1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 STATISTIC(NumStoreSPILLVSRRCAsVec, 50 "Number of spillvsrrc spilled to stack as vec"); 51 STATISTIC(NumStoreSPILLVSRRCAsGpr, 52 "Number of spillvsrrc spilled to stack as gpr"); 53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 54 55 static cl:: 56 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 57 cl::desc("Disable analysis for CTR loops")); 58 59 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 60 cl::desc("Disable compare instruction optimization"), cl::Hidden); 61 62 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 63 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 64 cl::Hidden); 65 66 static cl::opt<bool> 67 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 68 cl::desc("Use the old (incorrect) instruction latency calculation")); 69 70 // Pin the vtable to this file. 71 void PPCInstrInfo::anchor() {} 72 73 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 74 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 75 /* CatchRetOpcode */ -1, 76 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 77 Subtarget(STI), RI(STI.getTargetMachine()) {} 78 79 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 80 /// this target when scheduling the DAG. 81 ScheduleHazardRecognizer * 82 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 83 const ScheduleDAG *DAG) const { 84 unsigned Directive = 85 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 86 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 87 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 88 const InstrItineraryData *II = 89 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 90 return new ScoreboardHazardRecognizer(II, DAG); 91 } 92 93 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 94 } 95 96 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 97 /// to use for this target when scheduling the DAG. 98 ScheduleHazardRecognizer * 99 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 100 const ScheduleDAG *DAG) const { 101 unsigned Directive = 102 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 103 104 // FIXME: Leaving this as-is until we have POWER9 scheduling info 105 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 106 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 107 108 // Most subtargets use a PPC970 recognizer. 109 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 110 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 111 assert(DAG->TII && "No InstrInfo?"); 112 113 return new PPCHazardRecognizer970(*DAG); 114 } 115 116 return new ScoreboardHazardRecognizer(II, DAG); 117 } 118 119 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 120 const MachineInstr &MI, 121 unsigned *PredCost) const { 122 if (!ItinData || UseOldLatencyCalc) 123 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 124 125 // The default implementation of getInstrLatency calls getStageLatency, but 126 // getStageLatency does not do the right thing for us. While we have 127 // itinerary, most cores are fully pipelined, and so the itineraries only 128 // express the first part of the pipeline, not every stage. Instead, we need 129 // to use the listed output operand cycle number (using operand 0 here, which 130 // is an output). 131 132 unsigned Latency = 1; 133 unsigned DefClass = MI.getDesc().getSchedClass(); 134 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 135 const MachineOperand &MO = MI.getOperand(i); 136 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 137 continue; 138 139 int Cycle = ItinData->getOperandCycle(DefClass, i); 140 if (Cycle < 0) 141 continue; 142 143 Latency = std::max(Latency, (unsigned) Cycle); 144 } 145 146 return Latency; 147 } 148 149 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 150 const MachineInstr &DefMI, unsigned DefIdx, 151 const MachineInstr &UseMI, 152 unsigned UseIdx) const { 153 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 154 UseMI, UseIdx); 155 156 if (!DefMI.getParent()) 157 return Latency; 158 159 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 160 unsigned Reg = DefMO.getReg(); 161 162 bool IsRegCR; 163 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 164 const MachineRegisterInfo *MRI = 165 &DefMI.getParent()->getParent()->getRegInfo(); 166 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 167 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 168 } else { 169 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 170 PPC::CRBITRCRegClass.contains(Reg); 171 } 172 173 if (UseMI.isBranch() && IsRegCR) { 174 if (Latency < 0) 175 Latency = getInstrLatency(ItinData, DefMI); 176 177 // On some cores, there is an additional delay between writing to a condition 178 // register, and using it from a branch. 179 unsigned Directive = Subtarget.getDarwinDirective(); 180 switch (Directive) { 181 default: break; 182 case PPC::DIR_7400: 183 case PPC::DIR_750: 184 case PPC::DIR_970: 185 case PPC::DIR_E5500: 186 case PPC::DIR_PWR4: 187 case PPC::DIR_PWR5: 188 case PPC::DIR_PWR5X: 189 case PPC::DIR_PWR6: 190 case PPC::DIR_PWR6X: 191 case PPC::DIR_PWR7: 192 case PPC::DIR_PWR8: 193 // FIXME: Is this needed for POWER9? 194 Latency += 2; 195 break; 196 } 197 } 198 199 return Latency; 200 } 201 202 // This function does not list all associative and commutative operations, but 203 // only those worth feeding through the machine combiner in an attempt to 204 // reduce the critical path. Mostly, this means floating-point operations, 205 // because they have high latencies (compared to other operations, such and 206 // and/or, which are also associative and commutative, but have low latencies). 207 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 208 switch (Inst.getOpcode()) { 209 // FP Add: 210 case PPC::FADD: 211 case PPC::FADDS: 212 // FP Multiply: 213 case PPC::FMUL: 214 case PPC::FMULS: 215 // Altivec Add: 216 case PPC::VADDFP: 217 // VSX Add: 218 case PPC::XSADDDP: 219 case PPC::XVADDDP: 220 case PPC::XVADDSP: 221 case PPC::XSADDSP: 222 // VSX Multiply: 223 case PPC::XSMULDP: 224 case PPC::XVMULDP: 225 case PPC::XVMULSP: 226 case PPC::XSMULSP: 227 // QPX Add: 228 case PPC::QVFADD: 229 case PPC::QVFADDS: 230 case PPC::QVFADDSs: 231 // QPX Multiply: 232 case PPC::QVFMUL: 233 case PPC::QVFMULS: 234 case PPC::QVFMULSs: 235 return true; 236 default: 237 return false; 238 } 239 } 240 241 bool PPCInstrInfo::getMachineCombinerPatterns( 242 MachineInstr &Root, 243 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 244 // Using the machine combiner in this way is potentially expensive, so 245 // restrict to when aggressive optimizations are desired. 246 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 247 return false; 248 249 // FP reassociation is only legal when we don't need strict IEEE semantics. 250 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 251 return false; 252 253 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 254 } 255 256 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 257 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 258 unsigned &SrcReg, unsigned &DstReg, 259 unsigned &SubIdx) const { 260 switch (MI.getOpcode()) { 261 default: return false; 262 case PPC::EXTSW: 263 case PPC::EXTSW_32_64: 264 SrcReg = MI.getOperand(1).getReg(); 265 DstReg = MI.getOperand(0).getReg(); 266 SubIdx = PPC::sub_32; 267 return true; 268 } 269 } 270 271 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 272 int &FrameIndex) const { 273 // Note: This list must be kept consistent with LoadRegFromStackSlot. 274 switch (MI.getOpcode()) { 275 default: break; 276 case PPC::LD: 277 case PPC::LWZ: 278 case PPC::LFS: 279 case PPC::LFD: 280 case PPC::RESTORE_CR: 281 case PPC::RESTORE_CRBIT: 282 case PPC::LVX: 283 case PPC::LXVD2X: 284 case PPC::LXVX: 285 case PPC::QVLFDX: 286 case PPC::QVLFSXs: 287 case PPC::QVLFDXb: 288 case PPC::RESTORE_VRSAVE: 289 case PPC::SPILLTOVSR_LD: 290 // Check for the operands added by addFrameReference (the immediate is the 291 // offset which defaults to 0). 292 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 293 MI.getOperand(2).isFI()) { 294 FrameIndex = MI.getOperand(2).getIndex(); 295 return MI.getOperand(0).getReg(); 296 } 297 break; 298 } 299 return 0; 300 } 301 302 // For opcodes with the ReMaterializable flag set, this function is called to 303 // verify the instruction is really rematable. 304 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 305 AliasAnalysis *AA) const { 306 switch (MI.getOpcode()) { 307 default: 308 // This function should only be called for opcodes with the ReMaterializable 309 // flag set. 310 llvm_unreachable("Unknown rematerializable operation!"); 311 break; 312 case PPC::LI: 313 case PPC::LI8: 314 case PPC::LIS: 315 case PPC::LIS8: 316 case PPC::QVGPCI: 317 case PPC::ADDIStocHA: 318 case PPC::ADDItocL: 319 case PPC::LOAD_STACK_GUARD: 320 return true; 321 } 322 return false; 323 } 324 325 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 326 int &FrameIndex) const { 327 // Note: This list must be kept consistent with StoreRegToStackSlot. 