1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 STATISTIC(NumStoreSPILLVSRRCAsVec, 50 "Number of spillvsrrc spilled to stack as vec"); 51 STATISTIC(NumStoreSPILLVSRRCAsGpr, 52 "Number of spillvsrrc spilled to stack as gpr"); 53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 54 STATISTIC(CmpIselsConverted, 55 "Number of ISELs that depend on comparison of constants converted"); 56 STATISTIC(MissedConvertibleImmediateInstrs, 57 "Number of compare-immediate instructions fed by constants"); 58 STATISTIC(NumRcRotatesConvertedToRcAnd, 59 "Number of record-form rotates converted to record-form andi"); 60 61 static cl:: 62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 63 cl::desc("Disable analysis for CTR loops")); 64 65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 66 cl::desc("Disable compare instruction optimization"), cl::Hidden); 67 68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 70 cl::Hidden); 71 72 static cl::opt<bool> 73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 74 cl::desc("Use the old (incorrect) instruction latency calculation")); 75 76 // Pin the vtable to this file. 77 void PPCInstrInfo::anchor() {} 78 79 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 80 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 81 /* CatchRetOpcode */ -1, 82 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 83 Subtarget(STI), RI(STI.getTargetMachine()) {} 84 85 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 86 /// this target when scheduling the DAG. 87 ScheduleHazardRecognizer * 88 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 89 const ScheduleDAG *DAG) const { 90 unsigned Directive = 91 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 92 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 93 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 94 const InstrItineraryData *II = 95 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 96 return new ScoreboardHazardRecognizer(II, DAG); 97 } 98 99 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 100 } 101 102 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 103 /// to use for this target when scheduling the DAG. 104 ScheduleHazardRecognizer * 105 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 106 const ScheduleDAG *DAG) const { 107 unsigned Directive = 108 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 109 110 // FIXME: Leaving this as-is until we have POWER9 scheduling info 111 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 112 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 113 114 // Most subtargets use a PPC970 recognizer. 115 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 116 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 117 assert(DAG->TII && "No InstrInfo?"); 118 119 return new PPCHazardRecognizer970(*DAG); 120 } 121 122 return new ScoreboardHazardRecognizer(II, DAG); 123 } 124 125 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 126 const MachineInstr &MI, 127 unsigned *PredCost) const { 128 if (!ItinData || UseOldLatencyCalc) 129 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 130 131 // The default implementation of getInstrLatency calls getStageLatency, but 132 // getStageLatency does not do the right thing for us. While we have 133 // itinerary, most cores are fully pipelined, and so the itineraries only 134 // express the first part of the pipeline, not every stage. Instead, we need 135 // to use the listed output operand cycle number (using operand 0 here, which 136 // is an output). 137 138 unsigned Latency = 1; 139 unsigned DefClass = MI.getDesc().getSchedClass(); 140 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 141 const MachineOperand &MO = MI.getOperand(i); 142 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 143 continue; 144 145 int Cycle = ItinData->getOperandCycle(DefClass, i); 146 if (Cycle < 0) 147 continue; 148 149 Latency = std::max(Latency, (unsigned) Cycle); 150 } 151 152 return Latency; 153 } 154 155 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 156 const MachineInstr &DefMI, unsigned DefIdx, 157 const MachineInstr &UseMI, 158 unsigned UseIdx) const { 159 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 160 UseMI, UseIdx); 161 162 if (!DefMI.getParent()) 163 return Latency; 164 165 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 166 Register Reg = DefMO.getReg(); 167 168 bool IsRegCR; 169 if (Register::isVirtualRegister(Reg)) { 170 const MachineRegisterInfo *MRI = 171 &DefMI.getParent()->getParent()->getRegInfo(); 172 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 173 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 174 } else { 175 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 176 PPC::CRBITRCRegClass.contains(Reg); 177 } 178 179 if (UseMI.isBranch() && IsRegCR) { 180 if (Latency < 0) 181 Latency = getInstrLatency(ItinData, DefMI); 182 183 // On some cores, there is an additional delay between writing to a condition 184 // register, and using it from a branch. 185 unsigned Directive = Subtarget.getCPUDirective(); 186 switch (Directive) { 187 default: break; 188 case PPC::DIR_7400: 189 case PPC::DIR_750: 190 case PPC::DIR_970: 191 case PPC::DIR_E5500: 192 case PPC::DIR_PWR4: 193 case PPC::DIR_PWR5: 194 case PPC::DIR_PWR5X: 195 case PPC::DIR_PWR6: 196 case PPC::DIR_PWR6X: 197 case PPC::DIR_PWR7: 198 case PPC::DIR_PWR8: 199 // FIXME: Is this needed for POWER9? 200 Latency += 2; 201 break; 202 } 203 } 204 205 return Latency; 206 } 207 208 /// This is an architecture-specific helper function of reassociateOps. 209 /// Set special operand attributes for new instructions after reassociation. 210 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 211 MachineInstr &OldMI2, 212 MachineInstr &NewMI1, 213 MachineInstr &NewMI2) const { 214 // Propagate FP flags from the original instructions. 215 // But clear poison-generating flags because those may not be valid now. 216 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 217 NewMI1.setFlags(IntersectedFlags); 218 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 219 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 220 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 221 222 NewMI2.setFlags(IntersectedFlags); 223 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 224 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 225 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 226 } 227 228 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 229 uint16_t Flags) const { 230 MI.setFlags(Flags); 231 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 232 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 233 MI.clearFlag(MachineInstr::MIFlag::IsExact); 234 } 235 236 // This function does not list all associative and commutative operations, but 237 // only those worth feeding through the machine combiner in an attempt to 238 // reduce the critical path. Mostly, this means floating-point operations, 239 // because they have high latencies(>=5) (compared to other operations, such as 240 // and/or, which are also associative and commutative, but have low latencies). 241 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 242 switch (Inst.getOpcode()) { 243 // Floating point: 244 // FP Add: 245 case PPC::FADD: 246 case PPC::FADDS: 247 // FP Multiply: 248 case PPC::FMUL: 249 case PPC::FMULS: 250 // Altivec Add: 251 case PPC::VADDFP: 252 // VSX Add: 253 case PPC::XSADDDP: 254 case PPC::XVADDDP: 255 case PPC::XVADDSP: 256 case PPC::XSADDSP: 257 // VSX Multiply: 258 case PPC::XSMULDP: 259 case PPC::XVMULDP: 260 case PPC::XVMULSP: 261 case PPC::XSMULSP: 262 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 263 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 264 // Fixed point: 265 // Multiply: 266 case PPC::MULHD: 267 case PPC::MULLD: 268 case PPC::MULHW: 269 case PPC::MULLW: 270 return true; 271 default: 272 return false; 273 } 274 } 275 276 #define InfoArrayIdxFMAInst 0 277 #define InfoArrayIdxFAddInst 1 278 #define InfoArrayIdxFMULInst 2 279 #define InfoArrayIdxAddOpIdx 3 280 #define InfoArrayIdxMULOpIdx 4 281 // Array keeps info for FMA instructions: 282 // Index 0(InfoArrayIdxFMAInst): FMA instruction; 283 // Index 1(InfoArrayIdxFAddInst): ADD instruction assoaicted with FMA; 284 // Index 2(InfoArrayIdxFMULInst): MUL instruction assoaicted with FMA; 285 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; 286 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; 287 // second MUL operand index is plus 1. 288 static const uint16_t FMAOpIdxInfo[][5] = { 289 // FIXME: Add more FMA instructions like XSNMADDADP and so on. 290 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2}, 291 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2}, 292 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2}, 293 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2}, 294 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1}, 295 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1}}; 296 297 // Check if an opcode is a FMA instruction. If it is, return the index in array 298 // FMAOpIdxInfo. Otherwise, return -1. 299 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { 300 for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++) 301 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) 302 return I; 303 return -1; 304 } 305 306 // Try to reassociate FMA chains like below: 307 // 308 // Pattern 1: 309 // A = FADD X, Y (Leaf) 310 // B = FMA A, M21, M22 (Prev) 311 // C = FMA B, M31, M32 (Root) 312 // --> 313 // A = FMA X, M21, M22 314 // B = FMA Y, M31, M32 315 // C = FADD A, B 316 // 317 // Pattern 2: 318 // A = FMA X, M11, M12 (Leaf) 319 // B = FMA A, M21, M22 (Prev) 320 // C = FMA B, M31, M32 (Root) 321 // --> 322 // A = FMUL M11, M12 323 // B = FMA X, M21, M22 324 // D = FMA A, M31, M32 325 // C = FADD B, D 326 // 327 // breaking the dependency between A and B, allowing FMA to be executed in 328 // parallel (or back-to-back in a pipeline) instead of depending on each other. 329 bool PPCInstrInfo::getFMAPatterns( 330 MachineInstr &Root, 331 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 332 MachineBasicBlock *MBB = Root.getParent(); 333 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 334 335 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { 336 for (const auto &MO : Instr.explicit_operands()) 337 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 338 return false; 339 return true; 340 }; 341 342 auto IsReassociable = [&](const MachineInstr &Instr, int16_t &AddOpIdx, 343 bool IsLeaf, bool IsAdd) { 344 int16_t Idx = -1; 345 if (!IsAdd) { 346 Idx = getFMAOpIdxInfo(Instr.getOpcode()); 347 if (Idx < 0) 348 return false; 349 } else if (Instr.getOpcode() != 350 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())] 351 [InfoArrayIdxFAddInst]) 352 return false; 353 354 // Instruction can be reassociated. 355 // fast math flags may prohibit reassociation. 356 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && 357 Instr.getFlag(MachineInstr::MIFlag::FmNsz))) 358 return false; 359 360 // Instruction operands are virtual registers for reassociation. 361 if (!IsAllOpsVirtualReg(Instr)) 362 return false; 363 364 if (IsAdd && IsLeaf) 365 return true; 366 367 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 368 369 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); 370 MachineInstr *MIAdd = MRI.getUniqueVRegDef(OpAdd.getReg()); 371 // If 'add' operand's def is not in current block, don't do ILP related opt. 372 if (!MIAdd || MIAdd->getParent() != MBB) 373 return false; 374 375 // If this is not Leaf FMA Instr, its 'add' operand should only have one use 376 // as this fma will be changed later. 377 return IsLeaf ? true : MRI.hasOneNonDBGUse(OpAdd.getReg()); 378 }; 379 380 int16_t AddOpIdx = -1; 381 // Root must be a valid FMA like instruction. 382 if (!IsReassociable(Root, AddOpIdx, false, false)) 383 return false; 384 385 assert((AddOpIdx >= 0) && "add operand index not right!"); 386 387 Register RegB = Root.getOperand(AddOpIdx).getReg(); 388 MachineInstr *Prev = MRI.getUniqueVRegDef(RegB); 389 390 // Prev must be a valid FMA like instruction. 391 AddOpIdx = -1; 392 if (!IsReassociable(*Prev, AddOpIdx, false, false)) 393 return false; 394 395 assert((AddOpIdx >= 0) && "add operand index not right!"); 396 397 Register RegA = Prev->getOperand(AddOpIdx).getReg(); 398 MachineInstr *Leaf = MRI.getUniqueVRegDef(RegA); 399 AddOpIdx = -1; 400 if (IsReassociable(*Leaf, AddOpIdx, true, false)) { 401 Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); 402 return true; 403 } 404 if (IsReassociable(*Leaf, AddOpIdx, true, true)) { 405 Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); 406 return true; 407 } 408 return false; 409 } 410 411 bool PPCInstrInfo::getMachineCombinerPatterns( 412 MachineInstr &Root, 413 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 414 // Using the machine combiner in this way is potentially expensive, so 415 // restrict to when aggressive optimizations are desired. 416 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 417 return false; 418 419 if (getFMAPatterns(Root, Patterns)) 420 return true; 421 422 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 423 } 424 425 void PPCInstrInfo::genAlternativeCodeSequence( 426 MachineInstr &Root, MachineCombinerPattern Pattern, 427 SmallVectorImpl<MachineInstr *> &InsInstrs, 428 SmallVectorImpl<MachineInstr *> &DelInstrs, 429 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 430 switch (Pattern) { 431 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 432 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 433 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); 434 break; 435 default: 436 // Reassociate default patterns. 437 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 438 DelInstrs, InstrIdxForVirtReg); 439 break; 440 } 441 } 442 443 // Currently, only handle two patterns REASSOC_XY_AMM_BMM and 444 // REASSOC_XMM_AMM_BMM. See comments for getFMAPatterns. 445 void PPCInstrInfo::reassociateFMA( 446 MachineInstr &Root, MachineCombinerPattern Pattern, 447 SmallVectorImpl<MachineInstr *> &InsInstrs, 448 SmallVectorImpl<MachineInstr *> &DelInstrs, 449 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 450 MachineFunction *MF = Root.getMF(); 451 MachineRegisterInfo &MRI = MF->getRegInfo(); 452 MachineOperand &OpC = Root.getOperand(0); 453 Register RegC = OpC.getReg(); 454 const TargetRegisterClass *RC = MRI.getRegClass(RegC); 455 MRI.constrainRegClass(RegC, RC); 456 457 unsigned FmaOp = Root.getOpcode(); 458 int16_t Idx = getFMAOpIdxInfo(FmaOp); 459 assert(Idx >= 0 && "Root must be a FMA instruction"); 460 461 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; 462 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; 463 MachineInstr *Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); 464 MachineInstr *Leaf = 465 MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); 466 uint16_t IntersectedFlags = 467 Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); 468 469 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, 470 bool &KillFlag) { 471 Reg = Operand.getReg(); 472 MRI.constrainRegClass(Reg, RC); 473 KillFlag = Operand.isKill(); 474 }; 475 476 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, 477 Register &MulOp2, bool &MulOp1KillFlag, 478 bool &MulOp2KillFlag) { 479 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); 480 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); 481 }; 482 483 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32; 484 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, 485 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false; 486 487 GetFMAInstrInfo(Root, RegM31, RegM32, KillM31, KillM32); 488 GetFMAInstrInfo(*Prev, RegM21, RegM22, KillM21, KillM22); 489 490 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 491 GetFMAInstrInfo(*Leaf, RegM11, RegM12, KillM11, KillM12); 492 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); 493 } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 494 GetOperandInfo(Leaf->getOperand(1), RegX, KillX); 495 GetOperandInfo(Leaf->getOperand(2), RegY, KillY); 496 } 497 498 // Create new virtual registers for the new results instead of 499 // recycling legacy ones because the MachineCombiner's computation of the 500 // critical path requires a new register definition rather than an existing 501 // one. 502 Register NewVRA = MRI.createVirtualRegister(RC); 503 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); 504 505 Register NewVRB = MRI.createVirtualRegister(RC); 506 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); 507 508 Register NewVRD = 0; 509 if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 510 NewVRD = MRI.createVirtualRegister(RC); 511 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); 512 } 513 514 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, 515 Register RegMul1, bool KillRegMul1, 516 Register RegMul2, bool KillRegMul2) { 517 MI->getOperand(AddOpIdx).setReg(RegAdd); 518 MI->getOperand(AddOpIdx).setIsKill(KillAdd); 519 MI->getOperand(FirstMulOpIdx).setReg(RegMul1); 520 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); 521 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); 522 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); 523 }; 524 525 if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { 526 // Create new instructions for insertion. 527 MachineInstrBuilder MINewB = 528 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 529 .addReg(RegX, getKillRegState(KillX)) 530 .addReg(RegM21, getKillRegState(KillM21)) 531 .addReg(RegM22, getKillRegState(KillM22)); 532 MachineInstrBuilder MINewA = 533 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) 534 .addReg(RegY, getKillRegState(KillY)) 535 .addReg(RegM31, getKillRegState(KillM31)) 536 .addReg(RegM32, getKillRegState(KillM32)); 537 // If AddOpIdx is not 1, adjust the order. 538 if (AddOpIdx != 1) { 539 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 540 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); 541 } 542 543 MachineInstrBuilder MINewC = 544 BuildMI(*MF, Root.getDebugLoc(), 545 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 546 .addReg(NewVRB, getKillRegState(true)) 547 .addReg(NewVRA, getKillRegState(true)); 548 549 // Update flags for newly created instructions. 550 setSpecialOperandAttr(*MINewA, IntersectedFlags); 551 setSpecialOperandAttr(*MINewB, IntersectedFlags); 552 setSpecialOperandAttr(*MINewC, IntersectedFlags); 553 554 // Record new instructions for insertion. 555 InsInstrs.push_back(MINewA); 556 InsInstrs.push_back(MINewB); 557 InsInstrs.push_back(MINewC); 558 } else if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { 559 assert(NewVRD && "new FMA register not created!"); 560 // Create new instructions for insertion. 561 MachineInstrBuilder MINewA = 562 BuildMI(*MF, Leaf->getDebugLoc(), 563 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) 564 .addReg(RegM11, getKillRegState(KillM11)) 565 .addReg(RegM12, getKillRegState(KillM12)); 566 MachineInstrBuilder MINewB = 567 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) 568 .addReg(RegX, getKillRegState(KillX)) 569 .addReg(RegM21, getKillRegState(KillM21)) 570 .addReg(RegM22, getKillRegState(KillM22)); 571 MachineInstrBuilder MINewD = 572 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) 573 .addReg(NewVRA, getKillRegState(true)) 574 .addReg(RegM31, getKillRegState(KillM31)) 575 .addReg(RegM32, getKillRegState(KillM32)); 576 // If AddOpIdx is not 1, adjust the order. 577 if (AddOpIdx != 1) { 578 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); 579 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, 580 KillM32); 581 } 582 583 MachineInstrBuilder MINewC = 584 BuildMI(*MF, Root.getDebugLoc(), 585 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) 586 .addReg(NewVRB, getKillRegState(true)) 587 .addReg(NewVRD, getKillRegState(true)); 588 589 // Update flags for newly created instructions. 590 setSpecialOperandAttr(*MINewA, IntersectedFlags); 591 setSpecialOperandAttr(*MINewB, IntersectedFlags); 592 setSpecialOperandAttr(*MINewD, IntersectedFlags); 593 setSpecialOperandAttr(*MINewC, IntersectedFlags); 594 595 // Record new instructions for insertion. 596 InsInstrs.push_back(MINewA); 597 InsInstrs.push_back(MINewB); 598 InsInstrs.push_back(MINewD); 599 InsInstrs.push_back(MINewC); 600 } 601 602 assert(!InsInstrs.empty() && 603 "Insertion instructions set should not be empty!"); 604 605 // Record old instructions for deletion. 606 DelInstrs.push_back(Leaf); 607 DelInstrs.push_back(Prev); 608 DelInstrs.push_back(&Root); 609 } 610 611 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 612 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 613 Register &SrcReg, Register &DstReg, 614 unsigned &SubIdx) const { 615 switch (MI.getOpcode()) { 616 default: return false; 617 case PPC::EXTSW: 618 case PPC::EXTSW_32: 619 case PPC::EXTSW_32_64: 620 SrcReg = MI.getOperand(1).getReg(); 621 DstReg = MI.getOperand(0).getReg(); 622 SubIdx = PPC::sub_32; 623 return true; 624 } 625 } 626 627 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 628 int &FrameIndex) const { 629 unsigned Opcode = MI.getOpcode(); 630 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 631 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 632 633 if (End != std::find(OpcodesForSpill, End, Opcode)) { 634 // Check for the operands added by addFrameReference (the immediate is the 635 // offset which defaults to 0). 636 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 637 MI.getOperand(2).isFI()) { 638 FrameIndex = MI.getOperand(2).getIndex(); 639 return MI.getOperand(0).getReg(); 640 } 641 } 642 return 0; 643 } 644 645 // For opcodes with the ReMaterializable flag set, this function is called to 646 // verify the instruction is really rematable. 