1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 STATISTIC(NumStoreSPILLVSRRCAsVec,
50           "Number of spillvsrrc spilled to stack as vec");
51 STATISTIC(NumStoreSPILLVSRRCAsGpr,
52           "Number of spillvsrrc spilled to stack as gpr");
53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
54 STATISTIC(CmpIselsConverted,
55           "Number of ISELs that depend on comparison of constants converted");
56 STATISTIC(MissedConvertibleImmediateInstrs,
57           "Number of compare-immediate instructions fed by constants");
58 STATISTIC(NumRcRotatesConvertedToRcAnd,
59           "Number of record-form rotates converted to record-form andi");
60 
61 static cl::
62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
63             cl::desc("Disable analysis for CTR loops"));
64 
65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
66 cl::desc("Disable compare instruction optimization"), cl::Hidden);
67 
68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
70 cl::Hidden);
71 
72 static cl::opt<bool>
73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
74   cl::desc("Use the old (incorrect) instruction latency calculation"));
75 
76 // Pin the vtable to this file.
77 void PPCInstrInfo::anchor() {}
78 
79 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
80     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
81                       /* CatchRetOpcode */ -1,
82                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
83       Subtarget(STI), RI(STI.getTargetMachine()) {}
84 
85 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
86 /// this target when scheduling the DAG.
87 ScheduleHazardRecognizer *
88 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
89                                            const ScheduleDAG *DAG) const {
90   unsigned Directive =
91       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
92   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
93       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
94     const InstrItineraryData *II =
95         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
96     return new ScoreboardHazardRecognizer(II, DAG);
97   }
98 
99   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
100 }
101 
102 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
103 /// to use for this target when scheduling the DAG.
104 ScheduleHazardRecognizer *
105 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
106                                                  const ScheduleDAG *DAG) const {
107   unsigned Directive =
108       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
109 
110   // FIXME: Leaving this as-is until we have POWER9 scheduling info
111   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
112     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
113 
114   // Most subtargets use a PPC970 recognizer.
115   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
116       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
117     assert(DAG->TII && "No InstrInfo?");
118 
119     return new PPCHazardRecognizer970(*DAG);
120   }
121 
122   return new ScoreboardHazardRecognizer(II, DAG);
123 }
124 
125 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
126                                        const MachineInstr &MI,
127                                        unsigned *PredCost) const {
128   if (!ItinData || UseOldLatencyCalc)
129     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
130 
131   // The default implementation of getInstrLatency calls getStageLatency, but
132   // getStageLatency does not do the right thing for us. While we have
133   // itinerary, most cores are fully pipelined, and so the itineraries only
134   // express the first part of the pipeline, not every stage. Instead, we need
135   // to use the listed output operand cycle number (using operand 0 here, which
136   // is an output).
137 
138   unsigned Latency = 1;
139   unsigned DefClass = MI.getDesc().getSchedClass();
140   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
141     const MachineOperand &MO = MI.getOperand(i);
142     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
143       continue;
144 
145     int Cycle = ItinData->getOperandCycle(DefClass, i);
146     if (Cycle < 0)
147       continue;
148 
149     Latency = std::max(Latency, (unsigned) Cycle);
150   }
151 
152   return Latency;
153 }
154 
155 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
156                                     const MachineInstr &DefMI, unsigned DefIdx,
157                                     const MachineInstr &UseMI,
158                                     unsigned UseIdx) const {
159   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
160                                                    UseMI, UseIdx);
161 
162   if (!DefMI.getParent())
163     return Latency;
164 
165   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
166   Register Reg = DefMO.getReg();
167 
168   bool IsRegCR;
169   if (Register::isVirtualRegister(Reg)) {
170     const MachineRegisterInfo *MRI =
171         &DefMI.getParent()->getParent()->getRegInfo();
172     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
173               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
174   } else {
175     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
176               PPC::CRBITRCRegClass.contains(Reg);
177   }
178 
179   if (UseMI.isBranch() && IsRegCR) {
180     if (Latency < 0)
181       Latency = getInstrLatency(ItinData, DefMI);
182 
183     // On some cores, there is an additional delay between writing to a condition
184     // register, and using it from a branch.
185     unsigned Directive = Subtarget.getCPUDirective();
186     switch (Directive) {
187     default: break;
188     case PPC::DIR_7400:
189     case PPC::DIR_750:
190     case PPC::DIR_970:
191     case PPC::DIR_E5500:
192     case PPC::DIR_PWR4:
193     case PPC::DIR_PWR5:
194     case PPC::DIR_PWR5X:
195     case PPC::DIR_PWR6:
196     case PPC::DIR_PWR6X:
197     case PPC::DIR_PWR7:
198     case PPC::DIR_PWR8:
199     // FIXME: Is this needed for POWER9?
200       Latency += 2;
201       break;
202     }
203   }
204 
205   return Latency;
206 }
207 
208 /// This is an architecture-specific helper function of reassociateOps.
209 /// Set special operand attributes for new instructions after reassociation.
210 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
211                                          MachineInstr &OldMI2,
212                                          MachineInstr &NewMI1,
213                                          MachineInstr &NewMI2) const {
214   // Propagate FP flags from the original instructions.
215   // But clear poison-generating flags because those may not be valid now.
216   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
217   NewMI1.setFlags(IntersectedFlags);
218   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
219   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
220   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
221 
222   NewMI2.setFlags(IntersectedFlags);
223   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
224   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
225   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
226 }
227 
228 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
229                                          uint16_t Flags) const {
230   MI.setFlags(Flags);
231   MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
232   MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
233   MI.clearFlag(MachineInstr::MIFlag::IsExact);
234 }
235 
236 // This function does not list all associative and commutative operations, but
237 // only those worth feeding through the machine combiner in an attempt to
238 // reduce the critical path. Mostly, this means floating-point operations,
239 // because they have high latencies(>=5) (compared to other operations, such as
240 // and/or, which are also associative and commutative, but have low latencies).
241 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
242   switch (Inst.getOpcode()) {
243   // Floating point:
244   // FP Add:
245   case PPC::FADD:
246   case PPC::FADDS:
247   // FP Multiply:
248   case PPC::FMUL:
249   case PPC::FMULS:
250   // Altivec Add:
251   case PPC::VADDFP:
252   // VSX Add:
253   case PPC::XSADDDP:
254   case PPC::XVADDDP:
255   case PPC::XVADDSP:
256   case PPC::XSADDSP:
257   // VSX Multiply:
258   case PPC::XSMULDP:
259   case PPC::XVMULDP:
260   case PPC::XVMULSP:
261   case PPC::XSMULSP:
262     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
263            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
264   // Fixed point:
265   // Multiply:
266   case PPC::MULHD:
267   case PPC::MULLD:
268   case PPC::MULHW:
269   case PPC::MULLW:
270     return true;
271   default:
272     return false;
273   }
274 }
275 
276 #define InfoArrayIdxFMAInst 0
277 #define InfoArrayIdxFAddInst 1
278 #define InfoArrayIdxFMULInst 2
279 #define InfoArrayIdxAddOpIdx 3
280 #define InfoArrayIdxMULOpIdx 4
281 // Array keeps info for FMA instructions:
282 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
283 // Index 1(InfoArrayIdxFAddInst): ADD instruction assoaicted with FMA;
284 // Index 2(InfoArrayIdxFMULInst): MUL instruction assoaicted with FMA;
285 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
286 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
287 //                                second MUL operand index is plus 1.
288 static const uint16_t FMAOpIdxInfo[][5] = {
289     // FIXME: Add more FMA instructions like XSNMADDADP and so on.
290     {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2},
291     {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2},
292     {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2},
293     {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2},
294     {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1},
295     {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1}};
296 
297 // Check if an opcode is a FMA instruction. If it is, return the index in array
298 // FMAOpIdxInfo. Otherwise, return -1.
299 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
300   for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
301     if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
302       return I;
303   return -1;
304 }
305 
306 // Try to reassociate FMA chains like below:
307 //
308 // Pattern 1:
309 //   A =  FADD X,  Y          (Leaf)
310 //   B =  FMA  A,  M21,  M22  (Prev)
311 //   C =  FMA  B,  M31,  M32  (Root)
312 // -->
313 //   A =  FMA  X,  M21,  M22
314 //   B =  FMA  Y,  M31,  M32
315 //   C =  FADD A,  B
316 //
317 // Pattern 2:
318 //   A =  FMA  X,  M11,  M12  (Leaf)
319 //   B =  FMA  A,  M21,  M22  (Prev)
320 //   C =  FMA  B,  M31,  M32  (Root)
321 // -->
322 //   A =  FMUL M11,  M12
323 //   B =  FMA  X,  M21,  M22
324 //   D =  FMA  A,  M31,  M32
325 //   C =  FADD B,  D
326 //
327 // breaking the dependency between A and B, allowing FMA to be executed in
328 // parallel (or back-to-back in a pipeline) instead of depending on each other.
329 bool PPCInstrInfo::getFMAPatterns(
330     MachineInstr &Root,
331     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
332   MachineBasicBlock *MBB = Root.getParent();
333   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
334 
335   auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
336     for (const auto &MO : Instr.explicit_operands())
337       if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
338         return false;
339     return true;
340   };
341 
342   auto IsReassociable = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
343                             bool IsLeaf, bool IsAdd) {
344     int16_t Idx = -1;
345     if (!IsAdd) {
346       Idx = getFMAOpIdxInfo(Instr.getOpcode());
347       if (Idx < 0)
348         return false;
349     } else if (Instr.getOpcode() !=
350                FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())]
351                            [InfoArrayIdxFAddInst])
352       return false;
353 
354     // Instruction can be reassociated.
355     // fast math flags may prohibit reassociation.
356     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
357           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
358       return false;
359 
360     // Instruction operands are virtual registers for reassociation.
361     if (!IsAllOpsVirtualReg(Instr))
362       return false;
363 
364     if (IsAdd && IsLeaf)
365       return true;
366 
367     AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
368 
369     const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
370     MachineInstr *MIAdd = MRI.getUniqueVRegDef(OpAdd.getReg());
371     // If 'add' operand's def is not in current block, don't do ILP related opt.
372     if (!MIAdd || MIAdd->getParent() != MBB)
373       return false;
374 
375     // If this is not Leaf FMA Instr, its 'add' operand should only have one use
376     // as this fma will be changed later.
377     return IsLeaf ? true : MRI.hasOneNonDBGUse(OpAdd.getReg());
378   };
379 
380   int16_t AddOpIdx = -1;
381   // Root must be a valid FMA like instruction.
382   if (!IsReassociable(Root, AddOpIdx, false, false))
383     return false;
384 
385   assert((AddOpIdx >= 0) && "add operand index not right!");
386 
387   Register RegB = Root.getOperand(AddOpIdx).getReg();
388   MachineInstr *Prev = MRI.getUniqueVRegDef(RegB);
389 
390   // Prev must be a valid FMA like instruction.
391   AddOpIdx = -1;
392   if (!IsReassociable(*Prev, AddOpIdx, false, false))
393     return false;
394 
395   assert((AddOpIdx >= 0) && "add operand index not right!");
396 
397   Register RegA = Prev->getOperand(AddOpIdx).getReg();
398   MachineInstr *Leaf = MRI.getUniqueVRegDef(RegA);
399   AddOpIdx = -1;
400   if (IsReassociable(*Leaf, AddOpIdx, true, false)) {
401     Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
402     return true;
403   }
404   if (IsReassociable(*Leaf, AddOpIdx, true, true)) {
405     Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
406     return true;
407   }
408   return false;
409 }
410 
411 bool PPCInstrInfo::getMachineCombinerPatterns(
412     MachineInstr &Root,
413     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
414   // Using the machine combiner in this way is potentially expensive, so
415   // restrict to when aggressive optimizations are desired.
416   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
417     return false;
418 
419   if (getFMAPatterns(Root, Patterns))
420     return true;
421 
422   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
423 }
424 
425 void PPCInstrInfo::genAlternativeCodeSequence(
426     MachineInstr &Root, MachineCombinerPattern Pattern,
427     SmallVectorImpl<MachineInstr *> &InsInstrs,
428     SmallVectorImpl<MachineInstr *> &DelInstrs,
429     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
430   switch (Pattern) {
431   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
432   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
433     reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
434     break;
435   default:
436     // Reassociate default patterns.
437     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
438                                                 DelInstrs, InstrIdxForVirtReg);
439     break;
440   }
441 }
442 
443 // Currently, only handle two patterns REASSOC_XY_AMM_BMM and
444 // REASSOC_XMM_AMM_BMM. See comments for getFMAPatterns.
445 void PPCInstrInfo::reassociateFMA(
446     MachineInstr &Root, MachineCombinerPattern Pattern,
447     SmallVectorImpl<MachineInstr *> &InsInstrs,
448     SmallVectorImpl<MachineInstr *> &DelInstrs,
449     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
450   MachineFunction *MF = Root.getMF();
451   MachineRegisterInfo &MRI = MF->getRegInfo();
452   MachineOperand &OpC = Root.getOperand(0);
453   Register RegC = OpC.getReg();
454   const TargetRegisterClass *RC = MRI.getRegClass(RegC);
455   MRI.constrainRegClass(RegC, RC);
456 
457   unsigned FmaOp = Root.getOpcode();
458   int16_t Idx = getFMAOpIdxInfo(FmaOp);
459   assert(Idx >= 0 && "Root must be a FMA instruction");
460 
461   uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
462   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
463   MachineInstr *Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
464   MachineInstr *Leaf =
465       MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
466   uint16_t IntersectedFlags =
467       Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
468 
469   auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
470                             bool &KillFlag) {
471     Reg = Operand.getReg();
472     MRI.constrainRegClass(Reg, RC);
473     KillFlag = Operand.isKill();
474   };
475 
476   auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
477                              Register &MulOp2, bool &MulOp1KillFlag,
478                              bool &MulOp2KillFlag) {
479     GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
480     GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
481   };
482 
483   Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32;
484   bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
485        KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false;
486 
487   GetFMAInstrInfo(Root, RegM31, RegM32, KillM31, KillM32);
488   GetFMAInstrInfo(*Prev, RegM21, RegM22, KillM21, KillM22);
489 
490   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
491     GetFMAInstrInfo(*Leaf, RegM11, RegM12, KillM11, KillM12);
492     GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
493   } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
494     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
495     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
496   }
497 
498   // Create new virtual registers for the new results instead of
499   // recycling legacy ones because the MachineCombiner's computation of the
500   // critical path requires a new register definition rather than an existing
501   // one.
502   Register NewVRA = MRI.createVirtualRegister(RC);
503   InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
504 
505   Register NewVRB = MRI.createVirtualRegister(RC);
506   InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
507 
508   Register NewVRD = 0;
509   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
510     NewVRD = MRI.createVirtualRegister(RC);
511     InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
512   }
513 
514   auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
515                                 Register RegMul1, bool KillRegMul1,
516                                 Register RegMul2, bool KillRegMul2) {
517     MI->getOperand(AddOpIdx).setReg(RegAdd);
518     MI->getOperand(AddOpIdx).setIsKill(KillAdd);
519     MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
520     MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
521     MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
522     MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
523   };
524 
525   if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
526     // Create new instructions for insertion.
527     MachineInstrBuilder MINewB =
528         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
529             .addReg(RegX, getKillRegState(KillX))
530             .addReg(RegM21, getKillRegState(KillM21))
531             .addReg(RegM22, getKillRegState(KillM22));
532     MachineInstrBuilder MINewA =
533         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
534             .addReg(RegY, getKillRegState(KillY))
535             .addReg(RegM31, getKillRegState(KillM31))
536             .addReg(RegM32, getKillRegState(KillM32));
537     // If AddOpIdx is not 1, adjust the order.
538     if (AddOpIdx != 1) {
539       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
540       AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
541     }
542 
543     MachineInstrBuilder MINewC =
544         BuildMI(*MF, Root.getDebugLoc(),
545                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
546             .addReg(NewVRB, getKillRegState(true))
547             .addReg(NewVRA, getKillRegState(true));
548 
549     // Update flags for newly created instructions.
550     setSpecialOperandAttr(*MINewA, IntersectedFlags);
551     setSpecialOperandAttr(*MINewB, IntersectedFlags);
552     setSpecialOperandAttr(*MINewC, IntersectedFlags);
553 
554     // Record new instructions for insertion.
555     InsInstrs.push_back(MINewA);
556     InsInstrs.push_back(MINewB);
557     InsInstrs.push_back(MINewC);
558   } else if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
559     assert(NewVRD && "new FMA register not created!");
560     // Create new instructions for insertion.
561     MachineInstrBuilder MINewA =
562         BuildMI(*MF, Leaf->getDebugLoc(),
563                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
564             .addReg(RegM11, getKillRegState(KillM11))
565             .addReg(RegM12, getKillRegState(KillM12));
566     MachineInstrBuilder MINewB =
567         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
568             .addReg(RegX, getKillRegState(KillX))
569             .addReg(RegM21, getKillRegState(KillM21))
570             .addReg(RegM22, getKillRegState(KillM22));
571     MachineInstrBuilder MINewD =
572         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
573             .addReg(NewVRA, getKillRegState(true))
574             .addReg(RegM31, getKillRegState(KillM31))
575             .addReg(RegM32, getKillRegState(KillM32));
576     // If AddOpIdx is not 1, adjust the order.
