1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Index into the OpcodesForSpill array. 76 enum SpillOpcodeKey { 77 SOK_Int4Spill, 78 SOK_Int8Spill, 79 SOK_Float8Spill, 80 SOK_Float4Spill, 81 SOK_CRSpill, 82 SOK_CRBitSpill, 83 SOK_VRVectorSpill, 84 SOK_VSXVectorSpill, 85 SOK_VectorFloat8Spill, 86 SOK_VectorFloat4Spill, 87 SOK_VRSaveSpill, 88 SOK_QuadFloat8Spill, 89 SOK_QuadFloat4Spill, 90 SOK_QuadBitSpill, 91 SOK_SpillToVSR, 92 SOK_SPESpill, 93 SOK_SPE4Spill, 94 SOK_LastOpcodeSpill // This must be last on the enum. 95 }; 96 97 // Pin the vtable to this file. 98 void PPCInstrInfo::anchor() {} 99 100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 101 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 102 /* CatchRetOpcode */ -1, 103 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 104 Subtarget(STI), RI(STI.getTargetMachine()) {} 105 106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 107 /// this target when scheduling the DAG. 108 ScheduleHazardRecognizer * 109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 110 const ScheduleDAG *DAG) const { 111 unsigned Directive = 112 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 113 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 114 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 115 const InstrItineraryData *II = 116 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 117 return new ScoreboardHazardRecognizer(II, DAG); 118 } 119 120 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 121 } 122 123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 124 /// to use for this target when scheduling the DAG. 125 ScheduleHazardRecognizer * 126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 127 const ScheduleDAG *DAG) const { 128 unsigned Directive = 129 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 130 131 // FIXME: Leaving this as-is until we have POWER9 scheduling info 132 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 133 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 134 135 // Most subtargets use a PPC970 recognizer. 136 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 137 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 138 assert(DAG->TII && "No InstrInfo?"); 139 140 return new PPCHazardRecognizer970(*DAG); 141 } 142 143 return new ScoreboardHazardRecognizer(II, DAG); 144 } 145 146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 147 const MachineInstr &MI, 148 unsigned *PredCost) const { 149 if (!ItinData || UseOldLatencyCalc) 150 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 151 152 // The default implementation of getInstrLatency calls getStageLatency, but 153 // getStageLatency does not do the right thing for us. While we have 154 // itinerary, most cores are fully pipelined, and so the itineraries only 155 // express the first part of the pipeline, not every stage. Instead, we need 156 // to use the listed output operand cycle number (using operand 0 here, which 157 // is an output). 158 159 unsigned Latency = 1; 160 unsigned DefClass = MI.getDesc().getSchedClass(); 161 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 162 const MachineOperand &MO = MI.getOperand(i); 163 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 164 continue; 165 166 int Cycle = ItinData->getOperandCycle(DefClass, i); 167 if (Cycle < 0) 168 continue; 169 170 Latency = std::max(Latency, (unsigned) Cycle); 171 } 172 173 return Latency; 174 } 175 176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 177 const MachineInstr &DefMI, unsigned DefIdx, 178 const MachineInstr &UseMI, 179 unsigned UseIdx) const { 180 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 181 UseMI, UseIdx); 182 183 if (!DefMI.getParent()) 184 return Latency; 185 186 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 187 unsigned Reg = DefMO.getReg(); 188 189 bool IsRegCR; 190 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 191 const MachineRegisterInfo *MRI = 192 &DefMI.getParent()->getParent()->getRegInfo(); 193 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 194 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 195 } else { 196 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 197 PPC::CRBITRCRegClass.contains(Reg); 198 } 199 200 if (UseMI.isBranch() && IsRegCR) { 201 if (Latency < 0) 202 Latency = getInstrLatency(ItinData, DefMI); 203 204 // On some cores, there is an additional delay between writing to a condition 205 // register, and using it from a branch. 206 unsigned Directive = Subtarget.getDarwinDirective(); 207 switch (Directive) { 208 default: break; 209 case PPC::DIR_7400: 210 case PPC::DIR_750: 211 case PPC::DIR_970: 212 case PPC::DIR_E5500: 213 case PPC::DIR_PWR4: 214 case PPC::DIR_PWR5: 215 case PPC::DIR_PWR5X: 216 case PPC::DIR_PWR6: 217 case PPC::DIR_PWR6X: 218 case PPC::DIR_PWR7: 219 case PPC::DIR_PWR8: 220 // FIXME: Is this needed for POWER9? 221 Latency += 2; 222 break; 223 } 224 } 225 226 return Latency; 227 } 228 229 // This function does not list all associative and commutative operations, but 230 // only those worth feeding through the machine combiner in an attempt to 231 // reduce the critical path. Mostly, this means floating-point operations, 232 // because they have high latencies (compared to other operations, such and 233 // and/or, which are also associative and commutative, but have low latencies). 234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 235 switch (Inst.getOpcode()) { 236 // FP Add: 237 case PPC::FADD: 238 case PPC::FADDS: 239 // FP Multiply: 240 case PPC::FMUL: 241 case PPC::FMULS: 242 // Altivec Add: 243 case PPC::VADDFP: 244 // VSX Add: 245 case PPC::XSADDDP: 246 case PPC::XVADDDP: 247 case PPC::XVADDSP: 248 case PPC::XSADDSP: 249 // VSX Multiply: 250 case PPC::XSMULDP: 251 case PPC::XVMULDP: 252 case PPC::XVMULSP: 253 case PPC::XSMULSP: 254 // QPX Add: 255 case PPC::QVFADD: 256 case PPC::QVFADDS: 257 case PPC::QVFADDSs: 258 // QPX Multiply: 259 case PPC::QVFMUL: 260 case PPC::QVFMULS: 261 case PPC::QVFMULSs: 262 return true; 263 default: 264 return false; 265 } 266 } 267 268 bool PPCInstrInfo::getMachineCombinerPatterns( 269 MachineInstr &Root, 270 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 271 // Using the machine combiner in this way is potentially expensive, so 272 // restrict to when aggressive optimizations are desired. 273 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 274 return false; 275 276 // FP reassociation is only legal when we don't need strict IEEE semantics. 277 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 278 return false; 279 280 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 281 } 282 283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 285 unsigned &SrcReg, unsigned &DstReg, 286 unsigned &SubIdx) const { 287 switch (MI.getOpcode()) { 288 default: return false; 289 case PPC::EXTSW: 290 case PPC::EXTSW_32: 291 case PPC::EXTSW_32_64: 292 SrcReg = MI.getOperand(1).getReg(); 293 DstReg = MI.getOperand(0).getReg(); 294 SubIdx = PPC::sub_32; 295 return true; 296 } 297 } 298 299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 300 int &FrameIndex) const { 301 unsigned Opcode = MI.getOpcode(); 302 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 303 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 304 305 if (End != std::find(OpcodesForSpill, End, Opcode)) { 306 // Check for the operands added by addFrameReference (the immediate is the 307 // offset which defaults to 0). 308 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 309 MI.getOperand(2).isFI()) { 310 FrameIndex = MI.getOperand(2).getIndex(); 311 return MI.getOperand(0).getReg(); 312 } 313 } 314 return 0; 315 } 316 317 // For opcodes with the ReMaterializable flag set, this function is called to 318 // verify the instruction is really rematable. 319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 320 AliasAnalysis *AA) const { 321 switch (MI.getOpcode()) { 322 default: 323 // This function should only be called for opcodes with the ReMaterializable 324 // flag set. 325 llvm_unreachable("Unknown rematerializable operation!"); 326 break; 327 case PPC::LI: 328 case PPC::LI8: 329 case PPC::LIS: 330 case PPC::LIS8: 331 case PPC::QVGPCI: 332 case PPC::ADDIStocHA: 333 case PPC::ADDItocL: 334 case PPC::LOAD_STACK_GUARD: 335 case PPC::XXLXORz: 336 case PPC::XXLXORspz: 337 case PPC::XXLXORdpz: 338 case PPC::V_SET0B: 339 case PPC::V_SET0H: 340 case PPC::V_SET0: 341 case PPC::V_SETALLONESB: 342 case PPC::V_SETALLONESH: 343 case PPC::V_SETALLONES: 344 return true; 345 } 346 return false; 347 } 348 349 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 350 int &FrameIndex) const { 351 unsigned Opcode = MI.getOpcode(); 352 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 353 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 354 355 if (End != std::find(OpcodesForSpill, End, Opcode)) { 356 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 357 MI.getOperand(2).isFI()) { 358 FrameIndex = MI.getOperand(2).getIndex(); 359 return MI.getOperand(0).getReg(); 360 } 361 } 362 return 0; 363 } 364 365 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 366 unsigned OpIdx1, 367 unsigned OpIdx2) const { 368 MachineFunction &MF = *MI.getParent()->getParent(); 369 370 // Normal instructions can be commuted the obvious way. 371 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 372 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 373 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 374 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 375 // changing the relative order of the mask operands might change what happens 376 // to the high-bits of the mask (and, thus, the result). 377 378 // Cannot commute if it has a non-zero rotate count. 379 if (MI.getOperand(3).getImm() != 0) 380 return nullptr; 381 382 // If we have a zero rotate count, we have: 383 // M = mask(MB,ME) 384 // Op0 = (Op1 & ~M) | (Op2 & M) 385 // Change this to: 386 // M = mask((ME+1)&31, (MB-1)&31) 387 // Op0 = (Op2 & ~M) | (Op1 & M) 388 389 // Swap op1/op2 390 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 391 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 392 unsigned Reg0 = MI.getOperand(0).getReg(); 393 unsigned Reg1 = MI.getOperand(1).getReg(); 394 unsigned Reg2 = MI.getOperand(2).getReg(); 395 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 396 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 397 bool Reg1IsKill = MI.getOperand(1).isKill(); 398 bool Reg2IsKill = MI.getOperand(2).isKill(); 399 bool ChangeReg0 = false; 400 // If machine instrs are no longer in two-address forms, update 401 // destination register as well. 402 if (Reg0 == Reg1) { 403 // Must be two address instruction! 404 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 405 "Expecting a two-address instruction!"); 406 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 407 Reg2IsKill = false; 408 ChangeReg0 = true; 409 } 410 411 // Masks. 412 unsigned MB = MI.getOperand(4).getImm(); 413 unsigned ME = MI.getOperand(5).getImm(); 414 415 // We can't commute a trivial mask (there is no way to represent an all-zero 416 // mask). 417 if (MB == 0 && ME == 31) 418 return nullptr; 419 420 if (NewMI) { 421 // Create a new instruction. 422 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 423 bool Reg0IsDead = MI.getOperand(0).isDead(); 424 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 425 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 426 .addReg(Reg2, getKillRegState(Reg2IsKill)) 427 .addReg(Reg1, getKillRegState(Reg1IsKill)) 428 .addImm((ME + 1) & 31) 429 .addImm((MB - 1) & 31); 430 } 431 432 if (ChangeReg0) { 433 MI.getOperand(0).setReg(Reg2); 434 MI.getOperand(0).setSubReg(SubReg2); 435 } 436 MI.getOperand(2).setReg(Reg1); 437 MI.getOperand(1).setReg(Reg2); 438 MI.getOperand(2).setSubReg(SubReg1); 439 MI.getOperand(1).setSubReg(SubReg2); 440 MI.getOperand(2).setIsKill(Reg1IsKill); 441 MI.getOperand(1).setIsKill(Reg2IsKill); 442 443 // Swap the mask around. 444 MI.getOperand(4).setImm((ME + 1) & 31); 445 MI.getOperand(5).setImm((MB - 1) & 31); 446 return &MI; 447 } 448 449 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 450 unsigned &SrcOpIdx2) const { 451 // For VSX A-Type FMA instructions, it is the first two operands that can be 452 // commuted, however, because the non-encoded tied input operand is listed 453 // first, the operands to swap are actually the second and third. 454 455 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 456 if (AltOpc == -1) 457 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 458 459 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 460 // and SrcOpIdx2. 461 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 462 } 463 464 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 465 MachineBasicBlock::iterator MI) const { 466 // This function is used for scheduling, and the nop wanted here is the type 467 // that terminates dispatch groups on the POWER cores. 468 unsigned Directive = Subtarget.getDarwinDirective(); 469 unsigned Opcode; 470 switch (Directive) { 471 default: Opcode = PPC::NOP; break; 472 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 473 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 474 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 475 // FIXME: Update when POWER9 scheduling model is ready. 476 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 477 } 478 479 DebugLoc DL; 480 BuildMI(MBB, MI, DL, get(Opcode)); 481 } 482 483 /// Return the noop instruction to use for a noop. 484 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 485 NopInst.setOpcode(PPC::NOP); 486 } 487 488 // Branch analysis. 489 // Note: If the condition register is set to CTR or CTR8 then this is a 490 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 491 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 492 MachineBasicBlock *&TBB, 493 MachineBasicBlock *&FBB, 494 SmallVectorImpl<MachineOperand> &Cond, 495 bool AllowModify) const { 496 bool isPPC64 = Subtarget.isPPC64(); 497 498 // If the block has no terminators, it just falls into the block after it. 499 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 500 if (I == MBB.end()) 501 return false; 502 503 if (!isUnpredicatedTerminator(*I)) 504 return false; 505 506 if (AllowModify) { 507 // If the BB ends with an unconditional branch to the fallthrough BB, 508 // we eliminate the branch instruction. 509 if (I->getOpcode() == PPC::B && 510 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 511 I->eraseFromParent(); 512 513 // We update iterator after deleting the last branch. 514 I = MBB.getLastNonDebugInstr(); 515 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 516 return false; 517 } 518 } 519 520 // Get the last instruction in the block. 521 MachineInstr &LastInst = *I; 522 523 // If there is only one terminator instruction, process it. 524 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 525 if (LastInst.getOpcode() == PPC::B) { 526 if (!LastInst.getOperand(0).isMBB()) 527 return true; 528 TBB = LastInst.getOperand(0).getMBB(); 529 return false; 530 } else if (LastInst.getOpcode() == PPC::BCC) { 531 if (!LastInst.getOperand(2).isMBB()) 532 return true; 533 // Block ends with fall-through condbranch. 534 TBB = LastInst.getOperand(2).getMBB(); 535 Cond.push_back(LastInst.getOperand(0)); 536 Cond.push_back(LastInst.getOperand(1)); 537 return false; 538 } else if (LastInst.getOpcode() == PPC::BC) { 539 if (!LastInst.getOperand(1).isMBB()) 540 return true; 541 // Block ends with fall-through condbranch. 542 TBB = LastInst.getOperand(1).getMBB(); 543 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 544 Cond.push_back(LastInst.getOperand(0)); 545 return false; 546 } else if (LastInst.getOpcode() == PPC::BCn) { 547 if (!LastInst.getOperand(1).isMBB()) 548 return true; 549 // Block ends with fall-through condbranch. 550 TBB = LastInst.getOperand(1).getMBB(); 551 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 552 Cond.push_back(LastInst.getOperand(0)); 553 return false; 554 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 555 LastInst.getOpcode() == PPC::BDNZ) { 556 if (!LastInst.getOperand(0).isMBB()) 557 return true; 558 if (DisableCTRLoopAnal) 559 return true; 560 TBB = LastInst.getOperand(0).getMBB(); 561 Cond.push_back(MachineOperand::CreateImm(1)); 562 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 563 true)); 564 return false; 565 } else if (LastInst.getOpcode() == PPC::BDZ8 || 566 LastInst.getOpcode() == PPC::BDZ) { 567 if (!LastInst.getOperand(0).isMBB()) 568 return true; 569 if (DisableCTRLoopAnal) 570 return true; 571 TBB = LastInst.getOperand(0).getMBB(); 572 Cond.push_back(MachineOperand::CreateImm(0)); 573 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 574 true)); 575 return false; 576 } 577 578 // Otherwise, don't know what this is. 579 return true; 580 } 581 582 // Get the instruction before it if it's a terminator. 