647 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 648 AliasAnalysis *AA) const { 649 switch (MI.getOpcode()) { 650 default: 651 // This function should only be called for opcodes with the ReMaterializable 652 // flag set. 653 llvm_unreachable("Unknown rematerializable operation!"); 654 break; 655 case PPC::LI: 656 case PPC::LI8: 657 case PPC::LIS: 658 case PPC::LIS8: 659 case PPC::ADDIStocHA: 660 case PPC::ADDIStocHA8: 661 case PPC::ADDItocL: 662 case PPC::LOAD_STACK_GUARD: 663 case PPC::XXLXORz: 664 case PPC::XXLXORspz: 665 case PPC::XXLXORdpz: 666 case PPC::XXLEQVOnes: 667 case PPC::V_SET0B: 668 case PPC::V_SET0H: 669 case PPC::V_SET0: 670 case PPC::V_SETALLONESB: 671 case PPC::V_SETALLONESH: 672 case PPC::V_SETALLONES: 673 case PPC::CRSET: 674 case PPC::CRUNSET: 675 return true; 676 } 677 return false; 678 } 679 680 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 681 int &FrameIndex) const { 682 unsigned Opcode = MI.getOpcode(); 683 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 684 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 685 686 if (End != std::find(OpcodesForSpill, End, Opcode)) { 687 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 688 MI.getOperand(2).isFI()) { 689 FrameIndex = MI.getOperand(2).getIndex(); 690 return MI.getOperand(0).getReg(); 691 } 692 } 693 return 0; 694 } 695 696 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 697 unsigned OpIdx1, 698 unsigned OpIdx2) const { 699 MachineFunction &MF = *MI.getParent()->getParent(); 700 701 // Normal instructions can be commuted the obvious way. 702 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 703 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 704 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 705 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 706 // changing the relative order of the mask operands might change what happens 707 // to the high-bits of the mask (and, thus, the result). 708 709 // Cannot commute if it has a non-zero rotate count. 710 if (MI.getOperand(3).getImm() != 0) 711 return nullptr; 712 713 // If we have a zero rotate count, we have: 714 // M = mask(MB,ME) 715 // Op0 = (Op1 & ~M) | (Op2 & M) 716 // Change this to: 717 // M = mask((ME+1)&31, (MB-1)&31) 718 // Op0 = (Op2 & ~M) | (Op1 & M) 719 720 // Swap op1/op2 721 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 722 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 723 Register Reg0 = MI.getOperand(0).getReg(); 724 Register Reg1 = MI.getOperand(1).getReg(); 725 Register Reg2 = MI.getOperand(2).getReg(); 726 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 727 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 728 bool Reg1IsKill = MI.getOperand(1).isKill(); 729 bool Reg2IsKill = MI.getOperand(2).isKill(); 730 bool ChangeReg0 = false; 731 // If machine instrs are no longer in two-address forms, update 732 // destination register as well. 733 if (Reg0 == Reg1) { 734 // Must be two address instruction! 735 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 736 "Expecting a two-address instruction!"); 737 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 738 Reg2IsKill = false; 739 ChangeReg0 = true; 740 } 741 742 // Masks. 743 unsigned MB = MI.getOperand(4).getImm(); 744 unsigned ME = MI.getOperand(5).getImm(); 745 746 // We can't commute a trivial mask (there is no way to represent an all-zero 747 // mask). 748 if (MB == 0 && ME == 31) 749 return nullptr; 750 751 if (NewMI) { 752 // Create a new instruction. 753 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 754 bool Reg0IsDead = MI.getOperand(0).isDead(); 755 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 756 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 757 .addReg(Reg2, getKillRegState(Reg2IsKill)) 758 .addReg(Reg1, getKillRegState(Reg1IsKill)) 759 .addImm((ME + 1) & 31) 760 .addImm((MB - 1) & 31); 761 } 762 763 if (ChangeReg0) { 764 MI.getOperand(0).setReg(Reg2); 765 MI.getOperand(0).setSubReg(SubReg2); 766 } 767 MI.getOperand(2).setReg(Reg1); 768 MI.getOperand(1).setReg(Reg2); 769 MI.getOperand(2).setSubReg(SubReg1); 770 MI.getOperand(1).setSubReg(SubReg2); 771 MI.getOperand(2).setIsKill(Reg1IsKill); 772 MI.getOperand(1).setIsKill(Reg2IsKill); 773 774 // Swap the mask around. 775 MI.getOperand(4).setImm((ME + 1) & 31); 776 MI.getOperand(5).setImm((MB - 1) & 31); 777 return &MI; 778 } 779 780 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 781 unsigned &SrcOpIdx1, 782 unsigned &SrcOpIdx2) const { 783 // For VSX A-Type FMA instructions, it is the first two operands that can be 784 // commuted, however, because the non-encoded tied input operand is listed 785 // first, the operands to swap are actually the second and third. 786 787 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 788 if (AltOpc == -1) 789 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 790 791 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 792 // and SrcOpIdx2. 793 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 794 } 795 796 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 797 MachineBasicBlock::iterator MI) const { 798 // This function is used for scheduling, and the nop wanted here is the type 799 // that terminates dispatch groups on the POWER cores. 800 unsigned Directive = Subtarget.getCPUDirective(); 801 unsigned Opcode; 802 switch (Directive) { 803 default: Opcode = PPC::NOP; break; 804 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 805 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 806 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 807 // FIXME: Update when POWER9 scheduling model is ready. 808 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 809 } 810 811 DebugLoc DL; 812 BuildMI(MBB, MI, DL, get(Opcode)); 813 } 814 815 /// Return the noop instruction to use for a noop. 816 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 817 NopInst.setOpcode(PPC::NOP); 818 } 819 820 // Branch analysis. 821 // Note: If the condition register is set to CTR or CTR8 then this is a 822 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 823 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 824 MachineBasicBlock *&TBB, 825 MachineBasicBlock *&FBB, 826 SmallVectorImpl<MachineOperand> &Cond, 827 bool AllowModify) const { 828 bool isPPC64 = Subtarget.isPPC64(); 829 830 // If the block has no terminators, it just falls into the block after it. 831 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 832 if (I == MBB.end()) 833 return false; 834 835 if (!isUnpredicatedTerminator(*I)) 836 return false; 837 838 if (AllowModify) { 839 // If the BB ends with an unconditional branch to the fallthrough BB, 840 // we eliminate the branch instruction. 841 if (I->getOpcode() == PPC::B && 842 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 843 I->eraseFromParent(); 844 845 // We update iterator after deleting the last branch. 846 I = MBB.getLastNonDebugInstr(); 847 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 848 return false; 849 } 850 } 851 852 // Get the last instruction in the block. 853 MachineInstr &LastInst = *I; 854 855 // If there is only one terminator instruction, process it. 856 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 857 if (LastInst.getOpcode() == PPC::B) { 858 if (!LastInst.getOperand(0).isMBB()) 859 return true; 860 TBB = LastInst.getOperand(0).getMBB(); 861 return false; 862 } else if (LastInst.getOpcode() == PPC::BCC) { 863 if (!LastInst.getOperand(2).isMBB()) 864 return true; 865 // Block ends with fall-through condbranch. 866 TBB = LastInst.getOperand(2).getMBB(); 867 Cond.push_back(LastInst.getOperand(0)); 868 Cond.push_back(LastInst.getOperand(1)); 869 return false; 870 } else if (LastInst.getOpcode() == PPC::BC) { 871 if (!LastInst.getOperand(1).isMBB()) 872 return true; 873 // Block ends with fall-through condbranch. 874 TBB = LastInst.getOperand(1).getMBB(); 875 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 876 Cond.push_back(LastInst.getOperand(0)); 877 return false; 878 } else if (LastInst.getOpcode() == PPC::BCn) { 879 if (!LastInst.getOperand(1).isMBB()) 880 return true; 881 // Block ends with fall-through condbranch. 882 TBB = LastInst.getOperand(1).getMBB(); 883 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 884 Cond.push_back(LastInst.getOperand(0)); 885 return false; 886 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 887 LastInst.getOpcode() == PPC::BDNZ) { 888 if (!LastInst.getOperand(0).isMBB()) 889 return true; 890 if (DisableCTRLoopAnal) 891 return true; 892 TBB = LastInst.getOperand(0).getMBB(); 893 Cond.push_back(MachineOperand::CreateImm(1)); 894 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 895 true)); 896 return false; 897 } else if (LastInst.getOpcode() == PPC::BDZ8 || 898 LastInst.getOpcode() == PPC::BDZ) { 899 if (!LastInst.getOperand(0).isMBB()) 900 return true; 901 if (DisableCTRLoopAnal) 902 return true; 903 TBB = LastInst.getOperand(0).getMBB(); 904 Cond.push_back(MachineOperand::CreateImm(0)); 905 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 906 true)); 907 return false; 908 } 909 910 // Otherwise, don't know what this is. 911 return true; 912 } 913 914 // Get the instruction before it if it's a terminator. 915 MachineInstr &SecondLastInst = *I; 916 917 // If there are three terminators, we don't know what sort of block this is. 918 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 919 return true; 920 921 // If the block ends with PPC::B and PPC:BCC, handle it. 922 if (SecondLastInst.getOpcode() == PPC::BCC && 923 LastInst.getOpcode() == PPC::B) { 924 if (!SecondLastInst.getOperand(2).isMBB() || 925 !LastInst.getOperand(0).isMBB()) 926 return true; 927 TBB = SecondLastInst.getOperand(2).getMBB(); 928 Cond.push_back(SecondLastInst.getOperand(0)); 929 Cond.push_back(SecondLastInst.getOperand(1)); 930 FBB = LastInst.getOperand(0).getMBB(); 931 return false; 932 } else if (SecondLastInst.getOpcode() == PPC::BC && 933 LastInst.getOpcode() == PPC::B) { 934 if (!SecondLastInst.getOperand(1).isMBB() || 935 !LastInst.getOperand(0).isMBB()) 936 return true; 937 TBB = SecondLastInst.getOperand(1).getMBB(); 938 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 939 Cond.push_back(SecondLastInst.getOperand(0)); 940 FBB = LastInst.getOperand(0).getMBB(); 941 return false; 942 } else if (SecondLastInst.getOpcode() == PPC::BCn && 943 LastInst.getOpcode() == PPC::B) { 944 if (!SecondLastInst.getOperand(1).isMBB() || 945 !LastInst.getOperand(0).isMBB()) 946 return true; 947 TBB = SecondLastInst.getOperand(1).getMBB(); 948 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 949 Cond.push_back(SecondLastInst.getOperand(0)); 950 FBB = LastInst.getOperand(0).getMBB(); 951 return false; 952 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 953 SecondLastInst.getOpcode() == PPC::BDNZ) && 954 LastInst.getOpcode() == PPC::B) { 955 if (!SecondLastInst.getOperand(0).isMBB() || 956 !LastInst.getOperand(0).isMBB()) 957 return true; 958 if (DisableCTRLoopAnal) 959 return true; 960 TBB = SecondLastInst.getOperand(0).getMBB(); 961 Cond.push_back(MachineOperand::CreateImm(1)); 962 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 963 true)); 964 FBB = LastInst.getOperand(0).getMBB(); 965 return false; 966 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 967 SecondLastInst.getOpcode() == PPC::BDZ) && 968 LastInst.getOpcode() == PPC::B) { 969 if (!SecondLastInst.getOperand(0).isMBB() || 970 !LastInst.getOperand(0).isMBB()) 971 return true; 972 if (DisableCTRLoopAnal) 973 return true; 974 TBB = SecondLastInst.getOperand(0).getMBB(); 975 Cond.push_back(MachineOperand::CreateImm(0)); 976 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 977 true)); 978 FBB = LastInst.getOperand(0).getMBB(); 979 return false; 980 } 981 982 // If the block ends with two PPC:Bs, handle it. The second one is not 983 // executed, so remove it. 984 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 985 if (!SecondLastInst.getOperand(0).isMBB()) 986 return true; 987 TBB = SecondLastInst.getOperand(0).getMBB(); 988 I = LastInst; 989 if (AllowModify) 990 I->eraseFromParent(); 991 return false; 992 } 993 994 // Otherwise, can't handle this. 995 return true; 996 } 997 998 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 999 int *BytesRemoved) const { 1000 assert(!BytesRemoved && "code size not handled"); 1001 1002 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1003 if (I == MBB.end()) 1004 return 0; 1005 1006 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 1007 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1008 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1009 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1010 return 0; 1011 1012 // Remove the branch. 1013 I->eraseFromParent(); 1014 1015 I = MBB.end(); 1016 1017 if (I == MBB.begin()) return 1; 1018 --I; 1019 if (I->getOpcode() != PPC::BCC && 1020 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 1021 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 1022 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 1023 return 1; 1024 1025 // Remove the branch. 1026 I->eraseFromParent(); 1027 return 2; 1028 } 1029 1030 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 1031 MachineBasicBlock *TBB, 1032 MachineBasicBlock *FBB, 1033 ArrayRef<MachineOperand> Cond, 1034 const DebugLoc &DL, 1035 int *BytesAdded) const { 1036 // Shouldn't be a fall through. 1037 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 1038 assert((Cond.size() == 2 || Cond.size() == 0) && 1039 "PPC branch conditions have two components!"); 1040 assert(!BytesAdded && "code size not handled"); 1041 1042 bool isPPC64 = Subtarget.isPPC64(); 1043 1044 // One-way branch. 1045 if (!FBB) { 1046 if (Cond.empty()) // Unconditional branch 1047 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 1048 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1049 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1050 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1051 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1052 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1053 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1054 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1055 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1056 else // Conditional branch 1057 BuildMI(&MBB, DL, get(PPC::BCC)) 1058 .addImm(Cond[0].getImm()) 1059 .add(Cond[1]) 1060 .addMBB(TBB); 1061 return 1; 1062 } 1063 1064 // Two-way Conditional Branch. 1065 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1066 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 1067 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1068 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 1069 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 1070 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 1071 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 1072 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 1073 else 1074 BuildMI(&MBB, DL, get(PPC::BCC)) 1075 .addImm(Cond[0].getImm()) 1076 .add(Cond[1]) 1077 .addMBB(TBB); 1078 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 1079 return 2; 1080 } 1081 1082 // Select analysis. 1083 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 1084 ArrayRef<MachineOperand> Cond, 1085 Register DstReg, Register TrueReg, 1086 Register FalseReg, int &CondCycles, 1087 int &TrueCycles, int &FalseCycles) const { 1088 if (Cond.size() != 2) 1089 return false; 1090 1091 // If this is really a bdnz-like condition, then it cannot be turned into a 1092 // select. 1093 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 1094 return false; 1095 1096 // Check register classes. 1097 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1098 const TargetRegisterClass *RC = 1099 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1100 if (!RC) 1101 return false; 1102 1103 // isel is for regular integer GPRs only. 1104 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 1105 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 1106 !PPC::G8RCRegClass.hasSubClassEq(RC) && 1107 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 1108 return false; 1109 1110 // FIXME: These numbers are for the A2, how well they work for other cores is 1111 // an open question. On the A2, the isel instruction has a 2-cycle latency 1112 // but single-cycle throughput. These numbers are used in combination with 1113 // the MispredictPenalty setting from the active SchedMachineModel. 1114 CondCycles = 1; 1115 TrueCycles = 1; 1116 FalseCycles = 1; 1117 1118 return true; 1119 } 1120 1121 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 1122 MachineBasicBlock::iterator MI, 1123 const DebugLoc &dl, Register DestReg, 1124 ArrayRef<MachineOperand> Cond, Register TrueReg, 1125 Register FalseReg) const { 1126 assert(Cond.size() == 2 && 1127 "PPC branch conditions have two components!"); 1128 1129 // Get the register classes. 1130 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1131 const TargetRegisterClass *RC = 1132 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 1133 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 1134 1135 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 1136 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 1137 assert((Is64Bit || 1138 PPC::GPRCRegClass.hasSubClassEq(RC) || 1139 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 1140 "isel is for regular integer GPRs only"); 1141 1142 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 1143 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 1144 1145 unsigned SubIdx = 0; 1146 bool SwapOps = false; 1147 switch (SelectPred) { 1148 case PPC::PRED_EQ: 1149 case PPC::PRED_EQ_MINUS: 1150 case PPC::PRED_EQ_PLUS: 1151 SubIdx = PPC::sub_eq; SwapOps = false; break; 1152 case PPC::PRED_NE: 1153 case PPC::PRED_NE_MINUS: 1154 case PPC::PRED_NE_PLUS: 1155 SubIdx = PPC::sub_eq; SwapOps = true; break; 1156 case PPC::PRED_LT: 1157 case PPC::PRED_LT_MINUS: 1158 case PPC::PRED_LT_PLUS: 1159 SubIdx = PPC::sub_lt; SwapOps = false; break; 1160 case PPC::PRED_GE: 1161 case PPC::PRED_GE_MINUS: 1162 case PPC::PRED_GE_PLUS: 1163 SubIdx = PPC::sub_lt; SwapOps = true; break; 1164 case PPC::PRED_GT: 1165 case PPC::PRED_GT_MINUS: 1166 case PPC::PRED_GT_PLUS: 1167 SubIdx = PPC::sub_gt; SwapOps = false; break; 1168 case PPC::PRED_LE: 1169 case PPC::PRED_LE_MINUS: 1170 case PPC::PRED_LE_PLUS: 1171 SubIdx = PPC::sub_gt; SwapOps = true; break; 1172 case PPC::PRED_UN: 1173 case PPC::PRED_UN_MINUS: 1174 case PPC::PRED_UN_PLUS: 1175 SubIdx = PPC::sub_un; SwapOps = false; break; 1176 case PPC::PRED_NU: 1177 case PPC::PRED_NU_MINUS: 1178 case PPC::PRED_NU_PLUS: 1179 SubIdx = PPC::sub_un; SwapOps = true; break; 1180 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 1181 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 1182 } 1183 1184 Register FirstReg = SwapOps ? FalseReg : TrueReg, 1185 SecondReg = SwapOps ? TrueReg : FalseReg; 1186 1187 // The first input register of isel cannot be r0. If it is a member 1188 // of a register class that can be r0, then copy it first (the 1189 // register allocator should eliminate the copy). 1190 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 1191 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 1192 const TargetRegisterClass *FirstRC = 1193 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 1194 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 1195 Register OldFirstReg = FirstReg; 1196 FirstReg = MRI.createVirtualRegister(FirstRC); 1197 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 1198 .addReg(OldFirstReg); 1199 } 1200 1201 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 1202 .addReg(FirstReg).addReg(SecondReg) 1203 .addReg(Cond[1].getReg(), 0, SubIdx); 1204 } 1205 1206 static unsigned getCRBitValue(unsigned CRBit) { 1207 unsigned Ret = 4; 1208 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 1209 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 1210 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 1211 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 1212 Ret = 3; 1213 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 1214 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 1215 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 1216 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 1217 Ret = 2; 1218 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 1219 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 1220 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 1221 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 1222 Ret = 1; 1223 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 1224 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 1225 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 1226 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 1227 Ret = 0; 1228 1229 assert(Ret != 4 && "Invalid CR bit register"); 1230 return Ret; 1231 } 1232 1233 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 1234 MachineBasicBlock::iterator I, 1235 const DebugLoc &DL, MCRegister DestReg, 1236 MCRegister SrcReg, bool KillSrc) const { 1237 // We can end up with self copies and similar things as a result of VSX copy 1238 // legalization. Promote them here. 1239 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1240 if (PPC::F8RCRegClass.contains(DestReg) && 1241 PPC::VSRCRegClass.contains(SrcReg)) { 1242 MCRegister SuperReg = 1243 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 1244 1245 if (VSXSelfCopyCrash && SrcReg == SuperReg) 1246 llvm_unreachable("nop VSX copy"); 1247 1248 DestReg = SuperReg; 1249 } else if (PPC::F8RCRegClass.contains(SrcReg) && 1250 PPC::VSRCRegClass.contains(DestReg)) { 1251 MCRegister SuperReg = 1252 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 1253 1254 if (VSXSelfCopyCrash && DestReg == SuperReg) 1255 llvm_unreachable("nop VSX copy"); 1256 1257 SrcReg = SuperReg; 1258 } 1259 1260 // Different class register copy 1261 if (PPC::CRBITRCRegClass.contains(SrcReg) && 1262 PPC::GPRCRegClass.contains(DestReg)) { 1263 MCRegister CRReg = getCRFromCRBit(SrcReg); 1264 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 1265 getKillRegState(KillSrc); 1266 // Rotate the CR bit in the CR fields to be the least significant bit and 1267 // then mask with 0x1 (MB = ME = 31). 