FBB = LastInst.getOperand(0).getMBB();
979     return false;
980   }
981 
982   // If the block ends with two PPC:Bs, handle it.  The second one is not
983   // executed, so remove it.
984   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
985     if (!SecondLastInst.getOperand(0).isMBB())
986       return true;
987     TBB = SecondLastInst.getOperand(0).getMBB();
988     I = LastInst;
989     if (AllowModify)
990       I->eraseFromParent();
991     return false;
992   }
993 
994   // Otherwise, can't handle this.
995   return true;
996 }
997 
998 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
999                                     int *BytesRemoved) const {
1000   assert(!BytesRemoved && "code size not handled");
1001 
1002   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1003   if (I == MBB.end())
1004     return 0;
1005 
1006   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1007       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1008       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1009       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1010     return 0;
1011 
1012   // Remove the branch.
1013   I->eraseFromParent();
1014 
1015   I = MBB.end();
1016 
1017   if (I == MBB.begin()) return 1;
1018   --I;
1019   if (I->getOpcode() != PPC::BCC &&
1020       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1021       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1022       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1023     return 1;
1024 
1025   // Remove the branch.
1026   I->eraseFromParent();
1027   return 2;
1028 }
1029 
1030 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1031                                     MachineBasicBlock *TBB,
1032                                     MachineBasicBlock *FBB,
1033                                     ArrayRef<MachineOperand> Cond,
1034                                     const DebugLoc &DL,
1035                                     int *BytesAdded) const {
1036   // Shouldn't be a fall through.
1037   assert(TBB && "insertBranch must not be told to insert a fallthrough");
1038   assert((Cond.size() == 2 || Cond.size() == 0) &&
1039          "PPC branch conditions have two components!");
1040   assert(!BytesAdded && "code size not handled");
1041 
1042   bool isPPC64 = Subtarget.isPPC64();
1043 
1044   // One-way branch.
1045   if (!FBB) {
1046     if (Cond.empty())   // Unconditional branch
1047       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1048     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1049       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1050                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1051                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1052     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1053       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1054     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1055       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1056     else                // Conditional branch
1057       BuildMI(&MBB, DL, get(PPC::BCC))
1058           .addImm(Cond[0].getImm())
1059           .add(Cond[1])
1060           .addMBB(TBB);
1061     return 1;
1062   }
1063 
1064   // Two-way Conditional Branch.
1065   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1066     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1067                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1068                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1069   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1070     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1071   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1072     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1073   else
1074     BuildMI(&MBB, DL, get(PPC::BCC))
1075         .addImm(Cond[0].getImm())
1076         .add(Cond[1])
1077         .addMBB(TBB);
1078   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1079   return 2;
1080 }
1081 
1082 // Select analysis.
1083 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1084                                    ArrayRef<MachineOperand> Cond,
1085                                    Register DstReg, Register TrueReg,
1086                                    Register FalseReg, int &CondCycles,
1087                                    int &TrueCycles, int &FalseCycles) const {
1088   if (Cond.size() != 2)
1089     return false;
1090 
1091   // If this is really a bdnz-like condition, then it cannot be turned into a
1092   // select.
1093   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1094     return false;
1095 
1096   // Check register classes.
1097   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1098   const TargetRegisterClass *RC =
1099     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1100   if (!RC)
1101     return false;
1102 
1103   // isel is for regular integer GPRs only.
1104   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1105       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1106       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1107       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1108     return false;
1109 
1110   // FIXME: These numbers are for the A2, how well they work for other cores is
1111   // an open question. On the A2, the isel instruction has a 2-cycle latency
1112   // but single-cycle throughput. These numbers are used in combination with
1113   // the MispredictPenalty setting from the active SchedMachineModel.
1114   CondCycles = 1;
1115   TrueCycles = 1;
1116   FalseCycles = 1;
1117 
1118   return true;
1119 }
1120 
1121 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1122                                 MachineBasicBlock::iterator MI,
1123                                 const DebugLoc &dl, Register DestReg,
1124                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
1125                                 Register FalseReg) const {
1126   assert(Cond.size() == 2 &&
1127          "PPC branch conditions have two components!");
1128 
1129   // Get the register classes.
1130   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1131   const TargetRegisterClass *RC =
1132     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1133   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1134 
1135   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1136                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1137   assert((Is64Bit ||
1138           PPC::GPRCRegClass.hasSubClassEq(RC) ||
1139           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1140          "isel is for regular integer GPRs only");
1141 
1142   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1143   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1144 
1145   unsigned SubIdx = 0;
1146   bool SwapOps = false;
1147   switch (SelectPred) {
1148   case PPC::PRED_EQ:
1149   case PPC::PRED_EQ_MINUS:
1150   case PPC::PRED_EQ_PLUS:
1151       SubIdx = PPC::sub_eq; SwapOps = false; break;
1152   case PPC::PRED_NE:
1153   case PPC::PRED_NE_MINUS:
1154   case PPC::PRED_NE_PLUS:
1155       SubIdx = PPC::sub_eq; SwapOps = true; break;
1156   case PPC::PRED_LT:
1157   case PPC::PRED_LT_MINUS:
1158   case PPC::PRED_LT_PLUS:
1159       SubIdx = PPC::sub_lt; SwapOps = false; break;
1160   case PPC::PRED_GE:
1161   case PPC::PRED_GE_MINUS:
1162   case PPC::PRED_GE_PLUS:
1163       SubIdx = PPC::sub_lt; SwapOps = true; break;
1164   case PPC::PRED_GT:
1165   case PPC::PRED_GT_MINUS:
1166   case PPC::PRED_GT_PLUS:
1167       SubIdx = PPC::sub_gt; SwapOps = false; break;
1168   case PPC::PRED_LE:
1169   case PPC::PRED_LE_MINUS:
1170   case PPC::PRED_LE_PLUS:
1171       SubIdx = PPC::sub_gt; SwapOps = true; break;
1172   case PPC::PRED_UN:
1173   case PPC::PRED_UN_MINUS:
1174   case PPC::PRED_UN_PLUS:
1175       SubIdx = PPC::sub_un; SwapOps = false; break;
1176   case PPC::PRED_NU:
1177   case PPC::PRED_NU_MINUS:
1178   case PPC::PRED_NU_PLUS:
1179       SubIdx = PPC::sub_un; SwapOps = true; break;
1180   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
1181   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1182   }
1183 
1184   Register FirstReg =  SwapOps ? FalseReg : TrueReg,
1185            SecondReg = SwapOps ? TrueReg  : FalseReg;
1186 
1187   // The first input register of isel cannot be r0. If it is a member
1188   // of a register class that can be r0, then copy it first (the
1189   // register allocator should eliminate the copy).
1190   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1191       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1192     const TargetRegisterClass *FirstRC =
1193       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1194         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1195     Register OldFirstReg = FirstReg;
1196     FirstReg = MRI.createVirtualRegister(FirstRC);
1197     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1198       .addReg(OldFirstReg);
1199   }
1200 
1201   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1202     .addReg(FirstReg).addReg(SecondReg)
1203     .addReg(Cond[1].getReg(), 0, SubIdx);
1204 }
1205 
1206 static unsigned getCRBitValue(unsigned CRBit) {
1207   unsigned Ret = 4;
1208   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1209       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1210       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1211       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1212     Ret = 3;
1213   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1214       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1215       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1216       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1217     Ret = 2;
1218   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1219       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1220       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1221       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1222     Ret = 1;
1223   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1224       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1225       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1226       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1227     Ret = 0;
1228 
1229   assert(Ret != 4 && "Invalid CR bit register");
1230   return Ret;
1231 }
1232 
1233 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1234                                MachineBasicBlock::iterator I,
1235                                const DebugLoc &DL, MCRegister DestReg,
1236                                MCRegister SrcReg, bool KillSrc) const {
1237   // We can end up with self copies and similar things as a result of VSX copy
1238   // legalization. Promote them here.
1239   const TargetRegisterInfo *TRI = &getRegisterInfo();
1240   if (PPC::F8RCRegClass.contains(DestReg) &&
1241       PPC::VSRCRegClass.contains(SrcReg)) {
1242     MCRegister SuperReg =
1243         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1244 
1245     if (VSXSelfCopyCrash && SrcReg == SuperReg)
1246       llvm_unreachable("nop VSX copy");
1247 
1248     DestReg = SuperReg;
1249   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1250              PPC::VSRCRegClass.contains(DestReg)) {
1251     MCRegister SuperReg =
1252         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1253 
1254     if (VSXSelfCopyCrash && DestReg == SuperReg)
1255       llvm_unreachable("nop VSX copy");
1256 
1257     SrcReg = SuperReg;
1258   }
1259 
1260   // Different class register copy
1261   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1262       PPC::GPRCRegClass.contains(DestReg)) {
1263     MCRegister CRReg = getCRFromCRBit(SrcReg);
1264     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1265     getKillRegState(KillSrc);
1266     // Rotate the CR bit in the CR fields to be the least significant bit and
1267     // then mask with 0x1 (MB = ME = 31).
1268     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1269        .addReg(DestReg, RegState::Kill)
1270        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1271        .addImm(31)
1272        .addImm(31);
1273     return;
1274   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1275       PPC::G8RCRegClass.contains(DestReg)) {
1276     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
1277     getKillRegState(KillSrc);
1278     return;
1279   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1280       PPC::GPRCRegClass.contains(DestReg)) {
1281     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
1282     getKillRegState(KillSrc);
1283     return;
1284   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1285              PPC::VSFRCRegClass.contains(DestReg)) {
1286     assert(Subtarget.hasDirectMove() &&
1287            "Subtarget doesn't support directmove, don't know how to copy.");
1288     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1289     NumGPRtoVSRSpill++;
1290     getKillRegState(KillSrc);
1291     return;
1292   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1293              PPC::G8RCRegClass.contains(DestReg)) {
1294     assert(Subtarget.hasDirectMove() &&
1295            "Subtarget doesn't support directmove, don't know how to copy.");
1296     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1297     getKillRegState(KillSrc);
1298     return;
1299   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1300              PPC::GPRCRegClass.contains(DestReg)) {
1301     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1302     getKillRegState(KillSrc);
1303     return;
1304   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1305              PPC::SPERCRegClass.contains(DestReg)) {
1306     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1307     getKillRegState(KillSrc);
1308     return;
1309   }
1310 
1311   unsigned Opc;
1312   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1313     Opc = PPC::OR;
1314   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1315     Opc = PPC::OR8;
1316   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1317     Opc = PPC::FMR;
1318   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1319     Opc = PPC::MCRF;
1320   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1321     Opc = PPC::VOR;
1322   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1323     // There are two different ways this can be done:
1324     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1325     //      issue in VSU pipeline 0.
1326     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1327     //      can go to either pipeline.
1328     // We'll always use xxlor here, because in practically all cases where
1329     // copies are generated, they are close enough to some use that the
1330     // lower-latency form is preferable.
1331     Opc = PPC::XXLOR;
1332   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1333            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1334     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1335   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1336     Opc = PPC::CROR;
1337   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1338     Opc = PPC::EVOR;
1339   else
1340     llvm_unreachable("Impossible reg-to-reg copy");
1341 
1342   const MCInstrDesc &MCID = get(Opc);
1343   if (MCID.getNumOperands() == 3)
1344     BuildMI(MBB, I, DL, MCID, DestReg)
1345       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1346   else
1347     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1348 }
1349 
1350 static unsigned getSpillIndex(const TargetRegisterClass *RC) {
1351   int OpcodeIndex = 0;
1352 
1353   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1354       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1355     OpcodeIndex = SOK_Int4Spill;
1356   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1357              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1358     OpcodeIndex = SOK_Int8Spill;
1359   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1360     OpcodeIndex = SOK_Float8Spill;
1361   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1362     OpcodeIndex = SOK_Float4Spill;
1363   } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1364     OpcodeIndex = SOK_SPESpill;
1365   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1366     OpcodeIndex = SOK_CRSpill;
1367   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1368     OpcodeIndex = SOK_CRBitSpill;
1369   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1370     OpcodeIndex = SOK_VRVectorSpill;
1371   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1372     OpcodeIndex = SOK_VSXVectorSpill;
1373   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1374     OpcodeIndex = SOK_VectorFloat8Spill;
1375   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1376     OpcodeIndex = SOK_VectorFloat4Spill;
1377   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1378     OpcodeIndex = SOK_VRSaveSpill;
1379   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1380     OpcodeIndex = SOK_SpillToVSR;
1381   } else {
1382     llvm_unreachable("Unknown regclass!");
1383   }
1384   return OpcodeIndex;
1385 }
1386 
1387 unsigned
1388 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1389   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1390   return OpcodesForSpill[getSpillIndex(RC)];
1391 }
1392 
1393 unsigned
1394 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1395   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1396   return OpcodesForSpill[getSpillIndex(RC)];
1397 }
1398 
1399 void PPCInstrInfo::StoreRegToStackSlot(
1400     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1401     const TargetRegisterClass *RC,
1402     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1403   unsigned Opcode = getStoreOpcodeForSpill(RC);
1404   DebugLoc DL;
1405 
1406   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1407   FuncInfo->setHasSpills();
1408 
1409   NewMIs.push_back(addFrameReference(
1410       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1411       FrameIdx));
1412 
1413   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1414       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1415     FuncInfo->setSpillsCR();
1416 
1417   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1418     FuncInfo->setSpillsVRSAVE();
1419 
1420   if (isXFormMemOp(Opcode))
1421     FuncInfo->setHasNonRISpills();
1422 }
1423 
1424 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1425     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1426     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1427     const TargetRegisterInfo *TRI) const {
1428   MachineFunction &MF = *MBB.getParent();
1429   SmallVector<MachineInstr *, 4> NewMIs;
1430 
1431   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1432 
1433   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1434     MBB.insert(MI, NewMIs[i]);
1435 
1436   const MachineFrameInfo &MFI = MF.getFrameInfo();
1437   MachineMemOperand *MMO = MF.getMachineMemOperand(
1438       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1439       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1440       MFI.getObjectAlign(FrameIdx));
1441   NewMIs.back()->addMemOperand(MF, MMO);
1442 }
1443 
1444 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1445                                        MachineBasicBlock::iterator MI,
1446                                        Register SrcReg, bool isKill,
1447                                        int FrameIdx,
1448                                        const TargetRegisterClass *RC,
1449                                        const TargetRegisterInfo *TRI) const {
1450   // We need to avoid a situation in which the value from a VRRC register is
1451   // spilled using an Altivec instruction and reloaded into a VSRC register
1452   // using a VSX instruction. The issue with this is that the VSX
1453   // load/store instructions swap the doublewords in the vector and the Altivec
1454   // ones don't. The register classes on the spill/reload may be different if
1455   // the register is defined using an Altivec instruction and is then used by a
1456   // VSX instruction.