328 switch (MI.getOpcode()) { 329 default: break; 330 case PPC::STD: 331 case PPC::STW: 332 case PPC::STFS: 333 case PPC::STFD: 334 case PPC::SPILL_CR: 335 case PPC::SPILL_CRBIT: 336 case PPC::STVX: 337 case PPC::STXVD2X: 338 case PPC::STXVX: 339 case PPC::QVSTFDX: 340 case PPC::QVSTFSXs: 341 case PPC::QVSTFDXb: 342 case PPC::SPILL_VRSAVE: 343 case PPC::SPILLTOVSR_ST: 344 // Check for the operands added by addFrameReference (the immediate is the 345 // offset which defaults to 0). 346 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 347 MI.getOperand(2).isFI()) { 348 FrameIndex = MI.getOperand(2).getIndex(); 349 return MI.getOperand(0).getReg(); 350 } 351 break; 352 } 353 return 0; 354 } 355 356 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 357 unsigned OpIdx1, 358 unsigned OpIdx2) const { 359 MachineFunction &MF = *MI.getParent()->getParent(); 360 361 // Normal instructions can be commuted the obvious way. 362 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 363 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 364 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 365 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 366 // changing the relative order of the mask operands might change what happens 367 // to the high-bits of the mask (and, thus, the result). 368 369 // Cannot commute if it has a non-zero rotate count. 370 if (MI.getOperand(3).getImm() != 0) 371 return nullptr; 372 373 // If we have a zero rotate count, we have: 374 // M = mask(MB,ME) 375 // Op0 = (Op1 & ~M) | (Op2 & M) 376 // Change this to: 377 // M = mask((ME+1)&31, (MB-1)&31) 378 // Op0 = (Op2 & ~M) | (Op1 & M) 379 380 // Swap op1/op2 381 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 382 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 383 unsigned Reg0 = MI.getOperand(0).getReg(); 384 unsigned Reg1 = MI.getOperand(1).getReg(); 385 unsigned Reg2 = MI.getOperand(2).getReg(); 386 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 387 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 388 bool Reg1IsKill = MI.getOperand(1).isKill(); 389 bool Reg2IsKill = MI.getOperand(2).isKill(); 390 bool ChangeReg0 = false; 391 // If machine instrs are no longer in two-address forms, update 392 // destination register as well. 393 if (Reg0 == Reg1) { 394 // Must be two address instruction! 395 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 396 "Expecting a two-address instruction!"); 397 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 398 Reg2IsKill = false; 399 ChangeReg0 = true; 400 } 401 402 // Masks. 403 unsigned MB = MI.getOperand(4).getImm(); 404 unsigned ME = MI.getOperand(5).getImm(); 405 406 // We can't commute a trivial mask (there is no way to represent an all-zero 407 // mask). 408 if (MB == 0 && ME == 31) 409 return nullptr; 410 411 if (NewMI) { 412 // Create a new instruction. 413 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 414 bool Reg0IsDead = MI.getOperand(0).isDead(); 415 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 416 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 417 .addReg(Reg2, getKillRegState(Reg2IsKill)) 418 .addReg(Reg1, getKillRegState(Reg1IsKill)) 419 .addImm((ME + 1) & 31) 420 .addImm((MB - 1) & 31); 421 } 422 423 if (ChangeReg0) { 424 MI.getOperand(0).setReg(Reg2); 425 MI.getOperand(0).setSubReg(SubReg2); 426 } 427 MI.getOperand(2).setReg(Reg1); 428 MI.getOperand(1).setReg(Reg2); 429 MI.getOperand(2).setSubReg(SubReg1); 430 MI.getOperand(1).setSubReg(SubReg2); 431 MI.getOperand(2).setIsKill(Reg1IsKill); 432 MI.getOperand(1).setIsKill(Reg2IsKill); 433 434 // Swap the mask around. 435 MI.getOperand(4).setImm((ME + 1) & 31); 436 MI.getOperand(5).setImm((MB - 1) & 31); 437 return &MI; 438 } 439 440 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 441 unsigned &SrcOpIdx2) const { 442 // For VSX A-Type FMA instructions, it is the first two operands that can be 443 // commuted, however, because the non-encoded tied input operand is listed 444 // first, the operands to swap are actually the second and third. 445 446 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 447 if (AltOpc == -1) 448 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 449 450 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 451 // and SrcOpIdx2. 452 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 453 } 454 455 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 456 MachineBasicBlock::iterator MI) const { 457 // This function is used for scheduling, and the nop wanted here is the type 458 // that terminates dispatch groups on the POWER cores. 459 unsigned Directive = Subtarget.getDarwinDirective(); 460 unsigned Opcode; 461 switch (Directive) { 462 default: Opcode = PPC::NOP; break; 463 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 464 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 465 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 466 // FIXME: Update when POWER9 scheduling model is ready. 467 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 468 } 469 470 DebugLoc DL; 471 BuildMI(MBB, MI, DL, get(Opcode)); 472 } 473 474 /// Return the noop instruction to use for a noop. 475 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 476 NopInst.setOpcode(PPC::NOP); 477 } 478 479 // Branch analysis. 480 // Note: If the condition register is set to CTR or CTR8 then this is a 481 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 482 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 483 MachineBasicBlock *&TBB, 484 MachineBasicBlock *&FBB, 485 SmallVectorImpl<MachineOperand> &Cond, 486 bool AllowModify) const { 487 bool isPPC64 = Subtarget.isPPC64(); 488 489 // If the block has no terminators, it just falls into the block after it. 490 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 491 if (I == MBB.end()) 492 return false; 493 494 if (!isUnpredicatedTerminator(*I)) 495 return false; 496 497 // Get the last instruction in the block. 498 MachineInstr &LastInst = *I; 499 500 // If there is only one terminator instruction, process it. 501 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 502 if (LastInst.getOpcode() == PPC::B) { 503 if (!LastInst.getOperand(0).isMBB()) 504 return true; 505 TBB = LastInst.getOperand(0).getMBB(); 506 return false; 507 } else if (LastInst.getOpcode() == PPC::BCC) { 508 if (!LastInst.getOperand(2).isMBB()) 509 return true; 510 // Block ends with fall-through condbranch. 511 TBB = LastInst.getOperand(2).getMBB(); 512 Cond.push_back(LastInst.getOperand(0)); 513 Cond.push_back(LastInst.getOperand(1)); 514 return false; 515 } else if (LastInst.getOpcode() == PPC::BC) { 516 if (!LastInst.getOperand(1).isMBB()) 517 return true; 518 // Block ends with fall-through condbranch. 519 TBB = LastInst.getOperand(1).getMBB(); 520 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 521 Cond.push_back(LastInst.getOperand(0)); 522 return false; 523 } else if (LastInst.getOpcode() == PPC::BCn) { 524 if (!LastInst.getOperand(1).isMBB()) 525 return true; 526 // Block ends with fall-through condbranch. 527 TBB = LastInst.getOperand(1).getMBB(); 528 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 529 Cond.push_back(LastInst.getOperand(0)); 530 return false; 531 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 532 LastInst.getOpcode() == PPC::BDNZ) { 533 if (!LastInst.getOperand(0).isMBB()) 534 return true; 535 if (DisableCTRLoopAnal) 536 return true; 537 TBB = LastInst.getOperand(0).getMBB(); 538 Cond.push_back(MachineOperand::CreateImm(1)); 539 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 540 true)); 541 return false; 542 } else if (LastInst.getOpcode() == PPC::BDZ8 || 543 LastInst.getOpcode() == PPC::BDZ) { 544 if (!LastInst.getOperand(0).isMBB()) 545 return true; 546 if (DisableCTRLoopAnal) 547 return true; 548 TBB = LastInst.getOperand(0).getMBB(); 549 Cond.push_back(MachineOperand::CreateImm(0)); 550 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 551 true)); 552 return false; 553 } 554 555 // Otherwise, don't know what this is. 556 return true; 557 } 558 559 // Get the instruction before it if it's a terminator. 