577     if (AddOpIdx != 1) {
578       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
579       AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
580                          KillM32);
581     }
582 
583     MachineInstrBuilder MINewC =
584         BuildMI(*MF, Root.getDebugLoc(),
585                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
586             .addReg(NewVRB, getKillRegState(true))
587             .addReg(NewVRD, getKillRegState(true));
588 
589     // Update flags for newly created instructions.
590     setSpecialOperandAttr(*MINewA, IntersectedFlags);
591     setSpecialOperandAttr(*MINewB, IntersectedFlags);
592     setSpecialOperandAttr(*MINewD, IntersectedFlags);
593     setSpecialOperandAttr(*MINewC, IntersectedFlags);
594 
595     // Record new instructions for insertion.
596     InsInstrs.push_back(MINewA);
597     InsInstrs.push_back(MINewB);
598     InsInstrs.push_back(MINewD);
599     InsInstrs.push_back(MINewC);
600   }
601 
602   assert(!InsInstrs.empty() &&
603          "Insertion instructions set should not be empty!");
604 
605   // Record old instructions for deletion.
606   DelInstrs.push_back(Leaf);
607   DelInstrs.push_back(Prev);
608   DelInstrs.push_back(&Root);
609 }
610 
611 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
612 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
613                                          Register &SrcReg, Register &DstReg,
614                                          unsigned &SubIdx) const {
615   switch (MI.getOpcode()) {
616   default: return false;
617   case PPC::EXTSW:
618   case PPC::EXTSW_32:
619   case PPC::EXTSW_32_64:
620     SrcReg = MI.getOperand(1).getReg();
621     DstReg = MI.getOperand(0).getReg();
622     SubIdx = PPC::sub_32;
623     return true;
624   }
625 }
626 
627 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
628                                            int &FrameIndex) const {
629   unsigned Opcode = MI.getOpcode();
630   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
631   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
632 
633   if (End != std::find(OpcodesForSpill, End, Opcode)) {
634     // Check for the operands added by addFrameReference (the immediate is the
635     // offset which defaults to 0).
636     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
637         MI.getOperand(2).isFI()) {
638       FrameIndex = MI.getOperand(2).getIndex();
639       return MI.getOperand(0).getReg();
640     }
641   }
642   return 0;
643 }
644 
645 // For opcodes with the ReMaterializable flag set, this function is called to
646 // verify the instruction is really rematable.
647 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
648                                                      AliasAnalysis *AA) const {
649   switch (MI.getOpcode()) {
650   default:
651     // This function should only be called for opcodes with the ReMaterializable
652     // flag set.
653     llvm_unreachable("Unknown rematerializable operation!");
654     break;
655   case PPC::LI:
656   case PPC::LI8:
657   case PPC::LIS:
658   case PPC::LIS8:
659   case PPC::ADDIStocHA:
660   case PPC::ADDIStocHA8:
661   case PPC::ADDItocL:
662   case PPC::LOAD_STACK_GUARD:
663   case PPC::XXLXORz:
664   case PPC::XXLXORspz:
665   case PPC::XXLXORdpz:
666   case PPC::XXLEQVOnes:
667   case PPC::V_SET0B:
668   case PPC::V_SET0H:
669   case PPC::V_SET0:
670   case PPC::V_SETALLONESB:
671   case PPC::V_SETALLONESH:
672   case PPC::V_SETALLONES:
673   case PPC::CRSET:
674   case PPC::CRUNSET:
675   case PPC::XXSETACCZ:
676     return true;
677   }
678   return false;
679 }
680 
681 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
682                                           int &FrameIndex) const {
683   unsigned Opcode = MI.getOpcode();
684   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
685   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
686 
687   if (End != std::find(OpcodesForSpill, End, Opcode)) {
688     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
689         MI.getOperand(2).isFI()) {
690       FrameIndex = MI.getOperand(2).getIndex();
691       return MI.getOperand(0).getReg();
692     }
693   }
694   return 0;
695 }
696 
697 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
698                                                    unsigned OpIdx1,
699                                                    unsigned OpIdx2) const {
700   MachineFunction &MF = *MI.getParent()->getParent();
701 
702   // Normal instructions can be commuted the obvious way.
703   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
704     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
705   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
706   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
707   // changing the relative order of the mask operands might change what happens
708   // to the high-bits of the mask (and, thus, the result).
709 
710   // Cannot commute if it has a non-zero rotate count.
711   if (MI.getOperand(3).getImm() != 0)
712     return nullptr;
713 
714   // If we have a zero rotate count, we have:
715   //   M = mask(MB,ME)
716   //   Op0 = (Op1 & ~M) | (Op2 & M)
717   // Change this to:
718   //   M = mask((ME+1)&31, (MB-1)&31)
719   //   Op0 = (Op2 & ~M) | (Op1 & M)
720 
721   // Swap op1/op2
722   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
723          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
724   Register Reg0 = MI.getOperand(0).getReg();
725   Register Reg1 = MI.getOperand(1).getReg();
726   Register Reg2 = MI.getOperand(2).getReg();
727   unsigned SubReg1 = MI.getOperand(1).getSubReg();
728   unsigned SubReg2 = MI.getOperand(2).getSubReg();
729   bool Reg1IsKill = MI.getOperand(1).isKill();
730   bool Reg2IsKill = MI.getOperand(2).isKill();
731   bool ChangeReg0 = false;
732   // If machine instrs are no longer in two-address forms, update
733   // destination register as well.
734   if (Reg0 == Reg1) {
735     // Must be two address instruction!
736     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
737            "Expecting a two-address instruction!");
738     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
739     Reg2IsKill = false;
740     ChangeReg0 = true;
741   }
742 
743   // Masks.
744   unsigned MB = MI.getOperand(4).getImm();
745   unsigned ME = MI.getOperand(5).getImm();
746 
747   // We can't commute a trivial mask (there is no way to represent an all-zero
748   // mask).
749   if (MB == 0 && ME == 31)
750     return nullptr;
751 
752   if (NewMI) {
753     // Create a new instruction.
754     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
755     bool Reg0IsDead = MI.getOperand(0).isDead();
756     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
757         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
758         .addReg(Reg2, getKillRegState(Reg2IsKill))
759         .addReg(Reg1, getKillRegState(Reg1IsKill))
760         .addImm((ME + 1) & 31)
761         .addImm((MB - 1) & 31);
762   }
763 
764   if (ChangeReg0) {
765     MI.getOperand(0).setReg(Reg2);
766     MI.getOperand(0).setSubReg(SubReg2);
767   }
768   MI.getOperand(2).setReg(Reg1);
769   MI.getOperand(1).setReg(Reg2);
770   MI.getOperand(2).setSubReg(SubReg1);
771   MI.getOperand(1).setSubReg(SubReg2);
772   MI.getOperand(2).setIsKill(Reg1IsKill);
773   MI.getOperand(1).setIsKill(Reg2IsKill);
774 
775   // Swap the mask around.
776   MI.getOperand(4).setImm((ME + 1) & 31);
777   MI.getOperand(5).setImm((MB - 1) & 31);
778   return &MI;
779 }
780 
781 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
782                                          unsigned &SrcOpIdx1,
783                                          unsigned &SrcOpIdx2) const {
784   // For VSX A-Type FMA instructions, it is the first two operands that can be
785   // commuted, however, because the non-encoded tied input operand is listed
786   // first, the operands to swap are actually the second and third.
787 
788   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
789   if (AltOpc == -1)
790     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
791 
792   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
793   // and SrcOpIdx2.
794   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
795 }
796 
797 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
798                               MachineBasicBlock::iterator MI) const {
799   // This function is used for scheduling, and the nop wanted here is the type
800   // that terminates dispatch groups on the POWER cores.
801   unsigned Directive = Subtarget.getCPUDirective();
802   unsigned Opcode;
803   switch (Directive) {
804   default:            Opcode = PPC::NOP; break;
805   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
806   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
807   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
808   // FIXME: Update when POWER9 scheduling model is ready.
809   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
810   }
811 
812   DebugLoc DL;
813   BuildMI(MBB, MI, DL, get(Opcode));
814 }
815 
816 /// Return the noop instruction to use for a noop.
817 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
818   NopInst.setOpcode(PPC::NOP);
819 }
820 
821 // Branch analysis.
822 // Note: If the condition register is set to CTR or CTR8 then this is a
823 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
824 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
825                                  MachineBasicBlock *&TBB,
826                                  MachineBasicBlock *&FBB,
827                                  SmallVectorImpl<MachineOperand> &Cond,
828                                  bool AllowModify) const {
829   bool isPPC64 = Subtarget.isPPC64();
830 
831   // If the block has no terminators, it just falls into the block after it.
832   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
833   if (I == MBB.end())
834     return false;
835 
836   if (!isUnpredicatedTerminator(*I))
837     return false;
838 
839   if (AllowModify) {
840     // If the BB ends with an unconditional branch to the fallthrough BB,
841     // we eliminate the branch instruction.
842     if (I->getOpcode() == PPC::B &&
843         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
844       I->eraseFromParent();
845 
846       // We update iterator after deleting the last branch.
847       I = MBB.getLastNonDebugInstr();
848       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
849         return false;
850     }
851   }
852 
853   // Get the last instruction in the block.
854   MachineInstr &LastInst = *I;
855 
856   // If there is only one terminator instruction, process it.
857   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
858     if (LastInst.getOpcode() == PPC::B) {
859       if (!LastInst.getOperand(0).isMBB())
860         return true;
861       TBB = LastInst.getOperand(0).getMBB();
862       return false;
863     } else if (LastInst.getOpcode() == PPC::BCC) {
864       if (!LastInst.getOperand(2).isMBB())
865         return true;
866       // Block ends with fall-through condbranch.
867       TBB = LastInst.getOperand(2).getMBB();
868       Cond.push_back(LastInst.getOperand(0));
869       Cond.push_back(LastInst.getOperand(1));
870       return false;
871     } else if (LastInst.getOpcode() == PPC::BC) {
872       if (!LastInst.getOperand(1).isMBB())
873         return true;
874       // Block ends with fall-through condbranch.
875       TBB = LastInst.getOperand(1).getMBB();
876       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
877       Cond.push_back(LastInst.getOperand(0));
878       return false;
879     } else if (LastInst.getOpcode() == PPC::BCn) {
880       if (!LastInst.getOperand(1).isMBB())
881         return true;
882       // Block ends with fall-through condbranch.
883       TBB = LastInst.getOperand(1).getMBB();
884       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
885       Cond.push_back(LastInst.getOperand(0));
886       return false;
887     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
888                LastInst.getOpcode() == PPC::BDNZ) {
889       if (!LastInst.getOperand(0).isMBB())
890         return true;
891       if (DisableCTRLoopAnal)
892         return true;
893       TBB = LastInst.getOperand(0).getMBB();
894       Cond.push_back(MachineOperand::CreateImm(1));
895       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
896                                                true));
897       return false;
898     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
899                LastInst.getOpcode() == PPC::BDZ) {
900       if (!LastInst.getOperand(0).isMBB())
901         return true;
902       if (DisableCTRLoopAnal)
903         return true;
904       TBB = LastInst.getOperand(0).getMBB();
905       Cond.push_back(MachineOperand::CreateImm(0));
906       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
907                                                true));
908       return false;
909     }
910 
911     // Otherwise, don't know what this is.
912     return true;
913   }
914 
915   // Get the instruction before it if it's a terminator.
916   MachineInstr &SecondLastInst = *I;
917 
918   // If there are three terminators, we don't know what sort of block this is.
919   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
920     return true;
921 
922   // If the block ends with PPC::B and PPC:BCC, handle it.
923   if (SecondLastInst.getOpcode() == PPC::BCC &&
924       LastInst.getOpcode() == PPC::B) {
925     if (!SecondLastInst.getOperand(2).isMBB() ||
926         !LastInst.getOperand(0).isMBB())
927       return true;
928     TBB = SecondLastInst.getOperand(2).getMBB();
929     Cond.push_back(SecondLastInst.getOperand(0));
930     Cond.push_back(SecondLastInst.getOperand(1));
931     FBB = LastInst.getOperand(0).getMBB();
932     return false;
933   } else if (SecondLastInst.getOpcode() == PPC::BC &&
934              LastInst.getOpcode() == PPC::B) {
935     if (!SecondLastInst.getOperand(1).isMBB() ||
936         !LastInst.getOperand(0).isMBB())
937       return true;
938     TBB = SecondLastInst.getOperand(1).getMBB();
939     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
940     Cond.push_back(SecondLastInst.getOperand(0));
941     FBB = LastInst.getOperand(0).getMBB();
942     return false;
943   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
944              LastInst.getOpcode() == PPC::B) {
945     if (!SecondLastInst.getOperand(1).isMBB() ||
946         !LastInst.getOperand(0).isMBB())
947       return true;
948     TBB = SecondLastInst.getOperand(1).getMBB();
949     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
950     Cond.push_back(SecondLastInst.getOperand(0));
951     FBB = LastInst.getOperand(0).getMBB();
952     return false;
953   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
954               SecondLastInst.getOpcode() == PPC::BDNZ) &&
955              LastInst.getOpcode() == PPC::B) {
956     if (!SecondLastInst.getOperand(0).isMBB() ||
957         !LastInst.getOperand(0).isMBB())
958       return true;
959     if (DisableCTRLoopAnal)
960       return true;
961     TBB = SecondLastInst.getOperand(0).getMBB();
962     Cond.push_back(MachineOperand::CreateImm(1));
963     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
964                                              true));
965     FBB = LastInst.getOperand(0).getMBB();
966     return false;
967   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
968               SecondLastInst.getOpcode() == PPC::BDZ) &&
969              LastInst.getOpcode() == PPC::B) {
970     if (!SecondLastInst.getOperand(0).isMBB() ||
971         !LastInst.getOperand(0).isMBB())
972       return true;
973     if (DisableCTRLoopAnal)
974       return true;
975     TBB = SecondLastInst.getOperand(0).getMBB();
976     Cond.push_back(MachineOperand::CreateImm(0));
977     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
978                                              true));
979     FBB = LastInst.getOperand(0).getMBB();
980     return false;
981   }
982 
983   // If the block ends with two PPC:Bs, handle it.  The second one is not
984   // executed, so remove it.
985   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
986     if (!SecondLastInst.getOperand(0).isMBB())
987       return true;
988     TBB = SecondLastInst.getOperand(0).getMBB();
989     I = LastInst;
990     if (AllowModify)
991       I->eraseFromParent();
992     return false;
993   }
994 
995   // Otherwise, can't handle this.
996   return true;
997 }
998 
999 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
1000                                     int *BytesRemoved) const {
1001   assert(!BytesRemoved && "code size not handled");
1002 
1003   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1004   if (I == MBB.end())
1005     return 0;
1006 
1007   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1008       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1009       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1010       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1011     return 0;
1012 
1013   // Remove the branch.
1014   I->eraseFromParent();
1015 
1016   I = MBB.end();
1017 
1018   if (I == MBB.begin()) return 1;
1019   --I;
1020   if (I->getOpcode() != PPC::BCC &&
1021       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1022       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1023       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1024     return 1;
1025 
1026   // Remove the branch.
1027   I->eraseFromParent();
1028   return 2;
1029 }
1030 
1031 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1032                                     MachineBasicBlock *TBB,
1033                                     MachineBasicBlock *FBB,
1034                                     ArrayRef<MachineOperand> Cond,
1035                                     const DebugLoc &DL,
1036                                     int *BytesAdded) const {
1037   // Shouldn't be a fall through.
1038   assert(TBB && "insertBranch must not be told to insert a fallthrough");
1039   assert((Cond.size() == 2 || Cond.size() == 0) &&
1040          "PPC branch conditions have two components!");
1041   assert(!BytesAdded && "code size not handled");
1042 
1043   bool isPPC64 = Subtarget.isPPC64();
1044 
1045   // One-way branch.
1046   if (!FBB) {
1047     if (Cond.empty())   // Unconditional branch
1048       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1049     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1050       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1051                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1052                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1053     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1054       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1055     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1056       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1057     else                // Conditional branch
1058       BuildMI(&MBB, DL, get(PPC::BCC))
1059           .addImm(Cond[0].getImm())
1060           .add(Cond[1])
1061           .addMBB(TBB);
1062     return 1;
1063   }
1064 
1065   // Two-way Conditional Branch.
1066   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1067     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1068                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1069                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1070   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1071     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1072   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1073     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1074   else
1075     BuildMI(&MBB, DL, get(PPC::BCC))
1076         .addImm(Cond[0].getImm())
1077         .add(Cond[1])
1078         .addMBB(TBB);
1079   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1080   return 2;
1081 }
1082 
1083 // Select analysis.
1084 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1085                                    ArrayRef<MachineOperand> Cond,
1086                                    Register DstReg, Register TrueReg,
1087                                    Register FalseReg, int &CondCycles,
1088                                    int &TrueCycles, int &FalseCycles) const {
1089   if (Cond.size() != 2)
1090     return false;
1091 
1092   // If this is really a bdnz-like condition, then it cannot be turned into a
1093   // select.
1094   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1095     return false;
1096 
1097   // Check register classes.