1457   RC = updatedRC(RC);
1458   storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1459 }
1460 
1461 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1462                                         unsigned DestReg, int FrameIdx,
1463                                         const TargetRegisterClass *RC,
1464                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1465                                         const {
1466   unsigned Opcode = getLoadOpcodeForSpill(RC);
1467   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1468                                      FrameIdx));
1469   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1470 
1471   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1472       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1473     FuncInfo->setSpillsCR();
1474 
1475   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1476     FuncInfo->setSpillsVRSAVE();
1477 
1478   if (isXFormMemOp(Opcode))
1479     FuncInfo->setHasNonRISpills();
1480 }
1481 
1482 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
1483     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
1484     int FrameIdx, const TargetRegisterClass *RC,
1485     const TargetRegisterInfo *TRI) const {
1486   MachineFunction &MF = *MBB.getParent();
1487   SmallVector<MachineInstr*, 4> NewMIs;
1488   DebugLoc DL;
1489   if (MI != MBB.end()) DL = MI->getDebugLoc();
1490 
1491   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1492   FuncInfo->setHasSpills();
1493 
1494   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1495 
1496   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1497     MBB.insert(MI, NewMIs[i]);
1498 
1499   const MachineFrameInfo &MFI = MF.getFrameInfo();
1500   MachineMemOperand *MMO = MF.getMachineMemOperand(
1501       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1502       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1503       MFI.getObjectAlign(FrameIdx));
1504   NewMIs.back()->addMemOperand(MF, MMO);
1505 }
1506 
1507 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1508                                         MachineBasicBlock::iterator MI,
1509                                         Register DestReg, int FrameIdx,
1510                                         const TargetRegisterClass *RC,
1511                                         const TargetRegisterInfo *TRI) const {
1512   // We need to avoid a situation in which the value from a VRRC register is
1513   // spilled using an Altivec instruction and reloaded into a VSRC register
1514   // using a VSX instruction. The issue with this is that the VSX
1515   // load/store instructions swap the doublewords in the vector and the Altivec
1516   // ones don't. The register classes on the spill/reload may be different if
1517   // the register is defined using an Altivec instruction and is then used by a
1518   // VSX instruction.
1519   RC = updatedRC(RC);
1520 
1521   loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
1522 }
1523 
1524 bool PPCInstrInfo::
1525 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1526   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1527   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1528     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1529   else
1530     // Leave the CR# the same, but invert the condition.
1531     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1532   return false;
1533 }
1534 
1535 // For some instructions, it is legal to fold ZERO into the RA register field.
1536 // This function performs that fold by replacing the operand with PPC::ZERO,
1537 // it does not consider whether the load immediate zero is no longer in use.
1538 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1539                                      Register Reg) const {
1540   // A zero immediate should always be loaded with a single li.
1541   unsigned DefOpc = DefMI.getOpcode();
1542   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1543     return false;
1544   if (!DefMI.getOperand(1).isImm())
1545     return false;
1546   if (DefMI.getOperand(1).getImm() != 0)
1547     return false;
1548 
1549   // Note that we cannot here invert the arguments of an isel in order to fold
1550   // a ZERO into what is presented as the second argument. All we have here
1551   // is the condition bit, and that might come from a CR-logical bit operation.
1552 
1553   const MCInstrDesc &UseMCID = UseMI.getDesc();
1554 
1555   // Only fold into real machine instructions.
1556   if (UseMCID.isPseudo())
1557     return false;
1558 
1559   // We need to find which of the User's operands is to be folded, that will be
1560   // the operand that matches the given register ID.
1561   unsigned UseIdx;
1562   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1563     if (UseMI.getOperand(UseIdx).isReg() &&
1564         UseMI.getOperand(UseIdx).getReg() == Reg)
1565       break;
1566 
1567   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1568   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1569 
1570   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1571 
1572   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1573   // register (which might also be specified as a pointer class kind).
1574   if (UseInfo->isLookupPtrRegClass()) {
1575     if (UseInfo->RegClass /* Kind */ != 1)
1576       return false;
1577   } else {
1578     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1579         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1580       return false;
1581   }
1582 
1583   // Make sure this is not tied to an output register (or otherwise
1584   // constrained). This is true for ST?UX registers, for example, which
1585   // are tied to their output registers.
1586   if (UseInfo->Constraints != 0)
1587     return false;
1588 
1589   MCRegister ZeroReg;
1590   if (UseInfo->isLookupPtrRegClass()) {
1591     bool isPPC64 = Subtarget.isPPC64();
1592     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1593   } else {
1594     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1595               PPC::ZERO8 : PPC::ZERO;
1596   }
1597 
1598   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1599   return true;
1600 }
1601 
1602 // Folds zero into instructions which have a load immediate zero as an operand
1603 // but also recognize zero as immediate zero. If the definition of the load
1604 // has no more users it is deleted.
1605 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1606                                  Register Reg, MachineRegisterInfo *MRI) const {
1607   bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
1608   if (MRI->use_nodbg_empty(Reg))
1609     DefMI.eraseFromParent();
1610   return Changed;
1611 }
1612 
1613 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1614   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1615        I != IE; ++I)
1616     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1617       return true;
1618   return false;
1619 }
1620 
1621 // We should make sure that, if we're going to predicate both sides of a
1622 // condition (a diamond), that both sides don't define the counter register. We
1623 // can predicate counter-decrement-based branches, but while that predicates
1624 // the branching, it does not predicate the counter decrement. If we tried to
1625 // merge the triangle into one predicated block, we'd decrement the counter
1626 // twice.
1627 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1628                      unsigned NumT, unsigned ExtraT,
1629                      MachineBasicBlock &FMBB,
1630                      unsigned NumF, unsigned ExtraF,
1631                      BranchProbability Probability) const {
1632   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1633 }
1634 
1635 
1636 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1637   // The predicated branches are identified by their type, not really by the
1638   // explicit presence of a predicate. Furthermore, some of them can be
1639   // predicated more than once. Because if conversion won't try to predicate
1640   // any instruction which already claims to be predicated (by returning true
1641   // here), always return false. In doing so, we let isPredicable() be the
1642   // final word on whether not the instruction can be (further) predicated.
1643 
1644   return false;
1645 }
1646 
1647 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1648                                         const MachineBasicBlock *MBB,
1649                                         const MachineFunction &MF) const {
1650   // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
1651   // across them, since some FP operations may change content of FPSCR.
1652   // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
1653   if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
1654     return true;
1655   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
1656 }
1657 
1658 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1659                                         ArrayRef<MachineOperand> Pred) const {
1660   unsigned OpC = MI.getOpcode();
1661   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1662     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1663       bool isPPC64 = Subtarget.isPPC64();
1664       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1665                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1666       // Need add Def and Use for CTR implicit operand.
1667       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1668           .addReg(Pred[1].getReg(), RegState::Implicit)
1669           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
1670     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1671       MI.setDesc(get(PPC::BCLR));
1672       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1673     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1674       MI.setDesc(get(PPC::BCLRn));
1675       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1676     } else {
1677       MI.setDesc(get(PPC::BCCLR));
1678       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1679           .addImm(Pred[0].getImm())
1680           .add(Pred[1]);
1681     }
1682 
1683     return true;
1684   } else if (OpC == PPC::B) {
1685     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1686       bool isPPC64 = Subtarget.isPPC64();
1687       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1688                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1689       // Need add Def and Use for CTR implicit operand.
1690       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1691           .addReg(Pred[1].getReg(), RegState::Implicit)
1692           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
1693     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1694       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1695       MI.RemoveOperand(0);
1696 
1697       MI.setDesc(get(PPC::BC));
1698       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1699           .add(Pred[1])
1700           .addMBB(MBB);
1701     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1702       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1703       MI.RemoveOperand(0);
1704 
1705       MI.setDesc(get(PPC::BCn));
1706       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1707           .add(Pred[1])
1708           .addMBB(MBB);
1709     } else {
1710       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1711       MI.RemoveOperand(0);
1712 
1713       MI.setDesc(get(PPC::BCC));
1714       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1715           .addImm(Pred[0].getImm())
1716           .add(Pred[1])
1717           .addMBB(MBB);
1718     }
1719 
1720     return true;
1721   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1722              OpC == PPC::BCTRL8) {
1723     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1724       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1725 
1726     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1727     bool isPPC64 = Subtarget.isPPC64();
1728 
1729     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1730       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1731                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1732       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1733     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1734       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1735                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1736       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1737     } else {
1738       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1739                              : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1740       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1741           .addImm(Pred[0].getImm())
1742           .add(Pred[1]);
1743     }
1744 
1745     // Need add Def and Use for LR implicit operand.
1746     if (setLR)
1747       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1748           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
1749           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
1750 
1751     return true;
1752   }
1753 
1754   return false;
1755 }
1756 
1757 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1758                                      ArrayRef<MachineOperand> Pred2) const {
1759   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1760   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1761 
1762   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1763     return false;
1764   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1765     return false;
1766 
1767   // P1 can only subsume P2 if they test the same condition register.
1768   if (Pred1[1].getReg() != Pred2[1].getReg())
1769     return false;
1770 
1771   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1772   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1773 
1774   if (P1 == P2)
1775     return true;
1776 
1777   // Does P1 subsume P2, e.g. GE subsumes GT.
1778   if (P1 == PPC::PRED_LE &&
1779       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1780     return true;
1781   if (P1 == PPC::PRED_GE &&
1782       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1783     return true;
1784 
1785   return false;
1786 }
1787 
1788 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1789                                     std::vector<MachineOperand> &Pred) const {
1790   // Note: At the present time, the contents of Pred from this function is
1791   // unused by IfConversion. This implementation follows ARM by pushing the
1792   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1793   // predicate, instructions defining CTR or CTR8 are also included as
1794   // predicate-defining instructions.
1795 
1796   const TargetRegisterClass *RCs[] =
1797     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1798       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1799 
1800   bool Found = false;
1801   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1802     const MachineOperand &MO = MI.getOperand(i);
1803     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1804       const TargetRegisterClass *RC = RCs[c];
1805       if (MO.isReg()) {
1806         if (MO.isDef() && RC->contains(MO.getReg())) {
1807           Pred.push_back(MO);
1808           Found = true;
1809         }
1810       } else if (MO.isRegMask()) {
1811         for (TargetRegisterClass::iterator I = RC->begin(),
1812              IE = RC->end(); I != IE; ++I)
1813           if (MO.clobbersPhysReg(*I)) {
1814             Pred.push_back(MO);
1815             Found = true;
1816           }
1817       }
1818     }
1819   }
1820 
1821   return Found;
1822 }
1823 
1824 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1825                                   Register &SrcReg2, int &Mask,
1826                                   int &Value) const {
1827   unsigned Opc = MI.getOpcode();
1828 
1829   switch (Opc) {
1830   default: return false;
1831   case PPC::CMPWI:
1832   case PPC::CMPLWI:
1833   case PPC::CMPDI:
1834   case PPC::CMPLDI:
1835     SrcReg = MI.getOperand(1).getReg();
1836     SrcReg2 = 0;
1837     Value = MI.getOperand(2).getImm();
1838     Mask = 0xFFFF;
1839     return true;
1840   case PPC::CMPW:
1841   case PPC::CMPLW:
1842   case PPC::CMPD:
1843   case PPC::CMPLD:
1844   case PPC::FCMPUS:
1845   case PPC::FCMPUD:
1846     SrcReg = MI.getOperand(1).getReg();
1847     SrcReg2 = MI.getOperand(2).getReg();
1848     Value = 0;
1849     Mask = 0;
1850     return true;
1851   }
1852 }
1853 
1854 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1855                                         Register SrcReg2, int Mask, int Value,
1856                                         const MachineRegisterInfo *MRI) const {
1857   if (DisableCmpOpt)
1858     return false;
1859 
1860   int OpC = CmpInstr.getOpcode();
1861   Register CRReg = CmpInstr.getOperand(0).getReg();
1862 
1863   // FP record forms set CR1 based on the exception status bits, not a
1864   // comparison with zero.
1865   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1866     return false;
1867 
1868   const TargetRegisterInfo *TRI = &getRegisterInfo();
1869   // The record forms set the condition register based on a signed comparison
1870   // with zero (so says the ISA manual). This is not as straightforward as it
1871   // seems, however, because this is always a 64-bit comparison on PPC64, even
1872   // for instructions that are 32-bit in nature (like slw for example).
1873   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1874   // for equality checks (as those don't depend on the sign). On PPC64,
1875   // we are restricted to equality for unsigned 64-bit comparisons and for
1876   // signed 32-bit comparisons the applicability is more restricted.
1877   bool isPPC64 = Subtarget.isPPC64();
1878   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1879   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1880   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1881 
1882   // Look through copies unless that gets us to a physical register.
1883   Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1884   if (ActualSrc.isVirtual())
1885     SrcReg = ActualSrc;
1886 
1887   // Get the unique definition of SrcReg.
1888   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1889   if (!MI) return false;
1890 
1891   bool equalityOnly = false;
1892   bool noSub = false;
1893   if (isPPC64) {
1894     if (is32BitSignedCompare) {
1895       // We can perform this optimization only if MI is sign-extending.
1896       if (isSignExtended(*MI))
1897         noSub = true;
1898       else
1899         return false;
1900     } else if (is32BitUnsignedCompare) {
1901       // We can perform this optimization, equality only, if MI is
1902       // zero-extending.
1903       if (isZeroExtended(*MI)) {
1904         noSub = true;
1905         equalityOnly = true;
1906       } else
1907         return false;
1908     } else
1909       equalityOnly = is64BitUnsignedCompare;
1910   } else
1911     equalityOnly = is32BitUnsignedCompare;
1912 
1913   if (equalityOnly) {
1914     // We need to check the uses of the condition register in order to reject
1915     // non-equality comparisons.
1916     for (MachineRegisterInfo::use_instr_iterator
1917          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1918          I != IE; ++I) {
1919       MachineInstr *UseMI = &*I;
1920       if (UseMI->getOpcode() == PPC::BCC) {
1921         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1922         unsigned PredCond = PPC::getPredicateCondition(Pred);
1923         // We ignore hint bits when checking for non-equality comparisons.
1924         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1925           return false;
1926       } else if (UseMI->getOpcode() == PPC::ISEL ||
1927                  UseMI->getOpcode() == PPC::ISEL8) {
1928         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1929         if (SubIdx != PPC::sub_eq)
1930           return false;
1931       } else
1932         return false;
1933     }
1934   }
1935 
1936   MachineBasicBlock::iterator I = CmpInstr;
1937 
1938   // Scan forward to find the first use of the compare.
1939   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1940        ++I) {
1941     bool FoundUse = false;
1942     for (MachineRegisterInfo::use_instr_iterator
1943          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1944          J != JE; ++J)
1945       if (&*J == &*I) {
1946         FoundUse = true;
1947         break;
1948       }
1949 
1950     if (FoundUse)
1951       break;
1952   }
1953 
1954   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1955   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1956 
1957   // There are two possible candidates which can be changed to set CR[01].
1958   // One is MI, the other is a SUB instruction.
1959   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1960   MachineInstr *Sub = nullptr;
1961   if (SrcReg2 != 0)
1962     // MI is not a candidate for CMPrr.
1963     MI = nullptr;
1964   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1965   // same BB as the comparison. This is to allow the check below to avoid calls
1966   // (and other explicit clobbers); instead we should really check for these
1967   // more explicitly (in at least a few predecessors).