560 MachineInstr &SecondLastInst = *I; 561 562 // If there are three terminators, we don't know what sort of block this is. 563 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 564 return true; 565 566 // If the block ends with PPC::B and PPC:BCC, handle it. 567 if (SecondLastInst.getOpcode() == PPC::BCC && 568 LastInst.getOpcode() == PPC::B) { 569 if (!SecondLastInst.getOperand(2).isMBB() || 570 !LastInst.getOperand(0).isMBB()) 571 return true; 572 TBB = SecondLastInst.getOperand(2).getMBB(); 573 Cond.push_back(SecondLastInst.getOperand(0)); 574 Cond.push_back(SecondLastInst.getOperand(1)); 575 FBB = LastInst.getOperand(0).getMBB(); 576 return false; 577 } else if (SecondLastInst.getOpcode() == PPC::BC && 578 LastInst.getOpcode() == PPC::B) { 579 if (!SecondLastInst.getOperand(1).isMBB() || 580 !LastInst.getOperand(0).isMBB()) 581 return true; 582 TBB = SecondLastInst.getOperand(1).getMBB(); 583 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 584 Cond.push_back(SecondLastInst.getOperand(0)); 585 FBB = LastInst.getOperand(0).getMBB(); 586 return false; 587 } else if (SecondLastInst.getOpcode() == PPC::BCn && 588 LastInst.getOpcode() == PPC::B) { 589 if (!SecondLastInst.getOperand(1).isMBB() || 590 !LastInst.getOperand(0).isMBB()) 591 return true; 592 TBB = SecondLastInst.getOperand(1).getMBB(); 593 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 594 Cond.push_back(SecondLastInst.getOperand(0)); 595 FBB = LastInst.getOperand(0).getMBB(); 596 return false; 597 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 598 SecondLastInst.getOpcode() == PPC::BDNZ) && 599 LastInst.getOpcode() == PPC::B) { 600 if (!SecondLastInst.getOperand(0).isMBB() || 601 !LastInst.getOperand(0).isMBB()) 602 return true; 603 if (DisableCTRLoopAnal) 604 return true; 605 TBB = SecondLastInst.getOperand(0).getMBB(); 606 Cond.push_back(MachineOperand::CreateImm(1)); 607 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 608 true)); 609 FBB = LastInst.getOperand(0).getMBB(); 610 return false; 611 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 612 SecondLastInst.getOpcode() == PPC::BDZ) && 613 LastInst.getOpcode() == PPC::B) { 614 if (!SecondLastInst.getOperand(0).isMBB() || 615 !LastInst.getOperand(0).isMBB()) 616 return true; 617 if (DisableCTRLoopAnal) 618 return true; 619 TBB = SecondLastInst.getOperand(0).getMBB(); 620 Cond.push_back(MachineOperand::CreateImm(0)); 621 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 622 true)); 623 FBB = LastInst.getOperand(0).getMBB(); 624 return false; 625 } 626 627 // If the block ends with two PPC:Bs, handle it. The second one is not 628 // executed, so remove it. 629 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 630 if (!SecondLastInst.getOperand(0).isMBB()) 631 return true; 632 TBB = SecondLastInst.getOperand(0).getMBB(); 633 I = LastInst; 634 if (AllowModify) 635 I->eraseFromParent(); 636 return false; 637 } 638 639 // Otherwise, can't handle this. 640 return true; 641 } 642 643 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 644 int *BytesRemoved) const { 645 assert(!BytesRemoved && "code size not handled"); 646 647 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 648 if (I == MBB.end()) 649 return 0; 650 651 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 652 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 653 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 654 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 655 return 0; 656 657 // Remove the branch. 658 I->eraseFromParent(); 659 660 I = MBB.end(); 661 662 if (I == MBB.begin()) return 1; 663 --I; 664 if (I->getOpcode() != PPC::BCC && 665 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 666 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 667 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 668 return 1; 669 670 // Remove the branch. 671 I->eraseFromParent(); 672 return 2; 673 } 674 675 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 676 MachineBasicBlock *TBB, 677 MachineBasicBlock *FBB, 678 ArrayRef<MachineOperand> Cond, 679 const DebugLoc &DL, 680 int *BytesAdded) const { 681 // Shouldn't be a fall through. 682 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 683 assert((Cond.size() == 2 || Cond.size() == 0) && 684 "PPC branch conditions have two components!"); 685 assert(!BytesAdded && "code size not handled"); 686 687 bool isPPC64 = Subtarget.isPPC64(); 688 689 // One-way branch. 690 if (!FBB) { 691 if (Cond.empty()) // Unconditional branch 692 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 693 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 694 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 695 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 696 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 697 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 698 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 699 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 700 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 701 else // Conditional branch 702 BuildMI(&MBB, DL, get(PPC::BCC)) 703 .addImm(Cond[0].getImm()) 704 .add(Cond[1]) 705 .addMBB(TBB); 706 return 1; 707 } 708 709 // Two-way Conditional Branch. 710 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 711 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 712 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 713 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 714 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 715 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 716 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 717 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 718 else 719 BuildMI(&MBB, DL, get(PPC::BCC)) 720 .addImm(Cond[0].getImm()) 721 .add(Cond[1]) 722 .addMBB(TBB); 723 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 724 return 2; 725 } 726 727 // Select analysis. 728 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 729 ArrayRef<MachineOperand> Cond, 730 unsigned TrueReg, unsigned FalseReg, 731 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 732 if (Cond.size() != 2) 733 return false; 734 735 // If this is really a bdnz-like condition, then it cannot be turned into a 736 // select. 737 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 738 return false; 739 740 // Check register classes. 741 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 742 const TargetRegisterClass *RC = 743 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 744 if (!RC) 745 return false; 746 747 // isel is for regular integer GPRs only. 748 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 749 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 750 !PPC::G8RCRegClass.hasSubClassEq(RC) && 751 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 752 return false; 753 754 // FIXME: These numbers are for the A2, how well they work for other cores is 755 // an open question. On the A2, the isel instruction has a 2-cycle latency 756 // but single-cycle throughput. These numbers are used in combination with 757 // the MispredictPenalty setting from the active SchedMachineModel. 758 CondCycles = 1; 759 TrueCycles = 1; 760 FalseCycles = 1; 761 762 return true; 763 } 764 765 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 766 MachineBasicBlock::iterator MI, 767 const DebugLoc &dl, unsigned DestReg, 768 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 769 unsigned FalseReg) const { 770 assert(Cond.size() == 2 && 771 "PPC branch conditions have two components!"); 772 773 // Get the register classes. 774 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 775 const TargetRegisterClass *RC = 776 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 777 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 778 779 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 780 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 781 assert((Is64Bit || 782 PPC::GPRCRegClass.hasSubClassEq(RC) || 783 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 784 "isel is for regular integer GPRs only"); 785 786 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 787 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 788 789 unsigned SubIdx = 0; 790 bool SwapOps = false; 791 switch (SelectPred) { 792 case PPC::PRED_EQ: 793 case PPC::PRED_EQ_MINUS: 794 case PPC::PRED_EQ_PLUS: 795 SubIdx = PPC::sub_eq; SwapOps = false; break; 796 case PPC::PRED_NE: 797 case PPC::PRED_NE_MINUS: 798 case PPC::PRED_NE_PLUS: 799 SubIdx = PPC::sub_eq; SwapOps = true; break; 800 case PPC::PRED_LT: 801 case PPC::PRED_LT_MINUS: 802 case PPC::PRED_LT_PLUS: 803 SubIdx = PPC::sub_lt; SwapOps = false; break; 804 case PPC::PRED_GE: 805 case PPC::PRED_GE_MINUS: 806 case PPC::PRED_GE_PLUS: 807 SubIdx = PPC::sub_lt; SwapOps = true; break; 808 case PPC::PRED_GT: 809 case PPC::PRED_GT_MINUS: 810 case PPC::PRED_GT_PLUS: 811 SubIdx = PPC::sub_gt; SwapOps = false; break; 812 case PPC::PRED_LE: 813 case PPC::PRED_LE_MINUS: 814 case PPC::PRED_LE_PLUS: 815 SubIdx = PPC::sub_gt; SwapOps = true; break; 816 case PPC::PRED_UN: 817 case PPC::PRED_UN_MINUS: 818 case PPC::PRED_UN_PLUS: 819 SubIdx = PPC::sub_un; SwapOps = false; break; 820 case PPC::PRED_NU: 821 case PPC::PRED_NU_MINUS: 822 case PPC::PRED_NU_PLUS: 823 SubIdx = PPC::sub_un; SwapOps = true; break; 824 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 825 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 826 } 827 828 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 829 SecondReg = SwapOps ? TrueReg : FalseReg; 830 831 // The first input register of isel cannot be r0. If it is a member 832 // of a register class that can be r0, then copy it first (the 833 // register allocator should eliminate the copy). 