1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/CodeGen/StackMaps.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCInst.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "ppc-instr-info" 44 45 #define GET_INSTRMAP_INFO 46 #define GET_INSTRINFO_CTOR_DTOR 47 #include "PPCGenInstrInfo.inc" 48 49 STATISTIC(NumStoreSPILLVSRRCAsVec, 50 "Number of spillvsrrc spilled to stack as vec"); 51 STATISTIC(NumStoreSPILLVSRRCAsGpr, 52 "Number of spillvsrrc spilled to stack as gpr"); 53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 54 STATISTIC(CmpIselsConverted, 55 "Number of ISELs that depend on comparison of constants converted"); 56 STATISTIC(MissedConvertibleImmediateInstrs, 57 "Number of compare-immediate instructions fed by constants"); 58 STATISTIC(NumRcRotatesConvertedToRcAnd, 59 "Number of record-form rotates converted to record-form andi"); 60 61 static cl:: 62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 63 cl::desc("Disable analysis for CTR loops")); 64 65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 66 cl::desc("Disable compare instruction optimization"), cl::Hidden); 67 68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 70 cl::Hidden); 71 72 static cl::opt<bool> 73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 74 cl::desc("Use the old (incorrect) instruction latency calculation")); 75 76 // Index into the OpcodesForSpill array. 77 enum SpillOpcodeKey { 78 SOK_Int4Spill, 79 SOK_Int8Spill, 80 SOK_Float8Spill, 81 SOK_Float4Spill, 82 SOK_CRSpill, 83 SOK_CRBitSpill, 84 SOK_VRVectorSpill, 85 SOK_VSXVectorSpill, 86 SOK_VectorFloat8Spill, 87 SOK_VectorFloat4Spill, 88 SOK_VRSaveSpill, 89 SOK_QuadFloat8Spill, 90 SOK_QuadFloat4Spill, 91 SOK_QuadBitSpill, 92 SOK_SpillToVSR, 93 SOK_LastOpcodeSpill // This must be last on the enum. 94 }; 95 96 // Pin the vtable to this file. 97 void PPCInstrInfo::anchor() {} 98 99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 100 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 101 /* CatchRetOpcode */ -1, 102 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 103 Subtarget(STI), RI(STI.getTargetMachine()) {} 104 105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 106 /// this target when scheduling the DAG. 107 ScheduleHazardRecognizer * 108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 109 const ScheduleDAG *DAG) const { 110 unsigned Directive = 111 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective(); 112 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 113 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 114 const InstrItineraryData *II = 115 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 116 return new ScoreboardHazardRecognizer(II, DAG); 117 } 118 119 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 120 } 121 122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 123 /// to use for this target when scheduling the DAG. 124 ScheduleHazardRecognizer * 125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 126 const ScheduleDAG *DAG) const { 127 unsigned Directive = 128 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective(); 129 130 // FIXME: Leaving this as-is until we have POWER9 scheduling info 131 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 132 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 133 134 // Most subtargets use a PPC970 recognizer. 135 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 136 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 137 assert(DAG->TII && "No InstrInfo?"); 138 139 return new PPCHazardRecognizer970(*DAG); 140 } 141 142 return new ScoreboardHazardRecognizer(II, DAG); 143 } 144 145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 146 const MachineInstr &MI, 147 unsigned *PredCost) const { 148 if (!ItinData || UseOldLatencyCalc) 149 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 150 151 // The default implementation of getInstrLatency calls getStageLatency, but 152 // getStageLatency does not do the right thing for us. While we have 153 // itinerary, most cores are fully pipelined, and so the itineraries only 154 // express the first part of the pipeline, not every stage. Instead, we need 155 // to use the listed output operand cycle number (using operand 0 here, which 156 // is an output). 157 158 unsigned Latency = 1; 159 unsigned DefClass = MI.getDesc().getSchedClass(); 160 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 161 const MachineOperand &MO = MI.getOperand(i); 162 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 163 continue; 164 165 int Cycle = ItinData->getOperandCycle(DefClass, i); 166 if (Cycle < 0) 167 continue; 168 169 Latency = std::max(Latency, (unsigned) Cycle); 170 } 171 172 return Latency; 173 } 174 175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 176 const MachineInstr &DefMI, unsigned DefIdx, 177 const MachineInstr &UseMI, 178 unsigned UseIdx) const { 179 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 180 UseMI, UseIdx); 181 182 if (!DefMI.getParent()) 183 return Latency; 184 185 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 186 unsigned Reg = DefMO.getReg(); 187 188 bool IsRegCR; 189 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 190 const MachineRegisterInfo *MRI = 191 &DefMI.getParent()->getParent()->getRegInfo(); 192 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 193 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 194 } else { 195 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 196 PPC::CRBITRCRegClass.contains(Reg); 197 } 198 199 if (UseMI.isBranch() && IsRegCR) { 200 if (Latency < 0) 201 Latency = getInstrLatency(ItinData, DefMI); 202 203 // On some cores, there is an additional delay between writing to a condition 204 // register, and using it from a branch. 205 unsigned Directive = Subtarget.getDarwinDirective(); 206 switch (Directive) { 207 default: break; 208 case PPC::DIR_7400: 209 case PPC::DIR_750: 210 case PPC::DIR_970: 211 case PPC::DIR_E5500: 212 case PPC::DIR_PWR4: 213 case PPC::DIR_PWR5: 214 case PPC::DIR_PWR5X: 215 case PPC::DIR_PWR6: 216 case PPC::DIR_PWR6X: 217 case PPC::DIR_PWR7: 218 case PPC::DIR_PWR8: 219 // FIXME: Is this needed for POWER9? 220 Latency += 2; 221 break; 222 } 223 } 224 225 return Latency; 226 } 227 228 // This function does not list all associative and commutative operations, but 229 // only those worth feeding through the machine combiner in an attempt to 230 // reduce the critical path. Mostly, this means floating-point operations, 231 // because they have high latencies (compared to other operations, such and 232 // and/or, which are also associative and commutative, but have low latencies). 233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 234 switch (Inst.getOpcode()) { 235 // FP Add: 236 case PPC::FADD: 237 case PPC::FADDS: 238 // FP Multiply: 239 case PPC::FMUL: 240 case PPC::FMULS: 241 // Altivec Add: 242 case PPC::VADDFP: 243 // VSX Add: 244 case PPC::XSADDDP: 245 case PPC::XVADDDP: 246 case PPC::XVADDSP: 247 case PPC::XSADDSP: 248 // VSX Multiply: 249 case PPC::XSMULDP: 250 case PPC::XVMULDP: 251 case PPC::XVMULSP: 252 case PPC::XSMULSP: 253 // QPX Add: 254 case PPC::QVFADD: 255 case PPC::QVFADDS: 256 case PPC::QVFADDSs: 257 // QPX Multiply: 258 case PPC::QVFMUL: 259 case PPC::QVFMULS: 260 case PPC::QVFMULSs: 261 return true; 262 default: 263 return false; 264 } 265 } 266 267 bool PPCInstrInfo::getMachineCombinerPatterns( 268 MachineInstr &Root, 269 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 270 // Using the machine combiner in this way is potentially expensive, so 271 // restrict to when aggressive optimizations are desired. 272 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 273 return false; 274 275 // FP reassociation is only legal when we don't need strict IEEE semantics. 276 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) 277 return false; 278 279 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 280 } 281 282 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 283 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 284 unsigned &SrcReg, unsigned &DstReg, 285 unsigned &SubIdx) const { 286 switch (MI.getOpcode()) { 287 default: return false; 288 case PPC::EXTSW: 289 case PPC::EXTSW_32: 290 case PPC::EXTSW_32_64: 291 SrcReg = MI.getOperand(1).getReg(); 292 DstReg = MI.getOperand(0).getReg(); 293 SubIdx = PPC::sub_32; 294 return true; 295 } 296 } 297 298 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 299 int &FrameIndex) const { 300 unsigned Opcode = MI.getOpcode(); 301 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 302 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 303 304 if (End != std::find(OpcodesForSpill, End, Opcode)) { 305 // Check for the operands added by addFrameReference (the immediate is the 306 // offset which defaults to 0). 307 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 308 MI.getOperand(2).isFI()) { 309 FrameIndex = MI.getOperand(2).getIndex(); 310 return MI.getOperand(0).getReg(); 311 } 312 } 313 return 0; 314 } 315 316 // For opcodes with the ReMaterializable flag set, this function is called to 317 // verify the instruction is really rematable. 318 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 319 AliasAnalysis *AA) const { 320 switch (MI.getOpcode()) { 321 default: 322 // This function should only be called for opcodes with the ReMaterializable 323 // flag set. 324 llvm_unreachable("Unknown rematerializable operation!"); 325 break; 326 case PPC::LI: 327 case PPC::LI8: 328 case PPC::LIS: 329 case PPC::LIS8: 330 case PPC::QVGPCI: 331 case PPC::ADDIStocHA: 332 case PPC::ADDItocL: 333 case PPC::LOAD_STACK_GUARD: 334 return true; 335 } 336 return false; 337 } 338 339 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 340 int &FrameIndex) const { 341 unsigned Opcode = MI.getOpcode(); 342 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 343 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 344 345 if (End != std::find(OpcodesForSpill, End, Opcode)) { 346 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 347 MI.getOperand(2).isFI()) { 348 FrameIndex = MI.getOperand(2).getIndex(); 349 return MI.getOperand(0).getReg(); 350 } 351 } 352 return 0; 353 } 354 355 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 356 unsigned OpIdx1, 357 unsigned OpIdx2) const { 358 MachineFunction &MF = *MI.getParent()->getParent(); 359 360 // Normal instructions can be commuted the obvious way. 361 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) 362 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 363 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 364 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 365 // changing the relative order of the mask operands might change what happens 366 // to the high-bits of the mask (and, thus, the result). 367 368 // Cannot commute if it has a non-zero rotate count. 369 if (MI.getOperand(3).getImm() != 0) 370 return nullptr; 371 372 // If we have a zero rotate count, we have: 373 // M = mask(MB,ME) 374 // Op0 = (Op1 & ~M) | (Op2 & M) 375 // Change this to: 376 // M = mask((ME+1)&31, (MB-1)&31) 377 // Op0 = (Op2 & ~M) | (Op1 & M) 378 379 // Swap op1/op2 380 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 381 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); 382 unsigned Reg0 = MI.getOperand(0).getReg(); 383 unsigned Reg1 = MI.getOperand(1).getReg(); 384 unsigned Reg2 = MI.getOperand(2).getReg(); 385 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 386 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 387 bool Reg1IsKill = MI.getOperand(1).isKill(); 388 bool Reg2IsKill = MI.getOperand(2).isKill(); 389 bool ChangeReg0 = false; 390 // If machine instrs are no longer in two-address forms, update 391 // destination register as well. 392 if (Reg0 == Reg1) { 393 // Must be two address instruction! 394 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 395 "Expecting a two-address instruction!"); 396 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 397 Reg2IsKill = false; 398 ChangeReg0 = true; 399 } 400 401 // Masks. 402 unsigned MB = MI.getOperand(4).getImm(); 403 unsigned ME = MI.getOperand(5).getImm(); 404 405 // We can't commute a trivial mask (there is no way to represent an all-zero 406 // mask). 407 if (MB == 0 && ME == 31) 408 return nullptr; 409 410 if (NewMI) { 411 // Create a new instruction. 412 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 413 bool Reg0IsDead = MI.getOperand(0).isDead(); 414 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 415 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 416 .addReg(Reg2, getKillRegState(Reg2IsKill)) 417 .addReg(Reg1, getKillRegState(Reg1IsKill)) 418 .addImm((ME + 1) & 31) 419 .addImm((MB - 1) & 31); 420 } 421 422 if (ChangeReg0) { 423 MI.getOperand(0).setReg(Reg2); 424 MI.getOperand(0).setSubReg(SubReg2); 425 } 426 MI.getOperand(2).setReg(Reg1); 427 MI.getOperand(1).setReg(Reg2); 428 MI.getOperand(2).setSubReg(SubReg1); 429 MI.getOperand(1).setSubReg(SubReg2); 430 MI.getOperand(2).setIsKill(Reg1IsKill); 431 MI.getOperand(1).setIsKill(Reg2IsKill); 432 433 // Swap the mask around. 434 MI.getOperand(4).setImm((ME + 1) & 31); 435 MI.getOperand(5).setImm((MB - 1) & 31); 436 return &MI; 437 } 438 439 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 440 unsigned &SrcOpIdx2) const { 441 // For VSX A-Type FMA instructions, it is the first two operands that can be 442 // commuted, however, because the non-encoded tied input operand is listed 443 // first, the operands to swap are actually the second and third. 444 445 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 446 if (AltOpc == -1) 447 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 448 449 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 450 // and SrcOpIdx2. 451 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 452 } 453 454 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 455 MachineBasicBlock::iterator MI) const { 456 // This function is used for scheduling, and the nop wanted here is the type 457 // that terminates dispatch groups on the POWER cores. 458 unsigned Directive = Subtarget.getDarwinDirective(); 459 unsigned Opcode; 460 switch (Directive) { 461 default: Opcode = PPC::NOP; break; 462 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 463 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 464 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 465 // FIXME: Update when POWER9 scheduling model is ready. 466 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 467 } 468 469 DebugLoc DL; 470 BuildMI(MBB, MI, DL, get(Opcode)); 471 } 472 473 /// Return the noop instruction to use for a noop. 474 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 475 NopInst.setOpcode(PPC::NOP); 476 } 477 478 // Branch analysis. 