1968   else if (MI->getParent() != CmpInstr.getParent())
1969     return false;
1970   else if (Value != 0) {
1971     // The record-form instructions set CR bit based on signed comparison
1972     // against 0. We try to convert a compare against 1 or -1 into a compare
1973     // against 0 to exploit record-form instructions. For example, we change
1974     // the condition "greater than -1" into "greater than or equal to 0"
1975     // and "less than 1" into "less than or equal to 0".
1976 
1977     // Since we optimize comparison based on a specific branch condition,
1978     // we don't optimize if condition code is used by more than once.
1979     if (equalityOnly || !MRI->hasOneUse(CRReg))
1980       return false;
1981 
1982     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1983     if (UseMI->getOpcode() != PPC::BCC)
1984       return false;
1985 
1986     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1987     unsigned PredCond = PPC::getPredicateCondition(Pred);
1988     unsigned PredHint = PPC::getPredicateHint(Pred);
1989     int16_t Immed = (int16_t)Value;
1990 
1991     // When modifying the condition in the predicate, we propagate hint bits
1992     // from the original predicate to the new one.
1993     if (Immed == -1 && PredCond == PPC::PRED_GT)
1994       // We convert "greater than -1" into "greater than or equal to 0",
1995       // since we are assuming signed comparison by !equalityOnly
1996       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1997     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1998       // We convert "less than or equal to -1" into "less than 0".
1999       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2000     else if (Immed == 1 && PredCond == PPC::PRED_LT)
2001       // We convert "less than 1" into "less than or equal to 0".
2002       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2003     else if (Immed == 1 && PredCond == PPC::PRED_GE)
2004       // We convert "greater than or equal to 1" into "greater than 0".
2005       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2006     else
2007       return false;
2008 
2009     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
2010   }
2011 
2012   // Search for Sub.
2013   --I;
2014 
2015   // Get ready to iterate backward from CmpInstr.
2016   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2017 
2018   for (; I != E && !noSub; --I) {
2019     const MachineInstr &Instr = *I;
2020     unsigned IOpC = Instr.getOpcode();
2021 
2022     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2023                              Instr.readsRegister(PPC::CR0, TRI)))
2024       // This instruction modifies or uses the record condition register after
2025       // the one we want to change. While we could do this transformation, it
2026       // would likely not be profitable. This transformation removes one
2027       // instruction, and so even forcing RA to generate one move probably
2028       // makes it unprofitable.
2029       return false;
2030 
2031     // Check whether CmpInstr can be made redundant by the current instruction.
2032     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2033          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2034         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2035         ((Instr.getOperand(1).getReg() == SrcReg &&
2036           Instr.getOperand(2).getReg() == SrcReg2) ||
2037         (Instr.getOperand(1).getReg() == SrcReg2 &&
2038          Instr.getOperand(2).getReg() == SrcReg))) {
2039       Sub = &*I;
2040       break;
2041     }
2042 
2043     if (I == B)
2044       // The 'and' is below the comparison instruction.
2045       return false;
2046   }
2047 
2048   // Return false if no candidates exist.
2049   if (!MI && !Sub)
2050     return false;
2051 
2052   // The single candidate is called MI.
2053   if (!MI) MI = Sub;
2054 
2055   int NewOpC = -1;
2056   int MIOpC = MI->getOpcode();
2057   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2058       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2059     NewOpC = MIOpC;
2060   else {
2061     NewOpC = PPC::getRecordFormOpcode(MIOpC);
2062     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2063       NewOpC = MIOpC;
2064   }
2065 
2066   // FIXME: On the non-embedded POWER architectures, only some of the record
2067   // forms are fast, and we should use only the fast ones.
2068 
2069   // The defining instruction has a record form (or is already a record
2070   // form). It is possible, however, that we'll need to reverse the condition
2071   // code of the users.
2072   if (NewOpC == -1)
2073     return false;
2074 
2075   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2076   // needs to be updated to be based on SUB.  Push the condition code
2077   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
2078   // condition code of these operands will be modified.
2079   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2080   // comparison against 0, which may modify predicate.
2081   bool ShouldSwap = false;
2082   if (Sub && Value == 0) {
2083     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2084       Sub->getOperand(2).getReg() == SrcReg;
2085 
2086     // The operands to subf are the opposite of sub, so only in the fixed-point
2087     // case, invert the order.
2088     ShouldSwap = !ShouldSwap;
2089   }
2090 
2091   if (ShouldSwap)
2092     for (MachineRegisterInfo::use_instr_iterator
2093          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2094          I != IE; ++I) {
2095       MachineInstr *UseMI = &*I;
2096       if (UseMI->getOpcode() == PPC::BCC) {
2097         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2098         unsigned PredCond = PPC::getPredicateCondition(Pred);
2099         assert((!equalityOnly ||
2100                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2101                "Invalid predicate for equality-only optimization");
2102         (void)PredCond; // To suppress warning in release build.
2103         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2104                                 PPC::getSwappedPredicate(Pred)));
2105       } else if (UseMI->getOpcode() == PPC::ISEL ||
2106                  UseMI->getOpcode() == PPC::ISEL8) {
2107         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2108         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2109                "Invalid CR bit for equality-only optimization");
2110 
2111         if (NewSubReg == PPC::sub_lt)
2112           NewSubReg = PPC::sub_gt;
2113         else if (NewSubReg == PPC::sub_gt)
2114           NewSubReg = PPC::sub_lt;
2115 
2116         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2117                                                  NewSubReg));
2118       } else // We need to abort on a user we don't understand.
2119         return false;
2120     }
2121   assert(!(Value != 0 && ShouldSwap) &&
2122          "Non-zero immediate support and ShouldSwap"
2123          "may conflict in updating predicate");
2124 
2125   // Create a new virtual register to hold the value of the CR set by the
2126   // record-form instruction. If the instruction was not previously in
2127   // record form, then set the kill flag on the CR.
2128   CmpInstr.eraseFromParent();
2129 
2130   MachineBasicBlock::iterator MII = MI;
2131   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2132           get(TargetOpcode::COPY), CRReg)
2133     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2134 
2135   // Even if CR0 register were dead before, it is alive now since the
2136   // instruction we just built uses it.
2137   MI->clearRegisterDeads(PPC::CR0);
2138 
2139   if (MIOpC != NewOpC) {
2140     // We need to be careful here: we're replacing one instruction with
2141     // another, and we need to make sure that we get all of the right
2142     // implicit uses and defs. On the other hand, the caller may be holding
2143     // an iterator to this instruction, and so we can't delete it (this is
2144     // specifically the case if this is the instruction directly after the
2145     // compare).
2146 
2147     // Rotates are expensive instructions. If we're emitting a record-form
2148     // rotate that can just be an andi/andis, we should just emit that.
2149     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2150       Register GPRRes = MI->getOperand(0).getReg();
2151       int64_t SH = MI->getOperand(2).getImm();
2152       int64_t MB = MI->getOperand(3).getImm();
2153       int64_t ME = MI->getOperand(4).getImm();
2154       // We can only do this if both the start and end of the mask are in the
2155       // same halfword.
2156       bool MBInLoHWord = MB >= 16;
2157       bool MEInLoHWord = ME >= 16;
2158       uint64_t Mask = ~0LLU;
2159 
2160       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2161         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2162         // The mask value needs to shift right 16 if we're emitting andis.
2163         Mask >>= MBInLoHWord ? 0 : 16;
2164         NewOpC = MIOpC == PPC::RLWINM
2165                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2166                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2167       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2168                  (ME - MB + 1 == SH) && (MB >= 16)) {
2169         // If we are rotating by the exact number of bits as are in the mask
2170         // and the mask is in the least significant bits of the register,
2171         // that's just an andis. (as long as the GPR result has no uses).
2172         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2173         Mask >>= 16;
2174         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2175       }
2176       // If we've set the mask, we can transform.
2177       if (Mask != ~0LLU) {
2178         MI->RemoveOperand(4);
2179         MI->RemoveOperand(3);
2180         MI->getOperand(2).setImm(Mask);
2181         NumRcRotatesConvertedToRcAnd++;
2182       }
2183     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2184       int64_t MB = MI->getOperand(3).getImm();
2185       if (MB >= 48) {
2186         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2187         NewOpC = PPC::ANDI8_rec;
2188         MI->RemoveOperand(3);
2189         MI->getOperand(2).setImm(Mask);
2190         NumRcRotatesConvertedToRcAnd++;
2191       }
2192     }
2193 
2194     const MCInstrDesc &NewDesc = get(NewOpC);
2195     MI->setDesc(NewDesc);
2196 
2197     if (NewDesc.ImplicitDefs)
2198       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
2199            *ImpDefs; ++ImpDefs)
2200         if (!MI->definesRegister(*ImpDefs))
2201           MI->addOperand(*MI->getParent()->getParent(),
2202                          MachineOperand::CreateReg(*ImpDefs, true, true));
2203     if (NewDesc.ImplicitUses)
2204       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
2205            *ImpUses; ++ImpUses)
2206         if (!MI->readsRegister(*ImpUses))
2207           MI->addOperand(*MI->getParent()->getParent(),
2208                          MachineOperand::CreateReg(*ImpUses, false, true));
2209   }
2210   assert(MI->definesRegister(PPC::CR0) &&
2211          "Record-form instruction does not define cr0?");
2212 
2213   // Modify the condition code of operands in OperandsToUpdate.
2214   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2215   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2216   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2217     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2218 
2219   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2220     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2221 
2222   return true;
2223 }
2224 
2225 /// GetInstSize - Return the number of bytes of code the specified
2226 /// instruction may be.  This returns the maximum number of bytes.
2227 ///
2228 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2229   unsigned Opcode = MI.getOpcode();
2230 
2231   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2232     const MachineFunction *MF = MI.getParent()->getParent();
2233     const char *AsmStr = MI.getOperand(0).getSymbolName();
2234     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2235   } else if (Opcode == TargetOpcode::STACKMAP) {
2236     StackMapOpers Opers(&MI);
2237     return Opers.getNumPatchBytes();
2238   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2239     PatchPointOpers Opers(&MI);
2240     return Opers.getNumPatchBytes();
2241   } else {
2242     return get(Opcode).getSize();
2243   }
2244 }
2245 
2246 std::pair<unsigned, unsigned>
2247 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2248   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2249   return std::make_pair(TF & Mask, TF & ~Mask);
2250 }
2251 
2252 ArrayRef<std::pair<unsigned, const char *>>
2253 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2254   using namespace PPCII;
2255   static const std::pair<unsigned, const char *> TargetFlags[] = {
2256       {MO_LO, "ppc-lo"},
2257       {MO_HA, "ppc-ha"},
2258       {MO_TPREL_LO, "ppc-tprel-lo"},
2259       {MO_TPREL_HA, "ppc-tprel-ha"},
2260       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2261       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2262       {MO_TOC_LO, "ppc-toc-lo"},
2263       {MO_TLS, "ppc-tls"}};
2264   return makeArrayRef(TargetFlags);
2265 }
2266 
2267 ArrayRef<std::pair<unsigned, const char *>>
2268 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2269   using namespace PPCII;
2270   static const std::pair<unsigned, const char *> TargetFlags[] = {
2271       {MO_PLT, "ppc-plt"},
2272       {MO_PIC_FLAG, "ppc-pic"},
2273       {MO_PCREL_FLAG, "ppc-pcrel"},
2274       {MO_GOT_FLAG, "ppc-got"},
2275       {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}};
2276   return makeArrayRef(TargetFlags);
2277 }
2278 
2279 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2280 // The VSX versions have the advantage of a full 64-register target whereas
2281 // the FP ones have the advantage of lower latency and higher throughput. So
2282 // what we are after is using the faster instructions in low register pressure
2283 // situations and using the larger register file in high register pressure
2284 // situations.
2285 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2286     unsigned UpperOpcode, LowerOpcode;
2287     switch (MI.getOpcode()) {
2288     case PPC::DFLOADf32:
2289       UpperOpcode = PPC::LXSSP;
2290       LowerOpcode = PPC::LFS;
2291       break;
2292     case PPC::DFLOADf64:
2293       UpperOpcode = PPC::LXSD;
2294       LowerOpcode = PPC::LFD;
2295       break;
2296     case PPC::DFSTOREf32:
2297       UpperOpcode = PPC::STXSSP;
2298       LowerOpcode = PPC::STFS;
2299       break;
2300     case PPC::DFSTOREf64:
2301       UpperOpcode = PPC::STXSD;
2302       LowerOpcode = PPC::STFD;
2303       break;
2304     case PPC::XFLOADf32:
2305       UpperOpcode = PPC::LXSSPX;
2306       LowerOpcode = PPC::LFSX;
2307       break;
2308     case PPC::XFLOADf64:
2309       UpperOpcode = PPC::LXSDX;
2310       LowerOpcode = PPC::LFDX;
2311       break;
2312     case PPC::XFSTOREf32:
2313       UpperOpcode = PPC::STXSSPX;
2314       LowerOpcode = PPC::STFSX;
2315       break;
2316     case PPC::XFSTOREf64:
2317       UpperOpcode = PPC::STXSDX;
2318       LowerOpcode = PPC::STFDX;
2319       break;
2320     case PPC::LIWAX:
2321       UpperOpcode = PPC::LXSIWAX;
2322       LowerOpcode = PPC::LFIWAX;
2323       break;
2324     case PPC::LIWZX:
2325       UpperOpcode = PPC::LXSIWZX;
2326       LowerOpcode = PPC::LFIWZX;
2327       break;
2328     case PPC::STIWX:
2329       UpperOpcode = PPC::STXSIWX;
2330       LowerOpcode = PPC::STFIWX;
2331       break;
2332     default:
2333       llvm_unreachable("Unknown Operation!");
2334     }
2335 
2336     Register TargetReg = MI.getOperand(0).getReg();
2337     unsigned Opcode;
2338     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2339         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2340       Opcode = LowerOpcode;
2341     else
2342       Opcode = UpperOpcode;
2343     MI.setDesc(get(Opcode));
2344     return true;
2345 }
2346 
2347 static bool isAnImmediateOperand(const MachineOperand &MO) {
2348   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2349 }
2350 
2351 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2352   auto &MBB = *MI.getParent();
2353   auto DL = MI.getDebugLoc();
2354 
2355   switch (MI.getOpcode()) {
2356   case TargetOpcode::LOAD_STACK_GUARD: {
2357     assert(Subtarget.isTargetLinux() &&
2358            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2359     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2360     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2361     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2362     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2363         .addImm(Offset)
2364         .addReg(Reg);
2365     return true;
2366   }
2367   case PPC::DFLOADf32:
2368   case PPC::DFLOADf64:
2369   case PPC::DFSTOREf32:
2370   case PPC::DFSTOREf64: {
2371     assert(Subtarget.hasP9Vector() &&
2372            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2373     assert(MI.getOperand(2).isReg() &&
2374            isAnImmediateOperand(MI.getOperand(1)) &&
2375            "D-form op must have register and immediate operands");
2376     return expandVSXMemPseudo(MI);
2377   }
2378   case PPC::XFLOADf32:
2379   case PPC::XFSTOREf32:
2380   case PPC::LIWAX:
2381   case PPC::LIWZX:
2382   case PPC::STIWX: {
2383     assert(Subtarget.hasP8Vector() &&
2384            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2385     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2386            "X-form op must have register and register operands");
2387     return expandVSXMemPseudo(MI);
2388   }
2389   case PPC::XFLOADf64:
2390   case PPC::XFSTOREf64: {
2391     assert(Subtarget.hasVSX() &&
2392            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2393     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2394            "X-form op must have register and register operands");
2395     return expandVSXMemPseudo(MI);
2396   }
2397   case PPC::SPILLTOVSR_LD: {
2398     Register TargetReg = MI.getOperand(0).getReg();
2399     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2400       MI.setDesc(get(PPC::DFLOADf64));
2401       return expandPostRAPseudo(MI);
2402     }
2403     else
2404       MI.setDesc(get(PPC::LD));
2405     return true;
2406   }
2407   case PPC::SPILLTOVSR_ST: {
2408     Register SrcReg = MI.getOperand(0).getReg();
2409     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2410       NumStoreSPILLVSRRCAsVec++;
2411       MI.setDesc(get(PPC::DFSTOREf64));
2412       return expandPostRAPseudo(MI);
2413     } else {
2414       NumStoreSPILLVSRRCAsGpr++;
2415       MI.setDesc(get(PPC::STD));
2416     }
2417     return true;
2418   }
2419   case PPC::SPILLTOVSR_LDX: {
2420     Register TargetReg = MI.getOperand(0).getReg();
2421     if (PPC::VSFRCRegClass.contains(TargetReg))
2422       MI.setDesc(get(PPC::LXSDX));
2423     else
2424       MI.setDesc(get(PPC::LDX));
2425     return true;
2426   }
2427   case PPC::SPILLTOVSR_STX: {
2428     Register SrcReg = MI.getOperand(0).getReg();
2429     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2430       NumStoreSPILLVSRRCAsVec++;
2431       MI.setDesc(get(PPC::STXSDX));
2432     } else {
2433       NumStoreSPILLVSRRCAsGpr++;
2434       MI.setDesc(get(PPC::STDX));
2435     }
2436     return true;
2437   }
2438 
2439   case PPC::CFENCE8: {
2440     auto Val = MI.getOperand(0).getReg();
2441     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2442     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2443         .addImm(PPC::PRED_NE_MINUS)
2444         .addReg(PPC::CR7)
2445         .addImm(1);
2446     MI.setDesc(get(PPC::ISYNC));
2447     MI.RemoveOperand(0);
2448     return true;
2449   }
2450   }
2451   return false;
2452 }
2453 
2454 // Essentially a compile-time implementation of a compare->isel sequence.
