1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "ppc-instr-info"
43 
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
47 
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49           "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51           "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54           "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56           "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58           "Number of record-form rotates converted to record-form andi");
59 
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62             cl::desc("Disable analysis for CTR loops"));
63 
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
66 
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
70 
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73   cl::desc("Use the old (incorrect) instruction latency calculation"));
74 
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77   SOK_Int4Spill,
78   SOK_Int8Spill,
79   SOK_Float8Spill,
80   SOK_Float4Spill,
81   SOK_CRSpill,
82   SOK_CRBitSpill,
83   SOK_VRVectorSpill,
84   SOK_VSXVectorSpill,
85   SOK_VectorFloat8Spill,
86   SOK_VectorFloat4Spill,
87   SOK_VRSaveSpill,
88   SOK_QuadFloat8Spill,
89   SOK_QuadFloat4Spill,
90   SOK_QuadBitSpill,
91   SOK_SpillToVSR,
92   SOK_SPESpill,
93   SOK_SPE4Spill,
94   SOK_LastOpcodeSpill  // This must be last on the enum.
95 };
96 
97 // Pin the vtable to this file.
98 void PPCInstrInfo::anchor() {}
99 
100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
101     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
102                       /* CatchRetOpcode */ -1,
103                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
104       Subtarget(STI), RI(STI.getTargetMachine()) {}
105 
106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
107 /// this target when scheduling the DAG.
108 ScheduleHazardRecognizer *
109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
110                                            const ScheduleDAG *DAG) const {
111   unsigned Directive =
112       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
113   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
114       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
115     const InstrItineraryData *II =
116         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
117     return new ScoreboardHazardRecognizer(II, DAG);
118   }
119 
120   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
121 }
122 
123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
124 /// to use for this target when scheduling the DAG.
125 ScheduleHazardRecognizer *
126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
127                                                  const ScheduleDAG *DAG) const {
128   unsigned Directive =
129       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
130 
131   // FIXME: Leaving this as-is until we have POWER9 scheduling info
132   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
133     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
134 
135   // Most subtargets use a PPC970 recognizer.
136   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
137       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
138     assert(DAG->TII && "No InstrInfo?");
139 
140     return new PPCHazardRecognizer970(*DAG);
141   }
142 
143   return new ScoreboardHazardRecognizer(II, DAG);
144 }
145 
146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
147                                        const MachineInstr &MI,
148                                        unsigned *PredCost) const {
149   if (!ItinData || UseOldLatencyCalc)
150     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
151 
152   // The default implementation of getInstrLatency calls getStageLatency, but
153   // getStageLatency does not do the right thing for us. While we have
154   // itinerary, most cores are fully pipelined, and so the itineraries only
155   // express the first part of the pipeline, not every stage. Instead, we need
156   // to use the listed output operand cycle number (using operand 0 here, which
157   // is an output).
158 
159   unsigned Latency = 1;
160   unsigned DefClass = MI.getDesc().getSchedClass();
161   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
162     const MachineOperand &MO = MI.getOperand(i);
163     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
164       continue;
165 
166     int Cycle = ItinData->getOperandCycle(DefClass, i);
167     if (Cycle < 0)
168       continue;
169 
170     Latency = std::max(Latency, (unsigned) Cycle);
171   }
172 
173   return Latency;
174 }
175 
176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
177                                     const MachineInstr &DefMI, unsigned DefIdx,
178                                     const MachineInstr &UseMI,
179                                     unsigned UseIdx) const {
180   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
181                                                    UseMI, UseIdx);
182 
183   if (!DefMI.getParent())
184     return Latency;
185 
186   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
187   unsigned Reg = DefMO.getReg();
188 
189   bool IsRegCR;
190   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
191     const MachineRegisterInfo *MRI =
192         &DefMI.getParent()->getParent()->getRegInfo();
193     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
194               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
195   } else {
196     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
197               PPC::CRBITRCRegClass.contains(Reg);
198   }
199 
200   if (UseMI.isBranch() && IsRegCR) {
201     if (Latency < 0)
202       Latency = getInstrLatency(ItinData, DefMI);
203 
204     // On some cores, there is an additional delay between writing to a condition
205     // register, and using it from a branch.
206     unsigned Directive = Subtarget.getDarwinDirective();
207     switch (Directive) {
208     default: break;
209     case PPC::DIR_7400:
210     case PPC::DIR_750:
211     case PPC::DIR_970:
212     case PPC::DIR_E5500:
213     case PPC::DIR_PWR4:
214     case PPC::DIR_PWR5:
215     case PPC::DIR_PWR5X:
216     case PPC::DIR_PWR6:
217     case PPC::DIR_PWR6X:
218     case PPC::DIR_PWR7:
219     case PPC::DIR_PWR8:
220     // FIXME: Is this needed for POWER9?
221       Latency += 2;
222       break;
223     }
224   }
225 
226   return Latency;
227 }
228 
229 // This function does not list all associative and commutative operations, but
230 // only those worth feeding through the machine combiner in an attempt to
231 // reduce the critical path. Mostly, this means floating-point operations,
232 // because they have high latencies (compared to other operations, such and
233 // and/or, which are also associative and commutative, but have low latencies).
234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
235   switch (Inst.getOpcode()) {
236   // FP Add:
237   case PPC::FADD:
238   case PPC::FADDS:
239   // FP Multiply:
240   case PPC::FMUL:
241   case PPC::FMULS:
242   // Altivec Add:
243   case PPC::VADDFP:
244   // VSX Add:
245   case PPC::XSADDDP:
246   case PPC::XVADDDP:
247   case PPC::XVADDSP:
248   case PPC::XSADDSP:
249   // VSX Multiply:
250   case PPC::XSMULDP:
251   case PPC::XVMULDP:
252   case PPC::XVMULSP:
253   case PPC::XSMULSP:
254   // QPX Add:
255   case PPC::QVFADD:
256   case PPC::QVFADDS:
257   case PPC::QVFADDSs:
258   // QPX Multiply:
259   case PPC::QVFMUL:
260   case PPC::QVFMULS:
261   case PPC::QVFMULSs:
262     return true;
263   default:
264     return false;
265   }
266 }
267 
268 bool PPCInstrInfo::getMachineCombinerPatterns(
269     MachineInstr &Root,
270     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
271   // Using the machine combiner in this way is potentially expensive, so
272   // restrict to when aggressive optimizations are desired.
273   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
274     return false;
275 
276   // FP reassociation is only legal when we don't need strict IEEE semantics.
277   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
278     return false;
279 
280   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
281 }
282 
283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
285                                          unsigned &SrcReg, unsigned &DstReg,
286                                          unsigned &SubIdx) const {
287   switch (MI.getOpcode()) {
288   default: return false;
289   case PPC::EXTSW:
290   case PPC::EXTSW_32:
291   case PPC::EXTSW_32_64:
292     SrcReg = MI.getOperand(1).getReg();
293     DstReg = MI.getOperand(0).getReg();
294     SubIdx = PPC::sub_32;
295     return true;
296   }
297 }
298 
299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
300                                            int &FrameIndex) const {
301   unsigned Opcode = MI.getOpcode();
302   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
303   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
304 
305   if (End != std::find(OpcodesForSpill, End, Opcode)) {
306     // Check for the operands added by addFrameReference (the immediate is the
307     // offset which defaults to 0).
308     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
309         MI.getOperand(2).isFI()) {
310       FrameIndex = MI.getOperand(2).getIndex();
311       return MI.getOperand(0).getReg();
312     }
313   }
314   return 0;
315 }
316 
317 // For opcodes with the ReMaterializable flag set, this function is called to
318 // verify the instruction is really rematable.
319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
320                                                      AliasAnalysis *AA) const {
321   switch (MI.getOpcode()) {
322   default:
323     // This function should only be called for opcodes with the ReMaterializable
324     // flag set.
325     llvm_unreachable("Unknown rematerializable operation!");
326     break;
327   case PPC::LI:
328   case PPC::LI8:
329   case PPC::LIS:
330   case PPC::LIS8:
331   case PPC::QVGPCI:
332   case PPC::ADDIStocHA:
333   case PPC::ADDItocL:
334   case PPC::LOAD_STACK_GUARD:
335     return true;
336   }
337   return false;
338 }
339 
340 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
341                                           int &FrameIndex) const {
342   unsigned Opcode = MI.getOpcode();
343   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
344   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
345 
346   if (End != std::find(OpcodesForSpill, End, Opcode)) {
347     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
348         MI.getOperand(2).isFI()) {
349       FrameIndex = MI.getOperand(2).getIndex();
350       return MI.getOperand(0).getReg();
351     }
352   }
353   return 0;
354 }
355 
356 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
357                                                    unsigned OpIdx1,
358                                                    unsigned OpIdx2) const {
359   MachineFunction &MF = *MI.getParent()->getParent();
360 
361   // Normal instructions can be commuted the obvious way.
362   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
363     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
364   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
365   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
366   // changing the relative order of the mask operands might change what happens
367   // to the high-bits of the mask (and, thus, the result).
368 
369   // Cannot commute if it has a non-zero rotate count.
370   if (MI.getOperand(3).getImm() != 0)
371     return nullptr;
372 
373   // If we have a zero rotate count, we have:
374   //   M = mask(MB,ME)
375   //   Op0 = (Op1 & ~M) | (Op2 & M)
376   // Change this to:
377   //   M = mask((ME+1)&31, (MB-1)&31)
378   //   Op0 = (Op2 & ~M) | (Op1 & M)
379 
380   // Swap op1/op2
381   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
382          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
383   unsigned Reg0 = MI.getOperand(0).getReg();
384   unsigned Reg1 = MI.getOperand(1).getReg();
385   unsigned Reg2 = MI.getOperand(2).getReg();
386   unsigned SubReg1 = MI.getOperand(1).getSubReg();
387   unsigned SubReg2 = MI.getOperand(2).getSubReg();
388   bool Reg1IsKill = MI.getOperand(1).isKill();
389   bool Reg2IsKill = MI.getOperand(2).isKill();
390   bool ChangeReg0 = false;
391   // If machine instrs are no longer in two-address forms, update
392   // destination register as well.
393   if (Reg0 == Reg1) {
394     // Must be two address instruction!
395     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
396            "Expecting a two-address instruction!");
397     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
398     Reg2IsKill = false;
399     ChangeReg0 = true;
400   }
401 
402   // Masks.
403   unsigned MB = MI.getOperand(4).getImm();
404   unsigned ME = MI.getOperand(5).getImm();
405 
406   // We can't commute a trivial mask (there is no way to represent an all-zero
407   // mask).
408   if (MB == 0 && ME == 31)
409     return nullptr;
410 
411   if (NewMI) {
412     // Create a new instruction.
413     unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
414     bool Reg0IsDead = MI.getOperand(0).isDead();
415     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
416         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
417         .addReg(Reg2, getKillRegState(Reg2IsKill))
418         .addReg(Reg1, getKillRegState(Reg1IsKill))
419         .addImm((ME + 1) & 31)
420         .addImm((MB - 1) & 31);
421   }
422 
423   if (ChangeReg0) {
424     MI.getOperand(0).setReg(Reg2);
425     MI.getOperand(0).setSubReg(SubReg2);
426   }
427   MI.getOperand(2).setReg(Reg1);
428   MI.getOperand(1).setReg(Reg2);
429   MI.getOperand(2).setSubReg(SubReg1);
430   MI.getOperand(1).setSubReg(SubReg2);
431   MI.getOperand(2).setIsKill(Reg1IsKill);
432   MI.getOperand(1).setIsKill(Reg2IsKill);
433 
434   // Swap the mask around.
435   MI.getOperand(4).setImm((ME + 1) & 31);
436   MI.getOperand(5).setImm((MB - 1) & 31);
437   return &MI;
438 }
439 
440 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
441                                          unsigned &SrcOpIdx2) const {
442   // For VSX A-Type FMA instructions, it is the first two operands that can be
443   // commuted, however, because the non-encoded tied input operand is listed
444   // first, the operands to swap are actually the second and third.
445 
446   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
447   if (AltOpc == -1)
448     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
449 
450   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
451   // and SrcOpIdx2.
452   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
453 }
454 
455 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
456                               MachineBasicBlock::iterator MI) const {
457   // This function is used for scheduling, and the nop wanted here is the type
458   // that terminates dispatch groups on the POWER cores.
459   unsigned Directive = Subtarget.getDarwinDirective();
460   unsigned Opcode;
461   switch (Directive) {
462   default:            Opcode = PPC::NOP; break;
463   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
464   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
465   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
466   // FIXME: Update when POWER9 scheduling model is ready.
467   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
468   }
469 
470   DebugLoc DL;
471   BuildMI(MBB, MI, DL, get(Opcode));
472 }
473 
474 /// Return the noop instruction to use for a noop.
475 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
476   NopInst.setOpcode(PPC::NOP);
477 }
478 
479 // Branch analysis.
480 // Note: If the condition register is set to CTR or CTR8 then this is a
481 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
482 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
483                                  MachineBasicBlock *&TBB,
484                                  MachineBasicBlock *&FBB,
485                                  SmallVectorImpl<MachineOperand> &Cond,
486                                  bool AllowModify) const {
487   bool isPPC64 = Subtarget.isPPC64();
488 
489   // If the block has no terminators, it just falls into the block after it.
490   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
491   if (I == MBB.end())
492     return false;
493 
494   if (!isUnpredicatedTerminator(*I))
495     return false;
496 
497   if (AllowModify) {
498     // If the BB ends with an unconditional branch to the fallthrough BB,
499     // we eliminate the branch instruction.
500     if (I->getOpcode() == PPC::B &&
501         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
502       I->eraseFromParent();
503 
504       // We update iterator after deleting the last branch.
505       I = MBB.getLastNonDebugInstr();
506       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
507         return false;
508     }
509   }
510 
511   // Get the last instruction in the block.
512   MachineInstr &LastInst = *I;
513 
514   // If there is only one terminator instruction, process it.
515   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
516     if (LastInst.getOpcode() == PPC::B) {
517       if (!LastInst.getOperand(0).isMBB())
518         return true;
519       TBB = LastInst.getOperand(0).getMBB();
520       return false;
521     } else if (LastInst.getOpcode() == PPC::BCC) {
522       if (!LastInst.getOperand(2).isMBB())
523         return true;
524       // Block ends with fall-through condbranch.
525       TBB = LastInst.getOperand(2).getMBB();
526       Cond.push_back(LastInst.getOperand(0));
527       Cond.push_back(LastInst.getOperand(1));
528       return false;
529     } else if (LastInst.getOpcode() == PPC::BC) {
530       if (!LastInst.getOperand(1).isMBB())
531         return true;
532       // Block ends with fall-through condbranch.
533       TBB = LastInst.getOperand(1).getMBB();
534       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
535       Cond.push_back(LastInst.getOperand(0));
536       return false;
537     } else if (LastInst.getOpcode() == PPC::BCn) {
538       if (!LastInst.getOperand(1).isMBB())
539         return true;
540       // Block ends with fall-through condbranch.
541       TBB = LastInst.getOperand(1).getMBB();
542       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
543       Cond.push_back(LastInst.getOperand(0));
544       return false;
545     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
546                LastInst.getOpcode() == PPC::BDNZ) {
547       if (!LastInst.getOperand(0).isMBB())
548         return true;
549       if (DisableCTRLoopAnal)
550         return true;
551       TBB = LastInst.getOperand(0).getMBB();
552       Cond.push_back(MachineOperand::CreateImm(1));
553       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
554                                                true));
555       return false;
556     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
557                LastInst.getOpcode() == PPC::BDZ) {
558       if (!LastInst.getOperand(0).isMBB())
559         return true;
560       if (DisableCTRLoopAnal)
561         return true;
562       TBB = LastInst.getOperand(0).getMBB();
563       Cond.push_back(MachineOperand::CreateImm(0));
564       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
565                                                true));
566       return false;
567     }
568 
569     // Otherwise, don't know what this is.
