1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 STATISTIC(NumStoreSPILLVSRRCAsVec, 50 "Number of spillvsrrc spilled to stack as vec"); 51 STATISTIC(NumStoreSPILLVSRRCAsGpr, 52 "Number of spillvsrrc spilled to stack as gpr"); 53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 54 STATISTIC(CmpIselsConverted, 55 "Number of ISELs that depend on comparison of constants converted"); 56 STATISTIC(MissedConvertibleImmediateInstrs, 57 "Number of compare-immediate instructions fed by constants"); 58 STATISTIC(NumRcRotatesConvertedToRcAnd, 59 "Number of record-form rotates converted to record-form andi"); 60 61 static cl:: 62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 63 cl::desc("Disable analysis for CTR loops")); 64 65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 66 cl::desc("Disable compare instruction optimization"), cl::Hidden); 67 68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 70 cl::Hidden); 71 72 static cl::opt<bool> 73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 74 cl::desc("Use the old (incorrect) instruction latency calculation")); 75 76 // Pin the vtable to this file. 77 void PPCInstrInfo::anchor() {} 78 79 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 80 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 81 /* CatchRetOpcode */ -1, 82 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 83 Subtarget(STI), RI(STI.getTargetMachine()) {} 84 85 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 86 /// this target when scheduling the DAG. 87 ScheduleHazardRecognizer * 88 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 89 const ScheduleDAG *DAG) const { 90 unsigned Directive = 91 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 92 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 93 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 94 const InstrItineraryData *II = 95 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 96 return new ScoreboardHazardRecognizer(II, DAG); 97 } 98 99 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 100 } 101 102 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 103 /// to use for this target when scheduling the DAG. 104 ScheduleHazardRecognizer * 105 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 106 const ScheduleDAG *DAG) const { 107 unsigned Directive = 108 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 109 110 // FIXME: Leaving this as-is until we have POWER9 scheduling info 111 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 112 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 113 114 // Most subtargets use a PPC970 recognizer. 115 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 116 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 117 assert(DAG->TII && "No InstrInfo?"); 118 119 return new PPCHazardRecognizer970(*DAG); 120 } 121 122 return new ScoreboardHazardRecognizer(II, DAG); 123 } 124 125 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 126 const MachineInstr &MI, 127 unsigned *PredCost) const { 128 if (!ItinData || UseOldLatencyCalc) 129 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 130 131 // The default implementation of getInstrLatency calls getStageLatency, but 132 // getStageLatency does not do the right thing for us. While we have 133 // itinerary, most cores are fully pipelined, and so the itineraries only 134 // express the first part of the pipeline, not every stage. Instead, we need 135 // to use the listed output operand cycle number (using operand 0 here, which 136 // is an output). 137 138 unsigned Latency = 1; 139 unsigned DefClass = MI.getDesc().getSchedClass(); 140 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 141 const MachineOperand &MO = MI.getOperand(i); 142 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 143 continue; 144 145 int Cycle = ItinData->getOperandCycle(DefClass, i); 146 if (Cycle < 0) 147 continue; 148 149 Latency = std::max(Latency, (unsigned) Cycle); 150 } 151 152 return Latency; 153 } 154 155 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 156 const MachineInstr &DefMI, unsigned DefIdx, 157 const MachineInstr &UseMI, 158 unsigned UseIdx) const { 159 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 160 UseMI, UseIdx); 161 162 if (!DefMI.getParent()) 163 return Latency; 164 165 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 166 Register Reg = DefMO.getReg(); 167 168 bool IsRegCR; 169 if (Register::isVirtualRegister(Reg)) { 170 const MachineRegisterInfo *MRI = 171 &DefMI.getParent()->getParent()->getRegInfo(); 172 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 173 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 174 } else { 175 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 176 PPC::CRBITRCRegClass.contains(Reg); 177 } 178 179 if (UseMI.isBranch() && IsRegCR) { 180 if (Latency < 0) 181 Latency = getInstrLatency(ItinData, DefMI); 182 183 // On some cores, there is an additional delay between writing to a condition 184 // register, and using it from a branch. 185 unsigned Directive = Subtarget.getCPUDirective(); 186 switch (Directive) { 187 default: break; 188 case PPC::DIR_7400: 189 case PPC::DIR_750: 190 case PPC::DIR_970: 191 case PPC::DIR_E5500: 192 case PPC::DIR_PWR4: 193 case PPC::DIR_PWR5: 194 case PPC::DIR_PWR5X: 195 case PPC::DIR_PWR6: 196 case PPC::DIR_PWR6X: 197 case PPC::DIR_PWR7: 198 case PPC::DIR_PWR8: 199 // FIXME: Is this needed for POWER9? 200 Latency += 2; 201 break; 202 } 203 } 204 205 return Latency; 206 } 207 208 /// This is an architecture-specific helper function of reassociateOps. 209 /// Set special operand attributes for new instructions after reassociation. 210 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 211 MachineInstr &OldMI2, 212 MachineInstr &NewMI1, 213 MachineInstr &NewMI2) const { 214 // Propagate FP flags from the original instructions. 215 // But clear poison-generating flags because those may not be valid now. 216 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 217 NewMI1.setFlags(IntersectedFlags); 218 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 219 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 220 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 221 222 NewMI2.setFlags(IntersectedFlags); 223 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 224 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 225 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 226 } 227 228 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 229 uint16_t Flags) const { 230 MI.setFlags(Flags); 231 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 232 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 233 MI.clearFlag(MachineInstr::MIFlag::IsExact); 234 } 235 236 // This function does not list all associative and commutative operations, but 237 // only those worth feeding through the machine combiner in an attempt to 238 // reduce the critical path. Mostly, this means floating-point operations, 239 // because they have high latencies(>=5) (compared to other operations, such as 240 // and/or, which are also associative and commutative, but have low latencies). 241 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 242 switch (Inst.getOpcode()) { 243 // Floating point: 244 // FP Add: 245 case PPC::FADD: 246 case PPC::FADDS: 247 // FP Multiply: 248 case PPC::FMUL: 249 case PPC::FMULS: 250 // Altivec Add: 251 case PPC::VADDFP: 252 // VSX Add: 253 case PPC::XSADDDP: 254 case PPC::XVADDDP: 255 case PPC::XVADDSP: 256 case PPC::XSADDSP: 257 // VSX Multiply: 258 case PPC::XSMULDP: 259 case PPC::XVMULDP: 260 case PPC::XVMULSP: 261 case PPC::XSMULSP: 262 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 263 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 264 // Fixed point: 265 // Multiply: 266 case PPC::MULHD: 267 case PPC::MULLD: 268 case PPC::MULHW: 269 case PPC::MULLW: 270 return true; 271 default: 272 return false; 273 } 274 } 275 276 #define InfoArrayIdxFMAInst 0 277 #define InfoArrayIdxFAddInst 1 278 #define InfoArrayIdxFMULInst 2 279 #define InfoArrayIdxAddOpIdx 3 280 #define InfoArrayIdxMULOpIdx 4 281 // Array keeps info for FMA instructions: 282 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 283 // Index 1(InfoArrayIdxFAddInst): ADD instruction assoaicted with FMA; 284 // Index 2(InfoArrayIdxFMULInst): MUL instruction assoaicted with FMA; 285 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 286 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 287 // second MUL operand index is plus 1. 288 static const uint16_t FMAOpIdxInfo[][5] = { 289 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 290 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2}, 291 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2}, 292 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2}, 293 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2}, 294 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1}, 295 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1}}; 296 297 // Check if an opcode is a FMA instruction. If it is, return the index in array 298 // FMAOpIdxInfo. Otherwise, return -1. 299 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 300 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) 301 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 302 return I; 303 return -1; 304 } 305 306 // Try to reassociate FMA chains like below: 307 // 308 // Pattern 1: 309 // A = FADD X, Y (Leaf) 310 // B = FMA A, M21, M22 (Prev) 311 // C = FMA B, M31, M32 (Root) 312 // --> 313 // A = FMA X, M21, M22 314 // B = FMA Y, M31, M32 315 // C = FADD A, B 316 // 317 // Pattern 2: 318 // A = FMA X, M11, M12 (Leaf) 319 // B = FMA A, M21, M22 (Prev) 320 // C = FMA B, M31, M32 (Root) 321 // --> 322 // A = FMUL M11, M12 323 // B = FMA X, M21, M22 324 // D = FMA A, M31, M32 325 // C = FADD B, D 326 // 327 // breaking the dependency between A and B, allowing FMA to be executed in 328 // parallel (or back-to-back in a pipeline) instead of depending on each other. 329 bool PPCInstrInfo::getFMAPatterns( 330 MachineInstr &Root, 331 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 332 MachineBasicBlock *MBB = Root.getParent(); 333 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 334 335 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 336 for (const auto &MO : Instr.explicit_operands()) 337 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 338 return false; 339 return true; 340 }; 341 342 auto IsReassociable = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 343 bool IsLeaf, bool IsAdd) { 344 int16_t Idx = -1; 345 if (!IsAdd) { 346 Idx = getFMAOpIdxInfo(Instr.getOpcode()); 347 if (Idx < 0) 348 return false; 349 } else if (Instr.getOpcode() != 350 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())] 351 [InfoArrayIdxFAddInst]) 352 return false; 353 354 // Instruction can be reassociated. 355 // fast math flags may prohibit reassociation. 356 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 357 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 358 return false; 359 360 // Instruction operands are virtual registers for reassociation. 361 if (!IsAllOpsVirtualReg(Instr)) 362 return false; 363 364 if (IsAdd && IsLeaf) 365 return true; 366 367 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 368 369 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 370 MachineInstr *MIAdd = MRI.getUniqueVRegDef(OpAdd.getReg()); 371 // If 'add' operand's def is not in current block, don't do ILP related opt. 372 if (!MIAdd || MIAdd->getParent() != MBB) 373 return false; 374 375 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 376 // as this fma will be changed later. 377 return IsLeaf ? true : MRI.hasOneNonDBGUse(OpAdd.getReg()); 378 }; 379 380 int16_t AddOpIdx = -1; 381 // Root must be a valid FMA like instruction. 382 if (!IsReassociable(Root, AddOpIdx, false, false)) 383 return false; 384 385 assert((AddOpIdx >= 0) && "add operand index not right!"); 386 387 Register RegB = Root.getOperand(AddOpIdx).getReg(); 388 MachineInstr *Prev = MRI.getUniqueVRegDef(RegB); 389 390 // Prev must be a valid FMA like instruction. 391 AddOpIdx = -1; 392 if (!IsReassociable(*Prev, AddOpIdx, false, false)) 393 return false; 394 395 assert((AddOpIdx >= 0) && "add operand index not right!"); 396 397 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 398 MachineInstr *Leaf = MRI.getUniqueVRegDef(RegA); 399 AddOpIdx = -1; 400 if (IsReassociable(*Leaf, AddOpIdx, true, false)) { 401 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 402 return true; 403 } 404 if (IsReassociable(*Leaf, AddOpIdx, true, true)) { 405 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 406 return true; 407 } 408 return false; 409 } 410 411 bool PPCInstrInfo::getMachineCombinerPatterns( 412 MachineInstr &Root, 413 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 414 // Using the machine combiner in this way is potentially expensive, so 415 // restrict to when aggressive optimizations are desired. 416 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 417 return false; 418 419 if (getFMAPatterns(Root, Patterns)) 420 return true; 421 422 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 423 } 424 425 void PPCInstrInfo::genAlternativeCodeSequence( 426 MachineInstr &Root, MachineCombinerPattern Pattern, 427 SmallVectorImpl<MachineInstr *> &InsInstrs, 428 SmallVectorImpl<MachineInstr *> &DelInstrs, 429 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 430 switch (Pattern) { 431 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 432 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 433 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 434 break; 435 default: 436 // Reassociate default patterns. 437 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 438 DelInstrs, InstrIdxForVirtReg); 439 break; 440 } 441 } 442 443 // Currently, only handle two patterns REASSOC_XY_AMM_BMM and 444 // REASSOC_XMM_AMM_BMM. See comments for getFMAPatterns. 445 void PPCInstrInfo::reassociateFMA( 446 MachineInstr &Root, MachineCombinerPattern Pattern, 447 SmallVectorImpl<MachineInstr *> &InsInstrs, 448 SmallVectorImpl<MachineInstr *> &DelInstrs, 449 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 450 MachineFunction *MF = Root.getMF(); 451 MachineRegisterInfo &MRI = MF->getRegInfo(); 452 MachineOperand &OpC = Root.getOperand(0); 453 Register RegC = OpC.getReg(); 454 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 455 MRI.constrainRegClass(RegC, RC); 456 457 unsigned FmaOp = Root.getOpcode(); 458 int16_t Idx = getFMAOpIdxInfo(FmaOp); 459 assert(Idx >= 0 && "Root must be a FMA instruction"); 460 461 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 462 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 463 MachineInstr *Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 464 MachineInstr *Leaf = 465 MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 466 uint16_t IntersectedFlags = 467 Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 468 469 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 470 bool &KillFlag) { 471 Reg = Operand.getReg(); 472 MRI.constrainRegClass(Reg, RC); 473 KillFlag = Operand.isKill(); 474 }; 475 476 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 477 Register &MulOp2, bool &MulOp1KillFlag, 478 bool &MulOp2KillFlag) { 479 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 480 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 481 }; 482 483 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32; 484 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 485 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false; 486 487 GetFMAInstrInfo(Root, RegM31, RegM32, KillM31, KillM32); 488 GetFMAInstrInfo(*Prev, RegM21, RegM22, KillM21, KillM22); 489 490 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 491 GetFMAInstrInfo(*Leaf, RegM11, RegM12, KillM11, KillM12); 492 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 493 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 494 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 495 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 496 } 497 498 // Create new virtual registers for the new results instead of 499 // recycling legacy ones because the MachineCombiner's computation of the 500 // critical path requires a new register definition rather than an existing 501 // one. 502 Register NewVRA = MRI.createVirtualRegister(RC); 503 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 504 505 Register NewVRB = MRI.createVirtualRegister(RC); 506 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 507 508 Register NewVRD = 0; 509 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 510 NewVRD = MRI.createVirtualRegister(RC); 511 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 512 } 513 514 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 515 Register RegMul1, bool KillRegMul1, 516 Register RegMul2, bool KillRegMul2) { 517 MI->getOperand(AddOpIdx).setReg(RegAdd); 518 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 519 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 520 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 521 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 522 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 523 }; 524 525 if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 526 // Create new instructions for insertion. 527 MachineInstrBuilder MINewB = 528 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 529 .addReg(RegX, getKillRegState(KillX)) 530 .addReg(RegM21, getKillRegState(KillM21)) 531 .addReg(RegM22, getKillRegState(KillM22)); 532 MachineInstrBuilder MINewA = 533 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 534 .addReg(RegY, getKillRegState(KillY)) 535 .addReg(RegM31, getKillRegState(KillM31)) 536 .addReg(RegM32, getKillRegState(KillM32)); 537 // If AddOpIdx is not 1, adjust the order. 538 if (AddOpIdx != 1) { 539 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 540 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 541 } 542 543 MachineInstrBuilder MINewC = 544 BuildMI(*MF, Root.getDebugLoc(), 545 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 546 .addReg(NewVRB, getKillRegState(true)) 547 .addReg(NewVRA, getKillRegState(true)); 548 549 // Update flags for newly created instructions. 550 setSpecialOperandAttr(*MINewA, IntersectedFlags); 551 setSpecialOperandAttr(*MINewB, IntersectedFlags); 552 setSpecialOperandAttr(*MINewC, IntersectedFlags); 553 554 // Record new instructions for insertion. 555 InsInstrs.push_back(MINewA); 556 InsInstrs.push_back(MINewB); 557 InsInstrs.push_back(MINewC); 558 } else if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 559 assert(NewVRD && "new FMA register not created!"); 560 // Create new instructions for insertion. 561 MachineInstrBuilder MINewA = 562 BuildMI(*MF, Leaf->getDebugLoc(), 563 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 564 .addReg(RegM11, getKillRegState(KillM11)) 565 .addReg(RegM12, getKillRegState(KillM12)); 566 MachineInstrBuilder MINewB = 567 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 568 .addReg(RegX, getKillRegState(KillX)) 569 .addReg(RegM21, getKillRegState(KillM21)) 570 .addReg(RegM22, getKillRegState(KillM22)); 571 MachineInstrBuilder MINewD = 572 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 573 .addReg(NewVRA, getKillRegState(true)) 574 .addReg(RegM31, getKillRegState(KillM31)) 575 .addReg(RegM32, getKillRegState(KillM32)); 576 // If AddOpIdx is not 1, adjust the order. 577 if (AddOpIdx != 1) { 578 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 579 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 580 KillM32); 581 } 582 583 MachineInstrBuilder MINewC = 584 BuildMI(*MF, Root.getDebugLoc(), 585 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 586 .addReg(NewVRB, getKillRegState(true)) 587 .addReg(NewVRD, getKillRegState(true)); 588 589 // Update flags for newly created instructions. 590 setSpecialOperandAttr(*MINewA, IntersectedFlags); 591 setSpecialOperandAttr(*MINewB, IntersectedFlags); 592 setSpecialOperandAttr(*MINewD, IntersectedFlags); 593 setSpecialOperandAttr(*MINewC, IntersectedFlags); 594 595 // Record new instructions for insertion. 596 InsInstrs.push_back(MINewA); 597 InsInstrs.push_back(MINewB); 598 InsInstrs.push_back(MINewD); 599 InsInstrs.push_back(MINewC); 600 } 601 602 assert(!InsInstrs.empty() && 603 "Insertion instructions set should not be empty!"); 604 605 // Record old instructions for deletion. 606 DelInstrs.push_back(Leaf); 607 DelInstrs.push_back(Prev); 608 DelInstrs.push_back(&Root); 609 } 610 611 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 612 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 613 Register &SrcReg, Register &DstReg, 614 unsigned &SubIdx) const { 615 switch (MI.getOpcode()) { 616 default: return false; 617 case PPC::EXTSW: 618 case PPC::EXTSW_32: 619 case PPC::EXTSW_32_64: 620 SrcReg = MI.getOperand(1).getReg(); 621 DstReg = MI.getOperand(0).getReg(); 622 SubIdx = PPC::sub_32; 623 return true; 624 } 625 } 626 627 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 628 int &FrameIndex) const { 629 unsigned Opcode = MI.getOpcode(); 630 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 631 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 632 633 if (End != std::find(OpcodesForSpill, End, Opcode)) { 634 // Check for the operands added by addFrameReference (the immediate is the 635 // offset which defaults to 0). 