2455 // It takes two constants to compare, along with the true/false registers
2456 // and the comparison type (as a subreg to a CR field) and returns one
2457 // of the true/false registers, depending on the comparison results.
2458 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2459                           unsigned TrueReg, unsigned FalseReg,
2460                           unsigned CRSubReg) {
2461   // Signed comparisons. The immediates are assumed to be sign-extended.
2462   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2463     switch (CRSubReg) {
2464     default: llvm_unreachable("Unknown integer comparison type.");
2465     case PPC::sub_lt:
2466       return Imm1 < Imm2 ? TrueReg : FalseReg;
2467     case PPC::sub_gt:
2468       return Imm1 > Imm2 ? TrueReg : FalseReg;
2469     case PPC::sub_eq:
2470       return Imm1 == Imm2 ? TrueReg : FalseReg;
2471     }
2472   }
2473   // Unsigned comparisons.
2474   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2475     switch (CRSubReg) {
2476     default: llvm_unreachable("Unknown integer comparison type.");
2477     case PPC::sub_lt:
2478       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2479     case PPC::sub_gt:
2480       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2481     case PPC::sub_eq:
2482       return Imm1 == Imm2 ? TrueReg : FalseReg;
2483     }
2484   }
2485   return PPC::NoRegister;
2486 }
2487 
2488 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2489                                               unsigned OpNo,
2490                                               int64_t Imm) const {
2491   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2492   // Replace the REG with the Immediate.
2493   Register InUseReg = MI.getOperand(OpNo).getReg();
2494   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2495 
2496   if (MI.implicit_operands().empty())
2497     return;
2498 
2499   // We need to make sure that the MI didn't have any implicit use
2500   // of this REG any more.
2501   const TargetRegisterInfo *TRI = &getRegisterInfo();
2502   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2503   if (UseOpIdx >= 0) {
2504     MachineOperand &MO = MI.getOperand(UseOpIdx);
2505     if (MO.isImplicit())
2506       // The operands must always be in the following order:
2507       // - explicit reg defs,
2508       // - other explicit operands (reg uses, immediates, etc.),
2509       // - implicit reg defs
2510       // - implicit reg uses
2511       // Therefore, removing the implicit operand won't change the explicit
2512       // operands layout.
2513       MI.RemoveOperand(UseOpIdx);
2514   }
2515 }
2516 
2517 // Replace an instruction with one that materializes a constant (and sets
2518 // CR0 if the original instruction was a record-form instruction).
2519 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2520                                       const LoadImmediateInfo &LII) const {
2521   // Remove existing operands.
2522   int OperandToKeep = LII.SetCR ? 1 : 0;
2523   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2524     MI.RemoveOperand(i);
2525 
2526   // Replace the instruction.
2527   if (LII.SetCR) {
2528     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
2529     // Set the immediate.
2530     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2531         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2532     return;
2533   }
2534   else
2535     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2536 
2537   // Set the immediate.
2538   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2539       .addImm(LII.Imm);
2540 }
2541 
2542 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2543                                            bool &SeenIntermediateUse) const {
2544   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2545          "Should be called after register allocation.");
2546   const TargetRegisterInfo *TRI = &getRegisterInfo();
2547   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2548   It++;
2549   SeenIntermediateUse = false;
2550   for (; It != E; ++It) {
2551     if (It->modifiesRegister(Reg, TRI))
2552       return &*It;
2553     if (It->readsRegister(Reg, TRI))
2554       SeenIntermediateUse = true;
2555   }
2556   return nullptr;
2557 }
2558 
2559 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2560   MachineInstr &MI,
2561   unsigned &OpNoForForwarding,
2562   bool &SeenIntermediateUse) const {
2563   OpNoForForwarding = ~0U;
2564   MachineInstr *DefMI = nullptr;
2565   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2566   const TargetRegisterInfo *TRI = &getRegisterInfo();
2567   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2568   // within the basic block to see if the register is defined using an
2569   // LI/LI8/ADDI/ADDI8.
2570   if (MRI->isSSA()) {
2571     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2572       if (!MI.getOperand(i).isReg())
2573         continue;
2574       Register Reg = MI.getOperand(i).getReg();
2575       if (!Register::isVirtualRegister(Reg))
2576         continue;
2577       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2578       if (Register::isVirtualRegister(TrueReg)) {
2579         DefMI = MRI->getVRegDef(TrueReg);
2580         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
2581             DefMI->getOpcode() == PPC::ADDI ||
2582             DefMI->getOpcode() == PPC::ADDI8) {
2583           OpNoForForwarding = i;
2584           // The ADDI and LI operand maybe exist in one instruction at same
2585           // time. we prefer to fold LI operand as LI only has one Imm operand
2586           // and is more possible to be converted. So if current DefMI is
2587           // ADDI/ADDI8, we continue to find possible LI/LI8.
2588           if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
2589             break;
2590         }
2591       }
2592     }
2593   } else {
2594     // Looking back through the definition for each operand could be expensive,
2595     // so exit early if this isn't an instruction that either has an immediate
2596     // form or is already an immediate form that we can handle.
2597     ImmInstrInfo III;
2598     unsigned Opc = MI.getOpcode();
2599     bool ConvertibleImmForm =
2600         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
2601         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2602         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
2603         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
2604         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2605         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
2606         Opc == PPC::RLWINM8_rec;
2607     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2608                        ? isVFRegister(MI.getOperand(0).getReg())
2609                        : false;
2610     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2611       return nullptr;
2612 
2613     // Don't convert or %X, %Y, %Y since that's just a register move.
2614     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2615         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2616       return nullptr;
2617     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2618       MachineOperand &MO = MI.getOperand(i);
2619       SeenIntermediateUse = false;
2620       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2621         Register Reg = MI.getOperand(i).getReg();
2622         // If we see another use of this reg between the def and the MI,
2623         // we want to flat it so the def isn't deleted.
2624         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2625         if (DefMI) {
2626           // Is this register defined by some form of add-immediate (including
2627           // load-immediate) within this basic block?
2628           switch (DefMI->getOpcode()) {
2629           default:
2630             break;
2631           case PPC::LI:
2632           case PPC::LI8:
2633           case PPC::ADDItocL:
2634           case PPC::ADDI:
2635           case PPC::ADDI8:
2636             OpNoForForwarding = i;
2637             return DefMI;
2638           }
2639         }
2640       }
2641     }
2642   }
2643   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2644 }
2645 
2646 unsigned PPCInstrInfo::getSpillTarget() const {
2647   return Subtarget.hasP9Vector() ? 1 : 0;
2648 }
2649 
2650 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2651   return StoreSpillOpcodesArray[getSpillTarget()];
2652 }
2653 
2654 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2655   return LoadSpillOpcodesArray[getSpillTarget()];
2656 }
2657 
2658 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2659                                      unsigned RegNo) const {
2660   // Conservatively clear kill flag for the register if the instructions are in
2661   // different basic blocks and in SSA form, because the kill flag may no longer
2662   // be right. There is no need to bother with dead flags since defs with no
2663   // uses will be handled by DCE.
2664   MachineRegisterInfo &MRI = StartMI.getParent()->getParent()->getRegInfo();
2665   if (MRI.isSSA() && (StartMI.getParent() != EndMI.getParent())) {
2666     MRI.clearKillFlags(RegNo);
2667     return;
2668   }
2669 
2670   // Instructions between [StartMI, EndMI] should be in same basic block.
2671   assert((StartMI.getParent() == EndMI.getParent()) &&
2672          "Instructions are not in same basic block");
2673 
2674   bool IsKillSet = false;
2675 
2676   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2677     MachineOperand &MO = MI.getOperand(Index);
2678     if (MO.isReg() && MO.isUse() && MO.isKill() &&
2679         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2680       MO.setIsKill(false);
2681   };
2682 
2683   // Set killed flag for EndMI.
2684   // No need to do anything if EndMI defines RegNo.
2685   int UseIndex =
2686       EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2687   if (UseIndex != -1) {
2688     EndMI.getOperand(UseIndex).setIsKill(true);
2689     IsKillSet = true;
2690     // Clear killed flag for other EndMI operands related to RegNo. In some
2691     // upexpected cases, killed may be set multiple times for same register
2692     // operand in same MI.
2693     for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2694       if (i != UseIndex)
2695         clearOperandKillInfo(EndMI, i);
2696   }
2697 
2698   // Walking the inst in reverse order (EndMI -> StartMI].
2699   MachineBasicBlock::reverse_iterator It = EndMI;
2700   MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2701   // EndMI has been handled above, skip it here.
2702   It++;
2703   MachineOperand *MO = nullptr;
2704   for (; It != E; ++It) {
2705     // Skip insturctions which could not be a def/use of RegNo.
2706     if (It->isDebugInstr() || It->isPosition())
2707       continue;
2708 
2709     // Clear killed flag for all It operands related to RegNo. In some
2710     // upexpected cases, killed may be set multiple times for same register
2711     // operand in same MI.
2712     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2713         clearOperandKillInfo(*It, i);
2714 
2715     // If killed is not set, set killed for its last use or set dead for its def
2716     // if no use found.
2717     if (!IsKillSet) {
2718       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2719         // Use found, set it killed.
2720         IsKillSet = true;
2721         MO->setIsKill(true);
2722         continue;
2723       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2724                                                   &getRegisterInfo()))) {
2725         // No use found, set dead for its def.
2726         assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2727         MO->setIsDead(true);
2728         break;
2729       }
2730     }
2731 
2732     if ((&*It) == &StartMI)
2733       break;
2734   }
2735   // Ensure RegMo liveness is killed after EndMI.
2736   assert((IsKillSet || (MO && MO->isDead())) &&
2737          "RegNo should be killed or dead");
2738 }
2739 
2740 // This opt tries to convert the following imm form to an index form to save an
2741 // add for stack variables.
2742 // Return false if no such pattern found.
2743 //
2744 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
2745 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
2746 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
2747 //
2748 // can be converted to:
2749 //
2750 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
2751 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
2752 //
2753 // In order to eliminate ADD instr, make sure that:
2754 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
2755 //    new ADDI instr and ADDI can only take int16 Imm.
2756 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
2757 //    between ADDI and ADD instr since its original def in ADDI will be changed
2758 //    in new ADDI instr. And also there should be no new def for it between
2759 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
2760 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
2761 //    between ADD and Imm instr since ADD instr will be eliminated.
2762 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
2763 //    moved to Index instr.
2764 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
2765   MachineFunction *MF = MI.getParent()->getParent();
2766   MachineRegisterInfo *MRI = &MF->getRegInfo();
2767   bool PostRA = !MRI->isSSA();
2768   // Do this opt after PEI which is after RA. The reason is stack slot expansion
2769   // in PEI may expose such opportunities since in PEI, stack slot offsets to
2770   // frame base(OffsetAddi) are determined.
2771   if (!PostRA)
2772     return false;
2773   unsigned ToBeDeletedReg = 0;
2774   int64_t OffsetImm = 0;
2775   unsigned XFormOpcode = 0;
2776   ImmInstrInfo III;
2777 
2778   // Check if Imm instr meets requirement.
2779   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
2780                                     III))
2781     return false;
2782 
2783   bool OtherIntermediateUse = false;
2784   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
2785 
2786   // Exit if there is other use between ADD and Imm instr or no def found.
2787   if (OtherIntermediateUse || !ADDMI)
2788     return false;
2789 
2790   // Check if ADD instr meets requirement.
2791   if (!isADDInstrEligibleForFolding(*ADDMI))
2792     return false;
2793 
2794   unsigned ScaleRegIdx = 0;
2795   int64_t OffsetAddi = 0;
2796   MachineInstr *ADDIMI = nullptr;
2797 
2798   // Check if there is a valid ToBeChangedReg in ADDMI.
2799   // 1: It must be killed.
2800   // 2: Its definition must be a valid ADDIMI.
2801   // 3: It must satify int16 offset requirement.
2802   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
2803     ScaleRegIdx = 2;
2804   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
2805     ScaleRegIdx = 1;
2806   else
2807     return false;
2808 
2809   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
2810   unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
2811   unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
2812   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
2813                        MachineBasicBlock::iterator End) {
2814     for (auto It = ++Start; It != End; It++)
2815       if (It->modifiesRegister(Reg, &getRegisterInfo()))
2816         return true;
2817     return false;
2818   };
2819 
2820   // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
2821   // treated as special zero when ScaleReg is R0/X0 register.
2822   if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
2823       (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
2824     return false;
2825 
2826   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
2827   // and Imm Instr.
2828   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
2829     return false;
2830 
2831   // Now start to do the transformation.