583 MachineInstr &SecondLastInst = *I; 584 585 // If there are three terminators, we don't know what sort of block this is. 586 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 587 return true; 588 589 // If the block ends with PPC::B and PPC:BCC, handle it. 590 if (SecondLastInst.getOpcode() == PPC::BCC && 591 LastInst.getOpcode() == PPC::B) { 592 if (!SecondLastInst.getOperand(2).isMBB() || 593 !LastInst.getOperand(0).isMBB()) 594 return true; 595 TBB = SecondLastInst.getOperand(2).getMBB(); 596 Cond.push_back(SecondLastInst.getOperand(0)); 597 Cond.push_back(SecondLastInst.getOperand(1)); 598 FBB = LastInst.getOperand(0).getMBB(); 599 return false; 600 } else if (SecondLastInst.getOpcode() == PPC::BC && 601 LastInst.getOpcode() == PPC::B) { 602 if (!SecondLastInst.getOperand(1).isMBB() || 603 !LastInst.getOperand(0).isMBB()) 604 return true; 605 TBB = SecondLastInst.getOperand(1).getMBB(); 606 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 607 Cond.push_back(SecondLastInst.getOperand(0)); 608 FBB = LastInst.getOperand(0).getMBB(); 609 return false; 610 } else if (SecondLastInst.getOpcode() == PPC::BCn && 611 LastInst.getOpcode() == PPC::B) { 612 if (!SecondLastInst.getOperand(1).isMBB() || 613 !LastInst.getOperand(0).isMBB()) 614 return true; 615 TBB = SecondLastInst.getOperand(1).getMBB(); 616 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 617 Cond.push_back(SecondLastInst.getOperand(0)); 618 FBB = LastInst.getOperand(0).getMBB(); 619 return false; 620 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 621 SecondLastInst.getOpcode() == PPC::BDNZ) && 622 LastInst.getOpcode() == PPC::B) { 623 if (!SecondLastInst.getOperand(0).isMBB() || 624 !LastInst.getOperand(0).isMBB()) 625 return true; 626 if (DisableCTRLoopAnal) 627 return true; 628 TBB = SecondLastInst.getOperand(0).getMBB(); 629 Cond.push_back(MachineOperand::CreateImm(1)); 630 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 631 true)); 632 FBB = LastInst.getOperand(0).getMBB(); 633 return false; 634 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 635 SecondLastInst.getOpcode() == PPC::BDZ) && 636 LastInst.getOpcode() == PPC::B) { 637 if (!SecondLastInst.getOperand(0).isMBB() || 638 !LastInst.getOperand(0).isMBB()) 639 return true; 640 if (DisableCTRLoopAnal) 641 return true; 642 TBB = SecondLastInst.getOperand(0).getMBB(); 643 Cond.push_back(MachineOperand::CreateImm(0)); 644 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 645 true)); 646 FBB = LastInst.getOperand(0).getMBB(); 647 return false; 648 } 649 650 // If the block ends with two PPC:Bs, handle it. The second one is not 651 // executed, so remove it. 652 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 653 if (!SecondLastInst.getOperand(0).isMBB()) 654 return true; 655 TBB = SecondLastInst.getOperand(0).getMBB(); 656 I = LastInst; 657 if (AllowModify) 658 I->eraseFromParent(); 659 return false; 660 } 661 662 // Otherwise, can't handle this. 663 return true; 664 } 665 666 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 667 int *BytesRemoved) const { 668 assert(!BytesRemoved && "code size not handled"); 669 670 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 671 if (I == MBB.end()) 672 return 0; 673 674 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 675 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 676 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 677 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 678 return 0; 679 680 // Remove the branch. 681 I->eraseFromParent(); 682 683 I = MBB.end(); 684 685 if (I == MBB.begin()) return 1; 686 --I; 687 if (I->getOpcode() != PPC::BCC && 688 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 689 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 690 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 691 return 1; 692 693 // Remove the branch. 694 I->eraseFromParent(); 695 return 2; 696 } 697 698 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 699 MachineBasicBlock *TBB, 700 MachineBasicBlock *FBB, 701 ArrayRef<MachineOperand> Cond, 702 const DebugLoc &DL, 703 int *BytesAdded) const { 704 // Shouldn't be a fall through. 705 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 706 assert((Cond.size() == 2 || Cond.size() == 0) && 707 "PPC branch conditions have two components!"); 708 assert(!BytesAdded && "code size not handled"); 709 710 bool isPPC64 = Subtarget.isPPC64(); 711 712 // One-way branch. 713 if (!FBB) { 714 if (Cond.empty()) // Unconditional branch 715 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 716 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 717 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 718 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 719 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 720 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 721 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 722 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 723 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 724 else // Conditional branch 725 BuildMI(&MBB, DL, get(PPC::BCC)) 726 .addImm(Cond[0].getImm()) 727 .add(Cond[1]) 728 .addMBB(TBB); 729 return 1; 730 } 731 732 // Two-way Conditional Branch. 733 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 734 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 735 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 736 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 737 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 738 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 739 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 740 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 741 else 742 BuildMI(&MBB, DL, get(PPC::BCC)) 743 .addImm(Cond[0].getImm()) 744 .add(Cond[1]) 745 .addMBB(TBB); 746 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 747 return 2; 748 } 749 750 // Select analysis. 751 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 752 ArrayRef<MachineOperand> Cond, 753 unsigned TrueReg, unsigned FalseReg, 754 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 755 if (Cond.size() != 2) 756 return false; 757 758 // If this is really a bdnz-like condition, then it cannot be turned into a 759 // select. 760 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 761 return false; 762 763 // Check register classes. 764 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 765 const TargetRegisterClass *RC = 766 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 767 if (!RC) 768 return false; 769 770 // isel is for regular integer GPRs only. 771 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 772 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 773 !PPC::G8RCRegClass.hasSubClassEq(RC) && 774 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 775 return false; 776 777 // FIXME: These numbers are for the A2, how well they work for other cores is 778 // an open question. On the A2, the isel instruction has a 2-cycle latency 779 // but single-cycle throughput. These numbers are used in combination with 780 // the MispredictPenalty setting from the active SchedMachineModel. 781 CondCycles = 1; 782 TrueCycles = 1; 783 FalseCycles = 1; 784 785 return true; 786 } 787 788 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 789 MachineBasicBlock::iterator MI, 790 const DebugLoc &dl, unsigned DestReg, 791 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 792 unsigned FalseReg) const { 793 assert(Cond.size() == 2 && 794 "PPC branch conditions have two components!"); 795 796 // Get the register classes. 797 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 798 const TargetRegisterClass *RC = 799 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 800 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 801 802 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 803 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 804 assert((Is64Bit || 805 PPC::GPRCRegClass.hasSubClassEq(RC) || 806 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 807 "isel is for regular integer GPRs only"); 808 809 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 810 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 811 812 unsigned SubIdx = 0; 813 bool SwapOps = false; 814 switch (SelectPred) { 815 case PPC::PRED_EQ: 816 case PPC::PRED_EQ_MINUS: 817 case PPC::PRED_EQ_PLUS: 818 SubIdx = PPC::sub_eq; SwapOps = false; break; 819 case PPC::PRED_NE: 820 case PPC::PRED_NE_MINUS: 821 case PPC::PRED_NE_PLUS: 822 SubIdx = PPC::sub_eq; SwapOps = true; break; 823 case PPC::PRED_LT: 824 case PPC::PRED_LT_MINUS: 825 case PPC::PRED_LT_PLUS: 826 SubIdx = PPC::sub_lt; SwapOps = false; break; 827 case PPC::PRED_GE: 828 case PPC::PRED_GE_MINUS: 829 case PPC::PRED_GE_PLUS: 830 SubIdx = PPC::sub_lt; SwapOps = true; break; 831 case PPC::PRED_GT: 832 case PPC::PRED_GT_MINUS: 833 case PPC::PRED_GT_PLUS: 834 SubIdx = PPC::sub_gt; SwapOps = false; break; 835 case PPC::PRED_LE: 836 case PPC::PRED_LE_MINUS: 837 case PPC::PRED_LE_PLUS: 838 SubIdx = PPC::sub_gt; SwapOps = true; break; 839 case PPC::PRED_UN: 840 case PPC::PRED_UN_MINUS: 841 case PPC::PRED_UN_PLUS: 842 SubIdx = PPC::sub_un; SwapOps = false; break; 843 case PPC::PRED_NU: 844 case PPC::PRED_NU_MINUS: 845 case PPC::PRED_NU_PLUS: 846 SubIdx = PPC::sub_un; SwapOps = true; break; 847 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 848 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 849 } 850 851 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 852 SecondReg = SwapOps ? TrueReg : FalseReg; 853 854 // The first input register of isel cannot be r0. If it is a member 855 // of a register class that can be r0, then copy it first (the 856 // register allocator should eliminate the copy). 857 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 858 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 859 const TargetRegisterClass *FirstRC = 860 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 861 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 862 unsigned OldFirstReg = FirstReg; 863 FirstReg = MRI.createVirtualRegister(FirstRC); 864 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 865 .addReg(OldFirstReg); 866 } 867 868 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 869 .addReg(FirstReg).addReg(SecondReg) 870 .addReg(Cond[1].getReg(), 0, SubIdx); 871 } 872 873 static unsigned getCRBitValue(unsigned CRBit) { 874 unsigned Ret = 4; 875 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 876 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 877 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 878 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 879 Ret = 3; 880 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 881 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 882 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 883 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 884 Ret = 2; 885 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 886 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 887 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 888 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 889 Ret = 1; 890 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 891 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 892 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 893 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 894 Ret = 0; 895 896 assert(Ret != 4 && "Invalid CR bit register"); 897 return Ret; 898 } 899 900 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 901 MachineBasicBlock::iterator I, 902 const DebugLoc &DL, unsigned DestReg, 903 unsigned SrcReg, bool KillSrc) const { 904 // We can end up with self copies and similar things as a result of VSX copy 905 // legalization. Promote them here. 906 const TargetRegisterInfo *TRI = &getRegisterInfo(); 907 if (PPC::F8RCRegClass.contains(DestReg) && 908 PPC::VSRCRegClass.contains(SrcReg)) { 909 unsigned SuperReg = 910 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 911 912 if (VSXSelfCopyCrash && SrcReg == SuperReg) 913 llvm_unreachable("nop VSX copy"); 914 915 DestReg = SuperReg; 916 } else if (PPC::F8RCRegClass.contains(SrcReg) && 917 PPC::VSRCRegClass.contains(DestReg)) { 918 unsigned SuperReg = 919 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 920 921 if (VSXSelfCopyCrash && DestReg == SuperReg) 922 llvm_unreachable("nop VSX copy"); 923 924 SrcReg = SuperReg; 925 } 926 927 // Different class register copy 928 if (PPC::CRBITRCRegClass.contains(SrcReg) && 929 PPC::GPRCRegClass.contains(DestReg)) { 930 unsigned CRReg = getCRFromCRBit(SrcReg); 931 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 932 getKillRegState(KillSrc); 933 // Rotate the CR bit in the CR fields to be the least significant bit and 934 // then mask with 0x1 (MB = ME = 31). 935 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 936 .addReg(DestReg, RegState::Kill) 937 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 938 .addImm(31) 939 .addImm(31); 940 return; 941 } else if (PPC::CRRCRegClass.contains(SrcReg) && 942 PPC::G8RCRegClass.contains(DestReg)) { 943 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 944 getKillRegState(KillSrc); 945 return; 946 } else if (PPC::CRRCRegClass.contains(SrcReg) && 947 PPC::GPRCRegClass.contains(DestReg)) { 948 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 949 getKillRegState(KillSrc); 950 return; 951 } else if (PPC::G8RCRegClass.contains(SrcReg) && 952 PPC::VSFRCRegClass.contains(DestReg)) { 953 assert(Subtarget.hasDirectMove() && 954 "Subtarget doesn't support directmove, don't know how to copy."); 955 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 956 NumGPRtoVSRSpill++; 957 getKillRegState(KillSrc); 958 return; 959 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 960 PPC::G8RCRegClass.contains(DestReg)) { 961 assert(Subtarget.hasDirectMove() && 962 "Subtarget doesn't support directmove, don't know how to copy."); 963 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 964 getKillRegState(KillSrc); 965 return; 966 } else if (PPC::SPERCRegClass.contains(SrcReg) && 967 PPC::SPE4RCRegClass.contains(DestReg)) { 968 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 969 getKillRegState(KillSrc); 970 return; 971 } else if (PPC::SPE4RCRegClass.contains(SrcReg) && 972 PPC::SPERCRegClass.contains(DestReg)) { 973 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 974 getKillRegState(KillSrc); 975 return; 976 } 977 978 unsigned Opc; 979 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 980 Opc = PPC::OR; 981 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 982 Opc = PPC::OR8; 983 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 984 Opc = PPC::FMR; 985 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 986 Opc = PPC::MCRF; 987 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 988 Opc = PPC::VOR; 989 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 990 // There are two different ways this can be done: 991 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 992 // issue in VSU pipeline 0. 993 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 994 // can go to either pipeline. 995 // We'll always use xxlor here, because in practically all cases where 996 // copies are generated, they are close enough to some use that the 997 // lower-latency form is preferable. 998 Opc = PPC::XXLOR; 999 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1000 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1001 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1002 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1003 Opc = PPC::QVFMR; 1004 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1005 Opc = PPC::QVFMRs; 1006 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1007 Opc = PPC::QVFMRb; 1008 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1009 Opc = PPC::CROR; 1010 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1011 Opc = PPC::EVOR; 1012 else 1013 llvm_unreachable("Impossible reg-to-reg copy"); 1014 1015 const MCInstrDesc &MCID = get(Opc); 1016 if (MCID.getNumOperands() == 3) 1017 BuildMI(MBB, I, DL, MCID, DestReg) 1018 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1019 else 1020 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1021 } 1022 1023 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1024 const TargetRegisterClass *RC) 1025 const { 1026 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1027 int OpcodeIndex = 0; 1028 1029 if (RC != nullptr) { 1030 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1031 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1032 OpcodeIndex = SOK_Int4Spill; 1033 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1034 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1035 OpcodeIndex = SOK_Int8Spill; 1036 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1037 OpcodeIndex = SOK_Float8Spill; 1038 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1039 OpcodeIndex = SOK_Float4Spill; 1040 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1041 OpcodeIndex = SOK_SPESpill; 1042 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { 1043 OpcodeIndex = SOK_SPE4Spill; 1044 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1045 OpcodeIndex = SOK_CRSpill; 1046 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1047 OpcodeIndex = SOK_CRBitSpill; 1048 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1049 OpcodeIndex = SOK_VRVectorSpill; 1050 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1051 OpcodeIndex = SOK_VSXVectorSpill; 1052 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1053 OpcodeIndex = SOK_VectorFloat8Spill; 1054 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1055 OpcodeIndex = SOK_VectorFloat4Spill; 1056 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1057 OpcodeIndex = SOK_VRSaveSpill; 1058 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1059 OpcodeIndex = SOK_QuadFloat8Spill; 1060 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1061 