1268 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 1269 .addReg(DestReg, RegState::Kill) 1270 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 1271 .addImm(31) 1272 .addImm(31); 1273 return; 1274 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1275 PPC::G8RCRegClass.contains(DestReg)) { 1276 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 1277 getKillRegState(KillSrc); 1278 return; 1279 } else if (PPC::CRRCRegClass.contains(SrcReg) && 1280 PPC::GPRCRegClass.contains(DestReg)) { 1281 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 1282 getKillRegState(KillSrc); 1283 return; 1284 } else if (PPC::G8RCRegClass.contains(SrcReg) && 1285 PPC::VSFRCRegClass.contains(DestReg)) { 1286 assert(Subtarget.hasDirectMove() && 1287 "Subtarget doesn't support directmove, don't know how to copy."); 1288 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 1289 NumGPRtoVSRSpill++; 1290 getKillRegState(KillSrc); 1291 return; 1292 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 1293 PPC::G8RCRegClass.contains(DestReg)) { 1294 assert(Subtarget.hasDirectMove() && 1295 "Subtarget doesn't support directmove, don't know how to copy."); 1296 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 1297 getKillRegState(KillSrc); 1298 return; 1299 } else if (PPC::SPERCRegClass.contains(SrcReg) && 1300 PPC::GPRCRegClass.contains(DestReg)) { 1301 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 1302 getKillRegState(KillSrc); 1303 return; 1304 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1305 PPC::SPERCRegClass.contains(DestReg)) { 1306 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1307 getKillRegState(KillSrc); 1308 return; 1309 } 1310 1311 unsigned Opc; 1312 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1313 Opc = PPC::OR; 1314 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1315 Opc = PPC::OR8; 1316 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1317 Opc = PPC::FMR; 1318 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1319 Opc = PPC::MCRF; 1320 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1321 Opc = PPC::VOR; 1322 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1323 // There are two different ways this can be done: 1324 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1325 // issue in VSU pipeline 0. 1326 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1327 // can go to either pipeline. 1328 // We'll always use xxlor here, because in practically all cases where 1329 // copies are generated, they are close enough to some use that the 1330 // lower-latency form is preferable. 1331 Opc = PPC::XXLOR; 1332 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1333 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1334 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1335 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1336 Opc = PPC::CROR; 1337 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1338 Opc = PPC::EVOR; 1339 else 1340 llvm_unreachable("Impossible reg-to-reg copy"); 1341 1342 const MCInstrDesc &MCID = get(Opc); 1343 if (MCID.getNumOperands() == 3) 1344 BuildMI(MBB, I, DL, MCID, DestReg) 1345 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1346 else 1347 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1348 } 1349 1350 static unsigned getSpillIndex(const TargetRegisterClass *RC) { 1351 int OpcodeIndex = 0; 1352 1353 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1354 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1355 OpcodeIndex = SOK_Int4Spill; 1356 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1357 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1358 OpcodeIndex = SOK_Int8Spill; 1359 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1360 OpcodeIndex = SOK_Float8Spill; 1361 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1362 OpcodeIndex = SOK_Float4Spill; 1363 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1364 OpcodeIndex = SOK_SPESpill; 1365 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1366 OpcodeIndex = SOK_CRSpill; 1367 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1368 OpcodeIndex = SOK_CRBitSpill; 1369 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1370 OpcodeIndex = SOK_VRVectorSpill; 1371 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1372 OpcodeIndex = SOK_VSXVectorSpill; 1373 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1374 OpcodeIndex = SOK_VectorFloat8Spill; 1375 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1376 OpcodeIndex = SOK_VectorFloat4Spill; 1377 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1378 OpcodeIndex = SOK_SpillToVSR; 1379 } else { 1380 llvm_unreachable("Unknown regclass!"); 1381 } 1382 return OpcodeIndex; 1383 } 1384 1385 unsigned 1386 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { 1387 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1388 return OpcodesForSpill[getSpillIndex(RC)]; 1389 } 1390 1391 unsigned 1392 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { 1393 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1394 return OpcodesForSpill[getSpillIndex(RC)]; 1395 } 1396 1397 void PPCInstrInfo::StoreRegToStackSlot( 1398 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1399 const TargetRegisterClass *RC, 1400 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1401 unsigned Opcode = getStoreOpcodeForSpill(RC); 1402 DebugLoc DL; 1403 1404 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1405 FuncInfo->setHasSpills(); 1406 1407 NewMIs.push_back(addFrameReference( 1408 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1409 FrameIdx)); 1410 1411 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1412 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1413 FuncInfo->setSpillsCR(); 1414 1415 if (isXFormMemOp(Opcode)) 1416 FuncInfo->setHasNonRISpills(); 1417 } 1418 1419 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1420 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1421 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1422 const TargetRegisterInfo *TRI) const { 1423 MachineFunction &MF = *MBB.getParent(); 1424 SmallVector<MachineInstr *, 4> NewMIs; 1425 1426 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1427 1428 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1429 MBB.insert(MI, NewMIs[i]); 1430 1431 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1432 MachineMemOperand *MMO = MF.getMachineMemOperand( 1433 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1434 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1435 MFI.getObjectAlign(FrameIdx)); 1436 NewMIs.back()->addMemOperand(MF, MMO); 1437 } 1438 1439 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1440 MachineBasicBlock::iterator MI, 1441 Register SrcReg, bool isKill, 1442 int FrameIdx, 1443 const TargetRegisterClass *RC, 1444 const TargetRegisterInfo *TRI) const { 1445 // We need to avoid a situation in which the value from a VRRC register is 1446 // spilled using an Altivec instruction and reloaded into a VSRC register 1447 // using a VSX instruction. The issue with this is that the VSX 1448 // load/store instructions swap the doublewords in the vector and the Altivec 1449 // ones don't. The register classes on the spill/reload may be different if 1450 // the register is defined using an Altivec instruction and is then used by a 1451 // VSX instruction. 1452 RC = updatedRC(RC); 1453 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1454 } 1455 1456 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1457 unsigned DestReg, int FrameIdx, 1458 const TargetRegisterClass *RC, 1459 SmallVectorImpl<MachineInstr *> &NewMIs) 1460 const { 1461 unsigned Opcode = getLoadOpcodeForSpill(RC); 1462 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1463 FrameIdx)); 1464 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1465 1466 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1467 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1468 FuncInfo->setSpillsCR(); 1469 1470 if (isXFormMemOp(Opcode)) 1471 FuncInfo->setHasNonRISpills(); 1472 } 1473 1474 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1475 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1476 int FrameIdx, const TargetRegisterClass *RC, 1477 const TargetRegisterInfo *TRI) const { 1478 MachineFunction &MF = *MBB.getParent(); 1479 SmallVector<MachineInstr*, 4> NewMIs; 1480 DebugLoc DL; 1481 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1482 1483 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1484 FuncInfo->setHasSpills(); 1485 1486 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1487 1488 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1489 MBB.insert(MI, NewMIs[i]); 1490 1491 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1492 MachineMemOperand *MMO = MF.getMachineMemOperand( 1493 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1494 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1495 MFI.getObjectAlign(FrameIdx)); 1496 NewMIs.back()->addMemOperand(MF, MMO); 1497 } 1498 1499 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1500 MachineBasicBlock::iterator MI, 1501 Register DestReg, int FrameIdx, 1502 const TargetRegisterClass *RC, 1503 const TargetRegisterInfo *TRI) const { 1504 // We need to avoid a situation in which the value from a VRRC register is 1505 // spilled using an Altivec instruction and reloaded into a VSRC register 1506 // using a VSX instruction. The issue with this is that the VSX 1507 // load/store instructions swap the doublewords in the vector and the Altivec 1508 // ones don't. The register classes on the spill/reload may be different if 1509 // the register is defined using an Altivec instruction and is then used by a 1510 // VSX instruction. 1511 RC = updatedRC(RC); 1512 1513 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 1514 } 1515 1516 bool PPCInstrInfo:: 1517 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1518 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1519 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1520 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1521 else 1522 // Leave the CR# the same, but invert the condition. 1523 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1524 return false; 1525 } 1526 1527 // For some instructions, it is legal to fold ZERO into the RA register field. 1528 // This function performs that fold by replacing the operand with PPC::ZERO, 1529 // it does not consider whether the load immediate zero is no longer in use. 1530 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1531 Register Reg) const { 1532 // A zero immediate should always be loaded with a single li. 1533 unsigned DefOpc = DefMI.getOpcode(); 1534 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1535 return false; 1536 if (!DefMI.getOperand(1).isImm()) 1537 return false; 1538 if (DefMI.getOperand(1).getImm() != 0) 1539 return false; 1540 1541 // Note that we cannot here invert the arguments of an isel in order to fold 1542 // a ZERO into what is presented as the second argument. All we have here 1543 // is the condition bit, and that might come from a CR-logical bit operation. 1544 1545 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1546 1547 // Only fold into real machine instructions. 1548 if (UseMCID.isPseudo()) 1549 return false; 1550 1551 // We need to find which of the User's operands is to be folded, that will be 1552 // the operand that matches the given register ID. 1553 unsigned UseIdx; 1554 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1555 if (UseMI.getOperand(UseIdx).isReg() && 1556 UseMI.getOperand(UseIdx).getReg() == Reg) 1557 break; 1558 1559 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1560 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1561 1562 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1563 1564 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1565 // register (which might also be specified as a pointer class kind). 1566 if (UseInfo->isLookupPtrRegClass()) { 1567 if (UseInfo->RegClass /* Kind */ != 1) 1568 return false; 1569 } else { 1570 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1571 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1572 return false; 1573 } 1574 1575 // Make sure this is not tied to an output register (or otherwise 1576 // constrained). This is true for ST?UX registers, for example, which 1577 // are tied to their output registers. 1578 if (UseInfo->Constraints != 0) 1579 return false; 1580 1581 MCRegister ZeroReg; 1582 if (UseInfo->isLookupPtrRegClass()) { 1583 bool isPPC64 = Subtarget.isPPC64(); 1584 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1585 } else { 1586 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1587 PPC::ZERO8 : PPC::ZERO; 1588 } 1589 1590 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1591 return true; 1592 } 1593 1594 // Folds zero into instructions which have a load immediate zero as an operand 1595 // but also recognize zero as immediate zero. If the definition of the load 1596 // has no more users it is deleted. 1597 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1598 Register Reg, MachineRegisterInfo *MRI) const { 1599 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 1600 if (MRI->use_nodbg_empty(Reg)) 1601 DefMI.eraseFromParent(); 1602 return Changed; 1603 } 1604 1605 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1606 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1607 I != IE; ++I) 1608 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1609 return true; 1610 return false; 1611 } 1612 1613 // We should make sure that, if we're going to predicate both sides of a 1614 // condition (a diamond), that both sides don't define the counter register. We 1615 // can predicate counter-decrement-based branches, but while that predicates 1616 // the branching, it does not predicate the counter decrement. If we tried to 1617 // merge the triangle into one predicated block, we'd decrement the counter 1618 // twice. 1619 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1620 unsigned NumT, unsigned ExtraT, 1621 MachineBasicBlock &FMBB, 1622 unsigned NumF, unsigned ExtraF, 1623 BranchProbability Probability) const { 1624 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1625 } 1626 1627 1628 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1629 // The predicated branches are identified by their type, not really by the 1630 // explicit presence of a predicate. Furthermore, some of them can be 1631 // predicated more than once. Because if conversion won't try to predicate 1632 // any instruction which already claims to be predicated (by returning true 1633 // here), always return false. In doing so, we let isPredicable() be the 1634 // final word on whether not the instruction can be (further) predicated. 1635 1636 return false; 1637 } 1638 1639 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1640 const MachineBasicBlock *MBB, 1641 const MachineFunction &MF) const { 1642 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion 1643 // across them, since some FP operations may change content of FPSCR. 1644 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround 1645 if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) 1646 return true; 1647 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 1648 } 1649 1650 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1651 ArrayRef<MachineOperand> Pred) const { 1652 unsigned OpC = MI.getOpcode(); 1653 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1654 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1655 bool isPPC64 = Subtarget.isPPC64(); 1656 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1657 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1658 // Need add Def and Use for CTR implicit operand. 1659 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1660 .addReg(Pred[1].getReg(), RegState::Implicit) 1661 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 1662 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1663 MI.setDesc(get(PPC::BCLR)); 1664 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1665 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1666 MI.setDesc(get(PPC::BCLRn)); 1667 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1668 } else { 1669 MI.setDesc(get(PPC::BCCLR)); 1670 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1671 .addImm(Pred[0].getImm()) 1672 .add(Pred[1]); 1673 } 1674 1675 return true; 1676 } else if (OpC == PPC::B) { 1677 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1678 bool isPPC64 = Subtarget.isPPC64(); 1679 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1680 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1681 // Need add Def and Use for CTR implicit operand. 1682 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1683 .addReg(Pred[1].getReg(), RegState::Implicit) 1684 .addReg(Pred[1].getReg(), RegState::ImplicitDefine); 1685 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1686 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1687 MI.RemoveOperand(0); 1688 1689 MI.setDesc(get(PPC::BC)); 1690 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1691 .add(Pred[1]) 1692 .addMBB(MBB); 1693 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1694 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1695 MI.RemoveOperand(0); 1696 1697 MI.setDesc(get(PPC::BCn)); 1698 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1699 .add(Pred[1]) 1700 .addMBB(MBB); 1701 } else { 1702 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1703 MI.RemoveOperand(0); 1704 1705 MI.setDesc(get(PPC::BCC)); 1706 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1707 .addImm(Pred[0].getImm()) 1708 .add(Pred[1]) 1709 .addMBB(MBB); 1710 } 1711 1712 return true; 1713 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1714 OpC == PPC::BCTRL8) { 1715 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1716 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1717 1718 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1719 bool isPPC64 = Subtarget.isPPC64(); 1720 1721 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1722 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1723 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1724 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1725 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1726 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1727 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1728 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1729 } else { 1730 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1731 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1732 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1733 .addImm(Pred[0].getImm()) 1734 .add(Pred[1]); 1735 } 1736 1737 // Need add Def and Use for LR implicit operand. 1738 if (setLR) 1739 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1740 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) 1741 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); 1742 1743 return true; 1744 } 1745 1746 return false; 1747 } 1748 1749 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1750 ArrayRef<MachineOperand> Pred2) const { 1751 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1752 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1753 1754 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1755 return false; 1756 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1757 return false; 1758 1759 // P1 can only subsume P2 if they test the same condition register. 1760 if (Pred1[1].getReg() != Pred2[1].getReg()) 1761 return false; 1762 1763 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1764 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1765 1766 if (P1 == P2) 1767 return true; 1768 1769 // Does P1 subsume P2, e.g. GE subsumes GT. 1770 if (P1 == PPC::PRED_LE && 1771 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1772 return true; 1773 if (P1 == PPC::PRED_GE && 1774 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1775 return true; 1776 1777 return false; 1778 } 1779 1780 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1781 std::vector<MachineOperand> &Pred) const { 1782 // Note: At the present time, the contents of Pred from this function is 1783 // unused by IfConversion. This implementation follows ARM by pushing the 1784 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1785 // predicate, instructions defining CTR or CTR8 are also included as 1786 // predicate-defining instructions. 