1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 static cl::
50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
51             cl::desc("Disable analysis for CTR loops"));
52 
53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
54 cl::desc("Disable compare instruction optimization"), cl::Hidden);
55 
56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
58 cl::Hidden);
59 
60 static cl::opt<bool>
61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
62   cl::desc("Use the old (incorrect) instruction latency calculation"));
63 
64 // Pin the vtable to this file.
65 void PPCInstrInfo::anchor() {}
66 
67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
68     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
69       Subtarget(STI), RI(STI.getTargetMachine()) {}
70 
71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
72 /// this target when scheduling the DAG.
73 ScheduleHazardRecognizer *
74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
75                                            const ScheduleDAG *DAG) const {
76   unsigned Directive =
77       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
78   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
79       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
80     const InstrItineraryData *II =
81         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
82     return new ScoreboardHazardRecognizer(II, DAG);
83   }
84 
85   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
86 }
87 
88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
89 /// to use for this target when scheduling the DAG.
90 ScheduleHazardRecognizer *
91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
92                                                  const ScheduleDAG *DAG) const {
93   unsigned Directive =
94       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
95 
96   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
97     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
98 
99   // Most subtargets use a PPC970 recognizer.
100   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
101       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
102     assert(DAG->TII && "No InstrInfo?");
103 
104     return new PPCHazardRecognizer970(*DAG);
105   }
106 
107   return new ScoreboardHazardRecognizer(II, DAG);
108 }
109 
110 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
111                                        const MachineInstr *MI,
112                                        unsigned *PredCost) const {
113   if (!ItinData || UseOldLatencyCalc)
114     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
115 
116   // The default implementation of getInstrLatency calls getStageLatency, but
117   // getStageLatency does not do the right thing for us. While we have
118   // itinerary, most cores are fully pipelined, and so the itineraries only
119   // express the first part of the pipeline, not every stage. Instead, we need
120   // to use the listed output operand cycle number (using operand 0 here, which
121   // is an output).
122 
123   unsigned Latency = 1;
124   unsigned DefClass = MI->getDesc().getSchedClass();
125   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
126     const MachineOperand &MO = MI->getOperand(i);
127     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
128       continue;
129 
130     int Cycle = ItinData->getOperandCycle(DefClass, i);
131     if (Cycle < 0)
132       continue;
133 
134     Latency = std::max(Latency, (unsigned) Cycle);
135   }
136 
137   return Latency;
138 }
139 
140 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
141                                     const MachineInstr *DefMI, unsigned DefIdx,
142                                     const MachineInstr *UseMI,
143                                     unsigned UseIdx) const {
144   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
145                                                    UseMI, UseIdx);
146 
147   if (!DefMI->getParent())
148     return Latency;
149 
150   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
151   unsigned Reg = DefMO.getReg();
152 
153   bool IsRegCR;
154   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
155     const MachineRegisterInfo *MRI =
156       &DefMI->getParent()->getParent()->getRegInfo();
157     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
158               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
159   } else {
160     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
161               PPC::CRBITRCRegClass.contains(Reg);
162   }
163 
164   if (UseMI->isBranch() && IsRegCR) {
165     if (Latency < 0)
166       Latency = getInstrLatency(ItinData, DefMI);
167 
168     // On some cores, there is an additional delay between writing to a condition
169     // register, and using it from a branch.
170     unsigned Directive = Subtarget.getDarwinDirective();
171     switch (Directive) {
172     default: break;
173     case PPC::DIR_7400:
174     case PPC::DIR_750:
175     case PPC::DIR_970:
176     case PPC::DIR_E5500:
177     case PPC::DIR_PWR4:
178     case PPC::DIR_PWR5:
179     case PPC::DIR_PWR5X:
180     case PPC::DIR_PWR6:
181     case PPC::DIR_PWR6X:
182     case PPC::DIR_PWR7:
183     case PPC::DIR_PWR8:
184       Latency += 2;
185       break;
186     }
187   }
188 
189   return Latency;
190 }
191 
192 // This function does not list all associative and commutative operations, but
193 // only those worth feeding through the machine combiner in an attempt to
194 // reduce the critical path. Mostly, this means floating-point operations,
195 // because they have high latencies (compared to other operations, such and
196 // and/or, which are also associative and commutative, but have low latencies).
197 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
198   switch (Inst.getOpcode()) {
199   // FP Add:
200   case PPC::FADD:
201   case PPC::FADDS:
202   // FP Multiply:
203   case PPC::FMUL:
204   case PPC::FMULS:
205   // Altivec Add:
206   case PPC::VADDFP:
207   // VSX Add:
208   case PPC::XSADDDP:
209   case PPC::XVADDDP:
210   case PPC::XVADDSP:
211   case PPC::XSADDSP:
212   // VSX Multiply:
213   case PPC::XSMULDP:
214   case PPC::XVMULDP:
215   case PPC::XVMULSP:
216   case PPC::XSMULSP:
217   // QPX Add:
218   case PPC::QVFADD:
219   case PPC::QVFADDS:
220   case PPC::QVFADDSs:
221   // QPX Multiply:
222   case PPC::QVFMUL:
223   case PPC::QVFMULS:
224   case PPC::QVFMULSs:
225     return true;
226   default:
227     return false;
228   }
229 }
230 
231 bool PPCInstrInfo::getMachineCombinerPatterns(
232     MachineInstr &Root,
233     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
234   // Using the machine combiner in this way is potentially expensive, so
235   // restrict to when aggressive optimizations are desired.
236   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
237     return false;
238 
239   // FP reassociation is only legal when we don't need strict IEEE semantics.
240   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
241     return false;
242 
243   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
244 }
245 
246 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
247 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
248                                          unsigned &SrcReg, unsigned &DstReg,
249                                          unsigned &SubIdx) const {
250   switch (MI.getOpcode()) {
251   default: return false;
252   case PPC::EXTSW:
253   case PPC::EXTSW_32_64:
254     SrcReg = MI.getOperand(1).getReg();
255     DstReg = MI.getOperand(0).getReg();
256     SubIdx = PPC::sub_32;
257     return true;
258   }
259 }
260 
261 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
262                                            int &FrameIndex) const {
263   // Note: This list must be kept consistent with LoadRegFromStackSlot.
264   switch (MI->getOpcode()) {
265   default: break;
266   case PPC::LD:
267   case PPC::LWZ:
268   case PPC::LFS:
269   case PPC::LFD:
270   case PPC::RESTORE_CR:
271   case PPC::RESTORE_CRBIT:
272   case PPC::LVX:
273   case PPC::LXVD2X:
274   case PPC::QVLFDX:
275   case PPC::QVLFSXs:
276   case PPC::QVLFDXb:
277   case PPC::RESTORE_VRSAVE:
278     // Check for the operands added by addFrameReference (the immediate is the
279     // offset which defaults to 0).
280     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
281         MI->getOperand(2).isFI()) {
282       FrameIndex = MI->getOperand(2).getIndex();
283       return MI->getOperand(0).getReg();
284     }
285     break;
286   }
287   return 0;
288 }
289 
290 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
291                                           int &FrameIndex) const {
292   // Note: This list must be kept consistent with StoreRegToStackSlot.