479 // Note: If the condition register is set to CTR or CTR8 then this is a 480 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 481 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 482 MachineBasicBlock *&TBB, 483 MachineBasicBlock *&FBB, 484 SmallVectorImpl<MachineOperand> &Cond, 485 bool AllowModify) const { 486 bool isPPC64 = Subtarget.isPPC64(); 487 488 // If the block has no terminators, it just falls into the block after it. 489 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 490 if (I == MBB.end()) 491 return false; 492 493 if (!isUnpredicatedTerminator(*I)) 494 return false; 495 496 if (AllowModify) { 497 // If the BB ends with an unconditional branch to the fallthrough BB, 498 // we eliminate the branch instruction. 499 if (I->getOpcode() == PPC::B && 500 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 501 I->eraseFromParent(); 502 503 // We update iterator after deleting the last branch. 504 I = MBB.getLastNonDebugInstr(); 505 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 506 return false; 507 } 508 } 509 510 // Get the last instruction in the block. 511 MachineInstr &LastInst = *I; 512 513 // If there is only one terminator instruction, process it. 514 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 515 if (LastInst.getOpcode() == PPC::B) { 516 if (!LastInst.getOperand(0).isMBB()) 517 return true; 518 TBB = LastInst.getOperand(0).getMBB(); 519 return false; 520 } else if (LastInst.getOpcode() == PPC::BCC) { 521 if (!LastInst.getOperand(2).isMBB()) 522 return true; 523 // Block ends with fall-through condbranch. 524 TBB = LastInst.getOperand(2).getMBB(); 525 Cond.push_back(LastInst.getOperand(0)); 526 Cond.push_back(LastInst.getOperand(1)); 527 return false; 528 } else if (LastInst.getOpcode() == PPC::BC) { 529 if (!LastInst.getOperand(1).isMBB()) 530 return true; 531 // Block ends with fall-through condbranch. 532 TBB = LastInst.getOperand(1).getMBB(); 533 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 534 Cond.push_back(LastInst.getOperand(0)); 535 return false; 536 } else if (LastInst.getOpcode() == PPC::BCn) { 537 if (!LastInst.getOperand(1).isMBB()) 538 return true; 539 // Block ends with fall-through condbranch. 540 TBB = LastInst.getOperand(1).getMBB(); 541 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 542 Cond.push_back(LastInst.getOperand(0)); 543 return false; 544 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 545 LastInst.getOpcode() == PPC::BDNZ) { 546 if (!LastInst.getOperand(0).isMBB()) 547 return true; 548 if (DisableCTRLoopAnal) 549 return true; 550 TBB = LastInst.getOperand(0).getMBB(); 551 Cond.push_back(MachineOperand::CreateImm(1)); 552 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 553 true)); 554 return false; 555 } else if (LastInst.getOpcode() == PPC::BDZ8 || 556 LastInst.getOpcode() == PPC::BDZ) { 557 if (!LastInst.getOperand(0).isMBB()) 558 return true; 559 if (DisableCTRLoopAnal) 560 return true; 561 TBB = LastInst.getOperand(0).getMBB(); 562 Cond.push_back(MachineOperand::CreateImm(0)); 563 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 564 true)); 565 return false; 566 } 567 568 // Otherwise, don't know what this is. 569 return true; 570 } 571 572 // Get the instruction before it if it's a terminator. 573 MachineInstr &SecondLastInst = *I; 574 575 // If there are three terminators, we don't know what sort of block this is. 576 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 577 return true; 578 579 // If the block ends with PPC::B and PPC:BCC, handle it. 580 if (SecondLastInst.getOpcode() == PPC::BCC && 581 LastInst.getOpcode() == PPC::B) { 582 if (!SecondLastInst.getOperand(2).isMBB() || 583 !LastInst.getOperand(0).isMBB()) 584 return true; 585 TBB = SecondLastInst.getOperand(2).getMBB(); 586 Cond.push_back(SecondLastInst.getOperand(0)); 587 Cond.push_back(SecondLastInst.getOperand(1)); 588 FBB = LastInst.getOperand(0).getMBB(); 589 return false; 590 } else if (SecondLastInst.getOpcode() == PPC::BC && 591 LastInst.getOpcode() == PPC::B) { 592 if (!SecondLastInst.getOperand(1).isMBB() || 593 !LastInst.getOperand(0).isMBB()) 594 return true; 595 TBB = SecondLastInst.getOperand(1).getMBB(); 596 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 597 Cond.push_back(SecondLastInst.getOperand(0)); 598 FBB = LastInst.getOperand(0).getMBB(); 599 return false; 600 } else if (SecondLastInst.getOpcode() == PPC::BCn && 601 LastInst.getOpcode() == PPC::B) { 602 if (!SecondLastInst.getOperand(1).isMBB() || 603 !LastInst.getOperand(0).isMBB()) 604 return true; 605 TBB = SecondLastInst.getOperand(1).getMBB(); 606 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 607 Cond.push_back(SecondLastInst.getOperand(0)); 608 FBB = LastInst.getOperand(0).getMBB(); 609 return false; 610 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 611 SecondLastInst.getOpcode() == PPC::BDNZ) && 612 LastInst.getOpcode() == PPC::B) { 613 if (!SecondLastInst.getOperand(0).isMBB() || 614 !LastInst.getOperand(0).isMBB()) 615 return true; 616 if (DisableCTRLoopAnal) 617 return true; 618 TBB = SecondLastInst.getOperand(0).getMBB(); 619 Cond.push_back(MachineOperand::CreateImm(1)); 620 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 621 true)); 622 FBB = LastInst.getOperand(0).getMBB(); 623 return false; 624 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 625 SecondLastInst.getOpcode() == PPC::BDZ) && 626 LastInst.getOpcode() == PPC::B) { 627 if (!SecondLastInst.getOperand(0).isMBB() || 628 !LastInst.getOperand(0).isMBB()) 629 return true; 630 if (DisableCTRLoopAnal) 631 return true; 632 TBB = SecondLastInst.getOperand(0).getMBB(); 633 Cond.push_back(MachineOperand::CreateImm(0)); 634 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 635 true)); 636 FBB = LastInst.getOperand(0).getMBB(); 637 return false; 638 } 639 640 // If the block ends with two PPC:Bs, handle it. The second one is not 641 // executed, so remove it. 642 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 643 if (!SecondLastInst.getOperand(0).isMBB()) 644 return true; 645 TBB = SecondLastInst.getOperand(0).getMBB(); 646 I = LastInst; 647 if (AllowModify) 648 I->eraseFromParent(); 649 return false; 650 } 651 652 // Otherwise, can't handle this. 653 return true; 654 } 655 656 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 657 int *BytesRemoved) const { 658 assert(!BytesRemoved && "code size not handled"); 659 660 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 661 if (I == MBB.end()) 662 return 0; 663 664 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 665 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 666 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 667 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 668 return 0; 669 670 // Remove the branch. 671 I->eraseFromParent(); 672 673 I = MBB.end(); 674 675 if (I == MBB.begin()) return 1; 676 --I; 677 if (I->getOpcode() != PPC::BCC && 678 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 679 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 680 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 681 return 1; 682 683 // Remove the branch. 684 I->eraseFromParent(); 685 return 2; 686 } 687 688 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 689 MachineBasicBlock *TBB, 690 MachineBasicBlock *FBB, 691 ArrayRef<MachineOperand> Cond, 692 const DebugLoc &DL, 693 int *BytesAdded) const { 694 // Shouldn't be a fall through. 695 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 696 assert((Cond.size() == 2 || Cond.size() == 0) && 697 "PPC branch conditions have two components!"); 698 assert(!BytesAdded && "code size not handled"); 699 700 bool isPPC64 = Subtarget.isPPC64(); 701 702 // One-way branch. 703 if (!FBB) { 704 if (Cond.empty()) // Unconditional branch 705 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 706 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 707 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 708 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 709 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 710 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 711 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 712 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 713 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 714 else // Conditional branch 715 BuildMI(&MBB, DL, get(PPC::BCC)) 716 .addImm(Cond[0].getImm()) 717 .add(Cond[1]) 718 .addMBB(TBB); 719 return 1; 720 } 721 722 // Two-way Conditional Branch. 723 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 724 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 725 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 726 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 727 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 728 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 729 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 730 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 731 else 732 BuildMI(&MBB, DL, get(PPC::BCC)) 733 .addImm(Cond[0].getImm()) 734 .add(Cond[1]) 735 .addMBB(TBB); 736 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 737 return 2; 738 } 739 740 // Select analysis. 741 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 742 ArrayRef<MachineOperand> Cond, 743 unsigned TrueReg, unsigned FalseReg, 744 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 745 if (Cond.size() != 2) 746 return false; 747 748 // If this is really a bdnz-like condition, then it cannot be turned into a 749 // select. 750 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 751 return false; 752 753 // Check register classes. 754 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 755 const TargetRegisterClass *RC = 756 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 757 if (!RC) 758 return false; 759 760 // isel is for regular integer GPRs only. 761 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 762 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 763 !PPC::G8RCRegClass.hasSubClassEq(RC) && 764 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 765 return false; 766 767 // FIXME: These numbers are for the A2, how well they work for other cores is 768 // an open question. On the A2, the isel instruction has a 2-cycle latency 769 // but single-cycle throughput. These numbers are used in combination with 770 // the MispredictPenalty setting from the active SchedMachineModel. 771 CondCycles = 1; 772 TrueCycles = 1; 773 FalseCycles = 1; 774 775 return true; 776 } 777 778 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 779 MachineBasicBlock::iterator MI, 780 const DebugLoc &dl, unsigned DestReg, 781 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 782 unsigned FalseReg) const { 783 assert(Cond.size() == 2 && 784 "PPC branch conditions have two components!"); 785 786 // Get the register classes. 787 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 788 const TargetRegisterClass *RC = 789 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 790 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 791 792 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 793 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 794 assert((Is64Bit || 795 PPC::GPRCRegClass.hasSubClassEq(RC) || 796 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 797 "isel is for regular integer GPRs only"); 798 799 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 800 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 801 802 unsigned SubIdx = 0; 803 bool SwapOps = false; 804 switch (SelectPred) { 805 case PPC::PRED_EQ: 806 case PPC::PRED_EQ_MINUS: 807 case PPC::PRED_EQ_PLUS: 808 SubIdx = PPC::sub_eq; SwapOps = false; break; 809 case PPC::PRED_NE: 810 case PPC::PRED_NE_MINUS: 811 case PPC::PRED_NE_PLUS: 812 SubIdx = PPC::sub_eq; SwapOps = true; break; 813 case PPC::PRED_LT: 814 case PPC::PRED_LT_MINUS: 815 case PPC::PRED_LT_PLUS: 816 SubIdx = PPC::sub_lt; SwapOps = false; break; 817 case PPC::PRED_GE: 818 case PPC::PRED_GE_MINUS: 819 case PPC::PRED_GE_PLUS: 820 SubIdx = PPC::sub_lt; SwapOps = true; break; 821 case PPC::PRED_GT: 822 case PPC::PRED_GT_MINUS: 823 case PPC::PRED_GT_PLUS: 824 SubIdx = PPC::sub_gt; SwapOps = false; break; 825 case PPC::PRED_LE: 826 case PPC::PRED_LE_MINUS: 827 case PPC::PRED_LE_PLUS: 828 SubIdx = PPC::sub_gt; SwapOps = true; break; 829 case PPC::PRED_UN: 830 case PPC::PRED_UN_MINUS: 831 case PPC::PRED_UN_PLUS: 832 SubIdx = PPC::sub_un; SwapOps = false; break; 833 case PPC::PRED_NU: 834 case PPC::PRED_NU_MINUS: 835 case PPC::PRED_NU_PLUS: 836 SubIdx = PPC::sub_un; SwapOps = true; break; 837 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 838 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 839 } 840 841 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 842 SecondReg = SwapOps ? TrueReg : FalseReg; 843 844 // The first input register of isel cannot be r0. If it is a member 845 // of a register class that can be r0, then copy it first (the 846 // register allocator should eliminate the copy). 847 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 848 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 849 const TargetRegisterClass *FirstRC = 850 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 851 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 852 unsigned OldFirstReg = FirstReg; 853 FirstReg = MRI.createVirtualRegister(FirstRC); 854 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 855 .addReg(OldFirstReg); 856 } 857 858 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 859 .addReg(FirstReg).addReg(SecondReg) 860 .addReg(Cond[1].getReg(), 0, SubIdx); 861 } 862 863 static unsigned getCRBitValue(unsigned CRBit) { 864 unsigned Ret = 4; 865 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 866 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 867 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 868 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 869 Ret = 3; 870 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 871 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 872 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 873 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 874 Ret = 2; 875 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 876 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 877 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 878 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 879 Ret = 1; 880 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 881 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 882 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 883 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 884 Ret = 0; 885 886 assert(Ret != 4 && "Invalid CR bit register"); 887 return Ret; 888 } 889 890 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 891 MachineBasicBlock::iterator I, 892 const DebugLoc &DL, unsigned DestReg, 893 unsigned SrcReg, bool KillSrc) const { 894 // We can end up with self copies and similar things as a result of VSX copy 895 // legalization. Promote them here. 896 const TargetRegisterInfo *TRI = &getRegisterInfo(); 897 if (PPC::F8RCRegClass.contains(DestReg) && 898 PPC::VSRCRegClass.contains(SrcReg)) { 899 unsigned SuperReg = 900 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 901 902 if (VSXSelfCopyCrash && SrcReg == SuperReg) 903 llvm_unreachable("nop VSX copy"); 904 905 DestReg = SuperReg; 906 } else if (PPC::F8RCRegClass.contains(SrcReg) && 907 PPC::VSRCRegClass.contains(DestReg)) { 908 unsigned SuperReg = 909 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 910 911 if (VSXSelfCopyCrash && DestReg == SuperReg) 912 llvm_unreachable("nop VSX copy"); 913 914 SrcReg = SuperReg; 915 } 916 917 // Different class register copy 918 if (PPC::CRBITRCRegClass.contains(SrcReg) && 919 PPC::GPRCRegClass.contains(DestReg)) { 920 unsigned CRReg = getCRFromCRBit(SrcReg); 921 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 922 getKillRegState(KillSrc); 923 // Rotate the CR bit in the CR fields to be the least significant bit and 924 // then mask with 0x1 (MB = ME = 31). 