570     return true;
571   }
572 
573   // Get the instruction before it if it's a terminator.
574   MachineInstr &SecondLastInst = *I;
575 
576   // If there are three terminators, we don't know what sort of block this is.
577   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
578     return true;
579 
580   // If the block ends with PPC::B and PPC:BCC, handle it.
581   if (SecondLastInst.getOpcode() == PPC::BCC &&
582       LastInst.getOpcode() == PPC::B) {
583     if (!SecondLastInst.getOperand(2).isMBB() ||
584         !LastInst.getOperand(0).isMBB())
585       return true;
586     TBB = SecondLastInst.getOperand(2).getMBB();
587     Cond.push_back(SecondLastInst.getOperand(0));
588     Cond.push_back(SecondLastInst.getOperand(1));
589     FBB = LastInst.getOperand(0).getMBB();
590     return false;
591   } else if (SecondLastInst.getOpcode() == PPC::BC &&
592              LastInst.getOpcode() == PPC::B) {
593     if (!SecondLastInst.getOperand(1).isMBB() ||
594         !LastInst.getOperand(0).isMBB())
595       return true;
596     TBB = SecondLastInst.getOperand(1).getMBB();
597     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
598     Cond.push_back(SecondLastInst.getOperand(0));
599     FBB = LastInst.getOperand(0).getMBB();
600     return false;
601   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
602              LastInst.getOpcode() == PPC::B) {
603     if (!SecondLastInst.getOperand(1).isMBB() ||
604         !LastInst.getOperand(0).isMBB())
605       return true;
606     TBB = SecondLastInst.getOperand(1).getMBB();
607     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
608     Cond.push_back(SecondLastInst.getOperand(0));
609     FBB = LastInst.getOperand(0).getMBB();
610     return false;
611   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
612               SecondLastInst.getOpcode() == PPC::BDNZ) &&
613              LastInst.getOpcode() == PPC::B) {
614     if (!SecondLastInst.getOperand(0).isMBB() ||
615         !LastInst.getOperand(0).isMBB())
616       return true;
617     if (DisableCTRLoopAnal)
618       return true;
619     TBB = SecondLastInst.getOperand(0).getMBB();
620     Cond.push_back(MachineOperand::CreateImm(1));
621     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
622                                              true));
623     FBB = LastInst.getOperand(0).getMBB();
624     return false;
625   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
626               SecondLastInst.getOpcode() == PPC::BDZ) &&
627              LastInst.getOpcode() == PPC::B) {
628     if (!SecondLastInst.getOperand(0).isMBB() ||
629         !LastInst.getOperand(0).isMBB())
630       return true;
631     if (DisableCTRLoopAnal)
632       return true;
633     TBB = SecondLastInst.getOperand(0).getMBB();
634     Cond.push_back(MachineOperand::CreateImm(0));
635     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
636                                              true));
637     FBB = LastInst.getOperand(0).getMBB();
638     return false;
639   }
640 
641   // If the block ends with two PPC:Bs, handle it.  The second one is not
642   // executed, so remove it.
643   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
644     if (!SecondLastInst.getOperand(0).isMBB())
645       return true;
646     TBB = SecondLastInst.getOperand(0).getMBB();
647     I = LastInst;
648     if (AllowModify)
649       I->eraseFromParent();
650     return false;
651   }
652 
653   // Otherwise, can't handle this.
654   return true;
655 }
656 
657 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
658                                     int *BytesRemoved) const {
659   assert(!BytesRemoved && "code size not handled");
660 
661   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
662   if (I == MBB.end())
663     return 0;
664 
665   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
666       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
667       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
668       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
669     return 0;
670 
671   // Remove the branch.
672   I->eraseFromParent();
673 
674   I = MBB.end();
675 
676   if (I == MBB.begin()) return 1;
677   --I;
678   if (I->getOpcode() != PPC::BCC &&
679       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
680       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
681       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
682     return 1;
683 
684   // Remove the branch.
685   I->eraseFromParent();
686   return 2;
687 }
688 
689 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
690                                     MachineBasicBlock *TBB,
691                                     MachineBasicBlock *FBB,
692                                     ArrayRef<MachineOperand> Cond,
693                                     const DebugLoc &DL,
694                                     int *BytesAdded) const {
695   // Shouldn't be a fall through.
696   assert(TBB && "insertBranch must not be told to insert a fallthrough");
697   assert((Cond.size() == 2 || Cond.size() == 0) &&
698          "PPC branch conditions have two components!");
699   assert(!BytesAdded && "code size not handled");
700 
701   bool isPPC64 = Subtarget.isPPC64();
702 
703   // One-way branch.
704   if (!FBB) {
705     if (Cond.empty())   // Unconditional branch
706       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
707     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
708       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
709                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
710                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
711     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
712       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
713     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
714       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
715     else                // Conditional branch
716       BuildMI(&MBB, DL, get(PPC::BCC))
717           .addImm(Cond[0].getImm())
718           .add(Cond[1])
719           .addMBB(TBB);
720     return 1;
721   }
722 
723   // Two-way Conditional Branch.
724   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
725     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
726                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
727                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
728   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
729     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
730   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
731     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
732   else
733     BuildMI(&MBB, DL, get(PPC::BCC))
734         .addImm(Cond[0].getImm())
735         .add(Cond[1])
736         .addMBB(TBB);
737   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
738   return 2;
739 }
740 
741 // Select analysis.
742 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
743                 ArrayRef<MachineOperand> Cond,
744                 unsigned TrueReg, unsigned FalseReg,
745                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
746   if (Cond.size() != 2)
747     return false;
748 
749   // If this is really a bdnz-like condition, then it cannot be turned into a
750   // select.
751   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
752     return false;
753 
754   // Check register classes.
755   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
756   const TargetRegisterClass *RC =
757     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
758   if (!RC)
759     return false;
760 
761   // isel is for regular integer GPRs only.
762   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
763       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
764       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
765       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
766     return false;
767 
768   // FIXME: These numbers are for the A2, how well they work for other cores is
769   // an open question. On the A2, the isel instruction has a 2-cycle latency
770   // but single-cycle throughput. These numbers are used in combination with
771   // the MispredictPenalty setting from the active SchedMachineModel.
772   CondCycles = 1;
773   TrueCycles = 1;
774   FalseCycles = 1;
775 
776   return true;
777 }
778 
779 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
780                                 MachineBasicBlock::iterator MI,
781                                 const DebugLoc &dl, unsigned DestReg,
782                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
783                                 unsigned FalseReg) const {
784   assert(Cond.size() == 2 &&
785          "PPC branch conditions have two components!");
786 
787   // Get the register classes.
788   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
789   const TargetRegisterClass *RC =
790     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
791   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
792 
793   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
794                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
795   assert((Is64Bit ||
796           PPC::GPRCRegClass.hasSubClassEq(RC) ||
797           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
798          "isel is for regular integer GPRs only");
799 
800   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
801   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
802 
803   unsigned SubIdx = 0;
804   bool SwapOps = false;
805   switch (SelectPred) {
806   case PPC::PRED_EQ:
807   case PPC::PRED_EQ_MINUS:
808   case PPC::PRED_EQ_PLUS:
809       SubIdx = PPC::sub_eq; SwapOps = false; break;
810   case PPC::PRED_NE:
811   case PPC::PRED_NE_MINUS:
812   case PPC::PRED_NE_PLUS:
813       SubIdx = PPC::sub_eq; SwapOps = true; break;
814   case PPC::PRED_LT:
815   case PPC::PRED_LT_MINUS:
816   case PPC::PRED_LT_PLUS:
817       SubIdx = PPC::sub_lt; SwapOps = false; break;
818   case PPC::PRED_GE:
819   case PPC::PRED_GE_MINUS:
820   case PPC::PRED_GE_PLUS:
821       SubIdx = PPC::sub_lt; SwapOps = true; break;
822   case PPC::PRED_GT:
823   case PPC::PRED_GT_MINUS:
824   case PPC::PRED_GT_PLUS:
825       SubIdx = PPC::sub_gt; SwapOps = false; break;
826   case PPC::PRED_LE:
827   case PPC::PRED_LE_MINUS:
828   case PPC::PRED_LE_PLUS:
829       SubIdx = PPC::sub_gt; SwapOps = true; break;
830   case PPC::PRED_UN:
831   case PPC::PRED_UN_MINUS:
832   case PPC::PRED_UN_PLUS:
833       SubIdx = PPC::sub_un; SwapOps = false; break;
834   case PPC::PRED_NU:
835   case PPC::PRED_NU_MINUS:
836   case PPC::PRED_NU_PLUS:
837       SubIdx = PPC::sub_un; SwapOps = true; break;
838   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
839   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
840   }
841 
842   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
843            SecondReg = SwapOps ? TrueReg  : FalseReg;
844 
845   // The first input register of isel cannot be r0. If it is a member
846   // of a register class that can be r0, then copy it first (the
847   // register allocator should eliminate the copy).
848   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
849       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
850     const TargetRegisterClass *FirstRC =
851       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
852         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
853     unsigned OldFirstReg = FirstReg;
854     FirstReg = MRI.createVirtualRegister(FirstRC);
855     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
856       .addReg(OldFirstReg);
857   }
858 
859   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
860     .addReg(FirstReg).addReg(SecondReg)
861     .addReg(Cond[1].getReg(), 0, SubIdx);
862 }
863 
864 static unsigned getCRBitValue(unsigned CRBit) {
865   unsigned Ret = 4;
866   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
867       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
868       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
869       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
870     Ret = 3;
871   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
872       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
873       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
874       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
875     Ret = 2;
876   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
877       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
878       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
879       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
880     Ret = 1;
881   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
882       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
883       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
884       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
885     Ret = 0;
886 
887   assert(Ret != 4 && "Invalid CR bit register");
888   return Ret;
889 }
890 
891 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
892                                MachineBasicBlock::iterator I,
893                                const DebugLoc &DL, unsigned DestReg,
894                                unsigned SrcReg, bool KillSrc) const {
895   // We can end up with self copies and similar things as a result of VSX copy
896   // legalization. Promote them here.
897   const TargetRegisterInfo *TRI = &getRegisterInfo();
898   if (PPC::F8RCRegClass.contains(DestReg) &&
899       PPC::VSRCRegClass.contains(SrcReg)) {
900     unsigned SuperReg =
901       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
902 
903     if (VSXSelfCopyCrash && SrcReg == SuperReg)
904       llvm_unreachable("nop VSX copy");
905 
906     DestReg = SuperReg;
907   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
908              PPC::VSRCRegClass.contains(DestReg)) {
909     unsigned SuperReg =
910       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
911 
912     if (VSXSelfCopyCrash && DestReg == SuperReg)
913       llvm_unreachable("nop VSX copy");
914 
915     SrcReg = SuperReg;
916   }
917 
918   // Different class register copy
919   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
920       PPC::GPRCRegClass.contains(DestReg)) {
921     unsigned CRReg = getCRFromCRBit(SrcReg);
922     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
923     getKillRegState(KillSrc);
924     // Rotate the CR bit in the CR fields to be the least significant bit and
925     // then mask with 0x1 (MB = ME = 31).
926     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
927        .addReg(DestReg, RegState::Kill)
928        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
929        .addImm(31)
930        .addImm(31);
931     return;
932   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
933       PPC::G8RCRegClass.contains(DestReg)) {
934     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
935     getKillRegState(KillSrc);
936     return;
937   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
938       PPC::GPRCRegClass.contains(DestReg)) {
939     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
940     getKillRegState(KillSrc);
941     return;
942   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
943              PPC::VSFRCRegClass.contains(DestReg)) {
944     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
945     NumGPRtoVSRSpill++;
946     getKillRegState(KillSrc);
947     return;
948   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
949              PPC::G8RCRegClass.contains(DestReg)) {
950     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
951     getKillRegState(KillSrc);
952     return;
953   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
954              PPC::SPE4RCRegClass.contains(DestReg)) {
955     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
956     getKillRegState(KillSrc);
957     return;
958   } else if (PPC::SPE4RCRegClass.contains(SrcReg) &&
959              PPC::SPERCRegClass.contains(DestReg)) {
960     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
961     getKillRegState(KillSrc);
962     return;
963   }
964 
965 
966   unsigned Opc;
967   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
968     Opc = PPC::OR;
969   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
970     Opc = PPC::OR8;
971   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
972     Opc = PPC::FMR;
973   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
974     Opc = PPC::MCRF;
975   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
976     Opc = PPC::VOR;
977   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
978     // There are two different ways this can be done:
979     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
980     //      issue in VSU pipeline 0.
981     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
982     //      can go to either pipeline.
983     // We'll always use xxlor here, because in practically all cases where
984     // copies are generated, they are close enough to some use that the
985     // lower-latency form is preferable.