1098   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1099   const TargetRegisterClass *RC =
1100     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1101   if (!RC)
1102     return false;
1103 
1104   // isel is for regular integer GPRs only.
1105   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1106       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1107       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1108       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1109     return false;
1110 
1111   // FIXME: These numbers are for the A2, how well they work for other cores is
1112   // an open question. On the A2, the isel instruction has a 2-cycle latency
1113   // but single-cycle throughput. These numbers are used in combination with
1114   // the MispredictPenalty setting from the active SchedMachineModel.
1115   CondCycles = 1;
1116   TrueCycles = 1;
1117   FalseCycles = 1;
1118 
1119   return true;
1120 }
1121 
1122 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1123                                 MachineBasicBlock::iterator MI,
1124                                 const DebugLoc &dl, Register DestReg,
1125                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
1126                                 Register FalseReg) const {
1127   assert(Cond.size() == 2 &&
1128          "PPC branch conditions have two components!");
1129 
1130   // Get the register classes.
1131   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1132   const TargetRegisterClass *RC =
1133     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1134   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1135 
1136   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1137                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1138   assert((Is64Bit ||
1139           PPC::GPRCRegClass.hasSubClassEq(RC) ||
1140           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1141          "isel is for regular integer GPRs only");
1142 
1143   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1144   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1145 
1146   unsigned SubIdx = 0;
1147   bool SwapOps = false;
1148   switch (SelectPred) {
1149   case PPC::PRED_EQ:
1150   case PPC::PRED_EQ_MINUS:
1151   case PPC::PRED_EQ_PLUS:
1152       SubIdx = PPC::sub_eq; SwapOps = false; break;
1153   case PPC::PRED_NE:
1154   case PPC::PRED_NE_MINUS:
1155   case PPC::PRED_NE_PLUS:
1156       SubIdx = PPC::sub_eq; SwapOps = true; break;
1157   case PPC::PRED_LT:
1158   case PPC::PRED_LT_MINUS:
1159   case PPC::PRED_LT_PLUS:
1160       SubIdx = PPC::sub_lt; SwapOps = false; break;
1161   case PPC::PRED_GE:
1162   case PPC::PRED_GE_MINUS:
1163   case PPC::PRED_GE_PLUS:
1164       SubIdx = PPC::sub_lt; SwapOps = true; break;
1165   case PPC::PRED_GT:
1166   case PPC::PRED_GT_MINUS:
1167   case PPC::PRED_GT_PLUS:
1168       SubIdx = PPC::sub_gt; SwapOps = false; break;
1169   case PPC::PRED_LE:
1170   case PPC::PRED_LE_MINUS:
1171   case PPC::PRED_LE_PLUS:
1172       SubIdx = PPC::sub_gt; SwapOps = true; break;
1173   case PPC::PRED_UN:
1174   case PPC::PRED_UN_MINUS:
1175   case PPC::PRED_UN_PLUS:
1176       SubIdx = PPC::sub_un; SwapOps = false; break;
1177   case PPC::PRED_NU:
1178   case PPC::PRED_NU_MINUS:
1179   case PPC::PRED_NU_PLUS:
1180       SubIdx = PPC::sub_un; SwapOps = true; break;
1181   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
1182   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1183   }
1184 
1185   Register FirstReg =  SwapOps ? FalseReg : TrueReg,
1186            SecondReg = SwapOps ? TrueReg  : FalseReg;
1187 
1188   // The first input register of isel cannot be r0. If it is a member
1189   // of a register class that can be r0, then copy it first (the
1190   // register allocator should eliminate the copy).
1191   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1192       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1193     const TargetRegisterClass *FirstRC =
1194       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1195         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1196     Register OldFirstReg = FirstReg;
1197     FirstReg = MRI.createVirtualRegister(FirstRC);
1198     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1199       .addReg(OldFirstReg);
1200   }
1201 
1202   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1203     .addReg(FirstReg).addReg(SecondReg)
1204     .addReg(Cond[1].getReg(), 0, SubIdx);
1205 }
1206 
1207 static unsigned getCRBitValue(unsigned CRBit) {
1208   unsigned Ret = 4;
1209   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1210       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1211       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1212       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1213     Ret = 3;
1214   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1215       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1216       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1217       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1218     Ret = 2;
1219   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1220       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1221       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1222       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1223     Ret = 1;
1224   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1225       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1226       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1227       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1228     Ret = 0;
1229 
1230   assert(Ret != 4 && "Invalid CR bit register");
1231   return Ret;
1232 }
1233 
1234 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1235                                MachineBasicBlock::iterator I,
1236                                const DebugLoc &DL, MCRegister DestReg,
1237                                MCRegister SrcReg, bool KillSrc) const {
1238   // We can end up with self copies and similar things as a result of VSX copy
1239   // legalization. Promote them here.
1240   const TargetRegisterInfo *TRI = &getRegisterInfo();
1241   if (PPC::F8RCRegClass.contains(DestReg) &&
1242       PPC::VSRCRegClass.contains(SrcReg)) {
1243     MCRegister SuperReg =
1244         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1245 
1246     if (VSXSelfCopyCrash && SrcReg == SuperReg)
1247       llvm_unreachable("nop VSX copy");
1248 
1249     DestReg = SuperReg;
1250   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1251              PPC::VSRCRegClass.contains(DestReg)) {
1252     MCRegister SuperReg =
1253         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1254 
1255     if (VSXSelfCopyCrash && DestReg == SuperReg)
1256       llvm_unreachable("nop VSX copy");
1257 
1258     SrcReg = SuperReg;
1259   }
1260 
1261   // Different class register copy
1262   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1263       PPC::GPRCRegClass.contains(DestReg)) {
1264     MCRegister CRReg = getCRFromCRBit(SrcReg);
1265     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1266     getKillRegState(KillSrc);
1267     // Rotate the CR bit in the CR fields to be the least significant bit and
1268     // then mask with 0x1 (MB = ME = 31).
1269     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1270        .addReg(DestReg, RegState::Kill)
1271        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1272        .addImm(31)
1273        .addImm(31);
1274     return;
1275   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1276              (PPC::G8RCRegClass.contains(DestReg) ||
1277               PPC::GPRCRegClass.contains(DestReg))) {
1278     bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
1279     unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
1280     unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
1281     unsigned CRNum = TRI->getEncodingValue(SrcReg);
1282     BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
1283     getKillRegState(KillSrc);
1284     if (CRNum == 7)
1285       return;
1286     // Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
1287     BuildMI(MBB, I, DL, get(ShCode), DestReg)
1288         .addReg(DestReg, RegState::Kill)
1289         .addImm(CRNum * 4 + 4)
1290         .addImm(28)
1291         .addImm(31);
1292     return;
1293   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1294              PPC::VSFRCRegClass.contains(DestReg)) {
1295     assert(Subtarget.hasDirectMove() &&
1296            "Subtarget doesn't support directmove, don't know how to copy.");
1297     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1298     NumGPRtoVSRSpill++;
1299     getKillRegState(KillSrc);
1300     return;
1301   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1302              PPC::G8RCRegClass.contains(DestReg)) {
1303     assert(Subtarget.hasDirectMove() &&
1304            "Subtarget doesn't support directmove, don't know how to copy.");
1305     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1306     getKillRegState(KillSrc);
1307     return;
1308   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1309              PPC::GPRCRegClass.contains(DestReg)) {
1310     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1311     getKillRegState(KillSrc);
1312     return;
1313   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1314              PPC::SPERCRegClass.contains(DestReg)) {
1315     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1316     getKillRegState(KillSrc);
1317     return;
1318   }
1319 
1320   unsigned Opc;
1321   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1322     Opc = PPC::OR;
1323   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1324     Opc = PPC::OR8;
1325   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1326     Opc = PPC::FMR;
1327   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1328     Opc = PPC::MCRF;
1329   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1330     Opc = PPC::VOR;
1331   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1332     // There are two different ways this can be done:
1333     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1334     //      issue in VSU pipeline 0.
1335     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1336     //      can go to either pipeline.
1337     // We'll always use xxlor here, because in practically all cases where
1338     // copies are generated, they are close enough to some use that the
1339     // lower-latency form is preferable.
1340     Opc = PPC::XXLOR;
1341   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1342            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1343     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1344   else if (Subtarget.pairedVectorMemops() &&
1345            PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
1346     if (SrcReg > PPC::VSRp15)
1347       SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
1348     else
1349       SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1350     if (DestReg > PPC::VSRp15)
1351       DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
1352     else
1353       DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
1354     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
1355       addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1356     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
1357       addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
1358     return;
1359   }
1360   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1361     Opc = PPC::CROR;
1362   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1363     Opc = PPC::EVOR;
1364   else
1365     llvm_unreachable("Impossible reg-to-reg copy");
1366 
1367   const MCInstrDesc &MCID = get(Opc);
1368   if (MCID.getNumOperands() == 3)
1369     BuildMI(MBB, I, DL, MCID, DestReg)
1370       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1371   else
1372     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1373 }
1374 
1375 static unsigned getSpillIndex(const TargetRegisterClass *RC) {
1376   int OpcodeIndex = 0;
1377 
1378   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1379       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1380     OpcodeIndex = SOK_Int4Spill;
1381   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1382              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1383     OpcodeIndex = SOK_Int8Spill;
1384   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1385     OpcodeIndex = SOK_Float8Spill;
1386   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1387     OpcodeIndex = SOK_Float4Spill;
1388   } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1389     OpcodeIndex = SOK_SPESpill;
1390   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1391     OpcodeIndex = SOK_CRSpill;
1392   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1393     OpcodeIndex = SOK_CRBitSpill;
1394   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1395     OpcodeIndex = SOK_VRVectorSpill;
1396   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1397     OpcodeIndex = SOK_VSXVectorSpill;
1398   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1399     OpcodeIndex = SOK_VectorFloat8Spill;
1400   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1401     OpcodeIndex = SOK_VectorFloat4Spill;
1402   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1403     OpcodeIndex = SOK_SpillToVSR;
1404   } else {
1405     llvm_unreachable("Unknown regclass!");
1406   }
1407   return OpcodeIndex;
1408 }
1409 
1410 unsigned
1411 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1412   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1413   return OpcodesForSpill[getSpillIndex(RC)];
1414 }
1415 
1416 unsigned
1417 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1418   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1419   return OpcodesForSpill[getSpillIndex(RC)];
1420 }
1421 
1422 void PPCInstrInfo::StoreRegToStackSlot(
1423     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1424     const TargetRegisterClass *RC,
1425     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1426   unsigned Opcode = getStoreOpcodeForSpill(RC);
1427   DebugLoc DL;
1428 
1429   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1430   FuncInfo->setHasSpills();
1431 
1432   NewMIs.push_back(addFrameReference(
1433       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1434       FrameIdx));
1435 
1436   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1437       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1438     FuncInfo->setSpillsCR();
1439 
1440   if (isXFormMemOp(Opcode))
1441     FuncInfo->setHasNonRISpills();
1442 }
1443 
1444 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1445     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1446     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1447     const TargetRegisterInfo *TRI) const {
1448   MachineFunction &MF = *MBB.getParent();
1449   SmallVector<MachineInstr *, 4> NewMIs;
1450 
1451   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1452 
1453   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1454     MBB.insert(MI, NewMIs[i]);
1455 
1456   const MachineFrameInfo &MFI = MF.getFrameInfo();
1457   MachineMemOperand *MMO = MF.getMachineMemOperand(
1458       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1459       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1460       MFI.getObjectAlign(FrameIdx));
1461   NewMIs.back()->addMemOperand(MF, MMO);
1462 }
1463 
1464 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1465                                        MachineBasicBlock::iterator MI,
1466                                        Register SrcReg, bool isKill,
1467                                        int FrameIdx,
1468                                        const TargetRegisterClass *RC,
1469                                        const TargetRegisterInfo *TRI) const {
1470   // We need to avoid a situation in which the value from a VRRC register is
1471   // spilled using an Altivec instruction and reloaded into a VSRC register
1472   // using a VSX instruction. The issue with this is that the VSX
1473   // load/store instructions swap the doublewords in the vector and the Altivec
1474   // ones don't. The register classes on the spill/reload may be different if
1475   // the register is defined using an Altivec instruction and is then used by a
1476   // VSX instruction.
1477   RC = updatedRC(RC);
1478   storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1479 }
1480 
1481 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1482                                         unsigned DestReg, int FrameIdx,
1483                                         const TargetRegisterClass *RC,
1484                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1485                                         const {
1486   unsigned Opcode = getLoadOpcodeForSpill(RC);
1487   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1488                                      FrameIdx));
1489   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1490 
1491   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1492       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1493     FuncInfo->setSpillsCR();
1494 
1495   if (isXFormMemOp(Opcode))
1496     FuncInfo->setHasNonRISpills();
1497 }
1498 
1499 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
1500     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
1501     int FrameIdx, const TargetRegisterClass *RC,
1502     const TargetRegisterInfo *TRI) const {
1503   MachineFunction &MF = *MBB.getParent();
1504   SmallVector<MachineInstr*, 4> NewMIs;
1505   DebugLoc DL;
1506   if (MI != MBB.end()) DL = MI->getDebugLoc();
1507 
1508   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1509   FuncInfo->setHasSpills();
1510 
1511   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1512 
1513   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1514     MBB.insert(MI, NewMIs[i]);
1515 
1516   const MachineFrameInfo &MFI = MF.getFrameInfo();
1517   MachineMemOperand *MMO = MF.getMachineMemOperand(
1518       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1519       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1520       MFI.getObjectAlign(FrameIdx));
1521   NewMIs.back()->addMemOperand(MF, MMO);
1522 }
1523 
1524 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1525                                         MachineBasicBlock::iterator MI,
1526                                         Register DestReg, int FrameIdx,
1527                                         const TargetRegisterClass *RC,
1528                                         const TargetRegisterInfo *TRI) const {
1529   // We need to avoid a situation in which the value from a VRRC register is
1530   // spilled using an Altivec instruction and reloaded into a VSRC register
1531   // using a VSX instruction. The issue with this is that the VSX
1532   // load/store instructions swap the doublewords in the vector and the Altivec
1533   // ones don't. The register classes on the spill/reload may be different if
1534   // the register is defined using an Altivec instruction and is then used by a
1535   // VSX instruction.
1536   RC = updatedRC(RC);
1537 
1538   loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
1539 }
1540 
1541 bool PPCInstrInfo::
1542 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1543   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1544   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1545     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1546   else
1547     // Leave the CR# the same, but invert the condition.
1548     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1549   return false;
1550 }
1551 
1552 // For some instructions, it is legal to fold ZERO into the RA register field.
1553 // This function performs that fold by replacing the operand with PPC::ZERO,
1554 // it does not consider whether the load immediate zero is no longer in use.
1555 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1556                                      Register Reg) const {
1557   // A zero immediate should always be loaded with a single li.
1558   unsigned DefOpc = DefMI.getOpcode();
1559   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1560     return false;
1561   if (!DefMI.getOperand(1).isImm())
1562     return false;
1563   if (DefMI.getOperand(1).getImm() != 0)
1564     return false;
1565 
1566   // Note that we cannot here invert the arguments of an isel in order to fold
1567   // a ZERO into what is presented as the second argument. All we have here
1568   // is the condition bit, and that might come from a CR-logical bit operation.
1569 
1570   const MCInstrDesc &UseMCID = UseMI.getDesc();
1571 
1572   // Only fold into real machine instructions.
1573   if (UseMCID.isPseudo())
1574     return false;
1575 
1576   // We need to find which of the User's operands is to be folded, that will be
1577   // the operand that matches the given register ID.
1578   unsigned UseIdx;
1579   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1580     if (UseMI.getOperand(UseIdx).isReg() &&
1581         UseMI.getOperand(UseIdx).getReg() == Reg)
1582       break;
1583 
1584   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1585   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1586 
1587   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1588 
1589   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1590   // register (which might also be specified as a pointer class kind).
1591   if (UseInfo->isLookupPtrRegClass()) {
1592     if (UseInfo->RegClass /* Kind */ != 1)
1593       return false;
1594   } else {
1595     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1596         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1597       return false;
1598   }
1599 
1600   // Make sure this is not tied to an output register (or otherwise
1601   // constrained). This is true for ST?UX registers, for example, which
1602   // are tied to their output registers.
1603   if (UseInfo->Constraints != 0)
1604     return false;
1605 
1606   MCRegister ZeroReg;
1607   if (UseInfo->isLookupPtrRegClass()) {
1608     bool isPPC64 = Subtarget.isPPC64();
1609     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1610   } else {
1611     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1612               PPC::ZERO8 : PPC::ZERO;
1613   }
1614 
1615   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1616   return true;
1617 }
1618 
1619 // Folds zero into instructions which have a load immediate zero as an operand
1620 // but also recognize zero as immediate zero. If the definition of the load
1621 // has no more users it is deleted.