293   switch (MI->getOpcode()) {
294   default: break;
295   case PPC::STD:
296   case PPC::STW:
297   case PPC::STFS:
298   case PPC::STFD:
299   case PPC::SPILL_CR:
300   case PPC::SPILL_CRBIT:
301   case PPC::STVX:
302   case PPC::STXVD2X:
303   case PPC::QVSTFDX:
304   case PPC::QVSTFSXs:
305   case PPC::QVSTFDXb:
306   case PPC::SPILL_VRSAVE:
307     // Check for the operands added by addFrameReference (the immediate is the
308     // offset which defaults to 0).
309     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
310         MI->getOperand(2).isFI()) {
311       FrameIndex = MI->getOperand(2).getIndex();
312       return MI->getOperand(0).getReg();
313     }
314     break;
315   }
316   return 0;
317 }
318 
319 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr *MI,
320                                                    bool NewMI,
321                                                    unsigned OpIdx1,
322                                                    unsigned OpIdx2) const {
323   MachineFunction &MF = *MI->getParent()->getParent();
324 
325   // Normal instructions can be commuted the obvious way.
326   if (MI->getOpcode() != PPC::RLWIMI &&
327       MI->getOpcode() != PPC::RLWIMIo)
328     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
329   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
330   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
331   // changing the relative order of the mask operands might change what happens
332   // to the high-bits of the mask (and, thus, the result).
333 
334   // Cannot commute if it has a non-zero rotate count.
335   if (MI->getOperand(3).getImm() != 0)
336     return nullptr;
337 
338   // If we have a zero rotate count, we have:
339   //   M = mask(MB,ME)
340   //   Op0 = (Op1 & ~M) | (Op2 & M)
341   // Change this to:
342   //   M = mask((ME+1)&31, (MB-1)&31)
343   //   Op0 = (Op2 & ~M) | (Op1 & M)
344 
345   // Swap op1/op2
346   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
347          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
348   unsigned Reg0 = MI->getOperand(0).getReg();
349   unsigned Reg1 = MI->getOperand(1).getReg();
350   unsigned Reg2 = MI->getOperand(2).getReg();
351   unsigned SubReg1 = MI->getOperand(1).getSubReg();
352   unsigned SubReg2 = MI->getOperand(2).getSubReg();
353   bool Reg1IsKill = MI->getOperand(1).isKill();
354   bool Reg2IsKill = MI->getOperand(2).isKill();
355   bool ChangeReg0 = false;
356   // If machine instrs are no longer in two-address forms, update
357   // destination register as well.
358   if (Reg0 == Reg1) {
359     // Must be two address instruction!
360     assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
361            "Expecting a two-address instruction!");
362     assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
363     Reg2IsKill = false;
364     ChangeReg0 = true;
365   }
366 
367   // Masks.
368   unsigned MB = MI->getOperand(4).getImm();
369   unsigned ME = MI->getOperand(5).getImm();
370 
371   // We can't commute a trivial mask (there is no way to represent an all-zero
372   // mask).
373   if (MB == 0 && ME == 31)
374     return nullptr;
375 
376   if (NewMI) {
377     // Create a new instruction.
378     unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
379     bool Reg0IsDead = MI->getOperand(0).isDead();
380     return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
381       .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
382       .addReg(Reg2, getKillRegState(Reg2IsKill))
383       .addReg(Reg1, getKillRegState(Reg1IsKill))
384       .addImm((ME+1) & 31)
385       .addImm((MB-1) & 31);
386   }
387 
388   if (ChangeReg0) {
389     MI->getOperand(0).setReg(Reg2);
390     MI->getOperand(0).setSubReg(SubReg2);
391   }
392   MI->getOperand(2).setReg(Reg1);
393   MI->getOperand(1).setReg(Reg2);
394   MI->getOperand(2).setSubReg(SubReg1);
395   MI->getOperand(1).setSubReg(SubReg2);
396   MI->getOperand(2).setIsKill(Reg1IsKill);
397   MI->getOperand(1).setIsKill(Reg2IsKill);
398 
399   // Swap the mask around.
400   MI->getOperand(4).setImm((ME+1) & 31);
401   MI->getOperand(5).setImm((MB-1) & 31);
402   return MI;
403 }
404 
405 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
406                                          unsigned &SrcOpIdx2) const {
407   // For VSX A-Type FMA instructions, it is the first two operands that can be
408   // commuted, however, because the non-encoded tied input operand is listed
409   // first, the operands to swap are actually the second and third.
410 
411   int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
412   if (AltOpc == -1)
413     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
414 
415   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
416   // and SrcOpIdx2.
417   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
418 }
419 
420 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
421                               MachineBasicBlock::iterator MI) const {
422   // This function is used for scheduling, and the nop wanted here is the type
423   // that terminates dispatch groups on the POWER cores.
424   unsigned Directive = Subtarget.getDarwinDirective();
425   unsigned Opcode;
426   switch (Directive) {
427   default:            Opcode = PPC::NOP; break;
428   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
429   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
430   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
431   }
432 
433   DebugLoc DL;
434   BuildMI(MBB, MI, DL, get(Opcode));
435 }
436 
437 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
438 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
439   NopInst.setOpcode(PPC::NOP);
440 }
441 
442 // Branch analysis.
443 // Note: If the condition register is set to CTR or CTR8 then this is a
444 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
445 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
446                                  MachineBasicBlock *&FBB,
447                                  SmallVectorImpl<MachineOperand> &Cond,
448                                  bool AllowModify) const {
449   bool isPPC64 = Subtarget.isPPC64();
450 
451   // If the block has no terminators, it just falls into the block after it.
452   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
453   if (I == MBB.end())
454     return false;
455 
456   if (!isUnpredicatedTerminator(*I))
457     return false;
458 
459   // Get the last instruction in the block.
460   MachineInstr *LastInst = I;
461 
462   // If there is only one terminator instruction, process it.
463   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
464     if (LastInst->getOpcode() == PPC::B) {
465       if (!LastInst->getOperand(0).isMBB())
466         return true;
467       TBB = LastInst->getOperand(0).getMBB();
468       return false;
469     } else if (LastInst->getOpcode() == PPC::BCC) {
470       if (!LastInst->getOperand(2).isMBB())
471         return true;
472       // Block ends with fall-through condbranch.
473       TBB = LastInst->getOperand(2).getMBB();
474       Cond.push_back(LastInst->getOperand(0));
475       Cond.push_back(LastInst->getOperand(1));
476       return false;
477     } else if (LastInst->getOpcode() == PPC::BC) {
478       if (!LastInst->getOperand(1).isMBB())
479         return true;
480       // Block ends with fall-through condbranch.
481       TBB = LastInst->getOperand(1).getMBB();
482       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
483       Cond.push_back(LastInst->getOperand(0));
484       return false;
485     } else if (LastInst->getOpcode() == PPC::BCn) {
486       if (!LastInst->getOperand(1).isMBB())
487         return true;
488       // Block ends with fall-through condbranch.