1787 1788 const TargetRegisterClass *RCs[] = 1789 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1790 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1791 1792 bool Found = false; 1793 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1794 const MachineOperand &MO = MI.getOperand(i); 1795 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1796 const TargetRegisterClass *RC = RCs[c]; 1797 if (MO.isReg()) { 1798 if (MO.isDef() && RC->contains(MO.getReg())) { 1799 Pred.push_back(MO); 1800 Found = true; 1801 } 1802 } else if (MO.isRegMask()) { 1803 for (TargetRegisterClass::iterator I = RC->begin(), 1804 IE = RC->end(); I != IE; ++I) 1805 if (MO.clobbersPhysReg(*I)) { 1806 Pred.push_back(MO); 1807 Found = true; 1808 } 1809 } 1810 } 1811 } 1812 1813 return Found; 1814 } 1815 1816 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1817 Register &SrcReg2, int &Mask, 1818 int &Value) const { 1819 unsigned Opc = MI.getOpcode(); 1820 1821 switch (Opc) { 1822 default: return false; 1823 case PPC::CMPWI: 1824 case PPC::CMPLWI: 1825 case PPC::CMPDI: 1826 case PPC::CMPLDI: 1827 SrcReg = MI.getOperand(1).getReg(); 1828 SrcReg2 = 0; 1829 Value = MI.getOperand(2).getImm(); 1830 Mask = 0xFFFF; 1831 return true; 1832 case PPC::CMPW: 1833 case PPC::CMPLW: 1834 case PPC::CMPD: 1835 case PPC::CMPLD: 1836 case PPC::FCMPUS: 1837 case PPC::FCMPUD: 1838 SrcReg = MI.getOperand(1).getReg(); 1839 SrcReg2 = MI.getOperand(2).getReg(); 1840 Value = 0; 1841 Mask = 0; 1842 return true; 1843 } 1844 } 1845 1846 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 1847 Register SrcReg2, int Mask, int Value, 1848 const MachineRegisterInfo *MRI) const { 1849 if (DisableCmpOpt) 1850 return false; 1851 1852 int OpC = CmpInstr.getOpcode(); 1853 Register CRReg = CmpInstr.getOperand(0).getReg(); 1854 1855 // FP record forms set CR1 based on the exception status bits, not a 1856 // comparison with zero. 1857 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1858 return false; 1859 1860 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1861 // The record forms set the condition register based on a signed comparison 1862 // with zero (so says the ISA manual). This is not as straightforward as it 1863 // seems, however, because this is always a 64-bit comparison on PPC64, even 1864 // for instructions that are 32-bit in nature (like slw for example). 1865 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1866 // for equality checks (as those don't depend on the sign). On PPC64, 1867 // we are restricted to equality for unsigned 64-bit comparisons and for 1868 // signed 32-bit comparisons the applicability is more restricted. 1869 bool isPPC64 = Subtarget.isPPC64(); 1870 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1871 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1872 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1873 1874 // Look through copies unless that gets us to a physical register. 1875 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1876 if (ActualSrc.isVirtual()) 1877 SrcReg = ActualSrc; 1878 1879 // Get the unique definition of SrcReg. 1880 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1881 if (!MI) return false; 1882 1883 bool equalityOnly = false; 1884 bool noSub = false; 1885 if (isPPC64) { 1886 if (is32BitSignedCompare) { 1887 // We can perform this optimization only if MI is sign-extending. 1888 if (isSignExtended(*MI)) 1889 noSub = true; 1890 else 1891 return false; 1892 } else if (is32BitUnsignedCompare) { 1893 // We can perform this optimization, equality only, if MI is 1894 // zero-extending. 1895 if (isZeroExtended(*MI)) { 1896 noSub = true; 1897 equalityOnly = true; 1898 } else 1899 return false; 1900 } else 1901 equalityOnly = is64BitUnsignedCompare; 1902 } else 1903 equalityOnly = is32BitUnsignedCompare; 1904 1905 if (equalityOnly) { 1906 // We need to check the uses of the condition register in order to reject 1907 // non-equality comparisons. 1908 for (MachineRegisterInfo::use_instr_iterator 1909 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1910 I != IE; ++I) { 1911 MachineInstr *UseMI = &*I; 1912 if (UseMI->getOpcode() == PPC::BCC) { 1913 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1914 unsigned PredCond = PPC::getPredicateCondition(Pred); 1915 // We ignore hint bits when checking for non-equality comparisons. 1916 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1917 return false; 1918 } else if (UseMI->getOpcode() == PPC::ISEL || 1919 UseMI->getOpcode() == PPC::ISEL8) { 1920 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1921 if (SubIdx != PPC::sub_eq) 1922 return false; 1923 } else 1924 return false; 1925 } 1926 } 1927 1928 MachineBasicBlock::iterator I = CmpInstr; 1929 1930 // Scan forward to find the first use of the compare. 1931 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1932 ++I) { 1933 bool FoundUse = false; 1934 for (MachineRegisterInfo::use_instr_iterator 1935 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1936 J != JE; ++J) 1937 if (&*J == &*I) { 1938 FoundUse = true; 1939 break; 1940 } 1941 1942 if (FoundUse) 1943 break; 1944 } 1945 1946 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1947 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1948 1949 // There are two possible candidates which can be changed to set CR[01]. 1950 // One is MI, the other is a SUB instruction. 1951 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1952 MachineInstr *Sub = nullptr; 1953 if (SrcReg2 != 0) 1954 // MI is not a candidate for CMPrr. 1955 MI = nullptr; 1956 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1957 // same BB as the comparison. This is to allow the check below to avoid calls 1958 // (and other explicit clobbers); instead we should really check for these 1959 // more explicitly (in at least a few predecessors). 1960 else if (MI->getParent() != CmpInstr.getParent()) 1961 return false; 1962 else if (Value != 0) { 1963 // The record-form instructions set CR bit based on signed comparison 1964 // against 0. We try to convert a compare against 1 or -1 into a compare 1965 // against 0 to exploit record-form instructions. For example, we change 1966 // the condition "greater than -1" into "greater than or equal to 0" 1967 // and "less than 1" into "less than or equal to 0". 1968 1969 // Since we optimize comparison based on a specific branch condition, 1970 // we don't optimize if condition code is used by more than once. 1971 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1972 return false; 1973 1974 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1975 if (UseMI->getOpcode() != PPC::BCC) 1976 return false; 1977 1978 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1979 unsigned PredCond = PPC::getPredicateCondition(Pred); 1980 unsigned PredHint = PPC::getPredicateHint(Pred); 1981 int16_t Immed = (int16_t)Value; 1982 1983 // When modifying the condition in the predicate, we propagate hint bits 1984 // from the original predicate to the new one. 1985 if (Immed == -1 && PredCond == PPC::PRED_GT) 1986 // We convert "greater than -1" into "greater than or equal to 0", 1987 // since we are assuming signed comparison by !equalityOnly 1988 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1989 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1990 // We convert "less than or equal to -1" into "less than 0". 1991 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1992 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1993 // We convert "less than 1" into "less than or equal to 0". 1994 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1995 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1996 // We convert "greater than or equal to 1" into "greater than 0". 1997 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1998 else 1999 return false; 2000 2001 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 2002 } 2003 2004 // Search for Sub. 2005 --I; 2006 2007 // Get ready to iterate backward from CmpInstr. 2008 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 2009 2010 for (; I != E && !noSub; --I) { 2011 const MachineInstr &Instr = *I; 2012 unsigned IOpC = Instr.getOpcode(); 2013 2014 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 2015 Instr.readsRegister(PPC::CR0, TRI))) 2016 // This instruction modifies or uses the record condition register after 2017 // the one we want to change. While we could do this transformation, it 2018 // would likely not be profitable. This transformation removes one 2019 // instruction, and so even forcing RA to generate one move probably 2020 // makes it unprofitable. 2021 return false; 2022 2023 // Check whether CmpInstr can be made redundant by the current instruction. 2024 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 2025 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 2026 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 2027 ((Instr.getOperand(1).getReg() == SrcReg && 2028 Instr.getOperand(2).getReg() == SrcReg2) || 2029 (Instr.getOperand(1).getReg() == SrcReg2 && 2030 Instr.getOperand(2).getReg() == SrcReg))) { 2031 Sub = &*I; 2032 break; 2033 } 2034 2035 if (I == B) 2036 // The 'and' is below the comparison instruction. 2037 return false; 2038 } 2039 2040 // Return false if no candidates exist. 2041 if (!MI && !Sub) 2042 return false; 2043 2044 // The single candidate is called MI. 2045 if (!MI) MI = Sub; 2046 2047 int NewOpC = -1; 2048 int MIOpC = MI->getOpcode(); 2049 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 2050 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 2051 NewOpC = MIOpC; 2052 else { 2053 NewOpC = PPC::getRecordFormOpcode(MIOpC); 2054 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 2055 NewOpC = MIOpC; 2056 } 2057 2058 // FIXME: On the non-embedded POWER architectures, only some of the record 2059 // forms are fast, and we should use only the fast ones. 2060 2061 // The defining instruction has a record form (or is already a record 2062 // form). It is possible, however, that we'll need to reverse the condition 2063 // code of the users. 2064 if (NewOpC == -1) 2065 return false; 2066 2067 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 2068 // needs to be updated to be based on SUB. Push the condition code 2069 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 2070 // condition code of these operands will be modified. 2071 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 2072 // comparison against 0, which may modify predicate. 2073 bool ShouldSwap = false; 2074 if (Sub && Value == 0) { 2075 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2076 Sub->getOperand(2).getReg() == SrcReg; 2077 2078 // The operands to subf are the opposite of sub, so only in the fixed-point 2079 // case, invert the order. 2080 ShouldSwap = !ShouldSwap; 2081 } 2082 2083 if (ShouldSwap) 2084 for (MachineRegisterInfo::use_instr_iterator 2085 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 2086 I != IE; ++I) { 2087 MachineInstr *UseMI = &*I; 2088 if (UseMI->getOpcode() == PPC::BCC) { 2089 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 2090 unsigned PredCond = PPC::getPredicateCondition(Pred); 2091 assert((!equalityOnly || 2092 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 2093 "Invalid predicate for equality-only optimization"); 2094 (void)PredCond; // To suppress warning in release build. 2095 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 2096 PPC::getSwappedPredicate(Pred))); 2097 } else if (UseMI->getOpcode() == PPC::ISEL || 2098 UseMI->getOpcode() == PPC::ISEL8) { 2099 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 2100 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 2101 "Invalid CR bit for equality-only optimization"); 2102 2103 if (NewSubReg == PPC::sub_lt) 2104 NewSubReg = PPC::sub_gt; 2105 else if (NewSubReg == PPC::sub_gt) 2106 NewSubReg = PPC::sub_lt; 2107 2108 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 2109 NewSubReg)); 2110 } else // We need to abort on a user we don't understand. 2111 return false; 2112 } 2113 assert(!(Value != 0 && ShouldSwap) && 2114 "Non-zero immediate support and ShouldSwap" 2115 "may conflict in updating predicate"); 2116 2117 // Create a new virtual register to hold the value of the CR set by the 2118 // record-form instruction. If the instruction was not previously in 2119 // record form, then set the kill flag on the CR. 2120 CmpInstr.eraseFromParent(); 2121 2122 MachineBasicBlock::iterator MII = MI; 2123 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 2124 get(TargetOpcode::COPY), CRReg) 2125 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 2126 2127 // Even if CR0 register were dead before, it is alive now since the 2128 // instruction we just built uses it. 2129 MI->clearRegisterDeads(PPC::CR0); 2130 2131 if (MIOpC != NewOpC) { 2132 // We need to be careful here: we're replacing one instruction with 2133 // another, and we need to make sure that we get all of the right 2134 // implicit uses and defs. On the other hand, the caller may be holding 2135 // an iterator to this instruction, and so we can't delete it (this is 2136 // specifically the case if this is the instruction directly after the 2137 // compare). 2138 2139 // Rotates are expensive instructions. If we're emitting a record-form 2140 // rotate that can just be an andi/andis, we should just emit that. 2141 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 2142 Register GPRRes = MI->getOperand(0).getReg(); 2143 int64_t SH = MI->getOperand(2).getImm(); 2144 int64_t MB = MI->getOperand(3).getImm(); 2145 int64_t ME = MI->getOperand(4).getImm(); 2146 // We can only do this if both the start and end of the mask are in the 2147 // same halfword. 2148 bool MBInLoHWord = MB >= 16; 2149 bool MEInLoHWord = ME >= 16; 2150 uint64_t Mask = ~0LLU; 2151 2152 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 2153 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2154 // The mask value needs to shift right 16 if we're emitting andis. 2155 Mask >>= MBInLoHWord ? 0 : 16; 2156 NewOpC = MIOpC == PPC::RLWINM 2157 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 2158 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 2159 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 2160 (ME - MB + 1 == SH) && (MB >= 16)) { 2161 // If we are rotating by the exact number of bits as are in the mask 2162 // and the mask is in the least significant bits of the register, 2163 // that's just an andis. (as long as the GPR result has no uses). 2164 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 2165 Mask >>= 16; 2166 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 2167 } 2168 // If we've set the mask, we can transform. 2169 if (Mask != ~0LLU) { 2170 MI->RemoveOperand(4); 2171 MI->RemoveOperand(3); 2172 MI->getOperand(2).setImm(Mask); 2173 NumRcRotatesConvertedToRcAnd++; 2174 } 2175 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 2176 int64_t MB = MI->getOperand(3).getImm(); 2177 if (MB >= 48) { 2178 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2179 NewOpC = PPC::ANDI8_rec; 2180 MI->RemoveOperand(3); 2181 MI->getOperand(2).setImm(Mask); 2182 NumRcRotatesConvertedToRcAnd++; 2183 } 2184 } 2185 2186 const MCInstrDesc &NewDesc = get(NewOpC); 2187 MI->setDesc(NewDesc); 2188 2189 if (NewDesc.ImplicitDefs) 2190 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2191 *ImpDefs; ++ImpDefs) 2192 if (!MI->definesRegister(*ImpDefs)) 2193 MI->addOperand(*MI->getParent()->getParent(), 2194 MachineOperand::CreateReg(*ImpDefs, true, true)); 2195 if (NewDesc.ImplicitUses) 2196 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2197 *ImpUses; ++ImpUses) 2198 if (!MI->readsRegister(*ImpUses)) 2199 MI->addOperand(*MI->getParent()->getParent(), 2200 MachineOperand::CreateReg(*ImpUses, false, true)); 2201 } 2202 assert(MI->definesRegister(PPC::CR0) && 2203 "Record-form instruction does not define cr0?"); 2204 2205 // Modify the condition code of operands in OperandsToUpdate. 2206 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2207 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2208 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2209 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2210 2211 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2212 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2213 2214 return true; 2215 } 2216 2217 bool PPCInstrInfo::getMemOperandsWithOffsetWidth( 2218 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2219 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2220 const TargetRegisterInfo *TRI) const { 2221 const MachineOperand *BaseOp; 2222 OffsetIsScalable = false; 2223 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) 2224 return false; 2225 BaseOps.push_back(BaseOp); 2226 return true; 2227 } 2228 2229 static bool isLdStSafeToCluster(const MachineInstr &LdSt, 2230 const TargetRegisterInfo *TRI) { 2231 // If this is a volatile load/store, don't mess with it. 2232 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) 2233 return false; 2234 2235 if (LdSt.getOperand(2).isFI()) 2236 return true; 2237 2238 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); 2239 // Can't cluster if the instruction modifies the base register 2240 // or it is update form. e.g. ld r2,3(r2) 2241 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) 2242 return false; 2243 2244 return true; 2245 } 2246 2247 // Only cluster instruction pair that have the same opcode, and they are 2248 // clusterable according to PowerPC specification. 2249 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, 2250 const PPCSubtarget &Subtarget) { 2251 switch (FirstOpc) { 2252 default: 2253 return false; 2254 case PPC::STD: 2255 case PPC::STFD: 2256 case PPC::STXSD: 2257 case PPC::DFSTOREf64: 2258 return FirstOpc == SecondOpc; 2259 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with 2260 // 32bit and 64bit instruction selection. They are clusterable pair though 2261 // they are different opcode. 2262 case PPC::STW: 2263 case PPC::STW8: 2264 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; 2265 } 2266 } 2267 2268 bool PPCInstrInfo::shouldClusterMemOps( 2269 ArrayRef<const MachineOperand *> BaseOps1, 2270 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 2271 unsigned NumBytes) const { 2272 2273 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 2274 const MachineOperand &BaseOp1 = *BaseOps1.front(); 2275 const MachineOperand &BaseOp2 = *BaseOps2.front(); 2276 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 2277 "Only base registers and frame indices are supported."); 2278 2279 // The NumLoads means the number of loads that has been clustered. 2280 // Don't cluster memory op if there are already two ops clustered at least. 2281 if (NumLoads > 2) 2282 return false; 2283 2284 // Cluster the load/store only when they have the same base 2285 // register or FI. 2286 if ((BaseOp1.isReg() != BaseOp2.isReg()) || 2287 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || 2288 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) 2289 return false; 2290 2291 // Check if the load/store are clusterable according to the PowerPC 2292 // specification. 2293 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 2294 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 2295 unsigned FirstOpc = FirstLdSt.getOpcode(); 2296 unsigned SecondOpc = SecondLdSt.getOpcode(); 2297 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2298 // Cluster the load/store only when they have the same opcode, and they are 2299 // clusterable opcode according to PowerPC specification. 2300 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) 2301 return false; 2302 2303 // Can't cluster load/store that have ordered or volatile memory reference. 2304 if (!isLdStSafeToCluster(FirstLdSt, TRI) || 2305 !isLdStSafeToCluster(SecondLdSt, TRI)) 2306 return false; 2307 2308 int64_t Offset1 = 0, Offset2 = 0; 2309 unsigned Width1 = 0, Width2 = 0; 2310 const MachineOperand *Base1 = nullptr, *Base2 = nullptr; 2311 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || 2312 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || 2313 Width1 != Width2) 2314 return false; 2315 2316 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && 2317 "getMemOperandWithOffsetWidth return incorrect base op"); 2318 // The caller should already have ordered FirstMemOp/SecondMemOp by offset. 2319 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 2320 return Offset1 + Width1 == Offset2; 2321 } 2322 2323 /// GetInstSize - Return the number of bytes of code the specified 2324 /// instruction may be. This returns the maximum number of bytes. 2325 /// 2326 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2327 unsigned Opcode = MI.getOpcode(); 2328 2329 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2330 const MachineFunction *MF = MI.getParent()->getParent(); 2331 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2332 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2333 } else if (Opcode == TargetOpcode::STACKMAP) { 2334 StackMapOpers Opers(&MI); 2335 return Opers.getNumPatchBytes(); 2336 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2337 PatchPointOpers Opers(&MI); 2338 return Opers.getNumPatchBytes(); 2339 } else { 2340 return get(Opcode).getSize(); 2341 } 2342 } 2343 2344 std::pair<unsigned, unsigned> 2345 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2346 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2347 return std::make_pair(TF & Mask, TF & ~Mask); 2348 } 2349 2350 ArrayRef<std::pair<unsigned, const char *>> 2351 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2352 using namespace PPCII; 2353 static const std::pair<unsigned, const char *> TargetFlags[] = { 2354 {MO_LO, "ppc-lo"}, 2355 {MO_HA, "ppc-ha"}, 2356 {MO_TPREL_LO, "ppc-tprel-lo"}, 2357 {MO_TPREL_HA, "ppc-tprel-ha"}, 2358 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2359 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2360 {MO_TOC_LO, "ppc-toc-lo"}, 2361 {MO_TLS, "ppc-tls"}}; 2362 return makeArrayRef(TargetFlags); 2363 } 2364 2365 ArrayRef<std::pair<unsigned, const char *>> 2366 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2367 using namespace PPCII; 2368 static const std::pair<unsigned, const char *> TargetFlags[] = { 2369 {MO_PLT, "ppc-plt"}, 2370 {MO_PIC_FLAG, "ppc-pic"}, 2371 {MO_PCREL_FLAG, "ppc-pcrel"}, 2372 {MO_GOT_FLAG, "ppc-got"}, 2373 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, 2374 {MO_TLSGD_FLAG, "ppc-tlsgd"}, 2375 {MO_TLSLD_FLAG, "ppc-tlsld"}, 2376 {MO_TPREL_FLAG, "ppc-tprel"}, 2377 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, 2378 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, 2379 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; 2380 return makeArrayRef(TargetFlags); 2381 } 2382 2383 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2384 // The VSX versions have the advantage of a full 64-register target whereas 2385 // the FP ones have the advantage of lower latency and higher throughput. So 2386 // what we are after is using the faster instructions in low register pressure 2387 // situations and using the larger register file in high register pressure 2388 // situations. 