986     Opc = PPC::XXLOR;
987   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
988            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
989     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
990   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
991     Opc = PPC::QVFMR;
992   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
993     Opc = PPC::QVFMRs;
994   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
995     Opc = PPC::QVFMRb;
996   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
997     Opc = PPC::CROR;
998   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
999     Opc = PPC::EVOR;
1000   else
1001     llvm_unreachable("Impossible reg-to-reg copy");
1002 
1003   const MCInstrDesc &MCID = get(Opc);
1004   if (MCID.getNumOperands() == 3)
1005     BuildMI(MBB, I, DL, MCID, DestReg)
1006       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1007   else
1008     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1009 }
1010 
1011 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1012                                               const TargetRegisterClass *RC)
1013                                               const {
1014   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1015   int OpcodeIndex = 0;
1016 
1017   if (RC != nullptr) {
1018     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1019         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1020       OpcodeIndex = SOK_Int4Spill;
1021     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1022                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1023       OpcodeIndex = SOK_Int8Spill;
1024     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1025       OpcodeIndex = SOK_Float8Spill;
1026     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1027       OpcodeIndex = SOK_Float4Spill;
1028     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1029       OpcodeIndex = SOK_SPESpill;
1030     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1031       OpcodeIndex = SOK_SPE4Spill;
1032     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1033       OpcodeIndex = SOK_CRSpill;
1034     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1035       OpcodeIndex = SOK_CRBitSpill;
1036     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1037       OpcodeIndex = SOK_VRVectorSpill;
1038     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1039       OpcodeIndex = SOK_VSXVectorSpill;
1040     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1041       OpcodeIndex = SOK_VectorFloat8Spill;
1042     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1043       OpcodeIndex = SOK_VectorFloat4Spill;
1044     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1045       OpcodeIndex = SOK_VRSaveSpill;
1046     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1047       OpcodeIndex = SOK_QuadFloat8Spill;
1048     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1049       OpcodeIndex = SOK_QuadFloat4Spill;
1050     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1051       OpcodeIndex = SOK_QuadBitSpill;
1052     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1053       OpcodeIndex = SOK_SpillToVSR;
1054     } else {
1055       llvm_unreachable("Unknown regclass!");
1056     }
1057   } else {
1058     if (PPC::GPRCRegClass.contains(Reg) ||
1059         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1060       OpcodeIndex = SOK_Int4Spill;
1061     } else if (PPC::G8RCRegClass.contains(Reg) ||
1062                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1063       OpcodeIndex = SOK_Int8Spill;
1064     } else if (PPC::F8RCRegClass.contains(Reg)) {
1065       OpcodeIndex = SOK_Float8Spill;
1066     } else if (PPC::F4RCRegClass.contains(Reg)) {
1067       OpcodeIndex = SOK_Float4Spill;
1068     } else if (PPC::CRRCRegClass.contains(Reg)) {
1069       OpcodeIndex = SOK_CRSpill;
1070     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1071       OpcodeIndex = SOK_CRBitSpill;
1072     } else if (PPC::VRRCRegClass.contains(Reg)) {
1073       OpcodeIndex = SOK_VRVectorSpill;
1074     } else if (PPC::VSRCRegClass.contains(Reg)) {
1075       OpcodeIndex = SOK_VSXVectorSpill;
1076     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1077       OpcodeIndex = SOK_VectorFloat8Spill;
1078     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1079       OpcodeIndex = SOK_VectorFloat4Spill;
1080     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1081       OpcodeIndex = SOK_VRSaveSpill;
1082     } else if (PPC::QFRCRegClass.contains(Reg)) {
1083       OpcodeIndex = SOK_QuadFloat8Spill;
1084     } else if (PPC::QSRCRegClass.contains(Reg)) {
1085       OpcodeIndex = SOK_QuadFloat4Spill;
1086     } else if (PPC::QBRCRegClass.contains(Reg)) {
1087       OpcodeIndex = SOK_QuadBitSpill;
1088     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1089       OpcodeIndex = SOK_SpillToVSR;
1090     } else {
1091       llvm_unreachable("Unknown regclass!");
1092     }
1093   }
1094   return OpcodesForSpill[OpcodeIndex];
1095 }
1096 
1097 unsigned
1098 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1099                                     const TargetRegisterClass *RC) const {
1100   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1101   int OpcodeIndex = 0;
1102 
1103   if (RC != nullptr) {
1104     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1105         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1106       OpcodeIndex = SOK_Int4Spill;
1107     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1108                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1109       OpcodeIndex = SOK_Int8Spill;
1110     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1111       OpcodeIndex = SOK_Float8Spill;
1112     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1113       OpcodeIndex = SOK_Float4Spill;
1114     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1115       OpcodeIndex = SOK_SPESpill;
1116     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1117       OpcodeIndex = SOK_SPE4Spill;
1118     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1119       OpcodeIndex = SOK_CRSpill;
1120     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1121       OpcodeIndex = SOK_CRBitSpill;
1122     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1123       OpcodeIndex = SOK_VRVectorSpill;
1124     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1125       OpcodeIndex = SOK_VSXVectorSpill;
1126     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1127       OpcodeIndex = SOK_VectorFloat8Spill;
1128     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1129       OpcodeIndex = SOK_VectorFloat4Spill;
1130     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1131       OpcodeIndex = SOK_VRSaveSpill;
1132     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1133       OpcodeIndex = SOK_QuadFloat8Spill;
1134     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1135       OpcodeIndex = SOK_QuadFloat4Spill;
1136     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1137       OpcodeIndex = SOK_QuadBitSpill;
1138     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1139       OpcodeIndex = SOK_SpillToVSR;
1140     } else {
1141       llvm_unreachable("Unknown regclass!");
1142     }
1143   } else {
1144     if (PPC::GPRCRegClass.contains(Reg) ||
1145         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1146       OpcodeIndex = SOK_Int4Spill;
1147     } else if (PPC::G8RCRegClass.contains(Reg) ||
1148                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1149       OpcodeIndex = SOK_Int8Spill;
1150     } else if (PPC::F8RCRegClass.contains(Reg)) {
1151       OpcodeIndex = SOK_Float8Spill;
1152     } else if (PPC::F4RCRegClass.contains(Reg)) {
1153       OpcodeIndex = SOK_Float4Spill;
1154     } else if (PPC::CRRCRegClass.contains(Reg)) {
1155       OpcodeIndex = SOK_CRSpill;
1156     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1157       OpcodeIndex = SOK_CRBitSpill;
1158     } else if (PPC::VRRCRegClass.contains(Reg)) {
1159       OpcodeIndex = SOK_VRVectorSpill;
1160     } else if (PPC::VSRCRegClass.contains(Reg)) {
1161       OpcodeIndex = SOK_VSXVectorSpill;
1162     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1163       OpcodeIndex = SOK_VectorFloat8Spill;
1164     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1165       OpcodeIndex = SOK_VectorFloat4Spill;
1166     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1167       OpcodeIndex = SOK_VRSaveSpill;
1168     } else if (PPC::QFRCRegClass.contains(Reg)) {
1169       OpcodeIndex = SOK_QuadFloat8Spill;
1170     } else if (PPC::QSRCRegClass.contains(Reg)) {
1171       OpcodeIndex = SOK_QuadFloat4Spill;
1172     } else if (PPC::QBRCRegClass.contains(Reg)) {
1173       OpcodeIndex = SOK_QuadBitSpill;
1174     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1175       OpcodeIndex = SOK_SpillToVSR;
1176     } else {
1177       llvm_unreachable("Unknown regclass!");
1178     }
1179   }
1180   return OpcodesForSpill[OpcodeIndex];
1181 }
1182 
1183 void PPCInstrInfo::StoreRegToStackSlot(
1184     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1185     const TargetRegisterClass *RC,
1186     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1187   unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1188   DebugLoc DL;
1189 
1190   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1191   FuncInfo->setHasSpills();
1192 
1193   NewMIs.push_back(addFrameReference(
1194       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1195       FrameIdx));
1196 
1197   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1198       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1199     FuncInfo->setSpillsCR();
1200 
1201   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1202     FuncInfo->setSpillsVRSAVE();
1203 
1204   if (isXFormMemOp(Opcode))
1205     FuncInfo->setHasNonRISpills();
1206 }
1207 
1208 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1209                                        MachineBasicBlock::iterator MI,
1210                                        unsigned SrcReg, bool isKill,
1211                                        int FrameIdx,
1212                                        const TargetRegisterClass *RC,
1213                                        const TargetRegisterInfo *TRI) const {
1214   MachineFunction &MF = *MBB.getParent();
1215   SmallVector<MachineInstr *, 4> NewMIs;
1216 
1217   // We need to avoid a situation in which the value from a VRRC register is
1218   // spilled using an Altivec instruction and reloaded into a VSRC register
1219   // using a VSX instruction. The issue with this is that the VSX
1220   // load/store instructions swap the doublewords in the vector and the Altivec
1221   // ones don't. The register classes on the spill/reload may be different if
1222   // the register is defined using an Altivec instruction and is then used by a
1223   // VSX instruction.
1224   RC = updatedRC(RC);
1225 
1226   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1227 
1228   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1229     MBB.insert(MI, NewMIs[i]);
1230 
1231   const MachineFrameInfo &MFI = MF.getFrameInfo();
1232   MachineMemOperand *MMO = MF.getMachineMemOperand(
1233       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1234       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1235       MFI.getObjectAlignment(FrameIdx));
1236   NewMIs.back()->addMemOperand(MF, MMO);
1237 }
1238 
1239 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1240                                         unsigned DestReg, int FrameIdx,
1241                                         const TargetRegisterClass *RC,
1242                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1243                                         const {
1244   unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1245   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1246                                      FrameIdx));
1247   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1248 
1249   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1250       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1251     FuncInfo->setSpillsCR();
1252 
1253   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1254     FuncInfo->setSpillsVRSAVE();
1255 
1256   if (isXFormMemOp(Opcode))
1257     FuncInfo->setHasNonRISpills();
1258 }
1259 
1260 void
1261 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1262                                    MachineBasicBlock::iterator MI,
1263                                    unsigned DestReg, int FrameIdx,
1264                                    const TargetRegisterClass *RC,
1265                                    const TargetRegisterInfo *TRI) const {
1266   MachineFunction &MF = *MBB.getParent();
1267   SmallVector<MachineInstr*, 4> NewMIs;
1268   DebugLoc DL;
1269   if (MI != MBB.end()) DL = MI->getDebugLoc();
1270 
1271   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1272   FuncInfo->setHasSpills();
1273 
1274   // We need to avoid a situation in which the value from a VRRC register is
1275   // spilled using an Altivec instruction and reloaded into a VSRC register
1276   // using a VSX instruction. The issue with this is that the VSX
1277   // load/store instructions swap the doublewords in the vector and the Altivec
1278   // ones don't. The register classes on the spill/reload may be different if
1279   // the register is defined using an Altivec instruction and is then used by a
1280   // VSX instruction.
1281   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1282     RC = &PPC::VSRCRegClass;
1283 
1284   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1285 
1286   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1287     MBB.insert(MI, NewMIs[i]);
1288 
1289   const MachineFrameInfo &MFI = MF.getFrameInfo();
1290   MachineMemOperand *MMO = MF.getMachineMemOperand(
1291       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1292       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1293       MFI.getObjectAlignment(FrameIdx));
1294   NewMIs.back()->addMemOperand(MF, MMO);
1295 }
1296 
1297 bool PPCInstrInfo::
1298 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1299   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1300   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1301     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1302   else
1303     // Leave the CR# the same, but invert the condition.
1304     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1305   return false;
1306 }
1307 
1308 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1309                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1310   // For some instructions, it is legal to fold ZERO into the RA register field.
1311   // A zero immediate should always be loaded with a single li.
1312   unsigned DefOpc = DefMI.getOpcode();
1313   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1314     return false;
1315   if (!DefMI.getOperand(1).isImm())
1316     return false;
1317   if (DefMI.getOperand(1).getImm() != 0)
1318     return false;
1319 
1320   // Note that we cannot here invert the arguments of an isel in order to fold
1321   // a ZERO into what is presented as the second argument. All we have here
1322   // is the condition bit, and that might come from a CR-logical bit operation.
1323 
1324   const MCInstrDesc &UseMCID = UseMI.getDesc();
1325 
1326   // Only fold into real machine instructions.
1327   if (UseMCID.isPseudo())
1328     return false;
1329 
1330   unsigned UseIdx;
1331   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1332     if (UseMI.getOperand(UseIdx).isReg() &&
1333         UseMI.getOperand(UseIdx).getReg() == Reg)
1334       break;
1335 
1336   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1337   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1338 
1339   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1340 
1341   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1342   // register (which might also be specified as a pointer class kind).
1343   if (UseInfo->isLookupPtrRegClass()) {
1344     if (UseInfo->RegClass /* Kind */ != 1)
1345       return false;
1346   } else {
1347     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1348         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1349       return false;
1350   }
1351 
1352   // Make sure this is not tied to an output register (or otherwise
1353   // constrained). This is true for ST?UX registers, for example, which
1354   // are tied to their output registers.
1355   if (UseInfo->Constraints != 0)
1356     return false;
1357 
1358   unsigned ZeroReg;
1359   if (UseInfo->isLookupPtrRegClass()) {
1360     bool isPPC64 = Subtarget.isPPC64();
1361     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1362   } else {
1363     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1364               PPC::ZERO8 : PPC::ZERO;
1365   }
1366 
1367   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1368   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1369 
1370   if (DeleteDef)
1371     DefMI.eraseFromParent();
1372 
1373   return true;
1374 }
1375 
1376 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1377   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1378        I != IE; ++I)
1379     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1380       return true;
1381   return false;
1382 }
1383 
1384 // We should make sure that, if we're going to predicate both sides of a
1385 // condition (a diamond), that both sides don't define the counter register. We
1386 // can predicate counter-decrement-based branches, but while that predicates
1387 // the branching, it does not predicate the counter decrement. If we tried to
1388 // merge the triangle into one predicated block, we'd decrement the counter
1389 // twice.
1390 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1391                      unsigned NumT, unsigned ExtraT,
1392                      MachineBasicBlock &FMBB,
1393                      unsigned NumF, unsigned ExtraF,
1394                      BranchProbability Probability) const {
1395   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1396 }
1397 
1398 
1399 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1400   // The predicated branches are identified by their type, not really by the
1401   // explicit presence of a predicate. Furthermore, some of them can be
1402   // predicated more than once. Because if conversion won't try to predicate
1403   // any instruction which already claims to be predicated (by returning true
1404   // here), always return false. In doing so, we let isPredicable() be the
1405   // final word on whether not the instruction can be (further) predicated.
1406 
1407   return false;
1408 }
1409 
1410 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1411   if (!MI.isTerminator())
1412     return false;
1413 
1414   // Conditional branch is a special case.
1415   if (MI.isBranch() && !MI.isBarrier())
1416     return true;
1417 
1418   return !isPredicated(MI);
1419 }
1420 
1421 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1422                                         ArrayRef<MachineOperand> Pred) const {
1423   unsigned OpC = MI.getOpcode();
1424   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1425     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1426       bool isPPC64 = Subtarget.isPPC64();
1427       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1428                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1429     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1430       MI.setDesc(get(PPC::BCLR));
1431       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1432     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1433       MI.setDesc(get(PPC::BCLRn));
1434       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1435     } else {
1436       MI.setDesc(get(PPC::BCCLR));
1437       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1438           .addImm(Pred[0].getImm())
1439           .add(Pred[1]);
1440     }
1441 
1442     return true;
1443   } else if (OpC == PPC::B) {
1444     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1445       bool isPPC64 = Subtarget.isPPC64();
1446       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1447                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1448     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1449       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1450       MI.RemoveOperand(0);
1451 
1452       MI.setDesc(get(PPC::BC));
1453       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1454           .add(Pred[1])
1455           .addMBB(MBB);
1456     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1457       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1458       MI.RemoveOperand(0);
1459 
1460       MI.setDesc(get(PPC::BCn));
1461       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1462           .add(Pred[1])
1463           .addMBB(MBB);
1464     } else {
1465       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1466       MI.RemoveOperand(0);
1467 
1468       MI.setDesc(get(PPC::BCC));
1469       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1470           .addImm(Pred[0].getImm())
1471           .add(Pred[1])
1472           .addMBB(MBB);
1473     }
1474 
1475     return true;
1476   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1477              OpC == PPC::BCTRL8) {
1478     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1479       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1480 
1481     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1482     bool isPPC64 = Subtarget.isPPC64();
1483 
1484     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1485       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1486                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1487       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1488       return true;
1489     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1490       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1491                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1492       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1493       return true;
1494     }
1495 
1496     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1497                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1498     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1499         .addImm(Pred[0].getImm())
1500         .add(Pred[1]);
1501     return true;
1502   }
1503 
1504   return false;
1505 }
1506 
1507 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1508                                      ArrayRef<MachineOperand> Pred2) const {
1509   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1510   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1511 
1512   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1513     return false;
1514   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1515     return false;
1516 
1517   // P1 can only subsume P2 if they test the same condition register.
1518   if (Pred1[1].getReg() != Pred2[1].getReg())
1519     return false;
1520 
1521   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1522   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1523 
1524   if (P1 == P2)
1525     return true;
1526 
1527   // Does P1 subsume P2, e.g. GE subsumes GT.
1528   if (P1 == PPC::PRED_LE &&
1529       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1530     return true;
1531   if (P1 == PPC::PRED_GE &&
1532       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1533     return true;
1534 
1535   return false;
1536 }
1537 
1538 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1539                                     std::vector<MachineOperand> &Pred) const {
1540   // Note: At the present time, the contents of Pred from this function is
1541   // unused by IfConversion. This implementation follows ARM by pushing the
1542   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1543   // predicate, instructions defining CTR or CTR8 are also included as
1544   // predicate-defining instructions.