OpcodeIndex = SOK_QuadFloat4Spill; 1062 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1063 OpcodeIndex = SOK_QuadBitSpill; 1064 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1065 OpcodeIndex = SOK_SpillToVSR; 1066 } else { 1067 llvm_unreachable("Unknown regclass!"); 1068 } 1069 } else { 1070 if (PPC::GPRCRegClass.contains(Reg) || 1071 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1072 OpcodeIndex = SOK_Int4Spill; 1073 } else if (PPC::G8RCRegClass.contains(Reg) || 1074 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1075 OpcodeIndex = SOK_Int8Spill; 1076 } else if (PPC::F8RCRegClass.contains(Reg)) { 1077 OpcodeIndex = SOK_Float8Spill; 1078 } else if (PPC::F4RCRegClass.contains(Reg)) { 1079 OpcodeIndex = SOK_Float4Spill; 1080 } else if (PPC::SPERCRegClass.contains(Reg)) { 1081 OpcodeIndex = SOK_SPESpill; 1082 } else if (PPC::SPE4RCRegClass.contains(Reg)) { 1083 OpcodeIndex = SOK_SPE4Spill; 1084 } else if (PPC::CRRCRegClass.contains(Reg)) { 1085 OpcodeIndex = SOK_CRSpill; 1086 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1087 OpcodeIndex = SOK_CRBitSpill; 1088 } else if (PPC::VRRCRegClass.contains(Reg)) { 1089 OpcodeIndex = SOK_VRVectorSpill; 1090 } else if (PPC::VSRCRegClass.contains(Reg)) { 1091 OpcodeIndex = SOK_VSXVectorSpill; 1092 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1093 OpcodeIndex = SOK_VectorFloat8Spill; 1094 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1095 OpcodeIndex = SOK_VectorFloat4Spill; 1096 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1097 OpcodeIndex = SOK_VRSaveSpill; 1098 } else if (PPC::QFRCRegClass.contains(Reg)) { 1099 OpcodeIndex = SOK_QuadFloat8Spill; 1100 } else if (PPC::QSRCRegClass.contains(Reg)) { 1101 OpcodeIndex = SOK_QuadFloat4Spill; 1102 } else if (PPC::QBRCRegClass.contains(Reg)) { 1103 OpcodeIndex = SOK_QuadBitSpill; 1104 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1105 OpcodeIndex = SOK_SpillToVSR; 1106 } else { 1107 llvm_unreachable("Unknown regclass!"); 1108 } 1109 } 1110 return OpcodesForSpill[OpcodeIndex]; 1111 } 1112 1113 unsigned 1114 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1115 const TargetRegisterClass *RC) const { 1116 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1117 int OpcodeIndex = 0; 1118 1119 if (RC != nullptr) { 1120 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1121 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1122 OpcodeIndex = SOK_Int4Spill; 1123 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1124 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1125 OpcodeIndex = SOK_Int8Spill; 1126 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1127 OpcodeIndex = SOK_Float8Spill; 1128 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1129 OpcodeIndex = SOK_Float4Spill; 1130 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1131 OpcodeIndex = SOK_SPESpill; 1132 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) { 1133 OpcodeIndex = SOK_SPE4Spill; 1134 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1135 OpcodeIndex = SOK_CRSpill; 1136 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1137 OpcodeIndex = SOK_CRBitSpill; 1138 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1139 OpcodeIndex = SOK_VRVectorSpill; 1140 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1141 OpcodeIndex = SOK_VSXVectorSpill; 1142 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1143 OpcodeIndex = SOK_VectorFloat8Spill; 1144 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1145 OpcodeIndex = SOK_VectorFloat4Spill; 1146 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1147 OpcodeIndex = SOK_VRSaveSpill; 1148 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1149 OpcodeIndex = SOK_QuadFloat8Spill; 1150 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1151 OpcodeIndex = SOK_QuadFloat4Spill; 1152 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1153 OpcodeIndex = SOK_QuadBitSpill; 1154 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1155 OpcodeIndex = SOK_SpillToVSR; 1156 } else { 1157 llvm_unreachable("Unknown regclass!"); 1158 } 1159 } else { 1160 if (PPC::GPRCRegClass.contains(Reg) || 1161 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1162 OpcodeIndex = SOK_Int4Spill; 1163 } else if (PPC::G8RCRegClass.contains(Reg) || 1164 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1165 OpcodeIndex = SOK_Int8Spill; 1166 } else if (PPC::F8RCRegClass.contains(Reg)) { 1167 OpcodeIndex = SOK_Float8Spill; 1168 } else if (PPC::F4RCRegClass.contains(Reg)) { 1169 OpcodeIndex = SOK_Float4Spill; 1170 } else if (PPC::SPERCRegClass.contains(Reg)) { 1171 OpcodeIndex = SOK_SPESpill; 1172 } else if (PPC::SPE4RCRegClass.contains(Reg)) { 1173 OpcodeIndex = SOK_SPE4Spill; 1174 } else if (PPC::CRRCRegClass.contains(Reg)) { 1175 OpcodeIndex = SOK_CRSpill; 1176 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1177 OpcodeIndex = SOK_CRBitSpill; 1178 } else if (PPC::VRRCRegClass.contains(Reg)) { 1179 OpcodeIndex = SOK_VRVectorSpill; 1180 } else if (PPC::VSRCRegClass.contains(Reg)) { 1181 OpcodeIndex = SOK_VSXVectorSpill; 1182 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1183 OpcodeIndex = SOK_VectorFloat8Spill; 1184 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1185 OpcodeIndex = SOK_VectorFloat4Spill; 1186 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1187 OpcodeIndex = SOK_VRSaveSpill; 1188 } else if (PPC::QFRCRegClass.contains(Reg)) { 1189 OpcodeIndex = SOK_QuadFloat8Spill; 1190 } else if (PPC::QSRCRegClass.contains(Reg)) { 1191 OpcodeIndex = SOK_QuadFloat4Spill; 1192 } else if (PPC::QBRCRegClass.contains(Reg)) { 1193 OpcodeIndex = SOK_QuadBitSpill; 1194 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1195 OpcodeIndex = SOK_SpillToVSR; 1196 } else { 1197 llvm_unreachable("Unknown regclass!"); 1198 } 1199 } 1200 return OpcodesForSpill[OpcodeIndex]; 1201 } 1202 1203 void PPCInstrInfo::StoreRegToStackSlot( 1204 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1205 const TargetRegisterClass *RC, 1206 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1207 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1208 DebugLoc DL; 1209 1210 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1211 FuncInfo->setHasSpills(); 1212 1213 NewMIs.push_back(addFrameReference( 1214 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1215 FrameIdx)); 1216 1217 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1218 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1219 FuncInfo->setSpillsCR(); 1220 1221 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1222 FuncInfo->setSpillsVRSAVE(); 1223 1224 if (isXFormMemOp(Opcode)) 1225 FuncInfo->setHasNonRISpills(); 1226 } 1227 1228 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1229 MachineBasicBlock::iterator MI, 1230 unsigned SrcReg, bool isKill, 1231 int FrameIdx, 1232 const TargetRegisterClass *RC, 1233 const TargetRegisterInfo *TRI) const { 1234 MachineFunction &MF = *MBB.getParent(); 1235 SmallVector<MachineInstr *, 4> NewMIs; 1236 1237 // We need to avoid a situation in which the value from a VRRC register is 1238 // spilled using an Altivec instruction and reloaded into a VSRC register 1239 // using a VSX instruction. The issue with this is that the VSX 1240 // load/store instructions swap the doublewords in the vector and the Altivec 1241 // ones don't. The register classes on the spill/reload may be different if 1242 // the register is defined using an Altivec instruction and is then used by a 1243 // VSX instruction. 1244 RC = updatedRC(RC); 1245 1246 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1247 1248 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1249 MBB.insert(MI, NewMIs[i]); 1250 1251 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1252 MachineMemOperand *MMO = MF.getMachineMemOperand( 1253 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1254 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1255 MFI.getObjectAlignment(FrameIdx)); 1256 NewMIs.back()->addMemOperand(MF, MMO); 1257 } 1258 1259 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1260 unsigned DestReg, int FrameIdx, 1261 const TargetRegisterClass *RC, 1262 SmallVectorImpl<MachineInstr *> &NewMIs) 1263 const { 1264 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1265 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1266 FrameIdx)); 1267 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1268 1269 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1270 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1271 FuncInfo->setSpillsCR(); 1272 1273 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1274 FuncInfo->setSpillsVRSAVE(); 1275 1276 if (isXFormMemOp(Opcode)) 1277 FuncInfo->setHasNonRISpills(); 1278 } 1279 1280 void 1281 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1282 MachineBasicBlock::iterator MI, 1283 unsigned DestReg, int FrameIdx, 1284 const TargetRegisterClass *RC, 1285 const TargetRegisterInfo *TRI) const { 1286 MachineFunction &MF = *MBB.getParent(); 1287 SmallVector<MachineInstr*, 4> NewMIs; 1288 DebugLoc DL; 1289 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1290 1291 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1292 FuncInfo->setHasSpills(); 1293 1294 // We need to avoid a situation in which the value from a VRRC register is 1295 // spilled using an Altivec instruction and reloaded into a VSRC register 1296 // using a VSX instruction. The issue with this is that the VSX 1297 // load/store instructions swap the doublewords in the vector and the Altivec 1298 // ones don't. The register classes on the spill/reload may be different if 1299 // the register is defined using an Altivec instruction and is then used by a 1300 // VSX instruction. 1301 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1302 RC = &PPC::VSRCRegClass; 1303 1304 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1305 1306 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1307 MBB.insert(MI, NewMIs[i]); 1308 1309 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1310 MachineMemOperand *MMO = MF.getMachineMemOperand( 1311 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1312 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1313 MFI.getObjectAlignment(FrameIdx)); 1314 NewMIs.back()->addMemOperand(MF, MMO); 1315 } 1316 1317 bool PPCInstrInfo:: 1318 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1319 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1320 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1321 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1322 else 1323 // Leave the CR# the same, but invert the condition. 1324 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1325 return false; 1326 } 1327 1328 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1329 unsigned Reg, MachineRegisterInfo *MRI) const { 1330 // For some instructions, it is legal to fold ZERO into the RA register field. 1331 // A zero immediate should always be loaded with a single li. 1332 unsigned DefOpc = DefMI.getOpcode(); 1333 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1334 return false; 1335 if (!DefMI.getOperand(1).isImm()) 1336 return false; 1337 if (DefMI.getOperand(1).getImm() != 0) 1338 return false; 1339 1340 // Note that we cannot here invert the arguments of an isel in order to fold 1341 // a ZERO into what is presented as the second argument. All we have here 1342 // is the condition bit, and that might come from a CR-logical bit operation. 1343 1344 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1345 1346 // Only fold into real machine instructions. 1347 if (UseMCID.isPseudo()) 1348 return false; 1349 1350 unsigned UseIdx; 1351 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1352 if (UseMI.getOperand(UseIdx).isReg() && 1353 UseMI.getOperand(UseIdx).getReg() == Reg) 1354 break; 1355 1356 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1357 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1358 1359 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1360 1361 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1362 // register (which might also be specified as a pointer class kind). 1363 if (UseInfo->isLookupPtrRegClass()) { 1364 if (UseInfo->RegClass /* Kind */ != 1) 1365 return false; 1366 } else { 1367 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1368 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1369 return false; 1370 } 1371 1372 // Make sure this is not tied to an output register (or otherwise 1373 // constrained). This is true for ST?UX registers, for example, which 1374 // are tied to their output registers. 1375 if (UseInfo->Constraints != 0) 1376 return false; 1377 1378 unsigned ZeroReg; 1379 if (UseInfo->isLookupPtrRegClass()) { 1380 bool isPPC64 = Subtarget.isPPC64(); 1381 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1382 } else { 1383 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1384 PPC::ZERO8 : PPC::ZERO; 1385 } 1386 1387 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1388 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1389 1390 if (DeleteDef) 1391 DefMI.eraseFromParent(); 1392 1393 return true; 1394 } 1395 1396 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1397 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1398 I != IE; ++I) 1399 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1400 return true; 1401 return false; 1402 } 1403 1404 // We should make sure that, if we're going to predicate both sides of a 1405 // condition (a diamond), that both sides don't define the counter register. We 1406 // can predicate counter-decrement-based branches, but while that predicates 1407 // the branching, it does not predicate the counter decrement. If we tried to 1408 // merge the triangle into one predicated block, we'd decrement the counter 1409 // twice. 1410 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1411 unsigned NumT, unsigned ExtraT, 1412 MachineBasicBlock &FMBB, 1413 unsigned NumF, unsigned ExtraF, 1414 BranchProbability Probability) const { 1415 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1416 } 1417 1418 1419 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1420 // The predicated branches are identified by their type, not really by the 1421 // explicit presence of a predicate. Furthermore, some of them can be 1422 // predicated more than once. Because if conversion won't try to predicate 1423 // any instruction which already claims to be predicated (by returning true 1424 // here), always return false. In doing so, we let isPredicable() be the 1425 // final word on whether not the instruction can be (further) predicated. 1426 1427 return false; 1428 } 1429 1430 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1431 if (!MI.isTerminator()) 1432 return false; 1433 1434 // Conditional branch is a special case. 1435 if (MI.isBranch() && !MI.isBarrier()) 1436 return true; 1437 1438 return !isPredicated(MI); 1439 } 1440 1441 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1442 ArrayRef<MachineOperand> Pred) const { 1443 unsigned OpC = MI.getOpcode(); 1444 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1445 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1446 bool isPPC64 = Subtarget.isPPC64(); 1447 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1448 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1449 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1450 MI.setDesc(get(PPC::BCLR)); 1451 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1452 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1453 MI.setDesc(get(PPC::BCLRn)); 1454 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1455 } else { 1456 MI.setDesc(get(PPC::BCCLR)); 1457 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1458 .addImm(Pred[0].getImm()) 1459 .add(Pred[1]); 1460 } 1461 1462 return true; 1463 } else if (OpC == PPC::B) { 1464 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1465 bool isPPC64 = Subtarget.isPPC64(); 1466 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1467 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1468 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1469 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1470 MI.RemoveOperand(0); 1471 1472 MI.setDesc(get(PPC::BC)); 1473 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1474 .add(Pred[1]) 1475 .addMBB(MBB); 1476 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1477 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1478 MI.RemoveOperand(0); 1479 1480 MI.setDesc(get(PPC::BCn)); 1481 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1482 .add(Pred[1]) 1483 .addMBB(MBB); 1484 } else { 1485 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1486 MI.RemoveOperand(0); 1487 1488 MI.setDesc(get(PPC::BCC)); 1489 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1490 .addImm(Pred[0].getImm()) 1491 .add(Pred[1]) 1492 .addMBB(MBB); 1493 } 1494 1495 return true; 1496 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1497 OpC == PPC::BCTRL8) { 1498 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1499 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1500 1501 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1502 bool isPPC64 = Subtarget.isPPC64(); 1503 1504 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1505 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1506 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1507 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1508 return true; 1509 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1510 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1511 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1512 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1513 return true; 1514 } 1515 1516 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1517 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1518 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1519 .addImm(Pred[0].getImm()) 1520 .add(Pred[1]); 1521 return true; 1522 } 1523 1524 return false; 1525 } 1526 1527 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1528 ArrayRef<MachineOperand> Pred2) const { 1529 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1530 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1531 1532 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1533 return false; 1534 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1535 return false; 1536 1537 // P1 can only subsume P2 if they test the same condition register. 