925 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 926 .addReg(DestReg, RegState::Kill) 927 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 928 .addImm(31) 929 .addImm(31); 930 return; 931 } else if (PPC::CRRCRegClass.contains(SrcReg) && 932 PPC::G8RCRegClass.contains(DestReg)) { 933 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 934 getKillRegState(KillSrc); 935 return; 936 } else if (PPC::CRRCRegClass.contains(SrcReg) && 937 PPC::GPRCRegClass.contains(DestReg)) { 938 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 939 getKillRegState(KillSrc); 940 return; 941 } else if (PPC::G8RCRegClass.contains(SrcReg) && 942 PPC::VSFRCRegClass.contains(DestReg)) { 943 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 944 NumGPRtoVSRSpill++; 945 getKillRegState(KillSrc); 946 return; 947 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 948 PPC::G8RCRegClass.contains(DestReg)) { 949 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 950 getKillRegState(KillSrc); 951 return; 952 } 953 954 unsigned Opc; 955 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 956 Opc = PPC::OR; 957 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 958 Opc = PPC::OR8; 959 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 960 Opc = PPC::FMR; 961 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 962 Opc = PPC::MCRF; 963 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 964 Opc = PPC::VOR; 965 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 966 // There are two different ways this can be done: 967 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 968 // issue in VSU pipeline 0. 969 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 970 // can go to either pipeline. 971 // We'll always use xxlor here, because in practically all cases where 972 // copies are generated, they are close enough to some use that the 973 // lower-latency form is preferable. 974 Opc = PPC::XXLOR; 975 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 976 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 977 Opc = PPC::XXLORf; 978 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 979 Opc = PPC::QVFMR; 980 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 981 Opc = PPC::QVFMRs; 982 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 983 Opc = PPC::QVFMRb; 984 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 985 Opc = PPC::CROR; 986 else 987 llvm_unreachable("Impossible reg-to-reg copy"); 988 989 const MCInstrDesc &MCID = get(Opc); 990 if (MCID.getNumOperands() == 3) 991 BuildMI(MBB, I, DL, MCID, DestReg) 992 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 993 else 994 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 995 } 996 997 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 998 const TargetRegisterClass *RC) 999 const { 1000 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1001 int OpcodeIndex = 0; 1002 1003 if (RC != nullptr) { 1004 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1005 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1006 OpcodeIndex = SOK_Int4Spill; 1007 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1008 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1009 OpcodeIndex = SOK_Int8Spill; 1010 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1011 OpcodeIndex = SOK_Float8Spill; 1012 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1013 OpcodeIndex = SOK_Float4Spill; 1014 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1015 OpcodeIndex = SOK_CRSpill; 1016 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1017 OpcodeIndex = SOK_CRBitSpill; 1018 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1019 OpcodeIndex = SOK_VRVectorSpill; 1020 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1021 OpcodeIndex = SOK_VSXVectorSpill; 1022 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1023 OpcodeIndex = SOK_VectorFloat8Spill; 1024 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1025 OpcodeIndex = SOK_VectorFloat4Spill; 1026 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1027 OpcodeIndex = SOK_VRSaveSpill; 1028 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1029 OpcodeIndex = SOK_QuadFloat8Spill; 1030 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1031 OpcodeIndex = SOK_QuadFloat4Spill; 1032 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1033 OpcodeIndex = SOK_QuadBitSpill; 1034 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1035 OpcodeIndex = SOK_SpillToVSR; 1036 } else { 1037 llvm_unreachable("Unknown regclass!"); 1038 } 1039 } else { 1040 if (PPC::GPRCRegClass.contains(Reg) || 1041 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1042 OpcodeIndex = SOK_Int4Spill; 1043 } else if (PPC::G8RCRegClass.contains(Reg) || 1044 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1045 OpcodeIndex = SOK_Int8Spill; 1046 } else if (PPC::F8RCRegClass.contains(Reg)) { 1047 OpcodeIndex = SOK_Float8Spill; 1048 } else if (PPC::F4RCRegClass.contains(Reg)) { 1049 OpcodeIndex = SOK_Float4Spill; 1050 } else if (PPC::CRRCRegClass.contains(Reg)) { 1051 OpcodeIndex = SOK_CRSpill; 1052 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1053 OpcodeIndex = SOK_CRBitSpill; 1054 } else if (PPC::VRRCRegClass.contains(Reg)) { 1055 OpcodeIndex = SOK_VRVectorSpill; 1056 } else if (PPC::VSRCRegClass.contains(Reg)) { 1057 OpcodeIndex = SOK_VSXVectorSpill; 1058 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1059 OpcodeIndex = SOK_VectorFloat8Spill; 1060 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1061 OpcodeIndex = SOK_VectorFloat4Spill; 1062 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1063 OpcodeIndex = SOK_VRSaveSpill; 1064 } else if (PPC::QFRCRegClass.contains(Reg)) { 1065 OpcodeIndex = SOK_QuadFloat8Spill; 1066 } else if (PPC::QSRCRegClass.contains(Reg)) { 1067 OpcodeIndex = SOK_QuadFloat4Spill; 1068 } else if (PPC::QBRCRegClass.contains(Reg)) { 1069 OpcodeIndex = SOK_QuadBitSpill; 1070 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1071 OpcodeIndex = SOK_SpillToVSR; 1072 } else { 1073 llvm_unreachable("Unknown regclass!"); 1074 } 1075 } 1076 return OpcodesForSpill[OpcodeIndex]; 1077 } 1078 1079 unsigned 1080 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1081 const TargetRegisterClass *RC) const { 1082 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1083 int OpcodeIndex = 0; 1084 1085 if (RC != nullptr) { 1086 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1087 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1088 OpcodeIndex = SOK_Int4Spill; 1089 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1090 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1091 OpcodeIndex = SOK_Int8Spill; 1092 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1093 OpcodeIndex = SOK_Float8Spill; 1094 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1095 OpcodeIndex = SOK_Float4Spill; 1096 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1097 OpcodeIndex = SOK_CRSpill; 1098 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1099 OpcodeIndex = SOK_CRBitSpill; 1100 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1101 OpcodeIndex = SOK_VRVectorSpill; 1102 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1103 OpcodeIndex = SOK_VSXVectorSpill; 1104 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1105 OpcodeIndex = SOK_VectorFloat8Spill; 1106 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1107 OpcodeIndex = SOK_VectorFloat4Spill; 1108 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1109 OpcodeIndex = SOK_VRSaveSpill; 1110 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1111 OpcodeIndex = SOK_QuadFloat8Spill; 1112 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1113 OpcodeIndex = SOK_QuadFloat4Spill; 1114 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1115 OpcodeIndex = SOK_QuadBitSpill; 1116 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1117 OpcodeIndex = SOK_SpillToVSR; 1118 } else { 1119 llvm_unreachable("Unknown regclass!"); 1120 } 1121 } else { 1122 if (PPC::GPRCRegClass.contains(Reg) || 1123 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1124 OpcodeIndex = SOK_Int4Spill; 1125 } else if (PPC::G8RCRegClass.contains(Reg) || 1126 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1127 OpcodeIndex = SOK_Int8Spill; 1128 } else if (PPC::F8RCRegClass.contains(Reg)) { 1129 OpcodeIndex = SOK_Float8Spill; 1130 } else if (PPC::F4RCRegClass.contains(Reg)) { 1131 OpcodeIndex = SOK_Float4Spill; 1132 } else if (PPC::CRRCRegClass.contains(Reg)) { 1133 OpcodeIndex = SOK_CRSpill; 1134 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1135 OpcodeIndex = SOK_CRBitSpill; 1136 } else if (PPC::VRRCRegClass.contains(Reg)) { 1137 OpcodeIndex = SOK_VRVectorSpill; 1138 } else if (PPC::VSRCRegClass.contains(Reg)) { 1139 OpcodeIndex = SOK_VSXVectorSpill; 1140 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1141 OpcodeIndex = SOK_VectorFloat8Spill; 1142 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1143 OpcodeIndex = SOK_VectorFloat4Spill; 1144 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1145 OpcodeIndex = SOK_VRSaveSpill; 1146 } else if (PPC::QFRCRegClass.contains(Reg)) { 1147 OpcodeIndex = SOK_QuadFloat8Spill; 1148 } else if (PPC::QSRCRegClass.contains(Reg)) { 1149 OpcodeIndex = SOK_QuadFloat4Spill; 1150 } else if (PPC::QBRCRegClass.contains(Reg)) { 1151 OpcodeIndex = SOK_QuadBitSpill; 1152 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1153 OpcodeIndex = SOK_SpillToVSR; 1154 } else { 1155 llvm_unreachable("Unknown regclass!"); 1156 } 1157 } 1158 return OpcodesForSpill[OpcodeIndex]; 1159 } 1160 1161 void PPCInstrInfo::StoreRegToStackSlot( 1162 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1163 const TargetRegisterClass *RC, 1164 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1165 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1166 DebugLoc DL; 1167 1168 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1169 FuncInfo->setHasSpills(); 1170 1171 NewMIs.push_back(addFrameReference( 1172 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1173 FrameIdx)); 1174 1175 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1176 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1177 FuncInfo->setSpillsCR(); 1178 1179 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1180 FuncInfo->setSpillsVRSAVE(); 1181 1182 if (isXFormMemOp(Opcode)) 1183 FuncInfo->setHasNonRISpills(); 1184 } 1185 1186 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1187 MachineBasicBlock::iterator MI, 1188 unsigned SrcReg, bool isKill, 1189 int FrameIdx, 1190 const TargetRegisterClass *RC, 1191 const TargetRegisterInfo *TRI) const { 1192 MachineFunction &MF = *MBB.getParent(); 1193 SmallVector<MachineInstr *, 4> NewMIs; 1194 1195 // We need to avoid a situation in which the value from a VRRC register is 1196 // spilled using an Altivec instruction and reloaded into a VSRC register 1197 // using a VSX instruction. The issue with this is that the VSX 1198 // load/store instructions swap the doublewords in the vector and the Altivec 1199 // ones don't. The register classes on the spill/reload may be different if 1200 // the register is defined using an Altivec instruction and is then used by a 1201 // VSX instruction. 1202 RC = updatedRC(RC); 1203 1204 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1205 1206 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1207 MBB.insert(MI, NewMIs[i]); 1208 1209 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1210 MachineMemOperand *MMO = MF.getMachineMemOperand( 1211 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1212 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1213 MFI.getObjectAlignment(FrameIdx)); 1214 NewMIs.back()->addMemOperand(MF, MMO); 1215 } 1216 1217 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1218 unsigned DestReg, int FrameIdx, 1219 const TargetRegisterClass *RC, 1220 SmallVectorImpl<MachineInstr *> &NewMIs) 1221 const { 1222 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1223 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1224 FrameIdx)); 1225 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1226 1227 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1228 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1229 FuncInfo->setSpillsCR(); 1230 1231 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1232 FuncInfo->setSpillsVRSAVE(); 1233 1234 if (isXFormMemOp(Opcode)) 1235 FuncInfo->setHasNonRISpills(); 1236 } 1237 1238 void 1239 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1240 MachineBasicBlock::iterator MI, 1241 unsigned DestReg, int FrameIdx, 1242 const TargetRegisterClass *RC, 1243 const TargetRegisterInfo *TRI) const { 1244 MachineFunction &MF = *MBB.getParent(); 1245 SmallVector<MachineInstr*, 4> NewMIs; 1246 DebugLoc DL; 1247 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1248 1249 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1250 FuncInfo->setHasSpills(); 1251 1252 // We need to avoid a situation in which the value from a VRRC register is 1253 // spilled using an Altivec instruction and reloaded into a VSRC register 1254 // using a VSX instruction. The issue with this is that the VSX 1255 // load/store instructions swap the doublewords in the vector and the Altivec 1256 // ones don't. The register classes on the spill/reload may be different if 1257 // the register is defined using an Altivec instruction and is then used by a 1258 // VSX instruction. 1259 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 1260 RC = &PPC::VSRCRegClass; 1261 1262 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1263 1264 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1265 MBB.insert(MI, NewMIs[i]); 1266 1267 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1268 MachineMemOperand *MMO = MF.getMachineMemOperand( 1269 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1270 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1271 MFI.getObjectAlignment(FrameIdx)); 1272 NewMIs.back()->addMemOperand(MF, MMO); 1273 } 1274 1275 bool PPCInstrInfo:: 1276 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1277 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1278 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1279 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1280 else 1281 // Leave the CR# the same, but invert the condition. 