489       TBB = LastInst->getOperand(1).getMBB();
490       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
491       Cond.push_back(LastInst->getOperand(0));
492       return false;
493     } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
494                LastInst->getOpcode() == PPC::BDNZ) {
495       if (!LastInst->getOperand(0).isMBB())
496         return true;
497       if (DisableCTRLoopAnal)
498         return true;
499       TBB = LastInst->getOperand(0).getMBB();
500       Cond.push_back(MachineOperand::CreateImm(1));
501       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
502                                                true));
503       return false;
504     } else if (LastInst->getOpcode() == PPC::BDZ8 ||
505                LastInst->getOpcode() == PPC::BDZ) {
506       if (!LastInst->getOperand(0).isMBB())
507         return true;
508       if (DisableCTRLoopAnal)
509         return true;
510       TBB = LastInst->getOperand(0).getMBB();
511       Cond.push_back(MachineOperand::CreateImm(0));
512       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
513                                                true));
514       return false;
515     }
516 
517     // Otherwise, don't know what this is.
518     return true;
519   }
520 
521   // Get the instruction before it if it's a terminator.
522   MachineInstr *SecondLastInst = I;
523 
524   // If there are three terminators, we don't know what sort of block this is.
525   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
526     return true;
527 
528   // If the block ends with PPC::B and PPC:BCC, handle it.
529   if (SecondLastInst->getOpcode() == PPC::BCC &&
530       LastInst->getOpcode() == PPC::B) {
531     if (!SecondLastInst->getOperand(2).isMBB() ||
532         !LastInst->getOperand(0).isMBB())
533       return true;
534     TBB =  SecondLastInst->getOperand(2).getMBB();
535     Cond.push_back(SecondLastInst->getOperand(0));
536     Cond.push_back(SecondLastInst->getOperand(1));
537     FBB = LastInst->getOperand(0).getMBB();
538     return false;
539   } else if (SecondLastInst->getOpcode() == PPC::BC &&
540       LastInst->getOpcode() == PPC::B) {
541     if (!SecondLastInst->getOperand(1).isMBB() ||
542         !LastInst->getOperand(0).isMBB())
543       return true;
544     TBB =  SecondLastInst->getOperand(1).getMBB();
545     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
546     Cond.push_back(SecondLastInst->getOperand(0));
547     FBB = LastInst->getOperand(0).getMBB();
548     return false;
549   } else if (SecondLastInst->getOpcode() == PPC::BCn &&
550       LastInst->getOpcode() == PPC::B) {
551     if (!SecondLastInst->getOperand(1).isMBB() ||
552         !LastInst->getOperand(0).isMBB())
553       return true;
554     TBB =  SecondLastInst->getOperand(1).getMBB();
555     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
556     Cond.push_back(SecondLastInst->getOperand(0));
557     FBB = LastInst->getOperand(0).getMBB();
558     return false;
559   } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
560               SecondLastInst->getOpcode() == PPC::BDNZ) &&
561       LastInst->getOpcode() == PPC::B) {
562     if (!SecondLastInst->getOperand(0).isMBB() ||
563         !LastInst->getOperand(0).isMBB())
564       return true;
565     if (DisableCTRLoopAnal)
566       return true;
567     TBB = SecondLastInst->getOperand(0).getMBB();
568     Cond.push_back(MachineOperand::CreateImm(1));
569     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
570                                              true));
571     FBB = LastInst->getOperand(0).getMBB();
572     return false;
573   } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
574               SecondLastInst->getOpcode() == PPC::BDZ) &&
575       LastInst->getOpcode() == PPC::B) {
576     if (!SecondLastInst->getOperand(0).isMBB() ||
577         !LastInst->getOperand(0).isMBB())
578       return true;
579     if (DisableCTRLoopAnal)
580       return true;
581     TBB = SecondLastInst->getOperand(0).getMBB();
582     Cond.push_back(MachineOperand::CreateImm(0));
583     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
584                                              true));
585     FBB = LastInst->getOperand(0).getMBB();
586     return false;
587   }
588 
589   // If the block ends with two PPC:Bs, handle it.  The second one is not
590   // executed, so remove it.
591   if (SecondLastInst->getOpcode() == PPC::B &&
592       LastInst->getOpcode() == PPC::B) {
593     if (!SecondLastInst->getOperand(0).isMBB())
594       return true;
595     TBB = SecondLastInst->getOperand(0).getMBB();
596     I = LastInst;
597     if (AllowModify)
598       I->eraseFromParent();
599     return false;
600   }
601 
602   // Otherwise, can't handle this.
603   return true;
604 }
605 
606 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
607   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
608   if (I == MBB.end())
609     return 0;
610 
611   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
612       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
613       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
614       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
615     return 0;
616 
617   // Remove the branch.
618   I->eraseFromParent();
619 
620   I = MBB.end();
621 
622   if (I == MBB.begin()) return 1;
623   --I;
624   if (I->getOpcode() != PPC::BCC &&
625       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
626       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
627       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
628     return 1;
629 
630   // Remove the branch.
631   I->eraseFromParent();
632   return 2;
633 }
634 
635 unsigned
636 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
637                            MachineBasicBlock *FBB,
638                            ArrayRef<MachineOperand> Cond,
639                            DebugLoc DL) const {
640   // Shouldn't be a fall through.
641   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
642   assert((Cond.size() == 2 || Cond.size() == 0) &&
643          "PPC branch conditions have two components!");
644 
645   bool isPPC64 = Subtarget.isPPC64();
646 
647   // One-way branch.
648   if (!FBB) {
649     if (Cond.empty())   // Unconditional branch
650       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
651     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
652       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
653                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
654                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
655     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
656       BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
657     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
658       BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
659     else                // Conditional branch
660       BuildMI(&MBB, DL, get(PPC::BCC))
661         .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
662     return 1;
663   }
664 
665   // Two-way Conditional Branch.
666   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
667     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
668                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
669                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
670   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
671     BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
672   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
673     BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
674   else
675     BuildMI(&MBB, DL, get(PPC::BCC))
676       .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
677   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
678   return 2;
679 }
680 
681 // Select analysis.
682 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
683                 ArrayRef<MachineOperand> Cond,
684                 unsigned TrueReg, unsigned FalseReg,
685                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
686   if (!Subtarget.hasISEL())
687     return false;
688 
689   if (Cond.size() != 2)
690     return false;
691 
692   // If this is really a bdnz-like condition, then it cannot be turned into a
693   // select.
694   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
695     return false;
696 
697   // Check register classes.
698   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
699   const TargetRegisterClass *RC =
700     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
701   if (!RC)
702     return false;
703 
704   // isel is for regular integer GPRs only.
705   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
706       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
707       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
708       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
709     return false;
710 
711   // FIXME: These numbers are for the A2, how well they work for other cores is
712   // an open question. On the A2, the isel instruction has a 2-cycle latency
713   // but single-cycle throughput. These numbers are used in combination with
714   // the MispredictPenalty setting from the active SchedMachineModel.
715   CondCycles = 1;
716   TrueCycles = 1;
717   FalseCycles = 1;
718 
719   return true;
720 }
721 
722 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
723                                 MachineBasicBlock::iterator MI, DebugLoc dl,
724                                 unsigned DestReg, ArrayRef<MachineOperand> Cond,
725                                 unsigned TrueReg, unsigned FalseReg) const {
726   assert(Cond.size() == 2 &&
727          "PPC branch conditions have two components!");
728 
729   assert(Subtarget.hasISEL() &&
730          "Cannot insert select on target without ISEL support");
731 
732   // Get the register classes.