1622 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1623                                  Register Reg, MachineRegisterInfo *MRI) const {
1624   bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
1625   if (MRI->use_nodbg_empty(Reg))
1626     DefMI.eraseFromParent();
1627   return Changed;
1628 }
1629 
1630 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1631   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1632        I != IE; ++I)
1633     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1634       return true;
1635   return false;
1636 }
1637 
1638 // We should make sure that, if we're going to predicate both sides of a
1639 // condition (a diamond), that both sides don't define the counter register. We
1640 // can predicate counter-decrement-based branches, but while that predicates
1641 // the branching, it does not predicate the counter decrement. If we tried to
1642 // merge the triangle into one predicated block, we'd decrement the counter
1643 // twice.
1644 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1645                      unsigned NumT, unsigned ExtraT,
1646                      MachineBasicBlock &FMBB,
1647                      unsigned NumF, unsigned ExtraF,
1648                      BranchProbability Probability) const {
1649   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1650 }
1651 
1652 
1653 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1654   // The predicated branches are identified by their type, not really by the
1655   // explicit presence of a predicate. Furthermore, some of them can be
1656   // predicated more than once. Because if conversion won't try to predicate
1657   // any instruction which already claims to be predicated (by returning true
1658   // here), always return false. In doing so, we let isPredicable() be the
1659   // final word on whether not the instruction can be (further) predicated.
1660 
1661   return false;
1662 }
1663 
1664 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1665                                         const MachineBasicBlock *MBB,
1666                                         const MachineFunction &MF) const {
1667   // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
1668   // across them, since some FP operations may change content of FPSCR.
1669   // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
1670   if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
1671     return true;
1672   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
1673 }
1674 
1675 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1676                                         ArrayRef<MachineOperand> Pred) const {
1677   unsigned OpC = MI.getOpcode();
1678   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1679     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1680       bool isPPC64 = Subtarget.isPPC64();
1681       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1682                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1683       // Need add Def and Use for CTR implicit operand.
1684       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1685           .addReg(Pred[1].getReg(), RegState::Implicit)
1686           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
1687     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1688       MI.setDesc(get(PPC::BCLR));
1689       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1690     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1691       MI.setDesc(get(PPC::BCLRn));
1692       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1693     } else {
1694       MI.setDesc(get(PPC::BCCLR));
1695       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1696           .addImm(Pred[0].getImm())
1697           .add(Pred[1]);
1698     }
1699 
1700     return true;
1701   } else if (OpC == PPC::B) {
1702     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1703       bool isPPC64 = Subtarget.isPPC64();
1704       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1705                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1706       // Need add Def and Use for CTR implicit operand.
1707       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1708           .addReg(Pred[1].getReg(), RegState::Implicit)
1709           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
1710     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1711       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1712       MI.RemoveOperand(0);
1713 
1714       MI.setDesc(get(PPC::BC));
1715       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1716           .add(Pred[1])
1717           .addMBB(MBB);
1718     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1719       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1720       MI.RemoveOperand(0);
1721 
1722       MI.setDesc(get(PPC::BCn));
1723       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1724           .add(Pred[1])
1725           .addMBB(MBB);
1726     } else {
1727       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1728       MI.RemoveOperand(0);
1729 
1730       MI.setDesc(get(PPC::BCC));
1731       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1732           .addImm(Pred[0].getImm())
1733           .add(Pred[1])
1734           .addMBB(MBB);
1735     }
1736 
1737     return true;
1738   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1739              OpC == PPC::BCTRL8) {
1740     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1741       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1742 
1743     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1744     bool isPPC64 = Subtarget.isPPC64();
1745 
1746     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1747       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1748                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1749       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1750     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1751       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1752                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1753       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1754     } else {
1755       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1756                              : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1757       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1758           .addImm(Pred[0].getImm())
1759           .add(Pred[1]);
1760     }
1761 
1762     // Need add Def and Use for LR implicit operand.
1763     if (setLR)
1764       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1765           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
1766           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
1767 
1768     return true;
1769   }
1770 
1771   return false;
1772 }
1773 
1774 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1775                                      ArrayRef<MachineOperand> Pred2) const {
1776   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1777   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1778 
1779   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1780     return false;
1781   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1782     return false;
1783 
1784   // P1 can only subsume P2 if they test the same condition register.
1785   if (Pred1[1].getReg() != Pred2[1].getReg())
1786     return false;
1787 
1788   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1789   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1790 
1791   if (P1 == P2)
1792     return true;
1793 
1794   // Does P1 subsume P2, e.g. GE subsumes GT.
1795   if (P1 == PPC::PRED_LE &&
1796       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1797     return true;
1798   if (P1 == PPC::PRED_GE &&
1799       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1800     return true;
1801 
1802   return false;
1803 }
1804 
1805 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1806                                     std::vector<MachineOperand> &Pred) const {
1807   // Note: At the present time, the contents of Pred from this function is
1808   // unused by IfConversion. This implementation follows ARM by pushing the
1809   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1810   // predicate, instructions defining CTR or CTR8 are also included as
1811   // predicate-defining instructions.
1812 
1813   const TargetRegisterClass *RCs[] =
1814     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1815       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1816 
1817   bool Found = false;
1818   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1819     const MachineOperand &MO = MI.getOperand(i);
1820     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1821       const TargetRegisterClass *RC = RCs[c];
1822       if (MO.isReg()) {
1823         if (MO.isDef() && RC->contains(MO.getReg())) {
1824           Pred.push_back(MO);
1825           Found = true;
1826         }
1827       } else if (MO.isRegMask()) {
1828         for (TargetRegisterClass::iterator I = RC->begin(),
1829              IE = RC->end(); I != IE; ++I)
1830           if (MO.clobbersPhysReg(*I)) {
1831             Pred.push_back(MO);
1832             Found = true;
1833           }
1834       }
1835     }
1836   }
1837 
1838   return Found;
1839 }
1840 
1841 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1842                                   Register &SrcReg2, int &Mask,
1843                                   int &Value) const {
1844   unsigned Opc = MI.getOpcode();
1845 
1846   switch (Opc) {
1847   default: return false;
1848   case PPC::CMPWI:
1849   case PPC::CMPLWI:
1850   case PPC::CMPDI:
1851   case PPC::CMPLDI:
1852     SrcReg = MI.getOperand(1).getReg();
1853     SrcReg2 = 0;
1854     Value = MI.getOperand(2).getImm();
1855     Mask = 0xFFFF;
1856     return true;
1857   case PPC::CMPW:
1858   case PPC::CMPLW:
1859   case PPC::CMPD:
1860   case PPC::CMPLD:
1861   case PPC::FCMPUS:
1862   case PPC::FCMPUD:
1863     SrcReg = MI.getOperand(1).getReg();
1864     SrcReg2 = MI.getOperand(2).getReg();
1865     Value = 0;
1866     Mask = 0;
1867     return true;
1868   }
1869 }
1870 
1871 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1872                                         Register SrcReg2, int Mask, int Value,
1873                                         const MachineRegisterInfo *MRI) const {
1874   if (DisableCmpOpt)
1875     return false;
1876 
1877   int OpC = CmpInstr.getOpcode();
1878   Register CRReg = CmpInstr.getOperand(0).getReg();
1879 
1880   // FP record forms set CR1 based on the exception status bits, not a
1881   // comparison with zero.
1882   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1883     return false;
1884 
1885   const TargetRegisterInfo *TRI = &getRegisterInfo();
1886   // The record forms set the condition register based on a signed comparison
1887   // with zero (so says the ISA manual). This is not as straightforward as it
1888   // seems, however, because this is always a 64-bit comparison on PPC64, even
1889   // for instructions that are 32-bit in nature (like slw for example).
1890   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1891   // for equality checks (as those don't depend on the sign). On PPC64,
1892   // we are restricted to equality for unsigned 64-bit comparisons and for
1893   // signed 32-bit comparisons the applicability is more restricted.
1894   bool isPPC64 = Subtarget.isPPC64();
1895   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1896   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1897   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1898 
1899   // Look through copies unless that gets us to a physical register.
1900   Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1901   if (ActualSrc.isVirtual())
1902     SrcReg = ActualSrc;
1903 
1904   // Get the unique definition of SrcReg.
1905   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1906   if (!MI) return false;
1907 
1908   bool equalityOnly = false;
1909   bool noSub = false;
1910   if (isPPC64) {
1911     if (is32BitSignedCompare) {
1912       // We can perform this optimization only if MI is sign-extending.
1913       if (isSignExtended(*MI))
1914         noSub = true;
1915       else
1916         return false;
1917     } else if (is32BitUnsignedCompare) {
1918       // We can perform this optimization, equality only, if MI is
1919       // zero-extending.
1920       if (isZeroExtended(*MI)) {
1921         noSub = true;
1922         equalityOnly = true;
1923       } else
1924         return false;
1925     } else
1926       equalityOnly = is64BitUnsignedCompare;
1927   } else
1928     equalityOnly = is32BitUnsignedCompare;
1929 
1930   if (equalityOnly) {
1931     // We need to check the uses of the condition register in order to reject
1932     // non-equality comparisons.
1933     for (MachineRegisterInfo::use_instr_iterator
1934          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1935          I != IE; ++I) {
1936       MachineInstr *UseMI = &*I;
1937       if (UseMI->getOpcode() == PPC::BCC) {
1938         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1939         unsigned PredCond = PPC::getPredicateCondition(Pred);
1940         // We ignore hint bits when checking for non-equality comparisons.
1941         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1942           return false;
1943       } else if (UseMI->getOpcode() == PPC::ISEL ||
1944                  UseMI->getOpcode() == PPC::ISEL8) {
1945         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1946         if (SubIdx != PPC::sub_eq)
1947           return false;
1948       } else
1949         return false;
1950     }
1951   }
1952 
1953   MachineBasicBlock::iterator I = CmpInstr;
1954 
1955   // Scan forward to find the first use of the compare.
1956   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1957        ++I) {
1958     bool FoundUse = false;
1959     for (MachineRegisterInfo::use_instr_iterator
1960          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1961          J != JE; ++J)
1962       if (&*J == &*I) {
1963         FoundUse = true;
1964         break;
1965       }
1966 
1967     if (FoundUse)
1968       break;
1969   }
1970 
1971   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1972   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1973 
1974   // There are two possible candidates which can be changed to set CR[01].
1975   // One is MI, the other is a SUB instruction.
1976   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1977   MachineInstr *Sub = nullptr;
1978   if (SrcReg2 != 0)
1979     // MI is not a candidate for CMPrr.
1980     MI = nullptr;
1981   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1982   // same BB as the comparison. This is to allow the check below to avoid calls
1983   // (and other explicit clobbers); instead we should really check for these
1984   // more explicitly (in at least a few predecessors).
1985   else if (MI->getParent() != CmpInstr.getParent())
1986     return false;
1987   else if (Value != 0) {
1988     // The record-form instructions set CR bit based on signed comparison
1989     // against 0. We try to convert a compare against 1 or -1 into a compare
1990     // against 0 to exploit record-form instructions. For example, we change
1991     // the condition "greater than -1" into "greater than or equal to 0"
1992     // and "less than 1" into "less than or equal to 0".
1993 
1994     // Since we optimize comparison based on a specific branch condition,
1995     // we don't optimize if condition code is used by more than once.
1996     if (equalityOnly || !MRI->hasOneUse(CRReg))
1997       return false;
1998 
1999     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
2000     if (UseMI->getOpcode() != PPC::BCC)
2001       return false;
2002 
2003     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2004     unsigned PredCond = PPC::getPredicateCondition(Pred);
2005     unsigned PredHint = PPC::getPredicateHint(Pred);
2006     int16_t Immed = (int16_t)Value;
2007 
2008     // When modifying the condition in the predicate, we propagate hint bits
2009     // from the original predicate to the new one.
2010     if (Immed == -1 && PredCond == PPC::PRED_GT)
2011       // We convert "greater than -1" into "greater than or equal to 0",
2012       // since we are assuming signed comparison by !equalityOnly
2013       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
2014     else if (Immed == -1 && PredCond == PPC::PRED_LE)
2015       // We convert "less than or equal to -1" into "less than 0".
2016       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2017     else if (Immed == 1 && PredCond == PPC::PRED_LT)
2018       // We convert "less than 1" into "less than or equal to 0".
2019       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2020     else if (Immed == 1 && PredCond == PPC::PRED_GE)
2021       // We convert "greater than or equal to 1" into "greater than 0".
2022       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2023     else
2024       return false;
2025 
2026     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
2027   }
2028 
2029   // Search for Sub.
2030   --I;
2031 
2032   // Get ready to iterate backward from CmpInstr.
2033   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2034 
2035   for (; I != E && !noSub; --I) {
2036     const MachineInstr &Instr = *I;
2037     unsigned IOpC = Instr.getOpcode();
2038 
2039     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2040                              Instr.readsRegister(PPC::CR0, TRI)))
2041       // This instruction modifies or uses the record condition register after
2042       // the one we want to change. While we could do this transformation, it
2043       // would likely not be profitable. This transformation removes one
2044       // instruction, and so even forcing RA to generate one move probably
2045       // makes it unprofitable.
2046       return false;
2047 
2048     // Check whether CmpInstr can be made redundant by the current instruction.
2049     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2050          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2051         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2052         ((Instr.getOperand(1).getReg() == SrcReg &&
2053           Instr.getOperand(2).getReg() == SrcReg2) ||
2054         (Instr.getOperand(1).getReg() == SrcReg2 &&
2055          Instr.getOperand(2).getReg() == SrcReg))) {
2056       Sub = &*I;
2057       break;
2058     }
2059 
2060     if (I == B)
2061       // The 'and' is below the comparison instruction.
2062       return false;
2063   }
2064 
2065   // Return false if no candidates exist.
2066   if (!MI && !Sub)
2067     return false;
2068 
2069   // The single candidate is called MI.
2070   if (!MI) MI = Sub;
2071 
2072   int NewOpC = -1;
2073   int MIOpC = MI->getOpcode();
2074   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2075       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2076     NewOpC = MIOpC;
2077   else {
2078     NewOpC = PPC::getRecordFormOpcode(MIOpC);
2079     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2080       NewOpC = MIOpC;
2081   }
2082 
2083   // FIXME: On the non-embedded POWER architectures, only some of the record
2084   // forms are fast, and we should use only the fast ones.
2085 
2086   // The defining instruction has a record form (or is already a record
2087   // form). It is possible, however, that we'll need to reverse the condition
2088   // code of the users.
2089   if (NewOpC == -1)
2090     return false;
2091 
2092   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2093   // needs to be updated to be based on SUB.  Push the condition code
2094   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
2095   // condition code of these operands will be modified.
2096   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2097   // comparison against 0, which may modify predicate.
2098   bool ShouldSwap = false;
2099   if (Sub && Value == 0) {
2100     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2101       Sub->getOperand(2).getReg() == SrcReg;
2102 
2103     // The operands to subf are the opposite of sub, so only in the fixed-point
2104     // case, invert the order.
2105     ShouldSwap = !ShouldSwap;
2106   }
2107 
2108   if (ShouldSwap)
2109     for (MachineRegisterInfo::use_instr_iterator
2110          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2111          I != IE; ++I) {
2112       MachineInstr *UseMI = &*I;
2113       if (UseMI->getOpcode() == PPC::BCC) {
2114         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2115         unsigned PredCond = PPC::getPredicateCondition(Pred);
2116         assert((!equalityOnly ||
2117                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2118                "Invalid predicate for equality-only optimization");
2119         (void)PredCond; // To suppress warning in release build.
2120         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2121                                 PPC::getSwappedPredicate(Pred)));
2122       } else if (UseMI->getOpcode() == PPC::ISEL ||
2123                  UseMI->getOpcode() == PPC::ISEL8) {
2124         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2125         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2126                "Invalid CR bit for equality-only optimization");
2127 
2128         if (NewSubReg == PPC::sub_lt)
2129           NewSubReg = PPC::sub_gt;
2130         else if (NewSubReg == PPC::sub_gt)
2131           NewSubReg = PPC::sub_lt;
2132 
2133         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2134                                                  NewSubReg));
2135       } else // We need to abort on a user we don't understand.
2136         return false;
2137     }
2138   assert(!(Value != 0 && ShouldSwap) &&
2139          "Non-zero immediate support and ShouldSwap"
2140          "may conflict in updating predicate");
2141 
2142   // Create a new virtual register to hold the value of the CR set by the
2143   // record-form instruction. If the instruction was not previously in
2144   // record form, then set the kill flag on the CR.
2145   CmpInstr.eraseFromParent();
2146 
2147   MachineBasicBlock::iterator MII = MI;
2148   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2149           get(TargetOpcode::COPY), CRReg)
2150     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2151 
2152   // Even if CR0 register were dead before, it is alive now since the
2153   // instruction we just built uses it.
2154   MI->clearRegisterDeads(PPC::CR0);
2155 
2156   if (MIOpC != NewOpC) {
2157     // We need to be careful here: we're replacing one instruction with
2158     // another, and we need to make sure that we get all of the right
2159     // implicit uses and defs. On the other hand, the caller may be holding
2160     // an iterator to this instruction, and so we can't delete it (this is
2161     // specifically the case if this is the instruction directly after the
2162     // compare).
2163 
2164     // Rotates are expensive instructions. If we're emitting a record-form
2165     // rotate that can just be an andi/andis, we should just emit that.