1545 
1546   const TargetRegisterClass *RCs[] =
1547     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1548       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1549 
1550   bool Found = false;
1551   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1552     const MachineOperand &MO = MI.getOperand(i);
1553     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1554       const TargetRegisterClass *RC = RCs[c];
1555       if (MO.isReg()) {
1556         if (MO.isDef() && RC->contains(MO.getReg())) {
1557           Pred.push_back(MO);
1558           Found = true;
1559         }
1560       } else if (MO.isRegMask()) {
1561         for (TargetRegisterClass::iterator I = RC->begin(),
1562              IE = RC->end(); I != IE; ++I)
1563           if (MO.clobbersPhysReg(*I)) {
1564             Pred.push_back(MO);
1565             Found = true;
1566           }
1567       }
1568     }
1569   }
1570 
1571   return Found;
1572 }
1573 
1574 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1575   unsigned OpC = MI.getOpcode();
1576   switch (OpC) {
1577   default:
1578     return false;
1579   case PPC::B:
1580   case PPC::BLR:
1581   case PPC::BLR8:
1582   case PPC::BCTR:
1583   case PPC::BCTR8:
1584   case PPC::BCTRL:
1585   case PPC::BCTRL8:
1586     return true;
1587   }
1588 }
1589 
1590 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1591                                   unsigned &SrcReg2, int &Mask,
1592                                   int &Value) const {
1593   unsigned Opc = MI.getOpcode();
1594 
1595   switch (Opc) {
1596   default: return false;
1597   case PPC::CMPWI:
1598   case PPC::CMPLWI:
1599   case PPC::CMPDI:
1600   case PPC::CMPLDI:
1601     SrcReg = MI.getOperand(1).getReg();
1602     SrcReg2 = 0;
1603     Value = MI.getOperand(2).getImm();
1604     Mask = 0xFFFF;
1605     return true;
1606   case PPC::CMPW:
1607   case PPC::CMPLW:
1608   case PPC::CMPD:
1609   case PPC::CMPLD:
1610   case PPC::FCMPUS:
1611   case PPC::FCMPUD:
1612     SrcReg = MI.getOperand(1).getReg();
1613     SrcReg2 = MI.getOperand(2).getReg();
1614     Value = 0;
1615     Mask = 0;
1616     return true;
1617   }
1618 }
1619 
1620 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1621                                         unsigned SrcReg2, int Mask, int Value,
1622                                         const MachineRegisterInfo *MRI) const {
1623   if (DisableCmpOpt)
1624     return false;
1625 
1626   int OpC = CmpInstr.getOpcode();
1627   unsigned CRReg = CmpInstr.getOperand(0).getReg();
1628 
1629   // FP record forms set CR1 based on the exception status bits, not a
1630   // comparison with zero.
1631   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1632     return false;
1633 
1634   // The record forms set the condition register based on a signed comparison
1635   // with zero (so says the ISA manual). This is not as straightforward as it
1636   // seems, however, because this is always a 64-bit comparison on PPC64, even
1637   // for instructions that are 32-bit in nature (like slw for example).
1638   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1639   // for equality checks (as those don't depend on the sign). On PPC64,
1640   // we are restricted to equality for unsigned 64-bit comparisons and for
1641   // signed 32-bit comparisons the applicability is more restricted.
1642   bool isPPC64 = Subtarget.isPPC64();
1643   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1644   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1645   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1646 
1647   // Get the unique definition of SrcReg.
1648   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1649   if (!MI) return false;
1650 
1651   bool equalityOnly = false;
1652   bool noSub = false;
1653   if (isPPC64) {
1654     if (is32BitSignedCompare) {
1655       // We can perform this optimization only if MI is sign-extending.
1656       if (isSignExtended(*MI))
1657         noSub = true;
1658       else
1659         return false;
1660     } else if (is32BitUnsignedCompare) {
1661       // We can perform this optimization, equality only, if MI is
1662       // zero-extending.
1663       if (isZeroExtended(*MI)) {
1664         noSub = true;
1665         equalityOnly = true;
1666       } else
1667         return false;
1668     } else
1669       equalityOnly = is64BitUnsignedCompare;
1670   } else
1671     equalityOnly = is32BitUnsignedCompare;
1672 
1673   if (equalityOnly) {
1674     // We need to check the uses of the condition register in order to reject
1675     // non-equality comparisons.
1676     for (MachineRegisterInfo::use_instr_iterator
1677          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1678          I != IE; ++I) {
1679       MachineInstr *UseMI = &*I;
1680       if (UseMI->getOpcode() == PPC::BCC) {
1681         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1682         unsigned PredCond = PPC::getPredicateCondition(Pred);
1683         // We ignore hint bits when checking for non-equality comparisons.
1684         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1685           return false;
1686       } else if (UseMI->getOpcode() == PPC::ISEL ||
1687                  UseMI->getOpcode() == PPC::ISEL8) {
1688         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1689         if (SubIdx != PPC::sub_eq)
1690           return false;
1691       } else
1692         return false;
1693     }
1694   }
1695 
1696   MachineBasicBlock::iterator I = CmpInstr;
1697 
1698   // Scan forward to find the first use of the compare.
1699   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1700        ++I) {
1701     bool FoundUse = false;
1702     for (MachineRegisterInfo::use_instr_iterator
1703          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1704          J != JE; ++J)
1705       if (&*J == &*I) {
1706         FoundUse = true;
1707         break;
1708       }
1709 
1710     if (FoundUse)
1711       break;
1712   }
1713 
1714   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1715   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1716 
1717   // There are two possible candidates which can be changed to set CR[01].
1718   // One is MI, the other is a SUB instruction.
1719   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1720   MachineInstr *Sub = nullptr;
1721   if (SrcReg2 != 0)
1722     // MI is not a candidate for CMPrr.
1723     MI = nullptr;
1724   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1725   // same BB as the comparison. This is to allow the check below to avoid calls
1726   // (and other explicit clobbers); instead we should really check for these
1727   // more explicitly (in at least a few predecessors).
1728   else if (MI->getParent() != CmpInstr.getParent())
1729     return false;
1730   else if (Value != 0) {
1731     // The record-form instructions set CR bit based on signed comparison
1732     // against 0. We try to convert a compare against 1 or -1 into a compare
1733     // against 0 to exploit record-form instructions. For example, we change
1734     // the condition "greater than -1" into "greater than or equal to 0"
1735     // and "less than 1" into "less than or equal to 0".
1736 
1737     // Since we optimize comparison based on a specific branch condition,
1738     // we don't optimize if condition code is used by more than once.
1739     if (equalityOnly || !MRI->hasOneUse(CRReg))
1740       return false;
1741 
1742     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1743     if (UseMI->getOpcode() != PPC::BCC)
1744       return false;
1745 
1746     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1747     PPC::Predicate NewPred = Pred;
1748     unsigned PredCond = PPC::getPredicateCondition(Pred);
1749     unsigned PredHint = PPC::getPredicateHint(Pred);
1750     int16_t Immed = (int16_t)Value;
1751 
1752     // When modifying the condition in the predicate, we propagate hint bits
1753     // from the original predicate to the new one.
1754     if (Immed == -1 && PredCond == PPC::PRED_GT)
1755       // We convert "greater than -1" into "greater than or equal to 0",
1756       // since we are assuming signed comparison by !equalityOnly
1757       NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1758     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1759       // We convert "less than or equal to -1" into "less than 0".
1760       NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1761     else if (Immed == 1 && PredCond == PPC::PRED_LT)
1762       // We convert "less than 1" into "less than or equal to 0".
1763       NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1764     else if (Immed == 1 && PredCond == PPC::PRED_GE)
1765       // We convert "greater than or equal to 1" into "greater than 0".
1766       NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1767     else
1768       return false;
1769 
1770     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1771                                             NewPred));
1772   }
1773 
1774   // Search for Sub.
1775   const TargetRegisterInfo *TRI = &getRegisterInfo();
1776   --I;
1777 
1778   // Get ready to iterate backward from CmpInstr.
1779   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1780 
1781   for (; I != E && !noSub; --I) {
1782     const MachineInstr &Instr = *I;
1783     unsigned IOpC = Instr.getOpcode();
1784 
1785     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1786                              Instr.readsRegister(PPC::CR0, TRI)))
1787       // This instruction modifies or uses the record condition register after
1788       // the one we want to change. While we could do this transformation, it
1789       // would likely not be profitable. This transformation removes one
1790       // instruction, and so even forcing RA to generate one move probably
1791       // makes it unprofitable.
1792       return false;
1793 
1794     // Check whether CmpInstr can be made redundant by the current instruction.
1795     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1796          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1797         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1798         ((Instr.getOperand(1).getReg() == SrcReg &&
1799           Instr.getOperand(2).getReg() == SrcReg2) ||
1800         (Instr.getOperand(1).getReg() == SrcReg2 &&
1801          Instr.getOperand(2).getReg() == SrcReg))) {
1802       Sub = &*I;
1803       break;
1804     }
1805 
1806     if (I == B)
1807       // The 'and' is below the comparison instruction.
1808       return false;
1809   }
1810 
1811   // Return false if no candidates exist.
1812   if (!MI && !Sub)
1813     return false;
1814 
1815   // The single candidate is called MI.
1816   if (!MI) MI = Sub;
1817 
1818   int NewOpC = -1;
1819   int MIOpC = MI->getOpcode();
1820   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1821       MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1822     NewOpC = MIOpC;
1823   else {
1824     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1825     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1826       NewOpC = MIOpC;
1827   }
1828 
1829   // FIXME: On the non-embedded POWER architectures, only some of the record
1830   // forms are fast, and we should use only the fast ones.
1831 
1832   // The defining instruction has a record form (or is already a record
1833   // form). It is possible, however, that we'll need to reverse the condition
1834   // code of the users.
1835   if (NewOpC == -1)
1836     return false;
1837 
1838   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1839   // needs to be updated to be based on SUB.  Push the condition code
1840   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1841   // condition code of these operands will be modified.
1842   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1843   // comparison against 0, which may modify predicate.
1844   bool ShouldSwap = false;
1845   if (Sub && Value == 0) {
1846     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1847       Sub->getOperand(2).getReg() == SrcReg;
1848 
1849     // The operands to subf are the opposite of sub, so only in the fixed-point
1850     // case, invert the order.
1851     ShouldSwap = !ShouldSwap;
1852   }
1853 
1854   if (ShouldSwap)
1855     for (MachineRegisterInfo::use_instr_iterator
1856          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1857          I != IE; ++I) {
1858       MachineInstr *UseMI = &*I;
1859       if (UseMI->getOpcode() == PPC::BCC) {
1860         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1861         unsigned PredCond = PPC::getPredicateCondition(Pred);
1862         assert((!equalityOnly ||
1863                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1864                "Invalid predicate for equality-only optimization");
1865         (void)PredCond; // To suppress warning in release build.
1866         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1867                                 PPC::getSwappedPredicate(Pred)));
1868       } else if (UseMI->getOpcode() == PPC::ISEL ||
1869                  UseMI->getOpcode() == PPC::ISEL8) {
1870         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1871         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1872                "Invalid CR bit for equality-only optimization");
1873 
1874         if (NewSubReg == PPC::sub_lt)
1875           NewSubReg = PPC::sub_gt;
1876         else if (NewSubReg == PPC::sub_gt)
1877           NewSubReg = PPC::sub_lt;
1878 
1879         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1880                                                  NewSubReg));
1881       } else // We need to abort on a user we don't understand.
1882         return false;
1883     }
1884   assert(!(Value != 0 && ShouldSwap) &&
1885          "Non-zero immediate support and ShouldSwap"
1886          "may conflict in updating predicate");
1887 
1888   // Create a new virtual register to hold the value of the CR set by the
1889   // record-form instruction. If the instruction was not previously in
1890   // record form, then set the kill flag on the CR.
1891   CmpInstr.eraseFromParent();
1892 
1893   MachineBasicBlock::iterator MII = MI;
1894   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1895           get(TargetOpcode::COPY), CRReg)
1896     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1897 
1898   // Even if CR0 register were dead before, it is alive now since the
1899   // instruction we just built uses it.
1900   MI->clearRegisterDeads(PPC::CR0);
1901 
1902   if (MIOpC != NewOpC) {
1903     // We need to be careful here: we're replacing one instruction with
1904     // another, and we need to make sure that we get all of the right
1905     // implicit uses and defs. On the other hand, the caller may be holding
1906     // an iterator to this instruction, and so we can't delete it (this is
1907     // specifically the case if this is the instruction directly after the
1908     // compare).
1909 
1910     // Rotates are expensive instructions. If we're emitting a record-form
1911     // rotate that can just be an andi/andis, we should just emit that.
1912     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1913       unsigned GPRRes = MI->getOperand(0).getReg();
1914       int64_t SH = MI->getOperand(2).getImm();
1915       int64_t MB = MI->getOperand(3).getImm();
1916       int64_t ME = MI->getOperand(4).getImm();
1917       // We can only do this if both the start and end of the mask are in the
1918       // same halfword.
1919       bool MBInLoHWord = MB >= 16;
1920       bool MEInLoHWord = ME >= 16;
1921       uint64_t Mask = ~0LLU;
1922 
1923       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1924         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1925         // The mask value needs to shift right 16 if we're emitting andis.
1926         Mask >>= MBInLoHWord ? 0 : 16;
1927         NewOpC = MIOpC == PPC::RLWINM ?
1928           (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1929           (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1930       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1931                  (ME - MB + 1 == SH) && (MB >= 16)) {
1932         // If we are rotating by the exact number of bits as are in the mask
1933         // and the mask is in the least significant bits of the register,
1934         // that's just an andis. (as long as the GPR result has no uses).
1935         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1936         Mask >>= 16;
1937         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1938       }
1939       // If we've set the mask, we can transform.
1940       if (Mask != ~0LLU) {
1941         MI->RemoveOperand(4);
1942         MI->RemoveOperand(3);
1943         MI->getOperand(2).setImm(Mask);
1944         NumRcRotatesConvertedToRcAnd++;
1945       }
1946     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1947       int64_t MB = MI->getOperand(3).getImm();
1948       if (MB >= 48) {
1949         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1950         NewOpC = PPC::ANDIo8;
1951         MI->RemoveOperand(3);
1952         MI->getOperand(2).setImm(Mask);
1953         NumRcRotatesConvertedToRcAnd++;
1954       }
1955     }
1956 
1957     const MCInstrDesc &NewDesc = get(NewOpC);
1958     MI->setDesc(NewDesc);
1959 
1960     if (NewDesc.ImplicitDefs)
1961       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1962            *ImpDefs; ++ImpDefs)
1963         if (!MI->definesRegister(*ImpDefs))
1964           MI->addOperand(*MI->getParent()->getParent(),
1965                          MachineOperand::CreateReg(*ImpDefs, true, true));
1966     if (NewDesc.ImplicitUses)
1967       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1968            *ImpUses; ++ImpUses)
1969         if (!MI->readsRegister(*ImpUses))
1970           MI->addOperand(*MI->getParent()->getParent(),
1971                          MachineOperand::CreateReg(*ImpUses, false, true));
1972   }
1973   assert(MI->definesRegister(PPC::CR0) &&
1974          "Record-form instruction does not define cr0?");
1975 
1976   // Modify the condition code of operands in OperandsToUpdate.
1977   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1978   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1979   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1980     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1981 
1982   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1983     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1984 
1985   return true;
1986 }
1987 
1988 /// GetInstSize - Return the number of bytes of code the specified
1989 /// instruction may be.  This returns the maximum number of bytes.