733   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
734   const TargetRegisterClass *RC =
735     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
736   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
737 
738   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
739                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
740   assert((Is64Bit ||
741           PPC::GPRCRegClass.hasSubClassEq(RC) ||
742           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
743          "isel is for regular integer GPRs only");
744 
745   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
746   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
747 
748   unsigned SubIdx = 0;
749   bool SwapOps = false;
750   switch (SelectPred) {
751   case PPC::PRED_EQ:
752   case PPC::PRED_EQ_MINUS:
753   case PPC::PRED_EQ_PLUS:
754       SubIdx = PPC::sub_eq; SwapOps = false; break;
755   case PPC::PRED_NE:
756   case PPC::PRED_NE_MINUS:
757   case PPC::PRED_NE_PLUS:
758       SubIdx = PPC::sub_eq; SwapOps = true; break;
759   case PPC::PRED_LT:
760   case PPC::PRED_LT_MINUS:
761   case PPC::PRED_LT_PLUS:
762       SubIdx = PPC::sub_lt; SwapOps = false; break;
763   case PPC::PRED_GE:
764   case PPC::PRED_GE_MINUS:
765   case PPC::PRED_GE_PLUS:
766       SubIdx = PPC::sub_lt; SwapOps = true; break;
767   case PPC::PRED_GT:
768   case PPC::PRED_GT_MINUS:
769   case PPC::PRED_GT_PLUS:
770       SubIdx = PPC::sub_gt; SwapOps = false; break;
771   case PPC::PRED_LE:
772   case PPC::PRED_LE_MINUS:
773   case PPC::PRED_LE_PLUS:
774       SubIdx = PPC::sub_gt; SwapOps = true; break;
775   case PPC::PRED_UN:
776   case PPC::PRED_UN_MINUS:
777   case PPC::PRED_UN_PLUS:
778       SubIdx = PPC::sub_un; SwapOps = false; break;
779   case PPC::PRED_NU:
780   case PPC::PRED_NU_MINUS:
781   case PPC::PRED_NU_PLUS:
782       SubIdx = PPC::sub_un; SwapOps = true; break;
783   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
784   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
785   }
786 
787   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
788            SecondReg = SwapOps ? TrueReg  : FalseReg;
789 
790   // The first input register of isel cannot be r0. If it is a member
791   // of a register class that can be r0, then copy it first (the
792   // register allocator should eliminate the copy).
793   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
794       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
795     const TargetRegisterClass *FirstRC =
796       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
797         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
798     unsigned OldFirstReg = FirstReg;
799     FirstReg = MRI.createVirtualRegister(FirstRC);
800     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
801       .addReg(OldFirstReg);
802   }
803 
804   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
805     .addReg(FirstReg).addReg(SecondReg)
806     .addReg(Cond[1].getReg(), 0, SubIdx);
807 }
808 
809 static unsigned getCRBitValue(unsigned CRBit) {
810   unsigned Ret = 4;
811   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
812       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
813       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
814       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
815     Ret = 3;
816   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
817       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
818       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
819       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
820     Ret = 2;
821   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
822       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
823       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
824       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
825     Ret = 1;
826   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
827       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
828       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
829       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
830     Ret = 0;
831 
832   assert(Ret != 4 && "Invalid CR bit register");
833   return Ret;
834 }
835 
836 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
837                                MachineBasicBlock::iterator I, DebugLoc DL,
838                                unsigned DestReg, unsigned SrcReg,
839                                bool KillSrc) const {
840   // We can end up with self copies and similar things as a result of VSX copy
841   // legalization. Promote them here.
842   const TargetRegisterInfo *TRI = &getRegisterInfo();
843   if (PPC::F8RCRegClass.contains(DestReg) &&
844       PPC::VSRCRegClass.contains(SrcReg)) {
845     unsigned SuperReg =
846       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
847 
848     if (VSXSelfCopyCrash && SrcReg == SuperReg)
849       llvm_unreachable("nop VSX copy");
850 
851     DestReg = SuperReg;
852   } else if (PPC::VRRCRegClass.contains(DestReg) &&
853              PPC::VSRCRegClass.contains(SrcReg)) {
854     unsigned SuperReg =
855       TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
856 
857     if (VSXSelfCopyCrash && SrcReg == SuperReg)
858       llvm_unreachable("nop VSX copy");
859 
860     DestReg = SuperReg;
861   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
862              PPC::VSRCRegClass.contains(DestReg)) {
863     unsigned SuperReg =
864       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
865 
866     if (VSXSelfCopyCrash && DestReg == SuperReg)
867       llvm_unreachable("nop VSX copy");
868 
869     SrcReg = SuperReg;
870   } else if (PPC::VRRCRegClass.contains(SrcReg) &&
871              PPC::VSRCRegClass.contains(DestReg)) {
872     unsigned SuperReg =
873       TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
874 
875     if (VSXSelfCopyCrash && DestReg == SuperReg)
876       llvm_unreachable("nop VSX copy");
877 
878     SrcReg = SuperReg;
879   }
880 
881   // Different class register copy
882   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
883       PPC::GPRCRegClass.contains(DestReg)) {
884     unsigned CRReg = getCRFromCRBit(SrcReg);
885     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
886     getKillRegState(KillSrc);
887     // Rotate the CR bit in the CR fields to be the least significant bit and
888     // then mask with 0x1 (MB = ME = 31).
889     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
890        .addReg(DestReg, RegState::Kill)
891        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
892        .addImm(31)
893        .addImm(31);
894     return;
895   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
896       PPC::G8RCRegClass.contains(DestReg)) {
897     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
898     getKillRegState(KillSrc);
899     return;
900   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
901       PPC::GPRCRegClass.contains(DestReg)) {
902     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
903     getKillRegState(KillSrc);
904     return;
905    }
906 
907   unsigned Opc;
908   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
909     Opc = PPC::OR;
910   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
911     Opc = PPC::OR8;
912   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
913     Opc = PPC::FMR;
914   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
915     Opc = PPC::MCRF;
916   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
917     Opc = PPC::VOR;
918   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
919     // There are two different ways this can be done:
920     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
921     //      issue in VSU pipeline 0.
922     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
923     //      can go to either pipeline.
924     // We'll always use xxlor here, because in practically all cases where
925     // copies are generated, they are close enough to some use that the
926     // lower-latency form is preferable.
927     Opc = PPC::XXLOR;
928   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
929            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
930     Opc = PPC::XXLORf;
931   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
932     Opc = PPC::QVFMR;
933   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
934     Opc = PPC::QVFMRs;
935   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
936     Opc = PPC::QVFMRb;
937   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
938     Opc = PPC::CROR;
939   else
940     llvm_unreachable("Impossible reg-to-reg copy");
941 
942   const MCInstrDesc &MCID = get(Opc);
943   if (MCID.getNumOperands() == 3)
944     BuildMI(MBB, I, DL, MCID, DestReg)
945       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
946   else
947     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
948 }
949 
950 // This function returns true if a CR spill is necessary and false otherwise.