1538 if (Pred1[1].getReg() != Pred2[1].getReg()) 1539 return false; 1540 1541 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1542 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1543 1544 if (P1 == P2) 1545 return true; 1546 1547 // Does P1 subsume P2, e.g. GE subsumes GT. 1548 if (P1 == PPC::PRED_LE && 1549 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1550 return true; 1551 if (P1 == PPC::PRED_GE && 1552 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1553 return true; 1554 1555 return false; 1556 } 1557 1558 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1559 std::vector<MachineOperand> &Pred) const { 1560 // Note: At the present time, the contents of Pred from this function is 1561 // unused by IfConversion. This implementation follows ARM by pushing the 1562 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1563 // predicate, instructions defining CTR or CTR8 are also included as 1564 // predicate-defining instructions. 1565 1566 const TargetRegisterClass *RCs[] = 1567 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1568 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1569 1570 bool Found = false; 1571 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1572 const MachineOperand &MO = MI.getOperand(i); 1573 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1574 const TargetRegisterClass *RC = RCs[c]; 1575 if (MO.isReg()) { 1576 if (MO.isDef() && RC->contains(MO.getReg())) { 1577 Pred.push_back(MO); 1578 Found = true; 1579 } 1580 } else if (MO.isRegMask()) { 1581 for (TargetRegisterClass::iterator I = RC->begin(), 1582 IE = RC->end(); I != IE; ++I) 1583 if (MO.clobbersPhysReg(*I)) { 1584 Pred.push_back(MO); 1585 Found = true; 1586 } 1587 } 1588 } 1589 } 1590 1591 return Found; 1592 } 1593 1594 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1595 unsigned OpC = MI.getOpcode(); 1596 switch (OpC) { 1597 default: 1598 return false; 1599 case PPC::B: 1600 case PPC::BLR: 1601 case PPC::BLR8: 1602 case PPC::BCTR: 1603 case PPC::BCTR8: 1604 case PPC::BCTRL: 1605 case PPC::BCTRL8: 1606 return true; 1607 } 1608 } 1609 1610 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1611 unsigned &SrcReg2, int &Mask, 1612 int &Value) const { 1613 unsigned Opc = MI.getOpcode(); 1614 1615 switch (Opc) { 1616 default: return false; 1617 case PPC::CMPWI: 1618 case PPC::CMPLWI: 1619 case PPC::CMPDI: 1620 case PPC::CMPLDI: 1621 SrcReg = MI.getOperand(1).getReg(); 1622 SrcReg2 = 0; 1623 Value = MI.getOperand(2).getImm(); 1624 Mask = 0xFFFF; 1625 return true; 1626 case PPC::CMPW: 1627 case PPC::CMPLW: 1628 case PPC::CMPD: 1629 case PPC::CMPLD: 1630 case PPC::FCMPUS: 1631 case PPC::FCMPUD: 1632 SrcReg = MI.getOperand(1).getReg(); 1633 SrcReg2 = MI.getOperand(2).getReg(); 1634 Value = 0; 1635 Mask = 0; 1636 return true; 1637 } 1638 } 1639 1640 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1641 unsigned SrcReg2, int Mask, int Value, 1642 const MachineRegisterInfo *MRI) const { 1643 if (DisableCmpOpt) 1644 return false; 1645 1646 int OpC = CmpInstr.getOpcode(); 1647 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1648 1649 // FP record forms set CR1 based on the exception status bits, not a 1650 // comparison with zero. 1651 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1652 return false; 1653 1654 // The record forms set the condition register based on a signed comparison 1655 // with zero (so says the ISA manual). This is not as straightforward as it 1656 // seems, however, because this is always a 64-bit comparison on PPC64, even 1657 // for instructions that are 32-bit in nature (like slw for example). 1658 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1659 // for equality checks (as those don't depend on the sign). On PPC64, 1660 // we are restricted to equality for unsigned 64-bit comparisons and for 1661 // signed 32-bit comparisons the applicability is more restricted. 1662 bool isPPC64 = Subtarget.isPPC64(); 1663 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1664 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1665 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1666 1667 // Get the unique definition of SrcReg. 1668 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1669 if (!MI) return false; 1670 1671 bool equalityOnly = false; 1672 bool noSub = false; 1673 if (isPPC64) { 1674 if (is32BitSignedCompare) { 1675 // We can perform this optimization only if MI is sign-extending. 1676 if (isSignExtended(*MI)) 1677 noSub = true; 1678 else 1679 return false; 1680 } else if (is32BitUnsignedCompare) { 1681 // We can perform this optimization, equality only, if MI is 1682 // zero-extending. 1683 if (isZeroExtended(*MI)) { 1684 noSub = true; 1685 equalityOnly = true; 1686 } else 1687 return false; 1688 } else 1689 equalityOnly = is64BitUnsignedCompare; 1690 } else 1691 equalityOnly = is32BitUnsignedCompare; 1692 1693 if (equalityOnly) { 1694 // We need to check the uses of the condition register in order to reject 1695 // non-equality comparisons. 1696 for (MachineRegisterInfo::use_instr_iterator 1697 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1698 I != IE; ++I) { 1699 MachineInstr *UseMI = &*I; 1700 if (UseMI->getOpcode() == PPC::BCC) { 1701 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1702 unsigned PredCond = PPC::getPredicateCondition(Pred); 1703 // We ignore hint bits when checking for non-equality comparisons. 1704 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1705 return false; 1706 } else if (UseMI->getOpcode() == PPC::ISEL || 1707 UseMI->getOpcode() == PPC::ISEL8) { 1708 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1709 if (SubIdx != PPC::sub_eq) 1710 return false; 1711 } else 1712 return false; 1713 } 1714 } 1715 1716 MachineBasicBlock::iterator I = CmpInstr; 1717 1718 // Scan forward to find the first use of the compare. 1719 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1720 ++I) { 1721 bool FoundUse = false; 1722 for (MachineRegisterInfo::use_instr_iterator 1723 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1724 J != JE; ++J) 1725 if (&*J == &*I) { 1726 FoundUse = true; 1727 break; 1728 } 1729 1730 if (FoundUse) 1731 break; 1732 } 1733 1734 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1735 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1736 1737 // There are two possible candidates which can be changed to set CR[01]. 1738 // One is MI, the other is a SUB instruction. 1739 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1740 MachineInstr *Sub = nullptr; 1741 if (SrcReg2 != 0) 1742 // MI is not a candidate for CMPrr. 1743 MI = nullptr; 1744 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1745 // same BB as the comparison. This is to allow the check below to avoid calls 1746 // (and other explicit clobbers); instead we should really check for these 1747 // more explicitly (in at least a few predecessors). 1748 else if (MI->getParent() != CmpInstr.getParent()) 1749 return false; 1750 else if (Value != 0) { 1751 // The record-form instructions set CR bit based on signed comparison 1752 // against 0. We try to convert a compare against 1 or -1 into a compare 1753 // against 0 to exploit record-form instructions. For example, we change 1754 // the condition "greater than -1" into "greater than or equal to 0" 1755 // and "less than 1" into "less than or equal to 0". 1756 1757 // Since we optimize comparison based on a specific branch condition, 1758 // we don't optimize if condition code is used by more than once. 1759 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1760 return false; 1761 1762 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1763 if (UseMI->getOpcode() != PPC::BCC) 1764 return false; 1765 1766 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1767 PPC::Predicate NewPred = Pred; 1768 unsigned PredCond = PPC::getPredicateCondition(Pred); 1769 unsigned PredHint = PPC::getPredicateHint(Pred); 1770 int16_t Immed = (int16_t)Value; 1771 1772 // When modifying the condition in the predicate, we propagate hint bits 1773 // from the original predicate to the new one. 1774 if (Immed == -1 && PredCond == PPC::PRED_GT) 1775 // We convert "greater than -1" into "greater than or equal to 0", 1776 // since we are assuming signed comparison by !equalityOnly 1777 NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1778 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1779 // We convert "less than or equal to -1" into "less than 0". 1780 NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1781 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1782 // We convert "less than 1" into "less than or equal to 0". 1783 NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1784 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1785 // We convert "greater than or equal to 1" into "greater than 0". 1786 NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1787 else 1788 return false; 1789 1790 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1791 NewPred)); 1792 } 1793 1794 // Search for Sub. 1795 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1796 --I; 1797 1798 // Get ready to iterate backward from CmpInstr. 1799 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1800 1801 for (; I != E && !noSub; --I) { 1802 const MachineInstr &Instr = *I; 1803 unsigned IOpC = Instr.getOpcode(); 1804 1805 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1806 Instr.readsRegister(PPC::CR0, TRI))) 1807 // This instruction modifies or uses the record condition register after 1808 // the one we want to change. While we could do this transformation, it 1809 // would likely not be profitable. This transformation removes one 1810 // instruction, and so even forcing RA to generate one move probably 1811 // makes it unprofitable. 1812 return false; 1813 1814 // Check whether CmpInstr can be made redundant by the current instruction. 1815 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1816 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1817 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1818 ((Instr.getOperand(1).getReg() == SrcReg && 1819 Instr.getOperand(2).getReg() == SrcReg2) || 1820 (Instr.getOperand(1).getReg() == SrcReg2 && 1821 Instr.getOperand(2).getReg() == SrcReg))) { 1822 Sub = &*I; 1823 break; 1824 } 1825 1826 if (I == B) 1827 // The 'and' is below the comparison instruction. 1828 return false; 1829 } 1830 1831 // Return false if no candidates exist. 1832 if (!MI && !Sub) 1833 return false; 1834 1835 // The single candidate is called MI. 1836 if (!MI) MI = Sub; 1837 1838 int NewOpC = -1; 1839 int MIOpC = MI->getOpcode(); 1840 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 || 1841 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8) 1842 NewOpC = MIOpC; 1843 else { 1844 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1845 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1846 NewOpC = MIOpC; 1847 } 1848 1849 // FIXME: On the non-embedded POWER architectures, only some of the record 1850 // forms are fast, and we should use only the fast ones. 1851 1852 // The defining instruction has a record form (or is already a record 1853 // form). It is possible, however, that we'll need to reverse the condition 1854 // code of the users. 1855 if (NewOpC == -1) 1856 return false; 1857 1858 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1859 // needs to be updated to be based on SUB. Push the condition code 1860 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1861 // condition code of these operands will be modified. 1862 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1863 // comparison against 0, which may modify predicate. 1864 bool ShouldSwap = false; 1865 if (Sub && Value == 0) { 1866 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1867 Sub->getOperand(2).getReg() == SrcReg; 1868 1869 // The operands to subf are the opposite of sub, so only in the fixed-point 1870 // case, invert the order. 1871 ShouldSwap = !ShouldSwap; 1872 } 1873 1874 if (ShouldSwap) 1875 for (MachineRegisterInfo::use_instr_iterator 1876 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1877 I != IE; ++I) { 1878 MachineInstr *UseMI = &*I; 1879 if (UseMI->getOpcode() == PPC::BCC) { 1880 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1881 unsigned PredCond = PPC::getPredicateCondition(Pred); 1882 assert((!equalityOnly || 1883 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1884 "Invalid predicate for equality-only optimization"); 1885 (void)PredCond; // To suppress warning in release build. 1886 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1887 PPC::getSwappedPredicate(Pred))); 1888 } else if (UseMI->getOpcode() == PPC::ISEL || 1889 UseMI->getOpcode() == PPC::ISEL8) { 1890 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1891 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1892 "Invalid CR bit for equality-only optimization"); 1893 1894 if (NewSubReg == PPC::sub_lt) 1895 NewSubReg = PPC::sub_gt; 1896 else if (NewSubReg == PPC::sub_gt) 1897 NewSubReg = PPC::sub_lt; 1898 1899 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1900 NewSubReg)); 1901 } else // We need to abort on a user we don't understand. 1902 return false; 1903 } 1904 assert(!(Value != 0 && ShouldSwap) && 1905 "Non-zero immediate support and ShouldSwap" 1906 "may conflict in updating predicate"); 1907 1908 // Create a new virtual register to hold the value of the CR set by the 1909 // record-form instruction. If the instruction was not previously in 1910 // record form, then set the kill flag on the CR. 1911 CmpInstr.eraseFromParent(); 1912 1913 MachineBasicBlock::iterator MII = MI; 1914 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1915 get(TargetOpcode::COPY), CRReg) 1916 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1917 1918 // Even if CR0 register were dead before, it is alive now since the 1919 // instruction we just built uses it. 1920 MI->clearRegisterDeads(PPC::CR0); 1921 1922 if (MIOpC != NewOpC) { 1923 // We need to be careful here: we're replacing one instruction with 1924 // another, and we need to make sure that we get all of the right 1925 // implicit uses and defs. On the other hand, the caller may be holding 1926 // an iterator to this instruction, and so we can't delete it (this is 1927 // specifically the case if this is the instruction directly after the 1928 // compare). 1929 1930 // Rotates are expensive instructions. If we're emitting a record-form 1931 // rotate that can just be an andi/andis, we should just emit that. 1932 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1933 unsigned GPRRes = MI->getOperand(0).getReg(); 1934 int64_t SH = MI->getOperand(2).getImm(); 1935 int64_t MB = MI->getOperand(3).getImm(); 1936 int64_t ME = MI->getOperand(4).getImm(); 1937 // We can only do this if both the start and end of the mask are in the 1938 // same halfword. 1939 bool MBInLoHWord = MB >= 16; 1940 bool MEInLoHWord = ME >= 16; 1941 uint64_t Mask = ~0LLU; 1942 1943 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1944 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1945 // The mask value needs to shift right 16 if we're emitting andis. 1946 Mask >>= MBInLoHWord ? 0 : 16; 1947 NewOpC = MIOpC == PPC::RLWINM ? 1948 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) : 1949 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8); 1950 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1951 (ME - MB + 1 == SH) && (MB >= 16)) { 1952 // If we are rotating by the exact number of bits as are in the mask 1953 // and the mask is in the least significant bits of the register, 1954 // that's just an andis. (as long as the GPR result has no uses). 1955 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1956 Mask >>= 16; 1957 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8; 1958 } 1959 // If we've set the mask, we can transform. 