2166     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2167       Register GPRRes = MI->getOperand(0).getReg();
2168       int64_t SH = MI->getOperand(2).getImm();
2169       int64_t MB = MI->getOperand(3).getImm();
2170       int64_t ME = MI->getOperand(4).getImm();
2171       // We can only do this if both the start and end of the mask are in the
2172       // same halfword.
2173       bool MBInLoHWord = MB >= 16;
2174       bool MEInLoHWord = ME >= 16;
2175       uint64_t Mask = ~0LLU;
2176 
2177       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2178         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2179         // The mask value needs to shift right 16 if we're emitting andis.
2180         Mask >>= MBInLoHWord ? 0 : 16;
2181         NewOpC = MIOpC == PPC::RLWINM
2182                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2183                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2184       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2185                  (ME - MB + 1 == SH) && (MB >= 16)) {
2186         // If we are rotating by the exact number of bits as are in the mask
2187         // and the mask is in the least significant bits of the register,
2188         // that's just an andis. (as long as the GPR result has no uses).
2189         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2190         Mask >>= 16;
2191         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2192       }
2193       // If we've set the mask, we can transform.
2194       if (Mask != ~0LLU) {
2195         MI->RemoveOperand(4);
2196         MI->RemoveOperand(3);
2197         MI->getOperand(2).setImm(Mask);
2198         NumRcRotatesConvertedToRcAnd++;
2199       }
2200     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2201       int64_t MB = MI->getOperand(3).getImm();
2202       if (MB >= 48) {
2203         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2204         NewOpC = PPC::ANDI8_rec;
2205         MI->RemoveOperand(3);
2206         MI->getOperand(2).setImm(Mask);
2207         NumRcRotatesConvertedToRcAnd++;
2208       }
2209     }
2210 
2211     const MCInstrDesc &NewDesc = get(NewOpC);
2212     MI->setDesc(NewDesc);
2213 
2214     if (NewDesc.ImplicitDefs)
2215       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
2216            *ImpDefs; ++ImpDefs)
2217         if (!MI->definesRegister(*ImpDefs))
2218           MI->addOperand(*MI->getParent()->getParent(),
2219                          MachineOperand::CreateReg(*ImpDefs, true, true));
2220     if (NewDesc.ImplicitUses)
2221       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
2222            *ImpUses; ++ImpUses)
2223         if (!MI->readsRegister(*ImpUses))
2224           MI->addOperand(*MI->getParent()->getParent(),
2225                          MachineOperand::CreateReg(*ImpUses, false, true));
2226   }
2227   assert(MI->definesRegister(PPC::CR0) &&
2228          "Record-form instruction does not define cr0?");
2229 
2230   // Modify the condition code of operands in OperandsToUpdate.
2231   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2232   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2233   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2234     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2235 
2236   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2237     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2238 
2239   return true;
2240 }
2241 
2242 bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2243     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2244     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2245     const TargetRegisterInfo *TRI) const {
2246   const MachineOperand *BaseOp;
2247   OffsetIsScalable = false;
2248   if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2249     return false;
2250   BaseOps.push_back(BaseOp);
2251   return true;
2252 }
2253 
2254 static bool isLdStSafeToCluster(const MachineInstr &LdSt,
2255                                 const TargetRegisterInfo *TRI) {
2256   // If this is a volatile load/store, don't mess with it.
2257   if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
2258     return false;
2259 
2260   if (LdSt.getOperand(2).isFI())
2261     return true;
2262 
2263   assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
2264   // Can't cluster if the instruction modifies the base register
2265   // or it is update form. e.g. ld r2,3(r2)
2266   if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
2267     return false;
2268 
2269   return true;
2270 }
2271 
2272 // Only cluster instruction pair that have the same opcode, and they are
2273 // clusterable according to PowerPC specification.
2274 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
2275                                      const PPCSubtarget &Subtarget) {
2276   switch (FirstOpc) {
2277   default:
2278     return false;
2279   case PPC::STD:
2280   case PPC::STFD:
2281   case PPC::STXSD:
2282   case PPC::DFSTOREf64:
2283     return FirstOpc == SecondOpc;
2284   // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2285   // 32bit and 64bit instruction selection. They are clusterable pair though
2286   // they are different opcode.
2287   case PPC::STW:
2288   case PPC::STW8:
2289     return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
2290   }
2291 }
2292 
2293 bool PPCInstrInfo::shouldClusterMemOps(
2294     ArrayRef<const MachineOperand *> BaseOps1,
2295     ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
2296     unsigned NumBytes) const {
2297 
2298   assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
2299   const MachineOperand &BaseOp1 = *BaseOps1.front();
2300   const MachineOperand &BaseOp2 = *BaseOps2.front();
2301   assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2302          "Only base registers and frame indices are supported.");
2303 
2304   // The NumLoads means the number of loads that has been clustered.
2305   // Don't cluster memory op if there are already two ops clustered at least.
2306   if (NumLoads > 2)
2307     return false;
2308 
2309   // Cluster the load/store only when they have the same base
2310   // register or FI.
2311   if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
2312       (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
2313       (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
2314     return false;
2315 
2316   // Check if the load/store are clusterable according to the PowerPC
2317   // specification.
2318   const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2319   const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2320   unsigned FirstOpc = FirstLdSt.getOpcode();
2321   unsigned SecondOpc = SecondLdSt.getOpcode();
2322   const TargetRegisterInfo *TRI = &getRegisterInfo();
2323   // Cluster the load/store only when they have the same opcode, and they are
2324   // clusterable opcode according to PowerPC specification.
2325   if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
2326     return false;
2327 
2328   // Can't cluster load/store that have ordered or volatile memory reference.
2329   if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
2330       !isLdStSafeToCluster(SecondLdSt, TRI))
2331     return false;
2332 
2333   int64_t Offset1 = 0, Offset2 = 0;
2334   unsigned Width1 = 0, Width2 = 0;
2335   const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
2336   if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
2337       !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
2338       Width1 != Width2)
2339     return false;
2340 
2341   assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
2342          "getMemOperandWithOffsetWidth return incorrect base op");
2343   // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2344   assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2345   return Offset1 + Width1 == Offset2;
2346 }
2347 
2348 /// GetInstSize - Return the number of bytes of code the specified
2349 /// instruction may be.  This returns the maximum number of bytes.
2350 ///
2351 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2352   unsigned Opcode = MI.getOpcode();
2353 
2354   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2355     const MachineFunction *MF = MI.getParent()->getParent();
2356     const char *AsmStr = MI.getOperand(0).getSymbolName();
2357     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2358   } else if (Opcode == TargetOpcode::STACKMAP) {
2359     StackMapOpers Opers(&MI);
2360     return Opers.getNumPatchBytes();
2361   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2362     PatchPointOpers Opers(&MI);
2363     return Opers.getNumPatchBytes();
2364   } else {
2365     return get(Opcode).getSize();
2366   }
2367 }
2368 
2369 std::pair<unsigned, unsigned>
2370 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2371   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2372   return std::make_pair(TF & Mask, TF & ~Mask);
2373 }
2374 
2375 ArrayRef<std::pair<unsigned, const char *>>
2376 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2377   using namespace PPCII;
2378   static const std::pair<unsigned, const char *> TargetFlags[] = {
2379       {MO_LO, "ppc-lo"},
2380       {MO_HA, "ppc-ha"},
2381       {MO_TPREL_LO, "ppc-tprel-lo"},
2382       {MO_TPREL_HA, "ppc-tprel-ha"},
2383       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2384       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2385       {MO_TOC_LO, "ppc-toc-lo"},
2386       {MO_TLS, "ppc-tls"}};
2387   return makeArrayRef(TargetFlags);
2388 }
2389 
2390 ArrayRef<std::pair<unsigned, const char *>>
2391 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2392   using namespace PPCII;
2393   static const std::pair<unsigned, const char *> TargetFlags[] = {
2394       {MO_PLT, "ppc-plt"},
2395       {MO_PIC_FLAG, "ppc-pic"},
2396       {MO_PCREL_FLAG, "ppc-pcrel"},
2397       {MO_GOT_FLAG, "ppc-got"},
2398       {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
2399       {MO_TLSGD_FLAG, "ppc-tlsgd"},
2400       {MO_TLSLD_FLAG, "ppc-tlsld"},
2401       {MO_TPREL_FLAG, "ppc-tprel"},
2402       {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
2403       {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
2404       {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}};
2405   return makeArrayRef(TargetFlags);
2406 }
2407 
2408 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2409 // The VSX versions have the advantage of a full 64-register target whereas
2410 // the FP ones have the advantage of lower latency and higher throughput. So
2411 // what we are after is using the faster instructions in low register pressure
2412 // situations and using the larger register file in high register pressure
2413 // situations.
2414 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2415     unsigned UpperOpcode, LowerOpcode;
2416     switch (MI.getOpcode()) {
2417     case PPC::DFLOADf32:
2418       UpperOpcode = PPC::LXSSP;
2419       LowerOpcode = PPC::LFS;
2420       break;
2421     case PPC::DFLOADf64:
2422       UpperOpcode = PPC::LXSD;
2423       LowerOpcode = PPC::LFD;
2424       break;
2425     case PPC::DFSTOREf32:
2426       UpperOpcode = PPC::STXSSP;
2427       LowerOpcode = PPC::STFS;
2428       break;
2429     case PPC::DFSTOREf64:
2430       UpperOpcode = PPC::STXSD;
2431       LowerOpcode = PPC::STFD;
2432       break;
2433     case PPC::XFLOADf32:
2434       UpperOpcode = PPC::LXSSPX;
2435       LowerOpcode = PPC::LFSX;
2436       break;
2437     case PPC::XFLOADf64:
2438       UpperOpcode = PPC::LXSDX;
2439       LowerOpcode = PPC::LFDX;
2440       break;
2441     case PPC::XFSTOREf32:
2442       UpperOpcode = PPC::STXSSPX;
2443       LowerOpcode = PPC::STFSX;
2444       break;
2445     case PPC::XFSTOREf64:
2446       UpperOpcode = PPC::STXSDX;
2447       LowerOpcode = PPC::STFDX;
2448       break;
2449     case PPC::LIWAX:
2450       UpperOpcode = PPC::LXSIWAX;
2451       LowerOpcode = PPC::LFIWAX;
2452       break;
2453     case PPC::LIWZX:
2454       UpperOpcode = PPC::LXSIWZX;
2455       LowerOpcode = PPC::LFIWZX;
2456       break;
2457     case PPC::STIWX:
2458       UpperOpcode = PPC::STXSIWX;
2459       LowerOpcode = PPC::STFIWX;
2460       break;
2461     default:
2462       llvm_unreachable("Unknown Operation!");
2463     }
2464 
2465     Register TargetReg = MI.getOperand(0).getReg();
2466     unsigned Opcode;
2467     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2468         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2469       Opcode = LowerOpcode;
2470     else
2471       Opcode = UpperOpcode;
2472     MI.setDesc(get(Opcode));
2473     return true;
2474 }
2475 
2476 static bool isAnImmediateOperand(const MachineOperand &MO) {
2477   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2478 }
2479 
2480 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2481   auto &MBB = *MI.getParent();
2482   auto DL = MI.getDebugLoc();
2483 
2484   switch (MI.getOpcode()) {
2485   case PPC::BUILD_UACC: {
2486     MCRegister ACC = MI.getOperand(0).getReg();
2487     MCRegister UACC = MI.getOperand(1).getReg();
2488     if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
2489       MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
2490       MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
2491       // FIXME: This can easily be improved to look up to the top of the MBB
2492       // to see if the inputs are XXLOR's. If they are and SrcReg is killed,
2493       // we can just re-target any such XXLOR's to DstVSR + offset.
2494       for (int VecNo = 0; VecNo < 4; VecNo++)
2495         BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
2496             .addReg(SrcVSR + VecNo)
2497             .addReg(SrcVSR + VecNo);
2498     }
2499     // BUILD_UACC is expanded to 4 copies of the underlying vsx regisers.
2500     // So after building the 4 copies, we can replace the BUILD_UACC instruction
2501     // with a NOP.
2502     LLVM_FALLTHROUGH;
2503   }
2504   case PPC::KILL_PAIR: {
2505     MI.setDesc(get(PPC::UNENCODED_NOP));
2506     MI.RemoveOperand(1);
2507     MI.RemoveOperand(0);
2508     return true;
2509   }
2510   case TargetOpcode::LOAD_STACK_GUARD: {
2511     assert(Subtarget.isTargetLinux() &&
2512            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2513     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2514     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2515     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2516     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2517         .addImm(Offset)
2518         .addReg(Reg);
2519     return true;
2520   }
2521   case PPC::DFLOADf32:
2522   case PPC::DFLOADf64:
2523   case PPC::DFSTOREf32:
2524   case PPC::DFSTOREf64: {
2525     assert(Subtarget.hasP9Vector() &&
2526            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2527     assert(MI.getOperand(2).isReg() &&
2528            isAnImmediateOperand(MI.getOperand(1)) &&
2529            "D-form op must have register and immediate operands");
2530     return expandVSXMemPseudo(MI);
2531   }
2532   case PPC::XFLOADf32:
2533   case PPC::XFSTOREf32:
2534   case PPC::LIWAX:
2535   case PPC::LIWZX:
2536   case PPC::STIWX: {
2537     assert(Subtarget.hasP8Vector() &&
2538            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2539     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2540            "X-form op must have register and register operands");
2541     return expandVSXMemPseudo(MI);
2542   }
2543   case PPC::XFLOADf64:
2544   case PPC::XFSTOREf64: {
2545     assert(Subtarget.hasVSX() &&
2546            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2547     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2548            "X-form op must have register and register operands");
2549     return expandVSXMemPseudo(MI);
2550   }
2551   case PPC::SPILLTOVSR_LD: {
2552     Register TargetReg = MI.getOperand(0).getReg();
2553     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2554       MI.setDesc(get(PPC::DFLOADf64));
2555       return expandPostRAPseudo(MI);
2556     }
2557     else
2558       MI.setDesc(get(PPC::LD));
2559     return true;
2560   }
2561   case PPC::SPILLTOVSR_ST: {
2562     Register SrcReg = MI.getOperand(0).getReg();
2563     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2564       NumStoreSPILLVSRRCAsVec++;
2565       MI.setDesc(get(PPC::DFSTOREf64));
2566       return expandPostRAPseudo(MI);
2567     } else {
2568       NumStoreSPILLVSRRCAsGpr++;
2569       MI.setDesc(get(PPC::STD));
2570     }
2571     return true;
2572   }
2573   case PPC::SPILLTOVSR_LDX: {
2574     Register TargetReg = MI.getOperand(0).getReg();
2575     if (PPC::VSFRCRegClass.contains(TargetReg))
2576       MI.setDesc(get(PPC::LXSDX));
2577     else
2578       MI.setDesc(get(PPC::LDX));
2579     return true;
2580   }
2581   case PPC::SPILLTOVSR_STX: {
2582     Register SrcReg = MI.getOperand(0).getReg();
2583     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2584       NumStoreSPILLVSRRCAsVec++;
2585       MI.setDesc(get(PPC::STXSDX));
2586     } else {
2587       NumStoreSPILLVSRRCAsGpr++;
2588       MI.setDesc(get(PPC::STDX));
2589     }
2590     return true;
2591   }
2592 
2593   case PPC::CFENCE8: {
2594     auto Val = MI.getOperand(0).getReg();
2595     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2596     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2597         .addImm(PPC::PRED_NE_MINUS)
2598         .addReg(PPC::CR7)
2599         .addImm(1);
2600     MI.setDesc(get(PPC::ISYNC));
2601     MI.RemoveOperand(0);
2602     return true;
2603   }
2604   }
2605   return false;
2606 }
2607 
2608 // Essentially a compile-time implementation of a compare->isel sequence.
2609 // It takes two constants to compare, along with the true/false registers
2610 // and the comparison type (as a subreg to a CR field) and returns one
2611 // of the true/false registers, depending on the comparison results.
2612 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2613                           unsigned TrueReg, unsigned FalseReg,
2614                           unsigned CRSubReg) {
2615   // Signed comparisons. The immediates are assumed to be sign-extended.
2616   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2617     switch (CRSubReg) {
2618     default: llvm_unreachable("Unknown integer comparison type.");
2619     case PPC::sub_lt:
2620       return Imm1 < Imm2 ? TrueReg : FalseReg;
2621     case PPC::sub_gt:
2622       return Imm1 > Imm2 ? TrueReg : FalseReg;
2623     case PPC::sub_eq:
2624       return Imm1 == Imm2 ? TrueReg : FalseReg;
2625     }
2626   }
2627   // Unsigned comparisons.
2628   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2629     switch (CRSubReg) {
2630     default: llvm_unreachable("Unknown integer comparison type.");
2631     case PPC::sub_lt:
2632       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2633     case PPC::sub_gt:
2634       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2635     case PPC::sub_eq:
2636       return Imm1 == Imm2 ? TrueReg : FalseReg;
2637     }
2638   }
2639   return PPC::NoRegister;
2640 }
2641 
2642 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2643                                               unsigned OpNo,
2644                                               int64_t Imm) const {
2645   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2646   // Replace the REG with the Immediate.
2647   Register InUseReg = MI.getOperand(OpNo).getReg();
2648   MI.getOperand(OpNo).ChangeToImmediate(Imm);
2649 
2650   if (MI.implicit_operands().empty())
2651     return;
2652 
2653   // We need to make sure that the MI didn't have any implicit use
2654   // of this REG any more.