951 bool
952 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
953                                   unsigned SrcReg, bool isKill,
954                                   int FrameIdx,
955                                   const TargetRegisterClass *RC,
956                                   SmallVectorImpl<MachineInstr*> &NewMIs,
957                                   bool &NonRI, bool &SpillsVRS) const{
958   // Note: If additional store instructions are added here,
959   // update isStoreToStackSlot.
960 
961   DebugLoc DL;
962   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
963       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
964     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
965                                        .addReg(SrcReg,
966                                                getKillRegState(isKill)),
967                                        FrameIdx));
968   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
969              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
970     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
971                                        .addReg(SrcReg,
972                                                getKillRegState(isKill)),
973                                        FrameIdx));
974   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
975     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
976                                        .addReg(SrcReg,
977                                                getKillRegState(isKill)),
978                                        FrameIdx));
979   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
980     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
981                                        .addReg(SrcReg,
982                                                getKillRegState(isKill)),
983                                        FrameIdx));
984   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
985     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
986                                        .addReg(SrcReg,
987                                                getKillRegState(isKill)),
988                                        FrameIdx));
989     return true;
990   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
991     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
992                                        .addReg(SrcReg,
993                                                getKillRegState(isKill)),
994                                        FrameIdx));
995     return true;
996   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
997     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
998                                        .addReg(SrcReg,
999                                                getKillRegState(isKill)),
1000                                        FrameIdx));
1001     NonRI = true;
1002   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1003     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
1004                                        .addReg(SrcReg,
1005                                                getKillRegState(isKill)),
1006                                        FrameIdx));
1007     NonRI = true;
1008   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1009     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
1010                                        .addReg(SrcReg,
1011                                                getKillRegState(isKill)),
1012                                        FrameIdx));
1013     NonRI = true;
1014   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1015     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
1016                                        .addReg(SrcReg,
1017                                                getKillRegState(isKill)),
1018                                        FrameIdx));
1019     NonRI = true;
1020   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1021     assert(Subtarget.isDarwin() &&
1022            "VRSAVE only needs spill/restore on Darwin");
1023     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
1024                                        .addReg(SrcReg,
1025                                                getKillRegState(isKill)),
1026                                        FrameIdx));
1027     SpillsVRS = true;
1028   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1029     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
1030                                        .addReg(SrcReg,
1031                                                getKillRegState(isKill)),
1032                                        FrameIdx));
1033     NonRI = true;
1034   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1035     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
1036                                        .addReg(SrcReg,
1037                                                getKillRegState(isKill)),
1038                                        FrameIdx));
1039     NonRI = true;
1040   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1041     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
1042                                        .addReg(SrcReg,
1043                                                getKillRegState(isKill)),
1044                                        FrameIdx));
1045     NonRI = true;
1046   } else {
1047     llvm_unreachable("Unknown regclass!");
1048   }
1049 
1050   return false;
1051 }
1052 
1053 void
1054 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1055                                   MachineBasicBlock::iterator MI,
1056                                   unsigned SrcReg, bool isKill, int FrameIdx,
1057                                   const TargetRegisterClass *RC,
1058                                   const TargetRegisterInfo *TRI) const {
1059   MachineFunction &MF = *MBB.getParent();
1060   SmallVector<MachineInstr*, 4> NewMIs;
1061 
1062   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1063   FuncInfo->setHasSpills();
1064 
1065   bool NonRI = false, SpillsVRS = false;
1066   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
1067                           NonRI, SpillsVRS))
1068     FuncInfo->setSpillsCR();
1069 
1070   if (SpillsVRS)
1071     FuncInfo->setSpillsVRSAVE();
1072 
1073   if (NonRI)
1074     FuncInfo->setHasNonRISpills();
1075 
1076   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1077     MBB.insert(MI, NewMIs[i]);
1078 
1079   const MachineFrameInfo &MFI = *MF.getFrameInfo();
1080   MachineMemOperand *MMO = MF.getMachineMemOperand(
1081       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1082       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1083       MFI.getObjectAlignment(FrameIdx));
1084   NewMIs.back()->addMemOperand(MF, MMO);
1085 }
1086 
1087 bool
1088 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
1089                                    unsigned DestReg, int FrameIdx,
1090                                    const TargetRegisterClass *RC,
1091                                    SmallVectorImpl<MachineInstr*> &NewMIs,
1092                                    bool &NonRI, bool &SpillsVRS) const{
1093   // Note: If additional load instructions are added here,
1094   // update isLoadFromStackSlot.
1095 
1096   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1097       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1098     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
1099                                                DestReg), FrameIdx));
1100   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1101              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1102     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
1103                                        FrameIdx));
1104   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1105     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
1106                                        FrameIdx));
1107   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1108     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
1109                                        FrameIdx));
1110   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1111     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1112                                                get(PPC::RESTORE_CR), DestReg),
1113                                        FrameIdx));
1114     return true;
1115   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1116     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1117                                                get(PPC::RESTORE_CRBIT), DestReg),
1118                                        FrameIdx));
1119     return true;
1120   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1121     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1122                                        FrameIdx));
1123     NonRI = true;
1124   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1125     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
1126                                        FrameIdx));
1127     NonRI = true;
1128   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1129     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
1130                                        FrameIdx));
1131     NonRI = true;
1132   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1133     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
1134                                        FrameIdx));
1135     NonRI = true;
1136   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1137     assert(Subtarget.isDarwin() &&
1138            "VRSAVE only needs spill/restore on Darwin");
1139     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1140                                                get(PPC::RESTORE_VRSAVE),
1141                                                DestReg),
1142                                        FrameIdx));
1143     SpillsVRS = true;
1144   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1145     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1146                                        FrameIdx));
1147     NonRI = true;
1148   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1149     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1150                                        FrameIdx));
1151     NonRI = true;
1152   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1153     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1154                                        FrameIdx));
1155     NonRI = true;
1156   } else {
1157     llvm_unreachable("Unknown regclass!");
1158   }
1159 
1160   return false;
1161 }
1162 
1163 void
1164 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1165                                    MachineBasicBlock::iterator MI,
1166                                    unsigned DestReg, int FrameIdx,
1167                                    const TargetRegisterClass *RC,
1168                                    const TargetRegisterInfo *TRI) const {
1169   MachineFunction &MF = *MBB.getParent();
1170   SmallVector<MachineInstr*, 4> NewMIs;
1171   DebugLoc DL;
1172   if (MI != MBB.end()) DL = MI->getDebugLoc();
1173 
1174   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1175   FuncInfo->setHasSpills();
1176 
1177   bool NonRI = false, SpillsVRS = false;
1178   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1179                            NonRI, SpillsVRS))
1180     FuncInfo->setSpillsCR();
1181 
1182   if (SpillsVRS)
1183     FuncInfo->setSpillsVRSAVE();
1184 
1185   if (NonRI)
1186     FuncInfo->setHasNonRISpills();
1187 
1188   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1189     MBB.insert(MI, NewMIs[i]);
1190 
1191   const MachineFrameInfo &MFI = *MF.getFrameInfo();
1192   MachineMemOperand *MMO = MF.getMachineMemOperand(
1193       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1194       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1195       MFI.getObjectAlignment(FrameIdx));
1196   NewMIs.back()->addMemOperand(MF, MMO);
1197 }
1198 
1199 bool PPCInstrInfo::
1200 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1201   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1202   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1203     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1204   else
1205     // Leave the CR# the same, but invert the condition.