1282 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1283 return false; 1284 } 1285 1286 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1287 unsigned Reg, MachineRegisterInfo *MRI) const { 1288 // For some instructions, it is legal to fold ZERO into the RA register field. 1289 // A zero immediate should always be loaded with a single li. 1290 unsigned DefOpc = DefMI.getOpcode(); 1291 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1292 return false; 1293 if (!DefMI.getOperand(1).isImm()) 1294 return false; 1295 if (DefMI.getOperand(1).getImm() != 0) 1296 return false; 1297 1298 // Note that we cannot here invert the arguments of an isel in order to fold 1299 // a ZERO into what is presented as the second argument. All we have here 1300 // is the condition bit, and that might come from a CR-logical bit operation. 1301 1302 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1303 1304 // Only fold into real machine instructions. 1305 if (UseMCID.isPseudo()) 1306 return false; 1307 1308 unsigned UseIdx; 1309 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1310 if (UseMI.getOperand(UseIdx).isReg() && 1311 UseMI.getOperand(UseIdx).getReg() == Reg) 1312 break; 1313 1314 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1315 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1316 1317 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1318 1319 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1320 // register (which might also be specified as a pointer class kind). 1321 if (UseInfo->isLookupPtrRegClass()) { 1322 if (UseInfo->RegClass /* Kind */ != 1) 1323 return false; 1324 } else { 1325 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1326 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1327 return false; 1328 } 1329 1330 // Make sure this is not tied to an output register (or otherwise 1331 // constrained). This is true for ST?UX registers, for example, which 1332 // are tied to their output registers. 1333 if (UseInfo->Constraints != 0) 1334 return false; 1335 1336 unsigned ZeroReg; 1337 if (UseInfo->isLookupPtrRegClass()) { 1338 bool isPPC64 = Subtarget.isPPC64(); 1339 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1340 } else { 1341 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1342 PPC::ZERO8 : PPC::ZERO; 1343 } 1344 1345 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1346 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1347 1348 if (DeleteDef) 1349 DefMI.eraseFromParent(); 1350 1351 return true; 1352 } 1353 1354 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1355 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1356 I != IE; ++I) 1357 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1358 return true; 1359 return false; 1360 } 1361 1362 // We should make sure that, if we're going to predicate both sides of a 1363 // condition (a diamond), that both sides don't define the counter register. We 1364 // can predicate counter-decrement-based branches, but while that predicates 1365 // the branching, it does not predicate the counter decrement. If we tried to 1366 // merge the triangle into one predicated block, we'd decrement the counter 1367 // twice. 1368 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1369 unsigned NumT, unsigned ExtraT, 1370 MachineBasicBlock &FMBB, 1371 unsigned NumF, unsigned ExtraF, 1372 BranchProbability Probability) const { 1373 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1374 } 1375 1376 1377 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1378 // The predicated branches are identified by their type, not really by the 1379 // explicit presence of a predicate. Furthermore, some of them can be 1380 // predicated more than once. Because if conversion won't try to predicate 1381 // any instruction which already claims to be predicated (by returning true 1382 // here), always return false. In doing so, we let isPredicable() be the 1383 // final word on whether not the instruction can be (further) predicated. 1384 1385 return false; 1386 } 1387 1388 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 1389 if (!MI.isTerminator()) 1390 return false; 1391 1392 // Conditional branch is a special case. 1393 if (MI.isBranch() && !MI.isBarrier()) 1394 return true; 1395 1396 return !isPredicated(MI); 1397 } 1398 1399 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1400 ArrayRef<MachineOperand> Pred) const { 1401 unsigned OpC = MI.getOpcode(); 1402 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1403 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1404 bool isPPC64 = Subtarget.isPPC64(); 1405 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1406 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1407 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1408 MI.setDesc(get(PPC::BCLR)); 1409 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1410 .addReg(Pred[1].getReg()); 1411 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1412 MI.setDesc(get(PPC::BCLRn)); 1413 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1414 .addReg(Pred[1].getReg()); 1415 } else { 1416 MI.setDesc(get(PPC::BCCLR)); 1417 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1418 .addImm(Pred[0].getImm()) 1419 .addReg(Pred[1].getReg()); 1420 } 1421 1422 return true; 1423 } else if (OpC == PPC::B) { 1424 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1425 bool isPPC64 = Subtarget.isPPC64(); 1426 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1427 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1428 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1429 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1430 MI.RemoveOperand(0); 1431 1432 MI.setDesc(get(PPC::BC)); 1433 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1434 .addReg(Pred[1].getReg()) 1435 .addMBB(MBB); 1436 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1437 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1438 MI.RemoveOperand(0); 1439 1440 MI.setDesc(get(PPC::BCn)); 1441 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1442 .addReg(Pred[1].getReg()) 1443 .addMBB(MBB); 1444 } else { 1445 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1446 MI.RemoveOperand(0); 1447 1448 MI.setDesc(get(PPC::BCC)); 1449 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1450 .addImm(Pred[0].getImm()) 1451 .addReg(Pred[1].getReg()) 1452 .addMBB(MBB); 1453 } 1454 1455 return true; 1456 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1457 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1458 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1459 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1460 1461 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1462 bool isPPC64 = Subtarget.isPPC64(); 1463 1464 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1465 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1466 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1467 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1468 .addReg(Pred[1].getReg()); 1469 return true; 1470 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1471 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1472 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1473 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1474 .addReg(Pred[1].getReg()); 1475 return true; 1476 } 1477 1478 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1479 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1480 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1481 .addImm(Pred[0].getImm()) 1482 .addReg(Pred[1].getReg()); 1483 return true; 1484 } 1485 1486 return false; 1487 } 1488 1489 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1490 ArrayRef<MachineOperand> Pred2) const { 1491 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1492 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1493 1494 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1495 return false; 1496 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1497 return false; 1498 1499 // P1 can only subsume P2 if they test the same condition register. 1500 if (Pred1[1].getReg() != Pred2[1].getReg()) 1501 return false; 1502 1503 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1504 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1505 1506 if (P1 == P2) 1507 return true; 1508 1509 // Does P1 subsume P2, e.g. GE subsumes GT. 1510 if (P1 == PPC::PRED_LE && 1511 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1512 return true; 1513 if (P1 == PPC::PRED_GE && 1514 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1515 return true; 1516 1517 return false; 1518 } 1519 1520 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1521 std::vector<MachineOperand> &Pred) const { 1522 // Note: At the present time, the contents of Pred from this function is 1523 // unused by IfConversion. This implementation follows ARM by pushing the 1524 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1525 // predicate, instructions defining CTR or CTR8 are also included as 1526 // predicate-defining instructions. 1527 1528 const TargetRegisterClass *RCs[] = 1529 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1530 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1531 1532 bool Found = false; 1533 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1534 const MachineOperand &MO = MI.getOperand(i); 1535 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1536 const TargetRegisterClass *RC = RCs[c]; 1537 if (MO.isReg()) { 1538 if (MO.isDef() && RC->contains(MO.getReg())) { 1539 Pred.push_back(MO); 1540 Found = true; 1541 } 1542 } else if (MO.isRegMask()) { 1543 for (TargetRegisterClass::iterator I = RC->begin(), 1544 IE = RC->end(); I != IE; ++I) 1545 if (MO.clobbersPhysReg(*I)) { 1546 Pred.push_back(MO); 1547 Found = true; 1548 } 1549 } 1550 } 1551 } 1552 1553 return Found; 1554 } 1555 1556 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const { 1557 unsigned OpC = MI.getOpcode(); 1558 switch (OpC) { 1559 default: 1560 return false; 1561 case PPC::B: 1562 case PPC::BLR: 1563 case PPC::BLR8: 1564 case PPC::BCTR: 1565 case PPC::BCTR8: 1566 case PPC::BCTRL: 1567 case PPC::BCTRL8: 1568 return true; 1569 } 1570 } 1571 1572 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1573 unsigned &SrcReg2, int &Mask, 1574 int &Value) const { 1575 unsigned Opc = MI.getOpcode(); 1576 1577 switch (Opc) { 1578 default: return false; 1579 case PPC::CMPWI: 1580 case PPC::CMPLWI: 1581 case PPC::CMPDI: 1582 case PPC::CMPLDI: 1583 SrcReg = MI.getOperand(1).getReg(); 1584 SrcReg2 = 0; 1585 Value = MI.getOperand(2).getImm(); 1586 Mask = 0xFFFF; 1587 return true; 1588 case PPC::CMPW: 1589 case PPC::CMPLW: 1590 case PPC::CMPD: 1591 case PPC::CMPLD: 1592 case PPC::FCMPUS: 1593 case PPC::FCMPUD: 1594 SrcReg = MI.getOperand(1).getReg(); 1595 SrcReg2 = MI.getOperand(2).getReg(); 1596 Value = 0; 1597 Mask = 0; 1598 return true; 1599 } 1600 } 1601 1602 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1603 unsigned SrcReg2, int Mask, int Value, 1604 const MachineRegisterInfo *MRI) const { 1605 if (DisableCmpOpt) 1606 return false; 1607 1608 int OpC = CmpInstr.getOpcode(); 1609 unsigned CRReg = CmpInstr.getOperand(0).getReg(); 1610 1611 // FP record forms set CR1 based on the execption status bits, not a 1612 // comparison with zero. 1613 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1614 return false; 1615 1616 // The record forms set the condition register based on a signed comparison 1617 // with zero (so says the ISA manual). This is not as straightforward as it 1618 // seems, however, because this is always a 64-bit comparison on PPC64, even 1619 // for instructions that are 32-bit in nature (like slw for example). 1620 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1621 // for equality checks (as those don't depend on the sign). On PPC64, 1622 // we are restricted to equality for unsigned 64-bit comparisons and for 1623 // signed 32-bit comparisons the applicability is more restricted. 1624 bool isPPC64 = Subtarget.isPPC64(); 1625 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1626 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1627 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1628 1629 // Get the unique definition of SrcReg. 1630 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1631 if (!MI) return false; 1632 1633 bool equalityOnly = false; 1634 bool noSub = false; 1635 if (isPPC64) { 1636 if (is32BitSignedCompare) { 1637 // We can perform this optimization only if MI is sign-extending. 1638 if (isSignExtended(*MI)) 1639 noSub = true; 1640 else 1641 return false; 1642 } else if (is32BitUnsignedCompare) { 1643 // We can perform this optimization, equality only, if MI is 1644 // zero-extending. 1645 if (isZeroExtended(*MI)) { 1646 noSub = true; 1647 equalityOnly = true; 1648 } else 1649 return false; 1650 } else 1651 equalityOnly = is64BitUnsignedCompare; 1652 } else 1653 equalityOnly = is32BitUnsignedCompare; 1654 1655 if (equalityOnly) { 1656 // We need to check the uses of the condition register in order to reject 1657 // non-equality comparisons. 1658 for (MachineRegisterInfo::use_instr_iterator 1659 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1660 I != IE; ++I) { 1661 MachineInstr *UseMI = &*I; 1662 if (UseMI->getOpcode() == PPC::BCC) { 1663 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1664 unsigned PredCond = PPC::getPredicateCondition(Pred); 1665 // We ignore hint bits when checking for non-equality comparisons. 1666 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1667 return false; 1668 } else if (UseMI->getOpcode() == PPC::ISEL || 1669 UseMI->getOpcode() == PPC::ISEL8) { 1670 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1671 if (SubIdx != PPC::sub_eq) 1672 return false; 1673 } else 1674 return false; 1675 } 1676 } 1677 1678 MachineBasicBlock::iterator I = CmpInstr; 1679 1680 // Scan forward to find the first use of the compare. 1681 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1682 ++I) { 1683 bool FoundUse = false; 1684 for (MachineRegisterInfo::use_instr_iterator 1685 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1686 J != JE; ++J) 1687 if (&*J == &*I) { 1688 FoundUse = true; 1689 break; 1690 } 1691 1692 if (FoundUse) 1693 break; 1694 } 1695 1696 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1697 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1698 1699 // There are two possible candidates which can be changed to set CR[01]. 1700 // One is MI, the other is a SUB instruction. 1701 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1702 MachineInstr *Sub = nullptr; 1703 if (SrcReg2 != 0) 1704 // MI is not a candidate for CMPrr. 1705 MI = nullptr; 1706 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1707 // same BB as the comparison. This is to allow the check below to avoid calls 1708 // (and other explicit clobbers); instead we should really check for these 1709 // more explicitly (in at least a few predecessors). 1710 else if (MI->getParent() != CmpInstr.getParent()) 1711 return false; 1712 else if (Value != 0) { 1713 // The record-form instructions set CR bit based on signed comparison 1714 // against 0. We try to convert a compare against 1 or -1 into a compare 1715 // against 0 to exploit record-form instructions. For example, we change 1716 // the condition "greater than -1" into "greater than or equal to 0" 1717 // and "less than 1" into "less than or equal to 0". 