636 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 637 MI.getOperand(2).isFI()) { 638 FrameIndex = MI.getOperand(2).getIndex(); 639 return MI.getOperand(0).getReg(); 640 } 641 } 642 return 0; 643 } 644 645 // For opcodes with the ReMaterializable flag set, this function is called to 646 // verify the instruction is really rematable. 647 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 648 AliasAnalysis *AA) const { 649 switch (MI.getOpcode()) { 650 default: 651 // This function should only be called for opcodes with the ReMaterializable 652 // flag set. 653 llvm_unreachable("Unknown rematerializable operation!"); 654 break; 655 case PPC::LI: 656 case PPC::LI8: 657 case PPC::LIS: 658 case PPC::LIS8: 659 case PPC::ADDIStocHA: 660 case PPC::ADDIStocHA8: 661 case PPC::ADDItocL: 662 case PPC::LOAD_STACK_GUARD: 663 case PPC::XXLXORz: 664 case PPC::XXLXORspz: 665 case PPC::XXLXORdpz: 666 case PPC::XXLEQVOnes: 667 case PPC::V_SET0B: 668 case PPC::V_SET0H: 669 case PPC::V_SET0: 670 case PPC::V_SETALLONESB: 671 case PPC::V_SETALLONESH: 672 case PPC::V_SETALLONES: 673 case PPC::CRSET: 674 case PPC::CRUNSET: 675 return true; 676 } 677 return false; 678 } 679 680 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 681 int &FrameIndex) const { 682 unsigned Opcode = MI.getOpcode(); 683 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 684 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 685 686 if (End != std::find(OpcodesForSpill, End, Opcode)) { 687 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 688 MI.getOperand(2).isFI()) { 689 FrameIndex = MI.getOperand(2).getIndex(); 690 return MI.getOperand(0).getReg(); 691 } 692 } 693 return 0; 694 } 695 696 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 697 unsigned OpIdx1, 698 unsigned OpIdx2) const { 699 MachineFunction &MF = *MI.getParent()->getParent(); 700 701 // Normal instructions can be commuted the obvious way. 702 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 703 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 704 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 705 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 706 // changing the relative order of the mask operands might change what happens 707 // to the high-bits of the mask (and, thus, the result). 708 709 // Cannot commute if it has a non-zero rotate count. 710 if (MI.getOperand(3).getImm() != 0) 711 return nullptr; 712 713 // If we have a zero rotate count, we have: 714 // M = mask(MB,ME) 715 // Op0 = (Op1 & ~M) | (Op2 & M) 716 // Change this to: 717 // M = mask((ME+1)&31, (MB-1)&31) 718 // Op0 = (Op2 & ~M) | (Op1 & M) 719 720 // Swap op1/op2 721 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 722 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 723 Register Reg0 = MI.getOperand(0).getReg(); 724 Register Reg1 = MI.getOperand(1).getReg(); 725 Register Reg2 = MI.getOperand(2).getReg(); 726 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 727 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 728 bool Reg1IsKill = MI.getOperand(1).isKill(); 729 bool Reg2IsKill = MI.getOperand(2).isKill(); 730 bool ChangeReg0 = false; 731 // If machine instrs are no longer in two-address forms, update 732 // destination register as well. 733 if (Reg0 == Reg1) { 734 // Must be two address instruction! 735 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 736 "Expecting a two-address instruction!"); 737 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 738 Reg2IsKill = false; 739 ChangeReg0 = true; 740 } 741 742 // Masks. 743 unsigned MB = MI.getOperand(4).getImm(); 744 unsigned ME = MI.getOperand(5).getImm(); 745 746 // We can't commute a trivial mask (there is no way to represent an all-zero 747 // mask). 748 if (MB == 0 && ME == 31) 749 return nullptr; 750 751 if (NewMI) { 752 // Create a new instruction. 753 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 754 bool Reg0IsDead = MI.getOperand(0).isDead(); 755 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 756 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 757 .addReg(Reg2, getKillRegState(Reg2IsKill)) 758 .addReg(Reg1, getKillRegState(Reg1IsKill)) 759 .addImm((ME + 1) & 31) 760 .addImm((MB - 1) & 31); 761 } 762 763 if (ChangeReg0) { 764 MI.getOperand(0).setReg(Reg2); 765 MI.getOperand(0).setSubReg(SubReg2); 766 } 767 MI.getOperand(2).setReg(Reg1); 768 MI.getOperand(1).setReg(Reg2); 769 MI.getOperand(2).setSubReg(SubReg1); 770 MI.getOperand(1).setSubReg(SubReg2); 771 MI.getOperand(2).setIsKill(Reg1IsKill); 772 MI.getOperand(1).setIsKill(Reg2IsKill); 773 774 // Swap the mask around. 775 MI.getOperand(4).setImm((ME + 1) & 31); 776 MI.getOperand(5).setImm((MB - 1) & 31); 777 return &MI; 778 } 779 780 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 781 unsigned &SrcOpIdx1, 782 unsigned &SrcOpIdx2) const { 783 // For VSX A-Type FMA instructions, it is the first two operands that can be 784 // commuted, however, because the non-encoded tied input operand is listed 785 // first, the operands to swap are actually the second and third. 786 787 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 788 if (AltOpc == -1) 789 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 790 791 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 792 // and SrcOpIdx2. 793 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 794 } 795 796 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 797 MachineBasicBlock::iterator MI) const { 798 // This function is used for scheduling, and the nop wanted here is the type 799 // that terminates dispatch groups on the POWER cores. 800 unsigned Directive = Subtarget.getCPUDirective(); 801 unsigned Opcode; 802 switch (Directive) { 803 default: Opcode = PPC::NOP; break; 804 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 805 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 806 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 807 // FIXME: Update when POWER9 scheduling model is ready. 808 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 809 } 810 811 DebugLoc DL; 812 BuildMI(MBB, MI, DL, get(Opcode)); 813 } 814 815 /// Return the noop instruction to use for a noop. 816 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 817 NopInst.setOpcode(PPC::NOP); 818 } 819 820 // Branch analysis. 821 // Note: If the condition register is set to CTR or CTR8 then this is a 822 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 823 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 824 MachineBasicBlock *&TBB, 825 MachineBasicBlock *&FBB, 826 SmallVectorImpl<MachineOperand> &Cond, 827 bool AllowModify) const { 828 bool isPPC64 = Subtarget.isPPC64(); 829 830 // If the block has no terminators, it just falls into the block after it. 831 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 832 if (I == MBB.end()) 833 return false; 834 835 if (!isUnpredicatedTerminator(*I)) 836 return false; 837 838 if (AllowModify) { 839 // If the BB ends with an unconditional branch to the fallthrough BB, 840 // we eliminate the branch instruction. 841 if (I->getOpcode() == PPC::B && 842 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 843 I->eraseFromParent(); 844 845 // We update iterator after deleting the last branch. 846 I = MBB.getLastNonDebugInstr(); 847 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 848 return false; 849 } 850 } 851 852 // Get the last instruction in the block. 853 MachineInstr &LastInst = *I; 854 855 // If there is only one terminator instruction, process it. 856 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 857 if (LastInst.getOpcode() == PPC::B) { 858 if (!LastInst.getOperand(0).isMBB()) 859 return true; 860 TBB = LastInst.getOperand(0).getMBB(); 861 return false; 862 } else if (LastInst.getOpcode() == PPC::BCC) { 863 if (!LastInst.getOperand(2).isMBB()) 864 return true; 865 // Block ends with fall-through condbranch. 866 TBB = LastInst.getOperand(2).getMBB(); 867 Cond.push_back(LastInst.getOperand(0)); 868 Cond.push_back(LastInst.getOperand(1)); 869 return false; 870 } else if (LastInst.getOpcode() == PPC::BC) { 871 if (!LastInst.getOperand(1).isMBB()) 872 return true; 873 // Block ends with fall-through condbranch. 874 TBB = LastInst.getOperand(1).getMBB(); 875 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 876 Cond.push_back(LastInst.getOperand(0)); 877 return false; 878 } else if (LastInst.getOpcode() == PPC::BCn) { 879 if (!LastInst.getOperand(1).isMBB()) 880 return true; 881 // Block ends with fall-through condbranch. 882 TBB = LastInst.getOperand(1).getMBB(); 883 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 884 Cond.push_back(LastInst.getOperand(0)); 885 return false; 886 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 887 LastInst.getOpcode() == PPC::BDNZ) { 888 if (!LastInst.getOperand(0).isMBB()) 889 return true; 890 if (DisableCTRLoopAnal) 891 return true; 892 TBB = LastInst.getOperand(0).getMBB(); 893 Cond.push_back(MachineOperand::CreateImm(1)); 894 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 895 true)); 896 return false; 897 } else if (LastInst.getOpcode() == PPC::BDZ8 || 898 LastInst.getOpcode() == PPC::BDZ) { 899 if (!LastInst.getOperand(0).isMBB()) 900 return true; 901 if (DisableCTRLoopAnal) 902 return true; 903 TBB = LastInst.getOperand(0).getMBB(); 904 Cond.push_back(MachineOperand::CreateImm(0)); 905 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 906 true)); 907 return false; 908 } 909 910 // Otherwise, don't know what this is. 911 return true; 912 } 913 914 // Get the instruction before it if it's a terminator. 915 MachineInstr &SecondLastInst = *I; 916 917 // If there are three terminators, we don't know what sort of block this is. 918 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 919 return true; 920 921 // If the block ends with PPC::B and PPC:BCC, handle it. 922 if (SecondLastInst.getOpcode() == PPC::BCC && 923 LastInst.getOpcode() == PPC::B) { 924 if (!SecondLastInst.getOperand(2).isMBB() || 925 !LastInst.getOperand(0).isMBB()) 926 return true; 927 TBB = SecondLastInst.getOperand(2).getMBB(); 928 Cond.push_back(SecondLastInst.getOperand(0)); 929 Cond.push_back(SecondLastInst.getOperand(1)); 930 FBB = LastInst.getOperand(0).getMBB(); 931 return false; 932 } else if (SecondLastInst.getOpcode() == PPC::BC && 933 LastInst.getOpcode() == PPC::B) { 934 if (!SecondLastInst.getOperand(1).isMBB() || 935 !LastInst.getOperand(0).isMBB()) 936 return true; 937 TBB = SecondLastInst.getOperand(1).getMBB(); 938 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 939 Cond.push_back(SecondLastInst.getOperand(0)); 940 FBB = LastInst.getOperand(0).getMBB(); 941 return false; 942 } else if (SecondLastInst.getOpcode() == PPC::BCn && 943 LastInst.getOpcode() == PPC::B) { 944 if (!SecondLastInst.getOperand(1).isMBB() || 945 !LastInst.getOperand(0).isMBB()) 946 return true; 947 TBB = SecondLastInst.getOperand(1).getMBB(); 948 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 949 Cond.push_back(SecondLastInst.getOperand(0)); 950 FBB = LastInst.getOperand(0).getMBB(); 951 return false; 952 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 953 SecondLastInst.getOpcode() == PPC::BDNZ) && 954 LastInst.getOpcode() == PPC::B) { 955 if (!SecondLastInst.getOperand(0).isMBB() || 956 !LastInst.getOperand(0).isMBB()) 957 return true; 958 if (DisableCTRLoopAnal) 959 return true; 960 TBB = SecondLastInst.getOperand(0).getMBB(); 961 Cond.push_back(MachineOperand::CreateImm(1)); 962 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 963 true)); 964 FBB = LastInst.getOperand(0).getMBB(); 965 return false; 966 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 967 SecondLastInst.getOpcode() == PPC::BDZ) && 968 LastInst.getOpcode() == PPC::B) { 969 if (!SecondLastInst.getOperand(0).isMBB() || 970 !LastInst.getOperand(0).isMBB()) 971 return true; 972 if (DisableCTRLoopAnal) 973 return true; 974 TBB = SecondLastInst.getOperand(0).getMBB(); 975 Cond.push_back(MachineOperand::CreateImm(0)); 976 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 977 true)); 978 FBB = LastInst.getOperand(0).getMBB(); 979 return false; 980 } 981 982 // If the block ends with two PPC:Bs, handle it. The second one is not 983 // executed, so remove it. 984 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 985 if (!SecondLastInst.getOperand(0).isMBB()) 986 return true; 987 TBB = SecondLastInst.getOperand(0).getMBB(); 988 I = LastInst; 989 if (AllowModify) 990 I->eraseFromParent(); 991 return false; 992 } 993 994 // Otherwise, can't handle this. 995 return true; 996 } 997 998 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 999 int *BytesRemoved) const { 1000 assert(!BytesRemoved && "code size not handled"); 1001 1002 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1003 if (I == MBB.end()) 1004 return 0; 1005 1006 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1007 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1008 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1009 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1010 return 0; 1011 1012 // Remove the branch. 1013 I->eraseFromParent(); 1014 1015 I = MBB.end(); 1016 1017 if (I == MBB.begin()) return 1; 1018 --I; 1019 if (I->getOpcode() != PPC::BCC && 1020 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1021 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1022 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1023 return 1; 1024 1025 // Remove the branch. 1026 I->eraseFromParent(); 1027 return 2; 1028 } 1029 1030 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1031 MachineBasicBlock *TBB, 1032 MachineBasicBlock *FBB, 1033 ArrayRef<MachineOperand> Cond, 1034 const DebugLoc &DL, 1035 int *BytesAdded) const { 1036 // Shouldn't be a fall through. 1037 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1038 assert((Cond.size() == 2 || Cond.size() == 0) && 1039 "PPC branch conditions have two components!"); 1040 assert(!BytesAdded && "code size not handled"); 1041 1042 bool isPPC64 = Subtarget.isPPC64(); 1043 1044 // One-way branch. 1045 if (!FBB) { 1046 if (Cond.empty()) // Unconditional branch 1047 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1048 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1049 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1050 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1051 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1052 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1053 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1054 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1055 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1056 else // Conditional branch 1057 BuildMI(&MBB, DL, get(PPC::BCC)) 1058 .addImm(Cond[0].getImm()) 1059 .add(Cond[1]) 1060 .addMBB(TBB); 1061 return 1; 1062 } 1063 1064 // Two-way Conditional Branch. 1065 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1066 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1067 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1068 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1069 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1070 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1071 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1072 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1073 else 1074 BuildMI(&MBB, DL, get(PPC::BCC)) 1075 .addImm(Cond[0].getImm()) 1076 .add(Cond[1]) 1077 .addMBB(TBB); 1078 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1079 return 2; 1080 } 1081 1082 // Select analysis. 1083 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1084 ArrayRef<MachineOperand> Cond, 1085 Register DstReg, Register TrueReg, 1086 Register FalseReg, int &CondCycles, 1087 int &TrueCycles, int &FalseCycles) const { 1088 if (Cond.size() != 2) 1089 return false; 1090 1091 // If this is really a bdnz-like condition, then it cannot be turned into a 1092 // select. 1093 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1094 return false; 1095 1096 // Check register classes. 1097 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1098 const TargetRegisterClass *RC = 1099 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1100 if (!RC) 1101 return false; 1102 1103 // isel is for regular integer GPRs only. 1104 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1105 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1106 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1107 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1108 return false; 1109 1110 // FIXME: These numbers are for the A2, how well they work for other cores is 1111 // an open question. On the A2, the isel instruction has a 2-cycle latency 1112 // but single-cycle throughput. These numbers are used in combination with 1113 // the MispredictPenalty setting from the active SchedMachineModel. 1114 CondCycles = 1; 1115 TrueCycles = 1; 1116 FalseCycles = 1; 1117 1118 return true; 1119 } 1120 1121 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1122 MachineBasicBlock::iterator MI, 1123 const DebugLoc &dl, Register DestReg, 1124 ArrayRef<MachineOperand> Cond, Register TrueReg, 1125 Register FalseReg) const { 1126 assert(Cond.size() == 2 && 1127 "PPC branch conditions have two components!"); 1128 1129 // Get the register classes. 1130 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1131 const TargetRegisterClass *RC = 1132 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1133 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1134 1135 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1136 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1137 assert((Is64Bit || 1138 PPC::GPRCRegClass.hasSubClassEq(RC) || 1139 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1140 "isel is for regular integer GPRs only"); 1141 1142 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1143 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1144 1145 unsigned SubIdx = 0; 1146 bool SwapOps = false; 1147 switch (SelectPred) { 1148 case PPC::PRED_EQ: 1149 case PPC::PRED_EQ_MINUS: 1150 case PPC::PRED_EQ_PLUS: 1151 SubIdx = PPC::sub_eq; SwapOps = false; break; 1152 case PPC::PRED_NE: 1153 case PPC::PRED_NE_MINUS: 1154 case PPC::PRED_NE_PLUS: 1155 SubIdx = PPC::sub_eq; SwapOps = true; break; 1156 case PPC::PRED_LT: 1157 case PPC::PRED_LT_MINUS: 1158 case PPC::PRED_LT_PLUS: 1159 SubIdx = PPC::sub_lt; SwapOps = false; break; 1160 case PPC::PRED_GE: 1161 case PPC::PRED_GE_MINUS: 1162 case PPC::PRED_GE_PLUS: 1163 SubIdx = PPC::sub_lt; SwapOps = true; break; 1164 case PPC::PRED_GT: 1165 case PPC::PRED_GT_MINUS: 1166 case PPC::PRED_GT_PLUS: 1167 SubIdx = PPC::sub_gt; SwapOps = false; break; 1168 case PPC::PRED_LE: 1169 case PPC::PRED_LE_MINUS: 1170 case PPC::PRED_LE_PLUS: 1171 SubIdx = PPC::sub_gt; SwapOps = true; break; 1172 case PPC::PRED_UN: 1173 case PPC::PRED_UN_MINUS: 1174 case PPC::PRED_UN_PLUS: 1175 SubIdx = PPC::sub_un; SwapOps = false; break; 1176 case PPC::PRED_NU: 1177 case PPC::PRED_NU_MINUS: 1178 case PPC::PRED_NU_PLUS: 1179 SubIdx = PPC::sub_un; SwapOps = true; break; 1180 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1181 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1182 } 1183 1184 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1185 SecondReg = SwapOps ? TrueReg : FalseReg; 1186 1187 // The first input register of isel cannot be r0. If it is a member 1188 // of a register class that can be r0, then copy it first (the 1189 // register allocator should eliminate the copy). 