1990 ///
1991 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1992   unsigned Opcode = MI.getOpcode();
1993 
1994   if (Opcode == PPC::INLINEASM) {
1995     const MachineFunction *MF = MI.getParent()->getParent();
1996     const char *AsmStr = MI.getOperand(0).getSymbolName();
1997     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1998   } else if (Opcode == TargetOpcode::STACKMAP) {
1999     StackMapOpers Opers(&MI);
2000     return Opers.getNumPatchBytes();
2001   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2002     PatchPointOpers Opers(&MI);
2003     return Opers.getNumPatchBytes();
2004   } else {
2005     return get(Opcode).getSize();
2006   }
2007 }
2008 
2009 std::pair<unsigned, unsigned>
2010 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2011   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2012   return std::make_pair(TF & Mask, TF & ~Mask);
2013 }
2014 
2015 ArrayRef<std::pair<unsigned, const char *>>
2016 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2017   using namespace PPCII;
2018   static const std::pair<unsigned, const char *> TargetFlags[] = {
2019       {MO_LO, "ppc-lo"},
2020       {MO_HA, "ppc-ha"},
2021       {MO_TPREL_LO, "ppc-tprel-lo"},
2022       {MO_TPREL_HA, "ppc-tprel-ha"},
2023       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2024       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2025       {MO_TOC_LO, "ppc-toc-lo"},
2026       {MO_TLS, "ppc-tls"}};
2027   return makeArrayRef(TargetFlags);
2028 }
2029 
2030 ArrayRef<std::pair<unsigned, const char *>>
2031 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2032   using namespace PPCII;
2033   static const std::pair<unsigned, const char *> TargetFlags[] = {
2034       {MO_PLT, "ppc-plt"},
2035       {MO_PIC_FLAG, "ppc-pic"},
2036       {MO_NLP_FLAG, "ppc-nlp"},
2037       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2038   return makeArrayRef(TargetFlags);
2039 }
2040 
2041 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2042 // The VSX versions have the advantage of a full 64-register target whereas
2043 // the FP ones have the advantage of lower latency and higher throughput. So
2044 // what we are after is using the faster instructions in low register pressure
2045 // situations and using the larger register file in high register pressure
2046 // situations.
2047 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2048     unsigned UpperOpcode, LowerOpcode;
2049     switch (MI.getOpcode()) {
2050     case PPC::DFLOADf32:
2051       UpperOpcode = PPC::LXSSP;
2052       LowerOpcode = PPC::LFS;
2053       break;
2054     case PPC::DFLOADf64:
2055       UpperOpcode = PPC::LXSD;
2056       LowerOpcode = PPC::LFD;
2057       break;
2058     case PPC::DFSTOREf32:
2059       UpperOpcode = PPC::STXSSP;
2060       LowerOpcode = PPC::STFS;
2061       break;
2062     case PPC::DFSTOREf64:
2063       UpperOpcode = PPC::STXSD;
2064       LowerOpcode = PPC::STFD;
2065       break;
2066     case PPC::XFLOADf32:
2067       UpperOpcode = PPC::LXSSPX;
2068       LowerOpcode = PPC::LFSX;
2069       break;
2070     case PPC::XFLOADf64:
2071       UpperOpcode = PPC::LXSDX;
2072       LowerOpcode = PPC::LFDX;
2073       break;
2074     case PPC::XFSTOREf32:
2075       UpperOpcode = PPC::STXSSPX;
2076       LowerOpcode = PPC::STFSX;
2077       break;
2078     case PPC::XFSTOREf64:
2079       UpperOpcode = PPC::STXSDX;
2080       LowerOpcode = PPC::STFDX;
2081       break;
2082     case PPC::LIWAX:
2083       UpperOpcode = PPC::LXSIWAX;
2084       LowerOpcode = PPC::LFIWAX;
2085       break;
2086     case PPC::LIWZX:
2087       UpperOpcode = PPC::LXSIWZX;
2088       LowerOpcode = PPC::LFIWZX;
2089       break;
2090     case PPC::STIWX:
2091       UpperOpcode = PPC::STXSIWX;
2092       LowerOpcode = PPC::STFIWX;
2093       break;
2094     default:
2095       llvm_unreachable("Unknown Operation!");
2096     }
2097 
2098     unsigned TargetReg = MI.getOperand(0).getReg();
2099     unsigned Opcode;
2100     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2101         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2102       Opcode = LowerOpcode;
2103     else
2104       Opcode = UpperOpcode;
2105     MI.setDesc(get(Opcode));
2106     return true;
2107 }
2108 
2109 static bool isAnImmediateOperand(const MachineOperand &MO) {
2110   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2111 }
2112 
2113 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2114   auto &MBB = *MI.getParent();
2115   auto DL = MI.getDebugLoc();
2116 
2117   switch (MI.getOpcode()) {
2118   case TargetOpcode::LOAD_STACK_GUARD: {
2119     assert(Subtarget.isTargetLinux() &&
2120            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2121     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2122     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2123     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2124     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2125         .addImm(Offset)
2126         .addReg(Reg);
2127     return true;
2128   }
2129   case PPC::DFLOADf32:
2130   case PPC::DFLOADf64:
2131   case PPC::DFSTOREf32:
2132   case PPC::DFSTOREf64: {
2133     assert(Subtarget.hasP9Vector() &&
2134            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2135     assert(MI.getOperand(2).isReg() &&
2136            isAnImmediateOperand(MI.getOperand(1)) &&
2137            "D-form op must have register and immediate operands");
2138     return expandVSXMemPseudo(MI);
2139   }
2140   case PPC::XFLOADf32:
2141   case PPC::XFSTOREf32:
2142   case PPC::LIWAX:
2143   case PPC::LIWZX:
2144   case PPC::STIWX: {
2145     assert(Subtarget.hasP8Vector() &&
2146            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2147     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2148            "X-form op must have register and register operands");
2149     return expandVSXMemPseudo(MI);
2150   }
2151   case PPC::XFLOADf64:
2152   case PPC::XFSTOREf64: {
2153     assert(Subtarget.hasVSX() &&
2154            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2155     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2156            "X-form op must have register and register operands");
2157     return expandVSXMemPseudo(MI);
2158   }
2159   case PPC::SPILLTOVSR_LD: {
2160     unsigned TargetReg = MI.getOperand(0).getReg();
2161     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2162       MI.setDesc(get(PPC::DFLOADf64));
2163       return expandPostRAPseudo(MI);
2164     }
2165     else
2166       MI.setDesc(get(PPC::LD));
2167     return true;
2168   }
2169   case PPC::SPILLTOVSR_ST: {
2170     unsigned SrcReg = MI.getOperand(0).getReg();
2171     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2172       NumStoreSPILLVSRRCAsVec++;
2173       MI.setDesc(get(PPC::DFSTOREf64));
2174       return expandPostRAPseudo(MI);
2175     } else {
2176       NumStoreSPILLVSRRCAsGpr++;
2177       MI.setDesc(get(PPC::STD));
2178     }
2179     return true;
2180   }
2181   case PPC::SPILLTOVSR_LDX: {
2182     unsigned TargetReg = MI.getOperand(0).getReg();
2183     if (PPC::VSFRCRegClass.contains(TargetReg))
2184       MI.setDesc(get(PPC::LXSDX));
2185     else
2186       MI.setDesc(get(PPC::LDX));
2187     return true;
2188   }
2189   case PPC::SPILLTOVSR_STX: {
2190     unsigned SrcReg = MI.getOperand(0).getReg();
2191     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2192       NumStoreSPILLVSRRCAsVec++;
2193       MI.setDesc(get(PPC::STXSDX));
2194     } else {
2195       NumStoreSPILLVSRRCAsGpr++;
2196       MI.setDesc(get(PPC::STDX));
2197     }
2198     return true;
2199   }
2200 
2201   case PPC::CFENCE8: {
2202     auto Val = MI.getOperand(0).getReg();
2203     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2204     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2205         .addImm(PPC::PRED_NE_MINUS)
2206         .addReg(PPC::CR7)
2207         .addImm(1);
2208     MI.setDesc(get(PPC::ISYNC));
2209     MI.RemoveOperand(0);
2210     return true;
2211   }
2212   }
2213   return false;
2214 }
2215 
2216 // Essentially a compile-time implementation of a compare->isel sequence.
2217 // It takes two constants to compare, along with the true/false registers
2218 // and the comparison type (as a subreg to a CR field) and returns one
2219 // of the true/false registers, depending on the comparison results.
2220 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2221                           unsigned TrueReg, unsigned FalseReg,
2222                           unsigned CRSubReg) {
2223   // Signed comparisons. The immediates are assumed to be sign-extended.
2224   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2225     switch (CRSubReg) {
2226     default: llvm_unreachable("Unknown integer comparison type.");
2227     case PPC::sub_lt:
2228       return Imm1 < Imm2 ? TrueReg : FalseReg;
2229     case PPC::sub_gt:
2230       return Imm1 > Imm2 ? TrueReg : FalseReg;
2231     case PPC::sub_eq:
2232       return Imm1 == Imm2 ? TrueReg : FalseReg;
2233     }
2234   }
2235   // Unsigned comparisons.
2236   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2237     switch (CRSubReg) {
2238     default: llvm_unreachable("Unknown integer comparison type.");
2239     case PPC::sub_lt:
2240       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2241     case PPC::sub_gt:
2242       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2243     case PPC::sub_eq:
2244       return Imm1 == Imm2 ? TrueReg : FalseReg;
2245     }
2246   }
2247   return PPC::NoRegister;
2248 }
2249 
2250 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2251                                               unsigned OpNo,
2252                                               int64_t Imm) const {
2253   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2254   // Replace the REG with the Immediate.
2255   unsigned InUseReg = MI.getOperand(OpNo).getReg();
2256   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2257 
2258   if (empty(MI.implicit_operands()))
2259     return;
2260 
2261   // We need to make sure that the MI didn't have any implicit use
2262   // of this REG any more.
2263   const TargetRegisterInfo *TRI = &getRegisterInfo();
2264   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2265   if (UseOpIdx >= 0) {
2266     MachineOperand &MO = MI.getOperand(UseOpIdx);
2267     if (MO.isImplicit())
2268       // The operands must always be in the following order:
2269       // - explicit reg defs,
2270       // - other explicit operands (reg uses, immediates, etc.),
2271       // - implicit reg defs
2272       // - implicit reg uses
2273       // Therefore, removing the implicit operand won't change the explicit
2274       // operands layout.
2275       MI.RemoveOperand(UseOpIdx);
2276   }
2277 }
2278 
2279 // Replace an instruction with one that materializes a constant (and sets
2280 // CR0 if the original instruction was a record-form instruction).
2281 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2282                                       const LoadImmediateInfo &LII) const {
2283   // Remove existing operands.
2284   int OperandToKeep = LII.SetCR ? 1 : 0;
2285   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2286     MI.RemoveOperand(i);
2287 
2288   // Replace the instruction.
2289   if (LII.SetCR) {
2290     MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2291     // Set the immediate.
2292     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2293         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2294     return;
2295   }
2296   else
2297     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2298 
2299   // Set the immediate.
2300   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2301       .addImm(LII.Imm);
2302 }
2303 
2304 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2305   MachineInstr &MI,
2306   unsigned &OpNoForForwarding,
2307   bool &SeenIntermediateUse) const {
2308   OpNoForForwarding = ~0U;
2309   MachineInstr *DefMI = nullptr;
2310   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2311   const TargetRegisterInfo *TRI = &getRegisterInfo();
2312   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2313   // within the basic block to see if the register is defined using an LI/LI8.
2314   if (MRI->isSSA()) {
2315     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2316       if (!MI.getOperand(i).isReg())
2317         continue;
2318       unsigned Reg = MI.getOperand(i).getReg();
2319       if (!TargetRegisterInfo::isVirtualRegister(Reg))
2320         continue;
2321       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2322       if (TargetRegisterInfo::isVirtualRegister(TrueReg)) {
2323         DefMI = MRI->getVRegDef(TrueReg);
2324         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2325           OpNoForForwarding = i;
2326           break;
2327         }
2328       }
2329     }
2330   } else {
2331     // Looking back through the definition for each operand could be expensive,
2332     // so exit early if this isn't an instruction that either has an immediate
2333     // form or is already an immediate form that we can handle.
2334     ImmInstrInfo III;
2335     unsigned Opc = MI.getOpcode();
2336     bool ConvertibleImmForm =
2337       Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2338       Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2339       Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2340       Opc == PPC::ORI || Opc == PPC::ORI8 ||
2341       Opc == PPC::XORI || Opc == PPC::XORI8 ||
2342       Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2343       Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2344       Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2345       Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2346     if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm)
2347       return nullptr;
2348 
2349     // Don't convert or %X, %Y, %Y since that's just a register move.
2350     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2351         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2352       return nullptr;
2353     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2354       MachineOperand &MO = MI.getOperand(i);
2355       SeenIntermediateUse = false;
2356       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2357         MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2358         It++;
2359         unsigned Reg = MI.getOperand(i).getReg();
2360         // MachineInstr::readsRegister only returns true if the machine
2361         // instruction reads the exact register or its super-register. It
2362         // does not consider uses of sub-registers which seems like strange
2363         // behaviour. Nonetheless, if we end up with a 64-bit register here,
2364         // get the corresponding 32-bit register to check.
2365         if (PPC::G8RCRegClass.contains(Reg))
2366           Reg = Reg - PPC::X0 + PPC::R0;
2367 
2368         // Is this register defined by some form of add-immediate (including
2369         // load-immediate) within this basic block?
2370         for ( ; It != E; ++It) {
2371           if (It->modifiesRegister(Reg, &getRegisterInfo())) {
2372             switch (It->getOpcode()) {
2373             default: break;
2374             case PPC::LI:
2375             case PPC::LI8:
2376             case PPC::ADDItocL:
2377             case PPC::ADDI:
2378             case PPC::ADDI8:
2379               OpNoForForwarding = i;
2380               return &*It;
2381             }
2382             break;
2383           } else if (It->readsRegister(Reg, &getRegisterInfo()))
2384             // If we see another use of this reg between the def and the MI,
2385             // we want to flat it so the def isn't deleted.
2386             SeenIntermediateUse = true;
2387         }
2388       }
2389     }
2390   }
2391   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2392 }
2393 
2394 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2395   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2396       // Power 8
2397       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2398        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2399        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2400        PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW},
2401       // Power 9
2402       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2403        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2404        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2405        PPC::SPILLTOVSR_ST}};
2406 
2407   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2408 }
2409 
2410 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2411   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2412       // Power 8
2413       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2414        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2415        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2416        PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ},
2417       // Power 9
2418       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2419        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2420        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2421        PPC::SPILLTOVSR_LD}};
2422 
2423   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2424 }
2425 
2426 // If this instruction has an immediate form and one of its operands is a
2427 // result of a load-immediate or an add-immediate, convert it to
2428 // the immediate form if the constant is in range.
2429 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2430                                           MachineInstr **KilledDef) const {
2431   MachineFunction *MF = MI.getParent()->getParent();
2432   MachineRegisterInfo *MRI = &MF->getRegInfo();
2433   bool PostRA = !MRI->isSSA();
2434   bool SeenIntermediateUse = true;
2435   unsigned ForwardingOperand = ~0U;
2436   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2437                                            SeenIntermediateUse);
2438   if (!DefMI)
2439     return false;
2440   assert(ForwardingOperand < MI.getNumOperands() &&
2441          "The forwarding operand needs to be valid at this point");
2442   bool KillFwdDefMI = !SeenIntermediateUse &&
2443     MI.getOperand(ForwardingOperand).isKill();
2444   if (KilledDef && KillFwdDefMI)
2445     *KilledDef = DefMI;
2446 
2447   ImmInstrInfo III;
2448   bool HasImmForm = instrHasImmForm(MI, III, PostRA);
2449   // If this is a reg+reg instruction that has a reg+imm form,
2450   // and one of the operands is produced by an add-immediate,
2451   // try to convert it.