2655   const TargetRegisterInfo *TRI = &getRegisterInfo();
2656   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2657   if (UseOpIdx >= 0) {
2658     MachineOperand &MO = MI.getOperand(UseOpIdx);
2659     if (MO.isImplicit())
2660       // The operands must always be in the following order:
2661       // - explicit reg defs,
2662       // - other explicit operands (reg uses, immediates, etc.),
2663       // - implicit reg defs
2664       // - implicit reg uses
2665       // Therefore, removing the implicit operand won't change the explicit
2666       // operands layout.
2667       MI.RemoveOperand(UseOpIdx);
2668   }
2669 }
2670 
2671 // Replace an instruction with one that materializes a constant (and sets
2672 // CR0 if the original instruction was a record-form instruction).
2673 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2674                                       const LoadImmediateInfo &LII) const {
2675   // Remove existing operands.
2676   int OperandToKeep = LII.SetCR ? 1 : 0;
2677   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2678     MI.RemoveOperand(i);
2679 
2680   // Replace the instruction.
2681   if (LII.SetCR) {
2682     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
2683     // Set the immediate.
2684     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2685         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2686     return;
2687   }
2688   else
2689     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2690 
2691   // Set the immediate.
2692   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2693       .addImm(LII.Imm);
2694 }
2695 
2696 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2697                                            bool &SeenIntermediateUse) const {
2698   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2699          "Should be called after register allocation.");
2700   const TargetRegisterInfo *TRI = &getRegisterInfo();
2701   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2702   It++;
2703   SeenIntermediateUse = false;
2704   for (; It != E; ++It) {
2705     if (It->modifiesRegister(Reg, TRI))
2706       return &*It;
2707     if (It->readsRegister(Reg, TRI))
2708       SeenIntermediateUse = true;
2709   }
2710   return nullptr;
2711 }
2712 
2713 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2714   MachineInstr &MI,
2715   unsigned &OpNoForForwarding,
2716   bool &SeenIntermediateUse) const {
2717   OpNoForForwarding = ~0U;
2718   MachineInstr *DefMI = nullptr;
2719   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2720   const TargetRegisterInfo *TRI = &getRegisterInfo();
2721   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2722   // within the basic block to see if the register is defined using an
2723   // LI/LI8/ADDI/ADDI8.
2724   if (MRI->isSSA()) {
2725     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2726       if (!MI.getOperand(i).isReg())
2727         continue;
2728       Register Reg = MI.getOperand(i).getReg();
2729       if (!Register::isVirtualRegister(Reg))
2730         continue;
2731       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2732       if (Register::isVirtualRegister(TrueReg)) {
2733         DefMI = MRI->getVRegDef(TrueReg);
2734         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
2735             DefMI->getOpcode() == PPC::ADDI ||
2736             DefMI->getOpcode() == PPC::ADDI8) {
2737           OpNoForForwarding = i;
2738           // The ADDI and LI operand maybe exist in one instruction at same
2739           // time. we prefer to fold LI operand as LI only has one Imm operand
2740           // and is more possible to be converted. So if current DefMI is
2741           // ADDI/ADDI8, we continue to find possible LI/LI8.
2742           if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
2743             break;
2744         }
2745       }
2746     }
2747   } else {
2748     // Looking back through the definition for each operand could be expensive,
2749     // so exit early if this isn't an instruction that either has an immediate
2750     // form or is already an immediate form that we can handle.
2751     ImmInstrInfo III;
2752     unsigned Opc = MI.getOpcode();
2753     bool ConvertibleImmForm =
2754         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
2755         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2756         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
2757         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
2758         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2759         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
2760         Opc == PPC::RLWINM8_rec;
2761     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2762                        ? isVFRegister(MI.getOperand(0).getReg())
2763                        : false;
2764     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2765       return nullptr;
2766 
2767     // Don't convert or %X, %Y, %Y since that's just a register move.
2768     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2769         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2770       return nullptr;
2771     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2772       MachineOperand &MO = MI.getOperand(i);
2773       SeenIntermediateUse = false;
2774       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2775         Register Reg = MI.getOperand(i).getReg();
2776         // If we see another use of this reg between the def and the MI,
2777         // we want to flat it so the def isn't deleted.
2778         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2779         if (DefMI) {
2780           // Is this register defined by some form of add-immediate (including
2781           // load-immediate) within this basic block?
2782           switch (DefMI->getOpcode()) {
2783           default:
2784             break;
2785           case PPC::LI:
2786           case PPC::LI8:
2787           case PPC::ADDItocL:
2788           case PPC::ADDI:
2789           case PPC::ADDI8:
2790             OpNoForForwarding = i;
2791             return DefMI;
2792           }
2793         }
2794       }
2795     }
2796   }
2797   return OpNoForForwarding == ~0U ? nullptr : DefMI;
2798 }
2799 
2800 unsigned PPCInstrInfo::getSpillTarget() const {
2801   return Subtarget.hasP9Vector() ? 1 : 0;
2802 }
2803 
2804 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2805   return StoreSpillOpcodesArray[getSpillTarget()];
2806 }
2807 
2808 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2809   return LoadSpillOpcodesArray[getSpillTarget()];
2810 }
2811 
2812 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
2813                                      unsigned RegNo) const {
2814   // Conservatively clear kill flag for the register if the instructions are in
2815   // different basic blocks and in SSA form, because the kill flag may no longer
2816   // be right. There is no need to bother with dead flags since defs with no
2817   // uses will be handled by DCE.
2818   MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
2819   if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
2820     MRI.clearKillFlags(RegNo);
2821     return;
2822   }
2823 
2824   // Instructions between [StartMI, EndMI] should be in same basic block.
2825   assert((StartMI->getParent() == EndMI->getParent()) &&
2826          "Instructions are not in same basic block");
2827 
2828   // If before RA, StartMI may be def through COPY, we need to adjust it to the
2829   // real def. See function getForwardingDefMI.
2830   if (MRI.isSSA()) {
2831     bool Reads, Writes;
2832     std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
2833     if (!Reads && !Writes) {
2834       assert(Register::isVirtualRegister(RegNo) &&
2835              "Must be a virtual register");
2836       // Get real def and ignore copies.
2837       StartMI = MRI.getVRegDef(RegNo);
2838     }
2839   }
2840 
2841   bool IsKillSet = false;
2842 
2843   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2844     MachineOperand &MO = MI.getOperand(Index);
2845     if (MO.isReg() && MO.isUse() && MO.isKill() &&
2846         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2847       MO.setIsKill(false);
2848   };
2849 
2850   // Set killed flag for EndMI.
2851   // No need to do anything if EndMI defines RegNo.
2852   int UseIndex =
2853       EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2854   if (UseIndex != -1) {
2855     EndMI->getOperand(UseIndex).setIsKill(true);
2856     IsKillSet = true;
2857     // Clear killed flag for other EndMI operands related to RegNo. In some
2858     // upexpected cases, killed may be set multiple times for same register
2859     // operand in same MI.
2860     for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
2861       if (i != UseIndex)
2862         clearOperandKillInfo(*EndMI, i);
2863   }
2864 
2865   // Walking the inst in reverse order (EndMI -> StartMI].
2866   MachineBasicBlock::reverse_iterator It = *EndMI;
2867   MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
2868   // EndMI has been handled above, skip it here.
2869   It++;
2870   MachineOperand *MO = nullptr;
2871   for (; It != E; ++It) {
2872     // Skip insturctions which could not be a def/use of RegNo.
2873     if (It->isDebugInstr() || It->isPosition())
2874       continue;
2875 
2876     // Clear killed flag for all It operands related to RegNo. In some
2877     // upexpected cases, killed may be set multiple times for same register
2878     // operand in same MI.
2879     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2880         clearOperandKillInfo(*It, i);
2881 
2882     // If killed is not set, set killed for its last use or set dead for its def
2883     // if no use found.
2884     if (!IsKillSet) {
2885       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2886         // Use found, set it killed.
2887         IsKillSet = true;
2888         MO->setIsKill(true);
2889         continue;
2890       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2891                                                   &getRegisterInfo()))) {
2892         // No use found, set dead for its def.
2893         assert(&*It == StartMI && "No new def between StartMI and EndMI.");
2894         MO->setIsDead(true);
2895         break;
2896       }
2897     }
2898 
2899     if ((&*It) == StartMI)
2900       break;
2901   }
2902   // Ensure RegMo liveness is killed after EndMI.
2903   assert((IsKillSet || (MO && MO->isDead())) &&
2904          "RegNo should be killed or dead");
2905 }
2906 
2907 // This opt tries to convert the following imm form to an index form to save an
2908 // add for stack variables.
2909 // Return false if no such pattern found.
2910 //
2911 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
2912 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
2913 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
2914 //
2915 // can be converted to:
2916 //
2917 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
2918 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
2919 //
2920 // In order to eliminate ADD instr, make sure that:
2921 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
2922 //    new ADDI instr and ADDI can only take int16 Imm.
2923 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
2924 //    between ADDI and ADD instr since its original def in ADDI will be changed
2925 //    in new ADDI instr. And also there should be no new def for it between
2926 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
2927 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
2928 //    between ADD and Imm instr since ADD instr will be eliminated.
2929 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
2930 //    moved to Index instr.
2931 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
2932   MachineFunction *MF = MI.getParent()->getParent();
2933   MachineRegisterInfo *MRI = &MF->getRegInfo();
2934   bool PostRA = !MRI->isSSA();
2935   // Do this opt after PEI which is after RA. The reason is stack slot expansion
2936   // in PEI may expose such opportunities since in PEI, stack slot offsets to
2937   // frame base(OffsetAddi) are determined.
2938   if (!PostRA)
2939     return false;
2940   unsigned ToBeDeletedReg = 0;
2941   int64_t OffsetImm = 0;
2942   unsigned XFormOpcode = 0;
2943   ImmInstrInfo III;
2944 
2945   // Check if Imm instr meets requirement.
2946   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
2947                                     III))
2948     return false;
2949 
2950   bool OtherIntermediateUse = false;
2951   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
2952 
2953   // Exit if there is other use between ADD and Imm instr or no def found.
2954   if (OtherIntermediateUse || !ADDMI)
2955     return false;
2956 
2957   // Check if ADD instr meets requirement.
2958   if (!isADDInstrEligibleForFolding(*ADDMI))
2959     return false;
2960 
2961   unsigned ScaleRegIdx = 0;
2962   int64_t OffsetAddi = 0;
2963   MachineInstr *ADDIMI = nullptr;
2964 
2965   // Check if there is a valid ToBeChangedReg in ADDMI.
2966   // 1: It must be killed.
2967   // 2: Its definition must be a valid ADDIMI.
2968   // 3: It must satify int16 offset requirement.
2969   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
2970     ScaleRegIdx = 2;
2971   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
2972     ScaleRegIdx = 1;
2973   else
2974     return false;
2975 
2976   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
2977   unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
2978   unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
2979   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
2980                        MachineBasicBlock::iterator End) {
2981     for (auto It = ++Start; It != End; It++)
2982       if (It->modifiesRegister(Reg, &getRegisterInfo()))
2983         return true;
2984     return false;
2985   };
2986 
2987   // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
2988   // treated as special zero when ScaleReg is R0/X0 register.
2989   if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
2990       (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
2991     return false;
2992 
2993   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
2994   // and Imm Instr.
2995   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
2996     return false;
2997 
2998   // Now start to do the transformation.
2999   LLVM_DEBUG(dbgs() << "Replace instruction: "
3000                     << "\n");
3001   LLVM_DEBUG(ADDIMI->dump());
3002   LLVM_DEBUG(ADDMI->dump());
3003   LLVM_DEBUG(MI.dump());
3004   LLVM_DEBUG(dbgs() << "with: "
3005                     << "\n");
3006 
3007   // Update ADDI instr.
3008   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
3009 
3010   // Update Imm instr.
3011   MI.setDesc(get(XFormOpcode));
3012   MI.getOperand(III.ImmOpNo)
3013       .ChangeToRegister(ScaleReg, false, false,
3014                         ADDMI->getOperand(ScaleRegIdx).isKill());
3015 
3016   MI.getOperand(III.OpNoForForwarding)
3017       .ChangeToRegister(ToBeChangedReg, false, false, true);
3018 
3019   // Eliminate ADD instr.
3020   ADDMI->eraseFromParent();
3021 
3022   LLVM_DEBUG(ADDIMI->dump());
3023   LLVM_DEBUG(MI.dump());
3024 
3025   return true;
3026 }
3027 
3028 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
3029                                                  int64_t &Imm) const {
3030   unsigned Opc = ADDIMI.getOpcode();
3031 
3032   // Exit if the instruction is not ADDI.
3033   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
3034     return false;
3035 
3036   // The operand may not necessarily be an immediate - it could be a relocation.
3037   if (!ADDIMI.getOperand(2).isImm())
3038     return false;
3039 
3040   Imm = ADDIMI.getOperand(2).getImm();
3041 
3042   return true;
3043 }
3044 
3045 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
3046   unsigned Opc = ADDMI.getOpcode();
3047 
3048   // Exit if the instruction is not ADD.
3049   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
3050 }
3051 
3052 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
3053                                                 unsigned &ToBeDeletedReg,
3054                                                 unsigned &XFormOpcode,
3055                                                 int64_t &OffsetImm,
3056                                                 ImmInstrInfo &III) const {
3057   // Only handle load/store.
3058   if (!MI.mayLoadOrStore())
3059     return false;
3060 
3061   unsigned Opc = MI.getOpcode();
3062 
3063   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
3064 
3065   // Exit if instruction has no index form.
3066   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
3067     return false;
3068 
3069   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3070   if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
3071                        III, true))
3072     return false;
3073 
3074   if (!III.IsSummingOperands)
3075     return false;
3076 
3077   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
3078   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
3079   // Only support imm operands, not relocation slots or others.
3080   if (!ImmOperand.isImm())
3081     return false;
3082 
3083   assert(RegOperand.isReg() && "Instruction format is not right");
3084 
3085   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3086   if (!RegOperand.isKill())
3087     return false;
3088 
3089   ToBeDeletedReg = RegOperand.getReg();
3090   OffsetImm = ImmOperand.getImm();
3091 
3092   return true;
3093 }
3094 
3095 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
3096                                          MachineInstr *&ADDIMI,
3097                                          int64_t &OffsetAddi,
3098                                          int64_t OffsetImm) const {
3099   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
3100   MachineOperand &MO = ADDMI->getOperand(Index);
3101 
3102   if (!MO.isKill())
3103     return false;
3104 
3105   bool OtherIntermediateUse = false;
3106 
3107   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
3108   // Currently handle only one "add + Imminstr" pair case, exit if other
3109   // intermediate use for ToBeChangedReg found.
3110   // TODO: handle the cases where there are other "add + Imminstr" pairs
3111   // with same offset in Imminstr which is like:
3112   //
3113   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
3114   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3115   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
3116   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3117   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
3118   //
3119   // can be converted to:
3120   //
3121   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3122   //                                       (OffsetAddi + OffsetImm)
3123   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
3124   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
3125 
3126   if (OtherIntermediateUse || !ADDIMI)
3127     return false;
3128   // Check if ADDI instr meets requirement.
3129   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
3130     return false;
3131 
3132   if (isInt<16>(OffsetAddi + OffsetImm))
3133     return true;
3134   return false;
3135 }
3136 
3137 // If this instruction has an immediate form and one of its operands is a
3138 // result of a load-immediate or an add-immediate, convert it to
3139 // the immediate form if the constant is in range.
3140 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
3141                                           MachineInstr **KilledDef) const {
3142   MachineFunction *MF = MI.getParent()->getParent();
3143   MachineRegisterInfo *MRI = &MF->getRegInfo();
3144   bool PostRA = !MRI->isSSA();
3145   bool SeenIntermediateUse = true;
3146   unsigned ForwardingOperand = ~0U;
3147   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
3148                                            SeenIntermediateUse);
3149   if (!DefMI)
3150     return false;
3151   assert(ForwardingOperand < MI.getNumOperands() &&
3152          "The forwarding operand needs to be valid at this point");
3153   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
3154   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
3155   if (KilledDef && KillFwdDefMI)
3156     *KilledDef = DefMI;
3157 
3158   // If this is a imm instruction and its register operands is produced by ADDI,
3159   // put the imm into imm inst directly.
3160   if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
3161           PPC::INSTRUCTION_LIST_END &&
3162       transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
3163     return true;
3164 
3165   ImmInstrInfo III;
3166   bool IsVFReg = MI.getOperand(0).isReg()
3167                      ? isVFRegister(MI.getOperand(0).getReg())
3168                      : false;
3169   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3170   // If this is a reg+reg instruction that has a reg+imm form,
3171   // and one of the operands is produced by an add-immediate,
3172   // try to convert it.
3173   if (HasImmForm &&
3174       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3175                                  KillFwdDefMI))
3176     return true;
3177 
3178   // If this is a reg+reg instruction that has a reg+imm form,
3179   // and one of the operands is produced by LI, convert it now.
3180   if (HasImmForm &&
3181       transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3182     return true;
3183 
3184   // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3185   // can be simpified to LI.