1190 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1191 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1192 const TargetRegisterClass *FirstRC = 1193 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1194 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1195 Register OldFirstReg = FirstReg; 1196 FirstReg = MRI.createVirtualRegister(FirstRC); 1197 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1198 .addReg(OldFirstReg); 1199 } 1200 1201 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1202 .addReg(FirstReg).addReg(SecondReg) 1203 .addReg(Cond[1].getReg(), 0, SubIdx); 1204 } 1205 1206 static unsigned getCRBitValue(unsigned CRBit) { 1207 unsigned Ret = 4; 1208 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1209 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1210 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1211 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1212 Ret = 3; 1213 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1214 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1215 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1216 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1217 Ret = 2; 1218 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1219 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1220 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1221 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1222 Ret = 1; 1223 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1224 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1225 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1226 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1227 Ret = 0; 1228 1229 assert(Ret != 4 && "Invalid CR bit register"); 1230 return Ret; 1231 } 1232 1233 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1234 MachineBasicBlock::iterator I, 1235 const DebugLoc &DL, MCRegister DestReg, 1236 MCRegister SrcReg, bool KillSrc) const { 1237 // We can end up with self copies and similar things as a result of VSX copy 1238 // legalization. Promote them here. 1239 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1240 if (PPC::F8RCRegClass.contains(DestReg) && 1241 PPC::VSRCRegClass.contains(SrcReg)) { 1242 MCRegister SuperReg = 1243 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1244 1245 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1246 llvm_unreachable("nop VSX copy"); 1247 1248 DestReg = SuperReg; 1249 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1250 PPC::VSRCRegClass.contains(DestReg)) { 1251 MCRegister SuperReg = 1252 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1253 1254 if (VSXSelfCopyCrash && DestReg == SuperReg) 1255 llvm_unreachable("nop VSX copy"); 1256 1257 SrcReg = SuperReg; 1258 } 1259 1260 // Different class register copy 1261 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1262 PPC::GPRCRegClass.contains(DestReg)) { 1263 MCRegister CRReg = getCRFromCRBit(SrcReg); 1264 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1265 getKillRegState(KillSrc); 1266 // Rotate the CR bit in the CR fields to be the least significant bit and 1267 // then mask with 0x1 (MB = ME = 31). 1268 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1269 .addReg(DestReg, RegState::Kill) 1270 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1271 .addImm(31) 1272 .addImm(31); 1273 return; 1274 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1275 PPC::G8RCRegClass.contains(DestReg)) { 1276 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 1277 getKillRegState(KillSrc); 1278 return; 1279 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1280 PPC::GPRCRegClass.contains(DestReg)) { 1281 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 1282 getKillRegState(KillSrc); 1283 return; 1284 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1285 PPC::VSFRCRegClass.contains(DestReg)) { 1286 assert(Subtarget.hasDirectMove() && 1287 "Subtarget doesn't support directmove, don't know how to copy."); 1288 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1289 NumGPRtoVSRSpill++; 1290 getKillRegState(KillSrc); 1291 return; 1292 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1293 PPC::G8RCRegClass.contains(DestReg)) { 1294 assert(Subtarget.hasDirectMove() && 1295 "Subtarget doesn't support directmove, don't know how to copy."); 1296 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1297 getKillRegState(KillSrc); 1298 return; 1299 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1300 PPC::GPRCRegClass.contains(DestReg)) { 1301 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1302 getKillRegState(KillSrc); 1303 return; 1304 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1305 PPC::SPERCRegClass.contains(DestReg)) { 1306 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1307 getKillRegState(KillSrc); 1308 return; 1309 } 1310 1311 unsigned Opc; 1312 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1313 Opc = PPC::OR; 1314 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1315 Opc = PPC::OR8; 1316 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1317 Opc = PPC::FMR; 1318 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1319 Opc = PPC::MCRF; 1320 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1321 Opc = PPC::VOR; 1322 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1323 // There are two different ways this can be done: 1324 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1325 // issue in VSU pipeline 0. 1326 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1327 // can go to either pipeline. 1328 // We'll always use xxlor here, because in practically all cases where 1329 // copies are generated, they are close enough to some use that the 1330 // lower-latency form is preferable. 1331 Opc = PPC::XXLOR; 1332 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1333 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1334 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1335 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1336 Opc = PPC::CROR; 1337 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1338 Opc = PPC::EVOR; 1339 else 1340 llvm_unreachable("Impossible reg-to-reg copy"); 1341 1342 const MCInstrDesc &MCID = get(Opc); 1343 if (MCID.getNumOperands() == 3) 1344 BuildMI(MBB, I, DL, MCID, DestReg) 1345 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1346 else 1347 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1348 } 1349 1350 static unsigned getSpillIndex(const TargetRegisterClass *RC) { 1351 int OpcodeIndex = 0; 1352 1353 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1354 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1355 OpcodeIndex = SOK_Int4Spill; 1356 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1357 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1358 OpcodeIndex = SOK_Int8Spill; 1359 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1360 OpcodeIndex = SOK_Float8Spill; 1361 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1362 OpcodeIndex = SOK_Float4Spill; 1363 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1364 OpcodeIndex = SOK_SPESpill; 1365 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1366 OpcodeIndex = SOK_CRSpill; 1367 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1368 OpcodeIndex = SOK_CRBitSpill; 1369 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1370 OpcodeIndex = SOK_VRVectorSpill; 1371 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1372 OpcodeIndex = SOK_VSXVectorSpill; 1373 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1374 OpcodeIndex = SOK_VectorFloat8Spill; 1375 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1376 OpcodeIndex = SOK_VectorFloat4Spill; 1377 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1378 OpcodeIndex = SOK_VRSaveSpill; 1379 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1380 OpcodeIndex = SOK_SpillToVSR; 1381 } else { 1382 llvm_unreachable("Unknown regclass!"); 1383 } 1384 return OpcodeIndex; 1385 } 1386 1387 unsigned 1388 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1389 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1390 return OpcodesForSpill[getSpillIndex(RC)]; 1391 } 1392 1393 unsigned 1394 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1395 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1396 return OpcodesForSpill[getSpillIndex(RC)]; 1397 } 1398 1399 void PPCInstrInfo::StoreRegToStackSlot( 1400 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1401 const TargetRegisterClass *RC, 1402 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1403 unsigned Opcode = getStoreOpcodeForSpill(RC); 1404 DebugLoc DL; 1405 1406 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1407 FuncInfo->setHasSpills(); 1408 1409 NewMIs.push_back(addFrameReference( 1410 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1411 FrameIdx)); 1412 1413 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1414 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1415 FuncInfo->setSpillsCR(); 1416 1417 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1418 FuncInfo->setSpillsVRSAVE(); 1419 1420 if (isXFormMemOp(Opcode)) 1421 FuncInfo->setHasNonRISpills(); 1422 } 1423 1424 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1425 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1426 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1427 const TargetRegisterInfo *TRI) const { 1428 MachineFunction &MF = *MBB.getParent(); 1429 SmallVector<MachineInstr *, 4> NewMIs; 1430 1431 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1432 1433 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1434 MBB.insert(MI, NewMIs[i]); 1435 1436 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1437 MachineMemOperand *MMO = MF.getMachineMemOperand( 1438 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1439 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1440 MFI.getObjectAlign(FrameIdx)); 1441 NewMIs.back()->addMemOperand(MF, MMO); 1442 } 1443 1444 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1445 MachineBasicBlock::iterator MI, 1446 Register SrcReg, bool isKill, 1447 int FrameIdx, 1448 const TargetRegisterClass *RC, 1449 const TargetRegisterInfo *TRI) const { 1450 // We need to avoid a situation in which the value from a VRRC register is 1451 // spilled using an Altivec instruction and reloaded into a VSRC register 1452 // using a VSX instruction. The issue with this is that the VSX 1453 // load/store instructions swap the doublewords in the vector and the Altivec 1454 // ones don't. The register classes on the spill/reload may be different if 1455 // the register is defined using an Altivec instruction and is then used by a 1456 // VSX instruction. 1457 RC = updatedRC(RC); 1458 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1459 } 1460 1461 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1462 unsigned DestReg, int FrameIdx, 1463 const TargetRegisterClass *RC, 1464 SmallVectorImpl<MachineInstr *> &NewMIs) 1465 const { 1466 unsigned Opcode = getLoadOpcodeForSpill(RC); 1467 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1468 FrameIdx)); 1469 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1470 1471 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1472 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1473 FuncInfo->setSpillsCR(); 1474 1475 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1476 FuncInfo->setSpillsVRSAVE(); 1477 1478 if (isXFormMemOp(Opcode)) 1479 FuncInfo->setHasNonRISpills(); 1480 } 1481 1482 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1483 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1484 int FrameIdx, const TargetRegisterClass *RC, 1485 const TargetRegisterInfo *TRI) const { 1486 MachineFunction &MF = *MBB.getParent(); 1487 SmallVector<MachineInstr*, 4> NewMIs; 1488 DebugLoc DL; 1489 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1490 1491 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1492 FuncInfo->setHasSpills(); 1493 1494 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1495 1496 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1497 MBB.insert(MI, NewMIs[i]); 1498 1499 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1500 MachineMemOperand *MMO = MF.getMachineMemOperand( 1501 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1502 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1503 MFI.getObjectAlign(FrameIdx)); 1504 NewMIs.back()->addMemOperand(MF, MMO); 1505 } 1506 1507 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1508 MachineBasicBlock::iterator MI, 1509 Register DestReg, int FrameIdx, 1510 const TargetRegisterClass *RC, 1511 const TargetRegisterInfo *TRI) const { 1512 // We need to avoid a situation in which the value from a VRRC register is 1513 // spilled using an Altivec instruction and reloaded into a VSRC register 1514 // using a VSX instruction. The issue with this is that the VSX 1515 // load/store instructions swap the doublewords in the vector and the Altivec 1516 // ones don't. The register classes on the spill/reload may be different if 1517 // the register is defined using an Altivec instruction and is then used by a 1518 // VSX instruction. 1519 RC = updatedRC(RC); 1520 1521 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 1522 } 1523 1524 bool PPCInstrInfo:: 1525 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1526 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1527 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1528 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1529 else 1530 // Leave the CR# the same, but invert the condition. 1531 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1532 return false; 1533 } 1534 1535 // For some instructions, it is legal to fold ZERO into the RA register field. 1536 // This function performs that fold by replacing the operand with PPC::ZERO, 1537 // it does not consider whether the load immediate zero is no longer in use. 1538 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1539 Register Reg) const { 1540 // A zero immediate should always be loaded with a single li. 1541 unsigned DefOpc = DefMI.getOpcode(); 1542 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1543 return false; 1544 if (!DefMI.getOperand(1).isImm()) 1545 return false; 1546 if (DefMI.getOperand(1).getImm() != 0) 1547 return false; 1548 1549 // Note that we cannot here invert the arguments of an isel in order to fold 1550 // a ZERO into what is presented as the second argument. All we have here 1551 // is the condition bit, and that might come from a CR-logical bit operation. 1552 1553 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1554 1555 // Only fold into real machine instructions. 1556 if (UseMCID.isPseudo()) 1557 return false; 1558 1559 // We need to find which of the User's operands is to be folded, that will be 1560 // the operand that matches the given register ID. 1561 unsigned UseIdx; 1562 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1563 if (UseMI.getOperand(UseIdx).isReg() && 1564 UseMI.getOperand(UseIdx).getReg() == Reg) 1565 break; 1566 1567 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1568 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1569 1570 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1571 1572 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1573 // register (which might also be specified as a pointer class kind). 1574 if (UseInfo->isLookupPtrRegClass()) { 1575 if (UseInfo->RegClass /* Kind */ != 1) 1576 return false; 1577 } else { 1578 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1579 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1580 return false; 1581 } 1582 1583 // Make sure this is not tied to an output register (or otherwise 1584 // constrained). This is true for ST?UX registers, for example, which 1585 // are tied to their output registers. 1586 if (UseInfo->Constraints != 0) 1587 return false; 1588 1589 MCRegister ZeroReg; 1590 if (UseInfo->isLookupPtrRegClass()) { 1591 bool isPPC64 = Subtarget.isPPC64(); 1592 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1593 } else { 1594 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1595 PPC::ZERO8 : PPC::ZERO; 1596 } 1597 1598 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1599 return true; 1600 } 1601 1602 // Folds zero into instructions which have a load immediate zero as an operand 1603 // but also recognize zero as immediate zero. If the definition of the load 1604 // has no more users it is deleted. 1605 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1606 Register Reg, MachineRegisterInfo *MRI) const { 1607 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 1608 if (MRI->use_nodbg_empty(Reg)) 1609 DefMI.eraseFromParent(); 1610 return Changed; 1611 } 1612 1613 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1614 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1615 I != IE; ++I) 1616 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1617 return true; 1618 return false; 1619 } 1620 1621 // We should make sure that, if we're going to predicate both sides of a 1622 // condition (a diamond), that both sides don't define the counter register. We 1623 // can predicate counter-decrement-based branches, but while that predicates 1624 // the branching, it does not predicate the counter decrement. If we tried to 1625 // merge the triangle into one predicated block, we'd decrement the counter 1626 // twice. 1627 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1628 unsigned NumT, unsigned ExtraT, 1629 MachineBasicBlock &FMBB, 1630 unsigned NumF, unsigned ExtraF, 1631 BranchProbability Probability) const { 1632 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1633 } 1634 1635 1636 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1637 // The predicated branches are identified by their type, not really by the 1638 // explicit presence of a predicate. Furthermore, some of them can be 1639 // predicated more than once. Because if conversion won't try to predicate 1640 // any instruction which already claims to be predicated (by returning true 1641 // here), always return false. In doing so, we let isPredicable() be the 1642 // final word on whether not the instruction can be (further) predicated. 1643 1644 return false; 1645 } 1646 1647 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1648 const MachineBasicBlock *MBB, 1649 const MachineFunction &MF) const { 1650 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 1651 // across them, since some FP operations may change content of FPSCR. 1652 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 1653 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 1654 return true; 1655 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 1656 } 1657 1658 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1659 ArrayRef<MachineOperand> Pred) const { 1660 unsigned OpC = MI.getOpcode(); 1661 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1662 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1663 bool isPPC64 = Subtarget.isPPC64(); 1664 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1665 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1666 // Need add Def and Use for CTR implicit operand. 1667 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1668 .addReg(Pred[1].getReg(), RegState::Implicit) 1669 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 1670 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1671 MI.setDesc(get(PPC::BCLR)); 1672 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1673 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1674 MI.setDesc(get(PPC::BCLRn)); 1675 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1676 } else { 1677 MI.setDesc(get(PPC::BCCLR)); 1678 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1679 .addImm(Pred[0].getImm()) 1680 .add(Pred[1]); 1681 } 1682 1683 return true; 1684 } else if (OpC == PPC::B) { 1685 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1686 bool isPPC64 = Subtarget.isPPC64(); 1687 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1688 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1689 // Need add Def and Use for CTR implicit operand. 1690 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1691 .addReg(Pred[1].getReg(), RegState::Implicit) 1692 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 1693 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1694 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1695 MI.RemoveOperand(0); 1696 1697 MI.setDesc(get(PPC::BC)); 1698 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1699 .add(Pred[1]) 1700 .addMBB(MBB); 1701 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1702 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1703 MI.RemoveOperand(0); 1704 1705 MI.setDesc(get(PPC::BCn)); 1706 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1707 .add(Pred[1]) 1708 .addMBB(MBB); 1709 } else { 1710 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1711 MI.RemoveOperand(0); 1712 1713 MI.setDesc(get(PPC::BCC)); 1714 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1715 .addImm(Pred[0].getImm()) 1716 .add(Pred[1]) 1717 .addMBB(MBB); 1718 } 1719 1720 return true; 1721 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1722 OpC == PPC::BCTRL8) { 1723 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1724 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1725 1726 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1727 bool isPPC64 = Subtarget.isPPC64(); 1728 1729 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1730 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1731 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1732 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1733 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1734 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1735 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1736 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1737 } else { 1738 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1739 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1740 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1741 .addImm(Pred[0].getImm()) 1742 .add(Pred[1]); 1743 } 1744 1745 // Need add Def and Use for LR implicit operand. 