2832   LLVM_DEBUG(dbgs() << "Replace instruction: "
2833                     << "\n");
2834   LLVM_DEBUG(ADDIMI->dump());
2835   LLVM_DEBUG(ADDMI->dump());
2836   LLVM_DEBUG(MI.dump());
2837   LLVM_DEBUG(dbgs() << "with: "
2838                     << "\n");
2839 
2840   // Update ADDI instr.
2841   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
2842 
2843   // Update Imm instr.
2844   MI.setDesc(get(XFormOpcode));
2845   MI.getOperand(III.ImmOpNo)
2846       .ChangeToRegister(ScaleReg, false, false,
2847                         ADDMI->getOperand(ScaleRegIdx).isKill());
2848 
2849   MI.getOperand(III.OpNoForForwarding)
2850       .ChangeToRegister(ToBeChangedReg, false, false, true);
2851 
2852   // Eliminate ADD instr.
2853   ADDMI->eraseFromParent();
2854 
2855   LLVM_DEBUG(ADDIMI->dump());
2856   LLVM_DEBUG(MI.dump());
2857 
2858   return true;
2859 }
2860 
2861 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
2862                                                  int64_t &Imm) const {
2863   unsigned Opc = ADDIMI.getOpcode();
2864 
2865   // Exit if the instruction is not ADDI.
2866   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
2867     return false;
2868 
2869   // The operand may not necessarily be an immediate - it could be a relocation.
2870   if (!ADDIMI.getOperand(2).isImm())
2871     return false;
2872 
2873   Imm = ADDIMI.getOperand(2).getImm();
2874 
2875   return true;
2876 }
2877 
2878 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
2879   unsigned Opc = ADDMI.getOpcode();
2880 
2881   // Exit if the instruction is not ADD.
2882   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
2883 }
2884 
2885 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
2886                                                 unsigned &ToBeDeletedReg,
2887                                                 unsigned &XFormOpcode,
2888                                                 int64_t &OffsetImm,
2889                                                 ImmInstrInfo &III) const {
2890   // Only handle load/store.
2891   if (!MI.mayLoadOrStore())
2892     return false;
2893 
2894   unsigned Opc = MI.getOpcode();
2895 
2896   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
2897 
2898   // Exit if instruction has no index form.
2899   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
2900     return false;
2901 
2902   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
2903   if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
2904                        III, true))
2905     return false;
2906 
2907   if (!III.IsSummingOperands)
2908     return false;
2909 
2910   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
2911   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
2912   // Only support imm operands, not relocation slots or others.
2913   if (!ImmOperand.isImm())
2914     return false;
2915 
2916   assert(RegOperand.isReg() && "Instruction format is not right");
2917 
2918   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
2919   if (!RegOperand.isKill())
2920     return false;
2921 
2922   ToBeDeletedReg = RegOperand.getReg();
2923   OffsetImm = ImmOperand.getImm();
2924 
2925   return true;
2926 }
2927 
2928 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
2929                                          MachineInstr *&ADDIMI,
2930                                          int64_t &OffsetAddi,
2931                                          int64_t OffsetImm) const {
2932   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
2933   MachineOperand &MO = ADDMI->getOperand(Index);
2934 
2935   if (!MO.isKill())
2936     return false;
2937 
2938   bool OtherIntermediateUse = false;
2939 
2940   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
2941   // Currently handle only one "add + Imminstr" pair case, exit if other
2942   // intermediate use for ToBeChangedReg found.
2943   // TODO: handle the cases where there are other "add + Imminstr" pairs
2944   // with same offset in Imminstr which is like:
2945   //
2946   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
2947   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
2948   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
2949   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
2950   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
2951   //
2952   // can be converted to:
2953   //
2954   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
2955   //                                       (OffsetAddi + OffsetImm)
2956   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
2957   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
2958 
2959   if (OtherIntermediateUse || !ADDIMI)
2960     return false;
2961   // Check if ADDI instr meets requirement.
2962   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
2963     return false;
2964 
2965   if (isInt<16>(OffsetAddi + OffsetImm))
2966     return true;
2967   return false;
2968 }
2969 
2970 // If this instruction has an immediate form and one of its operands is a
2971 // result of a load-immediate or an add-immediate, convert it to
2972 // the immediate form if the constant is in range.
2973 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2974                                           MachineInstr **KilledDef) const {
2975   MachineFunction *MF = MI.getParent()->getParent();
2976   MachineRegisterInfo *MRI = &MF->getRegInfo();
2977   bool PostRA = !MRI->isSSA();
2978   bool SeenIntermediateUse = true;
2979   unsigned ForwardingOperand = ~0U;
2980   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2981                                            SeenIntermediateUse);
2982   if (!DefMI)
2983     return false;
2984   assert(ForwardingOperand < MI.getNumOperands() &&
2985          "The forwarding operand needs to be valid at this point");
2986   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2987   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2988   if (KilledDef && KillFwdDefMI)
2989     *KilledDef = DefMI;
2990 
2991   // If this is a imm instruction and its register operands is produced by ADDI,
2992   // put the imm into imm inst directly.
2993   if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
2994           PPC::INSTRUCTION_LIST_END &&
2995       transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
2996     return true;
2997 
2998   ImmInstrInfo III;
2999   bool IsVFReg = MI.getOperand(0).isReg()
3000                      ? isVFRegister(MI.getOperand(0).getReg())
3001                      : false;
3002   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3003   // If this is a reg+reg instruction that has a reg+imm form,
3004   // and one of the operands is produced by an add-immediate,
3005   // try to convert it.
3006   if (HasImmForm &&
3007       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3008                                  KillFwdDefMI))
3009     return true;
3010 
3011   // If this is a reg+reg instruction that has a reg+imm form,
3012   // and one of the operands is produced by LI, convert it now.
3013   if (HasImmForm &&
3014       transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3015     return true;
3016 
3017   // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3018   // can be simpified to LI.
3019   if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3020     return true;
3021 
3022   return false;
3023 }
3024 
3025 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3026                                    ImmInstrInfo &III, bool PostRA) const {
3027   // The vast majority of the instructions would need their operand 2 replaced
3028   // with an immediate when switching to the reg+imm form. A marked exception
3029   // are the update form loads/stores for which a constant operand 2 would need
3030   // to turn into a displacement and move operand 1 to the operand 2 position.
3031   III.ImmOpNo = 2;
3032   III.OpNoForForwarding = 2;
3033   III.ImmWidth = 16;
3034   III.ImmMustBeMultipleOf = 1;
3035   III.TruncateImmTo = 0;
3036   III.IsSummingOperands = false;
3037   switch (Opc) {
3038   default: return false;
3039   case PPC::ADD4:
3040   case PPC::ADD8:
3041     III.SignedImm = true;
3042     III.ZeroIsSpecialOrig = 0;
3043     III.ZeroIsSpecialNew = 1;
3044     III.IsCommutative = true;
3045     III.IsSummingOperands = true;
3046     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3047     break;
3048   case PPC::ADDC:
3049   case PPC::ADDC8:
3050     III.SignedImm = true;
3051     III.ZeroIsSpecialOrig = 0;
3052     III.ZeroIsSpecialNew = 0;
3053     III.IsCommutative = true;
3054     III.IsSummingOperands = true;
3055     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3056     break;
3057   case PPC::ADDC_rec:
3058     III.SignedImm = true;
3059     III.ZeroIsSpecialOrig = 0;
3060     III.ZeroIsSpecialNew = 0;
3061     III.IsCommutative = true;
3062     III.IsSummingOperands = true;
3063     III.ImmOpcode = PPC::ADDIC_rec;
3064     break;
3065   case PPC::SUBFC:
3066   case PPC::SUBFC8:
3067     III.SignedImm = true;
3068     III.ZeroIsSpecialOrig = 0;
3069     III.ZeroIsSpecialNew = 0;
3070     III.IsCommutative = false;
3071     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3072     break;
3073   case PPC::CMPW:
3074   case PPC::CMPD:
3075     III.SignedImm = true;
3076     III.ZeroIsSpecialOrig = 0;
3077     III.ZeroIsSpecialNew = 0;
3078     III.IsCommutative = false;
3079     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3080     break;
3081   case PPC::CMPLW:
3082   case PPC::CMPLD:
3083     III.SignedImm = false;
3084     III.ZeroIsSpecialOrig = 0;
3085     III.ZeroIsSpecialNew = 0;
3086     III.IsCommutative = false;
3087     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3088     break;
3089   case PPC::AND_rec:
3090   case PPC::AND8_rec:
3091   case PPC::OR:
3092   case PPC::OR8:
3093   case PPC::XOR:
3094   case PPC::XOR8:
3095     III.SignedImm = false;
3096     III.ZeroIsSpecialOrig = 0;
3097     III.ZeroIsSpecialNew = 0;
3098     III.IsCommutative = true;
3099     switch(Opc) {
3100     default: llvm_unreachable("Unknown opcode");
3101     case PPC::AND_rec:
3102       III.ImmOpcode = PPC::ANDI_rec;
3103       break;
3104     case PPC::AND8_rec:
3105       III.ImmOpcode = PPC::ANDI8_rec;
3106       break;
3107     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3108     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3109     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3110     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3111     }
3112     break;
3113   case PPC::RLWNM:
3114   case PPC::RLWNM8:
3115   case PPC::RLWNM_rec:
3116   case PPC::RLWNM8_rec:
3117   case PPC::SLW:
3118   case PPC::SLW8:
3119   case PPC::SLW_rec:
3120   case PPC::SLW8_rec:
3121   case PPC::SRW:
3122   case PPC::SRW8:
3123   case PPC::SRW_rec:
3124   case PPC::SRW8_rec:
3125   case PPC::SRAW:
3126   case PPC::SRAW_rec:
3127     III.SignedImm = false;
3128     III.ZeroIsSpecialOrig = 0;
3129     III.ZeroIsSpecialNew = 0;
3130     III.IsCommutative = false;
3131     // This isn't actually true, but the instructions ignore any of the
3132     // upper bits, so any immediate loaded with an LI is acceptable.
3133     // This does not apply to shift right algebraic because a value
3134     // out of range will produce a -1/0.
3135     III.ImmWidth = 16;
3136     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3137         Opc == PPC::RLWNM8_rec)
3138       III.TruncateImmTo = 5;
3139     else
3140       III.TruncateImmTo = 6;
3141     switch(Opc) {
3142     default: llvm_unreachable("Unknown opcode");
3143     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3144     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3145     case PPC::RLWNM_rec:
3146       III.ImmOpcode = PPC::RLWINM_rec;
3147       break;
3148     case PPC::RLWNM8_rec:
3149       III.ImmOpcode = PPC::RLWINM8_rec;
3150       break;
3151     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3152     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3153     case PPC::SLW_rec:
3154       III.ImmOpcode = PPC::RLWINM_rec;
3155       break;
3156     case PPC::SLW8_rec:
3157       III.ImmOpcode = PPC::RLWINM8_rec;
3158       break;
3159     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3160     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3161     case PPC::SRW_rec:
3162       III.ImmOpcode = PPC::RLWINM_rec;
3163       break;
3164     case PPC::SRW8_rec:
3165       III.ImmOpcode = PPC::RLWINM8_rec;
3166       break;
3167     case PPC::SRAW:
3168       III.ImmWidth = 5;
3169       III.TruncateImmTo = 0;
3170       III.ImmOpcode = PPC::SRAWI;
3171       break;
3172     case PPC::SRAW_rec:
3173       III.ImmWidth = 5;
3174       III.TruncateImmTo = 0;
3175       III.ImmOpcode = PPC::SRAWI_rec;
3176       break;
3177     }
3178     break;
3179   case PPC::RLDCL:
3180   case PPC::RLDCL_rec:
3181   case PPC::RLDCR:
3182   case PPC::RLDCR_rec:
3183   case PPC::SLD:
3184   case PPC::SLD_rec:
3185   case PPC::SRD:
3186   case PPC::SRD_rec:
3187   case PPC::SRAD:
3188   case PPC::SRAD_rec:
3189     III.SignedImm = false;
3190     III.ZeroIsSpecialOrig = 0;
3191     III.ZeroIsSpecialNew = 0;
3192     III.IsCommutative = false;
3193     // This isn't actually true, but the instructions ignore any of the
3194     // upper bits, so any immediate loaded with an LI is acceptable.
3195     // This does not apply to shift right algebraic because a value
3196     // out of range will produce a -1/0.
3197     III.ImmWidth = 16;
3198     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
3199         Opc == PPC::RLDCR_rec)
3200       III.TruncateImmTo = 6;
3201     else
3202       III.TruncateImmTo = 7;
3203     switch(Opc) {
3204     default: llvm_unreachable("Unknown opcode");
3205     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
3206     case PPC::RLDCL_rec:
3207       III.ImmOpcode = PPC::RLDICL_rec;
3208       break;
3209     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
3210     case PPC::RLDCR_rec:
3211       III.ImmOpcode = PPC::RLDICR_rec;
3212       break;
3213     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
3214     case PPC::SLD_rec:
3215       III.ImmOpcode = PPC::RLDICR_rec;
3216       break;
3217     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
3218     case PPC::SRD_rec:
3219       III.ImmOpcode = PPC::RLDICL_rec;
3220       break;
3221     case PPC::SRAD:
3222       III.ImmWidth = 6;
3223       III.TruncateImmTo = 0;
3224       III.ImmOpcode = PPC::SRADI;
3225        break;
3226     case PPC::SRAD_rec:
3227       III.ImmWidth = 6;
3228       III.TruncateImmTo = 0;
3229       III.ImmOpcode = PPC::SRADI_rec;
3230       break;
3231     }
3232     break;
3233   // Loads and stores:
3234   case PPC::LBZX:
3235   case PPC::LBZX8:
3236   case PPC::LHZX:
3237   case PPC::LHZX8:
3238   case PPC::LHAX:
3239   case PPC::LHAX8:
3240   case PPC::LWZX:
3241   case PPC::LWZX8:
3242   case PPC::LWAX:
3243   case PPC::LDX:
3244   case PPC::LFSX:
3245   case PPC::LFDX:
3246   case PPC::STBX:
3247   case PPC::STBX8:
3248   case PPC::STHX:
3249   case PPC::STHX8:
3250   case PPC::STWX:
3251   case PPC::STWX8:
3252   case PPC::STDX:
3253   case PPC::STFSX:
3254   case PPC::STFDX:
3255     III.SignedImm = true;
3256     III.ZeroIsSpecialOrig = 1;
3257     III.ZeroIsSpecialNew = 2;
3258     III.IsCommutative = true;
3259     III.IsSummingOperands = true;
3260     III.ImmOpNo = 1;
3261     III.OpNoForForwarding = 2;
3262     switch(Opc) {
3263     default: llvm_unreachable("Unknown opcode");
3264     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3265     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3266     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3267     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3268     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3269     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3270     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3271     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3272     case PPC::LWAX:
3273       III.ImmOpcode = PPC::LWA;
3274       III.ImmMustBeMultipleOf = 4;
3275       break;
3276     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3277     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3278     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3279     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3280     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3281     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3282     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3283     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3284     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3285     case PPC::STDX:
3286       III.ImmOpcode = PPC::STD;
3287       III.ImmMustBeMultipleOf = 4;
3288       break;
3289     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3290     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3291     }
3292     break;
3293   case PPC::LBZUX:
3294   case PPC::LBZUX8:
3295   case PPC::LHZUX:
3296   case PPC::LHZUX8:
3297   case PPC::LHAUX:
3298   case PPC::LHAUX8:
3299   case PPC::LWZUX:
3300   case PPC::LWZUX8:
3301   case PPC::LDUX:
3302   case PPC::LFSUX:
3303   case PPC::LFDUX:
3304   case PPC::STBUX:
3305   case PPC::STBUX8:
3306   case PPC::STHUX:
3307   case PPC::STHUX8:
3308   case PPC::STWUX:
3309   case PPC::STWUX8:
3310   case PPC::STDUX:
3311   case PPC::STFSUX:
3312   case PPC::STFDUX:
3313     III.SignedImm = true;
3314     III.ZeroIsSpecialOrig = 2;
3315     III.ZeroIsSpecialNew = 3;
3316     III.IsCommutative = false;
3317     III.IsSummingOperands = true;
3318     III.ImmOpNo = 2;
3319     III.OpNoForForwarding = 3;
3320     switch(Opc) {
3321     default: llvm_unreachable("Unknown opcode");
3322     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3323     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3324     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3325     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3326     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3327     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3328     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3329     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3330     case PPC::LDUX:
3331       III.ImmOpcode = PPC::LDU;
3332       III.ImmMustBeMultipleOf = 4;
3333       break;
3334     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3335     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3336     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3337     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3338     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3339     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3340     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3341     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3342     case PPC::STDUX:
3343       III.ImmOpcode = PPC::STDU;
3344       III.ImmMustBeMultipleOf = 4;
3345       break;
3346     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3347     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3348     }
3349     break;
3350   // Power9 and up only. For some of these, the X-Form version has access to all
3351   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3352   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3353   // into or stored from is one of the VR registers.