834 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 835 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 836 const TargetRegisterClass *FirstRC = 837 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 838 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 839 unsigned OldFirstReg = FirstReg; 840 FirstReg = MRI.createVirtualRegister(FirstRC); 841 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 842 .addReg(OldFirstReg); 843 } 844 845 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 846 .addReg(FirstReg).addReg(SecondReg) 847 .addReg(Cond[1].getReg(), 0, SubIdx); 848 } 849 850 static unsigned getCRBitValue(unsigned CRBit) { 851 unsigned Ret = 4; 852 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 853 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 854 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 855 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 856 Ret = 3; 857 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 858 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 859 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 860 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 861 Ret = 2; 862 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 863 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 864 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 865 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 866 Ret = 1; 867 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 868 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 869 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 870 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 871 Ret = 0; 872 873 assert(Ret != 4 && "Invalid CR bit register"); 874 return Ret; 875 } 876 877 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 878 MachineBasicBlock::iterator I, 879 const DebugLoc &DL, unsigned DestReg, 880 unsigned SrcReg, bool KillSrc) const { 881 // We can end up with self copies and similar things as a result of VSX copy 882 // legalization. Promote them here. 883 const TargetRegisterInfo *TRI = &getRegisterInfo(); 884 if (PPC::F8RCRegClass.contains(DestReg) && 885 PPC::VSRCRegClass.contains(SrcReg)) { 886 unsigned SuperReg = 887 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 888 889 if (VSXSelfCopyCrash && SrcReg == SuperReg) 890 llvm_unreachable("nop VSX copy"); 891 892 DestReg = SuperReg; 893 } else if (PPC::F8RCRegClass.contains(SrcReg) && 894 PPC::VSRCRegClass.contains(DestReg)) { 895 unsigned SuperReg = 896 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 897 898 if (VSXSelfCopyCrash && DestReg == SuperReg) 899 llvm_unreachable("nop VSX copy"); 900 901 SrcReg = SuperReg; 902 } 903 904 // Different class register copy 905 if (PPC::CRBITRCRegClass.contains(SrcReg) && 906 PPC::GPRCRegClass.contains(DestReg)) { 907 unsigned CRReg = getCRFromCRBit(SrcReg); 908 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 909 getKillRegState(KillSrc); 910 // Rotate the CR bit in the CR fields to be the least significant bit and 911 // then mask with 0x1 (MB = ME = 31). 912 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 913 .addReg(DestReg, RegState::Kill) 914 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 915 .addImm(31) 916 .addImm(31); 917 return; 918 } else if (PPC::CRRCRegClass.contains(SrcReg) && 919 PPC::G8RCRegClass.contains(DestReg)) { 920 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 921 getKillRegState(KillSrc); 922 return; 923 } else if (PPC::CRRCRegClass.contains(SrcReg) && 924 PPC::GPRCRegClass.contains(DestReg)) { 925 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 926 getKillRegState(KillSrc); 927 return; 928 } else if (PPC::G8RCRegClass.contains(SrcReg) && 929 PPC::VSFRCRegClass.contains(DestReg)) { 930 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 931 NumGPRtoVSRSpill++; 932 getKillRegState(KillSrc); 933 return; 934 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 935 PPC::G8RCRegClass.contains(DestReg)) { 936 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 937 getKillRegState(KillSrc); 938 return; 939 } 940 941 unsigned Opc; 942 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 943 Opc = PPC::OR; 944 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 945 Opc = PPC::OR8; 946 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 947 Opc = PPC::FMR; 948 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 949 Opc = PPC::MCRF; 950 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 951 Opc = PPC::VOR; 952 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 953 // There are two different ways this can be done: 954 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 955 // issue in VSU pipeline 0. 956 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 957 // can go to either pipeline. 958 // We'll always use xxlor here, because in practically all cases where 959 // copies are generated, they are close enough to some use that the 960 // lower-latency form is preferable. 961 Opc = PPC::XXLOR; 962 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 963 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 964 Opc = PPC::XXLORf; 965 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 966 Opc = PPC::QVFMR; 967 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 968 Opc = PPC::QVFMRs; 969 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 970 Opc = PPC::QVFMRb; 971 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 972 Opc = PPC::CROR; 973 else 974 llvm_unreachable("Impossible reg-to-reg copy"); 975 976 const MCInstrDesc &MCID = get(Opc); 977 if (MCID.getNumOperands() == 3) 978 BuildMI(MBB, I, DL, MCID, DestReg) 979 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 980 else 981 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 982 } 983 984 // This function returns true if a CR spill is necessary and false otherwise. 985 bool 986 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 987 unsigned SrcReg, bool isKill, 988 int FrameIdx, 989 const TargetRegisterClass *RC, 990 SmallVectorImpl<MachineInstr*> &NewMIs, 991 bool &NonRI, bool &SpillsVRS) const{ 992 // Note: If additional store instructions are added here, 993 // update isStoreToStackSlot. 994 995 DebugLoc DL; 996 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 997 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 998 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 999 .addReg(SrcReg, 1000 getKillRegState(isKill)), 1001 FrameIdx)); 1002 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1003 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1004 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 1005 .addReg(SrcReg, 1006 getKillRegState(isKill)), 1007 FrameIdx)); 1008 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1009 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 1010 .addReg(SrcReg, 1011 getKillRegState(isKill)), 1012 FrameIdx)); 1013 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1014 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 1015 .addReg(SrcReg, 1016 getKillRegState(isKill)), 1017 FrameIdx)); 1018 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1019 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 1020 .addReg(SrcReg, 1021 getKillRegState(isKill)), 1022 FrameIdx)); 1023 return true; 1024 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1025 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 1026 .addReg(SrcReg, 1027 getKillRegState(isKill)), 1028 FrameIdx)); 1029 return true; 1030 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1031 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 1032 .addReg(SrcReg, 1033 getKillRegState(isKill)), 1034 FrameIdx)); 1035 NonRI = true; 1036 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1037 unsigned Op = Subtarget.hasP9Vector() ? PPC::STXVX : PPC::STXVD2X; 1038 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op)) 1039 .addReg(SrcReg, 1040 getKillRegState(isKill)), 1041 FrameIdx)); 1042 NonRI = true; 1043 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1044 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf64 : PPC::STXSDX; 1045 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc)) 1046 .addReg(SrcReg, 1047 getKillRegState(isKill)), 1048 FrameIdx)); 1049 NonRI = true; 1050 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1051 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf32 : PPC::STXSSPX; 1052 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc)) 1053 .addReg(SrcReg, 1054 getKillRegState(isKill)), 1055 FrameIdx)); 1056 NonRI = true; 1057 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1058 assert(Subtarget.isDarwin() && 1059 "VRSAVE only needs spill/restore on Darwin"); 1060 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 1061 .addReg(SrcReg, 1062 getKillRegState(isKill)), 1063 FrameIdx)); 1064 SpillsVRS = true; 1065 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1066 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX)) 1067 .addReg(SrcReg, 1068 getKillRegState(isKill)), 1069 FrameIdx)); 1070 NonRI = true; 1071 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1072 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs)) 1073 .addReg(SrcReg, 1074 getKillRegState(isKill)), 1075 FrameIdx)); 1076 NonRI = true; 1077 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1078 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb)) 1079 .addReg(SrcReg, 1080 getKillRegState(isKill)), 1081 FrameIdx)); 1082 NonRI = true; 1083 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1084 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILLTOVSR_ST)) 1085 .addReg(SrcReg, 1086 getKillRegState(isKill)), 1087 FrameIdx)); 1088 } else { 1089 llvm_unreachable("Unknown regclass!"); 1090 } 1091 1092 return false; 1093 } 1094 1095 void 1096 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1097 MachineBasicBlock::iterator MI, 1098 unsigned SrcReg, bool isKill, int FrameIdx, 1099 const TargetRegisterClass *RC, 1100 const TargetRegisterInfo *TRI) const { 1101 MachineFunction &MF = *MBB.getParent(); 1102 SmallVector<MachineInstr*, 4> NewMIs; 1103 1104 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1105 FuncInfo->setHasSpills(); 1106 1107 // We need to avoid a situation in which the value from a VRRC register is 1108 // spilled using an Altivec instruction and reloaded into a VSRC register 1109 // using a VSX instruction. The issue with this is that the VSX 1110 // load/store instructions swap the doublewords in the vector and the Altivec 1111 // ones don't. The register classes on the spill/reload may be different if 1112 // the register is defined using an Altivec instruction and is then used by a 1113 // VSX instruction. 