1960 if (Mask != ~0LLU) { 1961 MI->RemoveOperand(4); 1962 MI->RemoveOperand(3); 1963 MI->getOperand(2).setImm(Mask); 1964 NumRcRotatesConvertedToRcAnd++; 1965 } 1966 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1967 int64_t MB = MI->getOperand(3).getImm(); 1968 if (MB >= 48) { 1969 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1970 NewOpC = PPC::ANDIo8; 1971 MI->RemoveOperand(3); 1972 MI->getOperand(2).setImm(Mask); 1973 NumRcRotatesConvertedToRcAnd++; 1974 } 1975 } 1976 1977 const MCInstrDesc &NewDesc = get(NewOpC); 1978 MI->setDesc(NewDesc); 1979 1980 if (NewDesc.ImplicitDefs) 1981 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1982 *ImpDefs; ++ImpDefs) 1983 if (!MI->definesRegister(*ImpDefs)) 1984 MI->addOperand(*MI->getParent()->getParent(), 1985 MachineOperand::CreateReg(*ImpDefs, true, true)); 1986 if (NewDesc.ImplicitUses) 1987 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1988 *ImpUses; ++ImpUses) 1989 if (!MI->readsRegister(*ImpUses)) 1990 MI->addOperand(*MI->getParent()->getParent(), 1991 MachineOperand::CreateReg(*ImpUses, false, true)); 1992 } 1993 assert(MI->definesRegister(PPC::CR0) && 1994 "Record-form instruction does not define cr0?"); 1995 1996 // Modify the condition code of operands in OperandsToUpdate. 1997 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1998 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1999 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2000 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2001 2002 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2003 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2004 2005 return true; 2006 } 2007 2008 /// GetInstSize - Return the number of bytes of code the specified 2009 /// instruction may be. This returns the maximum number of bytes. 2010 /// 2011 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2012 unsigned Opcode = MI.getOpcode(); 2013 2014 if (Opcode == PPC::INLINEASM) { 2015 const MachineFunction *MF = MI.getParent()->getParent(); 2016 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2017 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2018 } else if (Opcode == TargetOpcode::STACKMAP) { 2019 StackMapOpers Opers(&MI); 2020 return Opers.getNumPatchBytes(); 2021 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2022 PatchPointOpers Opers(&MI); 2023 return Opers.getNumPatchBytes(); 2024 } else { 2025 return get(Opcode).getSize(); 2026 } 2027 } 2028 2029 std::pair<unsigned, unsigned> 2030 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2031 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2032 return std::make_pair(TF & Mask, TF & ~Mask); 2033 } 2034 2035 ArrayRef<std::pair<unsigned, const char *>> 2036 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2037 using namespace PPCII; 2038 static const std::pair<unsigned, const char *> TargetFlags[] = { 2039 {MO_LO, "ppc-lo"}, 2040 {MO_HA, "ppc-ha"}, 2041 {MO_TPREL_LO, "ppc-tprel-lo"}, 2042 {MO_TPREL_HA, "ppc-tprel-ha"}, 2043 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2044 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2045 {MO_TOC_LO, "ppc-toc-lo"}, 2046 {MO_TLS, "ppc-tls"}}; 2047 return makeArrayRef(TargetFlags); 2048 } 2049 2050 ArrayRef<std::pair<unsigned, const char *>> 2051 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2052 using namespace PPCII; 2053 static const std::pair<unsigned, const char *> TargetFlags[] = { 2054 {MO_PLT, "ppc-plt"}, 2055 {MO_PIC_FLAG, "ppc-pic"}, 2056 {MO_NLP_FLAG, "ppc-nlp"}, 2057 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 2058 return makeArrayRef(TargetFlags); 2059 } 2060 2061 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2062 // The VSX versions have the advantage of a full 64-register target whereas 2063 // the FP ones have the advantage of lower latency and higher throughput. So 2064 // what we are after is using the faster instructions in low register pressure 2065 // situations and using the larger register file in high register pressure 2066 // situations. 2067 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2068 unsigned UpperOpcode, LowerOpcode; 2069 switch (MI.getOpcode()) { 2070 case PPC::DFLOADf32: 2071 UpperOpcode = PPC::LXSSP; 2072 LowerOpcode = PPC::LFS; 2073 break; 2074 case PPC::DFLOADf64: 2075 UpperOpcode = PPC::LXSD; 2076 LowerOpcode = PPC::LFD; 2077 break; 2078 case PPC::DFSTOREf32: 2079 UpperOpcode = PPC::STXSSP; 2080 LowerOpcode = PPC::STFS; 2081 break; 2082 case PPC::DFSTOREf64: 2083 UpperOpcode = PPC::STXSD; 2084 LowerOpcode = PPC::STFD; 2085 break; 2086 case PPC::XFLOADf32: 2087 UpperOpcode = PPC::LXSSPX; 2088 LowerOpcode = PPC::LFSX; 2089 break; 2090 case PPC::XFLOADf64: 2091 UpperOpcode = PPC::LXSDX; 2092 LowerOpcode = PPC::LFDX; 2093 break; 2094 case PPC::XFSTOREf32: 2095 UpperOpcode = PPC::STXSSPX; 2096 LowerOpcode = PPC::STFSX; 2097 break; 2098 case PPC::XFSTOREf64: 2099 UpperOpcode = PPC::STXSDX; 2100 LowerOpcode = PPC::STFDX; 2101 break; 2102 case PPC::LIWAX: 2103 UpperOpcode = PPC::LXSIWAX; 2104 LowerOpcode = PPC::LFIWAX; 2105 break; 2106 case PPC::LIWZX: 2107 UpperOpcode = PPC::LXSIWZX; 2108 LowerOpcode = PPC::LFIWZX; 2109 break; 2110 case PPC::STIWX: 2111 UpperOpcode = PPC::STXSIWX; 2112 LowerOpcode = PPC::STFIWX; 2113 break; 2114 default: 2115 llvm_unreachable("Unknown Operation!"); 2116 } 2117 2118 unsigned TargetReg = MI.getOperand(0).getReg(); 2119 unsigned Opcode; 2120 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2121 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2122 Opcode = LowerOpcode; 2123 else 2124 Opcode = UpperOpcode; 2125 MI.setDesc(get(Opcode)); 2126 return true; 2127 } 2128 2129 static bool isAnImmediateOperand(const MachineOperand &MO) { 2130 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2131 } 2132 2133 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2134 auto &MBB = *MI.getParent(); 2135 auto DL = MI.getDebugLoc(); 2136 2137 switch (MI.getOpcode()) { 2138 case TargetOpcode::LOAD_STACK_GUARD: { 2139 assert(Subtarget.isTargetLinux() && 2140 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2141 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2142 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2143 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2144 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2145 .addImm(Offset) 2146 .addReg(Reg); 2147 return true; 2148 } 2149 case PPC::DFLOADf32: 2150 case PPC::DFLOADf64: 2151 case PPC::DFSTOREf32: 2152 case PPC::DFSTOREf64: { 2153 assert(Subtarget.hasP9Vector() && 2154 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2155 assert(MI.getOperand(2).isReg() && 2156 isAnImmediateOperand(MI.getOperand(1)) && 2157 "D-form op must have register and immediate operands"); 2158 return expandVSXMemPseudo(MI); 2159 } 2160 case PPC::XFLOADf32: 2161 case PPC::XFSTOREf32: 2162 case PPC::LIWAX: 2163 case PPC::LIWZX: 2164 case PPC::STIWX: { 2165 assert(Subtarget.hasP8Vector() && 2166 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2167 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2168 "X-form op must have register and register operands"); 2169 return expandVSXMemPseudo(MI); 2170 } 2171 case PPC::XFLOADf64: 2172 case PPC::XFSTOREf64: { 2173 assert(Subtarget.hasVSX() && 2174 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2175 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2176 "X-form op must have register and register operands"); 2177 return expandVSXMemPseudo(MI); 2178 } 2179 case PPC::SPILLTOVSR_LD: { 2180 unsigned TargetReg = MI.getOperand(0).getReg(); 2181 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2182 MI.setDesc(get(PPC::DFLOADf64)); 2183 return expandPostRAPseudo(MI); 2184 } 2185 else 2186 MI.setDesc(get(PPC::LD)); 2187 return true; 2188 } 2189 case PPC::SPILLTOVSR_ST: { 2190 unsigned SrcReg = MI.getOperand(0).getReg(); 2191 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2192 NumStoreSPILLVSRRCAsVec++; 2193 MI.setDesc(get(PPC::DFSTOREf64)); 2194 return expandPostRAPseudo(MI); 2195 } else { 2196 NumStoreSPILLVSRRCAsGpr++; 2197 MI.setDesc(get(PPC::STD)); 2198 } 2199 return true; 2200 } 2201 case PPC::SPILLTOVSR_LDX: { 2202 unsigned TargetReg = MI.getOperand(0).getReg(); 2203 if (PPC::VSFRCRegClass.contains(TargetReg)) 2204 MI.setDesc(get(PPC::LXSDX)); 2205 else 2206 MI.setDesc(get(PPC::LDX)); 2207 return true; 2208 } 2209 case PPC::SPILLTOVSR_STX: { 2210 unsigned SrcReg = MI.getOperand(0).getReg(); 2211 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2212 NumStoreSPILLVSRRCAsVec++; 2213 MI.setDesc(get(PPC::STXSDX)); 2214 } else { 2215 NumStoreSPILLVSRRCAsGpr++; 2216 MI.setDesc(get(PPC::STDX)); 2217 } 2218 return true; 2219 } 2220 2221 case PPC::CFENCE8: { 2222 auto Val = MI.getOperand(0).getReg(); 2223 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2224 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2225 .addImm(PPC::PRED_NE_MINUS) 2226 .addReg(PPC::CR7) 2227 .addImm(1); 2228 MI.setDesc(get(PPC::ISYNC)); 2229 MI.RemoveOperand(0); 2230 return true; 2231 } 2232 } 2233 return false; 2234 } 2235 2236 // Essentially a compile-time implementation of a compare->isel sequence. 2237 // It takes two constants to compare, along with the true/false registers 2238 // and the comparison type (as a subreg to a CR field) and returns one 2239 // of the true/false registers, depending on the comparison results. 2240 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2241 unsigned TrueReg, unsigned FalseReg, 2242 unsigned CRSubReg) { 2243 // Signed comparisons. The immediates are assumed to be sign-extended. 2244 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2245 switch (CRSubReg) { 2246 default: llvm_unreachable("Unknown integer comparison type."); 2247 case PPC::sub_lt: 2248 return Imm1 < Imm2 ? TrueReg : FalseReg; 2249 case PPC::sub_gt: 2250 return Imm1 > Imm2 ? TrueReg : FalseReg; 2251 case PPC::sub_eq: 2252 return Imm1 == Imm2 ? TrueReg : FalseReg; 2253 } 2254 } 2255 // Unsigned comparisons. 2256 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2257 switch (CRSubReg) { 2258 default: llvm_unreachable("Unknown integer comparison type."); 2259 case PPC::sub_lt: 2260 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2261 case PPC::sub_gt: 2262 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2263 case PPC::sub_eq: 2264 return Imm1 == Imm2 ? TrueReg : FalseReg; 2265 } 2266 } 2267 return PPC::NoRegister; 2268 } 2269 2270 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2271 unsigned OpNo, 2272 int64_t Imm) const { 2273 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2274 // Replace the REG with the Immediate. 2275 unsigned InUseReg = MI.getOperand(OpNo).getReg(); 2276 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2277 2278 if (empty(MI.implicit_operands())) 2279 return; 2280 2281 // We need to make sure that the MI didn't have any implicit use 2282 // of this REG any more. 2283 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2284 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2285 if (UseOpIdx >= 0) { 2286 MachineOperand &MO = MI.getOperand(UseOpIdx); 2287 if (MO.isImplicit()) 2288 // The operands must always be in the following order: 2289 // - explicit reg defs, 2290 // - other explicit operands (reg uses, immediates, etc.), 2291 // - implicit reg defs 2292 // - implicit reg uses 2293 // Therefore, removing the implicit operand won't change the explicit 2294 // operands layout. 2295 MI.RemoveOperand(UseOpIdx); 2296 } 2297 } 2298 2299 // Replace an instruction with one that materializes a constant (and sets 2300 // CR0 if the original instruction was a record-form instruction). 2301 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2302 const LoadImmediateInfo &LII) const { 2303 // Remove existing operands. 2304 int OperandToKeep = LII.SetCR ? 1 : 0; 2305 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2306 MI.RemoveOperand(i); 2307 2308 // Replace the instruction. 2309 if (LII.SetCR) { 2310 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo)); 2311 // Set the immediate. 2312 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2313 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2314 return; 2315 } 2316 else 2317 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2318 2319 // Set the immediate. 2320 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2321 .addImm(LII.Imm); 2322 } 2323 2324 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2325 MachineInstr &MI, 2326 unsigned &OpNoForForwarding, 2327 bool &SeenIntermediateUse) const { 2328 OpNoForForwarding = ~0U; 2329 MachineInstr *DefMI = nullptr; 2330 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2331 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2332 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2333 // within the basic block to see if the register is defined using an LI/LI8. 2334 if (MRI->isSSA()) { 2335 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2336 if (!MI.getOperand(i).isReg()) 2337 continue; 2338 unsigned Reg = MI.getOperand(i).getReg(); 2339 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 2340 continue; 2341 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2342 if (TargetRegisterInfo::isVirtualRegister(TrueReg)) { 2343 DefMI = MRI->getVRegDef(TrueReg); 2344 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2345 OpNoForForwarding = i; 2346 break; 2347 } 2348 } 2349 } 2350 } else { 2351 // Looking back through the definition for each operand could be expensive, 2352 // so exit early if this isn't an instruction that either has an immediate 2353 // form or is already an immediate form that we can handle. 2354 ImmInstrInfo III; 2355 unsigned Opc = MI.getOpcode(); 2356 bool ConvertibleImmForm = 2357 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || 2358 Opc == PPC::CMPDI || Opc == PPC::CMPLDI || 2359 Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2360 Opc == PPC::ORI || Opc == PPC::ORI8 || 2361 Opc == PPC::XORI || Opc == PPC::XORI8 || 2362 Opc == PPC::RLDICL || Opc == PPC::RLDICLo || 2363 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2364 Opc == PPC::RLWINM || Opc == PPC::RLWINMo || 2365 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2366 if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm) 2367 return nullptr; 2368 2369 // Don't convert or %X, %Y, %Y since that's just a register move. 2370 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2371 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2372 return nullptr; 2373 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2374 MachineOperand &MO = MI.getOperand(i); 2375 SeenIntermediateUse = false; 2376 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2377 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2378 It++; 2379 unsigned Reg = MI.getOperand(i).getReg(); 2380 2381 // Is this register defined by some form of add-immediate (including 2382 // load-immediate) within this basic block? 2383 for ( ; It != E; ++It) { 2384 if (It->modifiesRegister(Reg, &getRegisterInfo())) { 2385 switch (It->getOpcode()) { 2386 default: break; 2387 case PPC::LI: 2388 case PPC::LI8: 2389 case PPC::ADDItocL: 2390 case PPC::ADDI: 2391 case PPC::ADDI8: 2392 OpNoForForwarding = i; 2393 return &*It; 2394 } 2395 break; 2396 } else if (It->readsRegister(Reg, &getRegisterInfo())) 2397 // If we see another use of this reg between the def and the MI, 2398 // we want to flat it so the def isn't deleted. 2399 SeenIntermediateUse = true; 2400 } 2401 } 2402 } 2403 } 2404 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2405 } 2406 2407 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2408 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2409 // Power 8 2410 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2411 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2412 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2413 PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW}, 2414 // Power 9 2415 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2416 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2417 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2418 PPC::SPILLTOVSR_ST}}; 2419 2420 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2421 } 2422 2423 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2424 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2425 // Power 8 2426 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2427 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2428 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2429 PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ}, 2430 // Power 9 2431 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2432 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2433 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2434 PPC::SPILLTOVSR_LD}}; 2435 2436 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2437 } 2438 2439 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2440 unsigned RegNo) const { 2441 const MachineRegisterInfo &MRI = 2442 StartMI.getParent()->getParent()->getRegInfo(); 2443 if (MRI.isSSA()) 2444 return; 2445 2446 // Instructions between [StartMI, EndMI] should be in same basic block. 2447 assert((StartMI.getParent() == EndMI.getParent()) && 2448 "Instructions are not in same basic block"); 2449 2450 bool IsKillSet = false; 2451 2452 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2453 MachineOperand &MO = MI.getOperand(Index); 2454 if (MO.isReg() && MO.isUse() && MO.isKill() && 2455 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2456 MO.setIsKill(false); 2457 }; 2458 2459 // Set killed flag for EndMI. 2460 // No need to do anything if EndMI defines RegNo. 2461 int UseIndex = 2462 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2463 if (UseIndex != -1) { 2464 EndMI.getOperand(UseIndex).setIsKill(true); 2465 IsKillSet = true; 2466 // Clear killed flag for other EndMI operands related to RegNo. In some 2467 // upexpected cases, killed may be set multiple times for same register 2468 // operand in same MI. 2469 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2470 if (i != UseIndex) 2471 clearOperandKillInfo(EndMI, i); 2472 } 2473 2474 // Walking the inst in reverse order (EndMI -> StartMI]. 