3354   case PPC::LXVX:
3355   case PPC::LXSSPX:
3356   case PPC::LXSDX:
3357   case PPC::STXVX:
3358   case PPC::STXSSPX:
3359   case PPC::STXSDX:
3360   case PPC::XFLOADf32:
3361   case PPC::XFLOADf64:
3362   case PPC::XFSTOREf32:
3363   case PPC::XFSTOREf64:
3364     if (!Subtarget.hasP9Vector())
3365       return false;
3366     III.SignedImm = true;
3367     III.ZeroIsSpecialOrig = 1;
3368     III.ZeroIsSpecialNew = 2;
3369     III.IsCommutative = true;
3370     III.IsSummingOperands = true;
3371     III.ImmOpNo = 1;
3372     III.OpNoForForwarding = 2;
3373     III.ImmMustBeMultipleOf = 4;
3374     switch(Opc) {
3375     default: llvm_unreachable("Unknown opcode");
3376     case PPC::LXVX:
3377       III.ImmOpcode = PPC::LXV;
3378       III.ImmMustBeMultipleOf = 16;
3379       break;
3380     case PPC::LXSSPX:
3381       if (PostRA) {
3382         if (IsVFReg)
3383           III.ImmOpcode = PPC::LXSSP;
3384         else {
3385           III.ImmOpcode = PPC::LFS;
3386           III.ImmMustBeMultipleOf = 1;
3387         }
3388         break;
3389       }
3390       LLVM_FALLTHROUGH;
3391     case PPC::XFLOADf32:
3392       III.ImmOpcode = PPC::DFLOADf32;
3393       break;
3394     case PPC::LXSDX:
3395       if (PostRA) {
3396         if (IsVFReg)
3397           III.ImmOpcode = PPC::LXSD;
3398         else {
3399           III.ImmOpcode = PPC::LFD;
3400           III.ImmMustBeMultipleOf = 1;
3401         }
3402         break;
3403       }
3404       LLVM_FALLTHROUGH;
3405     case PPC::XFLOADf64:
3406       III.ImmOpcode = PPC::DFLOADf64;
3407       break;
3408     case PPC::STXVX:
3409       III.ImmOpcode = PPC::STXV;
3410       III.ImmMustBeMultipleOf = 16;
3411       break;
3412     case PPC::STXSSPX:
3413       if (PostRA) {
3414         if (IsVFReg)
3415           III.ImmOpcode = PPC::STXSSP;
3416         else {
3417           III.ImmOpcode = PPC::STFS;
3418           III.ImmMustBeMultipleOf = 1;
3419         }
3420         break;
3421       }
3422       LLVM_FALLTHROUGH;
3423     case PPC::XFSTOREf32:
3424       III.ImmOpcode = PPC::DFSTOREf32;
3425       break;
3426     case PPC::STXSDX:
3427       if (PostRA) {
3428         if (IsVFReg)
3429           III.ImmOpcode = PPC::STXSD;
3430         else {
3431           III.ImmOpcode = PPC::STFD;
3432           III.ImmMustBeMultipleOf = 1;
3433         }
3434         break;
3435       }
3436       LLVM_FALLTHROUGH;
3437     case PPC::XFSTOREf64:
3438       III.ImmOpcode = PPC::DFSTOREf64;
3439       break;
3440     }
3441     break;
3442   }
3443   return true;
3444 }
3445 
3446 // Utility function for swaping two arbitrary operands of an instruction.
3447 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3448   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3449 
3450   unsigned MaxOp = std::max(Op1, Op2);
3451   unsigned MinOp = std::min(Op1, Op2);
3452   MachineOperand MOp1 = MI.getOperand(MinOp);
3453   MachineOperand MOp2 = MI.getOperand(MaxOp);
3454   MI.RemoveOperand(std::max(Op1, Op2));
3455   MI.RemoveOperand(std::min(Op1, Op2));
3456 
3457   // If the operands we are swapping are the two at the end (the common case)
3458   // we can just remove both and add them in the opposite order.
3459   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3460     MI.addOperand(MOp2);
3461     MI.addOperand(MOp1);
3462   } else {
3463     // Store all operands in a temporary vector, remove them and re-add in the
3464     // right order.
3465     SmallVector<MachineOperand, 2> MOps;
3466     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3467     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3468       MOps.push_back(MI.getOperand(i));
3469       MI.RemoveOperand(i);
3470     }
3471     // MOp2 needs to be added next.
3472     MI.addOperand(MOp2);
3473     // Now add the rest.
3474     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3475       if (i == MaxOp)
3476         MI.addOperand(MOp1);
3477       else {
3478         MI.addOperand(MOps.back());
3479         MOps.pop_back();
3480       }
3481     }
3482   }
3483 }
3484 
3485 // Check if the 'MI' that has the index OpNoForForwarding
3486 // meets the requirement described in the ImmInstrInfo.
3487 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3488                                                const ImmInstrInfo &III,
3489                                                unsigned OpNoForForwarding
3490                                                ) const {
3491   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3492   // would not work pre-RA, we can only do the check post RA.
3493   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3494   if (MRI.isSSA())
3495     return false;
3496 
3497   // Cannot do the transform if MI isn't summing the operands.
3498   if (!III.IsSummingOperands)
3499     return false;
3500 
3501   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3502   if (!III.ZeroIsSpecialOrig)
3503     return false;
3504 
3505   // We cannot do the transform if the operand we are trying to replace
3506   // isn't the same as the operand the instruction allows.
3507   if (OpNoForForwarding != III.OpNoForForwarding)
3508     return false;
3509 
3510   // Check if the instruction we are trying to transform really has
3511   // the special zero register as its operand.
3512   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3513       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3514     return false;
3515 
3516   // This machine instruction is convertible if it is,
3517   // 1. summing the operands.
3518   // 2. one of the operands is special zero register.
3519   // 3. the operand we are trying to replace is allowed by the MI.
3520   return true;
3521 }
3522 
3523 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3524 // accordingly.
3525 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3526                                                const ImmInstrInfo &III,
3527                                                MachineOperand *&ImmMO,
3528                                                MachineOperand *&RegMO) const {
3529   unsigned Opc = DefMI.getOpcode();
3530   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3531     return false;
3532 
3533   assert(DefMI.getNumOperands() >= 3 &&
3534          "Add inst must have at least three operands");
3535   RegMO = &DefMI.getOperand(1);
3536   ImmMO = &DefMI.getOperand(2);
3537 
3538   // Before RA, ADDI first operand could be a frame index.
3539   if (!RegMO->isReg())
3540     return false;
3541 
3542   // This DefMI is elgible for forwarding if it is:
3543   // 1. add inst
3544   // 2. one of the operands is Imm/CPI/Global.
3545   return isAnImmediateOperand(*ImmMO);
3546 }
3547 
3548 bool PPCInstrInfo::isRegElgibleForForwarding(
3549     const MachineOperand &RegMO, const MachineInstr &DefMI,
3550     const MachineInstr &MI, bool KillDefMI,
3551     bool &IsFwdFeederRegKilled) const {
3552   // x = addi y, imm
3553   // ...
3554   // z = lfdx 0, x   -> z = lfd imm(y)
3555   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3556   // of "y" between the DEF of "x" and "z".
3557   // The query is only valid post RA.
3558   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3559   if (MRI.isSSA())
3560     return false;
3561 
3562   Register Reg = RegMO.getReg();
3563 
3564   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3565   MachineBasicBlock::const_reverse_iterator It = MI;
3566   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3567   It++;
3568   for (; It != E; ++It) {
3569     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3570       return false;
3571     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3572       IsFwdFeederRegKilled = true;
3573     // Made it to DefMI without encountering a clobber.
3574     if ((&*It) == &DefMI)
3575       break;
3576   }
3577   assert((&*It) == &DefMI && "DefMI is missing");
3578 
3579   // If DefMI also defines the register to be forwarded, we can only forward it
3580   // if DefMI is being erased.
3581   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3582     return KillDefMI;
3583 
3584   return true;
3585 }
3586 
3587 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3588                                              const MachineInstr &DefMI,
3589                                              const ImmInstrInfo &III,
3590                                              int64_t &Imm,
3591                                              int64_t BaseImm) const {
3592   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3593   if (DefMI.getOpcode() == PPC::ADDItocL) {
3594     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3595     // However, we know that, it is 16-bit width, and has the alignment of 4.
3596     // Check if the instruction met the requirement.
3597     if (III.ImmMustBeMultipleOf > 4 ||
3598        III.TruncateImmTo || III.ImmWidth != 16)
3599       return false;
3600 
3601     // Going from XForm to DForm loads means that the displacement needs to be
3602     // not just an immediate but also a multiple of 4, or 16 depending on the
3603     // load. A DForm load cannot be represented if it is a multiple of say 2.
3604     // XForm loads do not have this restriction.
3605     if (ImmMO.isGlobal()) {
3606       const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
3607       if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
3608         return false;
3609     }
3610 
3611     return true;
3612   }
3613 
3614   if (ImmMO.isImm()) {
3615     // It is Imm, we need to check if the Imm fit the range.
3616     // Sign-extend to 64-bits.
3617     // DefMI may be folded with another imm form instruction, the result Imm is
3618     // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
3619     Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
3620 
3621     if (Imm % III.ImmMustBeMultipleOf)
3622       return false;
3623     if (III.TruncateImmTo)
3624       Imm &= ((1 << III.TruncateImmTo) - 1);
3625     if (III.SignedImm) {
3626       APInt ActualValue(64, Imm, true);
3627       if (!ActualValue.isSignedIntN(III.ImmWidth))
3628         return false;
3629     } else {
3630       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3631       if ((uint64_t)Imm > UnsignedMax)
3632         return false;
3633     }
3634   }
3635   else
3636     return false;
3637 
3638   // This ImmMO is forwarded if it meets the requriement describle
3639   // in ImmInstrInfo
3640   return true;
3641 }
3642 
3643 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
3644                                 unsigned OpNoForForwarding,
3645                                 MachineInstr **KilledDef) const {
3646   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
3647       !DefMI.getOperand(1).isImm())
3648     return false;
3649 
3650   MachineFunction *MF = MI.getParent()->getParent();
3651   MachineRegisterInfo *MRI = &MF->getRegInfo();
3652   bool PostRA = !MRI->isSSA();
3653 
3654   int64_t Immediate = DefMI.getOperand(1).getImm();
3655   // Sign-extend to 64-bits.
3656   int64_t SExtImm = SignExtend64<16>(Immediate);
3657 
3658   bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
3659   Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3660 
3661   bool ReplaceWithLI = false;
3662   bool Is64BitLI = false;
3663   int64_t NewImm = 0;
3664   bool SetCR = false;
3665   unsigned Opc = MI.getOpcode();
3666   switch (Opc) {
3667   default:
3668     return false;
3669 
3670   // FIXME: Any branches conditional on such a comparison can be made
3671   // unconditional. At this time, this happens too infrequently to be worth
3672   // the implementation effort, but if that ever changes, we could convert
3673   // such a pattern here.
3674   case PPC::CMPWI:
3675   case PPC::CMPLWI:
3676   case PPC::CMPDI:
3677   case PPC::CMPLDI: {
3678     // Doing this post-RA would require dataflow analysis to reliably find uses
3679     // of the CR register set by the compare.
3680     // No need to fixup killed/dead flag since this transformation is only valid
3681     // before RA.
3682     if (PostRA)
3683       return false;
3684     // If a compare-immediate is fed by an immediate and is itself an input of
3685     // an ISEL (the most common case) into a COPY of the correct register.
3686     bool Changed = false;
3687     Register DefReg = MI.getOperand(0).getReg();
3688     int64_t Comparand = MI.getOperand(2).getImm();
3689     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
3690                                 ? (Comparand | 0xFFFFFFFFFFFF0000)
3691                                 : Comparand;
3692 
3693     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
3694       unsigned UseOpc = CompareUseMI.getOpcode();
3695       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
3696         continue;
3697       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
3698       Register TrueReg = CompareUseMI.getOperand(1).getReg();
3699       Register FalseReg = CompareUseMI.getOperand(2).getReg();
3700       unsigned RegToCopy =
3701           selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
3702       if (RegToCopy == PPC::NoRegister)
3703         continue;
3704       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
3705       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
3706         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
3707         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
3708         CompareUseMI.RemoveOperand(3);
3709         CompareUseMI.RemoveOperand(2);
3710         continue;
3711       }
3712       LLVM_DEBUG(
3713           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
3714       LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
3715       LLVM_DEBUG(dbgs() << "Is converted to:\n");
3716       // Convert to copy and remove unneeded operands.
3717       CompareUseMI.setDesc(get(PPC::COPY));
3718       CompareUseMI.RemoveOperand(3);
3719       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
3720       CmpIselsConverted++;
3721       Changed = true;
3722       LLVM_DEBUG(CompareUseMI.dump());
3723     }
3724     if (Changed)
3725       return true;
3726     // This may end up incremented multiple times since this function is called
3727     // during a fixed-point transformation, but it is only meant to indicate the
3728     // presence of this opportunity.
3729     MissedConvertibleImmediateInstrs++;
3730     return false;
3731   }
3732 
3733   // Immediate forms - may simply be convertable to an LI.
3734   case PPC::ADDI:
3735   case PPC::ADDI8: {
3736     // Does the sum fit in a 16-bit signed field?