2452   if (HasImmForm && transformToImmFormFedByAdd(MI, III, ForwardingOperand,
2453                                                *DefMI, KillFwdDefMI))
2454     return true;
2455 
2456   if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2457       !DefMI->getOperand(1).isImm())
2458     return false;
2459 
2460   int64_t Immediate = DefMI->getOperand(1).getImm();
2461   // Sign-extend to 64-bits.
2462   int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2463     (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2464 
2465   // If this is a reg+reg instruction that has a reg+imm form,
2466   // and one of the operands is produced by LI, convert it now.
2467   if (HasImmForm)
2468     return transformToImmFormFedByLI(MI, III, ForwardingOperand, SExtImm);
2469 
2470   bool ReplaceWithLI = false;
2471   bool Is64BitLI = false;
2472   int64_t NewImm = 0;
2473   bool SetCR = false;
2474   unsigned Opc = MI.getOpcode();
2475   switch (Opc) {
2476   default: return false;
2477 
2478   // FIXME: Any branches conditional on such a comparison can be made
2479   // unconditional. At this time, this happens too infrequently to be worth
2480   // the implementation effort, but if that ever changes, we could convert
2481   // such a pattern here.
2482   case PPC::CMPWI:
2483   case PPC::CMPLWI:
2484   case PPC::CMPDI:
2485   case PPC::CMPLDI: {
2486     // Doing this post-RA would require dataflow analysis to reliably find uses
2487     // of the CR register set by the compare.
2488     if (PostRA)
2489       return false;
2490     // If a compare-immediate is fed by an immediate and is itself an input of
2491     // an ISEL (the most common case) into a COPY of the correct register.
2492     bool Changed = false;
2493     unsigned DefReg = MI.getOperand(0).getReg();
2494     int64_t Comparand = MI.getOperand(2).getImm();
2495     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2496       (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2497 
2498     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2499       unsigned UseOpc = CompareUseMI.getOpcode();
2500       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2501         continue;
2502       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2503       unsigned TrueReg = CompareUseMI.getOperand(1).getReg();
2504       unsigned FalseReg = CompareUseMI.getOperand(2).getReg();
2505       unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2506                                      FalseReg, CRSubReg);
2507       if (RegToCopy == PPC::NoRegister)
2508         continue;
2509       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2510       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2511         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2512         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2513         CompareUseMI.RemoveOperand(3);
2514         CompareUseMI.RemoveOperand(2);
2515         continue;
2516       }
2517       LLVM_DEBUG(
2518           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2519       LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2520       LLVM_DEBUG(dbgs() << "Is converted to:\n");
2521       // Convert to copy and remove unneeded operands.
2522       CompareUseMI.setDesc(get(PPC::COPY));
2523       CompareUseMI.RemoveOperand(3);
2524       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2525       CmpIselsConverted++;
2526       Changed = true;
2527       LLVM_DEBUG(CompareUseMI.dump());
2528     }
2529     if (Changed)
2530       return true;
2531     // This may end up incremented multiple times since this function is called
2532     // during a fixed-point transformation, but it is only meant to indicate the
2533     // presence of this opportunity.
2534     MissedConvertibleImmediateInstrs++;
2535     return false;
2536   }
2537 
2538   // Immediate forms - may simply be convertable to an LI.
2539   case PPC::ADDI:
2540   case PPC::ADDI8: {
2541     // Does the sum fit in a 16-bit signed field?
2542     int64_t Addend = MI.getOperand(2).getImm();
2543     if (isInt<16>(Addend + SExtImm)) {
2544       ReplaceWithLI = true;
2545       Is64BitLI = Opc == PPC::ADDI8;
2546       NewImm = Addend + SExtImm;
2547       break;
2548     }
2549     return false;
2550   }
2551   case PPC::RLDICL:
2552   case PPC::RLDICLo:
2553   case PPC::RLDICL_32:
2554   case PPC::RLDICL_32_64: {
2555     // Use APInt's rotate function.
2556     int64_t SH = MI.getOperand(2).getImm();
2557     int64_t MB = MI.getOperand(3).getImm();
2558     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2559                 64 : 32, SExtImm, true);
2560     InVal = InVal.rotl(SH);
2561     uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2562     InVal &= Mask;
2563     // Can't replace negative values with an LI as that will sign-extend
2564     // and not clear the left bits. If we're setting the CR bit, we will use
2565     // ANDIo which won't sign extend, so that's safe.
2566     if (isUInt<15>(InVal.getSExtValue()) ||
2567         (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2568       ReplaceWithLI = true;
2569       Is64BitLI = Opc != PPC::RLDICL_32;
2570       NewImm = InVal.getSExtValue();
2571       SetCR = Opc == PPC::RLDICLo;
2572       break;
2573     }
2574     return false;
2575   }
2576   case PPC::RLWINM:
2577   case PPC::RLWINM8:
2578   case PPC::RLWINMo:
2579   case PPC::RLWINM8o: {
2580     int64_t SH = MI.getOperand(2).getImm();
2581     int64_t MB = MI.getOperand(3).getImm();
2582     int64_t ME = MI.getOperand(4).getImm();
2583     APInt InVal(32, SExtImm, true);
2584     InVal = InVal.rotl(SH);
2585     // Set the bits (        MB + 32        ) to (        ME + 32        ).
2586     uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2587     InVal &= Mask;
2588     // Can't replace negative values with an LI as that will sign-extend
2589     // and not clear the left bits. If we're setting the CR bit, we will use
2590     // ANDIo which won't sign extend, so that's safe.
2591     bool ValueFits = isUInt<15>(InVal.getSExtValue());
2592     ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2593                   isUInt<16>(InVal.getSExtValue()));
2594     if (ValueFits) {
2595       ReplaceWithLI = true;
2596       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2597       NewImm = InVal.getSExtValue();
2598       SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2599       break;
2600     }
2601     return false;
2602   }
2603   case PPC::ORI:
2604   case PPC::ORI8:
2605   case PPC::XORI:
2606   case PPC::XORI8: {
2607     int64_t LogicalImm = MI.getOperand(2).getImm();
2608     int64_t Result = 0;
2609     if (Opc == PPC::ORI || Opc == PPC::ORI8)
2610       Result = LogicalImm | SExtImm;
2611     else
2612       Result = LogicalImm ^ SExtImm;
2613     if (isInt<16>(Result)) {
2614       ReplaceWithLI = true;
2615       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2616       NewImm = Result;
2617       break;
2618     }
2619     return false;
2620   }
2621   }
2622 
2623   if (ReplaceWithLI) {
2624     // We need to be careful with CR-setting instructions we're replacing.
2625     if (SetCR) {
2626       // We don't know anything about uses when we're out of SSA, so only
2627       // replace if the new immediate will be reproduced.
2628       bool ImmChanged = (SExtImm & NewImm) != NewImm;
2629       if (PostRA && ImmChanged)
2630         return false;
2631 
2632       if (!PostRA) {
2633         // If the defining load-immediate has no other uses, we can just replace
2634         // the immediate with the new immediate.
2635         if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2636           DefMI->getOperand(1).setImm(NewImm);
2637 
2638         // If we're not using the GPR result of the CR-setting instruction, we
2639         // just need to and with zero/non-zero depending on the new immediate.
2640         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2641           if (NewImm) {
2642             assert(Immediate && "Transformation converted zero to non-zero?");
2643             NewImm = Immediate;
2644           }
2645         }
2646         else if (ImmChanged)
2647           return false;
2648       }
2649     }
2650 
2651     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2652     LLVM_DEBUG(MI.dump());
2653     LLVM_DEBUG(dbgs() << "Fed by:\n");
2654     LLVM_DEBUG(DefMI->dump());
2655     LoadImmediateInfo LII;
2656     LII.Imm = NewImm;
2657     LII.Is64Bit = Is64BitLI;
2658     LII.SetCR = SetCR;
2659     // If we're setting the CR, the original load-immediate must be kept (as an
2660     // operand to ANDIo/ANDI8o).
2661     if (KilledDef && SetCR)
2662       *KilledDef = nullptr;
2663     replaceInstrWithLI(MI, LII);
2664     LLVM_DEBUG(dbgs() << "With:\n");
2665     LLVM_DEBUG(MI.dump());
2666     return true;
2667   }
2668   return false;
2669 }
2670 
2671 static bool isVFReg(unsigned Reg) {
2672   return PPC::VFRCRegClass.contains(Reg);
2673 }
2674 
2675 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI,
2676                                    ImmInstrInfo &III, bool PostRA) const {
2677   unsigned Opc = MI.getOpcode();
2678   // The vast majority of the instructions would need their operand 2 replaced
2679   // with an immediate when switching to the reg+imm form. A marked exception
2680   // are the update form loads/stores for which a constant operand 2 would need
2681   // to turn into a displacement and move operand 1 to the operand 2 position.
2682   III.ImmOpNo = 2;
2683   III.OpNoForForwarding = 2;
2684   III.ImmWidth = 16;
2685   III.ImmMustBeMultipleOf = 1;
2686   III.TruncateImmTo = 0;
2687   III.IsSummingOperands = false;
2688   switch (Opc) {
2689   default: return false;
2690   case PPC::ADD4:
2691   case PPC::ADD8:
2692     III.SignedImm = true;
2693     III.ZeroIsSpecialOrig = 0;
2694     III.ZeroIsSpecialNew = 1;
2695     III.IsCommutative = true;
2696     III.IsSummingOperands = true;
2697     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2698     break;
2699   case PPC::ADDC:
2700   case PPC::ADDC8:
2701     III.SignedImm = true;
2702     III.ZeroIsSpecialOrig = 0;
2703     III.ZeroIsSpecialNew = 0;
2704     III.IsCommutative = true;
2705     III.IsSummingOperands = true;
2706     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2707     break;
2708   case PPC::ADDCo:
2709     III.SignedImm = true;
2710     III.ZeroIsSpecialOrig = 0;
2711     III.ZeroIsSpecialNew = 0;
2712     III.IsCommutative = true;
2713     III.IsSummingOperands = true;
2714     III.ImmOpcode = PPC::ADDICo;
2715     break;
2716   case PPC::SUBFC:
2717   case PPC::SUBFC8:
2718     III.SignedImm = true;
2719     III.ZeroIsSpecialOrig = 0;
2720     III.ZeroIsSpecialNew = 0;
2721     III.IsCommutative = false;
2722     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2723     break;
2724   case PPC::CMPW:
2725   case PPC::CMPD:
2726     III.SignedImm = true;
2727     III.ZeroIsSpecialOrig = 0;
2728     III.ZeroIsSpecialNew = 0;
2729     III.IsCommutative = false;
2730     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2731     break;
2732   case PPC::CMPLW:
2733   case PPC::CMPLD:
2734     III.SignedImm = false;
2735     III.ZeroIsSpecialOrig = 0;
2736     III.ZeroIsSpecialNew = 0;
2737     III.IsCommutative = false;
2738     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2739     break;
2740   case PPC::ANDo:
2741   case PPC::AND8o:
2742   case PPC::OR:
2743   case PPC::OR8:
2744   case PPC::XOR:
2745   case PPC::XOR8:
2746     III.SignedImm = false;
2747     III.ZeroIsSpecialOrig = 0;
2748     III.ZeroIsSpecialNew = 0;
2749     III.IsCommutative = true;
2750     switch(Opc) {
2751     default: llvm_unreachable("Unknown opcode");
2752     case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2753     case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2754     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2755     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2756     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2757     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2758     }
2759     break;
2760   case PPC::RLWNM:
2761   case PPC::RLWNM8:
2762   case PPC::RLWNMo:
2763   case PPC::RLWNM8o:
2764   case PPC::SLW:
2765   case PPC::SLW8:
2766   case PPC::SLWo:
2767   case PPC::SLW8o:
2768   case PPC::SRW:
2769   case PPC::SRW8:
2770   case PPC::SRWo:
2771   case PPC::SRW8o:
2772   case PPC::SRAW:
2773   case PPC::SRAWo:
2774     III.SignedImm = false;
2775     III.ZeroIsSpecialOrig = 0;
2776     III.ZeroIsSpecialNew = 0;
2777     III.IsCommutative = false;
2778     // This isn't actually true, but the instructions ignore any of the
2779     // upper bits, so any immediate loaded with an LI is acceptable.
2780     // This does not apply to shift right algebraic because a value
2781     // out of range will produce a -1/0.
2782     III.ImmWidth = 16;
2783     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2784         Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2785       III.TruncateImmTo = 5;
2786     else
2787       III.TruncateImmTo = 6;
2788     switch(Opc) {
2789     default: llvm_unreachable("Unknown opcode");
2790     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2791     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2792     case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2793     case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2794     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2795     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2796     case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2797     case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2798     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2799     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2800     case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2801     case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2802     case PPC::SRAW:
2803       III.ImmWidth = 5;
2804       III.TruncateImmTo = 0;
2805       III.ImmOpcode = PPC::SRAWI;
2806       break;
2807     case PPC::SRAWo:
2808       III.ImmWidth = 5;
2809       III.TruncateImmTo = 0;
2810       III.ImmOpcode = PPC::SRAWIo;
2811       break;
2812     }
2813     break;
2814   case PPC::RLDCL:
2815   case PPC::RLDCLo:
2816   case PPC::RLDCR:
2817   case PPC::RLDCRo:
2818   case PPC::SLD:
2819   case PPC::SLDo:
2820   case PPC::SRD:
2821   case PPC::SRDo:
2822   case PPC::SRAD:
2823   case PPC::SRADo:
2824     III.SignedImm = false;
2825     III.ZeroIsSpecialOrig = 0;
2826     III.ZeroIsSpecialNew = 0;
2827     III.IsCommutative = false;
2828     // This isn't actually true, but the instructions ignore any of the
2829     // upper bits, so any immediate loaded with an LI is acceptable.
2830     // This does not apply to shift right algebraic because a value
2831     // out of range will produce a -1/0.