2475 MachineBasicBlock::reverse_iterator It = EndMI; 2476 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2477 // EndMI has been handled above, skip it here. 2478 It++; 2479 MachineOperand *MO = nullptr; 2480 for (; It != E; ++It) { 2481 // Skip insturctions which could not be a def/use of RegNo. 2482 if (It->isDebugInstr() || It->isPosition()) 2483 continue; 2484 2485 // Clear killed flag for all It operands related to RegNo. In some 2486 // upexpected cases, killed may be set multiple times for same register 2487 // operand in same MI. 2488 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2489 clearOperandKillInfo(*It, i); 2490 2491 // If killed is not set, set killed for its last use or set dead for its def 2492 // if no use found. 2493 if (!IsKillSet) { 2494 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2495 // Use found, set it killed. 2496 IsKillSet = true; 2497 MO->setIsKill(true); 2498 continue; 2499 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2500 &getRegisterInfo()))) { 2501 // No use found, set dead for its def. 2502 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2503 MO->setIsDead(true); 2504 break; 2505 } 2506 } 2507 2508 if ((&*It) == &StartMI) 2509 break; 2510 } 2511 // Ensure RegMo liveness is killed after EndMI. 2512 assert((IsKillSet || (MO && MO->isDead())) && 2513 "RegNo should be killed or dead"); 2514 } 2515 2516 // If this instruction has an immediate form and one of its operands is a 2517 // result of a load-immediate or an add-immediate, convert it to 2518 // the immediate form if the constant is in range. 2519 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2520 MachineInstr **KilledDef) const { 2521 MachineFunction *MF = MI.getParent()->getParent(); 2522 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2523 bool PostRA = !MRI->isSSA(); 2524 bool SeenIntermediateUse = true; 2525 unsigned ForwardingOperand = ~0U; 2526 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2527 SeenIntermediateUse); 2528 if (!DefMI) 2529 return false; 2530 assert(ForwardingOperand < MI.getNumOperands() && 2531 "The forwarding operand needs to be valid at this point"); 2532 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2533 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2534 unsigned ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2535 if (KilledDef && KillFwdDefMI) 2536 *KilledDef = DefMI; 2537 2538 ImmInstrInfo III; 2539 bool HasImmForm = instrHasImmForm(MI, III, PostRA); 2540 // If this is a reg+reg instruction that has a reg+imm form, 2541 // and one of the operands is produced by an add-immediate, 2542 // try to convert it. 2543 if (HasImmForm && 2544 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2545 KillFwdDefMI)) 2546 return true; 2547 2548 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2549 !DefMI->getOperand(1).isImm()) 2550 return false; 2551 2552 int64_t Immediate = DefMI->getOperand(1).getImm(); 2553 // Sign-extend to 64-bits. 2554 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2555 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2556 2557 // If this is a reg+reg instruction that has a reg+imm form, 2558 // and one of the operands is produced by LI, convert it now. 2559 if (HasImmForm) 2560 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2561 2562 bool ReplaceWithLI = false; 2563 bool Is64BitLI = false; 2564 int64_t NewImm = 0; 2565 bool SetCR = false; 2566 unsigned Opc = MI.getOpcode(); 2567 switch (Opc) { 2568 default: return false; 2569 2570 // FIXME: Any branches conditional on such a comparison can be made 2571 // unconditional. At this time, this happens too infrequently to be worth 2572 // the implementation effort, but if that ever changes, we could convert 2573 // such a pattern here. 2574 case PPC::CMPWI: 2575 case PPC::CMPLWI: 2576 case PPC::CMPDI: 2577 case PPC::CMPLDI: { 2578 // Doing this post-RA would require dataflow analysis to reliably find uses 2579 // of the CR register set by the compare. 2580 // No need to fixup killed/dead flag since this transformation is only valid 2581 // before RA. 2582 if (PostRA) 2583 return false; 2584 // If a compare-immediate is fed by an immediate and is itself an input of 2585 // an ISEL (the most common case) into a COPY of the correct register. 2586 bool Changed = false; 2587 unsigned DefReg = MI.getOperand(0).getReg(); 2588 int64_t Comparand = MI.getOperand(2).getImm(); 2589 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2590 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2591 2592 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2593 unsigned UseOpc = CompareUseMI.getOpcode(); 2594 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2595 continue; 2596 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2597 unsigned TrueReg = CompareUseMI.getOperand(1).getReg(); 2598 unsigned FalseReg = CompareUseMI.getOperand(2).getReg(); 2599 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2600 FalseReg, CRSubReg); 2601 if (RegToCopy == PPC::NoRegister) 2602 continue; 2603 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2604 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2605 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2606 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2607 CompareUseMI.RemoveOperand(3); 2608 CompareUseMI.RemoveOperand(2); 2609 continue; 2610 } 2611 LLVM_DEBUG( 2612 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2613 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2614 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2615 // Convert to copy and remove unneeded operands. 2616 CompareUseMI.setDesc(get(PPC::COPY)); 2617 CompareUseMI.RemoveOperand(3); 2618 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2619 CmpIselsConverted++; 2620 Changed = true; 2621 LLVM_DEBUG(CompareUseMI.dump()); 2622 } 2623 if (Changed) 2624 return true; 2625 // This may end up incremented multiple times since this function is called 2626 // during a fixed-point transformation, but it is only meant to indicate the 2627 // presence of this opportunity. 2628 MissedConvertibleImmediateInstrs++; 2629 return false; 2630 } 2631 2632 // Immediate forms - may simply be convertable to an LI. 2633 case PPC::ADDI: 2634 case PPC::ADDI8: { 2635 // Does the sum fit in a 16-bit signed field? 2636 int64_t Addend = MI.getOperand(2).getImm(); 2637 if (isInt<16>(Addend + SExtImm)) { 2638 ReplaceWithLI = true; 2639 Is64BitLI = Opc == PPC::ADDI8; 2640 NewImm = Addend + SExtImm; 2641 break; 2642 } 2643 return false; 2644 } 2645 case PPC::RLDICL: 2646 case PPC::RLDICLo: 2647 case PPC::RLDICL_32: 2648 case PPC::RLDICL_32_64: { 2649 // Use APInt's rotate function. 2650 int64_t SH = MI.getOperand(2).getImm(); 2651 int64_t MB = MI.getOperand(3).getImm(); 2652 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ? 2653 64 : 32, SExtImm, true); 2654 InVal = InVal.rotl(SH); 2655 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2656 InVal &= Mask; 2657 // Can't replace negative values with an LI as that will sign-extend 2658 // and not clear the left bits. If we're setting the CR bit, we will use 2659 // ANDIo which won't sign extend, so that's safe. 2660 if (isUInt<15>(InVal.getSExtValue()) || 2661 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) { 2662 ReplaceWithLI = true; 2663 Is64BitLI = Opc != PPC::RLDICL_32; 2664 NewImm = InVal.getSExtValue(); 2665 SetCR = Opc == PPC::RLDICLo; 2666 break; 2667 } 2668 return false; 2669 } 2670 case PPC::RLWINM: 2671 case PPC::RLWINM8: 2672 case PPC::RLWINMo: 2673 case PPC::RLWINM8o: { 2674 int64_t SH = MI.getOperand(2).getImm(); 2675 int64_t MB = MI.getOperand(3).getImm(); 2676 int64_t ME = MI.getOperand(4).getImm(); 2677 APInt InVal(32, SExtImm, true); 2678 InVal = InVal.rotl(SH); 2679 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2680 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2681 InVal &= Mask; 2682 // Can't replace negative values with an LI as that will sign-extend 2683 // and not clear the left bits. If we're setting the CR bit, we will use 2684 // ANDIo which won't sign extend, so that's safe. 2685 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2686 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) && 2687 isUInt<16>(InVal.getSExtValue())); 2688 if (ValueFits) { 2689 ReplaceWithLI = true; 2690 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2691 NewImm = InVal.getSExtValue(); 2692 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o; 2693 break; 2694 } 2695 return false; 2696 } 2697 case PPC::ORI: 2698 case PPC::ORI8: 2699 case PPC::XORI: 2700 case PPC::XORI8: { 2701 int64_t LogicalImm = MI.getOperand(2).getImm(); 2702 int64_t Result = 0; 2703 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2704 Result = LogicalImm | SExtImm; 2705 else 2706 Result = LogicalImm ^ SExtImm; 2707 if (isInt<16>(Result)) { 2708 ReplaceWithLI = true; 2709 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2710 NewImm = Result; 2711 break; 2712 } 2713 return false; 2714 } 2715 } 2716 2717 if (ReplaceWithLI) { 2718 // We need to be careful with CR-setting instructions we're replacing. 2719 if (SetCR) { 2720 // We don't know anything about uses when we're out of SSA, so only 2721 // replace if the new immediate will be reproduced. 2722 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2723 if (PostRA && ImmChanged) 2724 return false; 2725 2726 if (!PostRA) { 2727 // If the defining load-immediate has no other uses, we can just replace 2728 // the immediate with the new immediate. 2729 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2730 DefMI->getOperand(1).setImm(NewImm); 2731 2732 // If we're not using the GPR result of the CR-setting instruction, we 2733 // just need to and with zero/non-zero depending on the new immediate. 2734 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2735 if (NewImm) { 2736 assert(Immediate && "Transformation converted zero to non-zero?"); 2737 NewImm = Immediate; 2738 } 2739 } 2740 else if (ImmChanged) 2741 return false; 2742 } 2743 } 2744 2745 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 2746 LLVM_DEBUG(MI.dump()); 2747 LLVM_DEBUG(dbgs() << "Fed by:\n"); 2748 LLVM_DEBUG(DefMI->dump()); 2749 LoadImmediateInfo LII; 2750 LII.Imm = NewImm; 2751 LII.Is64Bit = Is64BitLI; 2752 LII.SetCR = SetCR; 2753 // If we're setting the CR, the original load-immediate must be kept (as an 2754 // operand to ANDIo/ANDI8o). 2755 if (KilledDef && SetCR) 2756 *KilledDef = nullptr; 2757 replaceInstrWithLI(MI, LII); 2758 2759 // Fixup killed/dead flag after transformation. 2760 // Pattern: 2761 // ForwardingOperandReg = LI imm1 2762 // y = op2 imm2, ForwardingOperandReg(killed) 2763 if (IsForwardingOperandKilled) 2764 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 2765 2766 LLVM_DEBUG(dbgs() << "With:\n"); 2767 LLVM_DEBUG(MI.dump()); 2768 return true; 2769 } 2770 return false; 2771 } 2772 2773 static bool isVFReg(unsigned Reg) { 2774 return PPC::VFRCRegClass.contains(Reg); 2775 } 2776 2777 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI, 2778 ImmInstrInfo &III, bool PostRA) const { 2779 unsigned Opc = MI.getOpcode(); 2780 // The vast majority of the instructions would need their operand 2 replaced 2781 // with an immediate when switching to the reg+imm form. A marked exception 2782 // are the update form loads/stores for which a constant operand 2 would need 2783 // to turn into a displacement and move operand 1 to the operand 2 position. 2784 III.ImmOpNo = 2; 2785 III.OpNoForForwarding = 2; 2786 III.ImmWidth = 16; 2787 III.ImmMustBeMultipleOf = 1; 2788 III.TruncateImmTo = 0; 2789 III.IsSummingOperands = false; 2790 switch (Opc) { 2791 default: return false; 2792 case PPC::ADD4: 2793 case PPC::ADD8: 2794 III.SignedImm = true; 2795 III.ZeroIsSpecialOrig = 0; 2796 III.ZeroIsSpecialNew = 1; 2797 III.IsCommutative = true; 2798 III.IsSummingOperands = true; 2799 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 2800 break; 2801 case PPC::ADDC: 2802 case PPC::ADDC8: 2803 III.SignedImm = true; 2804 III.ZeroIsSpecialOrig = 0; 2805 III.ZeroIsSpecialNew = 0; 2806 III.IsCommutative = true; 2807 III.IsSummingOperands = true; 2808 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 2809 break; 2810 case PPC::ADDCo: 2811 III.SignedImm = true; 2812 III.ZeroIsSpecialOrig = 0; 2813 III.ZeroIsSpecialNew = 0; 2814 III.IsCommutative = true; 2815 III.IsSummingOperands = true; 2816 III.ImmOpcode = PPC::ADDICo; 2817 break; 2818 case PPC::SUBFC: 2819 case PPC::SUBFC8: 2820 III.SignedImm = true; 2821 III.ZeroIsSpecialOrig = 0; 2822 III.ZeroIsSpecialNew = 0; 2823 III.IsCommutative = false; 2824 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 2825 break; 2826 case PPC::CMPW: 2827 case PPC::CMPD: 2828 III.SignedImm = true; 2829 III.ZeroIsSpecialOrig = 0; 2830 III.ZeroIsSpecialNew = 0; 2831 III.IsCommutative = false; 2832 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 2833 break; 2834 case PPC::CMPLW: 2835 case PPC::CMPLD: 2836 III.SignedImm = false; 2837 III.ZeroIsSpecialOrig = 0; 2838 III.ZeroIsSpecialNew = 0; 2839 III.IsCommutative = false; 2840 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 2841 break; 2842 case PPC::ANDo: 2843 case PPC::AND8o: 2844 case PPC::OR: 2845 case PPC::OR8: 2846 case PPC::XOR: 2847 case PPC::XOR8: 2848 III.SignedImm = false; 2849 III.ZeroIsSpecialOrig = 0; 2850 III.ZeroIsSpecialNew = 0; 2851 III.IsCommutative = true; 2852 switch(Opc) { 2853 default: llvm_unreachable("Unknown opcode"); 2854 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break; 2855 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break; 2856 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 2857 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 2858 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 2859 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 2860 } 2861 break; 2862 case PPC::RLWNM: 2863 case PPC::RLWNM8: 2864 case PPC::RLWNMo: 2865 case PPC::RLWNM8o: 2866 case PPC::SLW: 2867 case PPC::SLW8: 2868 case PPC::SLWo: 2869 case PPC::SLW8o: 2870 case PPC::SRW: 2871 case PPC::SRW8: 2872 case PPC::SRWo: 2873 case PPC::SRW8o: 2874 case PPC::SRAW: 2875 case PPC::SRAWo: 2876 III.SignedImm = false; 2877 III.ZeroIsSpecialOrig = 0; 2878 III.ZeroIsSpecialNew = 0; 2879 III.IsCommutative = false; 2880 // This isn't actually true, but the instructions ignore any of the 2881 // upper bits, so any immediate loaded with an LI is acceptable. 2882 // This does not apply to shift right algebraic because a value 2883 // out of range will produce a -1/0. 2884 III.ImmWidth = 16; 2885 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || 2886 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o) 2887 III.TruncateImmTo = 5; 2888 else 2889 III.TruncateImmTo = 6; 2890 switch(Opc) { 2891 default: llvm_unreachable("Unknown opcode"); 2892 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 2893 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 2894 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break; 2895 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break; 2896 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 2897 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 2898 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break; 2899 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2900 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 2901 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 2902 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break; 2903 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2904 case PPC::SRAW: 2905 III.ImmWidth = 5; 2906 III.TruncateImmTo = 0; 2907 III.ImmOpcode = PPC::SRAWI; 2908 break; 2909 case PPC::SRAWo: 2910 III.ImmWidth = 5; 2911 III.TruncateImmTo = 0; 2912 III.ImmOpcode = PPC::SRAWIo; 2913 break; 2914 } 2915 break; 2916 case PPC::RLDCL: 2917 case PPC::RLDCLo: 2918 case PPC::RLDCR: 2919 case PPC::RLDCRo: 2920 case PPC::SLD: 2921 case PPC::SLDo: 2922 case PPC::SRD: 2923 case PPC::SRDo: 2924 case PPC::SRAD: 2925 case PPC::SRADo: 2926 III.SignedImm = false; 2927 III.ZeroIsSpecialOrig = 0; 2928 III.ZeroIsSpecialNew = 0; 2929 III.IsCommutative = false; 2930 // This isn't actually true, but the instructions ignore any of the 2931 // upper bits, so any immediate loaded with an LI is acceptable. 2932 // This does not apply to shift right algebraic because a value 2933 // out of range will produce a -1/0. 