1746 if (setLR) 1747 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1748 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 1749 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 1750 1751 return true; 1752 } 1753 1754 return false; 1755 } 1756 1757 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1758 ArrayRef<MachineOperand> Pred2) const { 1759 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1760 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1761 1762 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1763 return false; 1764 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1765 return false; 1766 1767 // P1 can only subsume P2 if they test the same condition register. 1768 if (Pred1[1].getReg() != Pred2[1].getReg()) 1769 return false; 1770 1771 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1772 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1773 1774 if (P1 == P2) 1775 return true; 1776 1777 // Does P1 subsume P2, e.g. GE subsumes GT. 1778 if (P1 == PPC::PRED_LE && 1779 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1780 return true; 1781 if (P1 == PPC::PRED_GE && 1782 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1783 return true; 1784 1785 return false; 1786 } 1787 1788 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1789 std::vector<MachineOperand> &Pred) const { 1790 // Note: At the present time, the contents of Pred from this function is 1791 // unused by IfConversion. This implementation follows ARM by pushing the 1792 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1793 // predicate, instructions defining CTR or CTR8 are also included as 1794 // predicate-defining instructions. 1795 1796 const TargetRegisterClass *RCs[] = 1797 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1798 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1799 1800 bool Found = false; 1801 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1802 const MachineOperand &MO = MI.getOperand(i); 1803 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1804 const TargetRegisterClass *RC = RCs[c]; 1805 if (MO.isReg()) { 1806 if (MO.isDef() && RC->contains(MO.getReg())) { 1807 Pred.push_back(MO); 1808 Found = true; 1809 } 1810 } else if (MO.isRegMask()) { 1811 for (TargetRegisterClass::iterator I = RC->begin(), 1812 IE = RC->end(); I != IE; ++I) 1813 if (MO.clobbersPhysReg(*I)) { 1814 Pred.push_back(MO); 1815 Found = true; 1816 } 1817 } 1818 } 1819 } 1820 1821 return Found; 1822 } 1823 1824 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1825 Register &SrcReg2, int &Mask, 1826 int &Value) const { 1827 unsigned Opc = MI.getOpcode(); 1828 1829 switch (Opc) { 1830 default: return false; 1831 case PPC::CMPWI: 1832 case PPC::CMPLWI: 1833 case PPC::CMPDI: 1834 case PPC::CMPLDI: 1835 SrcReg = MI.getOperand(1).getReg(); 1836 SrcReg2 = 0; 1837 Value = MI.getOperand(2).getImm(); 1838 Mask = 0xFFFF; 1839 return true; 1840 case PPC::CMPW: 1841 case PPC::CMPLW: 1842 case PPC::CMPD: 1843 case PPC::CMPLD: 1844 case PPC::FCMPUS: 1845 case PPC::FCMPUD: 1846 SrcReg = MI.getOperand(1).getReg(); 1847 SrcReg2 = MI.getOperand(2).getReg(); 1848 Value = 0; 1849 Mask = 0; 1850 return true; 1851 } 1852 } 1853 1854 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 1855 Register SrcReg2, int Mask, int Value, 1856 const MachineRegisterInfo *MRI) const { 1857 if (DisableCmpOpt) 1858 return false; 1859 1860 int OpC = CmpInstr.getOpcode(); 1861 Register CRReg = CmpInstr.getOperand(0).getReg(); 1862 1863 // FP record forms set CR1 based on the exception status bits, not a 1864 // comparison with zero. 1865 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1866 return false; 1867 1868 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1869 // The record forms set the condition register based on a signed comparison 1870 // with zero (so says the ISA manual). This is not as straightforward as it 1871 // seems, however, because this is always a 64-bit comparison on PPC64, even 1872 // for instructions that are 32-bit in nature (like slw for example). 1873 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1874 // for equality checks (as those don't depend on the sign). On PPC64, 1875 // we are restricted to equality for unsigned 64-bit comparisons and for 1876 // signed 32-bit comparisons the applicability is more restricted. 1877 bool isPPC64 = Subtarget.isPPC64(); 1878 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1879 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1880 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1881 1882 // Look through copies unless that gets us to a physical register. 1883 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1884 if (ActualSrc.isVirtual()) 1885 SrcReg = ActualSrc; 1886 1887 // Get the unique definition of SrcReg. 1888 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1889 if (!MI) return false; 1890 1891 bool equalityOnly = false; 1892 bool noSub = false; 1893 if (isPPC64) { 1894 if (is32BitSignedCompare) { 1895 // We can perform this optimization only if MI is sign-extending. 1896 if (isSignExtended(*MI)) 1897 noSub = true; 1898 else 1899 return false; 1900 } else if (is32BitUnsignedCompare) { 1901 // We can perform this optimization, equality only, if MI is 1902 // zero-extending. 1903 if (isZeroExtended(*MI)) { 1904 noSub = true; 1905 equalityOnly = true; 1906 } else 1907 return false; 1908 } else 1909 equalityOnly = is64BitUnsignedCompare; 1910 } else 1911 equalityOnly = is32BitUnsignedCompare; 1912 1913 if (equalityOnly) { 1914 // We need to check the uses of the condition register in order to reject 1915 // non-equality comparisons. 1916 for (MachineRegisterInfo::use_instr_iterator 1917 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1918 I != IE; ++I) { 1919 MachineInstr *UseMI = &*I; 1920 if (UseMI->getOpcode() == PPC::BCC) { 1921 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1922 unsigned PredCond = PPC::getPredicateCondition(Pred); 1923 // We ignore hint bits when checking for non-equality comparisons. 1924 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1925 return false; 1926 } else if (UseMI->getOpcode() == PPC::ISEL || 1927 UseMI->getOpcode() == PPC::ISEL8) { 1928 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1929 if (SubIdx != PPC::sub_eq) 1930 return false; 1931 } else 1932 return false; 1933 } 1934 } 1935 1936 MachineBasicBlock::iterator I = CmpInstr; 1937 1938 // Scan forward to find the first use of the compare. 1939 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1940 ++I) { 1941 bool FoundUse = false; 1942 for (MachineRegisterInfo::use_instr_iterator 1943 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1944 J != JE; ++J) 1945 if (&*J == &*I) { 1946 FoundUse = true; 1947 break; 1948 } 1949 1950 if (FoundUse) 1951 break; 1952 } 1953 1954 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1955 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1956 1957 // There are two possible candidates which can be changed to set CR[01]. 1958 // One is MI, the other is a SUB instruction. 1959 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1960 MachineInstr *Sub = nullptr; 1961 if (SrcReg2 != 0) 1962 // MI is not a candidate for CMPrr. 1963 MI = nullptr; 1964 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1965 // same BB as the comparison. This is to allow the check below to avoid calls 1966 // (and other explicit clobbers); instead we should really check for these 1967 // more explicitly (in at least a few predecessors). 1968 else if (MI->getParent() != CmpInstr.getParent()) 1969 return false; 1970 else if (Value != 0) { 1971 // The record-form instructions set CR bit based on signed comparison 1972 // against 0. We try to convert a compare against 1 or -1 into a compare 1973 // against 0 to exploit record-form instructions. For example, we change 1974 // the condition "greater than -1" into "greater than or equal to 0" 1975 // and "less than 1" into "less than or equal to 0". 1976 1977 // Since we optimize comparison based on a specific branch condition, 1978 // we don't optimize if condition code is used by more than once. 1979 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1980 return false; 1981 1982 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1983 if (UseMI->getOpcode() != PPC::BCC) 1984 return false; 1985 1986 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1987 unsigned PredCond = PPC::getPredicateCondition(Pred); 1988 unsigned PredHint = PPC::getPredicateHint(Pred); 1989 int16_t Immed = (int16_t)Value; 1990 1991 // When modifying the condition in the predicate, we propagate hint bits 1992 // from the original predicate to the new one. 1993 if (Immed == -1 && PredCond == PPC::PRED_GT) 1994 // We convert "greater than -1" into "greater than or equal to 0", 1995 // since we are assuming signed comparison by !equalityOnly 1996 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1997 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1998 // We convert "less than or equal to -1" into "less than 0". 1999 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 2000 else if (Immed == 1 && PredCond == PPC::PRED_LT) 2001 // We convert "less than 1" into "less than or equal to 0". 2002 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 2003 else if (Immed == 1 && PredCond == PPC::PRED_GE) 2004 // We convert "greater than or equal to 1" into "greater than 0". 2005 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 2006 else 2007 return false; 2008 2009 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 2010 } 2011 2012 // Search for Sub. 2013 --I; 2014 2015 // Get ready to iterate backward from CmpInstr. 2016 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2017 2018 for (; I != E && !noSub; --I) { 2019 const MachineInstr &Instr = *I; 2020 unsigned IOpC = Instr.getOpcode(); 2021 2022 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2023 Instr.readsRegister(PPC::CR0, TRI))) 2024 // This instruction modifies or uses the record condition register after 2025 // the one we want to change. While we could do this transformation, it 2026 // would likely not be profitable. This transformation removes one 2027 // instruction, and so even forcing RA to generate one move probably 2028 // makes it unprofitable. 2029 return false; 2030 2031 // Check whether CmpInstr can be made redundant by the current instruction. 2032 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2033 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2034 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2035 ((Instr.getOperand(1).getReg() == SrcReg && 2036 Instr.getOperand(2).getReg() == SrcReg2) || 2037 (Instr.getOperand(1).getReg() == SrcReg2 && 2038 Instr.getOperand(2).getReg() == SrcReg))) { 2039 Sub = &*I; 2040 break; 2041 } 2042 2043 if (I == B) 2044 // The 'and' is below the comparison instruction. 2045 return false; 2046 } 2047 2048 // Return false if no candidates exist. 2049 if (!MI && !Sub) 2050 return false; 2051 2052 // The single candidate is called MI. 2053 if (!MI) MI = Sub; 2054 2055 int NewOpC = -1; 2056 int MIOpC = MI->getOpcode(); 2057 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2058 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2059 NewOpC = MIOpC; 2060 else { 2061 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2062 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2063 NewOpC = MIOpC; 2064 } 2065 2066 // FIXME: On the non-embedded POWER architectures, only some of the record 2067 // forms are fast, and we should use only the fast ones. 2068 2069 // The defining instruction has a record form (or is already a record 2070 // form). It is possible, however, that we'll need to reverse the condition 2071 // code of the users. 2072 if (NewOpC == -1) 2073 return false; 2074 2075 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2076 // needs to be updated to be based on SUB. Push the condition code 2077 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2078 // condition code of these operands will be modified. 2079 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2080 // comparison against 0, which may modify predicate. 2081 bool ShouldSwap = false; 2082 if (Sub && Value == 0) { 2083 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2084 Sub->getOperand(2).getReg() == SrcReg; 2085 2086 // The operands to subf are the opposite of sub, so only in the fixed-point 2087 // case, invert the order. 2088 ShouldSwap = !ShouldSwap; 2089 } 2090 2091 if (ShouldSwap) 2092 for (MachineRegisterInfo::use_instr_iterator 2093 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2094 I != IE; ++I) { 2095 MachineInstr *UseMI = &*I; 2096 if (UseMI->getOpcode() == PPC::BCC) { 2097 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2098 unsigned PredCond = PPC::getPredicateCondition(Pred); 2099 assert((!equalityOnly || 2100 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2101 "Invalid predicate for equality-only optimization"); 2102 (void)PredCond; // To suppress warning in release build. 2103 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2104 PPC::getSwappedPredicate(Pred))); 2105 } else if (UseMI->getOpcode() == PPC::ISEL || 2106 UseMI->getOpcode() == PPC::ISEL8) { 2107 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2108 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2109 "Invalid CR bit for equality-only optimization"); 2110 2111 if (NewSubReg == PPC::sub_lt) 2112 NewSubReg = PPC::sub_gt; 2113 else if (NewSubReg == PPC::sub_gt) 2114 NewSubReg = PPC::sub_lt; 2115 2116 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2117 NewSubReg)); 2118 } else // We need to abort on a user we don't understand. 2119 return false; 2120 } 2121 assert(!(Value != 0 && ShouldSwap) && 2122 "Non-zero immediate support and ShouldSwap" 2123 "may conflict in updating predicate"); 2124 2125 // Create a new virtual register to hold the value of the CR set by the 2126 // record-form instruction. If the instruction was not previously in 2127 // record form, then set the kill flag on the CR. 2128 CmpInstr.eraseFromParent(); 2129 2130 MachineBasicBlock::iterator MII = MI; 2131 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2132 get(TargetOpcode::COPY), CRReg) 2133 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2134 2135 // Even if CR0 register were dead before, it is alive now since the 2136 // instruction we just built uses it. 2137 MI->clearRegisterDeads(PPC::CR0); 2138 2139 if (MIOpC != NewOpC) { 2140 // We need to be careful here: we're replacing one instruction with 2141 // another, and we need to make sure that we get all of the right 2142 // implicit uses and defs. On the other hand, the caller may be holding 2143 // an iterator to this instruction, and so we can't delete it (this is 2144 // specifically the case if this is the instruction directly after the 2145 // compare). 2146 2147 // Rotates are expensive instructions. If we're emitting a record-form 2148 // rotate that can just be an andi/andis, we should just emit that. 2149 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2150 Register GPRRes = MI->getOperand(0).getReg(); 2151 int64_t SH = MI->getOperand(2).getImm(); 2152 int64_t MB = MI->getOperand(3).getImm(); 2153 int64_t ME = MI->getOperand(4).getImm(); 2154 // We can only do this if both the start and end of the mask are in the 2155 // same halfword. 2156 bool MBInLoHWord = MB >= 16; 2157 bool MEInLoHWord = ME >= 16; 2158 uint64_t Mask = ~0LLU; 2159 2160 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2161 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2162 // The mask value needs to shift right 16 if we're emitting andis. 2163 Mask >>= MBInLoHWord ? 0 : 16; 2164 NewOpC = MIOpC == PPC::RLWINM 2165 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2166 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2167 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2168 (ME - MB + 1 == SH) && (MB >= 16)) { 2169 // If we are rotating by the exact number of bits as are in the mask 2170 // and the mask is in the least significant bits of the register, 2171 // that's just an andis. (as long as the GPR result has no uses). 2172 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2173 Mask >>= 16; 2174 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2175 } 2176 // If we've set the mask, we can transform. 2177 if (Mask != ~0LLU) { 2178 MI->RemoveOperand(4); 2179 MI->RemoveOperand(3); 2180 MI->getOperand(2).setImm(Mask); 2181 NumRcRotatesConvertedToRcAnd++; 2182 } 2183 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2184 int64_t MB = MI->getOperand(3).getImm(); 2185 if (MB >= 48) { 2186 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2187 NewOpC = PPC::ANDI8_rec; 2188 MI->RemoveOperand(3); 2189 MI->getOperand(2).setImm(Mask); 2190 NumRcRotatesConvertedToRcAnd++; 2191 } 2192 } 2193 2194 const MCInstrDesc &NewDesc = get(NewOpC); 2195 MI->setDesc(NewDesc); 2196 2197 if (NewDesc.ImplicitDefs) 2198 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2199 *ImpDefs; ++ImpDefs) 2200 if (!MI->definesRegister(*ImpDefs)) 2201 MI->addOperand(*MI->getParent()->getParent(), 2202 MachineOperand::CreateReg(*ImpDefs, true, true)); 2203 if (NewDesc.ImplicitUses) 2204 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2205 *ImpUses; ++ImpUses) 2206 if (!MI->readsRegister(*ImpUses)) 2207 MI->addOperand(*MI->getParent()->getParent(), 2208 MachineOperand::CreateReg(*ImpUses, false, true)); 2209 } 2210 assert(MI->definesRegister(PPC::CR0) && 2211 "Record-form instruction does not define cr0?"); 2212 2213 // Modify the condition code of operands in OperandsToUpdate. 2214 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2215 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2216 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2217 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2218 2219 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2220 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2221 2222 return true; 2223 } 2224 2225 /// GetInstSize - Return the number of bytes of code the specified 2226 /// instruction may be. This returns the maximum number of bytes. 2227 /// 2228 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2229 unsigned Opcode = MI.getOpcode(); 2230 2231 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2232 const MachineFunction *MF = MI.getParent()->getParent(); 2233 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2234 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2235 } else if (Opcode == TargetOpcode::STACKMAP) { 2236 StackMapOpers Opers(&MI); 2237 return Opers.getNumPatchBytes(); 2238 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2239 PatchPointOpers Opers(&MI); 2240 return Opers.getNumPatchBytes(); 2241 } else { 2242 return get(Opcode).getSize(); 2243 } 2244 } 2245 2246 std::pair<unsigned, unsigned> 2247 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2248 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2249 return std::make_pair(TF & Mask, TF & ~Mask); 2250 } 2251 2252 ArrayRef<std::pair<unsigned, const char *>> 2253 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2254 using namespace PPCII; 2255 static const std::pair<unsigned, const char *> TargetFlags[] = { 2256 {MO_LO, "ppc-lo"}, 2257 {MO_HA, "ppc-ha"}, 2258 {MO_TPREL_LO, "ppc-tprel-lo"}, 2259 {MO_TPREL_HA, "ppc-tprel-ha"}, 2260 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2261 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2262 {MO_TOC_LO, "ppc-toc-lo"}, 2263 {MO_TLS, "ppc-tls"}}; 2264 return makeArrayRef(TargetFlags); 2265 } 2266 2267 ArrayRef<std::pair<unsigned, const char *>> 2268 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2269 using namespace PPCII; 2270 static const std::pair<unsigned, const char *> TargetFlags[] = { 2271 {MO_PLT, "ppc-plt"}, 2272 {MO_PIC_FLAG, "ppc-pic"}, 2273 {MO_PCREL_FLAG, "ppc-pcrel"}, 2274 {MO_GOT_FLAG, "ppc-got"}, 2275 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}}; 2276 return makeArrayRef(TargetFlags); 2277 } 2278 2279 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2280 // The VSX versions have the advantage of a full 64-register target whereas 2281 // the FP ones have the advantage of lower latency and higher throughput. So 2282 // what we are after is using the faster instructions in low register pressure 2283 // situations and using the larger register file in high register pressure 2284 // situations. 