2389 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2390 unsigned UpperOpcode, LowerOpcode; 2391 switch (MI.getOpcode()) { 2392 case PPC::DFLOADf32: 2393 UpperOpcode = PPC::LXSSP; 2394 LowerOpcode = PPC::LFS; 2395 break; 2396 case PPC::DFLOADf64: 2397 UpperOpcode = PPC::LXSD; 2398 LowerOpcode = PPC::LFD; 2399 break; 2400 case PPC::DFSTOREf32: 2401 UpperOpcode = PPC::STXSSP; 2402 LowerOpcode = PPC::STFS; 2403 break; 2404 case PPC::DFSTOREf64: 2405 UpperOpcode = PPC::STXSD; 2406 LowerOpcode = PPC::STFD; 2407 break; 2408 case PPC::XFLOADf32: 2409 UpperOpcode = PPC::LXSSPX; 2410 LowerOpcode = PPC::LFSX; 2411 break; 2412 case PPC::XFLOADf64: 2413 UpperOpcode = PPC::LXSDX; 2414 LowerOpcode = PPC::LFDX; 2415 break; 2416 case PPC::XFSTOREf32: 2417 UpperOpcode = PPC::STXSSPX; 2418 LowerOpcode = PPC::STFSX; 2419 break; 2420 case PPC::XFSTOREf64: 2421 UpperOpcode = PPC::STXSDX; 2422 LowerOpcode = PPC::STFDX; 2423 break; 2424 case PPC::LIWAX: 2425 UpperOpcode = PPC::LXSIWAX; 2426 LowerOpcode = PPC::LFIWAX; 2427 break; 2428 case PPC::LIWZX: 2429 UpperOpcode = PPC::LXSIWZX; 2430 LowerOpcode = PPC::LFIWZX; 2431 break; 2432 case PPC::STIWX: 2433 UpperOpcode = PPC::STXSIWX; 2434 LowerOpcode = PPC::STFIWX; 2435 break; 2436 default: 2437 llvm_unreachable("Unknown Operation!"); 2438 } 2439 2440 Register TargetReg = MI.getOperand(0).getReg(); 2441 unsigned Opcode; 2442 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2443 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2444 Opcode = LowerOpcode; 2445 else 2446 Opcode = UpperOpcode; 2447 MI.setDesc(get(Opcode)); 2448 return true; 2449 } 2450 2451 static bool isAnImmediateOperand(const MachineOperand &MO) { 2452 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2453 } 2454 2455 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2456 auto &MBB = *MI.getParent(); 2457 auto DL = MI.getDebugLoc(); 2458 2459 switch (MI.getOpcode()) { 2460 case PPC::BUILD_UACC: { 2461 MCRegister ACC = MI.getOperand(0).getReg(); 2462 MCRegister UACC = MI.getOperand(1).getReg(); 2463 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { 2464 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; 2465 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; 2466 // FIXME: This can easily be improved to look up to the top of the MBB 2467 // to see if the inputs are XXLOR's. If they are and SrcReg is killed, 2468 // we can just re-target any such XXLOR's to DstVSR + offset. 2469 for (int VecNo = 0; VecNo < 4; VecNo++) 2470 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) 2471 .addReg(SrcVSR + VecNo) 2472 .addReg(SrcVSR + VecNo); 2473 } 2474 // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers. 2475 // So after building the 4 copies, we can replace the BUILD_UACC instruction 2476 // with a NOP. 2477 LLVM_FALLTHROUGH; 2478 } 2479 case PPC::KILL_PAIR: { 2480 MI.setDesc(get(PPC::UNENCODED_NOP)); 2481 MI.RemoveOperand(1); 2482 MI.RemoveOperand(0); 2483 return true; 2484 } 2485 case TargetOpcode::LOAD_STACK_GUARD: { 2486 assert(Subtarget.isTargetLinux() && 2487 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2488 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2489 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2490 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2491 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2492 .addImm(Offset) 2493 .addReg(Reg); 2494 return true; 2495 } 2496 case PPC::DFLOADf32: 2497 case PPC::DFLOADf64: 2498 case PPC::DFSTOREf32: 2499 case PPC::DFSTOREf64: { 2500 assert(Subtarget.hasP9Vector() && 2501 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2502 assert(MI.getOperand(2).isReg() && 2503 isAnImmediateOperand(MI.getOperand(1)) && 2504 "D-form op must have register and immediate operands"); 2505 return expandVSXMemPseudo(MI); 2506 } 2507 case PPC::XFLOADf32: 2508 case PPC::XFSTOREf32: 2509 case PPC::LIWAX: 2510 case PPC::LIWZX: 2511 case PPC::STIWX: { 2512 assert(Subtarget.hasP8Vector() && 2513 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2514 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2515 "X-form op must have register and register operands"); 2516 return expandVSXMemPseudo(MI); 2517 } 2518 case PPC::XFLOADf64: 2519 case PPC::XFSTOREf64: { 2520 assert(Subtarget.hasVSX() && 2521 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2522 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2523 "X-form op must have register and register operands"); 2524 return expandVSXMemPseudo(MI); 2525 } 2526 case PPC::SPILLTOVSR_LD: { 2527 Register TargetReg = MI.getOperand(0).getReg(); 2528 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2529 MI.setDesc(get(PPC::DFLOADf64)); 2530 return expandPostRAPseudo(MI); 2531 } 2532 else 2533 MI.setDesc(get(PPC::LD)); 2534 return true; 2535 } 2536 case PPC::SPILLTOVSR_ST: { 2537 Register SrcReg = MI.getOperand(0).getReg(); 2538 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2539 NumStoreSPILLVSRRCAsVec++; 2540 MI.setDesc(get(PPC::DFSTOREf64)); 2541 return expandPostRAPseudo(MI); 2542 } else { 2543 NumStoreSPILLVSRRCAsGpr++; 2544 MI.setDesc(get(PPC::STD)); 2545 } 2546 return true; 2547 } 2548 case PPC::SPILLTOVSR_LDX: { 2549 Register TargetReg = MI.getOperand(0).getReg(); 2550 if (PPC::VSFRCRegClass.contains(TargetReg)) 2551 MI.setDesc(get(PPC::LXSDX)); 2552 else 2553 MI.setDesc(get(PPC::LDX)); 2554 return true; 2555 } 2556 case PPC::SPILLTOVSR_STX: { 2557 Register SrcReg = MI.getOperand(0).getReg(); 2558 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2559 NumStoreSPILLVSRRCAsVec++; 2560 MI.setDesc(get(PPC::STXSDX)); 2561 } else { 2562 NumStoreSPILLVSRRCAsGpr++; 2563 MI.setDesc(get(PPC::STDX)); 2564 } 2565 return true; 2566 } 2567 2568 case PPC::CFENCE8: { 2569 auto Val = MI.getOperand(0).getReg(); 2570 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2571 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2572 .addImm(PPC::PRED_NE_MINUS) 2573 .addReg(PPC::CR7) 2574 .addImm(1); 2575 MI.setDesc(get(PPC::ISYNC)); 2576 MI.RemoveOperand(0); 2577 return true; 2578 } 2579 } 2580 return false; 2581 } 2582 2583 // Essentially a compile-time implementation of a compare->isel sequence. 2584 // It takes two constants to compare, along with the true/false registers 2585 // and the comparison type (as a subreg to a CR field) and returns one 2586 // of the true/false registers, depending on the comparison results. 2587 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2588 unsigned TrueReg, unsigned FalseReg, 2589 unsigned CRSubReg) { 2590 // Signed comparisons. The immediates are assumed to be sign-extended. 2591 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2592 switch (CRSubReg) { 2593 default: llvm_unreachable("Unknown integer comparison type."); 2594 case PPC::sub_lt: 2595 return Imm1 < Imm2 ? TrueReg : FalseReg; 2596 case PPC::sub_gt: 2597 return Imm1 > Imm2 ? TrueReg : FalseReg; 2598 case PPC::sub_eq: 2599 return Imm1 == Imm2 ? TrueReg : FalseReg; 2600 } 2601 } 2602 // Unsigned comparisons. 2603 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2604 switch (CRSubReg) { 2605 default: llvm_unreachable("Unknown integer comparison type."); 2606 case PPC::sub_lt: 2607 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2608 case PPC::sub_gt: 2609 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2610 case PPC::sub_eq: 2611 return Imm1 == Imm2 ? TrueReg : FalseReg; 2612 } 2613 } 2614 return PPC::NoRegister; 2615 } 2616 2617 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2618 unsigned OpNo, 2619 int64_t Imm) const { 2620 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2621 // Replace the REG with the Immediate. 2622 Register InUseReg = MI.getOperand(OpNo).getReg(); 2623 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2624 2625 if (MI.implicit_operands().empty()) 2626 return; 2627 2628 // We need to make sure that the MI didn't have any implicit use 2629 // of this REG any more. 2630 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2631 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2632 if (UseOpIdx >= 0) { 2633 MachineOperand &MO = MI.getOperand(UseOpIdx); 2634 if (MO.isImplicit()) 2635 // The operands must always be in the following order: 2636 // - explicit reg defs, 2637 // - other explicit operands (reg uses, immediates, etc.), 2638 // - implicit reg defs 2639 // - implicit reg uses 2640 // Therefore, removing the implicit operand won't change the explicit 2641 // operands layout. 2642 MI.RemoveOperand(UseOpIdx); 2643 } 2644 } 2645 2646 // Replace an instruction with one that materializes a constant (and sets 2647 // CR0 if the original instruction was a record-form instruction). 2648 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2649 const LoadImmediateInfo &LII) const { 2650 // Remove existing operands. 2651 int OperandToKeep = LII.SetCR ? 1 : 0; 2652 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2653 MI.RemoveOperand(i); 2654 2655 // Replace the instruction. 2656 if (LII.SetCR) { 2657 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2658 // Set the immediate. 2659 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2660 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2661 return; 2662 } 2663 else 2664 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2665 2666 // Set the immediate. 2667 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2668 .addImm(LII.Imm); 2669 } 2670 2671 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2672 bool &SeenIntermediateUse) const { 2673 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2674 "Should be called after register allocation."); 2675 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2676 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2677 It++; 2678 SeenIntermediateUse = false; 2679 for (; It != E; ++It) { 2680 if (It->modifiesRegister(Reg, TRI)) 2681 return &*It; 2682 if (It->readsRegister(Reg, TRI)) 2683 SeenIntermediateUse = true; 2684 } 2685 return nullptr; 2686 } 2687 2688 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2689 MachineInstr &MI, 2690 unsigned &OpNoForForwarding, 2691 bool &SeenIntermediateUse) const { 2692 OpNoForForwarding = ~0U; 2693 MachineInstr *DefMI = nullptr; 2694 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2695 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2696 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2697 // within the basic block to see if the register is defined using an 2698 // LI/LI8/ADDI/ADDI8. 2699 if (MRI->isSSA()) { 2700 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2701 if (!MI.getOperand(i).isReg()) 2702 continue; 2703 Register Reg = MI.getOperand(i).getReg(); 2704 if (!Register::isVirtualRegister(Reg)) 2705 continue; 2706 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2707 if (Register::isVirtualRegister(TrueReg)) { 2708 DefMI = MRI->getVRegDef(TrueReg); 2709 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 || 2710 DefMI->getOpcode() == PPC::ADDI || 2711 DefMI->getOpcode() == PPC::ADDI8) { 2712 OpNoForForwarding = i; 2713 // The ADDI and LI operand maybe exist in one instruction at same 2714 // time. we prefer to fold LI operand as LI only has one Imm operand 2715 // and is more possible to be converted. So if current DefMI is 2716 // ADDI/ADDI8, we continue to find possible LI/LI8. 2717 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) 2718 break; 2719 } 2720 } 2721 } 2722 } else { 2723 // Looking back through the definition for each operand could be expensive, 2724 // so exit early if this isn't an instruction that either has an immediate 2725 // form or is already an immediate form that we can handle. 2726 ImmInstrInfo III; 2727 unsigned Opc = MI.getOpcode(); 2728 bool ConvertibleImmForm = 2729 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2730 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2731 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2732 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2733 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2734 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2735 Opc == PPC::RLWINM8_rec; 2736 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2737 ? isVFRegister(MI.getOperand(0).getReg()) 2738 : false; 2739 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2740 return nullptr; 2741 2742 // Don't convert or %X, %Y, %Y since that's just a register move. 2743 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2744 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2745 return nullptr; 2746 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2747 MachineOperand &MO = MI.getOperand(i); 2748 SeenIntermediateUse = false; 2749 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2750 Register Reg = MI.getOperand(i).getReg(); 2751 // If we see another use of this reg between the def and the MI, 2752 // we want to flat it so the def isn't deleted. 2753 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2754 if (DefMI) { 2755 // Is this register defined by some form of add-immediate (including 2756 // load-immediate) within this basic block? 2757 switch (DefMI->getOpcode()) { 2758 default: 2759 break; 2760 case PPC::LI: 2761 case PPC::LI8: 2762 case PPC::ADDItocL: 2763 case PPC::ADDI: 2764 case PPC::ADDI8: 2765 OpNoForForwarding = i; 2766 return DefMI; 2767 } 2768 } 2769 } 2770 } 2771 } 2772 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2773 } 2774 2775 unsigned PPCInstrInfo::getSpillTarget() const { 2776 return Subtarget.hasP9Vector() ? 1 : 0; 2777 } 2778 2779 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2780 return StoreSpillOpcodesArray[getSpillTarget()]; 2781 } 2782 2783 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2784 return LoadSpillOpcodesArray[getSpillTarget()]; 2785 } 2786 2787 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, 2788 unsigned RegNo) const { 2789 // Conservatively clear kill flag for the register if the instructions are in 2790 // different basic blocks and in SSA form, because the kill flag may no longer 2791 // be right. There is no need to bother with dead flags since defs with no 2792 // uses will be handled by DCE. 2793 MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); 2794 if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { 2795 MRI.clearKillFlags(RegNo); 2796 return; 2797 } 2798 2799 // Instructions between [StartMI, EndMI] should be in same basic block. 2800 assert((StartMI->getParent() == EndMI->getParent()) && 2801 "Instructions are not in same basic block"); 2802 2803 // If before RA, StartMI may be def through COPY, we need to adjust it to the 2804 // real def. See function getForwardingDefMI. 2805 if (MRI.isSSA()) { 2806 bool Reads, Writes; 2807 std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); 2808 if (!Reads && !Writes) { 2809 assert(Register::isVirtualRegister(RegNo) && 2810 "Must be a virtual register"); 2811 // Get real def and ignore copies. 2812 StartMI = MRI.getVRegDef(RegNo); 2813 } 2814 } 2815 2816 bool IsKillSet = false; 2817 2818 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2819 MachineOperand &MO = MI.getOperand(Index); 2820 if (MO.isReg() && MO.isUse() && MO.isKill() && 2821 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2822 MO.setIsKill(false); 2823 }; 2824 2825 // Set killed flag for EndMI. 2826 // No need to do anything if EndMI defines RegNo. 2827 int UseIndex = 2828 EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2829 if (UseIndex != -1) { 2830 EndMI->getOperand(UseIndex).setIsKill(true); 2831 IsKillSet = true; 2832 // Clear killed flag for other EndMI operands related to RegNo. In some 2833 // upexpected cases, killed may be set multiple times for same register 2834 // operand in same MI. 2835 for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) 2836 if (i != UseIndex) 2837 clearOperandKillInfo(*EndMI, i); 2838 } 2839 2840 // Walking the inst in reverse order (EndMI -> StartMI]. 2841 MachineBasicBlock::reverse_iterator It = *EndMI; 2842 MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); 2843 // EndMI has been handled above, skip it here. 2844 It++; 2845 MachineOperand *MO = nullptr; 2846 for (; It != E; ++It) { 2847 // Skip insturctions which could not be a def/use of RegNo. 2848 if (It->isDebugInstr() || It->isPosition()) 2849 continue; 2850 2851 // Clear killed flag for all It operands related to RegNo. In some 2852 // upexpected cases, killed may be set multiple times for same register 2853 // operand in same MI. 2854 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2855 clearOperandKillInfo(*It, i); 2856 2857 // If killed is not set, set killed for its last use or set dead for its def 2858 // if no use found. 2859 if (!IsKillSet) { 2860 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2861 // Use found, set it killed. 2862 IsKillSet = true; 2863 MO->setIsKill(true); 2864 continue; 2865 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2866 &getRegisterInfo()))) { 2867 // No use found, set dead for its def. 2868 assert(&*It == StartMI && "No new def between StartMI and EndMI."); 2869 MO->setIsDead(true); 2870 break; 2871 } 2872 } 2873 2874 if ((&*It) == StartMI) 2875 break; 2876 } 2877 // Ensure RegMo liveness is killed after EndMI. 2878 assert((IsKillSet || (MO && MO->isDead())) && 2879 "RegNo should be killed or dead"); 2880 } 2881 2882 // This opt tries to convert the following imm form to an index form to save an 2883 // add for stack variables. 2884 // Return false if no such pattern found. 2885 // 2886 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2887 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2888 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2889 // 2890 // can be converted to: 2891 // 2892 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2893 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2894 // 2895 // In order to eliminate ADD instr, make sure that: 2896 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2897 // new ADDI instr and ADDI can only take int16 Imm. 2898 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2899 // between ADDI and ADD instr since its original def in ADDI will be changed 2900 // in new ADDI instr. And also there should be no new def for it between 2901 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2902 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2903 // between ADD and Imm instr since ADD instr will be eliminated. 2904 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2905 // moved to Index instr. 2906 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2907 MachineFunction *MF = MI.getParent()->getParent(); 2908 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2909 bool PostRA = !MRI->isSSA(); 2910 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2911 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2912 // frame base(OffsetAddi) are determined. 2913 if (!PostRA) 2914 return false; 2915 unsigned ToBeDeletedReg = 0; 2916 int64_t OffsetImm = 0; 2917 unsigned XFormOpcode = 0; 2918 ImmInstrInfo III; 2919 2920 // Check if Imm instr meets requirement. 2921 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2922 III)) 2923 return false; 2924 2925 bool OtherIntermediateUse = false; 2926 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2927 2928 // Exit if there is other use between ADD and Imm instr or no def found. 2929 if (OtherIntermediateUse || !ADDMI) 2930 return false; 2931 2932 // Check if ADD instr meets requirement. 2933 if (!isADDInstrEligibleForFolding(*ADDMI)) 2934 return false; 2935 2936 unsigned ScaleRegIdx = 0; 2937 int64_t OffsetAddi = 0; 2938 MachineInstr *ADDIMI = nullptr; 2939 2940 // Check if there is a valid ToBeChangedReg in ADDMI. 2941 // 1: It must be killed. 2942 // 2: Its definition must be a valid ADDIMI. 2943 // 3: It must satify int16 offset requirement. 2944 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 2945 ScaleRegIdx = 2; 2946 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 2947 ScaleRegIdx = 1; 2948 else 2949 return false; 2950 2951 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 2952 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 2953 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 2954 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 2955 MachineBasicBlock::iterator End) { 2956 for (auto It = ++Start; It != End; It++) 2957 if (It->modifiesRegister(Reg, &getRegisterInfo())) 2958 return true; 2959 return false; 2960 }; 2961 2962 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 2963 // treated as special zero when ScaleReg is R0/X0 register. 2964 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 2965 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 2966 return false; 2967 2968 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 2969 // and Imm Instr. 2970 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 2971 return false; 2972 2973 // Now start to do the transformation. 