1114 RC = updatedRC(RC); 1115 1116 bool NonRI = false, SpillsVRS = false; 1117 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 1118 NonRI, SpillsVRS)) 1119 FuncInfo->setSpillsCR(); 1120 1121 if (SpillsVRS) 1122 FuncInfo->setSpillsVRSAVE(); 1123 1124 if (NonRI) 1125 FuncInfo->setHasNonRISpills(); 1126 1127 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1128 MBB.insert(MI, NewMIs[i]); 1129 1130 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1131 MachineMemOperand *MMO = MF.getMachineMemOperand( 1132 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1133 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1134 MFI.getObjectAlignment(FrameIdx)); 1135 NewMIs.back()->addMemOperand(MF, MMO); 1136 } 1137 1138 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1139 unsigned DestReg, int FrameIdx, 1140 const TargetRegisterClass *RC, 1141 SmallVectorImpl<MachineInstr *> &NewMIs, 1142 bool &NonRI, bool &SpillsVRS) const { 1143 // Note: If additional load instructions are added here, 1144 // update isLoadFromStackSlot. 1145 1146 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1147 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1148 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 1149 DestReg), FrameIdx)); 1150 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1151 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1152 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 1153 FrameIdx)); 1154 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1155 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 1156 FrameIdx)); 1157 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1158 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 1159 FrameIdx)); 1160 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1161 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1162 get(PPC::RESTORE_CR), DestReg), 1163 FrameIdx)); 1164 return true; 1165 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1166 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1167 get(PPC::RESTORE_CRBIT), DestReg), 1168 FrameIdx)); 1169 return true; 1170 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1171 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 1172 FrameIdx)); 1173 NonRI = true; 1174 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1175 unsigned Op = Subtarget.hasP9Vector() ? PPC::LXVX : PPC::LXVD2X; 1176 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op), DestReg), 1177 FrameIdx)); 1178 NonRI = true; 1179 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1180 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf64 : PPC::LXSDX; 1181 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc), 1182 DestReg), FrameIdx)); 1183 NonRI = true; 1184 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1185 unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf32 : PPC::LXSSPX; 1186 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc), 1187 DestReg), FrameIdx)); 1188 NonRI = true; 1189 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1190 assert(Subtarget.isDarwin() && 1191 "VRSAVE only needs spill/restore on Darwin"); 1192 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 1193 get(PPC::RESTORE_VRSAVE), 1194 DestReg), 1195 FrameIdx)); 1196 SpillsVRS = true; 1197 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1198 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg), 1199 FrameIdx)); 1200 NonRI = true; 1201 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1202 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg), 1203 FrameIdx)); 1204 NonRI = true; 1205 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1206 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg), 1207 FrameIdx)); 1208 NonRI = true; 1209 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1210 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILLTOVSR_LD), 1211 DestReg), FrameIdx)); 1212 } else { 1213 llvm_unreachable("Unknown regclass!"); 1214 } 1215 1216 return false; 1217 } 1218 1219 void 1220 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1221 MachineBasicBlock::iterator MI, 1222 unsigned DestReg, int FrameIdx, 1223 const TargetRegisterClass *RC, 1224 const TargetRegisterInfo *TRI) const { 1225 MachineFunction &MF = *MBB.getParent(); 1226 SmallVector<MachineInstr*, 4> NewMIs; 1227 DebugLoc DL; 1228 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1229 1230 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1231 FuncInfo->setHasSpills(); 1232 1233 // We need to avoid a situation in which the value from a VRRC register is 1234 // spilled using an Altivec instruction and reloaded into a VSRC register 1235 // using a VSX instruction. The issue with this is that the VSX 1236 // load/store instructions swap the doublewords in the vector and the Altivec 1237 // ones don't. The register classes on the spill/reload may be different if 1238 // the register is defined using an Altivec instruction and is then used by a 1239 // VSX instruction. 1240 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1241 RC = &PPC::VSRCRegClass; 1242 1243 bool NonRI = false, SpillsVRS = false; 1244 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 1245 NonRI, SpillsVRS)) 1246 FuncInfo->setSpillsCR(); 1247 1248 if (SpillsVRS) 1249 FuncInfo->setSpillsVRSAVE(); 1250 1251 if (NonRI) 1252 FuncInfo->setHasNonRISpills(); 1253 1254 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1255 MBB.insert(MI, NewMIs[i]); 1256 1257 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1258 MachineMemOperand *MMO = MF.getMachineMemOperand( 1259 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1260 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1261 MFI.getObjectAlignment(FrameIdx)); 1262 NewMIs.back()->addMemOperand(MF, MMO); 1263 } 1264 1265 bool PPCInstrInfo:: 1266 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1267 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1268 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1269 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1270 else 1271 // Leave the CR# the same, but invert the condition. 1272 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1273 return false; 1274 } 1275 1276 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1277 unsigned Reg, MachineRegisterInfo *MRI) const { 1278 // For some instructions, it is legal to fold ZERO into the RA register field. 1279 // A zero immediate should always be loaded with a single li. 1280 unsigned DefOpc = DefMI.getOpcode(); 1281 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1282 return false; 1283 if (!DefMI.getOperand(1).isImm()) 1284 return false; 1285 if (DefMI.getOperand(1).getImm() != 0) 1286 return false; 1287 1288 // Note that we cannot here invert the arguments of an isel in order to fold 1289 // a ZERO into what is presented as the second argument. All we have here 1290 // is the condition bit, and that might come from a CR-logical bit operation. 1291 1292 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1293 1294 // Only fold into real machine instructions. 1295 if (UseMCID.isPseudo()) 1296 return false; 1297 1298 unsigned UseIdx; 1299 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1300 if (UseMI.getOperand(UseIdx).isReg() && 1301 UseMI.getOperand(UseIdx).getReg() == Reg) 1302 break; 1303 1304 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1305 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1306 1307 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1308 1309 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1310 // register (which might also be specified as a pointer class kind). 1311 if (UseInfo->isLookupPtrRegClass()) { 1312 if (UseInfo->RegClass /* Kind */ != 1) 1313 return false; 1314 } else { 1315 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1316 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1317 return false; 1318 } 1319 1320 // Make sure this is not tied to an output register (or otherwise 1321 // constrained). This is true for ST?UX registers, for example, which 1322 // are tied to their output registers. 