2285 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2286 unsigned UpperOpcode, LowerOpcode; 2287 switch (MI.getOpcode()) { 2288 case PPC::DFLOADf32: 2289 UpperOpcode = PPC::LXSSP; 2290 LowerOpcode = PPC::LFS; 2291 break; 2292 case PPC::DFLOADf64: 2293 UpperOpcode = PPC::LXSD; 2294 LowerOpcode = PPC::LFD; 2295 break; 2296 case PPC::DFSTOREf32: 2297 UpperOpcode = PPC::STXSSP; 2298 LowerOpcode = PPC::STFS; 2299 break; 2300 case PPC::DFSTOREf64: 2301 UpperOpcode = PPC::STXSD; 2302 LowerOpcode = PPC::STFD; 2303 break; 2304 case PPC::XFLOADf32: 2305 UpperOpcode = PPC::LXSSPX; 2306 LowerOpcode = PPC::LFSX; 2307 break; 2308 case PPC::XFLOADf64: 2309 UpperOpcode = PPC::LXSDX; 2310 LowerOpcode = PPC::LFDX; 2311 break; 2312 case PPC::XFSTOREf32: 2313 UpperOpcode = PPC::STXSSPX; 2314 LowerOpcode = PPC::STFSX; 2315 break; 2316 case PPC::XFSTOREf64: 2317 UpperOpcode = PPC::STXSDX; 2318 LowerOpcode = PPC::STFDX; 2319 break; 2320 case PPC::LIWAX: 2321 UpperOpcode = PPC::LXSIWAX; 2322 LowerOpcode = PPC::LFIWAX; 2323 break; 2324 case PPC::LIWZX: 2325 UpperOpcode = PPC::LXSIWZX; 2326 LowerOpcode = PPC::LFIWZX; 2327 break; 2328 case PPC::STIWX: 2329 UpperOpcode = PPC::STXSIWX; 2330 LowerOpcode = PPC::STFIWX; 2331 break; 2332 default: 2333 llvm_unreachable("Unknown Operation!"); 2334 } 2335 2336 Register TargetReg = MI.getOperand(0).getReg(); 2337 unsigned Opcode; 2338 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2339 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2340 Opcode = LowerOpcode; 2341 else 2342 Opcode = UpperOpcode; 2343 MI.setDesc(get(Opcode)); 2344 return true; 2345 } 2346 2347 static bool isAnImmediateOperand(const MachineOperand &MO) { 2348 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2349 } 2350 2351 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2352 auto &MBB = *MI.getParent(); 2353 auto DL = MI.getDebugLoc(); 2354 2355 switch (MI.getOpcode()) { 2356 case TargetOpcode::LOAD_STACK_GUARD: { 2357 assert(Subtarget.isTargetLinux() && 2358 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2359 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2360 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2361 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2362 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2363 .addImm(Offset) 2364 .addReg(Reg); 2365 return true; 2366 } 2367 case PPC::DFLOADf32: 2368 case PPC::DFLOADf64: 2369 case PPC::DFSTOREf32: 2370 case PPC::DFSTOREf64: { 2371 assert(Subtarget.hasP9Vector() && 2372 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2373 assert(MI.getOperand(2).isReg() && 2374 isAnImmediateOperand(MI.getOperand(1)) && 2375 "D-form op must have register and immediate operands"); 2376 return expandVSXMemPseudo(MI); 2377 } 2378 case PPC::XFLOADf32: 2379 case PPC::XFSTOREf32: 2380 case PPC::LIWAX: 2381 case PPC::LIWZX: 2382 case PPC::STIWX: { 2383 assert(Subtarget.hasP8Vector() && 2384 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2385 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2386 "X-form op must have register and register operands"); 2387 return expandVSXMemPseudo(MI); 2388 } 2389 case PPC::XFLOADf64: 2390 case PPC::XFSTOREf64: { 2391 assert(Subtarget.hasVSX() && 2392 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2393 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2394 "X-form op must have register and register operands"); 2395 return expandVSXMemPseudo(MI); 2396 } 2397 case PPC::SPILLTOVSR_LD: { 2398 Register TargetReg = MI.getOperand(0).getReg(); 2399 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2400 MI.setDesc(get(PPC::DFLOADf64)); 2401 return expandPostRAPseudo(MI); 2402 } 2403 else 2404 MI.setDesc(get(PPC::LD)); 2405 return true; 2406 } 2407 case PPC::SPILLTOVSR_ST: { 2408 Register SrcReg = MI.getOperand(0).getReg(); 2409 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2410 NumStoreSPILLVSRRCAsVec++; 2411 MI.setDesc(get(PPC::DFSTOREf64)); 2412 return expandPostRAPseudo(MI); 2413 } else { 2414 NumStoreSPILLVSRRCAsGpr++; 2415 MI.setDesc(get(PPC::STD)); 2416 } 2417 return true; 2418 } 2419 case PPC::SPILLTOVSR_LDX: { 2420 Register TargetReg = MI.getOperand(0).getReg(); 2421 if (PPC::VSFRCRegClass.contains(TargetReg)) 2422 MI.setDesc(get(PPC::LXSDX)); 2423 else 2424 MI.setDesc(get(PPC::LDX)); 2425 return true; 2426 } 2427 case PPC::SPILLTOVSR_STX: { 2428 Register SrcReg = MI.getOperand(0).getReg(); 2429 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2430 NumStoreSPILLVSRRCAsVec++; 2431 MI.setDesc(get(PPC::STXSDX)); 2432 } else { 2433 NumStoreSPILLVSRRCAsGpr++; 2434 MI.setDesc(get(PPC::STDX)); 2435 } 2436 return true; 2437 } 2438 2439 case PPC::CFENCE8: { 2440 auto Val = MI.getOperand(0).getReg(); 2441 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2442 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2443 .addImm(PPC::PRED_NE_MINUS) 2444 .addReg(PPC::CR7) 2445 .addImm(1); 2446 MI.setDesc(get(PPC::ISYNC)); 2447 MI.RemoveOperand(0); 2448 return true; 2449 } 2450 } 2451 return false; 2452 } 2453 2454 // Essentially a compile-time implementation of a compare->isel sequence. 2455 // It takes two constants to compare, along with the true/false registers 2456 // and the comparison type (as a subreg to a CR field) and returns one 2457 // of the true/false registers, depending on the comparison results. 2458 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2459 unsigned TrueReg, unsigned FalseReg, 2460 unsigned CRSubReg) { 2461 // Signed comparisons. The immediates are assumed to be sign-extended. 2462 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2463 switch (CRSubReg) { 2464 default: llvm_unreachable("Unknown integer comparison type."); 2465 case PPC::sub_lt: 2466 return Imm1 < Imm2 ? TrueReg : FalseReg; 2467 case PPC::sub_gt: 2468 return Imm1 > Imm2 ? TrueReg : FalseReg; 2469 case PPC::sub_eq: 2470 return Imm1 == Imm2 ? TrueReg : FalseReg; 2471 } 2472 } 2473 // Unsigned comparisons. 2474 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2475 switch (CRSubReg) { 2476 default: llvm_unreachable("Unknown integer comparison type."); 2477 case PPC::sub_lt: 2478 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2479 case PPC::sub_gt: 2480 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2481 case PPC::sub_eq: 2482 return Imm1 == Imm2 ? TrueReg : FalseReg; 2483 } 2484 } 2485 return PPC::NoRegister; 2486 } 2487 2488 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2489 unsigned OpNo, 2490 int64_t Imm) const { 2491 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2492 // Replace the REG with the Immediate. 2493 Register InUseReg = MI.getOperand(OpNo).getReg(); 2494 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2495 2496 if (MI.implicit_operands().empty()) 2497 return; 2498 2499 // We need to make sure that the MI didn't have any implicit use 2500 // of this REG any more. 2501 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2502 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2503 if (UseOpIdx >= 0) { 2504 MachineOperand &MO = MI.getOperand(UseOpIdx); 2505 if (MO.isImplicit()) 2506 // The operands must always be in the following order: 2507 // - explicit reg defs, 2508 // - other explicit operands (reg uses, immediates, etc.), 2509 // - implicit reg defs 2510 // - implicit reg uses 2511 // Therefore, removing the implicit operand won't change the explicit 2512 // operands layout. 2513 MI.RemoveOperand(UseOpIdx); 2514 } 2515 } 2516 2517 // Replace an instruction with one that materializes a constant (and sets 2518 // CR0 if the original instruction was a record-form instruction). 2519 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2520 const LoadImmediateInfo &LII) const { 2521 // Remove existing operands. 2522 int OperandToKeep = LII.SetCR ? 1 : 0; 2523 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2524 MI.RemoveOperand(i); 2525 2526 // Replace the instruction. 2527 if (LII.SetCR) { 2528 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2529 // Set the immediate. 2530 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2531 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2532 return; 2533 } 2534 else 2535 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2536 2537 // Set the immediate. 2538 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2539 .addImm(LII.Imm); 2540 } 2541 2542 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2543 bool &SeenIntermediateUse) const { 2544 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2545 "Should be called after register allocation."); 2546 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2547 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2548 It++; 2549 SeenIntermediateUse = false; 2550 for (; It != E; ++It) { 2551 if (It->modifiesRegister(Reg, TRI)) 2552 return &*It; 2553 if (It->readsRegister(Reg, TRI)) 2554 SeenIntermediateUse = true; 2555 } 2556 return nullptr; 2557 } 2558 2559 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2560 MachineInstr &MI, 2561 unsigned &OpNoForForwarding, 2562 bool &SeenIntermediateUse) const { 2563 OpNoForForwarding = ~0U; 2564 MachineInstr *DefMI = nullptr; 2565 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2566 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2567 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2568 // within the basic block to see if the register is defined using an 2569 // LI/LI8/ADDI/ADDI8. 2570 if (MRI->isSSA()) { 2571 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2572 if (!MI.getOperand(i).isReg()) 2573 continue; 2574 Register Reg = MI.getOperand(i).getReg(); 2575 if (!Register::isVirtualRegister(Reg)) 2576 continue; 2577 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2578 if (Register::isVirtualRegister(TrueReg)) { 2579 DefMI = MRI->getVRegDef(TrueReg); 2580 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 || 2581 DefMI->getOpcode() == PPC::ADDI || 2582 DefMI->getOpcode() == PPC::ADDI8) { 2583 OpNoForForwarding = i; 2584 // The ADDI and LI operand maybe exist in one instruction at same 2585 // time. we prefer to fold LI operand as LI only has one Imm operand 2586 // and is more possible to be converted. So if current DefMI is 2587 // ADDI/ADDI8, we continue to find possible LI/LI8. 2588 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 2589 break; 2590 } 2591 } 2592 } 2593 } else { 2594 // Looking back through the definition for each operand could be expensive, 2595 // so exit early if this isn't an instruction that either has an immediate 2596 // form or is already an immediate form that we can handle. 2597 ImmInstrInfo III; 2598 unsigned Opc = MI.getOpcode(); 2599 bool ConvertibleImmForm = 2600 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2601 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2602 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2603 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2604 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2605 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2606 Opc == PPC::RLWINM8_rec; 2607 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2608 ? isVFRegister(MI.getOperand(0).getReg()) 2609 : false; 2610 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2611 return nullptr; 2612 2613 // Don't convert or %X, %Y, %Y since that's just a register move. 2614 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2615 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2616 return nullptr; 2617 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2618 MachineOperand &MO = MI.getOperand(i); 2619 SeenIntermediateUse = false; 2620 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2621 Register Reg = MI.getOperand(i).getReg(); 2622 // If we see another use of this reg between the def and the MI, 2623 // we want to flat it so the def isn't deleted. 2624 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2625 if (DefMI) { 2626 // Is this register defined by some form of add-immediate (including 2627 // load-immediate) within this basic block? 2628 switch (DefMI->getOpcode()) { 2629 default: 2630 break; 2631 case PPC::LI: 2632 case PPC::LI8: 2633 case PPC::ADDItocL: 2634 case PPC::ADDI: 2635 case PPC::ADDI8: 2636 OpNoForForwarding = i; 2637 return DefMI; 2638 } 2639 } 2640 } 2641 } 2642 } 2643 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2644 } 2645 2646 unsigned PPCInstrInfo::getSpillTarget() const { 2647 return Subtarget.hasP9Vector() ? 1 : 0; 2648 } 2649 2650 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2651 return StoreSpillOpcodesArray[getSpillTarget()]; 2652 } 2653 2654 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2655 return LoadSpillOpcodesArray[getSpillTarget()]; 2656 } 2657 2658 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2659 unsigned RegNo) const { 2660 // Conservatively clear kill flag for the register if the instructions are in 2661 // different basic blocks and in SSA form, because the kill flag may no longer 2662 // be right. There is no need to bother with dead flags since defs with no 2663 // uses will be handled by DCE. 2664 MachineRegisterInfo &MRI = StartMI.getParent()->getParent()->getRegInfo(); 2665 if (MRI.isSSA() && (StartMI.getParent() != EndMI.getParent())) { 2666 MRI.clearKillFlags(RegNo); 2667 return; 2668 } 2669 2670 // Instructions between [StartMI, EndMI] should be in same basic block. 2671 assert((StartMI.getParent() == EndMI.getParent()) && 2672 "Instructions are not in same basic block"); 2673 2674 bool IsKillSet = false; 2675 2676 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2677 MachineOperand &MO = MI.getOperand(Index); 2678 if (MO.isReg() && MO.isUse() && MO.isKill() && 2679 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2680 MO.setIsKill(false); 2681 }; 2682 2683 // Set killed flag for EndMI. 2684 // No need to do anything if EndMI defines RegNo. 2685 int UseIndex = 2686 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2687 if (UseIndex != -1) { 2688 EndMI.getOperand(UseIndex).setIsKill(true); 2689 IsKillSet = true; 2690 // Clear killed flag for other EndMI operands related to RegNo. In some 2691 // upexpected cases, killed may be set multiple times for same register 2692 // operand in same MI. 2693 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2694 if (i != UseIndex) 2695 clearOperandKillInfo(EndMI, i); 2696 } 2697 2698 // Walking the inst in reverse order (EndMI -> StartMI]. 2699 MachineBasicBlock::reverse_iterator It = EndMI; 2700 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2701 // EndMI has been handled above, skip it here. 2702 It++; 2703 MachineOperand *MO = nullptr; 2704 for (; It != E; ++It) { 2705 // Skip insturctions which could not be a def/use of RegNo. 2706 if (It->isDebugInstr() || It->isPosition()) 2707 continue; 2708 2709 // Clear killed flag for all It operands related to RegNo. In some 2710 // upexpected cases, killed may be set multiple times for same register 2711 // operand in same MI. 2712 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2713 clearOperandKillInfo(*It, i); 2714 2715 // If killed is not set, set killed for its last use or set dead for its def 2716 // if no use found. 2717 if (!IsKillSet) { 2718 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2719 // Use found, set it killed. 2720 IsKillSet = true; 2721 MO->setIsKill(true); 2722 continue; 2723 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2724 &getRegisterInfo()))) { 2725 // No use found, set dead for its def. 2726 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2727 MO->setIsDead(true); 2728 break; 2729 } 2730 } 2731 2732 if ((&*It) == &StartMI) 2733 break; 2734 } 2735 // Ensure RegMo liveness is killed after EndMI. 2736 assert((IsKillSet || (MO && MO->isDead())) && 2737 "RegNo should be killed or dead"); 2738 } 2739 2740 // This opt tries to convert the following imm form to an index form to save an 2741 // add for stack variables. 2742 // Return false if no such pattern found. 2743 // 2744 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2745 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2746 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2747 // 2748 // can be converted to: 2749 // 2750 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2751 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2752 // 2753 // In order to eliminate ADD instr, make sure that: 2754 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2755 // new ADDI instr and ADDI can only take int16 Imm. 2756 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2757 // between ADDI and ADD instr since its original def in ADDI will be changed 2758 // in new ADDI instr. And also there should be no new def for it between 2759 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2760 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2761 // between ADD and Imm instr since ADD instr will be eliminated. 2762 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2763 // moved to Index instr. 2764 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2765 MachineFunction *MF = MI.getParent()->getParent(); 2766 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2767 bool PostRA = !MRI->isSSA(); 2768 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2769 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2770 // frame base(OffsetAddi) are determined. 2771 if (!PostRA) 2772 return false; 2773 unsigned ToBeDeletedReg = 0; 2774 int64_t OffsetImm = 0; 2775 unsigned XFormOpcode = 0; 2776 ImmInstrInfo III; 2777 2778 // Check if Imm instr meets requirement. 2779 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2780 III)) 2781 return false; 2782 2783 bool OtherIntermediateUse = false; 2784 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2785 2786 // Exit if there is other use between ADD and Imm instr or no def found. 2787 if (OtherIntermediateUse || !ADDMI) 2788 return false; 2789 2790 // Check if ADD instr meets requirement. 2791 if (!isADDInstrEligibleForFolding(*ADDMI)) 2792 return false; 2793 2794 unsigned ScaleRegIdx = 0; 2795 int64_t OffsetAddi = 0; 2796 MachineInstr *ADDIMI = nullptr; 2797 2798 // Check if there is a valid ToBeChangedReg in ADDMI. 2799 // 1: It must be killed. 2800 // 2: Its definition must be a valid ADDIMI. 2801 // 3: It must satify int16 offset requirement. 2802 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 2803 ScaleRegIdx = 2; 2804 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 2805 ScaleRegIdx = 1; 2806 else 2807 return false; 2808 2809 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 2810 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 2811 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 2812 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 2813 MachineBasicBlock::iterator End) { 2814 for (auto It = ++Start; It != End; It++) 2815 if (It->modifiesRegister(Reg, &getRegisterInfo())) 2816 return true; 2817 return false; 2818 }; 2819 2820 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 2821 // treated as special zero when ScaleReg is R0/X0 register. 2822 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 2823 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 2824 return false; 2825 2826 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 2827 // and Imm Instr. 2828 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 2829 return false; 2830 2831 // Now start to do the transformation. 2832 LLVM_DEBUG(dbgs() << "Replace instruction: " 2833 << "\n"); 2834 LLVM_DEBUG(ADDIMI->dump()); 2835 LLVM_DEBUG(ADDMI->dump()); 2836 LLVM_DEBUG(MI.dump()); 2837 LLVM_DEBUG(dbgs() << "with: " 2838 << "\n"); 2839 2840 // Update ADDI instr. 2841 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 2842 2843 // Update Imm instr. 2844 MI.setDesc(get(XFormOpcode)); 2845 MI.getOperand(III.ImmOpNo) 2846 .ChangeToRegister(ScaleReg, false, false, 2847 ADDMI->getOperand(ScaleRegIdx).isKill()); 2848 2849 MI.getOperand(III.OpNoForForwarding) 2850 .ChangeToRegister(ToBeChangedReg, false, false, true); 2851 2852 // Eliminate ADD instr. 2853 ADDMI->eraseFromParent(); 2854 2855 LLVM_DEBUG(ADDIMI->dump()); 2856 LLVM_DEBUG(MI.dump()); 2857 2858 return true; 2859 } 2860 2861 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 2862 int64_t &Imm) const { 2863 unsigned Opc = ADDIMI.getOpcode(); 2864 2865 // Exit if the instruction is not ADDI. 2866 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 2867 return false; 2868 2869 // The operand may not necessarily be an immediate - it could be a relocation. 2870 if (!ADDIMI.getOperand(2).isImm()) 2871 return false; 2872 2873 Imm = ADDIMI.getOperand(2).getImm(); 2874 2875 return true; 2876 } 2877 2878 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 2879 unsigned Opc = ADDMI.getOpcode(); 2880 2881 // Exit if the instruction is not ADD. 2882 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 2883 } 2884 2885 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 2886 unsigned &ToBeDeletedReg, 2887 unsigned &XFormOpcode, 2888 int64_t &OffsetImm, 2889 ImmInstrInfo &III) const { 2890 // Only handle load/store. 