2934 III.ImmWidth = 16; 2935 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo || 2936 Opc == PPC::RLDCR || Opc == PPC::RLDCRo) 2937 III.TruncateImmTo = 6; 2938 else 2939 III.TruncateImmTo = 7; 2940 switch(Opc) { 2941 default: llvm_unreachable("Unknown opcode"); 2942 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 2943 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break; 2944 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 2945 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break; 2946 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 2947 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break; 2948 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 2949 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break; 2950 case PPC::SRAD: 2951 III.ImmWidth = 6; 2952 III.TruncateImmTo = 0; 2953 III.ImmOpcode = PPC::SRADI; 2954 break; 2955 case PPC::SRADo: 2956 III.ImmWidth = 6; 2957 III.TruncateImmTo = 0; 2958 III.ImmOpcode = PPC::SRADIo; 2959 break; 2960 } 2961 break; 2962 // Loads and stores: 2963 case PPC::LBZX: 2964 case PPC::LBZX8: 2965 case PPC::LHZX: 2966 case PPC::LHZX8: 2967 case PPC::LHAX: 2968 case PPC::LHAX8: 2969 case PPC::LWZX: 2970 case PPC::LWZX8: 2971 case PPC::LWAX: 2972 case PPC::LDX: 2973 case PPC::LFSX: 2974 case PPC::LFDX: 2975 case PPC::STBX: 2976 case PPC::STBX8: 2977 case PPC::STHX: 2978 case PPC::STHX8: 2979 case PPC::STWX: 2980 case PPC::STWX8: 2981 case PPC::STDX: 2982 case PPC::STFSX: 2983 case PPC::STFDX: 2984 III.SignedImm = true; 2985 III.ZeroIsSpecialOrig = 1; 2986 III.ZeroIsSpecialNew = 2; 2987 III.IsCommutative = true; 2988 III.IsSummingOperands = true; 2989 III.ImmOpNo = 1; 2990 III.OpNoForForwarding = 2; 2991 switch(Opc) { 2992 default: llvm_unreachable("Unknown opcode"); 2993 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 2994 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 2995 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 2996 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 2997 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 2998 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 2999 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3000 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3001 case PPC::LWAX: 3002 III.ImmOpcode = PPC::LWA; 3003 III.ImmMustBeMultipleOf = 4; 3004 break; 3005 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3006 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3007 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3008 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3009 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3010 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3011 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3012 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3013 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3014 case PPC::STDX: 3015 III.ImmOpcode = PPC::STD; 3016 III.ImmMustBeMultipleOf = 4; 3017 break; 3018 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3019 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3020 } 3021 break; 3022 case PPC::LBZUX: 3023 case PPC::LBZUX8: 3024 case PPC::LHZUX: 3025 case PPC::LHZUX8: 3026 case PPC::LHAUX: 3027 case PPC::LHAUX8: 3028 case PPC::LWZUX: 3029 case PPC::LWZUX8: 3030 case PPC::LDUX: 3031 case PPC::LFSUX: 3032 case PPC::LFDUX: 3033 case PPC::STBUX: 3034 case PPC::STBUX8: 3035 case PPC::STHUX: 3036 case PPC::STHUX8: 3037 case PPC::STWUX: 3038 case PPC::STWUX8: 3039 case PPC::STDUX: 3040 case PPC::STFSUX: 3041 case PPC::STFDUX: 3042 III.SignedImm = true; 3043 III.ZeroIsSpecialOrig = 2; 3044 III.ZeroIsSpecialNew = 3; 3045 III.IsCommutative = false; 3046 III.IsSummingOperands = true; 3047 III.ImmOpNo = 2; 3048 III.OpNoForForwarding = 3; 3049 switch(Opc) { 3050 default: llvm_unreachable("Unknown opcode"); 3051 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3052 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3053 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3054 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3055 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3056 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3057 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3058 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3059 case PPC::LDUX: 3060 III.ImmOpcode = PPC::LDU; 3061 III.ImmMustBeMultipleOf = 4; 3062 break; 3063 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3064 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3065 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3066 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3067 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3068 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3069 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3070 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3071 case PPC::STDUX: 3072 III.ImmOpcode = PPC::STDU; 3073 III.ImmMustBeMultipleOf = 4; 3074 break; 3075 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3076 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3077 } 3078 break; 3079 // Power9 and up only. For some of these, the X-Form version has access to all 3080 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3081 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3082 // into or stored from is one of the VR registers. 3083 case PPC::LXVX: 3084 case PPC::LXSSPX: 3085 case PPC::LXSDX: 3086 case PPC::STXVX: 3087 case PPC::STXSSPX: 3088 case PPC::STXSDX: 3089 case PPC::XFLOADf32: 3090 case PPC::XFLOADf64: 3091 case PPC::XFSTOREf32: 3092 case PPC::XFSTOREf64: 3093 if (!Subtarget.hasP9Vector()) 3094 return false; 3095 III.SignedImm = true; 3096 III.ZeroIsSpecialOrig = 1; 3097 III.ZeroIsSpecialNew = 2; 3098 III.IsCommutative = true; 3099 III.IsSummingOperands = true; 3100 III.ImmOpNo = 1; 3101 III.OpNoForForwarding = 2; 3102 III.ImmMustBeMultipleOf = 4; 3103 switch(Opc) { 3104 default: llvm_unreachable("Unknown opcode"); 3105 case PPC::LXVX: 3106 III.ImmOpcode = PPC::LXV; 3107 III.ImmMustBeMultipleOf = 16; 3108 break; 3109 case PPC::LXSSPX: 3110 if (PostRA) { 3111 if (isVFReg(MI.getOperand(0).getReg())) 3112 III.ImmOpcode = PPC::LXSSP; 3113 else { 3114 III.ImmOpcode = PPC::LFS; 3115 III.ImmMustBeMultipleOf = 1; 3116 } 3117 break; 3118 } 3119 LLVM_FALLTHROUGH; 3120 case PPC::XFLOADf32: 3121 III.ImmOpcode = PPC::DFLOADf32; 3122 break; 3123 case PPC::LXSDX: 3124 if (PostRA) { 3125 if (isVFReg(MI.getOperand(0).getReg())) 3126 III.ImmOpcode = PPC::LXSD; 3127 else { 3128 III.ImmOpcode = PPC::LFD; 3129 III.ImmMustBeMultipleOf = 1; 3130 } 3131 break; 3132 } 3133 LLVM_FALLTHROUGH; 3134 case PPC::XFLOADf64: 3135 III.ImmOpcode = PPC::DFLOADf64; 3136 break; 3137 case PPC::STXVX: 3138 III.ImmOpcode = PPC::STXV; 3139 III.ImmMustBeMultipleOf = 16; 3140 break; 3141 case PPC::STXSSPX: 3142 if (PostRA) { 3143 if (isVFReg(MI.getOperand(0).getReg())) 3144 III.ImmOpcode = PPC::STXSSP; 3145 else { 3146 III.ImmOpcode = PPC::STFS; 3147 III.ImmMustBeMultipleOf = 1; 3148 } 3149 break; 3150 } 3151 LLVM_FALLTHROUGH; 3152 case PPC::XFSTOREf32: 3153 III.ImmOpcode = PPC::DFSTOREf32; 3154 break; 3155 case PPC::STXSDX: 3156 if (PostRA) { 3157 if (isVFReg(MI.getOperand(0).getReg())) 3158 III.ImmOpcode = PPC::STXSD; 3159 else { 3160 III.ImmOpcode = PPC::STFD; 3161 III.ImmMustBeMultipleOf = 1; 3162 } 3163 break; 3164 } 3165 LLVM_FALLTHROUGH; 3166 case PPC::XFSTOREf64: 3167 III.ImmOpcode = PPC::DFSTOREf64; 3168 break; 3169 } 3170 break; 3171 } 3172 return true; 3173 } 3174 3175 // Utility function for swaping two arbitrary operands of an instruction. 3176 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3177 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3178 3179 unsigned MaxOp = std::max(Op1, Op2); 3180 unsigned MinOp = std::min(Op1, Op2); 3181 MachineOperand MOp1 = MI.getOperand(MinOp); 3182 MachineOperand MOp2 = MI.getOperand(MaxOp); 3183 MI.RemoveOperand(std::max(Op1, Op2)); 3184 MI.RemoveOperand(std::min(Op1, Op2)); 3185 3186 // If the operands we are swapping are the two at the end (the common case) 3187 // we can just remove both and add them in the opposite order. 3188 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3189 MI.addOperand(MOp2); 3190 MI.addOperand(MOp1); 3191 } else { 3192 // Store all operands in a temporary vector, remove them and re-add in the 3193 // right order. 3194 SmallVector<MachineOperand, 2> MOps; 3195 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3196 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3197 MOps.push_back(MI.getOperand(i)); 3198 MI.RemoveOperand(i); 3199 } 3200 // MOp2 needs to be added next. 3201 MI.addOperand(MOp2); 3202 // Now add the rest. 3203 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3204 if (i == MaxOp) 3205 MI.addOperand(MOp1); 3206 else { 3207 MI.addOperand(MOps.back()); 3208 MOps.pop_back(); 3209 } 3210 } 3211 } 3212 } 3213 3214 // Check if the 'MI' that has the index OpNoForForwarding 3215 // meets the requirement described in the ImmInstrInfo. 3216 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3217 const ImmInstrInfo &III, 3218 unsigned OpNoForForwarding 3219 ) const { 3220 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3221 // would not work pre-RA, we can only do the check post RA. 3222 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3223 if (MRI.isSSA()) 3224 return false; 3225 3226 // Cannot do the transform if MI isn't summing the operands. 3227 if (!III.IsSummingOperands) 3228 return false; 3229 3230 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3231 if (!III.ZeroIsSpecialOrig) 3232 return false; 3233 3234 // We cannot do the transform if the operand we are trying to replace 3235 // isn't the same as the operand the instruction allows. 3236 if (OpNoForForwarding != III.OpNoForForwarding) 3237 return false; 3238 3239 // Check if the instruction we are trying to transform really has 3240 // the special zero register as its operand. 3241 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3242 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3243 return false; 3244 3245 // This machine instruction is convertible if it is, 3246 // 1. summing the operands. 3247 // 2. one of the operands is special zero register. 3248 // 3. the operand we are trying to replace is allowed by the MI. 3249 return true; 3250 } 3251 3252 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3253 // accordingly. 3254 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3255 const ImmInstrInfo &III, 3256 MachineOperand *&ImmMO, 3257 MachineOperand *&RegMO) const { 3258 unsigned Opc = DefMI.getOpcode(); 3259 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3260 return false; 3261 3262 assert(DefMI.getNumOperands() >= 3 && 3263 "Add inst must have at least three operands"); 3264 RegMO = &DefMI.getOperand(1); 3265 ImmMO = &DefMI.getOperand(2); 3266 3267 // This DefMI is elgible for forwarding if it is: 3268 // 1. add inst 3269 // 2. one of the operands is Imm/CPI/Global. 3270 return isAnImmediateOperand(*ImmMO); 3271 } 3272 3273 bool PPCInstrInfo::isRegElgibleForForwarding( 3274 const MachineOperand &RegMO, const MachineInstr &DefMI, 3275 const MachineInstr &MI, bool KillDefMI, 3276 bool &IsFwdFeederRegKilled) const { 3277 // x = addi y, imm 3278 // ... 3279 // z = lfdx 0, x -> z = lfd imm(y) 3280 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3281 // of "y" between the DEF of "x" and "z". 3282 // The query is only valid post RA. 3283 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3284 if (MRI.isSSA()) 3285 return false; 3286 3287 unsigned Reg = RegMO.getReg(); 3288 3289 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3290 MachineBasicBlock::const_reverse_iterator It = MI; 3291 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3292 It++; 3293 for (; It != E; ++It) { 3294 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3295 return false; 3296 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3297 IsFwdFeederRegKilled = true; 3298 // Made it to DefMI without encountering a clobber. 3299 if ((&*It) == &DefMI) 3300 break; 3301 } 3302 assert((&*It) == &DefMI && "DefMI is missing"); 3303 3304 // If DefMI also defines the register to be forwarded, we can only forward it 3305 // if DefMI is being erased. 3306 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3307 return KillDefMI; 3308 3309 return true; 3310 } 3311 3312 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3313 const MachineInstr &DefMI, 3314 const ImmInstrInfo &III, 3315 int64_t &Imm) const { 3316 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3317 if (DefMI.getOpcode() == PPC::ADDItocL) { 3318 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3319 // However, we know that, it is 16-bit width, and has the alignment of 4. 3320 // Check if the instruction met the requirement. 3321 if (III.ImmMustBeMultipleOf > 4 || 3322 III.TruncateImmTo || III.ImmWidth != 16) 3323 return false; 3324 3325 // Going from XForm to DForm loads means that the displacement needs to be 3326 // not just an immediate but also a multiple of 4, or 16 depending on the 3327 // load. A DForm load cannot be represented if it is a multiple of say 2. 3328 // XForm loads do not have this restriction. 3329 if (ImmMO.isGlobal() && 3330 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3331 return false; 3332 3333 return true; 3334 } 3335 3336 if (ImmMO.isImm()) { 3337 // It is Imm, we need to check if the Imm fit the range. 3338 int64_t Immediate = ImmMO.getImm(); 3339 // Sign-extend to 64-bits. 3340 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3341 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3342 3343 if (Imm % III.ImmMustBeMultipleOf) 3344 return false; 3345 if (III.TruncateImmTo) 3346 Imm &= ((1 << III.TruncateImmTo) - 1); 3347 if (III.SignedImm) { 3348 APInt ActualValue(64, Imm, true); 3349 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3350 return false; 3351 } else { 3352 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3353 if ((uint64_t)Imm > UnsignedMax) 3354 return false; 3355 } 3356 } 3357 else 3358 return false; 3359 3360 // This ImmMO is forwarded if it meets the requriement describle 3361 // in ImmInstrInfo 3362 return true; 3363 } 3364 3365 // If an X-Form instruction is fed by an add-immediate and one of its operands 3366 // is the literal zero, attempt to forward the source of the add-immediate to 3367 // the corresponding D-Form instruction with the displacement coming from 3368 // the immediate being added. 3369 bool PPCInstrInfo::transformToImmFormFedByAdd( 3370 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3371 MachineInstr &DefMI, bool KillDefMI) const { 3372 // RegMO ImmMO 3373 // | | 3374 // x = addi reg, imm <----- DefMI 3375 // y = op 0 , x <----- MI 3376 // | 3377 // OpNoForForwarding 3378 // Check if the MI meet the requirement described in the III. 3379 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3380 return false; 3381 3382 // Check if the DefMI meet the requirement 3383 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3384 MachineOperand *ImmMO = nullptr; 3385 MachineOperand *RegMO = nullptr; 3386 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3387 return false; 3388 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3389 3390 // As we get the Imm operand now, we need to check if the ImmMO meet 3391 // the requirement described in the III. If yes set the Imm. 3392 int64_t Imm = 0; 3393 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3394 return false; 3395 3396 bool IsFwdFeederRegKilled = false; 3397 // Check if the RegMO can be forwarded to MI. 3398 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3399 IsFwdFeederRegKilled)) 3400 return false; 3401 3402 // Get killed info in case fixup needed after transformation. 3403 unsigned ForwardKilledOperandReg = ~0U; 3404 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3405 bool PostRA = !MRI.isSSA(); 3406 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3407 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3408 3409 // We know that, the MI and DefMI both meet the pattern, and 3410 // the Imm also meet the requirement with the new Imm-form. 3411 // It is safe to do the transformation now. 3412 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3413 LLVM_DEBUG(MI.dump()); 3414 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3415 LLVM_DEBUG(DefMI.dump()); 3416 3417 // Update the base reg first. 3418 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3419 false, false, 3420 RegMO->isKill()); 3421 3422 // Then, update the imm. 3423 if (ImmMO->isImm()) { 3424 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3425 // directly. 3426 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3427 } 3428 else { 3429 // Otherwise, it is Constant Pool Index(CPI) or Global, 3430 // which is relocation in fact. We need to replace the special zero 3431 // register with ImmMO. 3432 // Before that, we need to fixup the target flags for imm. 3433 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3434 if (DefMI.getOpcode() == PPC::ADDItocL) 3435 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3436 3437 // MI didn't have the interface such as MI.setOperand(i) though 3438 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3439 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3440 // and, add the ImmMO, then, move back all the operands behind ZERO. 3441 SmallVector<MachineOperand, 2> MOps; 3442 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3443 MOps.push_back(MI.getOperand(i)); 3444 MI.RemoveOperand(i); 3445 } 3446 3447 // Remove the last MO in the list, which is ZERO operand in fact. 3448 MOps.pop_back(); 3449 // Add the imm operand. 3450 MI.addOperand(*ImmMO); 3451 // Now add the rest back. 3452 for (auto &MO : MOps) 3453 MI.addOperand(MO); 3454 } 3455 3456 // Update the opcode. 3457 MI.setDesc(get(III.ImmOpcode)); 3458 3459 // Fix up killed/dead flag after transformation. 