3737     int64_t Addend = MI.getOperand(2).getImm();
3738     if (isInt<16>(Addend + SExtImm)) {
3739       ReplaceWithLI = true;
3740       Is64BitLI = Opc == PPC::ADDI8;
3741       NewImm = Addend + SExtImm;
3742       break;
3743     }
3744     return false;
3745   }
3746   case PPC::RLDICL:
3747   case PPC::RLDICL_rec:
3748   case PPC::RLDICL_32:
3749   case PPC::RLDICL_32_64: {
3750     // Use APInt's rotate function.
3751     int64_t SH = MI.getOperand(2).getImm();
3752     int64_t MB = MI.getOperand(3).getImm();
3753     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
3754                 SExtImm, true);
3755     InVal = InVal.rotl(SH);
3756     uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
3757     InVal &= Mask;
3758     // Can't replace negative values with an LI as that will sign-extend
3759     // and not clear the left bits. If we're setting the CR bit, we will use
3760     // ANDI_rec which won't sign extend, so that's safe.
3761     if (isUInt<15>(InVal.getSExtValue()) ||
3762         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
3763       ReplaceWithLI = true;
3764       Is64BitLI = Opc != PPC::RLDICL_32;
3765       NewImm = InVal.getSExtValue();
3766       SetCR = Opc == PPC::RLDICL_rec;
3767       break;
3768     }
3769     return false;
3770   }
3771   case PPC::RLWINM:
3772   case PPC::RLWINM8:
3773   case PPC::RLWINM_rec:
3774   case PPC::RLWINM8_rec: {
3775     int64_t SH = MI.getOperand(2).getImm();
3776     int64_t MB = MI.getOperand(3).getImm();
3777     int64_t ME = MI.getOperand(4).getImm();
3778     APInt InVal(32, SExtImm, true);
3779     InVal = InVal.rotl(SH);
3780     APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
3781     InVal &= Mask;
3782     // Can't replace negative values with an LI as that will sign-extend
3783     // and not clear the left bits. If we're setting the CR bit, we will use
3784     // ANDI_rec which won't sign extend, so that's safe.
3785     bool ValueFits = isUInt<15>(InVal.getSExtValue());
3786     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
3787                   isUInt<16>(InVal.getSExtValue()));
3788     if (ValueFits) {
3789       ReplaceWithLI = true;
3790       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
3791       NewImm = InVal.getSExtValue();
3792       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
3793       break;
3794     }
3795     return false;
3796   }
3797   case PPC::ORI:
3798   case PPC::ORI8:
3799   case PPC::XORI:
3800   case PPC::XORI8: {
3801     int64_t LogicalImm = MI.getOperand(2).getImm();
3802     int64_t Result = 0;
3803     if (Opc == PPC::ORI || Opc == PPC::ORI8)
3804       Result = LogicalImm | SExtImm;
3805     else
3806       Result = LogicalImm ^ SExtImm;
3807     if (isInt<16>(Result)) {
3808       ReplaceWithLI = true;
3809       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
3810       NewImm = Result;
3811       break;
3812     }
3813     return false;
3814   }
3815   }
3816 
3817   if (ReplaceWithLI) {
3818     // We need to be careful with CR-setting instructions we're replacing.
3819     if (SetCR) {
3820       // We don't know anything about uses when we're out of SSA, so only
3821       // replace if the new immediate will be reproduced.
3822       bool ImmChanged = (SExtImm & NewImm) != NewImm;
3823       if (PostRA && ImmChanged)
3824         return false;
3825 
3826       if (!PostRA) {
3827         // If the defining load-immediate has no other uses, we can just replace
3828         // the immediate with the new immediate.
3829         if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
3830           DefMI.getOperand(1).setImm(NewImm);
3831 
3832         // If we're not using the GPR result of the CR-setting instruction, we
3833         // just need to and with zero/non-zero depending on the new immediate.
3834         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
3835           if (NewImm) {
3836             assert(Immediate && "Transformation converted zero to non-zero?");
3837             NewImm = Immediate;
3838           }
3839         } else if (ImmChanged)
3840           return false;
3841       }
3842     }
3843 
3844     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3845     LLVM_DEBUG(MI.dump());
3846     LLVM_DEBUG(dbgs() << "Fed by:\n");
3847     LLVM_DEBUG(DefMI.dump());
3848     LoadImmediateInfo LII;
3849     LII.Imm = NewImm;
3850     LII.Is64Bit = Is64BitLI;
3851     LII.SetCR = SetCR;
3852     // If we're setting the CR, the original load-immediate must be kept (as an
3853     // operand to ANDI_rec/ANDI8_rec).
3854     if (KilledDef && SetCR)
3855       *KilledDef = nullptr;
3856     replaceInstrWithLI(MI, LII);
3857 
3858     // Fixup killed/dead flag after transformation.
3859     // Pattern:
3860     // ForwardingOperandReg = LI imm1
3861     // y = op2 imm2, ForwardingOperandReg(killed)
3862     if (IsForwardingOperandKilled)
3863       fixupIsDeadOrKill(DefMI, MI, ForwardingOperandReg);
3864 
3865     LLVM_DEBUG(dbgs() << "With:\n");
3866     LLVM_DEBUG(MI.dump());
3867     return true;
3868   }
3869   return false;
3870 }
3871 
3872 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
3873     MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
3874   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3875   bool PostRA = !MRI->isSSA();
3876   // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
3877   // for post-ra.
3878   if (PostRA)
3879     return false;
3880 
3881   // Only handle load/store.
3882   if (!MI.mayLoadOrStore())
3883     return false;
3884 
3885   unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
3886 
3887   assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
3888          "MI must have x-form opcode");
3889 
3890   // get Imm Form info.
3891   ImmInstrInfo III;
3892   bool IsVFReg = MI.getOperand(0).isReg()
3893                      ? isVFRegister(MI.getOperand(0).getReg())
3894                      : false;
3895 
3896   if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
3897     return false;
3898 
3899   if (!III.IsSummingOperands)
3900     return false;
3901 
3902   if (OpNoForForwarding != III.OpNoForForwarding)
3903     return false;
3904 
3905   MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
3906   if (!ImmOperandMI.isImm())
3907     return false;
3908 
3909   // Check DefMI.
3910   MachineOperand *ImmMO = nullptr;
3911   MachineOperand *RegMO = nullptr;
3912   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3913     return false;
3914   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3915 
3916   // Check Imm.
3917   // Set ImmBase from imm instruction as base and get new Imm inside
3918   // isImmElgibleForForwarding.
3919   int64_t ImmBase = ImmOperandMI.getImm();
3920   int64_t Imm = 0;
3921   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
3922     return false;
3923 
3924   // Get killed info in case fixup needed after transformation.
3925   unsigned ForwardKilledOperandReg = ~0U;
3926   if (MI.getOperand(III.OpNoForForwarding).isKill())
3927     ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
3928 
3929   // Do the transform
3930   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3931   LLVM_DEBUG(MI.dump());
3932   LLVM_DEBUG(dbgs() << "Fed by:\n");
3933   LLVM_DEBUG(DefMI.dump());
3934 
3935   MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
3936   MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill());
3937   MI.getOperand(III.ImmOpNo).setImm(Imm);
3938 
3939   // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
3940   if (DefMI.getParent() == MI.getParent()) {
3941     // Check if reg is killed between MI and DefMI.
3942     auto IsKilledFor = [&](unsigned Reg) {
3943       MachineBasicBlock::const_reverse_iterator It = MI;
3944       MachineBasicBlock::const_reverse_iterator E = DefMI;
3945       It++;
3946       for (; It != E; ++It) {
3947         if (It->killsRegister(Reg))
3948           return true;
3949       }
3950       return false;
3951     };
3952 
3953     // Update kill flag
3954     if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
3955       fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3956     if (ForwardKilledOperandReg != ~0U)
3957       fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3958   }
3959 
3960   LLVM_DEBUG(dbgs() << "With:\n");
3961   LLVM_DEBUG(MI.dump());
3962   return true;
3963 }
3964 
3965 // If an X-Form instruction is fed by an add-immediate and one of its operands
3966 // is the literal zero, attempt to forward the source of the add-immediate to
3967 // the corresponding D-Form instruction with the displacement coming from
3968 // the immediate being added.
3969 bool PPCInstrInfo::transformToImmFormFedByAdd(
3970     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3971     MachineInstr &DefMI, bool KillDefMI) const {
3972   //         RegMO ImmMO
3973   //           |    |
3974   // x = addi reg, imm  <----- DefMI
3975   // y = op    0 ,  x   <----- MI
3976   //                |
3977   //         OpNoForForwarding
3978   // Check if the MI meet the requirement described in the III.
3979   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3980     return false;
3981 
3982   // Check if the DefMI meet the requirement
3983   // described in the III. If yes, set the ImmMO and RegMO accordingly.
3984   MachineOperand *ImmMO = nullptr;
3985   MachineOperand *RegMO = nullptr;
3986   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3987     return false;
3988   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3989 
3990   // As we get the Imm operand now, we need to check if the ImmMO meet
3991   // the requirement described in the III. If yes set the Imm.
3992   int64_t Imm = 0;
3993   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3994     return false;
3995 
3996   bool IsFwdFeederRegKilled = false;
3997   // Check if the RegMO can be forwarded to MI.
3998   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3999                                  IsFwdFeederRegKilled))
4000     return false;
4001 
4002   // Get killed info in case fixup needed after transformation.
4003   unsigned ForwardKilledOperandReg = ~0U;
4004   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4005   bool PostRA = !MRI.isSSA();
4006   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
4007     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4008 
4009   // We know that, the MI and DefMI both meet the pattern, and
4010   // the Imm also meet the requirement with the new Imm-form.
4011   // It is safe to do the transformation now.
4012   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4013   LLVM_DEBUG(MI.dump());
4014   LLVM_DEBUG(dbgs() << "Fed by:\n");
4015   LLVM_DEBUG(DefMI.dump());
4016 
4017   // Update the base reg first.
4018   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4019                                                         false, false,
4020                                                         RegMO->isKill());
4021 
4022   // Then, update the imm.
4023   if (ImmMO->isImm()) {
4024     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
4025     // directly.
4026     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
4027   }
4028   else {
4029     // Otherwise, it is Constant Pool Index(CPI) or Global,
4030     // which is relocation in fact. We need to replace the special zero
4031     // register with ImmMO.
4032     // Before that, we need to fixup the target flags for imm.
4033     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
4034     if (DefMI.getOpcode() == PPC::ADDItocL)
4035       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
4036 
4037     // MI didn't have the interface such as MI.setOperand(i) though
4038     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4039     // ImmMO, we need to remove ZERO operand and all the operands behind it,
4040     // and, add the ImmMO, then, move back all the operands behind ZERO.
4041     SmallVector<MachineOperand, 2> MOps;
4042     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
4043       MOps.push_back(MI.getOperand(i));
4044       MI.RemoveOperand(i);
4045     }
4046 
4047     // Remove the last MO in the list, which is ZERO operand in fact.
4048     MOps.pop_back();
4049     // Add the imm operand.
4050     MI.addOperand(*ImmMO);
4051     // Now add the rest back.
4052     for (auto &MO : MOps)
4053       MI.addOperand(MO);
4054   }
4055 
4056   // Update the opcode.
4057   MI.setDesc(get(III.ImmOpcode));
4058 
4059   // Fix up killed/dead flag after transformation.
4060   // Pattern 1:
4061   // x = ADD KilledFwdFeederReg, imm
4062   // n = opn KilledFwdFeederReg(killed), regn
4063   // y = XOP 0, x
4064   // Pattern 2:
4065   // x = ADD reg(killed), imm
4066   // y = XOP 0, x
4067   if (IsFwdFeederRegKilled || RegMO->isKill())
4068     fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
4069   // Pattern 3:
4070   // ForwardKilledOperandReg = ADD reg, imm
4071   // y = XOP 0, ForwardKilledOperandReg(killed)
4072   if (ForwardKilledOperandReg != ~0U)
4073     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
4074 
4075   LLVM_DEBUG(dbgs() << "With:\n");
4076   LLVM_DEBUG(MI.dump());
4077 
4078   return true;
4079 }
4080 
4081 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
4082                                              const ImmInstrInfo &III,
4083                                              unsigned ConstantOpNo,
4084                                              MachineInstr &DefMI) const {
4085   // DefMI must be LI or LI8.
4086   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4087       !DefMI.getOperand(1).isImm())
4088     return false;
4089 
4090   // Get Imm operand and Sign-extend to 64-bits.
4091   int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
4092 
4093   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4094   bool PostRA = !MRI.isSSA();
4095   // Exit early if we can't convert this.
4096   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
4097     return false;
4098   if (Imm % III.ImmMustBeMultipleOf)
4099     return false;
4100   if (III.TruncateImmTo)
4101     Imm &= ((1 << III.TruncateImmTo) - 1);
4102   if (III.SignedImm) {
4103     APInt ActualValue(64, Imm, true);
4104     if (!ActualValue.isSignedIntN(III.ImmWidth))
4105       return false;
4106   } else {
4107     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4108     if ((uint64_t)Imm > UnsignedMax)
4109       return false;
4110   }
4111 
4112   // If we're post-RA, the instructions don't agree on whether register zero is
4113   // special, we can transform this as long as the register operand that will
4114   // end up in the location where zero is special isn't R0.
4115   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4116     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
4117       III.ZeroIsSpecialNew + 1;
4118     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
4119     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4120     // If R0 is in the operand where zero is special for the new instruction,
4121     // it is unsafe to transform if the constant operand isn't that operand.
4122     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
4123         ConstantOpNo != III.ZeroIsSpecialNew)
4124       return false;
4125     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
4126         ConstantOpNo != PosForOrigZero)
4127       return false;
4128   }
4129 
4130   // Get killed info in case fixup needed after transformation.
4131   unsigned ForwardKilledOperandReg = ~0U;
4132   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
4133     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
4134 
4135   unsigned Opc = MI.getOpcode();
4136   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
4137                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
4138                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
4139                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
4140   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
4141                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
4142   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
4143                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
4144   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
4145                     Opc == PPC::SRD_rec;
4146 
4147   MI.setDesc(get(III.ImmOpcode));
4148   if (ConstantOpNo == III.OpNoForForwarding) {
4149     // Converting shifts to immediate form is a bit tricky since they may do
4150     // one of three things:
4151     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
4152     // 2. If the shift amount is zero, the result is unchanged (save for maybe
4153     //    setting CR0)
4154     // 3. If the shift amount is in [1, OpSize), it's just a shift
4155     if (SpecialShift32 || SpecialShift64) {
4156       LoadImmediateInfo LII;
4157       LII.Imm = 0;
4158       LII.SetCR = SetCR;
4159       LII.Is64Bit = SpecialShift64;
4160       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
4161       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
4162         replaceInstrWithLI(MI, LII);
4163       // Shifts by zero don't change the value. If we don't need to set CR0,
4164       // just convert this to a COPY. Can't do this post-RA since we've already
4165       // cleaned up the copies.