2891 if (!MI.mayLoadOrStore()) 2892 return false; 2893 2894 unsigned Opc = MI.getOpcode(); 2895 2896 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 2897 2898 // Exit if instruction has no index form. 2899 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 2900 return false; 2901 2902 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 2903 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 2904 III, true)) 2905 return false; 2906 2907 if (!III.IsSummingOperands) 2908 return false; 2909 2910 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 2911 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 2912 // Only support imm operands, not relocation slots or others. 2913 if (!ImmOperand.isImm()) 2914 return false; 2915 2916 assert(RegOperand.isReg() && "Instruction format is not right"); 2917 2918 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 2919 if (!RegOperand.isKill()) 2920 return false; 2921 2922 ToBeDeletedReg = RegOperand.getReg(); 2923 OffsetImm = ImmOperand.getImm(); 2924 2925 return true; 2926 } 2927 2928 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 2929 MachineInstr *&ADDIMI, 2930 int64_t &OffsetAddi, 2931 int64_t OffsetImm) const { 2932 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 2933 MachineOperand &MO = ADDMI->getOperand(Index); 2934 2935 if (!MO.isKill()) 2936 return false; 2937 2938 bool OtherIntermediateUse = false; 2939 2940 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 2941 // Currently handle only one "add + Imminstr" pair case, exit if other 2942 // intermediate use for ToBeChangedReg found. 2943 // TODO: handle the cases where there are other "add + Imminstr" pairs 2944 // with same offset in Imminstr which is like: 2945 // 2946 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2947 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 2948 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 2949 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 2950 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 2951 // 2952 // can be converted to: 2953 // 2954 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 2955 // (OffsetAddi + OffsetImm) 2956 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 2957 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 2958 2959 if (OtherIntermediateUse || !ADDIMI) 2960 return false; 2961 // Check if ADDI instr meets requirement. 2962 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 2963 return false; 2964 2965 if (isInt<16>(OffsetAddi + OffsetImm)) 2966 return true; 2967 return false; 2968 } 2969 2970 // If this instruction has an immediate form and one of its operands is a 2971 // result of a load-immediate or an add-immediate, convert it to 2972 // the immediate form if the constant is in range. 2973 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2974 MachineInstr **KilledDef) const { 2975 MachineFunction *MF = MI.getParent()->getParent(); 2976 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2977 bool PostRA = !MRI->isSSA(); 2978 bool SeenIntermediateUse = true; 2979 unsigned ForwardingOperand = ~0U; 2980 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2981 SeenIntermediateUse); 2982 if (!DefMI) 2983 return false; 2984 assert(ForwardingOperand < MI.getNumOperands() && 2985 "The forwarding operand needs to be valid at this point"); 2986 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2987 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2988 if (KilledDef && KillFwdDefMI) 2989 *KilledDef = DefMI; 2990 2991 // If this is a imm instruction and its register operands is produced by ADDI, 2992 // put the imm into imm inst directly. 2993 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 2994 PPC::INSTRUCTION_LIST_END && 2995 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 2996 return true; 2997 2998 ImmInstrInfo III; 2999 bool IsVFReg = MI.getOperand(0).isReg() 3000 ? isVFRegister(MI.getOperand(0).getReg()) 3001 : false; 3002 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3003 // If this is a reg+reg instruction that has a reg+imm form, 3004 // and one of the operands is produced by an add-immediate, 3005 // try to convert it. 3006 if (HasImmForm && 3007 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3008 KillFwdDefMI)) 3009 return true; 3010 3011 // If this is a reg+reg instruction that has a reg+imm form, 3012 // and one of the operands is produced by LI, convert it now. 3013 if (HasImmForm && 3014 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3015 return true; 3016 3017 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3018 // can be simpified to LI. 3019 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3020 return true; 3021 3022 return false; 3023 } 3024 3025 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3026 ImmInstrInfo &III, bool PostRA) const { 3027 // The vast majority of the instructions would need their operand 2 replaced 3028 // with an immediate when switching to the reg+imm form. A marked exception 3029 // are the update form loads/stores for which a constant operand 2 would need 3030 // to turn into a displacement and move operand 1 to the operand 2 position. 3031 III.ImmOpNo = 2; 3032 III.OpNoForForwarding = 2; 3033 III.ImmWidth = 16; 3034 III.ImmMustBeMultipleOf = 1; 3035 III.TruncateImmTo = 0; 3036 III.IsSummingOperands = false; 3037 switch (Opc) { 3038 default: return false; 3039 case PPC::ADD4: 3040 case PPC::ADD8: 3041 III.SignedImm = true; 3042 III.ZeroIsSpecialOrig = 0; 3043 III.ZeroIsSpecialNew = 1; 3044 III.IsCommutative = true; 3045 III.IsSummingOperands = true; 3046 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3047 break; 3048 case PPC::ADDC: 3049 case PPC::ADDC8: 3050 III.SignedImm = true; 3051 III.ZeroIsSpecialOrig = 0; 3052 III.ZeroIsSpecialNew = 0; 3053 III.IsCommutative = true; 3054 III.IsSummingOperands = true; 3055 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3056 break; 3057 case PPC::ADDC_rec: 3058 III.SignedImm = true; 3059 III.ZeroIsSpecialOrig = 0; 3060 III.ZeroIsSpecialNew = 0; 3061 III.IsCommutative = true; 3062 III.IsSummingOperands = true; 3063 III.ImmOpcode = PPC::ADDIC_rec; 3064 break; 3065 case PPC::SUBFC: 3066 case PPC::SUBFC8: 3067 III.SignedImm = true; 3068 III.ZeroIsSpecialOrig = 0; 3069 III.ZeroIsSpecialNew = 0; 3070 III.IsCommutative = false; 3071 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3072 break; 3073 case PPC::CMPW: 3074 case PPC::CMPD: 3075 III.SignedImm = true; 3076 III.ZeroIsSpecialOrig = 0; 3077 III.ZeroIsSpecialNew = 0; 3078 III.IsCommutative = false; 3079 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3080 break; 3081 case PPC::CMPLW: 3082 case PPC::CMPLD: 3083 III.SignedImm = false; 3084 III.ZeroIsSpecialOrig = 0; 3085 III.ZeroIsSpecialNew = 0; 3086 III.IsCommutative = false; 3087 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3088 break; 3089 case PPC::AND_rec: 3090 case PPC::AND8_rec: 3091 case PPC::OR: 3092 case PPC::OR8: 3093 case PPC::XOR: 3094 case PPC::XOR8: 3095 III.SignedImm = false; 3096 III.ZeroIsSpecialOrig = 0; 3097 III.ZeroIsSpecialNew = 0; 3098 III.IsCommutative = true; 3099 switch(Opc) { 3100 default: llvm_unreachable("Unknown opcode"); 3101 case PPC::AND_rec: 3102 III.ImmOpcode = PPC::ANDI_rec; 3103 break; 3104 case PPC::AND8_rec: 3105 III.ImmOpcode = PPC::ANDI8_rec; 3106 break; 3107 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3108 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3109 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3110 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3111 } 3112 break; 3113 case PPC::RLWNM: 3114 case PPC::RLWNM8: 3115 case PPC::RLWNM_rec: 3116 case PPC::RLWNM8_rec: 3117 case PPC::SLW: 3118 case PPC::SLW8: 3119 case PPC::SLW_rec: 3120 case PPC::SLW8_rec: 3121 case PPC::SRW: 3122 case PPC::SRW8: 3123 case PPC::SRW_rec: 3124 case PPC::SRW8_rec: 3125 case PPC::SRAW: 3126 case PPC::SRAW_rec: 3127 III.SignedImm = false; 3128 III.ZeroIsSpecialOrig = 0; 3129 III.ZeroIsSpecialNew = 0; 3130 III.IsCommutative = false; 3131 // This isn't actually true, but the instructions ignore any of the 3132 // upper bits, so any immediate loaded with an LI is acceptable. 3133 // This does not apply to shift right algebraic because a value 3134 // out of range will produce a -1/0. 3135 III.ImmWidth = 16; 3136 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3137 Opc == PPC::RLWNM8_rec) 3138 III.TruncateImmTo = 5; 3139 else 3140 III.TruncateImmTo = 6; 3141 switch(Opc) { 3142 default: llvm_unreachable("Unknown opcode"); 3143 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3144 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3145 case PPC::RLWNM_rec: 3146 III.ImmOpcode = PPC::RLWINM_rec; 3147 break; 3148 case PPC::RLWNM8_rec: 3149 III.ImmOpcode = PPC::RLWINM8_rec; 3150 break; 3151 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3152 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3153 case PPC::SLW_rec: 3154 III.ImmOpcode = PPC::RLWINM_rec; 3155 break; 3156 case PPC::SLW8_rec: 3157 III.ImmOpcode = PPC::RLWINM8_rec; 3158 break; 3159 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3160 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3161 case PPC::SRW_rec: 3162 III.ImmOpcode = PPC::RLWINM_rec; 3163 break; 3164 case PPC::SRW8_rec: 3165 III.ImmOpcode = PPC::RLWINM8_rec; 3166 break; 3167 case PPC::SRAW: 3168 III.ImmWidth = 5; 3169 III.TruncateImmTo = 0; 3170 III.ImmOpcode = PPC::SRAWI; 3171 break; 3172 case PPC::SRAW_rec: 3173 III.ImmWidth = 5; 3174 III.TruncateImmTo = 0; 3175 III.ImmOpcode = PPC::SRAWI_rec; 3176 break; 3177 } 3178 break; 3179 case PPC::RLDCL: 3180 case PPC::RLDCL_rec: 3181 case PPC::RLDCR: 3182 case PPC::RLDCR_rec: 3183 case PPC::SLD: 3184 case PPC::SLD_rec: 3185 case PPC::SRD: 3186 case PPC::SRD_rec: 3187 case PPC::SRAD: 3188 case PPC::SRAD_rec: 3189 III.SignedImm = false; 3190 III.ZeroIsSpecialOrig = 0; 3191 III.ZeroIsSpecialNew = 0; 3192 III.IsCommutative = false; 3193 // This isn't actually true, but the instructions ignore any of the 3194 // upper bits, so any immediate loaded with an LI is acceptable. 3195 // This does not apply to shift right algebraic because a value 3196 // out of range will produce a -1/0. 3197 III.ImmWidth = 16; 3198 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3199 Opc == PPC::RLDCR_rec) 3200 III.TruncateImmTo = 6; 3201 else 3202 III.TruncateImmTo = 7; 3203 switch(Opc) { 3204 default: llvm_unreachable("Unknown opcode"); 3205 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3206 case PPC::RLDCL_rec: 3207 III.ImmOpcode = PPC::RLDICL_rec; 3208 break; 3209 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3210 case PPC::RLDCR_rec: 3211 III.ImmOpcode = PPC::RLDICR_rec; 3212 break; 3213 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3214 case PPC::SLD_rec: 3215 III.ImmOpcode = PPC::RLDICR_rec; 3216 break; 3217 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3218 case PPC::SRD_rec: 3219 III.ImmOpcode = PPC::RLDICL_rec; 3220 break; 3221 case PPC::SRAD: 3222 III.ImmWidth = 6; 3223 III.TruncateImmTo = 0; 3224 III.ImmOpcode = PPC::SRADI; 3225 break; 3226 case PPC::SRAD_rec: 3227 III.ImmWidth = 6; 3228 III.TruncateImmTo = 0; 3229 III.ImmOpcode = PPC::SRADI_rec; 3230 break; 3231 } 3232 break; 3233 // Loads and stores: 3234 case PPC::LBZX: 3235 case PPC::LBZX8: 3236 case PPC::LHZX: 3237 case PPC::LHZX8: 3238 case PPC::LHAX: 3239 case PPC::LHAX8: 3240 case PPC::LWZX: 3241 case PPC::LWZX8: 3242 case PPC::LWAX: 3243 case PPC::LDX: 3244 case PPC::LFSX: 3245 case PPC::LFDX: 3246 case PPC::STBX: 3247 case PPC::STBX8: 3248 case PPC::STHX: 3249 case PPC::STHX8: 3250 case PPC::STWX: 3251 case PPC::STWX8: 3252 case PPC::STDX: 3253 case PPC::STFSX: 3254 case PPC::STFDX: 3255 III.SignedImm = true; 3256 III.ZeroIsSpecialOrig = 1; 3257 III.ZeroIsSpecialNew = 2; 3258 III.IsCommutative = true; 3259 III.IsSummingOperands = true; 3260 III.ImmOpNo = 1; 3261 III.OpNoForForwarding = 2; 3262 switch(Opc) { 3263 default: llvm_unreachable("Unknown opcode"); 3264 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3265 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3266 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3267 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3268 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3269 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3270 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3271 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3272 case PPC::LWAX: 3273 III.ImmOpcode = PPC::LWA; 3274 III.ImmMustBeMultipleOf = 4; 3275 break; 3276 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3277 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3278 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3279 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3280 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3281 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3282 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3283 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3284 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3285 case PPC::STDX: 3286 III.ImmOpcode = PPC::STD; 3287 III.ImmMustBeMultipleOf = 4; 3288 break; 3289 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3290 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3291 } 3292 break; 3293 case PPC::LBZUX: 3294 case PPC::LBZUX8: 3295 case PPC::LHZUX: 3296 case PPC::LHZUX8: 3297 case PPC::LHAUX: 3298 case PPC::LHAUX8: 3299 case PPC::LWZUX: 3300 case PPC::LWZUX8: 3301 case PPC::LDUX: 3302 case PPC::LFSUX: 3303 case PPC::LFDUX: 3304 case PPC::STBUX: 3305 case PPC::STBUX8: 3306 case PPC::STHUX: 3307 case PPC::STHUX8: 3308 case PPC::STWUX: 3309 case PPC::STWUX8: 3310 case PPC::STDUX: 3311 case PPC::STFSUX: 3312 case PPC::STFDUX: 3313 III.SignedImm = true; 3314 III.ZeroIsSpecialOrig = 2; 3315 III.ZeroIsSpecialNew = 3; 3316 III.IsCommutative = false; 3317 III.IsSummingOperands = true; 3318 III.ImmOpNo = 2; 3319 III.OpNoForForwarding = 3; 3320 switch(Opc) { 3321 default: llvm_unreachable("Unknown opcode"); 3322 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3323 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3324 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3325 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3326 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3327 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3328 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3329 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3330 case PPC::LDUX: 3331 III.ImmOpcode = PPC::LDU; 3332 III.ImmMustBeMultipleOf = 4; 3333 break; 3334 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3335 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3336 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3337 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3338 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3339 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3340 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3341 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3342 case PPC::STDUX: 3343 III.ImmOpcode = PPC::STDU; 3344 III.ImmMustBeMultipleOf = 4; 3345 break; 3346 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3347 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3348 } 3349 break; 3350 // Power9 and up only. For some of these, the X-Form version has access to all 3351 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3352 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3353 // into or stored from is one of the VR registers. 3354 case PPC::LXVX: 3355 case PPC::LXSSPX: 3356 case PPC::LXSDX: 3357 case PPC::STXVX: 3358 case PPC::STXSSPX: 3359 case PPC::STXSDX: 3360 case PPC::XFLOADf32: 3361 case PPC::XFLOADf64: 3362 case PPC::XFSTOREf32: 3363 case PPC::XFSTOREf64: 3364 if (!Subtarget.hasP9Vector()) 3365 return false; 3366 III.SignedImm = true; 3367 III.ZeroIsSpecialOrig = 1; 3368 III.ZeroIsSpecialNew = 2; 3369 III.IsCommutative = true; 3370 III.IsSummingOperands = true; 3371 III.ImmOpNo = 1; 3372 III.OpNoForForwarding = 2; 3373 III.ImmMustBeMultipleOf = 4; 3374 switch(Opc) { 3375 default: llvm_unreachable("Unknown opcode"); 3376 case PPC::LXVX: 3377 III.ImmOpcode = PPC::LXV; 3378 III.ImmMustBeMultipleOf = 16; 3379 break; 3380 case PPC::LXSSPX: 3381 if (PostRA) { 3382 if (IsVFReg) 3383 III.ImmOpcode = PPC::LXSSP; 3384 else { 3385 III.ImmOpcode = PPC::LFS; 3386 III.ImmMustBeMultipleOf = 1; 3387 } 3388 break; 3389 } 3390 LLVM_FALLTHROUGH; 3391 case PPC::XFLOADf32: 3392 III.ImmOpcode = PPC::DFLOADf32; 3393 break; 3394 case PPC::LXSDX: 3395 if (PostRA) { 3396 if (IsVFReg) 3397 III.ImmOpcode = PPC::LXSD; 3398 else { 3399 III.ImmOpcode = PPC::LFD; 3400 III.ImmMustBeMultipleOf = 1; 3401 } 3402 break; 3403 } 3404 LLVM_FALLTHROUGH; 3405 case PPC::XFLOADf64: 3406 III.ImmOpcode = PPC::DFLOADf64; 3407 break; 3408 case PPC::STXVX: 3409 III.ImmOpcode = PPC::STXV; 3410 III.ImmMustBeMultipleOf = 16; 3411 break; 3412 case PPC::STXSSPX: 3413 if (PostRA) { 3414 if (IsVFReg) 3415 III.ImmOpcode = PPC::STXSSP; 3416 else { 3417 III.ImmOpcode = PPC::STFS; 3418 III.ImmMustBeMultipleOf = 1; 3419 } 3420 break; 3421 } 3422 LLVM_FALLTHROUGH; 3423 case PPC::XFSTOREf32: 3424 III.ImmOpcode = PPC::DFSTOREf32; 3425 break; 3426 case PPC::STXSDX: 3427 if (PostRA) { 3428 if (IsVFReg) 3429 III.ImmOpcode = PPC::STXSD; 3430 else { 3431 III.ImmOpcode = PPC::STFD; 3432 III.ImmMustBeMultipleOf = 1; 3433 } 3434 break; 3435 } 3436 LLVM_FALLTHROUGH; 3437 case PPC::XFSTOREf64: 3438 III.ImmOpcode = PPC::DFSTOREf64; 3439 break; 3440 } 3441 break; 3442 } 3443 return true; 3444 } 3445 3446 // Utility function for swaping two arbitrary operands of an instruction. 3447 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3448 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3449 3450 unsigned MaxOp = std::max(Op1, Op2); 3451 unsigned MinOp = std::min(Op1, Op2); 3452 MachineOperand MOp1 = MI.getOperand(MinOp); 3453 MachineOperand MOp2 = MI.getOperand(MaxOp); 3454 MI.RemoveOperand(std::max(Op1, Op2)); 3455 MI.RemoveOperand(std::min(Op1, Op2)); 3456 3457 // If the operands we are swapping are the two at the end (the common case) 3458 // we can just remove both and add them in the opposite order. 3459 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3460 MI.addOperand(MOp2); 3461 MI.addOperand(MOp1); 3462 } else { 3463 // Store all operands in a temporary vector, remove them and re-add in the 3464 // right order. 3465 SmallVector<MachineOperand, 2> MOps; 3466 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3467 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3468 MOps.push_back(MI.getOperand(i)); 3469 MI.RemoveOperand(i); 3470 } 3471 // MOp2 needs to be added next. 3472 MI.addOperand(MOp2); 3473 // Now add the rest. 3474 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3475 if (i == MaxOp) 3476 MI.addOperand(MOp1); 3477 else { 3478 MI.addOperand(MOps.back()); 3479 MOps.pop_back(); 3480 } 3481 } 3482 } 3483 } 3484 3485 // Check if the 'MI' that has the index OpNoForForwarding 3486 // meets the requirement described in the ImmInstrInfo. 3487 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3488 const ImmInstrInfo &III, 3489 unsigned OpNoForForwarding 3490 ) const { 3491 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3492 // would not work pre-RA, we can only do the check post RA. 3493 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3494 if (MRI.isSSA()) 3495 return false; 3496 3497 // Cannot do the transform if MI isn't summing the operands. 3498 if (!III.IsSummingOperands) 3499 return false; 3500 3501 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3502 if (!III.ZeroIsSpecialOrig) 3503 return false; 3504 3505 // We cannot do the transform if the operand we are trying to replace 3506 // isn't the same as the operand the instruction allows. 3507 if (OpNoForForwarding != III.OpNoForForwarding) 3508 return false; 3509 3510 // Check if the instruction we are trying to transform really has 3511 // the special zero register as its operand. 3512 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3513 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3514 return false; 3515 3516 // This machine instruction is convertible if it is, 3517 // 1. summing the operands. 3518 // 2. one of the operands is special zero register. 3519 // 3. the operand we are trying to replace is allowed by the MI. 3520 return true; 3521 } 3522 3523 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3524 // accordingly. 3525 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3526 const ImmInstrInfo &III, 3527 MachineOperand *&ImmMO, 3528 MachineOperand *&RegMO) const { 3529 unsigned Opc = DefMI.getOpcode(); 3530 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3531 return false; 3532 3533 assert(DefMI.getNumOperands() >= 3 && 3534 "Add inst must have at least three operands"); 3535 RegMO = &DefMI.getOperand(1); 3536 ImmMO = &DefMI.getOperand(2); 3537 3538 // Before RA, ADDI first operand could be a frame index. 3539 if (!RegMO->isReg()) 3540 return false; 3541 3542 // This DefMI is elgible for forwarding if it is: 3543 // 1. add inst 3544 // 2. one of the operands is Imm/CPI/Global. 