1206     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1207   return false;
1208 }
1209 
1210 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
1211                              unsigned Reg, MachineRegisterInfo *MRI) const {
1212   // For some instructions, it is legal to fold ZERO into the RA register field.
1213   // A zero immediate should always be loaded with a single li.
1214   unsigned DefOpc = DefMI->getOpcode();
1215   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1216     return false;
1217   if (!DefMI->getOperand(1).isImm())
1218     return false;
1219   if (DefMI->getOperand(1).getImm() != 0)
1220     return false;
1221 
1222   // Note that we cannot here invert the arguments of an isel in order to fold
1223   // a ZERO into what is presented as the second argument. All we have here
1224   // is the condition bit, and that might come from a CR-logical bit operation.
1225 
1226   const MCInstrDesc &UseMCID = UseMI->getDesc();
1227 
1228   // Only fold into real machine instructions.
1229   if (UseMCID.isPseudo())
1230     return false;
1231 
1232   unsigned UseIdx;
1233   for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
1234     if (UseMI->getOperand(UseIdx).isReg() &&
1235         UseMI->getOperand(UseIdx).getReg() == Reg)
1236       break;
1237 
1238   assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
1239   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1240 
1241   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1242 
1243   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1244   // register (which might also be specified as a pointer class kind).
1245   if (UseInfo->isLookupPtrRegClass()) {
1246     if (UseInfo->RegClass /* Kind */ != 1)
1247       return false;
1248   } else {
1249     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1250         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1251       return false;
1252   }
1253 
1254   // Make sure this is not tied to an output register (or otherwise
1255   // constrained). This is true for ST?UX registers, for example, which
1256   // are tied to their output registers.
1257   if (UseInfo->Constraints != 0)
1258     return false;
1259 
1260   unsigned ZeroReg;
1261   if (UseInfo->isLookupPtrRegClass()) {
1262     bool isPPC64 = Subtarget.isPPC64();
1263     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1264   } else {
1265     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1266               PPC::ZERO8 : PPC::ZERO;
1267   }
1268 
1269   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1270   UseMI->getOperand(UseIdx).setReg(ZeroReg);
1271 
1272   if (DeleteDef)
1273     DefMI->eraseFromParent();
1274 
1275   return true;
1276 }
1277 
1278 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1279   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1280        I != IE; ++I)
1281     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1282       return true;
1283   return false;
1284 }
1285 
1286 // We should make sure that, if we're going to predicate both sides of a
1287 // condition (a diamond), that both sides don't define the counter register. We
1288 // can predicate counter-decrement-based branches, but while that predicates
1289 // the branching, it does not predicate the counter decrement. If we tried to
1290 // merge the triangle into one predicated block, we'd decrement the counter
1291 // twice.
1292 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1293                      unsigned NumT, unsigned ExtraT,
1294                      MachineBasicBlock &FMBB,
1295                      unsigned NumF, unsigned ExtraF,
1296                      BranchProbability Probability) const {
1297   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1298 }
1299 
1300 
1301 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1302   // The predicated branches are identified by their type, not really by the
1303   // explicit presence of a predicate. Furthermore, some of them can be
1304   // predicated more than once. Because if conversion won't try to predicate
1305   // any instruction which already claims to be predicated (by returning true
1306   // here), always return false. In doing so, we let isPredicable() be the
1307   // final word on whether not the instruction can be (further) predicated.
1308 
1309   return false;
1310 }
1311 
1312 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1313   if (!MI.isTerminator())
1314     return false;
1315 
1316   // Conditional branch is a special case.
1317   if (MI.isBranch() && !MI.isBarrier())
1318     return true;
1319 
1320   return !isPredicated(MI);
1321 }
1322 
1323 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1324                                         ArrayRef<MachineOperand> Pred) const {
1325   unsigned OpC = MI.getOpcode();
1326   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1327     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1328       bool isPPC64 = Subtarget.isPPC64();
1329       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1330                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1331     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1332       MI.setDesc(get(PPC::BCLR));
1333       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1334           .addReg(Pred[1].getReg());
1335     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1336       MI.setDesc(get(PPC::BCLRn));
1337       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1338           .addReg(Pred[1].getReg());
1339     } else {
1340       MI.setDesc(get(PPC::BCCLR));
1341       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1342           .addImm(Pred[0].getImm())
1343           .addReg(Pred[1].getReg());
1344     }
1345 
1346     return true;
1347   } else if (OpC == PPC::B) {
1348     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1349       bool isPPC64 = Subtarget.isPPC64();
1350       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1351                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1352     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1353       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1354       MI.RemoveOperand(0);
1355 
1356       MI.setDesc(get(PPC::BC));
1357       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1358           .addReg(Pred[1].getReg())
1359           .addMBB(MBB);
1360     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1361       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1362       MI.RemoveOperand(0);
1363 
1364       MI.setDesc(get(PPC::BCn));
1365       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1366           .addReg(Pred[1].getReg())
1367           .addMBB(MBB);
1368     } else {
1369       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1370       MI.RemoveOperand(0);
1371 
1372       MI.setDesc(get(PPC::BCC));
1373       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1374           .addImm(Pred[0].getImm())
1375           .addReg(Pred[1].getReg())
1376           .addMBB(MBB);
1377     }
1378 
1379     return true;
1380   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1381              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1382     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1383       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1384 
1385     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1386     bool isPPC64 = Subtarget.isPPC64();
1387 
1388     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1389       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1390                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1391       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1392           .addReg(Pred[1].getReg());
1393       return true;
1394     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1395       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1396                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1397       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1398           .addReg(Pred[1].getReg());
1399       return true;
1400     }
1401 
1402     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1403                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1404     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1405         .addImm(Pred[0].getImm())
1406         .addReg(Pred[1].getReg());
1407     return true;
1408   }
1409 
1410   return false;
1411 }
1412 
1413 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1414                                      ArrayRef<MachineOperand> Pred2) const {
1415   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1416   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1417 
1418   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1419     return false;
1420   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1421     return false;
1422 
1423   // P1 can only subsume P2 if they test the same condition register.
1424   if (Pred1[1].getReg() != Pred2[1].getReg())
1425     return false;
1426 
1427   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1428   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1429 
1430   if (P1 == P2)
1431     return true;
1432 
1433   // Does P1 subsume P2, e.g. GE subsumes GT.
1434   if (P1 == PPC::PRED_LE &&
1435       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1436     return true;
1437   if (P1 == PPC::PRED_GE &&
1438       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1439     return true;
1440 
1441   return false;
1442 }
1443 
1444 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1445                                     std::vector<MachineOperand> &Pred) const {
1446   // Note: At the present time, the contents of Pred from this function is
1447   // unused by IfConversion. This implementation follows ARM by pushing the
1448   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1449   // predicate, instructions defining CTR or CTR8 are also included as
1450   // predicate-defining instructions.