1323 if (UseInfo->Constraints != 0) 1324 return false; 1325 1326 unsigned ZeroReg; 1327 if (UseInfo->isLookupPtrRegClass()) { 1328 bool isPPC64 = Subtarget.isPPC64(); 1329 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1330 } else { 1331 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1332 PPC::ZERO8 : PPC::ZERO; 1333 } 1334 1335 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1336 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1337 1338 if (DeleteDef) 1339 DefMI.eraseFromParent(); 1340 1341 return true; 1342 } 1343 1344 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1345 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1346 I != IE; ++I) 1347 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1348 return true; 1349 return false; 1350 } 1351 1352 // We should make sure that, if we're going to predicate both sides of a 1353 // condition (a diamond), that both sides don't define the counter register. We 1354 // can predicate counter-decrement-based branches, but while that predicates 1355 // the branching, it does not predicate the counter decrement. If we tried to 1356 // merge the triangle into one predicated block, we'd decrement the counter 1357 // twice. 1358 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1359 unsigned NumT, unsigned ExtraT, 1360 MachineBasicBlock &FMBB, 1361 unsigned NumF, unsigned ExtraF, 1362 BranchProbability Probability) const { 1363 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1364 } 1365 1366 1367 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1368 // The predicated branches are identified by their type, not really by the 1369 // explicit presence of a predicate. Furthermore, some of them can be 1370 // predicated more than once. Because if conversion won't try to predicate 1371 // any instruction which already claims to be predicated (by returning true 1372 // here), always return false. In doing so, we let isPredicable() be the 1373 // final word on whether not the instruction can be (further) predicated. 1374 1375 return false; 1376 } 1377 1378 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1379 if (!MI.isTerminator()) 1380 return false; 1381 1382 // Conditional branch is a special case. 1383 if (MI.isBranch() && !MI.isBarrier()) 1384 return true; 1385 1386 return !isPredicated(MI); 1387 } 1388 1389 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1390 ArrayRef<MachineOperand> Pred) const { 1391 unsigned OpC = MI.getOpcode(); 1392 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1393 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1394 bool isPPC64 = Subtarget.isPPC64(); 1395 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1396 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1397 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1398 MI.setDesc(get(PPC::BCLR)); 1399 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1400 .addReg(Pred[1].getReg()); 1401 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1402 MI.setDesc(get(PPC::BCLRn)); 1403 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1404 .addReg(Pred[1].getReg()); 1405 } else { 1406 MI.setDesc(get(PPC::BCCLR)); 1407 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1408 .addImm(Pred[0].getImm()) 1409 .addReg(Pred[1].getReg()); 1410 } 1411 1412 return true; 1413 } else if (OpC == PPC::B) { 1414 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1415 bool isPPC64 = Subtarget.isPPC64(); 1416 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1417 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1418 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1419 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1420 MI.RemoveOperand(0); 1421 1422 MI.setDesc(get(PPC::BC)); 1423 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1424 .addReg(Pred[1].getReg()) 1425 .addMBB(MBB); 1426 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1427 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1428 MI.RemoveOperand(0); 1429 1430 MI.setDesc(get(PPC::BCn)); 1431 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1432 .addReg(Pred[1].getReg()) 1433 .addMBB(MBB); 1434 } else { 1435 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1436 MI.RemoveOperand(0); 1437 1438 MI.setDesc(get(PPC::BCC)); 1439 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1440 .addImm(Pred[0].getImm()) 1441 .addReg(Pred[1].getReg()) 1442 .addMBB(MBB); 1443 } 1444 1445 return true; 1446 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1447 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1448 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1449 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1450 1451 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1452 bool isPPC64 = Subtarget.isPPC64(); 1453 1454 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1455 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1456 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1457 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1458 .addReg(Pred[1].getReg()); 1459 return true; 1460 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1461 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1462 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1463 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1464 .addReg(Pred[1].getReg()); 1465 return true; 1466 } 1467 1468 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1469 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1470 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1471 .addImm(Pred[0].getImm()) 1472 .addReg(Pred[1].getReg()); 1473 return true; 1474 } 1475 1476 return false; 1477 } 1478 1479 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1480 ArrayRef<MachineOperand> Pred2) const { 1481 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1482 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1483 1484 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1485 return false; 1486 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1487 return false; 1488 1489 // P1 can only subsume P2 if they test the same condition register. 1490 if (Pred1[1].getReg() != Pred2[1].getReg()) 1491 return false; 1492 1493 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1494 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1495 1496 if (P1 == P2) 1497 return true; 1498 1499 // Does P1 subsume P2, e.g. GE subsumes GT. 1500 if (P1 == PPC::PRED_LE && 1501 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1502 return true; 1503 if (P1 == PPC::PRED_GE && 1504 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1505 return true; 1506 1507 return false; 1508 } 1509 1510 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1511 std::vector<MachineOperand> &Pred) const { 1512 // Note: At the present time, the contents of Pred from this function is 1513 // unused by IfConversion. This implementation follows ARM by pushing the 1514 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1515 // predicate, instructions defining CTR or CTR8 are also included as 1516 // predicate-defining instructions. 1517 1518 const TargetRegisterClass *RCs[] = 1519 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1520 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1521 1522 bool Found = false; 1523 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1524 const MachineOperand &MO = MI.getOperand(i); 1525 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1526 const TargetRegisterClass *RC = RCs[c]; 1527 if (MO.isReg()) { 1528 if (MO.isDef() && RC->contains(MO.getReg())) { 1529 Pred.push_back(MO); 1530 Found = true; 1531 } 1532 } else if (MO.isRegMask()) { 1533 for (TargetRegisterClass::iterator I = RC->begin(), 1534 IE = RC->end(); I != IE; ++I) 1535 if (MO.clobbersPhysReg(*I)) { 1536 Pred.push_back(MO); 1537 Found = true; 1538 } 1539 } 1540 } 1541 } 1542 1543 return Found; 1544 } 1545 1546 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1547 unsigned OpC = MI.getOpcode(); 1548 switch (OpC) { 1549 default: 1550 return false; 1551 case PPC::B: 1552 case PPC::BLR: 1553 case PPC::BLR8: 1554 case PPC::BCTR: 1555 case PPC::BCTR8: 1556 case PPC::BCTRL: 1557 case PPC::BCTRL8: 1558 return true; 1559 } 1560 } 1561 1562 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1563 unsigned &SrcReg2, int &Mask, 1564 int &Value) const { 1565 unsigned Opc = MI.getOpcode(); 1566 1567 switch (Opc) { 1568 default: return false; 1569 case PPC::CMPWI: 1570 case PPC::CMPLWI: 1571 case PPC::CMPDI: 1572 case PPC::CMPLDI: 1573 SrcReg = MI.getOperand(1).getReg(); 1574 SrcReg2 = 0; 1575 Value = MI.getOperand(2).getImm(); 1576 Mask = 0xFFFF; 1577 return true; 1578 case PPC::CMPW: 1579 case PPC::CMPLW: 1580 case PPC::CMPD: 1581 case PPC::CMPLD: 1582 case PPC::FCMPUS: 1583 case PPC::FCMPUD: 1584 SrcReg = MI.getOperand(1).getReg(); 1585 SrcReg2 = MI.getOperand(2).getReg(); 1586 Value = 0; 1587 Mask = 0; 1588 return true; 1589 } 1590 } 1591 1592 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1593 unsigned SrcReg2, int Mask, int Value, 1594 const MachineRegisterInfo *MRI) const { 1595 if (DisableCmpOpt) 1596 return false; 1597 1598 int OpC = CmpInstr.getOpcode(); 1599 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1600 1601 // FP record forms set CR1 based on the execption status bits, not a 1602 // comparison with zero. 1603 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1604 return false; 1605 1606 // The record forms set the condition register based on a signed comparison 1607 // with zero (so says the ISA manual). This is not as straightforward as it 1608 // seems, however, because this is always a 64-bit comparison on PPC64, even 1609 // for instructions that are 32-bit in nature (like slw for example). 