1718 1719 // Since we optimize comparison based on a specific branch condition, 1720 // we don't optimize if condition code is used by more than once. 1721 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1722 return false; 1723 1724 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1725 if (UseMI->getOpcode() != PPC::BCC) 1726 return false; 1727 1728 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1729 PPC::Predicate NewPred = Pred; 1730 unsigned PredCond = PPC::getPredicateCondition(Pred); 1731 unsigned PredHint = PPC::getPredicateHint(Pred); 1732 int16_t Immed = (int16_t)Value; 1733 1734 // When modyfing the condition in the predicate, we propagate hint bits 1735 // from the original predicate to the new one. 1736 if (Immed == -1 && PredCond == PPC::PRED_GT) 1737 // We convert "greater than -1" into "greater than or equal to 0", 1738 // since we are assuming signed comparison by !equalityOnly 1739 NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1740 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1741 // We convert "less than or equal to -1" into "less than 0". 1742 NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1743 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1744 // We convert "less than 1" into "less than or equal to 0". 1745 NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1746 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1747 // We convert "greater than or equal to 1" into "greater than 0". 1748 NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1749 else 1750 return false; 1751 1752 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1753 NewPred)); 1754 } 1755 1756 // Search for Sub. 1757 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1758 --I; 1759 1760 // Get ready to iterate backward from CmpInstr. 1761 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1762 1763 for (; I != E && !noSub; --I) { 1764 const MachineInstr &Instr = *I; 1765 unsigned IOpC = Instr.getOpcode(); 1766 1767 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1768 Instr.readsRegister(PPC::CR0, TRI))) 1769 // This instruction modifies or uses the record condition register after 1770 // the one we want to change. While we could do this transformation, it 1771 // would likely not be profitable. This transformation removes one 1772 // instruction, and so even forcing RA to generate one move probably 1773 // makes it unprofitable. 1774 return false; 1775 1776 // Check whether CmpInstr can be made redundant by the current instruction. 1777 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1778 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1779 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1780 ((Instr.getOperand(1).getReg() == SrcReg && 1781 Instr.getOperand(2).getReg() == SrcReg2) || 1782 (Instr.getOperand(1).getReg() == SrcReg2 && 1783 Instr.getOperand(2).getReg() == SrcReg))) { 1784 Sub = &*I; 1785 break; 1786 } 1787 1788 if (I == B) 1789 // The 'and' is below the comparison instruction. 1790 return false; 1791 } 1792 1793 // Return false if no candidates exist. 1794 if (!MI && !Sub) 1795 return false; 1796 1797 // The single candidate is called MI. 1798 if (!MI) MI = Sub; 1799 1800 int NewOpC = -1; 1801 int MIOpC = MI->getOpcode(); 1802 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1803 NewOpC = MIOpC; 1804 else { 1805 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1806 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1807 NewOpC = MIOpC; 1808 } 1809 1810 // FIXME: On the non-embedded POWER architectures, only some of the record 1811 // forms are fast, and we should use only the fast ones. 1812 1813 // The defining instruction has a record form (or is already a record 1814 // form). It is possible, however, that we'll need to reverse the condition 1815 // code of the users. 1816 if (NewOpC == -1) 1817 return false; 1818 1819 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1820 // needs to be updated to be based on SUB. Push the condition code 1821 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1822 // condition code of these operands will be modified. 1823 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1824 // comparison against 0, which may modify predicate. 1825 bool ShouldSwap = false; 1826 if (Sub && Value == 0) { 1827 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1828 Sub->getOperand(2).getReg() == SrcReg; 1829 1830 // The operands to subf are the opposite of sub, so only in the fixed-point 1831 // case, invert the order. 1832 ShouldSwap = !ShouldSwap; 1833 } 1834 1835 if (ShouldSwap) 1836 for (MachineRegisterInfo::use_instr_iterator 1837 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1838 I != IE; ++I) { 1839 MachineInstr *UseMI = &*I; 1840 if (UseMI->getOpcode() == PPC::BCC) { 1841 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1842 unsigned PredCond = PPC::getPredicateCondition(Pred); 1843 assert((!equalityOnly || 1844 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1845 "Invalid predicate for equality-only optimization"); 1846 (void)PredCond; // To suppress warning in release build. 1847 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1848 PPC::getSwappedPredicate(Pred))); 1849 } else if (UseMI->getOpcode() == PPC::ISEL || 1850 UseMI->getOpcode() == PPC::ISEL8) { 1851 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1852 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1853 "Invalid CR bit for equality-only optimization"); 1854 1855 if (NewSubReg == PPC::sub_lt) 1856 NewSubReg = PPC::sub_gt; 1857 else if (NewSubReg == PPC::sub_gt) 1858 NewSubReg = PPC::sub_lt; 1859 1860 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1861 NewSubReg)); 1862 } else // We need to abort on a user we don't understand. 1863 return false; 1864 } 1865 assert(!(Value != 0 && ShouldSwap) && 1866 "Non-zero immediate support and ShouldSwap" 1867 "may conflict in updating predicate"); 1868 1869 // Create a new virtual register to hold the value of the CR set by the 1870 // record-form instruction. If the instruction was not previously in 1871 // record form, then set the kill flag on the CR. 1872 CmpInstr.eraseFromParent(); 1873 1874 MachineBasicBlock::iterator MII = MI; 1875 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1876 get(TargetOpcode::COPY), CRReg) 1877 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1878 1879 // Even if CR0 register were dead before, it is alive now since the 1880 // instruction we just built uses it. 1881 MI->clearRegisterDeads(PPC::CR0); 1882 1883 if (MIOpC != NewOpC) { 1884 // We need to be careful here: we're replacing one instruction with 1885 // another, and we need to make sure that we get all of the right 1886 // implicit uses and defs. On the other hand, the caller may be holding 1887 // an iterator to this instruction, and so we can't delete it (this is 1888 // specifically the case if this is the instruction directly after the 1889 // compare). 1890 1891 // Rotates are expensive instructions. If we're emitting a record-form 1892 // rotate that can just be an andi, we should just emit the andi. 1893 if ((MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) && 1894 MI->getOperand(2).getImm() == 0) { 1895 int64_t MB = MI->getOperand(3).getImm(); 1896 int64_t ME = MI->getOperand(4).getImm(); 1897 if (MB < ME && MB >= 16) { 1898 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1899 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIo : PPC::ANDIo8; 1900 MI->RemoveOperand(4); 1901 MI->RemoveOperand(3); 1902 MI->getOperand(2).setImm(Mask); 1903 NumRcRotatesConvertedToRcAnd++; 1904 } 1905 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1906 int64_t MB = MI->getOperand(3).getImm(); 1907 if (MB >= 48) { 1908 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1909 NewOpC = PPC::ANDIo8; 1910 MI->RemoveOperand(3); 1911 MI->getOperand(2).setImm(Mask); 1912 NumRcRotatesConvertedToRcAnd++; 1913 } 1914 } 1915 1916 const MCInstrDesc &NewDesc = get(NewOpC); 1917 MI->setDesc(NewDesc); 1918 1919 if (NewDesc.ImplicitDefs) 1920 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 1921 *ImpDefs; ++ImpDefs) 1922 if (!MI->definesRegister(*ImpDefs)) 1923 MI->addOperand(*MI->getParent()->getParent(), 1924 MachineOperand::CreateReg(*ImpDefs, true, true)); 1925 if (NewDesc.ImplicitUses) 1926 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 1927 *ImpUses; ++ImpUses) 1928 if (!MI->readsRegister(*ImpUses)) 1929 MI->addOperand(*MI->getParent()->getParent(), 1930 MachineOperand::CreateReg(*ImpUses, false, true)); 1931 } 1932 assert(MI->definesRegister(PPC::CR0) && 1933 "Record-form instruction does not define cr0?"); 1934 1935 // Modify the condition code of operands in OperandsToUpdate. 1936 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1937 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1938 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1939 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1940 1941 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1942 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1943 1944 return true; 1945 } 1946 1947 /// GetInstSize - Return the number of bytes of code the specified 1948 /// instruction may be. This returns the maximum number of bytes. 1949 /// 1950 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1951 unsigned Opcode = MI.getOpcode(); 1952 1953 if (Opcode == PPC::INLINEASM) { 1954 const MachineFunction *MF = MI.getParent()->getParent(); 1955 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1956 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1957 } else if (Opcode == TargetOpcode::STACKMAP) { 1958 StackMapOpers Opers(&MI); 1959 return Opers.getNumPatchBytes(); 1960 } else if (Opcode == TargetOpcode::PATCHPOINT) { 1961 PatchPointOpers Opers(&MI); 1962 return Opers.getNumPatchBytes(); 1963 } else { 1964 return get(Opcode).getSize(); 1965 } 1966 } 1967 1968 std::pair<unsigned, unsigned> 1969 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 1970 const unsigned Mask = PPCII::MO_ACCESS_MASK; 1971 return std::make_pair(TF & Mask, TF & ~Mask); 1972 } 1973 1974 ArrayRef<std::pair<unsigned, const char *>> 1975 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 1976 using namespace PPCII; 1977 static const std::pair<unsigned, const char *> TargetFlags[] = { 1978 {MO_LO, "ppc-lo"}, 1979 {MO_HA, "ppc-ha"}, 1980 {MO_TPREL_LO, "ppc-tprel-lo"}, 1981 {MO_TPREL_HA, "ppc-tprel-ha"}, 1982 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 1983 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 1984 {MO_TOC_LO, "ppc-toc-lo"}, 1985 {MO_TLS, "ppc-tls"}}; 1986 return makeArrayRef(TargetFlags); 1987 } 1988 1989 ArrayRef<std::pair<unsigned, const char *>> 1990 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 1991 using namespace PPCII; 1992 static const std::pair<unsigned, const char *> TargetFlags[] = { 1993 {MO_PLT, "ppc-plt"}, 1994 {MO_PIC_FLAG, "ppc-pic"}, 1995 {MO_NLP_FLAG, "ppc-nlp"}, 1996 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; 1997 return makeArrayRef(TargetFlags); 1998 } 1999 2000 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2001 // The VSX versions have the advantage of a full 64-register target whereas 2002 // the FP ones have the advantage of lower latency and higher throughput. So 2003 // what we are after is using the faster instructions in low register pressure 2004 // situations and using the larger register file in high register pressure 2005 // situations. 2006 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2007 unsigned UpperOpcode, LowerOpcode; 2008 switch (MI.getOpcode()) { 2009 case PPC::DFLOADf32: 2010 UpperOpcode = PPC::LXSSP; 2011 LowerOpcode = PPC::LFS; 2012 break; 2013 case PPC::DFLOADf64: 2014 UpperOpcode = PPC::LXSD; 2015 LowerOpcode = PPC::LFD; 2016 break; 2017 case PPC::DFSTOREf32: 2018 UpperOpcode = PPC::STXSSP; 2019 LowerOpcode = PPC::STFS; 2020 break; 2021 case PPC::DFSTOREf64: 2022 UpperOpcode = PPC::STXSD; 2023 LowerOpcode = PPC::STFD; 2024 break; 2025 case PPC::XFLOADf32: 2026 UpperOpcode = PPC::LXSSPX; 2027 LowerOpcode = PPC::LFSX; 2028 break; 2029 case PPC::XFLOADf64: 2030 UpperOpcode = PPC::LXSDX; 2031 LowerOpcode = PPC::LFDX; 2032 break; 2033 case PPC::XFSTOREf32: 2034 UpperOpcode = PPC::STXSSPX; 2035 LowerOpcode = PPC::STFSX; 2036 break; 2037 case PPC::XFSTOREf64: 2038 UpperOpcode = PPC::STXSDX; 2039 LowerOpcode = PPC::STFDX; 2040 break; 2041 case PPC::LIWAX: 2042 UpperOpcode = PPC::LXSIWAX; 2043 LowerOpcode = PPC::LFIWAX; 2044 break; 2045 case PPC::LIWZX: 2046 UpperOpcode = PPC::LXSIWZX; 2047 LowerOpcode = PPC::LFIWZX; 2048 break; 2049 case PPC::STIWX: 2050 UpperOpcode = PPC::STXSIWX; 2051 LowerOpcode = PPC::STFIWX; 2052 break; 2053 default: 2054 llvm_unreachable("Unknown Operation!"); 2055 } 2056 2057 unsigned TargetReg = MI.getOperand(0).getReg(); 2058 unsigned Opcode; 2059 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2060 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2061 Opcode = LowerOpcode; 2062 else 2063 Opcode = UpperOpcode; 2064 MI.setDesc(get(Opcode)); 2065 return true; 2066 } 2067 2068 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2069 auto &MBB = *MI.getParent(); 2070 auto DL = MI.getDebugLoc(); 2071 2072 switch (MI.getOpcode()) { 2073 case TargetOpcode::LOAD_STACK_GUARD: { 2074 assert(Subtarget.isTargetLinux() && 2075 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2076 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2077 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2078 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2079 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2080 .addImm(Offset) 2081 .addReg(Reg); 2082 return true; 2083 } 2084 case PPC::DFLOADf32: 2085 case PPC::DFLOADf64: 2086 case PPC::DFSTOREf32: 2087 case PPC::DFSTOREf64: { 2088 assert(Subtarget.hasP9Vector() && 2089 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2090 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isImm() && 2091 "D-form op must have register and immediate operands"); 2092 return expandVSXMemPseudo(MI); 2093 } 2094 case PPC::XFLOADf32: 2095 case PPC::XFSTOREf32: 2096 case PPC::LIWAX: 2097 case PPC::LIWZX: 2098 case PPC::STIWX: { 2099 assert(Subtarget.hasP8Vector() && 2100 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2101 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2102 "X-form op must have register and register operands"); 2103 return expandVSXMemPseudo(MI); 2104 } 2105 case PPC::XFLOADf64: 2106 case PPC::XFSTOREf64: { 2107 assert(Subtarget.hasVSX() && 2108 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2109 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2110 "X-form op must have register and register operands"); 2111 return expandVSXMemPseudo(MI); 2112 } 2113 case PPC::SPILLTOVSR_LD: { 2114 unsigned TargetReg = MI.getOperand(0).getReg(); 2115 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2116 MI.setDesc(get(PPC::DFLOADf64)); 2117 return expandPostRAPseudo(MI); 2118 } 2119 else 2120 MI.setDesc(get(PPC::LD)); 2121 return true; 2122 } 2123 case PPC::SPILLTOVSR_ST: { 2124 unsigned SrcReg = MI.getOperand(0).getReg(); 2125 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2126 NumStoreSPILLVSRRCAsVec++; 2127 MI.setDesc(get(PPC::DFSTOREf64)); 2128 return expandPostRAPseudo(MI); 2129 } else { 2130 NumStoreSPILLVSRRCAsGpr++; 2131 MI.setDesc(get(PPC::STD)); 2132 } 2133 return true; 2134 } 2135 case PPC::SPILLTOVSR_LDX: { 2136 unsigned TargetReg = MI.getOperand(0).getReg(); 2137 if (PPC::VSFRCRegClass.contains(TargetReg)) 2138 MI.setDesc(get(PPC::LXSDX)); 2139 else 2140 MI.setDesc(get(PPC::LDX)); 2141 return true; 2142 } 2143 case PPC::SPILLTOVSR_STX: { 2144 unsigned SrcReg = MI.getOperand(0).getReg(); 2145 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2146 NumStoreSPILLVSRRCAsVec++; 2147 MI.setDesc(get(PPC::STXSDX)); 2148 } else { 2149 NumStoreSPILLVSRRCAsGpr++; 2150 MI.setDesc(get(PPC::STDX)); 2151 } 2152 return true; 2153 } 2154 2155 case PPC::CFENCE8: { 2156 auto Val = MI.getOperand(0).getReg(); 2157 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2158 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2159 .addImm(PPC::PRED_NE_MINUS) 2160 .addReg(PPC::CR7) 2161 .addImm(1); 2162 MI.setDesc(get(PPC::ISYNC)); 2163 MI.RemoveOperand(0); 2164 return true; 2165 } 2166 } 2167 return false; 2168 } 2169 2170 // Essentially a compile-time implementation of a compare->isel sequence. 