2974 LLVM_DEBUG(dbgs() << "Replace instruction: " 2975 << "\n"); 2976 LLVM_DEBUG(ADDIMI->dump()); 2977 LLVM_DEBUG(ADDMI->dump()); 2978 LLVM_DEBUG(MI.dump()); 2979 LLVM_DEBUG(dbgs() << "with: " 2980 << "\n"); 2981 2982 // Update ADDI instr. 2983 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 2984 2985 // Update Imm instr. 2986 MI.setDesc(get(XFormOpcode)); 2987 MI.getOperand(III.ImmOpNo) 2988 .ChangeToRegister(ScaleReg, false, false, 2989 ADDMI->getOperand(ScaleRegIdx).isKill()); 2990 2991 MI.getOperand(III.OpNoForForwarding) 2992 .ChangeToRegister(ToBeChangedReg, false, false, true); 2993 2994 // Eliminate ADD instr. 2995 ADDMI->eraseFromParent(); 2996 2997 LLVM_DEBUG(ADDIMI->dump()); 2998 LLVM_DEBUG(MI.dump()); 2999 3000 return true; 3001 } 3002 3003 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 3004 int64_t &Imm) const { 3005 unsigned Opc = ADDIMI.getOpcode(); 3006 3007 // Exit if the instruction is not ADDI. 3008 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 3009 return false; 3010 3011 // The operand may not necessarily be an immediate - it could be a relocation. 3012 if (!ADDIMI.getOperand(2).isImm()) 3013 return false; 3014 3015 Imm = ADDIMI.getOperand(2).getImm(); 3016 3017 return true; 3018 } 3019 3020 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 3021 unsigned Opc = ADDMI.getOpcode(); 3022 3023 // Exit if the instruction is not ADD. 3024 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 3025 } 3026 3027 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 3028 unsigned &ToBeDeletedReg, 3029 unsigned &XFormOpcode, 3030 int64_t &OffsetImm, 3031 ImmInstrInfo &III) const { 3032 // Only handle load/store. 3033 if (!MI.mayLoadOrStore()) 3034 return false; 3035 3036 unsigned Opc = MI.getOpcode(); 3037 3038 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 3039 3040 // Exit if instruction has no index form. 3041 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 3042 return false; 3043 3044 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 3045 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 3046 III, true)) 3047 return false; 3048 3049 if (!III.IsSummingOperands) 3050 return false; 3051 3052 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 3053 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 3054 // Only support imm operands, not relocation slots or others. 3055 if (!ImmOperand.isImm()) 3056 return false; 3057 3058 assert(RegOperand.isReg() && "Instruction format is not right"); 3059 3060 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 3061 if (!RegOperand.isKill()) 3062 return false; 3063 3064 ToBeDeletedReg = RegOperand.getReg(); 3065 OffsetImm = ImmOperand.getImm(); 3066 3067 return true; 3068 } 3069 3070 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 3071 MachineInstr *&ADDIMI, 3072 int64_t &OffsetAddi, 3073 int64_t OffsetImm) const { 3074 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 3075 MachineOperand &MO = ADDMI->getOperand(Index); 3076 3077 if (!MO.isKill()) 3078 return false; 3079 3080 bool OtherIntermediateUse = false; 3081 3082 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 3083 // Currently handle only one "add + Imminstr" pair case, exit if other 3084 // intermediate use for ToBeChangedReg found. 3085 // TODO: handle the cases where there are other "add + Imminstr" pairs 3086 // with same offset in Imminstr which is like: 3087 // 3088 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 3089 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 3090 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 3091 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 3092 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 3093 // 3094 // can be converted to: 3095 // 3096 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 3097 // (OffsetAddi + OffsetImm) 3098 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 3099 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 3100 3101 if (OtherIntermediateUse || !ADDIMI) 3102 return false; 3103 // Check if ADDI instr meets requirement. 3104 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 3105 return false; 3106 3107 if (isInt<16>(OffsetAddi + OffsetImm)) 3108 return true; 3109 return false; 3110 } 3111 3112 // If this instruction has an immediate form and one of its operands is a 3113 // result of a load-immediate or an add-immediate, convert it to 3114 // the immediate form if the constant is in range. 3115 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 3116 MachineInstr **KilledDef) const { 3117 MachineFunction *MF = MI.getParent()->getParent(); 3118 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3119 bool PostRA = !MRI->isSSA(); 3120 bool SeenIntermediateUse = true; 3121 unsigned ForwardingOperand = ~0U; 3122 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 3123 SeenIntermediateUse); 3124 if (!DefMI) 3125 return false; 3126 assert(ForwardingOperand < MI.getNumOperands() && 3127 "The forwarding operand needs to be valid at this point"); 3128 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 3129 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 3130 if (KilledDef && KillFwdDefMI) 3131 *KilledDef = DefMI; 3132 3133 // If this is a imm instruction and its register operands is produced by ADDI, 3134 // put the imm into imm inst directly. 3135 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != 3136 PPC::INSTRUCTION_LIST_END && 3137 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) 3138 return true; 3139 3140 ImmInstrInfo III; 3141 bool IsVFReg = MI.getOperand(0).isReg() 3142 ? isVFRegister(MI.getOperand(0).getReg()) 3143 : false; 3144 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 3145 // If this is a reg+reg instruction that has a reg+imm form, 3146 // and one of the operands is produced by an add-immediate, 3147 // try to convert it. 3148 if (HasImmForm && 3149 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 3150 KillFwdDefMI)) 3151 return true; 3152 3153 // If this is a reg+reg instruction that has a reg+imm form, 3154 // and one of the operands is produced by LI, convert it now. 3155 if (HasImmForm && 3156 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) 3157 return true; 3158 3159 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI 3160 // can be simpified to LI. 3161 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) 3162 return true; 3163 3164 return false; 3165 } 3166 3167 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3168 ImmInstrInfo &III, bool PostRA) const { 3169 // The vast majority of the instructions would need their operand 2 replaced 3170 // with an immediate when switching to the reg+imm form. A marked exception 3171 // are the update form loads/stores for which a constant operand 2 would need 3172 // to turn into a displacement and move operand 1 to the operand 2 position. 3173 III.ImmOpNo = 2; 3174 III.OpNoForForwarding = 2; 3175 III.ImmWidth = 16; 3176 III.ImmMustBeMultipleOf = 1; 3177 III.TruncateImmTo = 0; 3178 III.IsSummingOperands = false; 3179 switch (Opc) { 3180 default: return false; 3181 case PPC::ADD4: 3182 case PPC::ADD8: 3183 III.SignedImm = true; 3184 III.ZeroIsSpecialOrig = 0; 3185 III.ZeroIsSpecialNew = 1; 3186 III.IsCommutative = true; 3187 III.IsSummingOperands = true; 3188 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3189 break; 3190 case PPC::ADDC: 3191 case PPC::ADDC8: 3192 III.SignedImm = true; 3193 III.ZeroIsSpecialOrig = 0; 3194 III.ZeroIsSpecialNew = 0; 3195 III.IsCommutative = true; 3196 III.IsSummingOperands = true; 3197 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3198 break; 3199 case PPC::ADDC_rec: 3200 III.SignedImm = true; 3201 III.ZeroIsSpecialOrig = 0; 3202 III.ZeroIsSpecialNew = 0; 3203 III.IsCommutative = true; 3204 III.IsSummingOperands = true; 3205 III.ImmOpcode = PPC::ADDIC_rec; 3206 break; 3207 case PPC::SUBFC: 3208 case PPC::SUBFC8: 3209 III.SignedImm = true; 3210 III.ZeroIsSpecialOrig = 0; 3211 III.ZeroIsSpecialNew = 0; 3212 III.IsCommutative = false; 3213 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3214 break; 3215 case PPC::CMPW: 3216 case PPC::CMPD: 3217 III.SignedImm = true; 3218 III.ZeroIsSpecialOrig = 0; 3219 III.ZeroIsSpecialNew = 0; 3220 III.IsCommutative = false; 3221 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3222 break; 3223 case PPC::CMPLW: 3224 case PPC::CMPLD: 3225 III.SignedImm = false; 3226 III.ZeroIsSpecialOrig = 0; 3227 III.ZeroIsSpecialNew = 0; 3228 III.IsCommutative = false; 3229 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3230 break; 3231 case PPC::AND_rec: 3232 case PPC::AND8_rec: 3233 case PPC::OR: 3234 case PPC::OR8: 3235 case PPC::XOR: 3236 case PPC::XOR8: 3237 III.SignedImm = false; 3238 III.ZeroIsSpecialOrig = 0; 3239 III.ZeroIsSpecialNew = 0; 3240 III.IsCommutative = true; 3241 switch(Opc) { 3242 default: llvm_unreachable("Unknown opcode"); 3243 case PPC::AND_rec: 3244 III.ImmOpcode = PPC::ANDI_rec; 3245 break; 3246 case PPC::AND8_rec: 3247 III.ImmOpcode = PPC::ANDI8_rec; 3248 break; 3249 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3250 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3251 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3252 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3253 } 3254 break; 3255 case PPC::RLWNM: 3256 case PPC::RLWNM8: 3257 case PPC::RLWNM_rec: 3258 case PPC::RLWNM8_rec: 3259 case PPC::SLW: 3260 case PPC::SLW8: 3261 case PPC::SLW_rec: 3262 case PPC::SLW8_rec: 3263 case PPC::SRW: 3264 case PPC::SRW8: 3265 case PPC::SRW_rec: 3266 case PPC::SRW8_rec: 3267 case PPC::SRAW: 3268 case PPC::SRAW_rec: 3269 III.SignedImm = false; 3270 III.ZeroIsSpecialOrig = 0; 3271 III.ZeroIsSpecialNew = 0; 3272 III.IsCommutative = false; 3273 // This isn't actually true, but the instructions ignore any of the 3274 // upper bits, so any immediate loaded with an LI is acceptable. 3275 // This does not apply to shift right algebraic because a value 3276 // out of range will produce a -1/0. 3277 III.ImmWidth = 16; 3278 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3279 Opc == PPC::RLWNM8_rec) 3280 III.TruncateImmTo = 5; 3281 else 3282 III.TruncateImmTo = 6; 3283 switch(Opc) { 3284 default: llvm_unreachable("Unknown opcode"); 3285 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3286 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3287 case PPC::RLWNM_rec: 3288 III.ImmOpcode = PPC::RLWINM_rec; 3289 break; 3290 case PPC::RLWNM8_rec: 3291 III.ImmOpcode = PPC::RLWINM8_rec; 3292 break; 3293 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3294 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3295 case PPC::SLW_rec: 3296 III.ImmOpcode = PPC::RLWINM_rec; 3297 break; 3298 case PPC::SLW8_rec: 3299 III.ImmOpcode = PPC::RLWINM8_rec; 3300 break; 3301 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3302 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3303 case PPC::SRW_rec: 3304 III.ImmOpcode = PPC::RLWINM_rec; 3305 break; 3306 case PPC::SRW8_rec: 3307 III.ImmOpcode = PPC::RLWINM8_rec; 3308 break; 3309 case PPC::SRAW: 3310 III.ImmWidth = 5; 3311 III.TruncateImmTo = 0; 3312 III.ImmOpcode = PPC::SRAWI; 3313 break; 3314 case PPC::SRAW_rec: 3315 III.ImmWidth = 5; 3316 III.TruncateImmTo = 0; 3317 III.ImmOpcode = PPC::SRAWI_rec; 3318 break; 3319 } 3320 break; 3321 case PPC::RLDCL: 3322 case PPC::RLDCL_rec: 3323 case PPC::RLDCR: 3324 case PPC::RLDCR_rec: 3325 case PPC::SLD: 3326 case PPC::SLD_rec: 3327 case PPC::SRD: 3328 case PPC::SRD_rec: 3329 case PPC::SRAD: 3330 case PPC::SRAD_rec: 3331 III.SignedImm = false; 3332 III.ZeroIsSpecialOrig = 0; 3333 III.ZeroIsSpecialNew = 0; 3334 III.IsCommutative = false; 3335 // This isn't actually true, but the instructions ignore any of the 3336 // upper bits, so any immediate loaded with an LI is acceptable. 3337 // This does not apply to shift right algebraic because a value 3338 // out of range will produce a -1/0. 3339 III.ImmWidth = 16; 3340 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3341 Opc == PPC::RLDCR_rec) 3342 III.TruncateImmTo = 6; 3343 else 3344 III.TruncateImmTo = 7; 3345 switch(Opc) { 3346 default: llvm_unreachable("Unknown opcode"); 3347 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3348 case PPC::RLDCL_rec: 3349 III.ImmOpcode = PPC::RLDICL_rec; 3350 break; 3351 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3352 case PPC::RLDCR_rec: 3353 III.ImmOpcode = PPC::RLDICR_rec; 3354 break; 3355 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3356 case PPC::SLD_rec: 3357 III.ImmOpcode = PPC::RLDICR_rec; 3358 break; 3359 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3360 case PPC::SRD_rec: 3361 III.ImmOpcode = PPC::RLDICL_rec; 3362 break; 3363 case PPC::SRAD: 3364 III.ImmWidth = 6; 3365 III.TruncateImmTo = 0; 3366 III.ImmOpcode = PPC::SRADI; 3367 break; 3368 case PPC::SRAD_rec: 3369 III.ImmWidth = 6; 3370 III.TruncateImmTo = 0; 3371 III.ImmOpcode = PPC::SRADI_rec; 3372 break; 3373 } 3374 break; 3375 // Loads and stores: 3376 case PPC::LBZX: 3377 case PPC::LBZX8: 3378 case PPC::LHZX: 3379 case PPC::LHZX8: 3380 case PPC::LHAX: 3381 case PPC::LHAX8: 3382 case PPC::LWZX: 3383 case PPC::LWZX8: 3384 case PPC::LWAX: 3385 case PPC::LDX: 3386 case PPC::LFSX: 3387 case PPC::LFDX: 3388 case PPC::STBX: 3389 case PPC::STBX8: 3390 case PPC::STHX: 3391 case PPC::STHX8: 3392 case PPC::STWX: 3393 case PPC::STWX8: 3394 case PPC::STDX: 3395 case PPC::STFSX: 3396 case PPC::STFDX: 3397 III.SignedImm = true; 3398 III.ZeroIsSpecialOrig = 1; 3399 III.ZeroIsSpecialNew = 2; 3400 III.IsCommutative = true; 3401 III.IsSummingOperands = true; 3402 III.ImmOpNo = 1; 3403 III.OpNoForForwarding = 2; 3404 switch(Opc) { 3405 default: llvm_unreachable("Unknown opcode"); 3406 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3407 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3408 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3409 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3410 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3411 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3412 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3413 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3414 case PPC::LWAX: 3415 III.ImmOpcode = PPC::LWA; 3416 III.ImmMustBeMultipleOf = 4; 3417 break; 3418 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3419 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3420 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3421 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3422 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3423 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3424 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3425 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3426 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3427 case PPC::STDX: 3428 III.ImmOpcode = PPC::STD; 3429 III.ImmMustBeMultipleOf = 4; 3430 break; 3431 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3432 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3433 } 3434 break; 3435 case PPC::LBZUX: 3436 case PPC::LBZUX8: 3437 case PPC::LHZUX: 3438 case PPC::LHZUX8: 3439 case PPC::LHAUX: 3440 case PPC::LHAUX8: 3441 case PPC::LWZUX: 3442 case PPC::LWZUX8: 3443 case PPC::LDUX: 3444 case PPC::LFSUX: 3445 case PPC::LFDUX: 3446 case PPC::STBUX: 3447 case PPC::STBUX8: 3448 case PPC::STHUX: 3449 case PPC::STHUX8: 3450 case PPC::STWUX: 3451 case PPC::STWUX8: 3452 case PPC::STDUX: 3453 case PPC::STFSUX: 3454 case PPC::STFDUX: 3455 III.SignedImm = true; 3456 III.ZeroIsSpecialOrig = 2; 3457 III.ZeroIsSpecialNew = 3; 3458 III.IsCommutative = false; 3459 III.IsSummingOperands = true; 3460 III.ImmOpNo = 2; 3461 III.OpNoForForwarding = 3; 3462 switch(Opc) { 3463 default: llvm_unreachable("Unknown opcode"); 3464 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3465 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3466 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3467 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3468 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3469 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3470 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3471 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3472 case PPC::LDUX: 3473 III.ImmOpcode = PPC::LDU; 3474 III.ImmMustBeMultipleOf = 4; 3475 break; 3476 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3477 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3478 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3479 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3480 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3481 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3482 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3483 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3484 case PPC::STDUX: 3485 III.ImmOpcode = PPC::STDU; 3486 III.ImmMustBeMultipleOf = 4; 3487 break; 3488 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3489 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3490 } 3491 break; 3492 // Power9 and up only. For some of these, the X-Form version has access to all 3493 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3494 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3495 // into or stored from is one of the VR registers. 3496 case PPC::LXVX: 3497 case PPC::LXSSPX: 3498 case PPC::LXSDX: 3499 case PPC::STXVX: 3500 case PPC::STXSSPX: 3501 case PPC::STXSDX: 3502 case PPC::XFLOADf32: 3503 case PPC::XFLOADf64: 3504 case PPC::XFSTOREf32: 3505 case PPC::XFSTOREf64: 3506 if (!Subtarget.hasP9Vector()) 3507 return false; 3508 III.SignedImm = true; 3509 III.ZeroIsSpecialOrig = 1; 3510 III.ZeroIsSpecialNew = 2; 3511 III.IsCommutative = true; 3512 III.IsSummingOperands = true; 3513 III.ImmOpNo = 1; 3514 III.OpNoForForwarding = 2; 3515 III.ImmMustBeMultipleOf = 4; 3516 switch(Opc) { 3517 default: llvm_unreachable("Unknown opcode"); 3518 case PPC::LXVX: 3519 III.ImmOpcode = PPC::LXV; 3520 III.ImmMustBeMultipleOf = 16; 3521 break; 3522 case PPC::LXSSPX: 3523 if (PostRA) { 3524 if (IsVFReg) 3525 III.ImmOpcode = PPC::LXSSP; 3526 else { 3527 III.ImmOpcode = PPC::LFS; 3528 III.ImmMustBeMultipleOf = 1; 3529 } 3530 break; 3531 } 3532 LLVM_FALLTHROUGH; 3533 case PPC::XFLOADf32: 3534 III.ImmOpcode = PPC::DFLOADf32; 3535 break; 3536 case PPC::LXSDX: 3537 if (PostRA) { 3538 if (IsVFReg) 3539 III.ImmOpcode = PPC::LXSD; 3540 else { 3541 III.ImmOpcode = PPC::LFD; 3542 III.ImmMustBeMultipleOf = 1; 3543 } 3544 break; 3545 } 3546 LLVM_FALLTHROUGH; 3547 case PPC::XFLOADf64: 3548 III.ImmOpcode = PPC::DFLOADf64; 3549 break; 3550 case PPC::STXVX: 3551 III.ImmOpcode = PPC::STXV; 3552 III.ImmMustBeMultipleOf = 16; 3553 break; 3554 case PPC::STXSSPX: 3555 if (PostRA) { 3556 if (IsVFReg) 3557 III.ImmOpcode = PPC::STXSSP; 3558 else { 3559 III.ImmOpcode = PPC::STFS; 3560 III.ImmMustBeMultipleOf = 1; 3561 } 3562 break; 3563 } 3564 LLVM_FALLTHROUGH; 3565 case PPC::XFSTOREf32: 3566 III.ImmOpcode = PPC::DFSTOREf32; 3567 break; 3568 case PPC::STXSDX: 3569 if (PostRA) { 3570 if (IsVFReg) 3571 III.ImmOpcode = PPC::STXSD; 3572 else { 3573 III.ImmOpcode = PPC::STFD; 3574 III.ImmMustBeMultipleOf = 1; 3575 } 3576 break; 3577 } 3578 LLVM_FALLTHROUGH; 3579 case PPC::XFSTOREf64: 3580 III.ImmOpcode = PPC::DFSTOREf64; 3581 break; 3582 } 3583 break; 3584 } 3585 return true; 3586 } 3587 3588 // Utility function for swaping two arbitrary operands of an instruction. 3589 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3590 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3591 3592 unsigned MaxOp = std::max(Op1, Op2); 3593 unsigned MinOp = std::min(Op1, Op2); 3594 MachineOperand MOp1 = MI.getOperand(MinOp); 3595 MachineOperand MOp2 = MI.getOperand(MaxOp); 3596 MI.RemoveOperand(std::max(Op1, Op2)); 3597 MI.RemoveOperand(std::min(Op1, Op2)); 3598 3599 // If the operands we are swapping are the two at the end (the common case) 3600 // we can just remove both and add them in the opposite order. 3601 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3602 MI.addOperand(MOp2); 3603 MI.addOperand(MOp1); 3604 } else { 3605 // Store all operands in a temporary vector, remove them and re-add in the 3606 // right order. 3607 SmallVector<MachineOperand, 2> MOps; 3608 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3609 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3610 MOps.push_back(MI.getOperand(i)); 3611 MI.RemoveOperand(i); 3612 } 3613 // MOp2 needs to be added next. 3614 MI.addOperand(MOp2); 3615 // Now add the rest. 3616 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3617 if (i == MaxOp) 3618 MI.addOperand(MOp1); 3619 else { 3620 MI.addOperand(MOps.back()); 3621 MOps.pop_back(); 3622 } 3623 } 3624 } 3625 } 3626 3627 // Check if the 'MI' that has the index OpNoForForwarding 3628 // meets the requirement described in the ImmInstrInfo. 3629 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3630 const ImmInstrInfo &III, 3631 unsigned OpNoForForwarding 3632 ) const { 3633 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3634 // would not work pre-RA, we can only do the check post RA. 3635 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3636 if (MRI.isSSA()) 3637 return false; 3638 3639 // Cannot do the transform if MI isn't summing the operands. 3640 if (!III.IsSummingOperands) 3641 return false; 3642 3643 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3644 if (!III.ZeroIsSpecialOrig) 3645 return false; 3646 3647 // We cannot do the transform if the operand we are trying to replace 3648 // isn't the same as the operand the instruction allows. 3649 if (OpNoForForwarding != III.OpNoForForwarding) 3650 return false; 3651 3652 // Check if the instruction we are trying to transform really has 3653 // the special zero register as its operand. 3654 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3655 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3656 return false; 3657 3658 // This machine instruction is convertible if it is, 3659 // 1. summing the operands. 