2832     III.ImmWidth = 16;
2833     if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2834         Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2835       III.TruncateImmTo = 6;
2836     else
2837       III.TruncateImmTo = 7;
2838     switch(Opc) {
2839     default: llvm_unreachable("Unknown opcode");
2840     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2841     case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2842     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2843     case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2844     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2845     case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2846     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2847     case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2848     case PPC::SRAD:
2849       III.ImmWidth = 6;
2850       III.TruncateImmTo = 0;
2851       III.ImmOpcode = PPC::SRADI;
2852        break;
2853     case PPC::SRADo:
2854       III.ImmWidth = 6;
2855       III.TruncateImmTo = 0;
2856       III.ImmOpcode = PPC::SRADIo;
2857       break;
2858     }
2859     break;
2860   // Loads and stores:
2861   case PPC::LBZX:
2862   case PPC::LBZX8:
2863   case PPC::LHZX:
2864   case PPC::LHZX8:
2865   case PPC::LHAX:
2866   case PPC::LHAX8:
2867   case PPC::LWZX:
2868   case PPC::LWZX8:
2869   case PPC::LWAX:
2870   case PPC::LDX:
2871   case PPC::LFSX:
2872   case PPC::LFDX:
2873   case PPC::STBX:
2874   case PPC::STBX8:
2875   case PPC::STHX:
2876   case PPC::STHX8:
2877   case PPC::STWX:
2878   case PPC::STWX8:
2879   case PPC::STDX:
2880   case PPC::STFSX:
2881   case PPC::STFDX:
2882     III.SignedImm = true;
2883     III.ZeroIsSpecialOrig = 1;
2884     III.ZeroIsSpecialNew = 2;
2885     III.IsCommutative = true;
2886     III.IsSummingOperands = true;
2887     III.ImmOpNo = 1;
2888     III.OpNoForForwarding = 2;
2889     switch(Opc) {
2890     default: llvm_unreachable("Unknown opcode");
2891     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
2892     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
2893     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
2894     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
2895     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
2896     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
2897     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
2898     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
2899     case PPC::LWAX:
2900       III.ImmOpcode = PPC::LWA;
2901       III.ImmMustBeMultipleOf = 4;
2902       break;
2903     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
2904     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
2905     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
2906     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
2907     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
2908     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
2909     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
2910     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
2911     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
2912     case PPC::STDX:
2913       III.ImmOpcode = PPC::STD;
2914       III.ImmMustBeMultipleOf = 4;
2915       break;
2916     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
2917     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
2918     }
2919     break;
2920   case PPC::LBZUX:
2921   case PPC::LBZUX8:
2922   case PPC::LHZUX:
2923   case PPC::LHZUX8:
2924   case PPC::LHAUX:
2925   case PPC::LHAUX8:
2926   case PPC::LWZUX:
2927   case PPC::LWZUX8:
2928   case PPC::LDUX:
2929   case PPC::LFSUX:
2930   case PPC::LFDUX:
2931   case PPC::STBUX:
2932   case PPC::STBUX8:
2933   case PPC::STHUX:
2934   case PPC::STHUX8:
2935   case PPC::STWUX:
2936   case PPC::STWUX8:
2937   case PPC::STDUX:
2938   case PPC::STFSUX:
2939   case PPC::STFDUX:
2940     III.SignedImm = true;
2941     III.ZeroIsSpecialOrig = 2;
2942     III.ZeroIsSpecialNew = 3;
2943     III.IsCommutative = false;
2944     III.IsSummingOperands = true;
2945     III.ImmOpNo = 2;
2946     III.OpNoForForwarding = 3;
2947     switch(Opc) {
2948     default: llvm_unreachable("Unknown opcode");
2949     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
2950     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
2951     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
2952     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
2953     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
2954     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
2955     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
2956     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
2957     case PPC::LDUX:
2958       III.ImmOpcode = PPC::LDU;
2959       III.ImmMustBeMultipleOf = 4;
2960       break;
2961     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
2962     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
2963     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
2964     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
2965     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
2966     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
2967     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
2968     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
2969     case PPC::STDUX:
2970       III.ImmOpcode = PPC::STDU;
2971       III.ImmMustBeMultipleOf = 4;
2972       break;
2973     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
2974     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
2975     }
2976     break;
2977   // Power9 and up only. For some of these, the X-Form version has access to all
2978   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
2979   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
2980   // into or stored from is one of the VR registers.
2981   case PPC::LXVX:
2982   case PPC::LXSSPX:
2983   case PPC::LXSDX:
2984   case PPC::STXVX:
2985   case PPC::STXSSPX:
2986   case PPC::STXSDX:
2987   case PPC::XFLOADf32:
2988   case PPC::XFLOADf64:
2989   case PPC::XFSTOREf32:
2990   case PPC::XFSTOREf64:
2991     if (!Subtarget.hasP9Vector())
2992       return false;
2993     III.SignedImm = true;
2994     III.ZeroIsSpecialOrig = 1;
2995     III.ZeroIsSpecialNew = 2;
2996     III.IsCommutative = true;
2997     III.IsSummingOperands = true;
2998     III.ImmOpNo = 1;
2999     III.OpNoForForwarding = 2;
3000     III.ImmMustBeMultipleOf = 4;
3001     switch(Opc) {
3002     default: llvm_unreachable("Unknown opcode");
3003     case PPC::LXVX:
3004       III.ImmOpcode = PPC::LXV;
3005       III.ImmMustBeMultipleOf = 16;
3006       break;
3007     case PPC::LXSSPX:
3008       if (PostRA) {
3009         if (isVFReg(MI.getOperand(0).getReg()))
3010           III.ImmOpcode = PPC::LXSSP;
3011         else {
3012           III.ImmOpcode = PPC::LFS;
3013           III.ImmMustBeMultipleOf = 1;
3014         }
3015         break;
3016       }
3017       LLVM_FALLTHROUGH;
3018     case PPC::XFLOADf32:
3019       III.ImmOpcode = PPC::DFLOADf32;
3020       break;
3021     case PPC::LXSDX:
3022       if (PostRA) {
3023         if (isVFReg(MI.getOperand(0).getReg()))
3024           III.ImmOpcode = PPC::LXSD;
3025         else {
3026           III.ImmOpcode = PPC::LFD;
3027           III.ImmMustBeMultipleOf = 1;
3028         }
3029         break;
3030       }
3031       LLVM_FALLTHROUGH;
3032     case PPC::XFLOADf64:
3033       III.ImmOpcode = PPC::DFLOADf64;
3034       break;
3035     case PPC::STXVX:
3036       III.ImmOpcode = PPC::STXV;
3037       III.ImmMustBeMultipleOf = 16;
3038       break;
3039     case PPC::STXSSPX:
3040       if (PostRA) {
3041         if (isVFReg(MI.getOperand(0).getReg()))
3042           III.ImmOpcode = PPC::STXSSP;
3043         else {
3044           III.ImmOpcode = PPC::STFS;
3045           III.ImmMustBeMultipleOf = 1;
3046         }
3047         break;
3048       }
3049       LLVM_FALLTHROUGH;
3050     case PPC::XFSTOREf32:
3051       III.ImmOpcode = PPC::DFSTOREf32;
3052       break;
3053     case PPC::STXSDX:
3054       if (PostRA) {
3055         if (isVFReg(MI.getOperand(0).getReg()))
3056           III.ImmOpcode = PPC::STXSD;
3057         else {
3058           III.ImmOpcode = PPC::STFD;
3059           III.ImmMustBeMultipleOf = 1;
3060         }
3061         break;
3062       }
3063       LLVM_FALLTHROUGH;
3064     case PPC::XFSTOREf64:
3065       III.ImmOpcode = PPC::DFSTOREf64;
3066       break;
3067     }
3068     break;
3069   }
3070   return true;
3071 }
3072 
3073 // Utility function for swaping two arbitrary operands of an instruction.
3074 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3075   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3076 
3077   unsigned MaxOp = std::max(Op1, Op2);
3078   unsigned MinOp = std::min(Op1, Op2);
3079   MachineOperand MOp1 = MI.getOperand(MinOp);
3080   MachineOperand MOp2 = MI.getOperand(MaxOp);
3081   MI.RemoveOperand(std::max(Op1, Op2));
3082   MI.RemoveOperand(std::min(Op1, Op2));
3083 
3084   // If the operands we are swapping are the two at the end (the common case)
3085   // we can just remove both and add them in the opposite order.
3086   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3087     MI.addOperand(MOp2);
3088     MI.addOperand(MOp1);
3089   } else {
3090     // Store all operands in a temporary vector, remove them and re-add in the
3091     // right order.
3092     SmallVector<MachineOperand, 2> MOps;
3093     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3094     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3095       MOps.push_back(MI.getOperand(i));
3096       MI.RemoveOperand(i);
3097     }
3098     // MOp2 needs to be added next.
3099     MI.addOperand(MOp2);
3100     // Now add the rest.
3101     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3102       if (i == MaxOp)
3103         MI.addOperand(MOp1);
3104       else {
3105         MI.addOperand(MOps.back());
3106         MOps.pop_back();
3107       }
3108     }
3109   }
3110 }
3111 
3112 // Check if the 'MI' that has the index OpNoForForwarding
3113 // meets the requirement described in the ImmInstrInfo.
3114 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3115                                                const ImmInstrInfo &III,
3116                                                unsigned OpNoForForwarding
3117                                                ) const {
3118   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3119   // would not work pre-RA, we can only do the check post RA.
3120   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3121   if (MRI.isSSA())
3122     return false;
3123 
3124   // Cannot do the transform if MI isn't summing the operands.
3125   if (!III.IsSummingOperands)
3126     return false;
3127 
3128   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3129   if (!III.ZeroIsSpecialOrig)
3130     return false;
3131 
3132   // We cannot do the transform if the operand we are trying to replace
3133   // isn't the same as the operand the instruction allows.
3134   if (OpNoForForwarding != III.OpNoForForwarding)
3135     return false;
3136 
3137   // Check if the instruction we are trying to transform really has
3138   // the special zero register as its operand.
3139   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3140       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3141     return false;
3142 
3143   // This machine instruction is convertible if it is,
3144   // 1. summing the operands.
3145   // 2. one of the operands is special zero register.
3146   // 3. the operand we are trying to replace is allowed by the MI.
3147   return true;
3148 }
3149 
3150 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3151 // accordingly.
3152 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3153                                                const ImmInstrInfo &III,
3154                                                MachineOperand *&ImmMO,
3155                                                MachineOperand *&RegMO) const {
3156   unsigned Opc = DefMI.getOpcode();
3157   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3158     return false;
3159 
3160   assert(DefMI.getNumOperands() >= 3 &&
3161          "Add inst must have at least three operands");
3162   RegMO = &DefMI.getOperand(1);
3163   ImmMO = &DefMI.getOperand(2);
3164 
3165   // This DefMI is elgible for forwarding if it is:
3166   // 1. add inst
3167   // 2. one of the operands is Imm/CPI/Global.
3168   return isAnImmediateOperand(*ImmMO);
3169 }
3170 
3171 bool PPCInstrInfo::isRegElgibleForForwarding(const MachineOperand &RegMO,
3172                                              const MachineInstr &DefMI,
3173                                              const MachineInstr &MI,
3174                                              bool KillDefMI
3175                                              ) const {
3176   // x = addi y, imm
3177   // ...
3178   // z = lfdx 0, x   -> z = lfd imm(y)
3179   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3180   // of "y" between the DEF of "x" and "z".
3181   // The query is only valid post RA.
3182   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3183   if (MRI.isSSA())
3184     return false;
3185 
3186   // MachineInstr::readsRegister only returns true if the machine
3187   // instruction reads the exact register or its super-register. It
3188   // does not consider uses of sub-registers which seems like strange
3189   // behaviour. Nonetheless, if we end up with a 64-bit register here,
3190   // get the corresponding 32-bit register to check.
3191   unsigned Reg = RegMO.getReg();
3192   if (PPC::G8RCRegClass.contains(Reg))
3193     Reg = Reg - PPC::X0 + PPC::R0;
3194 
3195   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3196   MachineBasicBlock::const_reverse_iterator It = MI;
3197   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3198   It++;
3199   for (; It != E; ++It) {
3200     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3201       return false;
3202     // Made it to DefMI without encountering a clobber.
3203     if ((&*It) == &DefMI)
3204       break;
3205   }
3206   assert((&*It) == &DefMI && "DefMI is missing");
3207 
3208   // If DefMI also uses the register to be forwarded, we can only forward it
3209   // if DefMI is being erased.
3210   if (DefMI.readsRegister(Reg, &getRegisterInfo()))
3211     return KillDefMI;
3212 
3213   return true;
3214 }
3215 
3216 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3217                                              const MachineInstr &DefMI,
3218                                              const ImmInstrInfo &III,
3219                                              int64_t &Imm) const {
3220   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3221   if (DefMI.getOpcode() == PPC::ADDItocL) {
3222     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3223     // However, we know that, it is 16-bit width, and has the alignment of 4.
3224     // Check if the instruction met the requirement.
3225     if (III.ImmMustBeMultipleOf > 4 ||
3226        III.TruncateImmTo || III.ImmWidth != 16)
3227       return false;
3228 
3229     // Going from XForm to DForm loads means that the displacement needs to be
3230     // not just an immediate but also a multiple of 4, or 16 depending on the
3231     // load. A DForm load cannot be represented if it is a multiple of say 2.
3232     // XForm loads do not have this restriction.
3233     if (ImmMO.isGlobal() &&
3234         ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3235       return false;
3236 
3237     return true;
3238   }
3239 
3240   if (ImmMO.isImm()) {
3241     // It is Imm, we need to check if the Imm fit the range.
3242     int64_t Immediate = ImmMO.getImm();
3243     // Sign-extend to 64-bits.
3244     Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3245       (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3246 
3247     if (Imm % III.ImmMustBeMultipleOf)
3248       return false;
3249     if (III.TruncateImmTo)
3250       Imm &= ((1 << III.TruncateImmTo) - 1);
3251     if (III.SignedImm) {
3252       APInt ActualValue(64, Imm, true);
3253       if (!ActualValue.isSignedIntN(III.ImmWidth))
3254         return false;
3255     } else {
3256       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3257       if ((uint64_t)Imm > UnsignedMax)
3258         return false;
3259     }
3260   }
3261   else
3262     return false;
3263 
3264   // This ImmMO is forwarded if it meets the requriement describle
3265   // in ImmInstrInfo
3266   return true;
3267 }
3268 
3269 // If an X-Form instruction is fed by an add-immediate and one of its operands
3270 // is the literal zero, attempt to forward the source of the add-immediate to
3271 // the corresponding D-Form instruction with the displacement coming from
3272 // the immediate being added.
3273 bool PPCInstrInfo::transformToImmFormFedByAdd(MachineInstr &MI,
3274                                               const ImmInstrInfo &III,
3275                                               unsigned OpNoForForwarding,
3276                                               MachineInstr &DefMI,
3277                                               bool KillDefMI) const {
3278   //         RegMO ImmMO
3279   //           |    |
3280   // x = addi reg, imm  <----- DefMI
3281   // y = op    0 ,  x   <----- MI
3282   //                |
3283   //         OpNoForForwarding
3284   // Check if the MI meet the requirement described in the III.
3285   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3286     return false;
3287 
3288   // Check if the DefMI meet the requirement
3289   // described in the III. If yes, set the ImmMO and RegMO accordingly.
3290   MachineOperand *ImmMO = nullptr;
3291   MachineOperand *RegMO = nullptr;
3292   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3293     return false;
3294   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3295 
3296   // As we get the Imm operand now, we need to check if the ImmMO meet
3297   // the requirement described in the III. If yes set the Imm.
3298   int64_t Imm = 0;
3299   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3300     return false;
3301 
3302   // Check if the RegMO can be forwarded to MI.
3303   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI))
3304     return false;
3305 
3306   // We know that, the MI and DefMI both meet the pattern, and
3307   // the Imm also meet the requirement with the new Imm-form.
3308   // It is safe to do the transformation now.
3309   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3310   LLVM_DEBUG(MI.dump());
3311   LLVM_DEBUG(dbgs() << "Fed by:\n");
3312   LLVM_DEBUG(DefMI.dump());
3313 
3314   // Update the base reg first.
3315   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3316                                                         false, false,
3317                                                         RegMO->isKill());
3318 
3319   // Then, update the imm.
3320   if (ImmMO->isImm()) {
3321     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3322     // directly.
3323     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3324   }
3325   else {
3326     // Otherwise, it is Constant Pool Index(CPI) or Global,
3327     // which is relocation in fact. We need to replace the special zero
3328     // register with ImmMO.
3329     // Before that, we need to fixup the target flags for imm.
3330     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3331     if (DefMI.getOpcode() == PPC::ADDItocL)
3332       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3333 
3334     // MI didn't have the interface such as MI.setOperand(i) though
3335     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3336     // ImmMO, we need to remove ZERO operand and all the operands behind it,
3337     // and, add the ImmMO, then, move back all the operands behind ZERO.
3338     SmallVector<MachineOperand, 2> MOps;
3339     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3340       MOps.push_back(MI.getOperand(i));
3341       MI.RemoveOperand(i);
3342     }
3343 
3344     // Remove the last MO in the list, which is ZERO operand in fact.
3345     MOps.pop_back();
3346     // Add the imm operand.
3347     MI.addOperand(*ImmMO);
3348     // Now add the rest back.
3349     for (auto &MO : MOps)
3350       MI.addOperand(MO);
3351   }
3352 
3353   // Update the opcode.