2171 // It takes two constants to compare, along with the true/false registers 2172 // and the comparison type (as a subreg to a CR field) and returns one 2173 // of the true/false registers, depending on the comparison results. 2174 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2175 unsigned TrueReg, unsigned FalseReg, 2176 unsigned CRSubReg) { 2177 // Signed comparisons. The immediates are assumed to be sign-extended. 2178 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2179 switch (CRSubReg) { 2180 default: llvm_unreachable("Unknown integer comparison type."); 2181 case PPC::sub_lt: 2182 return Imm1 < Imm2 ? TrueReg : FalseReg; 2183 case PPC::sub_gt: 2184 return Imm1 > Imm2 ? TrueReg : FalseReg; 2185 case PPC::sub_eq: 2186 return Imm1 == Imm2 ? TrueReg : FalseReg; 2187 } 2188 } 2189 // Unsigned comparisons. 2190 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2191 switch (CRSubReg) { 2192 default: llvm_unreachable("Unknown integer comparison type."); 2193 case PPC::sub_lt: 2194 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2195 case PPC::sub_gt: 2196 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2197 case PPC::sub_eq: 2198 return Imm1 == Imm2 ? TrueReg : FalseReg; 2199 } 2200 } 2201 return PPC::NoRegister; 2202 } 2203 2204 // Replace an instruction with one that materializes a constant (and sets 2205 // CR0 if the original instruction was a record-form instruction). 2206 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2207 const LoadImmediateInfo &LII) const { 2208 // Remove existing operands. 2209 int OperandToKeep = LII.SetCR ? 1 : 0; 2210 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2211 MI.RemoveOperand(i); 2212 2213 // Replace the instruction. 2214 if (LII.SetCR) { 2215 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo)); 2216 // Set the immediate. 2217 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2218 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2219 return; 2220 } 2221 else 2222 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2223 2224 // Set the immediate. 2225 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2226 .addImm(LII.Imm); 2227 } 2228 2229 MachineInstr *PPCInstrInfo::getConstantDefMI(MachineInstr &MI, 2230 unsigned &ConstOp, 2231 bool &SeenIntermediateUse) const { 2232 ConstOp = ~0U; 2233 MachineInstr *DefMI = nullptr; 2234 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2235 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2236 // If we'ere in SSA, get the defs through the MRI. Otherwise, only look 2237 // within the basic block to see if the register is defined using an LI/LI8. 2238 if (MRI->isSSA()) { 2239 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2240 if (!MI.getOperand(i).isReg()) 2241 continue; 2242 unsigned Reg = MI.getOperand(i).getReg(); 2243 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 2244 continue; 2245 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2246 if (TargetRegisterInfo::isVirtualRegister(TrueReg)) { 2247 DefMI = MRI->getVRegDef(TrueReg); 2248 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2249 ConstOp = i; 2250 break; 2251 } 2252 } 2253 } 2254 } else { 2255 // Looking back through the definition for each operand could be expensive, 2256 // so exit early if this isn't an instruction that either has an immediate 2257 // form or is already an immediate form that we can handle. 2258 ImmInstrInfo III; 2259 unsigned Opc = MI.getOpcode(); 2260 bool ConvertibleImmForm = 2261 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || 2262 Opc == PPC::CMPDI || Opc == PPC::CMPLDI || 2263 Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2264 Opc == PPC::ORI || Opc == PPC::ORI8 || 2265 Opc == PPC::XORI || Opc == PPC::XORI8 || 2266 Opc == PPC::RLDICL || Opc == PPC::RLDICLo || 2267 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2268 Opc == PPC::RLWINM || Opc == PPC::RLWINMo || 2269 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2270 if (!instrHasImmForm(MI, III) && !ConvertibleImmForm) 2271 return nullptr; 2272 2273 // Don't convert or %X, %Y, %Y since that's just a register move. 2274 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2275 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2276 return nullptr; 2277 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2278 MachineOperand &MO = MI.getOperand(i); 2279 SeenIntermediateUse = false; 2280 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2281 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2282 It++; 2283 unsigned Reg = MI.getOperand(i).getReg(); 2284 // MachineInstr::readsRegister only returns true if the machine 2285 // instruction reads the exact register or its super-register. It 2286 // does not consider uses of sub-registers which seems like strange 2287 // behaviour. Nonetheless, if we end up with a 64-bit register here, 2288 // get the corresponding 32-bit register to check. 2289 if (PPC::G8RCRegClass.contains(Reg)) 2290 Reg = Reg - PPC::X0 + PPC::R0; 2291 2292 // Is this register defined by a load-immediate in this block? 2293 for ( ; It != E; ++It) { 2294 if (It->modifiesRegister(Reg, &getRegisterInfo())) { 2295 if (It->getOpcode() == PPC::LI || It->getOpcode() == PPC::LI8) { 2296 ConstOp = i; 2297 return &*It; 2298 } else 2299 break; 2300 } else if (It->readsRegister(Reg, &getRegisterInfo())) 2301 // If we see another use of this reg between the def and the MI, 2302 // we want to flat it so the def isn't deleted. 2303 SeenIntermediateUse = true; 2304 } 2305 } 2306 } 2307 } 2308 return ConstOp == ~0U ? nullptr : DefMI; 2309 } 2310 2311 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2312 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2313 // Power 8 2314 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2315 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2316 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2317 PPC::SPILLTOVSR_ST}, 2318 // Power 9 2319 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2320 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2321 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2322 PPC::SPILLTOVSR_ST}}; 2323 2324 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2325 } 2326 2327 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2328 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2329 // Power 8 2330 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2331 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2332 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2333 PPC::SPILLTOVSR_LD}, 2334 // Power 9 2335 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2336 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2337 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2338 PPC::SPILLTOVSR_LD}}; 2339 2340 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2341 } 2342 2343 // If this instruction has an immediate form and one of its operands is a 2344 // result of a load-immediate, convert it to the immediate form if the constant 2345 // is in range. 2346 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2347 MachineInstr **KilledDef) const { 2348 MachineFunction *MF = MI.getParent()->getParent(); 2349 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2350 bool PostRA = !MRI->isSSA(); 2351 bool SeenIntermediateUse = true; 2352 unsigned ConstantOperand = ~0U; 2353 MachineInstr *DefMI = getConstantDefMI(MI, ConstantOperand, 2354 SeenIntermediateUse); 2355 if (!DefMI || !DefMI->getOperand(1).isImm()) 2356 return false; 2357 assert(ConstantOperand < MI.getNumOperands() && 2358 "The constant operand needs to be valid at this point"); 2359 2360 int64_t Immediate = DefMI->getOperand(1).getImm(); 2361 // Sign-extend to 64-bits. 2362 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2363 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2364 2365 if (KilledDef && MI.getOperand(ConstantOperand).isKill() && 2366 !SeenIntermediateUse) 2367 *KilledDef = DefMI; 2368 2369 // If this is a reg+reg instruction that has a reg+imm form, convert it now. 2370 ImmInstrInfo III; 2371 if (instrHasImmForm(MI, III)) 2372 return transformToImmForm(MI, III, ConstantOperand, SExtImm); 2373 2374 bool ReplaceWithLI = false; 2375 bool Is64BitLI = false; 2376 int64_t NewImm = 0; 2377 bool SetCR = false; 2378 unsigned Opc = MI.getOpcode(); 2379 switch (Opc) { 2380 default: return false; 2381 2382 // FIXME: Any branches conditional on such a comparison can be made 2383 // unconditional. At this time, this happens too infrequently to be worth 2384 // the implementation effort, but if that ever changes, we could convert 2385 // such a pattern here. 2386 case PPC::CMPWI: 2387 case PPC::CMPLWI: 2388 case PPC::CMPDI: 2389 case PPC::CMPLDI: { 2390 // Doing this post-RA would require dataflow analysis to reliably find uses 2391 // of the CR register set by the compare. 2392 if (PostRA) 2393 return false; 2394 // If a compare-immediate is fed by an immediate and is itself an input of 2395 // an ISEL (the most common case) into a COPY of the correct register. 2396 bool Changed = false; 2397 unsigned DefReg = MI.getOperand(0).getReg(); 2398 int64_t Comparand = MI.getOperand(2).getImm(); 2399 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2400 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2401 2402 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2403 unsigned UseOpc = CompareUseMI.getOpcode(); 2404 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2405 continue; 2406 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2407 unsigned TrueReg = CompareUseMI.getOperand(1).getReg(); 2408 unsigned FalseReg = CompareUseMI.getOperand(2).getReg(); 2409 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2410 FalseReg, CRSubReg); 2411 if (RegToCopy == PPC::NoRegister) 2412 continue; 2413 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2414 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2415 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2416 CompareUseMI.getOperand(1).ChangeToImmediate(0); 2417 CompareUseMI.RemoveOperand(3); 2418 CompareUseMI.RemoveOperand(2); 2419 continue; 2420 } 2421 DEBUG(dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2422 DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2423 DEBUG(dbgs() << "Is converted to:\n"); 2424 // Convert to copy and remove unneeded operands. 2425 CompareUseMI.setDesc(get(PPC::COPY)); 2426 CompareUseMI.RemoveOperand(3); 2427 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2428 CmpIselsConverted++; 2429 Changed = true; 2430 DEBUG(CompareUseMI.dump()); 2431 } 2432 if (Changed) 2433 return true; 2434 // This may end up incremented multiple times since this function is called 2435 // during a fixed-point transformation, but it is only meant to indicate the 2436 // presence of this opportunity. 2437 MissedConvertibleImmediateInstrs++; 2438 return false; 2439 } 2440 2441 // Immediate forms - may simply be convertable to an LI. 2442 case PPC::ADDI: 2443 case PPC::ADDI8: { 2444 // Does the sum fit in a 16-bit signed field? 2445 int64_t Addend = MI.getOperand(2).getImm(); 2446 if (isInt<16>(Addend + SExtImm)) { 2447 ReplaceWithLI = true; 2448 Is64BitLI = Opc == PPC::ADDI8; 2449 NewImm = Addend + SExtImm; 2450 break; 2451 } 2452 return false; 2453 } 2454 case PPC::RLDICL: 2455 case PPC::RLDICLo: 2456 case PPC::RLDICL_32: 2457 case PPC::RLDICL_32_64: { 2458 // Use APInt's rotate function. 2459 int64_t SH = MI.getOperand(2).getImm(); 2460 int64_t MB = MI.getOperand(3).getImm(); 2461 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ? 2462 64 : 32, SExtImm, true); 2463 InVal = InVal.rotl(SH); 2464 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 2465 InVal &= Mask; 2466 // Can't replace negative values with an LI as that will sign-extend 2467 // and not clear the left bits. If we're setting the CR bit, we will use 2468 // ANDIo which won't sign extend, so that's safe. 2469 if (isUInt<15>(InVal.getSExtValue()) || 2470 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) { 2471 ReplaceWithLI = true; 2472 Is64BitLI = Opc != PPC::RLDICL_32; 2473 NewImm = InVal.getSExtValue(); 2474 SetCR = Opc == PPC::RLDICLo; 2475 if (SetCR && (SExtImm & NewImm) != NewImm) 2476 return false; 2477 break; 2478 } 2479 return false; 2480 } 2481 case PPC::RLWINM: 2482 case PPC::RLWINM8: 2483 case PPC::RLWINMo: 2484 case PPC::RLWINM8o: { 2485 int64_t SH = MI.getOperand(2).getImm(); 2486 int64_t MB = MI.getOperand(3).getImm(); 2487 int64_t ME = MI.getOperand(4).getImm(); 2488 APInt InVal(32, SExtImm, true); 2489 InVal = InVal.rotl(SH); 2490 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2491 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2492 InVal &= Mask; 2493 // Can't replace negative values with an LI as that will sign-extend 2494 // and not clear the left bits. If we're setting the CR bit, we will use 2495 // ANDIo which won't sign extend, so that's safe. 2496 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2497 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) && 2498 isUInt<16>(InVal.getSExtValue())); 2499 if (ValueFits) { 2500 ReplaceWithLI = true; 2501 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o; 2502 NewImm = InVal.getSExtValue(); 2503 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o; 2504 if (SetCR && (SExtImm & NewImm) != NewImm) 2505 return false; 2506 break; 2507 } 2508 return false; 2509 } 2510 case PPC::ORI: 2511 case PPC::ORI8: 2512 case PPC::XORI: 2513 case PPC::XORI8: { 2514 int64_t LogicalImm = MI.getOperand(2).getImm(); 2515 int64_t Result = 0; 2516 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2517 Result = LogicalImm | SExtImm; 2518 else 2519 Result = LogicalImm ^ SExtImm; 2520 if (isInt<16>(Result)) { 2521 ReplaceWithLI = true; 2522 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2523 NewImm = Result; 2524 break; 2525 } 2526 return false; 2527 } 2528 } 2529 2530 if (ReplaceWithLI) { 2531 DEBUG(dbgs() << "Replacing instruction:\n"); 2532 DEBUG(MI.dump()); 2533 DEBUG(dbgs() << "Fed by:\n"); 2534 DEBUG(DefMI->dump()); 2535 LoadImmediateInfo LII; 2536 LII.Imm = NewImm; 2537 LII.Is64Bit = Is64BitLI; 2538 LII.SetCR = SetCR; 2539 // If we're setting the CR, the original load-immediate must be kept (as an 2540 // operand to ANDIo/ANDI8o). 