1610 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1611 // for equality checks (as those don't depend on the sign). On PPC64, 1612 // we are restricted to equality for unsigned 64-bit comparisons and for 1613 // signed 32-bit comparisons the applicability is more restricted. 1614 bool isPPC64 = Subtarget.isPPC64(); 1615 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1616 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1617 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1618 1619 // Get the unique definition of SrcReg. 1620 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1621 if (!MI) return false; 1622 int MIOpC = MI->getOpcode(); 1623 1624 bool equalityOnly = false; 1625 bool noSub = false; 1626 if (isPPC64) { 1627 if (is32BitSignedCompare) { 1628 // We can perform this optimization only if MI is sign-extending. 1629 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1630 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1631 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1632 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1633 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1634 noSub = true; 1635 } else 1636 return false; 1637 } else if (is32BitUnsignedCompare) { 1638 // 32-bit rotate and mask instructions are zero extending only if MB <= ME 1639 bool isZeroExtendingRotate = 1640 (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo || 1641 MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo) 1642 && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm(); 1643 1644 // We can perform this optimization, equality only, if MI is 1645 // zero-extending. 1646 // FIXME: Other possible target instructions include ANDISo and 1647 // RLWINM aliases, such as ROTRWI, EXTLWI, SLWI and SRWI. 1648 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1649 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1650 MIOpC == PPC::SRW || MIOpC == PPC::SRWo || 1651 MIOpC == PPC::ANDIo || 1652 isZeroExtendingRotate) { 1653 noSub = true; 1654 equalityOnly = true; 1655 } else 1656 return false; 1657 } else 1658 equalityOnly = is64BitUnsignedCompare; 1659 } else 1660 equalityOnly = is32BitUnsignedCompare; 1661 1662 if (equalityOnly) { 1663 // We need to check the uses of the condition register in order to reject 1664 // non-equality comparisons. 1665 for (MachineRegisterInfo::use_instr_iterator 1666 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1667 I != IE; ++I) { 1668 MachineInstr *UseMI = &*I; 1669 if (UseMI->getOpcode() == PPC::BCC) { 1670 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1671 unsigned PredCond = PPC::getPredicateCondition(Pred); 1672 // We ignore hint bits when checking for non-equality comparisons. 1673 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1674 return false; 1675 } else if (UseMI->getOpcode() == PPC::ISEL || 1676 UseMI->getOpcode() == PPC::ISEL8) { 1677 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1678 if (SubIdx != PPC::sub_eq) 1679 return false; 1680 } else 1681 return false; 1682 } 1683 } 1684 1685 MachineBasicBlock::iterator I = CmpInstr; 1686 1687 // Scan forward to find the first use of the compare. 1688 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1689 ++I) { 1690 bool FoundUse = false; 1691 for (MachineRegisterInfo::use_instr_iterator 1692 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1693 J != JE; ++J) 1694 if (&*J == &*I) { 1695 FoundUse = true; 1696 break; 1697 } 1698 1699 if (FoundUse) 1700 break; 1701 } 1702 1703 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1704 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1705 1706 // There are two possible candidates which can be changed to set CR[01]. 1707 // One is MI, the other is a SUB instruction. 1708 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1709 MachineInstr *Sub = nullptr; 1710 if (SrcReg2 != 0) 1711 // MI is not a candidate for CMPrr. 1712 MI = nullptr; 1713 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1714 // same BB as the comparison. This is to allow the check below to avoid calls 1715 // (and other explicit clobbers); instead we should really check for these 1716 // more explicitly (in at least a few predecessors). 1717 else if (MI->getParent() != CmpInstr.getParent()) 1718 return false; 1719 else if (Value != 0) { 1720 // The record-form instructions set CR bit based on signed comparison against 0. 1721 // We try to convert a compare against 1 or -1 into a compare against 0. 1722 bool Success = false; 1723 if (!equalityOnly && MRI->hasOneUse(CRReg)) { 1724 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1725 if (UseMI->getOpcode() == PPC::BCC) { 1726 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1727 unsigned PredCond = PPC::getPredicateCondition(Pred); 1728 unsigned PredHint = PPC::getPredicateHint(Pred); 1729 int16_t Immed = (int16_t)Value; 1730 1731 // When modyfing the condition in the predicate, we propagate hint bits 1732 // from the original predicate to the new one. 1733 if (Immed == -1 && PredCond == PPC::PRED_GT) { 1734 // We convert "greater than -1" into "greater than or equal to 0", 1735 // since we are assuming signed comparison by !equalityOnly 1736 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1737 PPC::getPredicate(PPC::PRED_GE, PredHint))); 1738 Success = true; 1739 } 1740 else if (Immed == 1 && PredCond == PPC::PRED_LT) { 1741 // We convert "less than 1" into "less than or equal to 0". 1742 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1743 PPC::getPredicate(PPC::PRED_LE, PredHint))); 1744 Success = true; 1745 } 1746 } 1747 } 1748 1749 // PPC does not have a record-form SUBri. 1750 if (!Success) 1751 return false; 1752 } 1753 1754 // Search for Sub. 1755 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1756 --I; 1757 1758 // Get ready to iterate backward from CmpInstr. 1759 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1760 1761 for (; I != E && !noSub; --I) { 1762 const MachineInstr &Instr = *I; 1763 unsigned IOpC = Instr.getOpcode(); 1764 1765 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1766 Instr.readsRegister(PPC::CR0, TRI))) 1767 // This instruction modifies or uses the record condition register after 1768 // the one we want to change. While we could do this transformation, it 1769 // would likely not be profitable. This transformation removes one 1770 // instruction, and so even forcing RA to generate one move probably 1771 // makes it unprofitable. 1772 return false; 1773 1774 // Check whether CmpInstr can be made redundant by the current instruction. 1775 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1776 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1777 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1778 ((Instr.getOperand(1).getReg() == SrcReg && 1779 Instr.getOperand(2).getReg() == SrcReg2) || 1780 (Instr.getOperand(1).getReg() == SrcReg2 && 1781 Instr.getOperand(2).getReg() == SrcReg))) { 1782 Sub = &*I; 1783 break; 1784 } 1785 1786 if (I == B) 1787 // The 'and' is below the comparison instruction. 1788 return false; 1789 } 1790 1791 // Return false if no candidates exist. 1792 if (!MI && !Sub) 1793 return false; 1794 1795 // The single candidate is called MI. 1796 if (!MI) MI = Sub; 1797 1798 int NewOpC = -1; 1799 MIOpC = MI->getOpcode(); 1800 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1801 NewOpC = MIOpC; 1802 else { 1803 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1804 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1805 NewOpC = MIOpC; 1806 } 1807 1808 // FIXME: On the non-embedded POWER architectures, only some of the record 1809 // forms are fast, and we should use only the fast ones. 1810 1811 // The defining instruction has a record form (or is already a record 1812 // form). It is possible, however, that we'll need to reverse the condition 1813 // code of the users. 1814 if (NewOpC == -1) 1815 return false; 1816 1817 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1818 // needs to be updated to be based on SUB. Push the condition code 1819 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1820 // condition code of these operands will be modified. 1821 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1822 // comparison against 0, which may modify predicate. 1823 bool ShouldSwap = false; 1824 if (Sub && Value == 0) { 1825 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1826 Sub->getOperand(2).getReg() == SrcReg; 1827 1828 // The operands to subf are the opposite of sub, so only in the fixed-point 1829 // case, invert the order. 