3660 // 2. one of the operands is special zero register. 3661 // 3. the operand we are trying to replace is allowed by the MI. 3662 return true; 3663 } 3664 3665 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3666 // accordingly. 3667 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3668 const ImmInstrInfo &III, 3669 MachineOperand *&ImmMO, 3670 MachineOperand *&RegMO) const { 3671 unsigned Opc = DefMI.getOpcode(); 3672 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3673 return false; 3674 3675 assert(DefMI.getNumOperands() >= 3 && 3676 "Add inst must have at least three operands"); 3677 RegMO = &DefMI.getOperand(1); 3678 ImmMO = &DefMI.getOperand(2); 3679 3680 // Before RA, ADDI first operand could be a frame index. 3681 if (!RegMO->isReg()) 3682 return false; 3683 3684 // This DefMI is elgible for forwarding if it is: 3685 // 1. add inst 3686 // 2. one of the operands is Imm/CPI/Global. 3687 return isAnImmediateOperand(*ImmMO); 3688 } 3689 3690 bool PPCInstrInfo::isRegElgibleForForwarding( 3691 const MachineOperand &RegMO, const MachineInstr &DefMI, 3692 const MachineInstr &MI, bool KillDefMI, 3693 bool &IsFwdFeederRegKilled) const { 3694 // x = addi y, imm 3695 // ... 3696 // z = lfdx 0, x -> z = lfd imm(y) 3697 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3698 // of "y" between the DEF of "x" and "z". 3699 // The query is only valid post RA. 3700 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3701 if (MRI.isSSA()) 3702 return false; 3703 3704 Register Reg = RegMO.getReg(); 3705 3706 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3707 MachineBasicBlock::const_reverse_iterator It = MI; 3708 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3709 It++; 3710 for (; It != E; ++It) { 3711 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3712 return false; 3713 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3714 IsFwdFeederRegKilled = true; 3715 // Made it to DefMI without encountering a clobber. 3716 if ((&*It) == &DefMI) 3717 break; 3718 } 3719 assert((&*It) == &DefMI && "DefMI is missing"); 3720 3721 // If DefMI also defines the register to be forwarded, we can only forward it 3722 // if DefMI is being erased. 3723 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3724 return KillDefMI; 3725 3726 return true; 3727 } 3728 3729 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3730 const MachineInstr &DefMI, 3731 const ImmInstrInfo &III, 3732 int64_t &Imm, 3733 int64_t BaseImm) const { 3734 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3735 if (DefMI.getOpcode() == PPC::ADDItocL) { 3736 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3737 // However, we know that, it is 16-bit width, and has the alignment of 4. 3738 // Check if the instruction met the requirement. 3739 if (III.ImmMustBeMultipleOf > 4 || 3740 III.TruncateImmTo || III.ImmWidth != 16) 3741 return false; 3742 3743 // Going from XForm to DForm loads means that the displacement needs to be 3744 // not just an immediate but also a multiple of 4, or 16 depending on the 3745 // load. A DForm load cannot be represented if it is a multiple of say 2. 3746 // XForm loads do not have this restriction. 3747 if (ImmMO.isGlobal()) { 3748 const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); 3749 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) 3750 return false; 3751 } 3752 3753 return true; 3754 } 3755 3756 if (ImmMO.isImm()) { 3757 // It is Imm, we need to check if the Imm fit the range. 3758 // Sign-extend to 64-bits. 3759 // DefMI may be folded with another imm form instruction, the result Imm is 3760 // the sum of Imm of DefMI and BaseImm which is from imm form instruction. 3761 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); 3762 3763 if (Imm % III.ImmMustBeMultipleOf) 3764 return false; 3765 if (III.TruncateImmTo) 3766 Imm &= ((1 << III.TruncateImmTo) - 1); 3767 if (III.SignedImm) { 3768 APInt ActualValue(64, Imm, true); 3769 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3770 return false; 3771 } else { 3772 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3773 if ((uint64_t)Imm > UnsignedMax) 3774 return false; 3775 } 3776 } 3777 else 3778 return false; 3779 3780 // This ImmMO is forwarded if it meets the requriement describle 3781 // in ImmInstrInfo 3782 return true; 3783 } 3784 3785 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, 3786 unsigned OpNoForForwarding, 3787 MachineInstr **KilledDef) const { 3788 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 3789 !DefMI.getOperand(1).isImm()) 3790 return false; 3791 3792 MachineFunction *MF = MI.getParent()->getParent(); 3793 MachineRegisterInfo *MRI = &MF->getRegInfo(); 3794 bool PostRA = !MRI->isSSA(); 3795 3796 int64_t Immediate = DefMI.getOperand(1).getImm(); 3797 // Sign-extend to 64-bits. 3798 int64_t SExtImm = SignExtend64<16>(Immediate); 3799 3800 bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); 3801 Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3802 3803 bool ReplaceWithLI = false; 3804 bool Is64BitLI = false; 3805 int64_t NewImm = 0; 3806 bool SetCR = false; 3807 unsigned Opc = MI.getOpcode(); 3808 switch (Opc) { 3809 default: 3810 return false; 3811 3812 // FIXME: Any branches conditional on such a comparison can be made 3813 // unconditional. At this time, this happens too infrequently to be worth 3814 // the implementation effort, but if that ever changes, we could convert 3815 // such a pattern here. 3816 case PPC::CMPWI: 3817 case PPC::CMPLWI: 3818 case PPC::CMPDI: 3819 case PPC::CMPLDI: { 3820 // Doing this post-RA would require dataflow analysis to reliably find uses 3821 // of the CR register set by the compare. 3822 // No need to fixup killed/dead flag since this transformation is only valid 3823 // before RA. 3824 if (PostRA) 3825 return false; 3826 // If a compare-immediate is fed by an immediate and is itself an input of 3827 // an ISEL (the most common case) into a COPY of the correct register. 3828 bool Changed = false; 3829 Register DefReg = MI.getOperand(0).getReg(); 3830 int64_t Comparand = MI.getOperand(2).getImm(); 3831 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 3832 ? (Comparand | 0xFFFFFFFFFFFF0000) 3833 : Comparand; 3834 3835 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 3836 unsigned UseOpc = CompareUseMI.getOpcode(); 3837 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 3838 continue; 3839 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 3840 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 3841 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 3842 unsigned RegToCopy = 3843 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); 3844 if (RegToCopy == PPC::NoRegister) 3845 continue; 3846 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 3847 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 3848 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 3849 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 3850 CompareUseMI.RemoveOperand(3); 3851 CompareUseMI.RemoveOperand(2); 3852 continue; 3853 } 3854 LLVM_DEBUG( 3855 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 3856 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); 3857 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 3858 // Convert to copy and remove unneeded operands. 3859 CompareUseMI.setDesc(get(PPC::COPY)); 3860 CompareUseMI.RemoveOperand(3); 3861 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 3862 CmpIselsConverted++; 3863 Changed = true; 3864 LLVM_DEBUG(CompareUseMI.dump()); 3865 } 3866 if (Changed) 3867 return true; 3868 // This may end up incremented multiple times since this function is called 3869 // during a fixed-point transformation, but it is only meant to indicate the 3870 // presence of this opportunity. 3871 MissedConvertibleImmediateInstrs++; 3872 return false; 3873 } 3874 3875 // Immediate forms - may simply be convertable to an LI. 3876 case PPC::ADDI: 3877 case PPC::ADDI8: { 3878 // Does the sum fit in a 16-bit signed field? 3879 int64_t Addend = MI.getOperand(2).getImm(); 3880 if (isInt<16>(Addend + SExtImm)) { 3881 ReplaceWithLI = true; 3882 Is64BitLI = Opc == PPC::ADDI8; 3883 NewImm = Addend + SExtImm; 3884 break; 3885 } 3886 return false; 3887 } 3888 case PPC::SUBFIC: 3889 case PPC::SUBFIC8: { 3890 // Only transform this if the CARRY implicit operand is dead. 3891 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) 3892 return false; 3893 int64_t Minuend = MI.getOperand(2).getImm(); 3894 if (isInt<16>(Minuend - SExtImm)) { 3895 ReplaceWithLI = true; 3896 Is64BitLI = Opc == PPC::SUBFIC8; 3897 NewImm = Minuend - SExtImm; 3898 break; 3899 } 3900 return false; 3901 } 3902 case PPC::RLDICL: 3903 case PPC::RLDICL_rec: 3904 case PPC::RLDICL_32: 3905 case PPC::RLDICL_32_64: { 3906 // Use APInt's rotate function. 3907 int64_t SH = MI.getOperand(2).getImm(); 3908 int64_t MB = MI.getOperand(3).getImm(); 3909 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 3910 SExtImm, true); 3911 InVal = InVal.rotl(SH); 3912 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 3913 InVal &= Mask; 3914 // Can't replace negative values with an LI as that will sign-extend 3915 // and not clear the left bits. If we're setting the CR bit, we will use 3916 // ANDI_rec which won't sign extend, so that's safe. 3917 if (isUInt<15>(InVal.getSExtValue()) || 3918 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 3919 ReplaceWithLI = true; 3920 Is64BitLI = Opc != PPC::RLDICL_32; 3921 NewImm = InVal.getSExtValue(); 3922 SetCR = Opc == PPC::RLDICL_rec; 3923 break; 3924 } 3925 return false; 3926 } 3927 case PPC::RLWINM: 3928 case PPC::RLWINM8: 3929 case PPC::RLWINM_rec: 3930 case PPC::RLWINM8_rec: { 3931 int64_t SH = MI.getOperand(2).getImm(); 3932 int64_t MB = MI.getOperand(3).getImm(); 3933 int64_t ME = MI.getOperand(4).getImm(); 3934 APInt InVal(32, SExtImm, true); 3935 InVal = InVal.rotl(SH); 3936 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); 3937 InVal &= Mask; 3938 // Can't replace negative values with an LI as that will sign-extend 3939 // and not clear the left bits. If we're setting the CR bit, we will use 3940 // ANDI_rec which won't sign extend, so that's safe. 3941 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 3942 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 3943 isUInt<16>(InVal.getSExtValue())); 3944 if (ValueFits) { 3945 ReplaceWithLI = true; 3946 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 3947 NewImm = InVal.getSExtValue(); 3948 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 3949 break; 3950 } 3951 return false; 3952 } 3953 case PPC::ORI: 3954 case PPC::ORI8: 3955 case PPC::XORI: 3956 case PPC::XORI8: { 3957 int64_t LogicalImm = MI.getOperand(2).getImm(); 3958 int64_t Result = 0; 3959 if (Opc == PPC::ORI || Opc == PPC::ORI8) 3960 Result = LogicalImm | SExtImm; 3961 else 3962 Result = LogicalImm ^ SExtImm; 3963 if (isInt<16>(Result)) { 3964 ReplaceWithLI = true; 3965 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 3966 NewImm = Result; 3967 break; 3968 } 3969 return false; 3970 } 3971 } 3972 3973 if (ReplaceWithLI) { 3974 // We need to be careful with CR-setting instructions we're replacing. 3975 if (SetCR) { 3976 // We don't know anything about uses when we're out of SSA, so only 3977 // replace if the new immediate will be reproduced. 3978 bool ImmChanged = (SExtImm & NewImm) != NewImm; 3979 if (PostRA && ImmChanged) 3980 return false; 3981 3982 if (!PostRA) { 3983 // If the defining load-immediate has no other uses, we can just replace 3984 // the immediate with the new immediate. 3985 if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) 3986 DefMI.getOperand(1).setImm(NewImm); 3987 3988 // If we're not using the GPR result of the CR-setting instruction, we 3989 // just need to and with zero/non-zero depending on the new immediate. 3990 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 3991 if (NewImm) { 3992 assert(Immediate && "Transformation converted zero to non-zero?"); 3993 NewImm = Immediate; 3994 } 3995 } else if (ImmChanged) 3996 return false; 3997 } 3998 } 3999 4000 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4001 LLVM_DEBUG(MI.dump()); 4002 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4003 LLVM_DEBUG(DefMI.dump()); 4004 LoadImmediateInfo LII; 4005 LII.Imm = NewImm; 4006 LII.Is64Bit = Is64BitLI; 4007 LII.SetCR = SetCR; 4008 // If we're setting the CR, the original load-immediate must be kept (as an 4009 // operand to ANDI_rec/ANDI8_rec). 4010 if (KilledDef && SetCR) 4011 *KilledDef = nullptr; 4012 replaceInstrWithLI(MI, LII); 4013 4014 // Fixup killed/dead flag after transformation. 4015 // Pattern: 4016 // ForwardingOperandReg = LI imm1 4017 // y = op2 imm2, ForwardingOperandReg(killed) 4018 if (IsForwardingOperandKilled) 4019 fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); 4020 4021 LLVM_DEBUG(dbgs() << "With:\n"); 4022 LLVM_DEBUG(MI.dump()); 4023 return true; 4024 } 4025 return false; 4026 } 4027 4028 bool PPCInstrInfo::transformToNewImmFormFedByAdd( 4029 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { 4030 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 4031 bool PostRA = !MRI->isSSA(); 4032 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI 4033 // for post-ra. 4034 if (PostRA) 4035 return false; 4036 4037 // Only handle load/store. 4038 if (!MI.mayLoadOrStore()) 4039 return false; 4040 4041 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); 4042 4043 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && 4044 "MI must have x-form opcode"); 4045 4046 // get Imm Form info. 4047 ImmInstrInfo III; 4048 bool IsVFReg = MI.getOperand(0).isReg() 4049 ? isVFRegister(MI.getOperand(0).getReg()) 4050 : false; 4051 4052 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) 4053 return false; 4054 4055 if (!III.IsSummingOperands) 4056 return false; 4057 4058 if (OpNoForForwarding != III.OpNoForForwarding) 4059 return false; 4060 4061 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); 4062 if (!ImmOperandMI.isImm()) 4063 return false; 4064 4065 // Check DefMI. 4066 MachineOperand *ImmMO = nullptr; 4067 MachineOperand *RegMO = nullptr; 4068 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4069 return false; 4070 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4071 4072 // Check Imm. 4073 // Set ImmBase from imm instruction as base and get new Imm inside 4074 // isImmElgibleForForwarding. 4075 int64_t ImmBase = ImmOperandMI.getImm(); 4076 int64_t Imm = 0; 4077 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) 4078 return false; 4079 4080 // Get killed info in case fixup needed after transformation. 4081 unsigned ForwardKilledOperandReg = ~0U; 4082 if (MI.getOperand(III.OpNoForForwarding).isKill()) 4083 ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); 4084 4085 // Do the transform 4086 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4087 LLVM_DEBUG(MI.dump()); 4088 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4089 LLVM_DEBUG(DefMI.dump()); 4090 4091 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); 4092 MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill()); 4093 MI.getOperand(III.ImmOpNo).setImm(Imm); 4094 4095 // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. 4096 if (DefMI.getParent() == MI.getParent()) { 4097 // Check if reg is killed between MI and DefMI. 4098 auto IsKilledFor = [&](unsigned Reg) { 4099 MachineBasicBlock::const_reverse_iterator It = MI; 4100 MachineBasicBlock::const_reverse_iterator E = DefMI; 4101 It++; 4102 for (; It != E; ++It) { 4103 if (It->killsRegister(Reg)) 4104 return true; 4105 } 4106 return false; 4107 }; 4108 4109 // Update kill flag 4110 if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) 4111 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4112 if (ForwardKilledOperandReg != ~0U) 4113 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4114 } 4115 4116 LLVM_DEBUG(dbgs() << "With:\n"); 4117 LLVM_DEBUG(MI.dump()); 4118 return true; 4119 } 4120 4121 // If an X-Form instruction is fed by an add-immediate and one of its operands 4122 // is the literal zero, attempt to forward the source of the add-immediate to 4123 // the corresponding D-Form instruction with the displacement coming from 4124 // the immediate being added. 4125 bool PPCInstrInfo::transformToImmFormFedByAdd( 4126 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 4127 MachineInstr &DefMI, bool KillDefMI) const { 4128 // RegMO ImmMO 4129 // | | 4130 // x = addi reg, imm <----- DefMI 4131 // y = op 0 , x <----- MI 4132 // | 4133 // OpNoForForwarding 4134 // Check if the MI meet the requirement described in the III. 4135 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 4136 return false; 4137 4138 // Check if the DefMI meet the requirement 4139 // described in the III. If yes, set the ImmMO and RegMO accordingly. 4140 MachineOperand *ImmMO = nullptr; 4141 MachineOperand *RegMO = nullptr; 4142 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 4143 return false; 4144 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 4145 4146 // As we get the Imm operand now, we need to check if the ImmMO meet 4147 // the requirement described in the III. If yes set the Imm. 4148 int64_t Imm = 0; 4149 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 4150 return false; 4151 4152 bool IsFwdFeederRegKilled = false; 4153 // Check if the RegMO can be forwarded to MI. 4154 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 4155 IsFwdFeederRegKilled)) 4156 return false; 4157 4158 // Get killed info in case fixup needed after transformation. 4159 unsigned ForwardKilledOperandReg = ~0U; 4160 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4161 bool PostRA = !MRI.isSSA(); 4162 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 4163 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 4164 4165 // We know that, the MI and DefMI both meet the pattern, and 4166 // the Imm also meet the requirement with the new Imm-form. 4167 // It is safe to do the transformation now. 4168 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 4169 LLVM_DEBUG(MI.dump()); 4170 LLVM_DEBUG(dbgs() << "Fed by:\n"); 4171 LLVM_DEBUG(DefMI.dump()); 4172 4173 // Update the base reg first. 4174 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 4175 false, false, 4176 RegMO->isKill()); 4177 4178 // Then, update the imm. 4179 if (ImmMO->isImm()) { 4180 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 4181 // directly. 4182 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 4183 } 4184 else { 4185 // Otherwise, it is Constant Pool Index(CPI) or Global, 4186 // which is relocation in fact. We need to replace the special zero 4187 // register with ImmMO. 4188 // Before that, we need to fixup the target flags for imm. 4189 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 4190 if (DefMI.getOpcode() == PPC::ADDItocL) 4191 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 4192 4193 // MI didn't have the interface such as MI.setOperand(i) though 4194 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 4195 // ImmMO, we need to remove ZERO operand and all the operands behind it, 4196 // and, add the ImmMO, then, move back all the operands behind ZERO. 4197 SmallVector<MachineOperand, 2> MOps; 4198 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 4199 MOps.push_back(MI.getOperand(i)); 4200 MI.RemoveOperand(i); 4201 } 4202 4203 // Remove the last MO in the list, which is ZERO operand in fact. 4204 MOps.pop_back(); 4205 // Add the imm operand. 4206 MI.addOperand(*ImmMO); 4207 // Now add the rest back. 4208 for (auto &MO : MOps) 4209 MI.addOperand(MO); 4210 } 4211 4212 // Update the opcode. 4213 MI.setDesc(get(III.ImmOpcode)); 4214 4215 // Fix up killed/dead flag after transformation. 4216 // Pattern 1: 4217 // x = ADD KilledFwdFeederReg, imm 4218 // n = opn KilledFwdFeederReg(killed), regn 4219 // y = XOP 0, x 4220 // Pattern 2: 4221 // x = ADD reg(killed), imm 4222 // y = XOP 0, x 4223 if (IsFwdFeederRegKilled || RegMO->isKill()) 4224 fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); 4225 // Pattern 3: 4226 // ForwardKilledOperandReg = ADD reg, imm 4227 // y = XOP 0, ForwardKilledOperandReg(killed) 4228 if (ForwardKilledOperandReg != ~0U) 4229 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4230 4231 LLVM_DEBUG(dbgs() << "With:\n"); 4232 LLVM_DEBUG(MI.dump()); 4233 4234 return true; 4235 } 4236 4237 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 4238 const ImmInstrInfo &III, 4239 unsigned ConstantOpNo, 4240 MachineInstr &DefMI) const { 4241 // DefMI must be LI or LI8. 4242 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || 4243 !DefMI.getOperand(1).isImm()) 4244 return false; 4245 4246 // Get Imm operand and Sign-extend to 64-bits. 4247 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); 4248 4249 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4250 bool PostRA = !MRI.isSSA(); 4251 // Exit early if we can't convert this. 4252 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 4253 return false; 4254 if (Imm % III.ImmMustBeMultipleOf) 4255 return false; 4256 if (III.TruncateImmTo) 4257 Imm &= ((1 << III.TruncateImmTo) - 1); 4258 if (III.SignedImm) { 4259 APInt ActualValue(64, Imm, true); 4260 if (!ActualValue.isSignedIntN(III.ImmWidth)) 4261 return false; 4262 } else { 4263 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 4264 if ((uint64_t)Imm > UnsignedMax) 4265 return false; 4266 } 4267 4268 // If we're post-RA, the instructions don't agree on whether register zero is 4269 // special, we can transform this as long as the register operand that will 4270 // end up in the location where zero is special isn't R0. 