2541 if (KilledDef && SetCR) 2542 *KilledDef = nullptr; 2543 replaceInstrWithLI(MI, LII); 2544 DEBUG(dbgs() << "With:\n"); 2545 DEBUG(MI.dump()); 2546 return true; 2547 } 2548 return false; 2549 } 2550 2551 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI, 2552 ImmInstrInfo &III) const { 2553 unsigned Opc = MI.getOpcode(); 2554 // The vast majority of the instructions would need their operand 2 replaced 2555 // with an immediate when switching to the reg+imm form. A marked exception 2556 // are the update form loads/stores for which a constant operand 2 would need 2557 // to turn into a displacement and move operand 1 to the operand 2 position. 2558 III.ImmOpNo = 2; 2559 III.ConstantOpNo = 2; 2560 III.ImmWidth = 16; 2561 III.ImmMustBeMultipleOf = 1; 2562 III.TruncateImmTo = 0; 2563 switch (Opc) { 2564 default: return false; 2565 case PPC::ADD4: 2566 case PPC::ADD8: 2567 III.SignedImm = true; 2568 III.ZeroIsSpecialOrig = 0; 2569 III.ZeroIsSpecialNew = 1; 2570 III.IsCommutative = true; 2571 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 2572 break; 2573 case PPC::ADDC: 2574 case PPC::ADDC8: 2575 III.SignedImm = true; 2576 III.ZeroIsSpecialOrig = 0; 2577 III.ZeroIsSpecialNew = 0; 2578 III.IsCommutative = true; 2579 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 2580 break; 2581 case PPC::ADDCo: 2582 III.SignedImm = true; 2583 III.ZeroIsSpecialOrig = 0; 2584 III.ZeroIsSpecialNew = 0; 2585 III.IsCommutative = true; 2586 III.ImmOpcode = PPC::ADDICo; 2587 break; 2588 case PPC::SUBFC: 2589 case PPC::SUBFC8: 2590 III.SignedImm = true; 2591 III.ZeroIsSpecialOrig = 0; 2592 III.ZeroIsSpecialNew = 0; 2593 III.IsCommutative = false; 2594 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 2595 break; 2596 case PPC::CMPW: 2597 case PPC::CMPD: 2598 III.SignedImm = true; 2599 III.ZeroIsSpecialOrig = 0; 2600 III.ZeroIsSpecialNew = 0; 2601 III.IsCommutative = false; 2602 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 2603 break; 2604 case PPC::CMPLW: 2605 case PPC::CMPLD: 2606 III.SignedImm = false; 2607 III.ZeroIsSpecialOrig = 0; 2608 III.ZeroIsSpecialNew = 0; 2609 III.IsCommutative = false; 2610 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 2611 break; 2612 case PPC::ANDo: 2613 case PPC::AND8o: 2614 case PPC::OR: 2615 case PPC::OR8: 2616 case PPC::XOR: 2617 case PPC::XOR8: 2618 III.SignedImm = false; 2619 III.ZeroIsSpecialOrig = 0; 2620 III.ZeroIsSpecialNew = 0; 2621 III.IsCommutative = true; 2622 switch(Opc) { 2623 default: llvm_unreachable("Unknown opcode"); 2624 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break; 2625 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break; 2626 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 2627 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 2628 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 2629 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 2630 } 2631 break; 2632 case PPC::RLWNM: 2633 case PPC::RLWNM8: 2634 case PPC::RLWNMo: 2635 case PPC::RLWNM8o: 2636 case PPC::SLW: 2637 case PPC::SLW8: 2638 case PPC::SLWo: 2639 case PPC::SLW8o: 2640 case PPC::SRW: 2641 case PPC::SRW8: 2642 case PPC::SRWo: 2643 case PPC::SRW8o: 2644 case PPC::SRAW: 2645 case PPC::SRAWo: 2646 III.SignedImm = false; 2647 III.ZeroIsSpecialOrig = 0; 2648 III.ZeroIsSpecialNew = 0; 2649 III.IsCommutative = false; 2650 // This isn't actually true, but the instructions ignore any of the 2651 // upper bits, so any immediate loaded with an LI is acceptable. 2652 // This does not apply to shift right algebraic because a value 2653 // out of range will produce a -1/0. 2654 III.ImmWidth = 16; 2655 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || 2656 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o) 2657 III.TruncateImmTo = 5; 2658 else 2659 III.TruncateImmTo = 6; 2660 switch(Opc) { 2661 default: llvm_unreachable("Unknown opcode"); 2662 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 2663 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 2664 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break; 2665 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break; 2666 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 2667 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 2668 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break; 2669 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2670 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 2671 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 2672 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break; 2673 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break; 2674 case PPC::SRAW: 2675 III.ImmWidth = 5; 2676 III.TruncateImmTo = 0; 2677 III.ImmOpcode = PPC::SRAWI; 2678 break; 2679 case PPC::SRAWo: 2680 III.ImmWidth = 5; 2681 III.TruncateImmTo = 0; 2682 III.ImmOpcode = PPC::SRAWIo; 2683 break; 2684 } 2685 break; 2686 case PPC::RLDCL: 2687 case PPC::RLDCLo: 2688 case PPC::RLDCR: 2689 case PPC::RLDCRo: 2690 case PPC::SLD: 2691 case PPC::SLDo: 2692 case PPC::SRD: 2693 case PPC::SRDo: 2694 case PPC::SRAD: 2695 case PPC::SRADo: 2696 III.SignedImm = false; 2697 III.ZeroIsSpecialOrig = 0; 2698 III.ZeroIsSpecialNew = 0; 2699 III.IsCommutative = false; 2700 // This isn't actually true, but the instructions ignore any of the 2701 // upper bits, so any immediate loaded with an LI is acceptable. 2702 // This does not apply to shift right algebraic because a value 2703 // out of range will produce a -1/0. 2704 III.ImmWidth = 16; 2705 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo || 2706 Opc == PPC::RLDCR || Opc == PPC::RLDCRo) 2707 III.TruncateImmTo = 6; 2708 else 2709 III.TruncateImmTo = 7; 2710 switch(Opc) { 2711 default: llvm_unreachable("Unknown opcode"); 2712 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 2713 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break; 2714 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 2715 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break; 2716 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 2717 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break; 2718 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 2719 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break; 2720 case PPC::SRAD: 2721 III.ImmWidth = 6; 2722 III.TruncateImmTo = 0; 2723 III.ImmOpcode = PPC::SRADI; 2724 break; 2725 case PPC::SRADo: 2726 III.ImmWidth = 6; 2727 III.TruncateImmTo = 0; 2728 III.ImmOpcode = PPC::SRADIo; 2729 break; 2730 } 2731 break; 2732 // Loads and stores: 2733 case PPC::LBZX: 2734 case PPC::LBZX8: 2735 case PPC::LHZX: 2736 case PPC::LHZX8: 2737 case PPC::LHAX: 2738 case PPC::LHAX8: 2739 case PPC::LWZX: 2740 case PPC::LWZX8: 2741 case PPC::LWAX: 2742 case PPC::LDX: 2743 case PPC::LFSX: 2744 case PPC::LFDX: 2745 case PPC::STBX: 2746 case PPC::STBX8: 2747 case PPC::STHX: 2748 case PPC::STHX8: 2749 case PPC::STWX: 2750 case PPC::STWX8: 2751 case PPC::STDX: 2752 case PPC::STFSX: 2753 case PPC::STFDX: 2754 III.SignedImm = true; 2755 III.ZeroIsSpecialOrig = 1; 2756 III.ZeroIsSpecialNew = 2; 2757 III.IsCommutative = true; 2758 III.ImmOpNo = 1; 2759 III.ConstantOpNo = 2; 2760 switch(Opc) { 2761 default: llvm_unreachable("Unknown opcode"); 2762 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 2763 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 2764 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 2765 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 2766 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 2767 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 2768 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 2769 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 2770 case PPC::LWAX: 2771 III.ImmOpcode = PPC::LWA; 2772 III.ImmMustBeMultipleOf = 4; 2773 break; 2774 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 2775 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 2776 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 2777 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 2778 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 2779 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 2780 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 2781 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 2782 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 2783 case PPC::STDX: 2784 III.ImmOpcode = PPC::STD; 2785 III.ImmMustBeMultipleOf = 4; 2786 break; 2787 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 2788 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 2789 } 2790 break; 2791 case PPC::LBZUX: 2792 case PPC::LBZUX8: 2793 case PPC::LHZUX: 2794 case PPC::LHZUX8: 2795 case PPC::LHAUX: 2796 case PPC::LHAUX8: 2797 case PPC::LWZUX: 2798 case PPC::LWZUX8: 2799 case PPC::LDUX: 2800 case PPC::LFSUX: 2801 case PPC::LFDUX: 2802 case PPC::STBUX: 2803 case PPC::STBUX8: 2804 case PPC::STHUX: 2805 case PPC::STHUX8: 2806 case PPC::STWUX: 2807 case PPC::STWUX8: 2808 case PPC::STDUX: 2809 case PPC::STFSUX: 2810 case PPC::STFDUX: 2811 III.SignedImm = true; 2812 III.ZeroIsSpecialOrig = 2; 2813 III.ZeroIsSpecialNew = 3; 2814 III.IsCommutative = false; 2815 III.ImmOpNo = 2; 2816 III.ConstantOpNo = 3; 2817 switch(Opc) { 2818 default: llvm_unreachable("Unknown opcode"); 2819 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 2820 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 2821 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 2822 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 2823 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 2824 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 2825 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 2826 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 2827 case PPC::LDUX: 2828 III.ImmOpcode = PPC::LDU; 2829 III.ImmMustBeMultipleOf = 4; 2830 break; 2831 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 2832 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 2833 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 2834 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 2835 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 2836 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 2837 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 2838 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 2839 case PPC::STDUX: 2840 III.ImmOpcode = PPC::STDU; 2841 III.ImmMustBeMultipleOf = 4; 2842 break; 2843 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 2844 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 2845 } 2846 break; 2847 // Power9 only. 2848 case PPC::LXVX: 2849 case PPC::LXSSPX: 2850 case PPC::LXSDX: 2851 case PPC::STXVX: 2852 case PPC::STXSSPX: 2853 case PPC::STXSDX: 2854 if (!Subtarget.hasP9Vector()) 2855 return false; 2856 III.SignedImm = true; 2857 III.ZeroIsSpecialOrig = 1; 2858 III.ZeroIsSpecialNew = 2; 2859 III.IsCommutative = true; 2860 III.ImmOpNo = 1; 2861 III.ConstantOpNo = 2; 2862 switch(Opc) { 2863 default: llvm_unreachable("Unknown opcode"); 2864 case PPC::LXVX: 2865 III.ImmOpcode = PPC::LXV; 2866 III.ImmMustBeMultipleOf = 16; 2867 break; 2868 case PPC::LXSSPX: 2869 III.ImmOpcode = PPC::LXSSP; 2870 III.ImmMustBeMultipleOf = 4; 2871 break; 2872 case PPC::LXSDX: 2873 III.ImmOpcode = PPC::LXSD; 2874 III.ImmMustBeMultipleOf = 4; 2875 break; 2876 case PPC::STXVX: 2877 III.ImmOpcode = PPC::STXV; 2878 III.ImmMustBeMultipleOf = 16; 2879 break; 2880 case PPC::STXSSPX: 2881 III.ImmOpcode = PPC::STXSSP; 2882 III.ImmMustBeMultipleOf = 4; 2883 break; 2884 case PPC::STXSDX: 2885 III.ImmOpcode = PPC::STXSD; 2886 III.ImmMustBeMultipleOf = 4; 2887 break; 2888 } 2889 break; 2890 } 2891 return true; 2892 } 2893 2894 // Utility function for swaping two arbitrary operands of an instruction. 2895 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 2896 assert(Op1 != Op2 && "Cannot swap operand with itself."); 2897 2898 unsigned MaxOp = std::max(Op1, Op2); 2899 unsigned MinOp = std::min(Op1, Op2); 2900 MachineOperand MOp1 = MI.getOperand(MinOp); 2901 MachineOperand MOp2 = MI.getOperand(MaxOp); 2902 MI.RemoveOperand(std::max(Op1, Op2)); 2903 MI.RemoveOperand(std::min(Op1, Op2)); 2904 2905 // If the operands we are swapping are the two at the end (the common case) 2906 // we can just remove both and add them in the opposite order. 2907 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 2908 MI.addOperand(MOp2); 2909 MI.addOperand(MOp1); 2910 } else { 2911 // Store all operands in a temporary vector, remove them and re-add in the 2912 // right order. 2913 SmallVector<MachineOperand, 2> MOps; 2914 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 2915 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 2916 MOps.push_back(MI.getOperand(i)); 2917 MI.RemoveOperand(i); 2918 } 2919 // MOp2 needs to be added next. 2920 MI.addOperand(MOp2); 2921 // Now add the rest. 2922 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 2923 if (i == MaxOp) 2924 MI.addOperand(MOp1); 2925 else { 2926 MI.addOperand(MOps.back()); 2927 MOps.pop_back(); 2928 } 2929 } 2930 } 2931 } 2932 2933 bool PPCInstrInfo::transformToImmForm(MachineInstr &MI, const ImmInstrInfo &III, 2934 unsigned ConstantOpNo, 2935 int64_t Imm) const { 2936 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2937 bool PostRA = !MRI.isSSA(); 2938 // Exit early if we can't convert this. 2939 if ((ConstantOpNo != III.ConstantOpNo) && !III.IsCommutative) 2940 return false; 2941 if (Imm % III.ImmMustBeMultipleOf) 2942 return false; 2943 if (III.TruncateImmTo) 2944 Imm &= ((1 << III.TruncateImmTo) - 1); 2945 if (III.SignedImm) { 2946 APInt ActualValue(64, Imm, true); 2947 if (!ActualValue.isSignedIntN(III.ImmWidth)) 2948 return false; 2949 } else { 2950 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 2951 if ((uint64_t)Imm > UnsignedMax) 2952 return false; 2953 } 2954 2955 // If we're post-RA, the instructions don't agree on whether register zero is 2956 // special, we can transform this as long as the register operand that will 2957 // end up in the location where zero is special isn't R0. 2958 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 2959 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 2960 III.ZeroIsSpecialNew + 1; 2961 unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 2962 unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 2963 // If R0 is in the operand where zero is special for the new instruction, 2964 // it is unsafe to transform if the constant operand isn't that operand. 