1451 
1452   const TargetRegisterClass *RCs[] =
1453     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1454       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1455 
1456   bool Found = false;
1457   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1458     const MachineOperand &MO = MI.getOperand(i);
1459     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1460       const TargetRegisterClass *RC = RCs[c];
1461       if (MO.isReg()) {
1462         if (MO.isDef() && RC->contains(MO.getReg())) {
1463           Pred.push_back(MO);
1464           Found = true;
1465         }
1466       } else if (MO.isRegMask()) {
1467         for (TargetRegisterClass::iterator I = RC->begin(),
1468              IE = RC->end(); I != IE; ++I)
1469           if (MO.clobbersPhysReg(*I)) {
1470             Pred.push_back(MO);
1471             Found = true;
1472           }
1473       }
1474     }
1475   }
1476 
1477   return Found;
1478 }
1479 
1480 bool PPCInstrInfo::isPredicable(MachineInstr &MI) const {
1481   unsigned OpC = MI.getOpcode();
1482   switch (OpC) {
1483   default:
1484     return false;
1485   case PPC::B:
1486   case PPC::BLR:
1487   case PPC::BLR8:
1488   case PPC::BCTR:
1489   case PPC::BCTR8:
1490   case PPC::BCTRL:
1491   case PPC::BCTRL8:
1492     return true;
1493   }
1494 }
1495 
1496 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
1497                                   unsigned &SrcReg, unsigned &SrcReg2,
1498                                   int &Mask, int &Value) const {
1499   unsigned Opc = MI->getOpcode();
1500 
1501   switch (Opc) {
1502   default: return false;
1503   case PPC::CMPWI:
1504   case PPC::CMPLWI:
1505   case PPC::CMPDI:
1506   case PPC::CMPLDI:
1507     SrcReg = MI->getOperand(1).getReg();
1508     SrcReg2 = 0;
1509     Value = MI->getOperand(2).getImm();
1510     Mask = 0xFFFF;
1511     return true;
1512   case PPC::CMPW:
1513   case PPC::CMPLW:
1514   case PPC::CMPD:
1515   case PPC::CMPLD:
1516   case PPC::FCMPUS:
1517   case PPC::FCMPUD:
1518     SrcReg = MI->getOperand(1).getReg();
1519     SrcReg2 = MI->getOperand(2).getReg();
1520     return true;
1521   }
1522 }
1523 
1524 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
1525                                         unsigned SrcReg, unsigned SrcReg2,
1526                                         int Mask, int Value,
1527                                         const MachineRegisterInfo *MRI) const {
1528   if (DisableCmpOpt)
1529     return false;
1530 
1531   int OpC = CmpInstr->getOpcode();
1532   unsigned CRReg = CmpInstr->getOperand(0).getReg();
1533 
1534   // FP record forms set CR1 based on the execption status bits, not a
1535   // comparison with zero.
1536   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1537     return false;
1538 
1539   // The record forms set the condition register based on a signed comparison
1540   // with zero (so says the ISA manual). This is not as straightforward as it
1541   // seems, however, because this is always a 64-bit comparison on PPC64, even
1542   // for instructions that are 32-bit in nature (like slw for example).
1543   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1544   // for equality checks (as those don't depend on the sign). On PPC64,
1545   // we are restricted to equality for unsigned 64-bit comparisons and for
1546   // signed 32-bit comparisons the applicability is more restricted.
1547   bool isPPC64 = Subtarget.isPPC64();
1548   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1549   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1550   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1551 
1552   // Get the unique definition of SrcReg.
1553   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1554   if (!MI) return false;
1555   int MIOpC = MI->getOpcode();
1556 
1557   bool equalityOnly = false;
1558   bool noSub = false;
1559   if (isPPC64) {
1560     if (is32BitSignedCompare) {
1561       // We can perform this optimization only if MI is sign-extending.
1562       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1563           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1564           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1565           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1566           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1567         noSub = true;
1568       } else
1569         return false;
1570     } else if (is32BitUnsignedCompare) {
1571       // 32-bit rotate and mask instructions are zero extending only if MB <= ME
1572       bool isZeroExtendingRotate  =
1573           (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo ||
1574            MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo)
1575           && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm();
1576 
1577       // We can perform this optimization, equality only, if MI is
1578       // zero-extending.
1579       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1580           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1581           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo ||
1582           isZeroExtendingRotate) {
1583         noSub = true;
1584         equalityOnly = true;
1585       } else
1586         return false;
1587     } else
1588       equalityOnly = is64BitUnsignedCompare;
1589   } else
1590     equalityOnly = is32BitUnsignedCompare;
1591 
1592   if (equalityOnly) {
1593     // We need to check the uses of the condition register in order to reject
1594     // non-equality comparisons.
1595     for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1596          IE = MRI->use_instr_end(); I != IE; ++I) {
1597       MachineInstr *UseMI = &*I;
1598       if (UseMI->getOpcode() == PPC::BCC) {
1599         unsigned Pred = UseMI->getOperand(0).getImm();
1600         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1601           return false;
1602       } else if (UseMI->getOpcode() == PPC::ISEL ||
1603                  UseMI->getOpcode() == PPC::ISEL8) {
1604         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1605         if (SubIdx != PPC::sub_eq)
1606           return false;
1607       } else
1608         return false;
1609     }
1610   }
1611 
1612   MachineBasicBlock::iterator I = CmpInstr;
1613 
1614   // Scan forward to find the first use of the compare.
1615   for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
1616        I != EL; ++I) {
1617     bool FoundUse = false;
1618     for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1619          JE = MRI->use_instr_end(); J != JE; ++J)
1620       if (&*J == &*I) {
1621         FoundUse = true;
1622         break;
1623       }
1624 
1625     if (FoundUse)
1626       break;
1627   }
1628 
1629   // There are two possible candidates which can be changed to set CR[01].
1630   // One is MI, the other is a SUB instruction.
1631   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1632   MachineInstr *Sub = nullptr;
1633   if (SrcReg2 != 0)
1634     // MI is not a candidate for CMPrr.
1635     MI = nullptr;
1636   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1637   // same BB as the comparison. This is to allow the check below to avoid calls
1638   // (and other explicit clobbers); instead we should really check for these
1639   // more explicitly (in at least a few predecessors).
1640   else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
1641     // PPC does not have a record-form SUBri.
1642     return false;
1643   }
1644 
1645   // Search for Sub.
1646   const TargetRegisterInfo *TRI = &getRegisterInfo();
1647   --I;
1648 
1649   // Get ready to iterate backward from CmpInstr.
1650   MachineBasicBlock::iterator E = MI,
1651                               B = CmpInstr->getParent()->begin();
1652 
1653   for (; I != E && !noSub; --I) {
1654     const MachineInstr &Instr = *I;
1655     unsigned IOpC = Instr.getOpcode();
1656 
1657     if (&*I != CmpInstr && (
1658         Instr.modifiesRegister(PPC::CR0, TRI) ||
1659         Instr.readsRegister(PPC::CR0, TRI)))
1660       // This instruction modifies or uses the record condition register after
1661       // the one we want to change. While we could do this transformation, it
1662       // would likely not be profitable. This transformation removes one
1663       // instruction, and so even forcing RA to generate one move probably
1664       // makes it unprofitable.