3354   MI.setDesc(get(III.ImmOpcode));
3355 
3356   LLVM_DEBUG(dbgs() << "With:\n");
3357   LLVM_DEBUG(MI.dump());
3358 
3359   return true;
3360 }
3361 
3362 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3363                                              const ImmInstrInfo &III,
3364                                              unsigned ConstantOpNo,
3365                                              int64_t Imm) const {
3366   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3367   bool PostRA = !MRI.isSSA();
3368   // Exit early if we can't convert this.
3369   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3370     return false;
3371   if (Imm % III.ImmMustBeMultipleOf)
3372     return false;
3373   if (III.TruncateImmTo)
3374     Imm &= ((1 << III.TruncateImmTo) - 1);
3375   if (III.SignedImm) {
3376     APInt ActualValue(64, Imm, true);
3377     if (!ActualValue.isSignedIntN(III.ImmWidth))
3378       return false;
3379   } else {
3380     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3381     if ((uint64_t)Imm > UnsignedMax)
3382       return false;
3383   }
3384 
3385   // If we're post-RA, the instructions don't agree on whether register zero is
3386   // special, we can transform this as long as the register operand that will
3387   // end up in the location where zero is special isn't R0.
3388   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3389     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3390       III.ZeroIsSpecialNew + 1;
3391     unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3392     unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3393     // If R0 is in the operand where zero is special for the new instruction,
3394     // it is unsafe to transform if the constant operand isn't that operand.
3395     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3396         ConstantOpNo != III.ZeroIsSpecialNew)
3397       return false;
3398     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3399         ConstantOpNo != PosForOrigZero)
3400       return false;
3401   }
3402 
3403   unsigned Opc = MI.getOpcode();
3404   bool SpecialShift32 =
3405     Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3406   bool SpecialShift64 =
3407     Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3408   bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3409     Opc == PPC::SLDo || Opc == PPC::SRDo;
3410   bool RightShift =
3411     Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3412 
3413   MI.setDesc(get(III.ImmOpcode));
3414   if (ConstantOpNo == III.OpNoForForwarding) {
3415     // Converting shifts to immediate form is a bit tricky since they may do
3416     // one of three things:
3417     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3418     // 2. If the shift amount is zero, the result is unchanged (save for maybe
3419     //    setting CR0)
3420     // 3. If the shift amount is in [1, OpSize), it's just a shift
3421     if (SpecialShift32 || SpecialShift64) {
3422       LoadImmediateInfo LII;
3423       LII.Imm = 0;
3424       LII.SetCR = SetCR;
3425       LII.Is64Bit = SpecialShift64;
3426       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3427       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3428         replaceInstrWithLI(MI, LII);
3429       // Shifts by zero don't change the value. If we don't need to set CR0,
3430       // just convert this to a COPY. Can't do this post-RA since we've already
3431       // cleaned up the copies.
3432       else if (!SetCR && ShAmt == 0 && !PostRA) {
3433         MI.RemoveOperand(2);
3434         MI.setDesc(get(PPC::COPY));
3435       } else {
3436         // The 32 bit and 64 bit instructions are quite different.
3437         if (SpecialShift32) {
3438           // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3439           uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3440           uint64_t MB = RightShift ? ShAmt : 0;
3441           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3442           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3443           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3444             .addImm(ME);
3445         } else {
3446           // Left shifts use (N, 63-N), right shifts use (64-N, N).
3447           uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3448           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3449           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3450           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3451         }
3452       }
3453     } else
3454       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3455   }
3456   // Convert commutative instructions (switch the operands and convert the
3457   // desired one to an immediate.
3458   else if (III.IsCommutative) {
3459     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3460     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3461   } else
3462     llvm_unreachable("Should have exited early!");
3463 
3464   // For instructions for which the constant register replaces a different
3465   // operand than where the immediate goes, we need to swap them.
3466   if (III.OpNoForForwarding != III.ImmOpNo)
3467     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3468 
3469   // If the special R0/X0 register index are different for original instruction
3470   // and new instruction, we need to fix up the register class in new
3471   // instruction.
3472   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3473     if (III.ZeroIsSpecialNew) {
3474       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3475       // need to fix up register class.
3476       unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3477       if (TargetRegisterInfo::isVirtualRegister(RegToModify)) {
3478         const TargetRegisterClass *NewRC =
3479           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3480           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3481         MRI.setRegClass(RegToModify, NewRC);
3482       }
3483     }
3484   }
3485   return true;
3486 }
3487 
3488 const TargetRegisterClass *
3489 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3490   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3491     return &PPC::VSRCRegClass;
3492   return RC;
3493 }
3494 
3495 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3496   return PPC::getRecordFormOpcode(Opcode);
3497 }
3498 
3499 // This function returns true if the machine instruction
3500 // always outputs a value by sign-extending a 32 bit value,
3501 // i.e. 0 to 31-th bits are same as 32-th bit.
3502 static bool isSignExtendingOp(const MachineInstr &MI) {
3503   int Opcode = MI.getOpcode();
3504   if (Opcode == PPC::LI     || Opcode == PPC::LI8     ||
3505       Opcode == PPC::LIS    || Opcode == PPC::LIS8    ||
3506       Opcode == PPC::SRAW   || Opcode == PPC::SRAWo   ||
3507       Opcode == PPC::SRAWI  || Opcode == PPC::SRAWIo  ||
3508       Opcode == PPC::LWA    || Opcode == PPC::LWAX    ||
3509       Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3510       Opcode == PPC::LHA    || Opcode == PPC::LHAX    ||
3511       Opcode == PPC::LHA8   || Opcode == PPC::LHAX8   ||
3512       Opcode == PPC::LBZ    || Opcode == PPC::LBZX    ||
3513       Opcode == PPC::LBZ8   || Opcode == PPC::LBZX8   ||
3514       Opcode == PPC::LBZU   || Opcode == PPC::LBZUX   ||
3515       Opcode == PPC::LBZU8  || Opcode == PPC::LBZUX8  ||
3516       Opcode == PPC::LHZ    || Opcode == PPC::LHZX    ||
3517       Opcode == PPC::LHZ8   || Opcode == PPC::LHZX8   ||
3518       Opcode == PPC::LHZU   || Opcode == PPC::LHZUX   ||
3519       Opcode == PPC::LHZU8  || Opcode == PPC::LHZUX8  ||
3520       Opcode == PPC::EXTSB  || Opcode == PPC::EXTSBo  ||
3521       Opcode == PPC::EXTSH  || Opcode == PPC::EXTSHo  ||
3522       Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8  ||
3523       Opcode == PPC::EXTSW  || Opcode == PPC::EXTSWo  ||
3524       Opcode == PPC::SETB   || Opcode == PPC::SETB8   ||
3525       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3526       Opcode == PPC::EXTSB8_32_64)
3527     return true;
3528 
3529   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3530     return true;
3531 
3532   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3533        Opcode == PPC::RLWNM  || Opcode == PPC::RLWNMo) &&
3534       MI.getOperand(3).getImm() > 0 &&
3535       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3536     return true;
3537 
3538   return false;
3539 }
3540 
3541 // This function returns true if the machine instruction
3542 // always outputs zeros in higher 32 bits.
3543 static bool isZeroExtendingOp(const MachineInstr &MI) {
3544   int Opcode = MI.getOpcode();
3545   // The 16-bit immediate is sign-extended in li/lis.
3546   // If the most significant bit is zero, all higher bits are zero.
3547   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
3548       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3549     int64_t Imm = MI.getOperand(1).getImm();
3550     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3551       return true;
3552   }
3553 
3554   // We have some variations of rotate-and-mask instructions
3555   // that clear higher 32-bits.
3556   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3557        Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo  ||
3558        Opcode == PPC::RLDICL_32_64) &&
3559       MI.getOperand(3).getImm() >= 32)
3560     return true;
3561 
3562   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3563       MI.getOperand(3).getImm() >= 32 &&
3564       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3565     return true;
3566 
3567   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
3568        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
3569        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3570       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3571     return true;
3572 
3573   // There are other instructions that clear higher 32-bits.
3574   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
3575       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
3576       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3577       Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
3578       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo ||
3579       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3580       Opcode == PPC::SLW     || Opcode == PPC::SLWo    ||
3581       Opcode == PPC::SRW     || Opcode == PPC::SRWo    ||
3582       Opcode == PPC::SLW8    || Opcode == PPC::SRW8    ||
3583       Opcode == PPC::SLWI    || Opcode == PPC::SLWIo   ||
3584       Opcode == PPC::SRWI    || Opcode == PPC::SRWIo   ||
3585       Opcode == PPC::LWZ     || Opcode == PPC::LWZX    ||
3586       Opcode == PPC::LWZU    || Opcode == PPC::LWZUX   ||
3587       Opcode == PPC::LWBRX   || Opcode == PPC::LHBRX   ||
3588       Opcode == PPC::LHZ     || Opcode == PPC::LHZX    ||
3589       Opcode == PPC::LHZU    || Opcode == PPC::LHZUX   ||
3590       Opcode == PPC::LBZ     || Opcode == PPC::LBZX    ||
3591       Opcode == PPC::LBZU    || Opcode == PPC::LBZUX   ||
3592       Opcode == PPC::LWZ8    || Opcode == PPC::LWZX8   ||
3593       Opcode == PPC::LWZU8   || Opcode == PPC::LWZUX8  ||
3594       Opcode == PPC::LWBRX8  || Opcode == PPC::LHBRX8  ||
3595       Opcode == PPC::LHZ8    || Opcode == PPC::LHZX8   ||
3596       Opcode == PPC::LHZU8   || Opcode == PPC::LHZUX8  ||
3597       Opcode == PPC::LBZ8    || Opcode == PPC::LBZX8   ||
3598       Opcode == PPC::LBZU8   || Opcode == PPC::LBZUX8  ||
3599       Opcode == PPC::ANDIo   || Opcode == PPC::ANDISo  ||
3600       Opcode == PPC::ROTRWI  || Opcode == PPC::ROTRWIo ||
3601       Opcode == PPC::EXTLWI  || Opcode == PPC::EXTLWIo ||
3602       Opcode == PPC::MFVSRWZ)
3603     return true;
3604 
3605   return false;
3606 }
3607 
3608 // This function returns true if the input MachineInstr is a TOC save
3609 // instruction.
3610 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3611   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3612     return false;
3613   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3614   unsigned StackOffset = MI.getOperand(1).getImm();
3615   unsigned StackReg = MI.getOperand(2).getReg();
3616   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3617     return true;
3618 
3619   return false;
3620 }
3621 
3622 // We limit the max depth to track incoming values of PHIs or binary ops
3623 // (e.g. AND) to avoid excessive cost.
3624 const unsigned MAX_DEPTH = 1;
3625 
3626 bool
3627 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3628                                    const unsigned Depth) const {
3629   const MachineFunction *MF = MI.getParent()->getParent();
3630   const MachineRegisterInfo *MRI = &MF->getRegInfo();
3631 
3632   // If we know this instruction returns sign- or zero-extended result,
3633   // return true.
3634   if (SignExt ? isSignExtendingOp(MI):
3635                 isZeroExtendingOp(MI))
3636     return true;
3637 
3638   switch (MI.getOpcode()) {
3639   case PPC::COPY: {
3640     unsigned SrcReg = MI.getOperand(1).getReg();
3641 
3642     // In both ELFv1 and v2 ABI, method parameters and the return value
3643     // are sign- or zero-extended.
3644     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3645       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3646       // We check the ZExt/SExt flags for a method parameter.
3647       if (MI.getParent()->getBasicBlock() ==
3648           &MF->getFunction().getEntryBlock()) {
3649         unsigned VReg = MI.getOperand(0).getReg();
3650         if (MF->getRegInfo().isLiveIn(VReg))
3651           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3652                            FuncInfo->isLiveInZExt(VReg);
3653       }
3654 
3655       // For a method return value, we check the ZExt/SExt flags in attribute.
3656       // We assume the following code sequence for method call.
3657       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3658       //   BL8_NOP @func,...
3659       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3660       //   %5 = COPY %x3; G8RC:%5
3661       if (SrcReg == PPC::X3) {
3662         const MachineBasicBlock *MBB = MI.getParent();
3663         MachineBasicBlock::const_instr_iterator II =
3664           MachineBasicBlock::const_instr_iterator(&MI);
3665         if (II != MBB->instr_begin() &&
3666             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3667           const MachineInstr &CallMI = *(--II);
3668           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3669             const Function *CalleeFn =
3670               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3671             if (!CalleeFn)
3672               return false;
3673             const IntegerType *IntTy =
3674               dyn_cast<IntegerType>(CalleeFn->getReturnType());
3675             const AttributeSet &Attrs =
3676               CalleeFn->getAttributes().getRetAttributes();
3677             if (IntTy && IntTy->getBitWidth() <= 32)
3678               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3679                                                   Attribute::ZExt);
3680           }
3681         }
3682       }
3683     }
3684 
3685     // If this is a copy from another register, we recursively check source.
3686     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3687       return false;
3688     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3689     if (SrcMI != NULL)
3690       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3691 
3692     return false;
3693   }
3694 
3695   case PPC::ANDIo:
3696   case PPC::ANDISo:
3697   case PPC::ORI:
3698   case PPC::ORIS:
3699   case PPC::XORI:
3700   case PPC::XORIS:
3701   case PPC::ANDIo8:
3702   case PPC::ANDISo8:
3703   case PPC::ORI8:
3704   case PPC::ORIS8:
3705   case PPC::XORI8:
3706   case PPC::XORIS8: {
3707     // logical operation with 16-bit immediate does not change the upper bits.
3708     // So, we track the operand register as we do for register copy.
3709     unsigned SrcReg = MI.getOperand(1).getReg();
3710     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3711       return false;
3712     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3713     if (SrcMI != NULL)
3714       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3715 
3716     return false;
3717   }
3718 
3719   // If all incoming values are sign-/zero-extended,
3720   // the output of OR, ISEL or PHI is also sign-/zero-extended.
3721   case PPC::OR:
3722   case PPC::OR8:
3723   case PPC::ISEL:
3724   case PPC::PHI: {
3725     if (Depth >= MAX_DEPTH)
3726       return false;
3727 
3728     // The input registers for PHI are operand 1, 3, ...
3729     // The input registers for others are operand 1 and 2.
3730     unsigned E = 3, D = 1;
3731     if (MI.getOpcode() == PPC::PHI) {
3732       E = MI.getNumOperands();
3733       D = 2;
3734     }
3735 
3736     for (unsigned I = 1; I != E; I += D) {
3737       if (MI.getOperand(I).isReg()) {
3738         unsigned SrcReg = MI.getOperand(I).getReg();
3739         if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3740           return false;
3741         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3742         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3743           return false;
3744       }
3745       else
3746         return false;
3747     }
3748     return true;
3749   }
3750 
3751   // If at least one of the incoming values of an AND is zero extended
3752   // then the output is also zero-extended. If both of the incoming values
3753   // are sign-extended then the output is also sign extended.
3754   case PPC::AND:
3755   case PPC::AND8: {
3756     if (Depth >= MAX_DEPTH)
3757        return false;
3758 
3759     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3760 
3761     unsigned SrcReg1 = MI.getOperand(1).getReg();
3762     unsigned SrcReg2 = MI.getOperand(2).getReg();
3763 
3764     if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) ||
3765         !TargetRegisterInfo::isVirtualRegister(SrcReg2))
3766        return false;
3767 
3768     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3769     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3770     if (!MISrc1 || !MISrc2)
3771         return false;
3772 
3773     if(SignExt)
3774         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3775                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3776     else
3777         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3778                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3779   }
3780 
3781   default:
3782     break;
3783   }
3784   return false;
3785 }
3786