3460 // Pattern 1: 3461 // x = ADD KilledFwdFeederReg, imm 3462 // n = opn KilledFwdFeederReg(killed), regn 3463 // y = XOP 0, x 3464 // Pattern 2: 3465 // x = ADD reg(killed), imm 3466 // y = XOP 0, x 3467 if (IsFwdFeederRegKilled || RegMO->isKill()) 3468 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3469 // Pattern 3: 3470 // ForwardKilledOperandReg = ADD reg, imm 3471 // y = XOP 0, ForwardKilledOperandReg(killed) 3472 if (ForwardKilledOperandReg != ~0U) 3473 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3474 3475 LLVM_DEBUG(dbgs() << "With:\n"); 3476 LLVM_DEBUG(MI.dump()); 3477 3478 return true; 3479 } 3480 3481 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3482 const ImmInstrInfo &III, 3483 unsigned ConstantOpNo, 3484 MachineInstr &DefMI, 3485 int64_t Imm) const { 3486 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3487 bool PostRA = !MRI.isSSA(); 3488 // Exit early if we can't convert this. 3489 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3490 return false; 3491 if (Imm % III.ImmMustBeMultipleOf) 3492 return false; 3493 if (III.TruncateImmTo) 3494 Imm &= ((1 << III.TruncateImmTo) - 1); 3495 if (III.SignedImm) { 3496 APInt ActualValue(64, Imm, true); 3497 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3498 return false; 3499 } else { 3500 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3501 if ((uint64_t)Imm > UnsignedMax) 3502 return false; 3503 } 3504 3505 // If we're post-RA, the instructions don't agree on whether register zero is 3506 // special, we can transform this as long as the register operand that will 3507 // end up in the location where zero is special isn't R0. 3508 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3509 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3510 III.ZeroIsSpecialNew + 1; 3511 unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3512 unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3513 // If R0 is in the operand where zero is special for the new instruction, 3514 // it is unsafe to transform if the constant operand isn't that operand. 3515 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3516 ConstantOpNo != III.ZeroIsSpecialNew) 3517 return false; 3518 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3519 ConstantOpNo != PosForOrigZero) 3520 return false; 3521 } 3522 3523 // Get killed info in case fixup needed after transformation. 3524 unsigned ForwardKilledOperandReg = ~0U; 3525 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3526 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3527 3528 unsigned Opc = MI.getOpcode(); 3529 bool SpecialShift32 = 3530 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo; 3531 bool SpecialShift64 = 3532 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo; 3533 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo || 3534 Opc == PPC::SLDo || Opc == PPC::SRDo; 3535 bool RightShift = 3536 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo; 3537 3538 MI.setDesc(get(III.ImmOpcode)); 3539 if (ConstantOpNo == III.OpNoForForwarding) { 3540 // Converting shifts to immediate form is a bit tricky since they may do 3541 // one of three things: 3542 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3543 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3544 // setting CR0) 3545 // 3. If the shift amount is in [1, OpSize), it's just a shift 3546 if (SpecialShift32 || SpecialShift64) { 3547 LoadImmediateInfo LII; 3548 LII.Imm = 0; 3549 LII.SetCR = SetCR; 3550 LII.Is64Bit = SpecialShift64; 3551 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3552 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3553 replaceInstrWithLI(MI, LII); 3554 // Shifts by zero don't change the value. If we don't need to set CR0, 3555 // just convert this to a COPY. Can't do this post-RA since we've already 3556 // cleaned up the copies. 3557 else if (!SetCR && ShAmt == 0 && !PostRA) { 3558 MI.RemoveOperand(2); 3559 MI.setDesc(get(PPC::COPY)); 3560 } else { 3561 // The 32 bit and 64 bit instructions are quite different. 3562 if (SpecialShift32) { 3563 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31). 3564 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt; 3565 uint64_t MB = RightShift ? ShAmt : 0; 3566 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3567 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3568 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3569 .addImm(ME); 3570 } else { 3571 // Left shifts use (N, 63-N), right shifts use (64-N, N). 3572 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt; 3573 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3574 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3575 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3576 } 3577 } 3578 } else 3579 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3580 } 3581 // Convert commutative instructions (switch the operands and convert the 3582 // desired one to an immediate. 3583 else if (III.IsCommutative) { 3584 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3585 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3586 } else 3587 llvm_unreachable("Should have exited early!"); 3588 3589 // For instructions for which the constant register replaces a different 3590 // operand than where the immediate goes, we need to swap them. 3591 if (III.OpNoForForwarding != III.ImmOpNo) 3592 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3593 3594 // If the special R0/X0 register index are different for original instruction 3595 // and new instruction, we need to fix up the register class in new 3596 // instruction. 3597 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3598 if (III.ZeroIsSpecialNew) { 3599 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3600 // need to fix up register class. 3601 unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3602 if (TargetRegisterInfo::isVirtualRegister(RegToModify)) { 3603 const TargetRegisterClass *NewRC = 3604 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3605 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3606 MRI.setRegClass(RegToModify, NewRC); 3607 } 3608 } 3609 } 3610 3611 // Fix up killed/dead flag after transformation. 3612 // Pattern: 3613 // ForwardKilledOperandReg = LI imm 3614 // y = XOP reg, ForwardKilledOperandReg(killed) 3615 if (ForwardKilledOperandReg != ~0U) 3616 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3617 return true; 3618 } 3619 3620 const TargetRegisterClass * 3621 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3622 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3623 return &PPC::VSRCRegClass; 3624 return RC; 3625 } 3626 3627 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3628 return PPC::getRecordFormOpcode(Opcode); 3629 } 3630 3631 // This function returns true if the machine instruction 3632 // always outputs a value by sign-extending a 32 bit value, 3633 // i.e. 0 to 31-th bits are same as 32-th bit. 3634 static bool isSignExtendingOp(const MachineInstr &MI) { 3635 int Opcode = MI.getOpcode(); 3636 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3637 Opcode == PPC::LIS || Opcode == PPC::LIS8 || 3638 Opcode == PPC::SRAW || Opcode == PPC::SRAWo || 3639 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo || 3640 Opcode == PPC::LWA || Opcode == PPC::LWAX || 3641 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3642 Opcode == PPC::LHA || Opcode == PPC::LHAX || 3643 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 || 3644 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3645 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3646 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3647 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3648 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3649 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3650 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3651 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3652 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo || 3653 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo || 3654 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 || 3655 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo || 3656 Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3657 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3658 Opcode == PPC::EXTSB8_32_64) 3659 return true; 3660 3661 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3662 return true; 3663 3664 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3665 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) && 3666 MI.getOperand(3).getImm() > 0 && 3667 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3668 return true; 3669 3670 return false; 3671 } 3672 3673 // This function returns true if the machine instruction 3674 // always outputs zeros in higher 32 bits. 3675 static bool isZeroExtendingOp(const MachineInstr &MI) { 3676 int Opcode = MI.getOpcode(); 3677 // The 16-bit immediate is sign-extended in li/lis. 3678 // If the most significant bit is zero, all higher bits are zero. 3679 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3680 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3681 int64_t Imm = MI.getOperand(1).getImm(); 3682 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3683 return true; 3684 } 3685 3686 // We have some variations of rotate-and-mask instructions 3687 // that clear higher 32-bits. 3688 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || 3689 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo || 3690 Opcode == PPC::RLDICL_32_64) && 3691 MI.getOperand(3).getImm() >= 32) 3692 return true; 3693 3694 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && 3695 MI.getOperand(3).getImm() >= 32 && 3696 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3697 return true; 3698 3699 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3700 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo || 3701 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3702 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3703 return true; 3704 3705 // There are other instructions that clear higher 32-bits. 3706 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo || 3707 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo || 3708 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3709 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo || 3710 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo || 3711 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || 3712 Opcode == PPC::SLW || Opcode == PPC::SLWo || 3713 Opcode == PPC::SRW || Opcode == PPC::SRWo || 3714 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || 3715 Opcode == PPC::SLWI || Opcode == PPC::SLWIo || 3716 Opcode == PPC::SRWI || Opcode == PPC::SRWIo || 3717 Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3718 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || 3719 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX || 3720 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3721 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3722 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3723 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3724 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || 3725 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 || 3726 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3727 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3728 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3729 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3730 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3731 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo || 3732 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo || 3733 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo || 3734 Opcode == PPC::MFVSRWZ) 3735 return true; 3736 3737 return false; 3738 } 3739 3740 // This function returns true if the input MachineInstr is a TOC save 3741 // instruction. 3742 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3743 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3744 return false; 3745 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3746 unsigned StackOffset = MI.getOperand(1).getImm(); 3747 unsigned StackReg = MI.getOperand(2).getReg(); 3748 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3749 return true; 3750 3751 return false; 3752 } 3753 3754 // We limit the max depth to track incoming values of PHIs or binary ops 3755 // (e.g. AND) to avoid excessive cost. 3756 const unsigned MAX_DEPTH = 1; 3757 3758 bool 3759 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 3760 const unsigned Depth) const { 3761 const MachineFunction *MF = MI.getParent()->getParent(); 3762 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 3763 3764 // If we know this instruction returns sign- or zero-extended result, 3765 // return true. 3766 if (SignExt ? isSignExtendingOp(MI): 3767 isZeroExtendingOp(MI)) 3768 return true; 3769 3770 switch (MI.getOpcode()) { 3771 case PPC::COPY: { 3772 unsigned SrcReg = MI.getOperand(1).getReg(); 3773 3774 // In both ELFv1 and v2 ABI, method parameters and the return value 3775 // are sign- or zero-extended. 3776 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 3777 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 3778 // We check the ZExt/SExt flags for a method parameter. 3779 if (MI.getParent()->getBasicBlock() == 3780 &MF->getFunction().getEntryBlock()) { 3781 unsigned VReg = MI.getOperand(0).getReg(); 3782 if (MF->getRegInfo().isLiveIn(VReg)) 3783 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 3784 FuncInfo->isLiveInZExt(VReg); 3785 } 3786 3787 // For a method return value, we check the ZExt/SExt flags in attribute. 3788 // We assume the following code sequence for method call. 3789 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 3790 // BL8_NOP @func,... 3791 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 3792 // %5 = COPY %x3; G8RC:%5 3793 if (SrcReg == PPC::X3) { 3794 const MachineBasicBlock *MBB = MI.getParent(); 3795 MachineBasicBlock::const_instr_iterator II = 3796 MachineBasicBlock::const_instr_iterator(&MI); 3797 if (II != MBB->instr_begin() && 3798 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 3799 const MachineInstr &CallMI = *(--II); 3800 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 3801 const Function *CalleeFn = 3802 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 3803 if (!CalleeFn) 3804 return false; 3805 const IntegerType *IntTy = 3806 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 3807 const AttributeSet &Attrs = 3808 CalleeFn->getAttributes().getRetAttributes(); 3809 if (IntTy && IntTy->getBitWidth() <= 32) 3810 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 3811 Attribute::ZExt); 3812 } 3813 } 3814 } 3815 } 3816 3817 // If this is a copy from another register, we recursively check source. 3818 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3819 return false; 3820 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3821 if (SrcMI != NULL) 3822 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3823 3824 return false; 3825 } 3826 3827 case PPC::ANDIo: 3828 case PPC::ANDISo: 3829 case PPC::ORI: 3830 case PPC::ORIS: 3831 case PPC::XORI: 3832 case PPC::XORIS: 3833 case PPC::ANDIo8: 3834 case PPC::ANDISo8: 3835 case PPC::ORI8: 3836 case PPC::ORIS8: 3837 case PPC::XORI8: 3838 case PPC::XORIS8: { 3839 // logical operation with 16-bit immediate does not change the upper bits. 3840 // So, we track the operand register as we do for register copy. 3841 unsigned SrcReg = MI.getOperand(1).getReg(); 3842 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3843 return false; 3844 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3845 if (SrcMI != NULL) 3846 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3847 3848 return false; 3849 } 3850 3851 // If all incoming values are sign-/zero-extended, 3852 // the output of OR, ISEL or PHI is also sign-/zero-extended. 3853 case PPC::OR: 3854 case PPC::OR8: 3855 case PPC::ISEL: 3856 case PPC::PHI: { 3857 if (Depth >= MAX_DEPTH) 3858 return false; 3859 3860 // The input registers for PHI are operand 1, 3, ... 3861 // The input registers for others are operand 1 and 2. 3862 unsigned E = 3, D = 1; 3863 if (MI.getOpcode() == PPC::PHI) { 3864 E = MI.getNumOperands(); 3865 D = 2; 3866 } 3867 3868 for (unsigned I = 1; I != E; I += D) { 3869 if (MI.getOperand(I).isReg()) { 3870 unsigned SrcReg = MI.getOperand(I).getReg(); 3871 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3872 return false; 3873 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3874 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 3875 return false; 3876 } 3877 else 3878 return false; 3879 } 3880 return true; 3881 } 3882 3883 // If at least one of the incoming values of an AND is zero extended 3884 // then the output is also zero-extended. If both of the incoming values 3885 // are sign-extended then the output is also sign extended. 3886 case PPC::AND: 3887 case PPC::AND8: { 3888 if (Depth >= MAX_DEPTH) 3889 return false; 3890 3891 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 3892 3893 unsigned SrcReg1 = MI.getOperand(1).getReg(); 3894 unsigned SrcReg2 = MI.getOperand(2).getReg(); 3895 3896 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) || 3897 !TargetRegisterInfo::isVirtualRegister(SrcReg2)) 3898 return false; 3899 3900 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 3901 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 3902 if (!MISrc1 || !MISrc2) 3903 return false; 3904 3905 if(SignExt) 3906 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 3907 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3908 else 3909 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 3910 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3911 } 3912 3913 default: 3914 break; 3915 } 3916 return false; 3917 } 3918