1830 ShouldSwap = !ShouldSwap; 1831 } 1832 1833 if (ShouldSwap) 1834 for (MachineRegisterInfo::use_instr_iterator 1835 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1836 I != IE; ++I) { 1837 MachineInstr *UseMI = &*I; 1838 if (UseMI->getOpcode() == PPC::BCC) { 1839 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1840 unsigned PredCond = PPC::getPredicateCondition(Pred); 1841 assert((!equalityOnly || 1842 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1843 "Invalid predicate for equality-only optimization"); 1844 (void)PredCond; // To suppress warning in release build. 1845 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1846 PPC::getSwappedPredicate(Pred))); 1847 } else if (UseMI->getOpcode() == PPC::ISEL || 1848 UseMI->getOpcode() == PPC::ISEL8) { 1849 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1850 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1851 "Invalid CR bit for equality-only optimization"); 1852 1853 if (NewSubReg == PPC::sub_lt) 1854 NewSubReg = PPC::sub_gt; 1855 else if (NewSubReg == PPC::sub_gt) 1856 NewSubReg = PPC::sub_lt; 1857 1858 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1859 NewSubReg)); 1860 } else // We need to abort on a user we don't understand. 1861 return false; 1862 } 1863 assert(!(Value != 0 && ShouldSwap) && 1864 "Non-zero immediate support and ShouldSwap" 1865 "may conflict in updating predicate"); 1866 1867 // Create a new virtual register to hold the value of the CR set by the 1868 // record-form instruction. If the instruction was not previously in 1869 // record form, then set the kill flag on the CR. 1870 CmpInstr.eraseFromParent(); 1871 1872 MachineBasicBlock::iterator MII = MI; 1873 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1874 get(TargetOpcode::COPY), CRReg) 1875 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1876 1877 // Even if CR0 register were dead before, it is alive now since the 1878 // instruction we just built uses it. 1879 MI->clearRegisterDeads(PPC::CR0); 1880 1881 if (MIOpC != NewOpC) { 1882 // We need to be careful here: we're replacing one instruction with 1883 // another, and we need to make sure that we get all of the right 1884 // implicit uses and defs. On the other hand, the caller may be holding 1885 // an iterator to this instruction, and so we can't delete it (this is 1886 // specifically the case if this is the instruction directly after the 1887 // compare). 1888 1889 const MCInstrDesc &NewDesc = get(NewOpC); 1890 MI->setDesc(NewDesc); 1891 1892 if (NewDesc.ImplicitDefs) 1893 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1894 *ImpDefs; ++ImpDefs) 1895 if (!MI->definesRegister(*ImpDefs)) 1896 MI->addOperand(*MI->getParent()->getParent(), 1897 MachineOperand::CreateReg(*ImpDefs, true, true)); 1898 if (NewDesc.ImplicitUses) 1899 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1900 *ImpUses; ++ImpUses) 1901 if (!MI->readsRegister(*ImpUses)) 1902 MI->addOperand(*MI->getParent()->getParent(), 1903 MachineOperand::CreateReg(*ImpUses, false, true)); 1904 } 1905 assert(MI->definesRegister(PPC::CR0) && 1906 "Record-form instruction does not define cr0?"); 1907 1908 // Modify the condition code of operands in OperandsToUpdate. 1909 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1910 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1911 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1912 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1913 1914 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1915 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1916 1917 return true; 1918 } 1919 1920 /// GetInstSize - Return the number of bytes of code the specified 1921 /// instruction may be. This returns the maximum number of bytes. 1922 /// 1923 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1924 unsigned Opcode = MI.getOpcode(); 1925 1926 if (Opcode == PPC::INLINEASM) { 1927 const MachineFunction *MF = MI.getParent()->getParent(); 1928 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1929 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1930 } else if (Opcode == TargetOpcode::STACKMAP) { 1931 StackMapOpers Opers(&MI); 1932 return Opers.getNumPatchBytes(); 1933 } else if (Opcode == TargetOpcode::PATCHPOINT) { 1934 PatchPointOpers Opers(&MI); 1935 return Opers.getNumPatchBytes(); 1936 } else { 1937 return get(Opcode).getSize(); 1938 } 1939 } 1940 1941 std::pair<unsigned, unsigned> 1942 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 1943 const unsigned Mask = PPCII::MO_ACCESS_MASK; 1944 return std::make_pair(TF & Mask, TF & ~Mask); 1945 } 1946 1947 ArrayRef<std::pair<unsigned, const char *>> 1948 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 1949 using namespace PPCII; 1950 static const std::pair<unsigned, const char *> TargetFlags[] = { 1951 {MO_LO, "ppc-lo"}, 1952 {MO_HA, "ppc-ha"}, 1953 {MO_TPREL_LO, "ppc-tprel-lo"}, 1954 {MO_TPREL_HA, "ppc-tprel-ha"}, 1955 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 1956 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 1957 {MO_TOC_LO, "ppc-toc-lo"}, 1958 {MO_TLS, "ppc-tls"}}; 1959 return makeArrayRef(TargetFlags); 1960 } 1961 1962 ArrayRef<std::pair<unsigned, const char *>> 1963 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 1964 using namespace PPCII; 1965 static const std::pair<unsigned, const char *> TargetFlags[] = { 1966 {MO_PLT, "ppc-plt"}, 1967 {MO_PIC_FLAG, "ppc-pic"}, 1968 {MO_NLP_FLAG, "ppc-nlp"}, 1969 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 1970 return makeArrayRef(TargetFlags); 1971 } 1972 1973 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1974 auto &MBB = *MI.getParent(); 1975 auto DL = MI.getDebugLoc(); 1976 switch (MI.getOpcode()) { 1977 case TargetOpcode::LOAD_STACK_GUARD: { 1978 assert(Subtarget.isTargetLinux() && 1979 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 1980 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 1981 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 1982 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 1983 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1984 .addImm(Offset) 1985 .addReg(Reg); 1986 return true; 1987 } 1988 case PPC::DFLOADf32: 1989 case PPC::DFLOADf64: 1990 case PPC::DFSTOREf32: 1991 case PPC::DFSTOREf64: { 1992 assert(Subtarget.hasP9Vector() && 1993 "Invalid D-Form Pseudo-ops on non-P9 target."); 1994 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isImm() && 1995 "D-form op must have register and immediate operands"); 1996 unsigned UpperOpcode, LowerOpcode; 1997 switch (MI.getOpcode()) { 1998 case PPC::DFLOADf32: 1999 UpperOpcode = PPC::LXSSP; 2000 LowerOpcode = PPC::LFS; 2001 break; 2002 case PPC::DFLOADf64: 2003 UpperOpcode = PPC::LXSD; 2004 LowerOpcode = PPC::LFD; 2005 break; 2006 case PPC::DFSTOREf32: 2007 UpperOpcode = PPC::STXSSP; 2008 LowerOpcode = PPC::STFS; 2009 break; 2010 case PPC::DFSTOREf64: 2011 UpperOpcode = PPC::STXSD; 2012 LowerOpcode = PPC::STFD; 2013 break; 2014 } 2015 unsigned TargetReg = MI.getOperand(0).getReg(); 2016 unsigned Opcode; 2017 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2018 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2019 Opcode = LowerOpcode; 2020 else 2021 Opcode = UpperOpcode; 2022 MI.setDesc(get(Opcode)); 2023 return true; 2024 } 2025 case PPC::SPILLTOVSR_LD: { 2026 unsigned TargetReg = MI.getOperand(0).getReg(); 2027 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2028 MI.setDesc(get(PPC::DFLOADf64)); 2029 return expandPostRAPseudo(MI); 2030 } 2031 else 2032 MI.setDesc(get(PPC::LD)); 2033 return true; 2034 } 2035 case PPC::SPILLTOVSR_ST: { 2036 unsigned SrcReg = MI.getOperand(0).getReg(); 2037 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2038 NumStoreSPILLVSRRCAsVec++; 2039 MI.setDesc(get(PPC::DFSTOREf64)); 2040 return expandPostRAPseudo(MI); 2041 } else { 2042 NumStoreSPILLVSRRCAsGpr++; 2043 MI.setDesc(get(PPC::STD)); 2044 } 2045 return true; 2046 } 2047 case PPC::SPILLTOVSR_LDX: { 2048 unsigned TargetReg = MI.getOperand(0).getReg(); 2049 if (PPC::VSFRCRegClass.contains(TargetReg)) 2050 MI.setDesc(get(PPC::LXSDX)); 2051 else 2052 MI.setDesc(get(PPC::LDX)); 2053 return true; 2054 } 2055 case PPC::SPILLTOVSR_STX: { 2056 unsigned SrcReg = MI.getOperand(0).getReg(); 2057 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2058 NumStoreSPILLVSRRCAsVec++; 2059 MI.setDesc(get(PPC::STXSDX)); 2060 } else { 2061 NumStoreSPILLVSRRCAsGpr++; 2062 MI.setDesc(get(PPC::STDX)); 2063 } 2064 return true; 2065 } 2066 2067 case PPC::CFENCE8: { 2068 auto Val = MI.getOperand(0).getReg(); 2069 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2070 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2071 .addImm(PPC::PRED_NE_MINUS) 2072 .addReg(PPC::CR7) 2073 .addImm(1); 2074 MI.setDesc(get(PPC::ISYNC)); 2075 MI.RemoveOperand(0); 2076 return true; 2077 } 2078 } 2079 return false; 2080 } 2081 2082 const TargetRegisterClass * 2083 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 2084 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 2085 return &PPC::VSRCRegClass; 2086 return RC; 2087 } 2088 2089 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 2090 return PPC::getRecordFormOpcode(Opcode); 2091 } 2092