2965 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 2966 ConstantOpNo != III.ZeroIsSpecialNew) 2967 return false; 2968 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 2969 ConstantOpNo != PosForOrigZero) 2970 return false; 2971 } 2972 2973 unsigned Opc = MI.getOpcode(); 2974 bool SpecialShift32 = 2975 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo; 2976 bool SpecialShift64 = 2977 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo; 2978 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo || 2979 Opc == PPC::SLDo || Opc == PPC::SRDo; 2980 bool RightShift = 2981 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo; 2982 2983 MI.setDesc(get(III.ImmOpcode)); 2984 if (ConstantOpNo == III.ConstantOpNo) { 2985 // Converting shifts to immediate form is a bit tricky since they may do 2986 // one of three things: 2987 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 2988 // 2. If the shift amount is zero, the result is unchanged (save for maybe 2989 // setting CR0) 2990 // 3. If the shift amount is in [1, OpSize), it's just a shift 2991 if (SpecialShift32 || SpecialShift64) { 2992 LoadImmediateInfo LII; 2993 LII.Imm = 0; 2994 LII.SetCR = SetCR; 2995 LII.Is64Bit = SpecialShift64; 2996 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 2997 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 2998 replaceInstrWithLI(MI, LII); 2999 // Shifts by zero don't change the value. If we don't need to set CR0, 3000 // just convert this to a COPY. Can't do this post-RA since we've already 3001 // cleaned up the copies. 3002 else if (!SetCR && ShAmt == 0 && !PostRA) { 3003 MI.RemoveOperand(2); 3004 MI.setDesc(get(PPC::COPY)); 3005 } else { 3006 // The 32 bit and 64 bit instructions are quite different. 3007 if (SpecialShift32) { 3008 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31). 3009 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt; 3010 uint64_t MB = RightShift ? ShAmt : 0; 3011 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3012 MI.getOperand(III.ConstantOpNo).ChangeToImmediate(SH); 3013 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3014 .addImm(ME); 3015 } else { 3016 // Left shifts use (N, 63-N), right shifts use (64-N, N). 3017 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt; 3018 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3019 MI.getOperand(III.ConstantOpNo).ChangeToImmediate(SH); 3020 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3021 } 3022 } 3023 } else 3024 MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm); 3025 } 3026 // Convert commutative instructions (switch the operands and convert the 3027 // desired one to an immediate. 3028 else if (III.IsCommutative) { 3029 MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm); 3030 swapMIOperands(MI, ConstantOpNo, III.ConstantOpNo); 3031 } else 3032 llvm_unreachable("Should have exited early!"); 3033 3034 // For instructions for which the constant register replaces a different 3035 // operand than where the immediate goes, we need to swap them. 3036 if (III.ConstantOpNo != III.ImmOpNo) 3037 swapMIOperands(MI, III.ConstantOpNo, III.ImmOpNo); 3038 3039 // If the R0/X0 register is special for the original instruction and not for 3040 // the new instruction (or vice versa), we need to fix up the register class. 3041 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3042 if (!III.ZeroIsSpecialOrig) { 3043 unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3044 const TargetRegisterClass *NewRC = 3045 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3046 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3047 MRI.setRegClass(RegToModify, NewRC); 3048 } 3049 } 3050 return true; 3051 } 3052 3053 const TargetRegisterClass * 3054 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3055 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3056 return &PPC::VSRCRegClass; 3057 return RC; 3058 } 3059 3060 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3061 return PPC::getRecordFormOpcode(Opcode); 3062 } 3063 3064 // This function returns true if the machine instruction 3065 // always outputs a value by sign-extending a 32 bit value, 3066 // i.e. 0 to 31-th bits are same as 32-th bit. 3067 static bool isSignExtendingOp(const MachineInstr &MI) { 3068 int Opcode = MI.getOpcode(); 3069 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3070 Opcode == PPC::LIS || Opcode == PPC::LIS8 || 3071 Opcode == PPC::SRAW || Opcode == PPC::SRAWo || 3072 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo || 3073 Opcode == PPC::LWA || Opcode == PPC::LWAX || 3074 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3075 Opcode == PPC::LHA || Opcode == PPC::LHAX || 3076 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 || 3077 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3078 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3079 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3080 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3081 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3082 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3083 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3084 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3085 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo || 3086 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo || 3087 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 || 3088 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo || 3089 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3090 Opcode == PPC::EXTSB8_32_64) 3091 return true; 3092 3093 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3094 return true; 3095 3096 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3097 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) && 3098 MI.getOperand(3).getImm() > 0 && 3099 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3100 return true; 3101 3102 return false; 3103 } 3104 3105 // This function returns true if the machine instruction 3106 // always outputs zeros in higher 32 bits. 3107 static bool isZeroExtendingOp(const MachineInstr &MI) { 3108 int Opcode = MI.getOpcode(); 3109 // The 16-bit immediate is sign-extended in li/lis. 3110 // If the most significant bit is zero, all higher bits are zero. 3111 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3112 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3113 int64_t Imm = MI.getOperand(1).getImm(); 3114 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3115 return true; 3116 } 3117 3118 // We have some variations of rotate-and-mask instructions 3119 // that clear higher 32-bits. 3120 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo || 3121 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo || 3122 Opcode == PPC::RLDICL_32_64) && 3123 MI.getOperand(3).getImm() >= 32) 3124 return true; 3125 3126 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) && 3127 MI.getOperand(3).getImm() >= 32 && 3128 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3129 return true; 3130 3131 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo || 3132 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo || 3133 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3134 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3135 return true; 3136 3137 // There are other instructions that clear higher 32-bits. 3138 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo || 3139 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo || 3140 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3141 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo || 3142 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo || 3143 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || 3144 Opcode == PPC::SLW || Opcode == PPC::SLWo || 3145 Opcode == PPC::SRW || Opcode == PPC::SRWo || 3146 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || 3147 Opcode == PPC::SLWI || Opcode == PPC::SLWIo || 3148 Opcode == PPC::SRWI || Opcode == PPC::SRWIo || 3149 Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3150 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || 3151 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX || 3152 Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3153 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3154 Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3155 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 3156 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || 3157 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 || 3158 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 3159 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 3160 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || 3161 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 3162 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3163 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo || 3164 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo || 3165 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo || 3166 Opcode == PPC::MFVSRWZ) 3167 return true; 3168 3169 return false; 3170 } 3171 3172 // This function returns true if the input MachineInstr is a TOC save 3173 // instruction. 3174 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 3175 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 3176 return false; 3177 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 3178 unsigned StackOffset = MI.getOperand(1).getImm(); 3179 unsigned StackReg = MI.getOperand(2).getReg(); 3180 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 3181 return true; 3182 3183 return false; 3184 } 3185 3186 // We limit the max depth to track incoming values of PHIs or binary ops 3187 // (e.g. AND) to avoid exsessive cost. 3188 const unsigned MAX_DEPTH = 1; 3189 3190 bool 3191 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 3192 const unsigned Depth) const { 3193 const MachineFunction *MF = MI.getParent()->getParent(); 3194 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 3195 3196 // If we know this instruction returns sign- or zero-extended result, 3197 // return true. 3198 if (SignExt ? isSignExtendingOp(MI): 3199 isZeroExtendingOp(MI)) 3200 return true; 3201 3202 switch (MI.getOpcode()) { 3203 case PPC::COPY: { 3204 unsigned SrcReg = MI.getOperand(1).getReg(); 3205 3206 // In both ELFv1 and v2 ABI, method parameters and the return value 3207 // are sign- or zero-extended. 3208 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 3209 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 3210 // We check the ZExt/SExt flags for a method parameter. 3211 if (MI.getParent()->getBasicBlock() == 3212 &MF->getFunction().getEntryBlock()) { 3213 unsigned VReg = MI.getOperand(0).getReg(); 3214 if (MF->getRegInfo().isLiveIn(VReg)) 3215 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 3216 FuncInfo->isLiveInZExt(VReg); 3217 } 3218 3219 // For a method return value, we check the ZExt/SExt flags in attribute. 3220 // We assume the following code sequence for method call. 3221 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 3222 // BL8_NOP @func,... 3223 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 3224 // %5 = COPY %x3; G8RC:%5 3225 if (SrcReg == PPC::X3) { 3226 const MachineBasicBlock *MBB = MI.getParent(); 3227 MachineBasicBlock::const_instr_iterator II = 3228 MachineBasicBlock::const_instr_iterator(&MI); 3229 if (II != MBB->instr_begin() && 3230 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 3231 const MachineInstr &CallMI = *(--II); 3232 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 3233 const Function *CalleeFn = 3234 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 3235 if (!CalleeFn) 3236 return false; 3237 const IntegerType *IntTy = 3238 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 3239 const AttributeSet &Attrs = 3240 CalleeFn->getAttributes().getRetAttributes(); 3241 if (IntTy && IntTy->getBitWidth() <= 32) 3242 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 3243 Attribute::ZExt); 3244 } 3245 } 3246 } 3247 } 3248 3249 // If this is a copy from another register, we recursively check source. 3250 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3251 return false; 3252 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3253 if (SrcMI != NULL) 3254 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3255 3256 return false; 3257 } 3258 3259 case PPC::ANDIo: 3260 case PPC::ANDISo: 3261 case PPC::ORI: 3262 case PPC::ORIS: 3263 case PPC::XORI: 3264 case PPC::XORIS: 3265 case PPC::ANDIo8: 3266 case PPC::ANDISo8: 3267 case PPC::ORI8: 3268 case PPC::ORIS8: 3269 case PPC::XORI8: 3270 case PPC::XORIS8: { 3271 // logical operation with 16-bit immediate does not change the upper bits. 3272 // So, we track the operand register as we do for register copy. 3273 unsigned SrcReg = MI.getOperand(1).getReg(); 3274 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3275 return false; 3276 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3277 if (SrcMI != NULL) 3278 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 3279 3280 return false; 3281 } 3282 3283 // If all incoming values are sign-/zero-extended, 3284 // the output of OR, ISEL or PHI is also sign-/zero-extended. 3285 case PPC::OR: 3286 case PPC::OR8: 3287 case PPC::ISEL: 3288 case PPC::PHI: { 3289 if (Depth >= MAX_DEPTH) 3290 return false; 3291 3292 // The input registers for PHI are operand 1, 3, ... 3293 // The input registers for others are operand 1 and 2. 3294 unsigned E = 3, D = 1; 3295 if (MI.getOpcode() == PPC::PHI) { 3296 E = MI.getNumOperands(); 3297 D = 2; 3298 } 3299 3300 for (unsigned I = 1; I != E; I += D) { 3301 if (MI.getOperand(I).isReg()) { 3302 unsigned SrcReg = MI.getOperand(I).getReg(); 3303 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 3304 return false; 3305 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 3306 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 3307 return false; 3308 } 3309 else 3310 return false; 3311 } 3312 return true; 3313 } 3314 3315 // If at least one of the incoming values of an AND is zero extended 3316 // then the output is also zero-extended. If both of the incoming values 3317 // are sign-extended then the output is also sign extended. 3318 case PPC::AND: 3319 case PPC::AND8: { 3320 if (Depth >= MAX_DEPTH) 3321 return false; 3322 3323 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 3324 3325 unsigned SrcReg1 = MI.getOperand(1).getReg(); 3326 unsigned SrcReg2 = MI.getOperand(2).getReg(); 3327 3328 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) || 3329 !TargetRegisterInfo::isVirtualRegister(SrcReg2)) 3330 return false; 3331 3332 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 3333 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 3334 if (!MISrc1 || !MISrc2) 3335 return false; 3336 3337 if(SignExt) 3338 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 3339 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3340 else 3341 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 3342 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 3343 } 3344 3345 default: 3346 break; 3347 } 3348 return false; 3349 } 3350