3545 return isAnImmediateOperand(*ImmMO); 3546 } 3547 3548 bool PPCInstrInfo::isRegElgibleForForwarding( 3549 const MachineOperand &RegMO, const MachineInstr &DefMI, 3550 const MachineInstr &MI, bool KillDefMI, 3551 bool &IsFwdFeederRegKilled) const { 3552 // x = addi y, imm 3553 // ... 3554 // z = lfdx 0, x -> z = lfd imm(y) 3555 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3556 // of "y" between the DEF of "x" and "z". 3557 // The query is only valid post RA. 3558 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3559 if (MRI.isSSA()) 3560 return false; 3561 3562 Register Reg = RegMO.getReg(); 3563 3564 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3565 MachineBasicBlock::const_reverse_iterator It = MI; 3566 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3567 It++; 3568 for (; It != E; ++It) { 3569 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3570 return false; 3571 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3572 IsFwdFeederRegKilled = true; 3573 // Made it to DefMI without encountering a clobber. 3574 if ((&*It) == &DefMI) 3575 break; 3576 } 3577 assert((&*It) == &DefMI && "DefMI is missing"); 3578 3579 // If DefMI also defines the register to be forwarded, we can only forward it 3580 // if DefMI is being erased. 3581 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3582 return KillDefMI; 3583 3584 return true; 3585 } 3586 3587 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3588 const MachineInstr &DefMI, 3589 const ImmInstrInfo &III, 3590 int64_t &Imm, 3591 int64_t BaseImm) const { 3592 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3593 if (DefMI.getOpcode() == PPC::ADDItocL) { 3594 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3595 // However, we know that, it is 16-bit width, and has the alignment of 4. 3596 // Check if the instruction met the requirement. 3597 if (III.ImmMustBeMultipleOf > 4 || 3598 III.TruncateImmTo || III.ImmWidth != 16) 3599 return false; 3600 3601 // Going from XForm to DForm loads means that the displacement needs to be 3602 // not just an immediate but also a multiple of 4, or 16 depending on the 3603 // load. A DForm load cannot be represented if it is a multiple of say 2. 3604 // XForm loads do not have this restriction. 3605 if (ImmMO.isGlobal()) { 3606 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 3607 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 3608 return false; 3609 } 3610 3611 return true; 3612 } 3613 3614 if (ImmMO.isImm()) { 3615 // It is Imm, we need to check if the Imm fit the range. 3616 // Sign-extend to 64-bits. 3617 // DefMI may be folded with another imm form instruction, the result Imm is 3618 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 3619 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 3620 3621 if (Imm % III.ImmMustBeMultipleOf) 3622 return false; 3623 if (III.TruncateImmTo) 3624 Imm &= ((1 << III.TruncateImmTo) - 1); 3625 if (III.SignedImm) { 3626 APInt ActualValue(64, Imm, true); 3627 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3628 return false; 3629 } else { 3630 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3631 if ((uint64_t)Imm > UnsignedMax) 3632 return false; 3633 } 3634 } 3635 else 3636 return false; 3637 3638 // This ImmMO is forwarded if it meets the requriement describle 3639 // in ImmInstrInfo 3640 return true; 3641 } 3642 3643 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 3644 unsigned OpNoForForwarding, 3645 MachineInstr **KilledDef) const { 3646 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 3647 !DefMI.getOperand(1).isImm()) 3648 return false; 3649 3650 MachineFunction *MF = MI.getParent()->getParent(); 3651 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3652 bool PostRA = !MRI->isSSA(); 3653 3654 int64_t Immediate = DefMI.getOperand(1).getImm(); 3655 // Sign-extend to 64-bits. 3656 int64_t SExtImm = SignExtend64<16>(Immediate); 3657 3658 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 3659 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3660 3661 bool ReplaceWithLI = false; 3662 bool Is64BitLI = false; 3663 int64_t NewImm = 0; 3664 bool SetCR = false; 3665 unsigned Opc = MI.getOpcode(); 3666 switch (Opc) { 3667 default: 3668 return false; 3669 3670 // FIXME: Any branches conditional on such a comparison can be made 3671 // unconditional. At this time, this happens too infrequently to be worth 3672 // the implementation effort, but if that ever changes, we could convert 3673 // such a pattern here. 3674 case PPC::CMPWI: 3675 case PPC::CMPLWI: 3676 case PPC::CMPDI: 3677 case PPC::CMPLDI: { 3678 // Doing this post-RA would require dataflow analysis to reliably find uses 3679 // of the CR register set by the compare. 3680 // No need to fixup killed/dead flag since this transformation is only valid 3681 // before RA. 3682 if (PostRA) 3683 return false; 3684 // If a compare-immediate is fed by an immediate and is itself an input of 3685 // an ISEL (the most common case) into a COPY of the correct register. 3686 bool Changed = false; 3687 Register DefReg = MI.getOperand(0).getReg(); 3688 int64_t Comparand = MI.getOperand(2).getImm(); 3689 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 3690 ? (Comparand | 0xFFFFFFFFFFFF0000) 3691 : Comparand; 3692 3693 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 3694 unsigned UseOpc = CompareUseMI.getOpcode(); 3695 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 3696 continue; 3697 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 3698 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 3699 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 3700 unsigned RegToCopy = 3701 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 3702 if (RegToCopy == PPC::NoRegister) 3703 continue; 3704 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 3705 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 3706 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 3707 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 3708 CompareUseMI.RemoveOperand(3); 3709 CompareUseMI.RemoveOperand(2); 3710 continue; 3711 } 3712 LLVM_DEBUG( 3713 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 3714 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 3715 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 3716 // Convert to copy and remove unneeded operands. 3717 CompareUseMI.setDesc(get(PPC::COPY)); 3718 CompareUseMI.RemoveOperand(3); 3719 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 3720 CmpIselsConverted++; 3721 Changed = true; 3722 LLVM_DEBUG(CompareUseMI.dump()); 3723 } 3724 if (Changed) 3725 return true; 3726 // This may end up incremented multiple times since this function is called 3727 // during a fixed-point transformation, but it is only meant to indicate the 3728 // presence of this opportunity. 3729 MissedConvertibleImmediateInstrs++; 3730 return false; 3731 } 3732 3733 // Immediate forms - may simply be convertable to an LI. 3734 case PPC::ADDI: 3735 case PPC::ADDI8: { 3736 // Does the sum fit in a 16-bit signed field? 3737 int64_t Addend = MI.getOperand(2).getImm(); 3738 if (isInt<16>(Addend + SExtImm)) { 3739 ReplaceWithLI = true; 3740 Is64BitLI = Opc == PPC::ADDI8; 3741 NewImm = Addend + SExtImm; 3742 break; 3743 } 3744 return false; 3745 } 3746 case PPC::RLDICL: 3747 case PPC::RLDICL_rec: 3748 case PPC::RLDICL_32: 3749 case PPC::RLDICL_32_64: { 3750 // Use APInt's rotate function. 3751 int64_t SH = MI.getOperand(2).getImm(); 3752 int64_t MB = MI.getOperand(3).getImm(); 3753 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 3754 SExtImm, true); 3755 InVal = InVal.rotl(SH); 3756 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 3757 InVal &= Mask; 3758 // Can't replace negative values with an LI as that will sign-extend 3759 // and not clear the left bits. If we're setting the CR bit, we will use 3760 // ANDI_rec which won't sign extend, so that's safe. 3761 if (isUInt<15>(InVal.getSExtValue()) || 3762 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 3763 ReplaceWithLI = true; 3764 Is64BitLI = Opc != PPC::RLDICL_32; 3765 NewImm = InVal.getSExtValue(); 3766 SetCR = Opc == PPC::RLDICL_rec; 3767 break; 3768 } 3769 return false; 3770 } 3771 case PPC::RLWINM: 3772 case PPC::RLWINM8: 3773 case PPC::RLWINM_rec: 3774 case PPC::RLWINM8_rec: { 3775 int64_t SH = MI.getOperand(2).getImm(); 3776 int64_t MB = MI.getOperand(3).getImm(); 3777 int64_t ME = MI.getOperand(4).getImm(); 3778 APInt InVal(32, SExtImm, true); 3779 InVal = InVal.rotl(SH); 3780 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 3781 InVal &= Mask; 3782 // Can't replace negative values with an LI as that will sign-extend 3783 // and not clear the left bits. If we're setting the CR bit, we will use 3784 // ANDI_rec which won't sign extend, so that's safe. 3785 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 3786 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 3787 isUInt<16>(InVal.getSExtValue())); 3788 if (ValueFits) { 3789 ReplaceWithLI = true; 3790 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 3791 NewImm = InVal.getSExtValue(); 3792 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 3793 break; 3794 } 3795 return false; 3796 } 3797 case PPC::ORI: 3798 case PPC::ORI8: 3799 case PPC::XORI: 3800 case PPC::XORI8: { 3801 int64_t LogicalImm = MI.getOperand(2).getImm(); 3802 int64_t Result = 0; 3803 if (Opc == PPC::ORI || Opc == PPC::ORI8) 3804 Result = LogicalImm | SExtImm; 3805 else 3806 Result = LogicalImm ^ SExtImm; 3807 if (isInt<16>(Result)) { 3808 ReplaceWithLI = true; 3809 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 3810 NewImm = Result; 3811 break; 3812 } 3813 return false; 3814 } 3815 } 3816 3817 if (ReplaceWithLI) { 3818 // We need to be careful with CR-setting instructions we're replacing. 3819 if (SetCR) { 3820 // We don't know anything about uses when we're out of SSA, so only 3821 // replace if the new immediate will be reproduced. 3822 bool ImmChanged = (SExtImm & NewImm) != NewImm; 3823 if (PostRA && ImmChanged) 3824 return false; 3825 3826 if (!PostRA) { 3827 // If the defining load-immediate has no other uses, we can just replace 3828 // the immediate with the new immediate. 3829 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 3830 DefMI.getOperand(1).setImm(NewImm); 3831 3832 // If we're not using the GPR result of the CR-setting instruction, we 3833 // just need to and with zero/non-zero depending on the new immediate. 3834 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 3835 if (NewImm) { 3836 assert(Immediate && "Transformation converted zero to non-zero?"); 3837 NewImm = Immediate; 3838 } 3839 } else if (ImmChanged) 3840 return false; 3841 } 3842 } 3843 3844 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3845 LLVM_DEBUG(MI.dump()); 3846 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3847 LLVM_DEBUG(DefMI.dump()); 3848 LoadImmediateInfo LII; 3849 LII.Imm = NewImm; 3850 LII.Is64Bit = Is64BitLI; 3851 LII.SetCR = SetCR; 3852 // If we're setting the CR, the original load-immediate must be kept (as an 3853 // operand to ANDI_rec/ANDI8_rec). 3854 if (KilledDef && SetCR) 3855 *KilledDef = nullptr; 3856 replaceInstrWithLI(MI, LII); 3857 3858 // Fixup killed/dead flag after transformation. 3859 // Pattern: 3860 // ForwardingOperandReg = LI imm1 3861 // y = op2 imm2, ForwardingOperandReg(killed) 3862 if (IsForwardingOperandKilled) 3863 fixupIsDeadOrKill(DefMI, MI, ForwardingOperandReg); 3864 3865 LLVM_DEBUG(dbgs() << "With:\n"); 3866 LLVM_DEBUG(MI.dump()); 3867 return true; 3868 } 3869 return false; 3870 } 3871 3872 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 3873 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 3874 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 3875 bool PostRA = !MRI->isSSA(); 3876 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 3877 // for post-ra. 3878 if (PostRA) 3879 return false; 3880 3881 // Only handle load/store. 3882 if (!MI.mayLoadOrStore()) 3883 return false; 3884 3885 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 3886 3887 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 3888 "MI must have x-form opcode"); 3889 3890 // get Imm Form info. 3891 ImmInstrInfo III; 3892 bool IsVFReg = MI.getOperand(0).isReg() 3893 ? isVFRegister(MI.getOperand(0).getReg()) 3894 : false; 3895 3896 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 3897 return false; 3898 3899 if (!III.IsSummingOperands) 3900 return false; 3901 3902 if (OpNoForForwarding != III.OpNoForForwarding) 3903 return false; 3904 3905 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 3906 if (!ImmOperandMI.isImm()) 3907 return false; 3908 3909 // Check DefMI. 3910 MachineOperand *ImmMO = nullptr; 3911 MachineOperand *RegMO = nullptr; 3912 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3913 return false; 3914 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3915 3916 // Check Imm. 3917 // Set ImmBase from imm instruction as base and get new Imm inside 3918 // isImmElgibleForForwarding. 3919 int64_t ImmBase = ImmOperandMI.getImm(); 3920 int64_t Imm = 0; 3921 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 3922 return false; 3923 3924 // Get killed info in case fixup needed after transformation. 3925 unsigned ForwardKilledOperandReg = ~0U; 3926 if (MI.getOperand(III.OpNoForForwarding).isKill()) 3927 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 3928 3929 // Do the transform 3930 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3931 LLVM_DEBUG(MI.dump()); 3932 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3933 LLVM_DEBUG(DefMI.dump()); 3934 3935 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 3936 MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill()); 3937 MI.getOperand(III.ImmOpNo).setImm(Imm); 3938 3939 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 3940 if (DefMI.getParent() == MI.getParent()) { 3941 // Check if reg is killed between MI and DefMI. 3942 auto IsKilledFor = [&](unsigned Reg) { 3943 MachineBasicBlock::const_reverse_iterator It = MI; 3944 MachineBasicBlock::const_reverse_iterator E = DefMI; 3945 It++; 3946 for (; It != E; ++It) { 3947 if (It->killsRegister(Reg)) 3948 return true; 3949 } 3950 return false; 3951 }; 3952 3953 // Update kill flag 3954 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 3955 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3956 if (ForwardKilledOperandReg != ~0U) 3957 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3958 } 3959 3960 LLVM_DEBUG(dbgs() << "With:\n"); 3961 LLVM_DEBUG(MI.dump()); 3962 return true; 3963 } 3964 3965 // If an X-Form instruction is fed by an add-immediate and one of its operands 3966 // is the literal zero, attempt to forward the source of the add-immediate to 3967 // the corresponding D-Form instruction with the displacement coming from 3968 // the immediate being added. 3969 bool PPCInstrInfo::transformToImmFormFedByAdd( 3970 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3971 MachineInstr &DefMI, bool KillDefMI) const { 3972 // RegMO ImmMO 3973 // | | 3974 // x = addi reg, imm <----- DefMI 3975 // y = op 0 , x <----- MI 3976 // | 3977 // OpNoForForwarding 3978 // Check if the MI meet the requirement described in the III. 3979 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3980 return false; 3981 3982 // Check if the DefMI meet the requirement 3983 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3984 MachineOperand *ImmMO = nullptr; 3985 MachineOperand *RegMO = nullptr; 3986 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3987 return false; 3988 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3989 3990 // As we get the Imm operand now, we need to check if the ImmMO meet 3991 // the requirement described in the III. If yes set the Imm. 3992 int64_t Imm = 0; 3993 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3994 return false; 3995 3996 bool IsFwdFeederRegKilled = false; 3997 // Check if the RegMO can be forwarded to MI. 3998 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3999 IsFwdFeederRegKilled)) 4000 return false; 4001 4002 // Get killed info in case fixup needed after transformation. 4003 unsigned ForwardKilledOperandReg = ~0U; 4004 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4005 bool PostRA = !MRI.isSSA(); 4006 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 4007 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4008 4009 // We know that, the MI and DefMI both meet the pattern, and 4010 // the Imm also meet the requirement with the new Imm-form. 4011 // It is safe to do the transformation now. 4012 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4013 LLVM_DEBUG(MI.dump()); 4014 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4015 LLVM_DEBUG(DefMI.dump()); 4016 4017 // Update the base reg first. 4018 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4019 false, false, 4020 RegMO->isKill()); 4021 4022 // Then, update the imm. 4023 if (ImmMO->isImm()) { 4024 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4025 // directly. 4026 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4027 } 4028 else { 4029 // Otherwise, it is Constant Pool Index(CPI) or Global, 4030 // which is relocation in fact. We need to replace the special zero 4031 // register with ImmMO. 4032 // Before that, we need to fixup the target flags for imm. 4033 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4034 if (DefMI.getOpcode() == PPC::ADDItocL) 4035 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4036 4037 // MI didn't have the interface such as MI.setOperand(i) though 4038 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4039 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4040 // and, add the ImmMO, then, move back all the operands behind ZERO. 4041 SmallVector<MachineOperand, 2> MOps; 4042 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4043 MOps.push_back(MI.getOperand(i)); 4044 MI.RemoveOperand(i); 4045 } 4046 4047 // Remove the last MO in the list, which is ZERO operand in fact. 4048 MOps.pop_back(); 4049 // Add the imm operand. 4050 MI.addOperand(*ImmMO); 4051 // Now add the rest back. 4052 for (auto &MO : MOps) 4053 MI.addOperand(MO); 4054 } 4055 4056 // Update the opcode. 4057 MI.setDesc(get(III.ImmOpcode)); 4058 4059 // Fix up killed/dead flag after transformation. 4060 // Pattern 1: 4061 // x = ADD KilledFwdFeederReg, imm 4062 // n = opn KilledFwdFeederReg(killed), regn 4063 // y = XOP 0, x 4064 // Pattern 2: 4065 // x = ADD reg(killed), imm 4066 // y = XOP 0, x 4067 if (IsFwdFeederRegKilled || RegMO->isKill()) 4068 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 4069 // Pattern 3: 4070 // ForwardKilledOperandReg = ADD reg, imm 4071 // y = XOP 0, ForwardKilledOperandReg(killed) 4072 if (ForwardKilledOperandReg != ~0U) 4073 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 4074 4075 LLVM_DEBUG(dbgs() << "With:\n"); 4076 LLVM_DEBUG(MI.dump()); 4077 4078 return true; 4079 } 4080 4081 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4082 const ImmInstrInfo &III, 4083 unsigned ConstantOpNo, 4084 MachineInstr &DefMI) const { 4085 // DefMI must be LI or LI8. 4086 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4087 !DefMI.getOperand(1).isImm()) 4088 return false; 4089 4090 // Get Imm operand and Sign-extend to 64-bits. 4091 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4092 4093 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4094 bool PostRA = !MRI.isSSA(); 4095 // Exit early if we can't convert this. 4096 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4097 return false; 4098 if (Imm % III.ImmMustBeMultipleOf) 4099 return false; 4100 if (III.TruncateImmTo) 4101 Imm &= ((1 << III.TruncateImmTo) - 1); 4102 if (III.SignedImm) { 4103 APInt ActualValue(64, Imm, true); 4104 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4105 return false; 4106 } else { 4107 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4108 if ((uint64_t)Imm > UnsignedMax) 4109 return false; 4110 } 4111 4112 // If we're post-RA, the instructions don't agree on whether register zero is 4113 // special, we can transform this as long as the register operand that will 4114 // end up in the location where zero is special isn't R0. 4115 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4116 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4117 III.ZeroIsSpecialNew + 1; 4118 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4119 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4120 // If R0 is in the operand where zero is special for the new instruction, 4121 // it is unsafe to transform if the constant operand isn't that operand. 4122 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4123 ConstantOpNo != III.ZeroIsSpecialNew) 4124 return false; 4125 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4126 ConstantOpNo != PosForOrigZero) 4127 return false; 4128 } 4129 4130 // Get killed info in case fixup needed after transformation. 