1665       return false;
1666 
1667     // Check whether CmpInstr can be made redundant by the current instruction.
1668     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1669          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1670         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1671         ((Instr.getOperand(1).getReg() == SrcReg &&
1672           Instr.getOperand(2).getReg() == SrcReg2) ||
1673         (Instr.getOperand(1).getReg() == SrcReg2 &&
1674          Instr.getOperand(2).getReg() == SrcReg))) {
1675       Sub = &*I;
1676       break;
1677     }
1678 
1679     if (I == B)
1680       // The 'and' is below the comparison instruction.
1681       return false;
1682   }
1683 
1684   // Return false if no candidates exist.
1685   if (!MI && !Sub)
1686     return false;
1687 
1688   // The single candidate is called MI.
1689   if (!MI) MI = Sub;
1690 
1691   int NewOpC = -1;
1692   MIOpC = MI->getOpcode();
1693   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1694     NewOpC = MIOpC;
1695   else {
1696     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1697     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1698       NewOpC = MIOpC;
1699   }
1700 
1701   // FIXME: On the non-embedded POWER architectures, only some of the record
1702   // forms are fast, and we should use only the fast ones.
1703 
1704   // The defining instruction has a record form (or is already a record
1705   // form). It is possible, however, that we'll need to reverse the condition
1706   // code of the users.
1707   if (NewOpC == -1)
1708     return false;
1709 
1710   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1711   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1712 
1713   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1714   // needs to be updated to be based on SUB.  Push the condition code
1715   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1716   // condition code of these operands will be modified.
1717   bool ShouldSwap = false;
1718   if (Sub) {
1719     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1720       Sub->getOperand(2).getReg() == SrcReg;
1721 
1722     // The operands to subf are the opposite of sub, so only in the fixed-point
1723     // case, invert the order.
1724     ShouldSwap = !ShouldSwap;
1725   }
1726 
1727   if (ShouldSwap)
1728     for (MachineRegisterInfo::use_instr_iterator
1729          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1730          I != IE; ++I) {
1731       MachineInstr *UseMI = &*I;
1732       if (UseMI->getOpcode() == PPC::BCC) {
1733         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1734         assert((!equalityOnly ||
1735                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1736                "Invalid predicate for equality-only optimization");
1737         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1738                                 PPC::getSwappedPredicate(Pred)));
1739       } else if (UseMI->getOpcode() == PPC::ISEL ||
1740                  UseMI->getOpcode() == PPC::ISEL8) {
1741         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1742         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1743                "Invalid CR bit for equality-only optimization");
1744 
1745         if (NewSubReg == PPC::sub_lt)
1746           NewSubReg = PPC::sub_gt;
1747         else if (NewSubReg == PPC::sub_gt)
1748           NewSubReg = PPC::sub_lt;
1749 
1750         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1751                                                  NewSubReg));
1752       } else // We need to abort on a user we don't understand.
1753         return false;
1754     }
1755 
1756   // Create a new virtual register to hold the value of the CR set by the
1757   // record-form instruction. If the instruction was not previously in
1758   // record form, then set the kill flag on the CR.
1759   CmpInstr->eraseFromParent();
1760 
1761   MachineBasicBlock::iterator MII = MI;
1762   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1763           get(TargetOpcode::COPY), CRReg)
1764     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1765 
1766   // Even if CR0 register were dead before, it is alive now since the
1767   // instruction we just built uses it.
1768   MI->clearRegisterDeads(PPC::CR0);
1769 
1770   if (MIOpC != NewOpC) {
1771     // We need to be careful here: we're replacing one instruction with
1772     // another, and we need to make sure that we get all of the right
1773     // implicit uses and defs. On the other hand, the caller may be holding
1774     // an iterator to this instruction, and so we can't delete it (this is
1775     // specifically the case if this is the instruction directly after the
1776     // compare).
1777 
1778     const MCInstrDesc &NewDesc = get(NewOpC);
1779     MI->setDesc(NewDesc);
1780 
1781     if (NewDesc.ImplicitDefs)
1782       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1783            *ImpDefs; ++ImpDefs)
1784         if (!MI->definesRegister(*ImpDefs))
1785           MI->addOperand(*MI->getParent()->getParent(),
1786                          MachineOperand::CreateReg(*ImpDefs, true, true));
1787     if (NewDesc.ImplicitUses)
1788       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1789            *ImpUses; ++ImpUses)
1790         if (!MI->readsRegister(*ImpUses))
1791           MI->addOperand(*MI->getParent()->getParent(),
1792                          MachineOperand::CreateReg(*ImpUses, false, true));
1793   }
1794 
1795   // Modify the condition code of operands in OperandsToUpdate.
1796   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1797   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1798   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1799     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1800 
1801   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1802     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1803 
1804   return true;
1805 }
1806 
1807 /// GetInstSize - Return the number of bytes of code the specified
1808 /// instruction may be.  This returns the maximum number of bytes.
1809 ///
1810 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
1811   unsigned Opcode = MI->getOpcode();
1812 
1813   if (Opcode == PPC::INLINEASM) {
1814     const MachineFunction *MF = MI->getParent()->getParent();
1815     const char *AsmStr = MI->getOperand(0).getSymbolName();
1816     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1817   } else if (Opcode == TargetOpcode::STACKMAP) {
1818     return MI->getOperand(1).getImm();
1819   } else if (Opcode == TargetOpcode::PATCHPOINT) {
1820     PatchPointOpers Opers(MI);
1821     return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
1822   } else {
1823     const MCInstrDesc &Desc = get(Opcode);
1824     return Desc.getSize();
1825   }
1826 }
1827 
1828 std::pair<unsigned, unsigned>
1829 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1830   const unsigned Mask = PPCII::MO_ACCESS_MASK;
1831   return std::make_pair(TF & Mask, TF & ~Mask);
1832 }
1833 
1834 ArrayRef<std::pair<unsigned, const char *>>
1835 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1836   using namespace PPCII;
1837   static const std::pair<unsigned, const char *> TargetFlags[] = {
1838       {MO_LO, "ppc-lo"},
1839       {MO_HA, "ppc-ha"},
1840       {MO_TPREL_LO, "ppc-tprel-lo"},
1841       {MO_TPREL_HA, "ppc-tprel-ha"},
1842       {MO_DTPREL_LO, "ppc-dtprel-lo"},
1843       {MO_TLSLD_LO, "ppc-tlsld-lo"},
1844       {MO_TOC_LO, "ppc-toc-lo"},
1845       {MO_TLS, "ppc-tls"}};
1846   return makeArrayRef(TargetFlags);
1847 }
1848 
1849 ArrayRef<std::pair<unsigned, const char *>>
1850 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1851   using namespace PPCII;
1852   static const std::pair<unsigned, const char *> TargetFlags[] = {
1853       {MO_PLT_OR_STUB, "ppc-plt-or-stub"},
1854       {MO_PIC_FLAG, "ppc-pic"},
1855       {MO_NLP_FLAG, "ppc-nlp"},
1856       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
1857   return makeArrayRef(TargetFlags);
1858 }
1859 
1860