3186   if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3187     return true;
3188 
3189   return false;
3190 }
3191 
3192 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3193                                    ImmInstrInfo &III, bool PostRA) const {
3194   // The vast majority of the instructions would need their operand 2 replaced
3195   // with an immediate when switching to the reg+imm form. A marked exception
3196   // are the update form loads/stores for which a constant operand 2 would need
3197   // to turn into a displacement and move operand 1 to the operand 2 position.
3198   III.ImmOpNo = 2;
3199   III.OpNoForForwarding = 2;
3200   III.ImmWidth = 16;
3201   III.ImmMustBeMultipleOf = 1;
3202   III.TruncateImmTo = 0;
3203   III.IsSummingOperands = false;
3204   switch (Opc) {
3205   default: return false;
3206   case PPC::ADD4:
3207   case PPC::ADD8:
3208     III.SignedImm = true;
3209     III.ZeroIsSpecialOrig = 0;
3210     III.ZeroIsSpecialNew = 1;
3211     III.IsCommutative = true;
3212     III.IsSummingOperands = true;
3213     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3214     break;
3215   case PPC::ADDC:
3216   case PPC::ADDC8:
3217     III.SignedImm = true;
3218     III.ZeroIsSpecialOrig = 0;
3219     III.ZeroIsSpecialNew = 0;
3220     III.IsCommutative = true;
3221     III.IsSummingOperands = true;
3222     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3223     break;
3224   case PPC::ADDC_rec:
3225     III.SignedImm = true;
3226     III.ZeroIsSpecialOrig = 0;
3227     III.ZeroIsSpecialNew = 0;
3228     III.IsCommutative = true;
3229     III.IsSummingOperands = true;
3230     III.ImmOpcode = PPC::ADDIC_rec;
3231     break;
3232   case PPC::SUBFC:
3233   case PPC::SUBFC8:
3234     III.SignedImm = true;
3235     III.ZeroIsSpecialOrig = 0;
3236     III.ZeroIsSpecialNew = 0;
3237     III.IsCommutative = false;
3238     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3239     break;
3240   case PPC::CMPW:
3241   case PPC::CMPD:
3242     III.SignedImm = true;
3243     III.ZeroIsSpecialOrig = 0;
3244     III.ZeroIsSpecialNew = 0;
3245     III.IsCommutative = false;
3246     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3247     break;
3248   case PPC::CMPLW:
3249   case PPC::CMPLD:
3250     III.SignedImm = false;
3251     III.ZeroIsSpecialOrig = 0;
3252     III.ZeroIsSpecialNew = 0;
3253     III.IsCommutative = false;
3254     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3255     break;
3256   case PPC::AND_rec:
3257   case PPC::AND8_rec:
3258   case PPC::OR:
3259   case PPC::OR8:
3260   case PPC::XOR:
3261   case PPC::XOR8:
3262     III.SignedImm = false;
3263     III.ZeroIsSpecialOrig = 0;
3264     III.ZeroIsSpecialNew = 0;
3265     III.IsCommutative = true;
3266     switch(Opc) {
3267     default: llvm_unreachable("Unknown opcode");
3268     case PPC::AND_rec:
3269       III.ImmOpcode = PPC::ANDI_rec;
3270       break;
3271     case PPC::AND8_rec:
3272       III.ImmOpcode = PPC::ANDI8_rec;
3273       break;
3274     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
3275     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
3276     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
3277     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
3278     }
3279     break;
3280   case PPC::RLWNM:
3281   case PPC::RLWNM8:
3282   case PPC::RLWNM_rec:
3283   case PPC::RLWNM8_rec:
3284   case PPC::SLW:
3285   case PPC::SLW8:
3286   case PPC::SLW_rec:
3287   case PPC::SLW8_rec:
3288   case PPC::SRW:
3289   case PPC::SRW8:
3290   case PPC::SRW_rec:
3291   case PPC::SRW8_rec:
3292   case PPC::SRAW:
3293   case PPC::SRAW_rec:
3294     III.SignedImm = false;
3295     III.ZeroIsSpecialOrig = 0;
3296     III.ZeroIsSpecialNew = 0;
3297     III.IsCommutative = false;
3298     // This isn't actually true, but the instructions ignore any of the
3299     // upper bits, so any immediate loaded with an LI is acceptable.
3300     // This does not apply to shift right algebraic because a value
3301     // out of range will produce a -1/0.
3302     III.ImmWidth = 16;
3303     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
3304         Opc == PPC::RLWNM8_rec)
3305       III.TruncateImmTo = 5;
3306     else
3307       III.TruncateImmTo = 6;
3308     switch(Opc) {
3309     default: llvm_unreachable("Unknown opcode");
3310     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
3311     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
3312     case PPC::RLWNM_rec:
3313       III.ImmOpcode = PPC::RLWINM_rec;
3314       break;
3315     case PPC::RLWNM8_rec:
3316       III.ImmOpcode = PPC::RLWINM8_rec;
3317       break;
3318     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
3319     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
3320     case PPC::SLW_rec:
3321       III.ImmOpcode = PPC::RLWINM_rec;
3322       break;
3323     case PPC::SLW8_rec:
3324       III.ImmOpcode = PPC::RLWINM8_rec;
3325       break;
3326     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
3327     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
3328     case PPC::SRW_rec:
3329       III.ImmOpcode = PPC::RLWINM_rec;
3330       break;
3331     case PPC::SRW8_rec:
3332       III.ImmOpcode = PPC::RLWINM8_rec;
3333       break;
3334     case PPC::SRAW:
3335       III.ImmWidth = 5;
3336       III.TruncateImmTo = 0;
3337       III.ImmOpcode = PPC::SRAWI;
3338       break;
3339     case PPC::SRAW_rec:
3340       III.ImmWidth = 5;
3341       III.TruncateImmTo = 0;
3342       III.ImmOpcode = PPC::SRAWI_rec;
3343       break;
3344     }
3345     break;
3346   case PPC::RLDCL:
3347   case PPC::RLDCL_rec:
3348   case PPC::RLDCR:
3349   case PPC::RLDCR_rec:
3350   case PPC::SLD:
3351   case PPC::SLD_rec:
3352   case PPC::SRD:
3353   case PPC::SRD_rec:
3354   case PPC::SRAD:
3355   case PPC::SRAD_rec:
3356     III.SignedImm = false;
3357     III.ZeroIsSpecialOrig = 0;
3358     III.ZeroIsSpecialNew = 0;
3359     III.IsCommutative = false;
3360     // This isn't actually true, but the instructions ignore any of the
3361     // upper bits, so any immediate loaded with an LI is acceptable.
3362     // This does not apply to shift right algebraic because a value
3363     // out of range will produce a -1/0.
3364     III.ImmWidth = 16;
3365     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
3366         Opc == PPC::RLDCR_rec)
3367       III.TruncateImmTo = 6;
3368     else
3369       III.TruncateImmTo = 7;
3370     switch(Opc) {
3371     default: llvm_unreachable("Unknown opcode");
3372     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
3373     case PPC::RLDCL_rec:
3374       III.ImmOpcode = PPC::RLDICL_rec;
3375       break;
3376     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
3377     case PPC::RLDCR_rec:
3378       III.ImmOpcode = PPC::RLDICR_rec;
3379       break;
3380     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
3381     case PPC::SLD_rec:
3382       III.ImmOpcode = PPC::RLDICR_rec;
3383       break;
3384     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
3385     case PPC::SRD_rec:
3386       III.ImmOpcode = PPC::RLDICL_rec;
3387       break;
3388     case PPC::SRAD:
3389       III.ImmWidth = 6;
3390       III.TruncateImmTo = 0;
3391       III.ImmOpcode = PPC::SRADI;
3392        break;
3393     case PPC::SRAD_rec:
3394       III.ImmWidth = 6;
3395       III.TruncateImmTo = 0;
3396       III.ImmOpcode = PPC::SRADI_rec;
3397       break;
3398     }
3399     break;
3400   // Loads and stores:
3401   case PPC::LBZX:
3402   case PPC::LBZX8:
3403   case PPC::LHZX:
3404   case PPC::LHZX8:
3405   case PPC::LHAX:
3406   case PPC::LHAX8:
3407   case PPC::LWZX:
3408   case PPC::LWZX8:
3409   case PPC::LWAX:
3410   case PPC::LDX:
3411   case PPC::LFSX:
3412   case PPC::LFDX:
3413   case PPC::STBX:
3414   case PPC::STBX8:
3415   case PPC::STHX:
3416   case PPC::STHX8:
3417   case PPC::STWX:
3418   case PPC::STWX8:
3419   case PPC::STDX:
3420   case PPC::STFSX:
3421   case PPC::STFDX:
3422     III.SignedImm = true;
3423     III.ZeroIsSpecialOrig = 1;
3424     III.ZeroIsSpecialNew = 2;
3425     III.IsCommutative = true;
3426     III.IsSummingOperands = true;
3427     III.ImmOpNo = 1;
3428     III.OpNoForForwarding = 2;
3429     switch(Opc) {
3430     default: llvm_unreachable("Unknown opcode");
3431     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3432     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3433     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3434     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3435     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3436     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3437     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3438     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3439     case PPC::LWAX:
3440       III.ImmOpcode = PPC::LWA;
3441       III.ImmMustBeMultipleOf = 4;
3442       break;
3443     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3444     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3445     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3446     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3447     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3448     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3449     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3450     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3451     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3452     case PPC::STDX:
3453       III.ImmOpcode = PPC::STD;
3454       III.ImmMustBeMultipleOf = 4;
3455       break;
3456     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3457     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3458     }
3459     break;
3460   case PPC::LBZUX:
3461   case PPC::LBZUX8:
3462   case PPC::LHZUX:
3463   case PPC::LHZUX8:
3464   case PPC::LHAUX:
3465   case PPC::LHAUX8:
3466   case PPC::LWZUX:
3467   case PPC::LWZUX8:
3468   case PPC::LDUX:
3469   case PPC::LFSUX:
3470   case PPC::LFDUX:
3471   case PPC::STBUX:
3472   case PPC::STBUX8:
3473   case PPC::STHUX:
3474   case PPC::STHUX8:
3475   case PPC::STWUX:
3476   case PPC::STWUX8:
3477   case PPC::STDUX:
3478   case PPC::STFSUX:
3479   case PPC::STFDUX:
3480     III.SignedImm = true;
3481     III.ZeroIsSpecialOrig = 2;
3482     III.ZeroIsSpecialNew = 3;
3483     III.IsCommutative = false;
3484     III.IsSummingOperands = true;
3485     III.ImmOpNo = 2;
3486     III.OpNoForForwarding = 3;
3487     switch(Opc) {
3488     default: llvm_unreachable("Unknown opcode");
3489     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3490     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3491     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3492     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3493     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3494     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3495     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3496     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3497     case PPC::LDUX:
3498       III.ImmOpcode = PPC::LDU;
3499       III.ImmMustBeMultipleOf = 4;
3500       break;
3501     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3502     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3503     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3504     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3505     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3506     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3507     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3508     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3509     case PPC::STDUX:
3510       III.ImmOpcode = PPC::STDU;
3511       III.ImmMustBeMultipleOf = 4;
3512       break;
3513     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3514     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3515     }
3516     break;
3517   // Power9 and up only. For some of these, the X-Form version has access to all
3518   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3519   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3520   // into or stored from is one of the VR registers.
3521   case PPC::LXVX:
3522   case PPC::LXSSPX:
3523   case PPC::LXSDX:
3524   case PPC::STXVX:
3525   case PPC::STXSSPX:
3526   case PPC::STXSDX:
3527   case PPC::XFLOADf32:
3528   case PPC::XFLOADf64:
3529   case PPC::XFSTOREf32:
3530   case PPC::XFSTOREf64:
3531     if (!Subtarget.hasP9Vector())
3532       return false;
3533     III.SignedImm = true;
3534     III.ZeroIsSpecialOrig = 1;
3535     III.ZeroIsSpecialNew = 2;
3536     III.IsCommutative = true;
3537     III.IsSummingOperands = true;
3538     III.ImmOpNo = 1;
3539     III.OpNoForForwarding = 2;
3540     III.ImmMustBeMultipleOf = 4;
3541     switch(Opc) {
3542     default: llvm_unreachable("Unknown opcode");
3543     case PPC::LXVX:
3544       III.ImmOpcode = PPC::LXV;
3545       III.ImmMustBeMultipleOf = 16;
3546       break;
3547     case PPC::LXSSPX:
3548       if (PostRA) {
3549         if (IsVFReg)
3550           III.ImmOpcode = PPC::LXSSP;
3551         else {
3552           III.ImmOpcode = PPC::LFS;
3553           III.ImmMustBeMultipleOf = 1;
3554         }
3555         break;
3556       }
3557       LLVM_FALLTHROUGH;
3558     case PPC::XFLOADf32:
3559       III.ImmOpcode = PPC::DFLOADf32;
3560       break;
3561     case PPC::LXSDX:
3562       if (PostRA) {
3563         if (IsVFReg)
3564           III.ImmOpcode = PPC::LXSD;
3565         else {
3566           III.ImmOpcode = PPC::LFD;
3567           III.ImmMustBeMultipleOf = 1;
3568         }
3569         break;
3570       }
3571       LLVM_FALLTHROUGH;
3572     case PPC::XFLOADf64:
3573       III.ImmOpcode = PPC::DFLOADf64;
3574       break;
3575     case PPC::STXVX:
3576       III.ImmOpcode = PPC::STXV;
3577       III.ImmMustBeMultipleOf = 16;
3578       break;
3579     case PPC::STXSSPX:
3580       if (PostRA) {
3581         if (IsVFReg)
3582           III.ImmOpcode = PPC::STXSSP;
3583         else {
3584           III.ImmOpcode = PPC::STFS;
3585           III.ImmMustBeMultipleOf = 1;
3586         }
3587         break;
3588       }
3589       LLVM_FALLTHROUGH;
3590     case PPC::XFSTOREf32:
3591       III.ImmOpcode = PPC::DFSTOREf32;
3592       break;
3593     case PPC::STXSDX:
3594       if (PostRA) {
3595         if (IsVFReg)
3596           III.ImmOpcode = PPC::STXSD;
3597         else {
3598           III.ImmOpcode = PPC::STFD;
3599           III.ImmMustBeMultipleOf = 1;
3600         }
3601         break;
3602       }
3603       LLVM_FALLTHROUGH;
3604     case PPC::XFSTOREf64:
3605       III.ImmOpcode = PPC::DFSTOREf64;
3606       break;
3607     }
3608     break;
3609   }
3610   return true;
3611 }
3612 
3613 // Utility function for swaping two arbitrary operands of an instruction.
3614 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3615   assert(Op1 != Op2 && "Cannot swap operand with itself.");
3616 
3617   unsigned MaxOp = std::max(Op1, Op2);
3618   unsigned MinOp = std::min(Op1, Op2);
3619   MachineOperand MOp1 = MI.getOperand(MinOp);
3620   MachineOperand MOp2 = MI.getOperand(MaxOp);
3621   MI.RemoveOperand(std::max(Op1, Op2));
3622   MI.RemoveOperand(std::min(Op1, Op2));
3623 
3624   // If the operands we are swapping are the two at the end (the common case)
3625   // we can just remove both and add them in the opposite order.
3626   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3627     MI.addOperand(MOp2);
3628     MI.addOperand(MOp1);
3629   } else {
3630     // Store all operands in a temporary vector, remove them and re-add in the
3631     // right order.
3632     SmallVector<MachineOperand, 2> MOps;
3633     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3634     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3635       MOps.push_back(MI.getOperand(i));
3636       MI.RemoveOperand(i);
3637     }
3638     // MOp2 needs to be added next.
3639     MI.addOperand(MOp2);
3640     // Now add the rest.
3641     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3642       if (i == MaxOp)
3643         MI.addOperand(MOp1);
3644       else {
3645         MI.addOperand(MOps.back());
3646         MOps.pop_back();
3647       }
3648     }
3649   }
3650 }
3651 
3652 // Check if the 'MI' that has the index OpNoForForwarding
3653 // meets the requirement described in the ImmInstrInfo.
3654 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3655                                                const ImmInstrInfo &III,
3656                                                unsigned OpNoForForwarding
3657                                                ) const {
3658   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3659   // would not work pre-RA, we can only do the check post RA.
3660   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3661   if (MRI.isSSA())
3662     return false;
3663 
3664   // Cannot do the transform if MI isn't summing the operands.
3665   if (!III.IsSummingOperands)
3666     return false;
3667 
3668   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3669   if (!III.ZeroIsSpecialOrig)
3670     return false;
3671 
3672   // We cannot do the transform if the operand we are trying to replace
3673   // isn't the same as the operand the instruction allows.
3674   if (OpNoForForwarding != III.OpNoForForwarding)
3675     return false;
3676 
3677   // Check if the instruction we are trying to transform really has
3678   // the special zero register as its operand.
3679   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3680       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3681     return false;
3682 
3683   // This machine instruction is convertible if it is,
3684   // 1. summing the operands.
3685   // 2. one of the operands is special zero register.
3686   // 3. the operand we are trying to replace is allowed by the MI.