4131 unsigned ForwardKilledOperandReg = ~0U; 4132 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 4133 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 4134 4135 unsigned Opc = MI.getOpcode(); 4136 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4137 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4138 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4139 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4140 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4141 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4142 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4143 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4144 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4145 Opc == PPC::SRD_rec; 4146 4147 MI.setDesc(get(III.ImmOpcode)); 4148 if (ConstantOpNo == III.OpNoForForwarding) { 4149 // Converting shifts to immediate form is a bit tricky since they may do 4150 // one of three things: 4151 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4152 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4153 // setting CR0) 4154 // 3. If the shift amount is in [1, OpSize), it's just a shift 4155 if (SpecialShift32 || SpecialShift64) { 4156 LoadImmediateInfo LII; 4157 LII.Imm = 0; 4158 LII.SetCR = SetCR; 4159 LII.Is64Bit = SpecialShift64; 4160 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4161 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4162 replaceInstrWithLI(MI, LII); 4163 // Shifts by zero don't change the value. If we don't need to set CR0, 4164 // just convert this to a COPY. Can't do this post-RA since we've already 4165 // cleaned up the copies. 4166 else if (!SetCR && ShAmt == 0 && !PostRA) { 4167 MI.RemoveOperand(2); 4168 MI.setDesc(get(PPC::COPY)); 4169 } else { 4170 // The 32 bit and 64 bit instructions are quite different. 4171 if (SpecialShift32) { 4172 // Left shifts use (N, 0, 31-N). 4173 // Right shifts use (32-N, N, 31) if 0 < N < 32. 4174 // use (0, 0, 31) if N == 0. 4175 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 4176 uint64_t MB = RightShift ? ShAmt : 0; 4177 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 4178 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4179 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 4180 .addImm(ME); 4181 } else { 4182 // Left shifts use (N, 63-N). 4183 // Right shifts use (64-N, N) if 0 < N < 64. 4184 // use (0, 0) if N == 0. 4185 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 4186 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 4187 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4188 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 4189 } 4190 } 4191 } else 4192 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 4193 } 4194 // Convert commutative instructions (switch the operands and convert the 4195 // desired one to an immediate. 4196 else if (III.IsCommutative) { 4197 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 4198 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 4199 } else 4200 llvm_unreachable("Should have exited early!"); 4201 4202 // For instructions for which the constant register replaces a different 4203 // operand than where the immediate goes, we need to swap them. 4204 if (III.OpNoForForwarding != III.ImmOpNo) 4205 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 4206 4207 // If the special R0/X0 register index are different for original instruction 4208 // and new instruction, we need to fix up the register class in new 4209 // instruction. 4210 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4211 if (III.ZeroIsSpecialNew) { 4212 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 4213 // need to fix up register class. 4214 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4215 if (Register::isVirtualRegister(RegToModify)) { 4216 const TargetRegisterClass *NewRC = 4217 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 4218 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 4219 MRI.setRegClass(RegToModify, NewRC); 4220 } 4221 } 4222 } 4223 4224 // Fix up killed/dead flag after transformation. 4225 // Pattern: 4226 // ForwardKilledOperandReg = LI imm 4227 // y = XOP reg, ForwardKilledOperandReg(killed) 4228 if (ForwardKilledOperandReg != ~0U) 4229 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 4230 return true; 4231 } 4232 4233 const TargetRegisterClass * 4234 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 4235 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 4236 return &PPC::VSRCRegClass; 4237 return RC; 4238 } 4239 4240 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 4241 return PPC::getRecordFormOpcode(Opcode); 4242 } 4243 4244 // This function returns true if the machine instruction 4245 // always outputs a value by sign-extending a 32 bit value, 4246 // i.e. 0 to 31-th bits are same as 32-th bit. 4247 static bool isSignExtendingOp(const MachineInstr &MI) { 4248 int Opcode = MI.getOpcode(); 4249 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 4250 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 4251 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 4252 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 4253 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 4254 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 4255 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 4256 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4257 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 4258 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 4259 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 4260 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 4261 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 4262 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 4263 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 4264 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 4265 Opcode == PPC::EXTSB8_32_64) 4266 return true; 4267 4268 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 4269 return true; 4270 4271 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 4272 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 4273 MI.getOperand(3).getImm() > 0 && 4274 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 4275 return true; 4276 4277 return false; 4278 } 4279 4280 // This function returns true if the machine instruction 4281 // always outputs zeros in higher 32 bits. 4282 static bool isZeroExtendingOp(const MachineInstr &MI) { 4283 int Opcode = MI.getOpcode(); 4284 // The 16-bit immediate is sign-extended in li/lis. 4285 // If the most significant bit is zero, all higher bits are zero. 4286 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 4287 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 4288 int64_t Imm = MI.getOperand(1).getImm(); 4289 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 4290 return true; 4291 } 4292 4293 // We have some variations of rotate-and-mask instructions 4294 // that clear higher 32-bits. 4295 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 4296 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 4297 Opcode == PPC::RLDICL_32_64) && 4298 MI.getOperand(3).getImm() >= 32) 4299 return true; 4300 4301 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 4302 MI.getOperand(3).getImm() >= 32 && 4303 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 4304 return true; 4305 4306 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 4307 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 4308 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 4309 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 4310 return true; 4311 4312 // There are other instructions that clear higher 32-bits. 4313 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 4314 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 4315 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 4316 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 4317 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 4318 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 4319 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 4320 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 4321 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 4322 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 4323 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 4324 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 4325 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 4326 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 4327 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 4328 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 4329 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 4330 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 4331 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4332 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 4333 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 4334 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 4335 Opcode == PPC::MFVSRWZ) 4336 return true; 4337 4338 return false; 4339 } 4340 4341 // This function returns true if the input MachineInstr is a TOC save 4342 // instruction. 4343 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 4344 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 4345 return false; 4346 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4347 unsigned StackOffset = MI.getOperand(1).getImm(); 4348 Register StackReg = MI.getOperand(2).getReg(); 4349 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 4350 return true; 4351 4352 return false; 4353 } 4354 4355 // We limit the max depth to track incoming values of PHIs or binary ops 4356 // (e.g. AND) to avoid excessive cost. 4357 const unsigned MAX_DEPTH = 1; 4358 4359 bool 4360 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 4361 const unsigned Depth) const { 4362 const MachineFunction *MF = MI.getParent()->getParent(); 4363 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 4364 4365 // If we know this instruction returns sign- or zero-extended result, 4366 // return true. 4367 if (SignExt ? isSignExtendingOp(MI): 4368 isZeroExtendingOp(MI)) 4369 return true; 4370 4371 switch (MI.getOpcode()) { 4372 case PPC::COPY: { 4373 Register SrcReg = MI.getOperand(1).getReg(); 4374 4375 // In both ELFv1 and v2 ABI, method parameters and the return value 4376 // are sign- or zero-extended. 4377 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 4378 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 4379 // We check the ZExt/SExt flags for a method parameter. 4380 if (MI.getParent()->getBasicBlock() == 4381 &MF->getFunction().getEntryBlock()) { 4382 Register VReg = MI.getOperand(0).getReg(); 4383 if (MF->getRegInfo().isLiveIn(VReg)) 4384 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 4385 FuncInfo->isLiveInZExt(VReg); 4386 } 4387 4388 // For a method return value, we check the ZExt/SExt flags in attribute. 4389 // We assume the following code sequence for method call. 4390 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 4391 // BL8_NOP @func,... 4392 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 4393 // %5 = COPY %x3; G8RC:%5 4394 if (SrcReg == PPC::X3) { 4395 const MachineBasicBlock *MBB = MI.getParent(); 4396 MachineBasicBlock::const_instr_iterator II = 4397 MachineBasicBlock::const_instr_iterator(&MI); 4398 if (II != MBB->instr_begin() && 4399 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 4400 const MachineInstr &CallMI = *(--II); 4401 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 4402 const Function *CalleeFn = 4403 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 4404 if (!CalleeFn) 4405 return false; 4406 const IntegerType *IntTy = 4407 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 4408 const AttributeSet &Attrs = 4409 CalleeFn->getAttributes().getRetAttributes(); 4410 if (IntTy && IntTy->getBitWidth() <= 32) 4411 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 4412 Attribute::ZExt); 4413 } 4414 } 4415 } 4416 } 4417 4418 // If this is a copy from another register, we recursively check source. 4419 if (!Register::isVirtualRegister(SrcReg)) 4420 return false; 4421 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4422 if (SrcMI != NULL) 4423 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4424 4425 return false; 4426 } 4427 4428 case PPC::ANDI_rec: 4429 case PPC::ANDIS_rec: 4430 case PPC::ORI: 4431 case PPC::ORIS: 4432 case PPC::XORI: 4433 case PPC::XORIS: 4434 case PPC::ANDI8_rec: 4435 case PPC::ANDIS8_rec: 4436 case PPC::ORI8: 4437 case PPC::ORIS8: 4438 case PPC::XORI8: 4439 case PPC::XORIS8: { 4440 // logical operation with 16-bit immediate does not change the upper bits. 4441 // So, we track the operand register as we do for register copy. 4442 Register SrcReg = MI.getOperand(1).getReg(); 4443 if (!Register::isVirtualRegister(SrcReg)) 4444 return false; 4445 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4446 if (SrcMI != NULL) 4447 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4448 4449 return false; 4450 } 4451 4452 // If all incoming values are sign-/zero-extended, 4453 // the output of OR, ISEL or PHI is also sign-/zero-extended. 4454 case PPC::OR: 4455 case PPC::OR8: 4456 case PPC::ISEL: 4457 case PPC::PHI: { 4458 if (Depth >= MAX_DEPTH) 4459 return false; 4460 4461 // The input registers for PHI are operand 1, 3, ... 4462 // The input registers for others are operand 1 and 2. 4463 unsigned E = 3, D = 1; 4464 if (MI.getOpcode() == PPC::PHI) { 4465 E = MI.getNumOperands(); 4466 D = 2; 4467 } 4468 4469 for (unsigned I = 1; I != E; I += D) { 4470 if (MI.getOperand(I).isReg()) { 4471 Register SrcReg = MI.getOperand(I).getReg(); 4472 if (!Register::isVirtualRegister(SrcReg)) 4473 return false; 4474 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4475 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 4476 return false; 4477 } 4478 else 4479 return false; 4480 } 4481 return true; 4482 } 4483 4484 // If at least one of the incoming values of an AND is zero extended 4485 // then the output is also zero-extended. If both of the incoming values 4486 // are sign-extended then the output is also sign extended. 4487 case PPC::AND: 4488 case PPC::AND8: { 4489 if (Depth >= MAX_DEPTH) 4490 return false; 4491 4492 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4493 4494 Register SrcReg1 = MI.getOperand(1).getReg(); 4495 Register SrcReg2 = MI.getOperand(2).getReg(); 4496 4497 if (!Register::isVirtualRegister(SrcReg1) || 4498 !Register::isVirtualRegister(SrcReg2)) 4499 return false; 4500 4501 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4502 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4503 if (!MISrc1 || !MISrc2) 4504 return false; 4505 4506 if(SignExt) 4507 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4508 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4509 else 4510 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4511 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4512 } 4513 4514 default: 4515 break; 4516 } 4517 return false; 4518 } 4519 4520 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4521 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4522 } 4523 4524 namespace { 4525 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4526 MachineInstr *Loop, *EndLoop, *LoopCount; 4527 MachineFunction *MF; 4528 const TargetInstrInfo *TII; 4529 int64_t TripCount; 4530 4531 public: 4532 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4533 MachineInstr *LoopCount) 4534 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4535 MF(Loop->getParent()->getParent()), 4536 TII(MF->getSubtarget().getInstrInfo()) { 4537 // Inspect the Loop instruction up-front, as it may be deleted when we call 4538 // createTripCountGreaterCondition. 4539 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4540 TripCount = LoopCount->getOperand(1).getImm(); 4541 else 4542 TripCount = -1; 4543 } 4544 4545 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4546 // Only ignore the terminator. 4547 return MI == EndLoop; 4548 } 4549 4550 Optional<bool> 4551 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4552 SmallVectorImpl<MachineOperand> &Cond) override { 4553 if (TripCount == -1) { 4554 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4555 // so we don't need to generate any thing here. 4556 Cond.push_back(MachineOperand::CreateImm(0)); 4557 Cond.push_back(MachineOperand::CreateReg( 4558 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4559 true)); 4560 return {}; 4561 } 4562 4563 return TripCount > TC; 4564 } 4565 4566 void setPreheader(MachineBasicBlock *NewPreheader) override { 4567 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4568 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4569 } 4570 4571 void adjustTripCount(int TripCountAdjust) override { 4572 // If the loop trip count is a compile-time value, then just change the 4573 // value. 4574 if (LoopCount->getOpcode() == PPC::LI8 || 4575 LoopCount->getOpcode() == PPC::LI) { 4576 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4577 LoopCount->getOperand(1).setImm(TripCount); 4578 return; 4579 } 4580 4581 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4582 // so we don't need to generate any thing here. 4583 } 4584 4585 void disposed() override { 4586 Loop->eraseFromParent(); 4587 // Ensure the loop setup instruction is deleted too. 4588 LoopCount->eraseFromParent(); 4589 } 4590 }; 4591 } // namespace 4592 4593 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4594 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4595 // We really "analyze" only hardware loops right now. 4596 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4597 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4598 if (Preheader == LoopBB) 4599 Preheader = *std::next(LoopBB->pred_begin()); 4600 MachineFunction *MF = Preheader->getParent(); 4601 4602 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4603 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4604 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4605 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4606 MachineRegisterInfo &MRI = MF->getRegInfo(); 4607 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4608 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4609 } 4610 } 4611 return nullptr; 4612 } 4613 4614 MachineInstr *PPCInstrInfo::findLoopInstr( 4615 MachineBasicBlock &PreHeader, 4616 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4617 4618 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4619 4620 // The loop set-up instruction should be in preheader 4621 for (auto &I : PreHeader.instrs()) 4622 if (I.getOpcode() == LOOPi) 4623 return &I; 4624 return nullptr; 4625 } 4626 4627 // Return true if get the base operand, byte offset of an instruction and the 4628 // memory width. Width is the size of memory that is being loaded/stored. 4629 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4630 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 4631 unsigned &Width, const TargetRegisterInfo *TRI) const { 4632 if (!LdSt.mayLoadOrStore()) 4633 return false; 4634 4635 // Handle only loads/stores with base register followed by immediate offset. 4636 if (LdSt.getNumExplicitOperands() != 3) 4637 return false; 4638 if (!LdSt.getOperand(1).isImm() || 4639 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 4640 return false; 4641 4642 if (!LdSt.hasOneMemOperand()) 4643 return false; 4644 4645 Width = (*LdSt.memoperands_begin())->getSize(); 4646 Offset = LdSt.getOperand(1).getImm(); 4647 BaseReg = &LdSt.getOperand(2); 4648 return true; 4649 } 4650 4651 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4652 const MachineInstr &MIa, const MachineInstr &MIb) const { 4653 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4654 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4655 4656 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4657 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4658 return false; 4659 4660 // Retrieve the base register, offset from the base register and width. Width 4661 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4662 // base registers are identical, and the offset of a lower memory access + 4663 // the width doesn't overlap the offset of a higher memory access, 4664 // then the memory accesses are different. 4665 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4666 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4667 int64_t OffsetA = 0, OffsetB = 0; 4668 unsigned int WidthA = 0, WidthB = 0; 4669 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4670 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4671 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4672 int LowOffset = std::min(OffsetA, OffsetB); 4673 int HighOffset = std::max(OffsetA, OffsetB); 4674 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4675 if (LowOffset + LowWidth <= HighOffset) 4676 return true; 4677 } 4678 } 4679 return false; 4680 } 4681