4271 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4272 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 4273 III.ZeroIsSpecialNew + 1; 4274 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 4275 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4276 // If R0 is in the operand where zero is special for the new instruction, 4277 // it is unsafe to transform if the constant operand isn't that operand. 4278 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 4279 ConstantOpNo != III.ZeroIsSpecialNew) 4280 return false; 4281 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 4282 ConstantOpNo != PosForOrigZero) 4283 return false; 4284 } 4285 4286 // Get killed info in case fixup needed after transformation. 4287 unsigned ForwardKilledOperandReg = ~0U; 4288 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 4289 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 4290 4291 unsigned Opc = MI.getOpcode(); 4292 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 4293 Opc == PPC::SRW || Opc == PPC::SRW_rec || 4294 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 4295 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 4296 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 4297 Opc == PPC::SRD || Opc == PPC::SRD_rec; 4298 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 4299 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 4300 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 4301 Opc == PPC::SRD_rec; 4302 4303 MI.setDesc(get(III.ImmOpcode)); 4304 if (ConstantOpNo == III.OpNoForForwarding) { 4305 // Converting shifts to immediate form is a bit tricky since they may do 4306 // one of three things: 4307 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 4308 // 2. If the shift amount is zero, the result is unchanged (save for maybe 4309 // setting CR0) 4310 // 3. If the shift amount is in [1, OpSize), it's just a shift 4311 if (SpecialShift32 || SpecialShift64) { 4312 LoadImmediateInfo LII; 4313 LII.Imm = 0; 4314 LII.SetCR = SetCR; 4315 LII.Is64Bit = SpecialShift64; 4316 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 4317 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 4318 replaceInstrWithLI(MI, LII); 4319 // Shifts by zero don't change the value. If we don't need to set CR0, 4320 // just convert this to a COPY. Can't do this post-RA since we've already 4321 // cleaned up the copies. 4322 else if (!SetCR && ShAmt == 0 && !PostRA) { 4323 MI.RemoveOperand(2); 4324 MI.setDesc(get(PPC::COPY)); 4325 } else { 4326 // The 32 bit and 64 bit instructions are quite different. 4327 if (SpecialShift32) { 4328 // Left shifts use (N, 0, 31-N). 4329 // Right shifts use (32-N, N, 31) if 0 < N < 32. 4330 // use (0, 0, 31) if N == 0. 4331 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 4332 uint64_t MB = RightShift ? ShAmt : 0; 4333 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 4334 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4335 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 4336 .addImm(ME); 4337 } else { 4338 // Left shifts use (N, 63-N). 4339 // Right shifts use (64-N, N) if 0 < N < 64. 4340 // use (0, 0) if N == 0. 4341 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 4342 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 4343 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 4344 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 4345 } 4346 } 4347 } else 4348 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 4349 } 4350 // Convert commutative instructions (switch the operands and convert the 4351 // desired one to an immediate. 4352 else if (III.IsCommutative) { 4353 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 4354 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 4355 } else 4356 llvm_unreachable("Should have exited early!"); 4357 4358 // For instructions for which the constant register replaces a different 4359 // operand than where the immediate goes, we need to swap them. 4360 if (III.OpNoForForwarding != III.ImmOpNo) 4361 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 4362 4363 // If the special R0/X0 register index are different for original instruction 4364 // and new instruction, we need to fix up the register class in new 4365 // instruction. 4366 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 4367 if (III.ZeroIsSpecialNew) { 4368 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 4369 // need to fix up register class. 4370 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 4371 if (Register::isVirtualRegister(RegToModify)) { 4372 const TargetRegisterClass *NewRC = 4373 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 4374 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 4375 MRI.setRegClass(RegToModify, NewRC); 4376 } 4377 } 4378 } 4379 4380 // Fix up killed/dead flag after transformation. 4381 // Pattern: 4382 // ForwardKilledOperandReg = LI imm 4383 // y = XOP reg, ForwardKilledOperandReg(killed) 4384 if (ForwardKilledOperandReg != ~0U) 4385 fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); 4386 return true; 4387 } 4388 4389 const TargetRegisterClass * 4390 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 4391 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 4392 return &PPC::VSRCRegClass; 4393 return RC; 4394 } 4395 4396 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 4397 return PPC::getRecordFormOpcode(Opcode); 4398 } 4399 4400 // This function returns true if the machine instruction 4401 // always outputs a value by sign-extending a 32 bit value, 4402 // i.e. 0 to 31-th bits are same as 32-th bit. 4403 static bool isSignExtendingOp(const MachineInstr &MI) { 4404 int Opcode = MI.getOpcode(); 4405 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 4406 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 4407 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 4408 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 4409 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 4410 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 4411 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 4412 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4413 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 4414 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 4415 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 4416 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 4417 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 4418 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 4419 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 4420 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 4421 Opcode == PPC::EXTSB8_32_64) 4422 return true; 4423 4424 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 4425 return true; 4426 4427 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 4428 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 4429 MI.getOperand(3).getImm() > 0 && 4430 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 4431 return true; 4432 4433 return false; 4434 } 4435 4436 // This function returns true if the machine instruction 4437 // always outputs zeros in higher 32 bits. 4438 static bool isZeroExtendingOp(const MachineInstr &MI) { 4439 int Opcode = MI.getOpcode(); 4440 // The 16-bit immediate is sign-extended in li/lis. 4441 // If the most significant bit is zero, all higher bits are zero. 4442 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 4443 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 4444 int64_t Imm = MI.getOperand(1).getImm(); 4445 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 4446 return true; 4447 } 4448 4449 // We have some variations of rotate-and-mask instructions 4450 // that clear higher 32-bits. 4451 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 4452 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 4453 Opcode == PPC::RLDICL_32_64) && 4454 MI.getOperand(3).getImm() >= 32) 4455 return true; 4456 4457 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 4458 MI.getOperand(3).getImm() >= 32 && 4459 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 4460 return true; 4461 4462 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 4463 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 4464 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 4465 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 4466 return true; 4467 4468 // There are other instructions that clear higher 32-bits. 4469 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 4470 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 4471 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 4472 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 4473 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 4474 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 4475 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 4476 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 4477 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 4478 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 4479 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 4480 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 4481 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 4482 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 4483 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 4484 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 4485 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 4486 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 4487 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4488 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 4489 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 4490 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 4491 Opcode == PPC::MFVSRWZ) 4492 return true; 4493 4494 return false; 4495 } 4496 4497 // This function returns true if the input MachineInstr is a TOC save 4498 // instruction. 4499 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 4500 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 4501 return false; 4502 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4503 unsigned StackOffset = MI.getOperand(1).getImm(); 4504 Register StackReg = MI.getOperand(2).getReg(); 4505 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 4506 return true; 4507 4508 return false; 4509 } 4510 4511 // We limit the max depth to track incoming values of PHIs or binary ops 4512 // (e.g. AND) to avoid excessive cost. 4513 const unsigned MAX_DEPTH = 1; 4514 4515 bool 4516 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 4517 const unsigned Depth) const { 4518 const MachineFunction *MF = MI.getParent()->getParent(); 4519 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 4520 4521 // If we know this instruction returns sign- or zero-extended result, 4522 // return true. 4523 if (SignExt ? isSignExtendingOp(MI): 4524 isZeroExtendingOp(MI)) 4525 return true; 4526 4527 switch (MI.getOpcode()) { 4528 case PPC::COPY: { 4529 Register SrcReg = MI.getOperand(1).getReg(); 4530 4531 // In both ELFv1 and v2 ABI, method parameters and the return value 4532 // are sign- or zero-extended. 4533 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 4534 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 4535 // We check the ZExt/SExt flags for a method parameter. 4536 if (MI.getParent()->getBasicBlock() == 4537 &MF->getFunction().getEntryBlock()) { 4538 Register VReg = MI.getOperand(0).getReg(); 4539 if (MF->getRegInfo().isLiveIn(VReg)) 4540 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 4541 FuncInfo->isLiveInZExt(VReg); 4542 } 4543 4544 // For a method return value, we check the ZExt/SExt flags in attribute. 4545 // We assume the following code sequence for method call. 4546 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 4547 // BL8_NOP @func,... 4548 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 4549 // %5 = COPY %x3; G8RC:%5 4550 if (SrcReg == PPC::X3) { 4551 const MachineBasicBlock *MBB = MI.getParent(); 4552 MachineBasicBlock::const_instr_iterator II = 4553 MachineBasicBlock::const_instr_iterator(&MI); 4554 if (II != MBB->instr_begin() && 4555 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 4556 const MachineInstr &CallMI = *(--II); 4557 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 4558 const Function *CalleeFn = 4559 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 4560 if (!CalleeFn) 4561 return false; 4562 const IntegerType *IntTy = 4563 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 4564 const AttributeSet &Attrs = 4565 CalleeFn->getAttributes().getRetAttributes(); 4566 if (IntTy && IntTy->getBitWidth() <= 32) 4567 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 4568 Attribute::ZExt); 4569 } 4570 } 4571 } 4572 } 4573 4574 // If this is a copy from another register, we recursively check source. 4575 if (!Register::isVirtualRegister(SrcReg)) 4576 return false; 4577 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4578 if (SrcMI != NULL) 4579 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4580 4581 return false; 4582 } 4583 4584 case PPC::ANDI_rec: 4585 case PPC::ANDIS_rec: 4586 case PPC::ORI: 4587 case PPC::ORIS: 4588 case PPC::XORI: 4589 case PPC::XORIS: 4590 case PPC::ANDI8_rec: 4591 case PPC::ANDIS8_rec: 4592 case PPC::ORI8: 4593 case PPC::ORIS8: 4594 case PPC::XORI8: 4595 case PPC::XORIS8: { 4596 // logical operation with 16-bit immediate does not change the upper bits. 4597 // So, we track the operand register as we do for register copy. 4598 Register SrcReg = MI.getOperand(1).getReg(); 4599 if (!Register::isVirtualRegister(SrcReg)) 4600 return false; 4601 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4602 if (SrcMI != NULL) 4603 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4604 4605 return false; 4606 } 4607 4608 // If all incoming values are sign-/zero-extended, 4609 // the output of OR, ISEL or PHI is also sign-/zero-extended. 4610 case PPC::OR: 4611 case PPC::OR8: 4612 case PPC::ISEL: 4613 case PPC::PHI: { 4614 if (Depth >= MAX_DEPTH) 4615 return false; 4616 4617 // The input registers for PHI are operand 1, 3, ... 4618 // The input registers for others are operand 1 and 2. 4619 unsigned E = 3, D = 1; 4620 if (MI.getOpcode() == PPC::PHI) { 4621 E = MI.getNumOperands(); 4622 D = 2; 4623 } 4624 4625 for (unsigned I = 1; I != E; I += D) { 4626 if (MI.getOperand(I).isReg()) { 4627 Register SrcReg = MI.getOperand(I).getReg(); 4628 if (!Register::isVirtualRegister(SrcReg)) 4629 return false; 4630 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4631 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 4632 return false; 4633 } 4634 else 4635 return false; 4636 } 4637 return true; 4638 } 4639 4640 // If at least one of the incoming values of an AND is zero extended 4641 // then the output is also zero-extended. If both of the incoming values 4642 // are sign-extended then the output is also sign extended. 4643 case PPC::AND: 4644 case PPC::AND8: { 4645 if (Depth >= MAX_DEPTH) 4646 return false; 4647 4648 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4649 4650 Register SrcReg1 = MI.getOperand(1).getReg(); 4651 Register SrcReg2 = MI.getOperand(2).getReg(); 4652 4653 if (!Register::isVirtualRegister(SrcReg1) || 4654 !Register::isVirtualRegister(SrcReg2)) 4655 return false; 4656 4657 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4658 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4659 if (!MISrc1 || !MISrc2) 4660 return false; 4661 4662 if(SignExt) 4663 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4664 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4665 else 4666 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4667 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4668 } 4669 4670 default: 4671 break; 4672 } 4673 return false; 4674 } 4675 4676 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4677 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4678 } 4679 4680 namespace { 4681 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4682 MachineInstr *Loop, *EndLoop, *LoopCount; 4683 MachineFunction *MF; 4684 const TargetInstrInfo *TII; 4685 int64_t TripCount; 4686 4687 public: 4688 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4689 MachineInstr *LoopCount) 4690 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4691 MF(Loop->getParent()->getParent()), 4692 TII(MF->getSubtarget().getInstrInfo()) { 4693 // Inspect the Loop instruction up-front, as it may be deleted when we call 4694 // createTripCountGreaterCondition. 4695 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4696 TripCount = LoopCount->getOperand(1).getImm(); 4697 else 4698 TripCount = -1; 4699 } 4700 4701 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4702 // Only ignore the terminator. 4703 return MI == EndLoop; 4704 } 4705 4706 Optional<bool> 4707 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4708 SmallVectorImpl<MachineOperand> &Cond) override { 4709 if (TripCount == -1) { 4710 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4711 // so we don't need to generate any thing here. 4712 Cond.push_back(MachineOperand::CreateImm(0)); 4713 Cond.push_back(MachineOperand::CreateReg( 4714 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4715 true)); 4716 return {}; 4717 } 4718 4719 return TripCount > TC; 4720 } 4721 4722 void setPreheader(MachineBasicBlock *NewPreheader) override { 4723 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4724 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4725 } 4726 4727 void adjustTripCount(int TripCountAdjust) override { 4728 // If the loop trip count is a compile-time value, then just change the 4729 // value. 4730 if (LoopCount->getOpcode() == PPC::LI8 || 4731 LoopCount->getOpcode() == PPC::LI) { 4732 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4733 LoopCount->getOperand(1).setImm(TripCount); 4734 return; 4735 } 4736 4737 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4738 // so we don't need to generate any thing here. 4739 } 4740 4741 void disposed() override { 4742 Loop->eraseFromParent(); 4743 // Ensure the loop setup instruction is deleted too. 4744 LoopCount->eraseFromParent(); 4745 } 4746 }; 4747 } // namespace 4748 4749 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4750 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4751 // We really "analyze" only hardware loops right now. 4752 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4753 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4754 if (Preheader == LoopBB) 4755 Preheader = *std::next(LoopBB->pred_begin()); 4756 MachineFunction *MF = Preheader->getParent(); 4757 4758 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4759 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4760 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4761 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4762 MachineRegisterInfo &MRI = MF->getRegInfo(); 4763 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4764 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4765 } 4766 } 4767 return nullptr; 4768 } 4769 4770 MachineInstr *PPCInstrInfo::findLoopInstr( 4771 MachineBasicBlock &PreHeader, 4772 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4773 4774 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4775 4776 // The loop set-up instruction should be in preheader 4777 for (auto &I : PreHeader.instrs()) 4778 if (I.getOpcode() == LOOPi) 4779 return &I; 4780 return nullptr; 4781 } 4782 4783 // Return true if get the base operand, byte offset of an instruction and the 4784 // memory width. Width is the size of memory that is being loaded/stored. 4785 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4786 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 4787 unsigned &Width, const TargetRegisterInfo *TRI) const { 4788 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) 4789 return false; 4790 4791 // Handle only loads/stores with base register followed by immediate offset. 4792 if (!LdSt.getOperand(1).isImm() || 4793 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 4794 return false; 4795 if (!LdSt.getOperand(1).isImm() || 4796 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) 4797 return false; 4798 4799 if (!LdSt.hasOneMemOperand()) 4800 return false; 4801 4802 Width = (*LdSt.memoperands_begin())->getSize(); 4803 Offset = LdSt.getOperand(1).getImm(); 4804 BaseReg = &LdSt.getOperand(2); 4805 return true; 4806 } 4807 4808 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4809 const MachineInstr &MIa, const MachineInstr &MIb) const { 4810 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4811 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4812 4813 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4814 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4815 return false; 4816 4817 // Retrieve the base register, offset from the base register and width. Width 4818 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4819 // base registers are identical, and the offset of a lower memory access + 4820 // the width doesn't overlap the offset of a higher memory access, 4821 // then the memory accesses are different. 4822 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4823 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4824 int64_t OffsetA = 0, OffsetB = 0; 4825 unsigned int WidthA = 0, WidthB = 0; 4826 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4827 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4828 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4829 int LowOffset = std::min(OffsetA, OffsetB); 4830 int HighOffset = std::max(OffsetA, OffsetB); 4831 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4832 if (LowOffset + LowWidth <= HighOffset) 4833 return true; 4834 } 4835 } 4836 return false; 4837 } 4838