4166       else if (!SetCR && ShAmt == 0 && !PostRA) {
4167         MI.RemoveOperand(2);
4168         MI.setDesc(get(PPC::COPY));
4169       } else {
4170         // The 32 bit and 64 bit instructions are quite different.
4171         if (SpecialShift32) {
4172           // Left shifts use (N, 0, 31-N).
4173           // Right shifts use (32-N, N, 31) if 0 < N < 32.
4174           //              use (0, 0, 31)    if N == 0.
4175           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
4176           uint64_t MB = RightShift ? ShAmt : 0;
4177           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
4178           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
4179           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
4180             .addImm(ME);
4181         } else {
4182           // Left shifts use (N, 63-N).
4183           // Right shifts use (64-N, N) if 0 < N < 64.
4184           //              use (0, 0)    if N == 0.
4185           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
4186           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
4187           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
4188           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
4189         }
4190       }
4191     } else
4192       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
4193   }
4194   // Convert commutative instructions (switch the operands and convert the
4195   // desired one to an immediate.
4196   else if (III.IsCommutative) {
4197     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
4198     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
4199   } else
4200     llvm_unreachable("Should have exited early!");
4201 
4202   // For instructions for which the constant register replaces a different
4203   // operand than where the immediate goes, we need to swap them.
4204   if (III.OpNoForForwarding != III.ImmOpNo)
4205     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
4206 
4207   // If the special R0/X0 register index are different for original instruction
4208   // and new instruction, we need to fix up the register class in new
4209   // instruction.
4210   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4211     if (III.ZeroIsSpecialNew) {
4212       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
4213       // need to fix up register class.
4214       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4215       if (Register::isVirtualRegister(RegToModify)) {
4216         const TargetRegisterClass *NewRC =
4217           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
4218           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
4219         MRI.setRegClass(RegToModify, NewRC);
4220       }
4221     }
4222   }
4223 
4224   // Fix up killed/dead flag after transformation.
4225   // Pattern:
4226   // ForwardKilledOperandReg = LI imm
4227   // y = XOP reg, ForwardKilledOperandReg(killed)
4228   if (ForwardKilledOperandReg != ~0U)
4229     fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
4230   return true;
4231 }
4232 
4233 const TargetRegisterClass *
4234 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
4235   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
4236     return &PPC::VSRCRegClass;
4237   return RC;
4238 }
4239 
4240 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
4241   return PPC::getRecordFormOpcode(Opcode);
4242 }
4243 
4244 // This function returns true if the machine instruction
4245 // always outputs a value by sign-extending a 32 bit value,
4246 // i.e. 0 to 31-th bits are same as 32-th bit.
4247 static bool isSignExtendingOp(const MachineInstr &MI) {
4248   int Opcode = MI.getOpcode();
4249   if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
4250       Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
4251       Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
4252       Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
4253       Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
4254       Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
4255       Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
4256       Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
4257       Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
4258       Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
4259       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
4260       Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
4261       Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
4262       Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
4263       Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
4264       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
4265       Opcode == PPC::EXTSB8_32_64)
4266     return true;
4267 
4268   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
4269     return true;
4270 
4271   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
4272        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
4273       MI.getOperand(3).getImm() > 0 &&
4274       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
4275     return true;
4276 
4277   return false;
4278 }
4279 
4280 // This function returns true if the machine instruction
4281 // always outputs zeros in higher 32 bits.
4282 static bool isZeroExtendingOp(const MachineInstr &MI) {
4283   int Opcode = MI.getOpcode();
4284   // The 16-bit immediate is sign-extended in li/lis.
4285   // If the most significant bit is zero, all higher bits are zero.
4286   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
4287       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
4288     int64_t Imm = MI.getOperand(1).getImm();
4289     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
4290       return true;
4291   }
4292 
4293   // We have some variations of rotate-and-mask instructions
4294   // that clear higher 32-bits.
4295   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
4296        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
4297        Opcode == PPC::RLDICL_32_64) &&
4298       MI.getOperand(3).getImm() >= 32)
4299     return true;
4300 
4301   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
4302       MI.getOperand(3).getImm() >= 32 &&
4303       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
4304     return true;
4305 
4306   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
4307        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
4308        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
4309       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
4310     return true;
4311 
4312   // There are other instructions that clear higher 32-bits.
4313   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
4314       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
4315       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
4316       Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
4317       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
4318       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
4319       Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
4320       Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
4321       Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
4322       Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
4323       Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
4324       Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
4325       Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
4326       Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
4327       Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
4328       Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
4329       Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
4330       Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
4331       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
4332       Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
4333       Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
4334       Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
4335       Opcode == PPC::MFVSRWZ)
4336     return true;
4337 
4338   return false;
4339 }
4340 
4341 // This function returns true if the input MachineInstr is a TOC save
4342 // instruction.
4343 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
4344   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
4345     return false;
4346   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4347   unsigned StackOffset = MI.getOperand(1).getImm();
4348   Register StackReg = MI.getOperand(2).getReg();
4349   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
4350     return true;
4351 
4352   return false;
4353 }
4354 
4355 // We limit the max depth to track incoming values of PHIs or binary ops
4356 // (e.g. AND) to avoid excessive cost.
4357 const unsigned MAX_DEPTH = 1;
4358 
4359 bool
4360 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
4361                                    const unsigned Depth) const {
4362   const MachineFunction *MF = MI.getParent()->getParent();
4363   const MachineRegisterInfo *MRI = &MF->getRegInfo();
4364 
4365   // If we know this instruction returns sign- or zero-extended result,
4366   // return true.
4367   if (SignExt ? isSignExtendingOp(MI):
4368                 isZeroExtendingOp(MI))
4369     return true;
4370 
4371   switch (MI.getOpcode()) {
4372   case PPC::COPY: {
4373     Register SrcReg = MI.getOperand(1).getReg();
4374 
4375     // In both ELFv1 and v2 ABI, method parameters and the return value
4376     // are sign- or zero-extended.
4377     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
4378       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
4379       // We check the ZExt/SExt flags for a method parameter.
4380       if (MI.getParent()->getBasicBlock() ==
4381           &MF->getFunction().getEntryBlock()) {
4382         Register VReg = MI.getOperand(0).getReg();
4383         if (MF->getRegInfo().isLiveIn(VReg))
4384           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
4385                            FuncInfo->isLiveInZExt(VReg);
4386       }
4387 
4388       // For a method return value, we check the ZExt/SExt flags in attribute.
4389       // We assume the following code sequence for method call.
4390       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
4391       //   BL8_NOP @func,...
4392       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
4393       //   %5 = COPY %x3; G8RC:%5
4394       if (SrcReg == PPC::X3) {
4395         const MachineBasicBlock *MBB = MI.getParent();
4396         MachineBasicBlock::const_instr_iterator II =
4397           MachineBasicBlock::const_instr_iterator(&MI);
4398         if (II != MBB->instr_begin() &&
4399             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
4400           const MachineInstr &CallMI = *(--II);
4401           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
4402             const Function *CalleeFn =
4403               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
4404             if (!CalleeFn)
4405               return false;
4406             const IntegerType *IntTy =
4407               dyn_cast<IntegerType>(CalleeFn->getReturnType());
4408             const AttributeSet &Attrs =
4409               CalleeFn->getAttributes().getRetAttributes();
4410             if (IntTy && IntTy->getBitWidth() <= 32)
4411               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
4412                                                   Attribute::ZExt);
4413           }
4414         }
4415       }
4416     }
4417 
4418     // If this is a copy from another register, we recursively check source.
4419     if (!Register::isVirtualRegister(SrcReg))
4420       return false;
4421     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4422     if (SrcMI != NULL)
4423       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4424 
4425     return false;
4426   }
4427 
4428   case PPC::ANDI_rec:
4429   case PPC::ANDIS_rec:
4430   case PPC::ORI:
4431   case PPC::ORIS:
4432   case PPC::XORI:
4433   case PPC::XORIS:
4434   case PPC::ANDI8_rec:
4435   case PPC::ANDIS8_rec:
4436   case PPC::ORI8:
4437   case PPC::ORIS8:
4438   case PPC::XORI8:
4439   case PPC::XORIS8: {
4440     // logical operation with 16-bit immediate does not change the upper bits.
4441     // So, we track the operand register as we do for register copy.
4442     Register SrcReg = MI.getOperand(1).getReg();
4443     if (!Register::isVirtualRegister(SrcReg))
4444       return false;
4445     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4446     if (SrcMI != NULL)
4447       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4448 
4449     return false;
4450   }
4451 
4452   // If all incoming values are sign-/zero-extended,
4453   // the output of OR, ISEL or PHI is also sign-/zero-extended.
4454   case PPC::OR:
4455   case PPC::OR8:
4456   case PPC::ISEL:
4457   case PPC::PHI: {
4458     if (Depth >= MAX_DEPTH)
4459       return false;
4460 
4461     // The input registers for PHI are operand 1, 3, ...
4462     // The input registers for others are operand 1 and 2.
4463     unsigned E = 3, D = 1;
4464     if (MI.getOpcode() == PPC::PHI) {
4465       E = MI.getNumOperands();
4466       D = 2;
4467     }
4468 
4469     for (unsigned I = 1; I != E; I += D) {
4470       if (MI.getOperand(I).isReg()) {
4471         Register SrcReg = MI.getOperand(I).getReg();
4472         if (!Register::isVirtualRegister(SrcReg))
4473           return false;
4474         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4475         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
4476           return false;
4477       }
4478       else
4479         return false;
4480     }
4481     return true;
4482   }
4483 
4484   // If at least one of the incoming values of an AND is zero extended
4485   // then the output is also zero-extended. If both of the incoming values
4486   // are sign-extended then the output is also sign extended.
4487   case PPC::AND:
4488   case PPC::AND8: {
4489     if (Depth >= MAX_DEPTH)
4490        return false;
4491 
4492     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
4493 
4494     Register SrcReg1 = MI.getOperand(1).getReg();
4495     Register SrcReg2 = MI.getOperand(2).getReg();
4496 
4497     if (!Register::isVirtualRegister(SrcReg1) ||
4498         !Register::isVirtualRegister(SrcReg2))
4499       return false;
4500 
4501     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
4502     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
4503     if (!MISrc1 || !MISrc2)
4504         return false;
4505 
4506     if(SignExt)
4507         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
4508                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4509     else
4510         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
4511                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4512   }
4513 
4514   default:
4515     break;
4516   }
4517   return false;
4518 }
4519 
4520 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
4521   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
4522 }
4523 
4524 namespace {
4525 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
4526   MachineInstr *Loop, *EndLoop, *LoopCount;
4527   MachineFunction *MF;
4528   const TargetInstrInfo *TII;
4529   int64_t TripCount;
4530 
4531 public:
4532   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
4533                        MachineInstr *LoopCount)
4534       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
4535         MF(Loop->getParent()->getParent()),
4536         TII(MF->getSubtarget().getInstrInfo()) {
4537     // Inspect the Loop instruction up-front, as it may be deleted when we call
4538     // createTripCountGreaterCondition.
4539     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
4540       TripCount = LoopCount->getOperand(1).getImm();
4541     else
4542       TripCount = -1;
4543   }
4544 
4545   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
4546     // Only ignore the terminator.
4547     return MI == EndLoop;
4548   }
4549 
4550   Optional<bool>
4551   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
4552                                   SmallVectorImpl<MachineOperand> &Cond) override {
4553     if (TripCount == -1) {
4554       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4555       // so we don't need to generate any thing here.
4556       Cond.push_back(MachineOperand::CreateImm(0));
4557       Cond.push_back(MachineOperand::CreateReg(
4558           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
4559           true));
4560       return {};
4561     }
4562 
4563     return TripCount > TC;
4564   }
4565 
4566   void setPreheader(MachineBasicBlock *NewPreheader) override {
4567     // Do nothing. We want the LOOP setup instruction to stay in the *old*
4568     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
4569   }
4570 
4571   void adjustTripCount(int TripCountAdjust) override {
4572     // If the loop trip count is a compile-time value, then just change the
4573     // value.
4574     if (LoopCount->getOpcode() == PPC::LI8 ||
4575         LoopCount->getOpcode() == PPC::LI) {
4576       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
4577       LoopCount->getOperand(1).setImm(TripCount);
4578       return;
4579     }
4580 
4581     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4582     // so we don't need to generate any thing here.
4583   }
4584 
4585   void disposed() override {
4586     Loop->eraseFromParent();
4587     // Ensure the loop setup instruction is deleted too.
4588     LoopCount->eraseFromParent();
4589   }
4590 };
4591 } // namespace
4592 
4593 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4594 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
4595   // We really "analyze" only hardware loops right now.
4596   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
4597   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
4598   if (Preheader == LoopBB)
4599     Preheader = *std::next(LoopBB->pred_begin());
4600   MachineFunction *MF = Preheader->getParent();
4601 
4602   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
4603     SmallPtrSet<MachineBasicBlock *, 8> Visited;
4604     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
4605       Register LoopCountReg = LoopInst->getOperand(0).getReg();
4606       MachineRegisterInfo &MRI = MF->getRegInfo();
4607       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
4608       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
4609     }
4610   }
4611   return nullptr;
4612 }
4613 
4614 MachineInstr *PPCInstrInfo::findLoopInstr(
4615     MachineBasicBlock &PreHeader,
4616     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
4617 
4618   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
4619 
4620   // The loop set-up instruction should be in preheader
4621   for (auto &I : PreHeader.instrs())
4622     if (I.getOpcode() == LOOPi)
4623       return &I;
4624   return nullptr;
4625 }
4626 
4627 // Return true if get the base operand, byte offset of an instruction and the
4628 // memory width. Width is the size of memory that is being loaded/stored.
4629 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4630     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
4631     unsigned &Width, const TargetRegisterInfo *TRI) const {
4632   if (!LdSt.mayLoadOrStore())
4633     return false;
4634 
4635   // Handle only loads/stores with base register followed by immediate offset.
4636   if (LdSt.getNumExplicitOperands() != 3)
4637     return false;
4638   if (!LdSt.getOperand(1).isImm() ||
4639       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
4640     return false;
4641 
4642   if (!LdSt.hasOneMemOperand())
4643     return false;
4644 
4645   Width = (*LdSt.memoperands_begin())->getSize();
4646   Offset = LdSt.getOperand(1).getImm();
4647   BaseReg = &LdSt.getOperand(2);
4648   return true;
4649 }
4650 
4651 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4652     const MachineInstr &MIa, const MachineInstr &MIb) const {
4653   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4654   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4655 
4656   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4657       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4658     return false;
4659 
4660   // Retrieve the base register, offset from the base register and width. Width
4661   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
4662   // base registers are identical, and the offset of a lower memory access +
4663   // the width doesn't overlap the offset of a higher memory access,
4664   // then the memory accesses are different.
4665   const TargetRegisterInfo *TRI = &getRegisterInfo();
4666   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4667   int64_t OffsetA = 0, OffsetB = 0;
4668   unsigned int WidthA = 0, WidthB = 0;
4669   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4670       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4671     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4672       int LowOffset = std::min(OffsetA, OffsetB);
4673       int HighOffset = std::max(OffsetA, OffsetB);
4674       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4675       if (LowOffset + LowWidth <= HighOffset)
4676         return true;
4677     }
4678   }
4679   return false;
4680 }
4681