3687   return true;
3688 }
3689 
3690 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3691 // accordingly.
3692 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3693                                                const ImmInstrInfo &III,
3694                                                MachineOperand *&ImmMO,
3695                                                MachineOperand *&RegMO) const {
3696   unsigned Opc = DefMI.getOpcode();
3697   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3698     return false;
3699 
3700   assert(DefMI.getNumOperands() >= 3 &&
3701          "Add inst must have at least three operands");
3702   RegMO = &DefMI.getOperand(1);
3703   ImmMO = &DefMI.getOperand(2);
3704 
3705   // Before RA, ADDI first operand could be a frame index.
3706   if (!RegMO->isReg())
3707     return false;
3708 
3709   // This DefMI is elgible for forwarding if it is:
3710   // 1. add inst
3711   // 2. one of the operands is Imm/CPI/Global.
3712   return isAnImmediateOperand(*ImmMO);
3713 }
3714 
3715 bool PPCInstrInfo::isRegElgibleForForwarding(
3716     const MachineOperand &RegMO, const MachineInstr &DefMI,
3717     const MachineInstr &MI, bool KillDefMI,
3718     bool &IsFwdFeederRegKilled) const {
3719   // x = addi y, imm
3720   // ...
3721   // z = lfdx 0, x   -> z = lfd imm(y)
3722   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3723   // of "y" between the DEF of "x" and "z".
3724   // The query is only valid post RA.
3725   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3726   if (MRI.isSSA())
3727     return false;
3728 
3729   Register Reg = RegMO.getReg();
3730 
3731   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3732   MachineBasicBlock::const_reverse_iterator It = MI;
3733   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3734   It++;
3735   for (; It != E; ++It) {
3736     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3737       return false;
3738     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3739       IsFwdFeederRegKilled = true;
3740     // Made it to DefMI without encountering a clobber.
3741     if ((&*It) == &DefMI)
3742       break;
3743   }
3744   assert((&*It) == &DefMI && "DefMI is missing");
3745 
3746   // If DefMI also defines the register to be forwarded, we can only forward it
3747   // if DefMI is being erased.
3748   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3749     return KillDefMI;
3750 
3751   return true;
3752 }
3753 
3754 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3755                                              const MachineInstr &DefMI,
3756                                              const ImmInstrInfo &III,
3757                                              int64_t &Imm,
3758                                              int64_t BaseImm) const {
3759   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3760   if (DefMI.getOpcode() == PPC::ADDItocL) {
3761     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3762     // However, we know that, it is 16-bit width, and has the alignment of 4.
3763     // Check if the instruction met the requirement.
3764     if (III.ImmMustBeMultipleOf > 4 ||
3765        III.TruncateImmTo || III.ImmWidth != 16)
3766       return false;
3767 
3768     // Going from XForm to DForm loads means that the displacement needs to be
3769     // not just an immediate but also a multiple of 4, or 16 depending on the
3770     // load. A DForm load cannot be represented if it is a multiple of say 2.
3771     // XForm loads do not have this restriction.
3772     if (ImmMO.isGlobal()) {
3773       const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
3774       if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
3775         return false;
3776     }
3777 
3778     return true;
3779   }
3780 
3781   if (ImmMO.isImm()) {
3782     // It is Imm, we need to check if the Imm fit the range.
3783     // Sign-extend to 64-bits.
3784     // DefMI may be folded with another imm form instruction, the result Imm is
3785     // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
3786     Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
3787 
3788     if (Imm % III.ImmMustBeMultipleOf)
3789       return false;
3790     if (III.TruncateImmTo)
3791       Imm &= ((1 << III.TruncateImmTo) - 1);
3792     if (III.SignedImm) {
3793       APInt ActualValue(64, Imm, true);
3794       if (!ActualValue.isSignedIntN(III.ImmWidth))
3795         return false;
3796     } else {
3797       uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3798       if ((uint64_t)Imm > UnsignedMax)
3799         return false;
3800     }
3801   }
3802   else
3803     return false;
3804 
3805   // This ImmMO is forwarded if it meets the requriement describle
3806   // in ImmInstrInfo
3807   return true;
3808 }
3809 
3810 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
3811                                 unsigned OpNoForForwarding,
3812                                 MachineInstr **KilledDef) const {
3813   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
3814       !DefMI.getOperand(1).isImm())
3815     return false;
3816 
3817   MachineFunction *MF = MI.getParent()->getParent();
3818   MachineRegisterInfo *MRI = &MF->getRegInfo();
3819   bool PostRA = !MRI->isSSA();
3820 
3821   int64_t Immediate = DefMI.getOperand(1).getImm();
3822   // Sign-extend to 64-bits.
3823   int64_t SExtImm = SignExtend64<16>(Immediate);
3824 
3825   bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
3826   Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3827 
3828   bool ReplaceWithLI = false;
3829   bool Is64BitLI = false;
3830   int64_t NewImm = 0;
3831   bool SetCR = false;
3832   unsigned Opc = MI.getOpcode();
3833   switch (Opc) {
3834   default:
3835     return false;
3836 
3837   // FIXME: Any branches conditional on such a comparison can be made
3838   // unconditional. At this time, this happens too infrequently to be worth
3839   // the implementation effort, but if that ever changes, we could convert
3840   // such a pattern here.
3841   case PPC::CMPWI:
3842   case PPC::CMPLWI:
3843   case PPC::CMPDI:
3844   case PPC::CMPLDI: {
3845     // Doing this post-RA would require dataflow analysis to reliably find uses
3846     // of the CR register set by the compare.
3847     // No need to fixup killed/dead flag since this transformation is only valid
3848     // before RA.
3849     if (PostRA)
3850       return false;
3851     // If a compare-immediate is fed by an immediate and is itself an input of
3852     // an ISEL (the most common case) into a COPY of the correct register.
3853     bool Changed = false;
3854     Register DefReg = MI.getOperand(0).getReg();
3855     int64_t Comparand = MI.getOperand(2).getImm();
3856     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
3857                                 ? (Comparand | 0xFFFFFFFFFFFF0000)
3858                                 : Comparand;
3859 
3860     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
3861       unsigned UseOpc = CompareUseMI.getOpcode();
3862       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
3863         continue;
3864       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
3865       Register TrueReg = CompareUseMI.getOperand(1).getReg();
3866       Register FalseReg = CompareUseMI.getOperand(2).getReg();
3867       unsigned RegToCopy =
3868           selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
3869       if (RegToCopy == PPC::NoRegister)
3870         continue;
3871       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
3872       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
3873         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
3874         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
3875         CompareUseMI.RemoveOperand(3);
3876         CompareUseMI.RemoveOperand(2);
3877         continue;
3878       }
3879       LLVM_DEBUG(
3880           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
3881       LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
3882       LLVM_DEBUG(dbgs() << "Is converted to:\n");
3883       // Convert to copy and remove unneeded operands.
3884       CompareUseMI.setDesc(get(PPC::COPY));
3885       CompareUseMI.RemoveOperand(3);
3886       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
3887       CmpIselsConverted++;
3888       Changed = true;
3889       LLVM_DEBUG(CompareUseMI.dump());
3890     }
3891     if (Changed)
3892       return true;
3893     // This may end up incremented multiple times since this function is called
3894     // during a fixed-point transformation, but it is only meant to indicate the
3895     // presence of this opportunity.
3896     MissedConvertibleImmediateInstrs++;
3897     return false;
3898   }
3899 
3900   // Immediate forms - may simply be convertable to an LI.
3901   case PPC::ADDI:
3902   case PPC::ADDI8: {
3903     // Does the sum fit in a 16-bit signed field?
3904     int64_t Addend = MI.getOperand(2).getImm();
3905     if (isInt<16>(Addend + SExtImm)) {
3906       ReplaceWithLI = true;
3907       Is64BitLI = Opc == PPC::ADDI8;
3908       NewImm = Addend + SExtImm;
3909       break;
3910     }
3911     return false;
3912   }
3913   case PPC::SUBFIC:
3914   case PPC::SUBFIC8: {
3915     // Only transform this if the CARRY implicit operand is dead.
3916     if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
3917       return false;
3918     int64_t Minuend = MI.getOperand(2).getImm();
3919     if (isInt<16>(Minuend - SExtImm)) {
3920       ReplaceWithLI = true;
3921       Is64BitLI = Opc == PPC::SUBFIC8;
3922       NewImm = Minuend - SExtImm;
3923       break;
3924     }
3925     return false;
3926   }
3927   case PPC::RLDICL:
3928   case PPC::RLDICL_rec:
3929   case PPC::RLDICL_32:
3930   case PPC::RLDICL_32_64: {
3931     // Use APInt's rotate function.
3932     int64_t SH = MI.getOperand(2).getImm();
3933     int64_t MB = MI.getOperand(3).getImm();
3934     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
3935                 SExtImm, true);
3936     InVal = InVal.rotl(SH);
3937     uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
3938     InVal &= Mask;
3939     // Can't replace negative values with an LI as that will sign-extend
3940     // and not clear the left bits. If we're setting the CR bit, we will use
3941     // ANDI_rec which won't sign extend, so that's safe.
3942     if (isUInt<15>(InVal.getSExtValue()) ||
3943         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
3944       ReplaceWithLI = true;
3945       Is64BitLI = Opc != PPC::RLDICL_32;
3946       NewImm = InVal.getSExtValue();
3947       SetCR = Opc == PPC::RLDICL_rec;
3948       break;
3949     }
3950     return false;
3951   }
3952   case PPC::RLWINM:
3953   case PPC::RLWINM8:
3954   case PPC::RLWINM_rec:
3955   case PPC::RLWINM8_rec: {
3956     int64_t SH = MI.getOperand(2).getImm();
3957     int64_t MB = MI.getOperand(3).getImm();
3958     int64_t ME = MI.getOperand(4).getImm();
3959     APInt InVal(32, SExtImm, true);
3960     InVal = InVal.rotl(SH);
3961     APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
3962     InVal &= Mask;
3963     // Can't replace negative values with an LI as that will sign-extend
3964     // and not clear the left bits. If we're setting the CR bit, we will use
3965     // ANDI_rec which won't sign extend, so that's safe.
3966     bool ValueFits = isUInt<15>(InVal.getSExtValue());
3967     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
3968                   isUInt<16>(InVal.getSExtValue()));
3969     if (ValueFits) {
3970       ReplaceWithLI = true;
3971       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
3972       NewImm = InVal.getSExtValue();
3973       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
3974       break;
3975     }
3976     return false;
3977   }
3978   case PPC::ORI:
3979   case PPC::ORI8:
3980   case PPC::XORI:
3981   case PPC::XORI8: {
3982     int64_t LogicalImm = MI.getOperand(2).getImm();
3983     int64_t Result = 0;
3984     if (Opc == PPC::ORI || Opc == PPC::ORI8)
3985       Result = LogicalImm | SExtImm;
3986     else
3987       Result = LogicalImm ^ SExtImm;
3988     if (isInt<16>(Result)) {
3989       ReplaceWithLI = true;
3990       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
3991       NewImm = Result;
3992       break;
3993     }
3994     return false;
3995   }
3996   }
3997 
3998   if (ReplaceWithLI) {
3999     // We need to be careful with CR-setting instructions we're replacing.
4000     if (SetCR) {
4001       // We don't know anything about uses when we're out of SSA, so only
4002       // replace if the new immediate will be reproduced.
4003       bool ImmChanged = (SExtImm & NewImm) != NewImm;
4004       if (PostRA && ImmChanged)
4005         return false;
4006 
4007       if (!PostRA) {
4008         // If the defining load-immediate has no other uses, we can just replace
4009         // the immediate with the new immediate.
4010         if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
4011           DefMI.getOperand(1).setImm(NewImm);
4012 
4013         // If we're not using the GPR result of the CR-setting instruction, we
4014         // just need to and with zero/non-zero depending on the new immediate.
4015         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
4016           if (NewImm) {
4017             assert(Immediate && "Transformation converted zero to non-zero?");
4018             NewImm = Immediate;
4019           }
4020         } else if (ImmChanged)
4021           return false;
4022       }
4023     }
4024 
4025     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4026     LLVM_DEBUG(MI.dump());
4027     LLVM_DEBUG(dbgs() << "Fed by:\n");
4028     LLVM_DEBUG(DefMI.dump());
4029     LoadImmediateInfo LII;
4030     LII.Imm = NewImm;
4031     LII.Is64Bit = Is64BitLI;
4032     LII.SetCR = SetCR;
4033     // If we're setting the CR, the original load-immediate must be kept (as an
4034     // operand to ANDI_rec/ANDI8_rec).
4035     if (KilledDef && SetCR)
4036       *KilledDef = nullptr;
4037     replaceInstrWithLI(MI, LII);
4038 
4039     // Fixup killed/dead flag after transformation.
4040     // Pattern:
4041     // ForwardingOperandReg = LI imm1
4042     // y = op2 imm2, ForwardingOperandReg(killed)
4043     if (IsForwardingOperandKilled)
4044       fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);
4045 
4046     LLVM_DEBUG(dbgs() << "With:\n");
4047     LLVM_DEBUG(MI.dump());
4048     return true;
4049   }
4050   return false;
4051 }
4052 
4053 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4054     MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
4055   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
4056   bool PostRA = !MRI->isSSA();
4057   // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4058   // for post-ra.
4059   if (PostRA)
4060     return false;
4061 
4062   // Only handle load/store.
4063   if (!MI.mayLoadOrStore())
4064     return false;
4065 
4066   unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
4067 
4068   assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
4069          "MI must have x-form opcode");
4070 
4071   // get Imm Form info.
4072   ImmInstrInfo III;
4073   bool IsVFReg = MI.getOperand(0).isReg()
4074                      ? isVFRegister(MI.getOperand(0).getReg())
4075                      : false;
4076 
4077   if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
4078     return false;
4079 
4080   if (!III.IsSummingOperands)
4081     return false;
4082 
4083   if (OpNoForForwarding != III.OpNoForForwarding)
4084     return false;
4085 
4086   MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
4087   if (!ImmOperandMI.isImm())
4088     return false;
4089 
4090   // Check DefMI.
4091   MachineOperand *ImmMO = nullptr;
4092   MachineOperand *RegMO = nullptr;
4093   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4094     return false;
4095   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4096 
4097   // Check Imm.
4098   // Set ImmBase from imm instruction as base and get new Imm inside
4099   // isImmElgibleForForwarding.
4100   int64_t ImmBase = ImmOperandMI.getImm();
4101   int64_t Imm = 0;
4102   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
4103     return false;
4104 
4105   // Get killed info in case fixup needed after transformation.
4106   unsigned ForwardKilledOperandReg = ~0U;
4107   if (MI.getOperand(III.OpNoForForwarding).isKill())
4108     ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
4109 
4110   // Do the transform
4111   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4112   LLVM_DEBUG(MI.dump());
4113   LLVM_DEBUG(dbgs() << "Fed by:\n");
4114   LLVM_DEBUG(DefMI.dump());
4115 
4116   MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
4117   MI.getOperand(III.OpNoForForwarding).setIsKill(RegMO->isKill());
4118   MI.getOperand(III.ImmOpNo).setImm(Imm);
4119 
4120   // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
4121   if (DefMI.getParent() == MI.getParent()) {
4122     // Check if reg is killed between MI and DefMI.
4123     auto IsKilledFor = [&](unsigned Reg) {
4124       MachineBasicBlock::const_reverse_iterator It = MI;
4125       MachineBasicBlock::const_reverse_iterator E = DefMI;
4126       It++;
4127       for (; It != E; ++It) {
4128         if (It->killsRegister(Reg))
4129           return true;
4130       }
4131       return false;
4132     };
4133 
4134     // Update kill flag
4135     if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
4136       fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4137     if (ForwardKilledOperandReg != ~0U)
4138       fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4139   }
4140 
4141   LLVM_DEBUG(dbgs() << "With:\n");
4142   LLVM_DEBUG(MI.dump());
4143   return true;
4144 }
4145 
4146 // If an X-Form instruction is fed by an add-immediate and one of its operands
4147 // is the literal zero, attempt to forward the source of the add-immediate to
4148 // the corresponding D-Form instruction with the displacement coming from
4149 // the immediate being added.
4150 bool PPCInstrInfo::transformToImmFormFedByAdd(
4151     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
4152     MachineInstr &DefMI, bool KillDefMI) const {
4153   //         RegMO ImmMO
4154   //           |    |
4155   // x = addi reg, imm  <----- DefMI
4156   // y = op    0 ,  x   <----- MI
4157   //                |
4158   //         OpNoForForwarding
4159   // Check if the MI meet the requirement described in the III.
4160   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
4161     return false;
4162 
4163   // Check if the DefMI meet the requirement
4164   // described in the III. If yes, set the ImmMO and RegMO accordingly.
4165   MachineOperand *ImmMO = nullptr;
4166   MachineOperand *RegMO = nullptr;
4167   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4168     return false;
4169   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4170 
4171   // As we get the Imm operand now, we need to check if the ImmMO meet
4172   // the requirement described in the III. If yes set the Imm.
4173   int64_t Imm = 0;
4174   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
4175     return false;
4176 
4177   bool IsFwdFeederRegKilled = false;
4178   // Check if the RegMO can be forwarded to MI.
4179   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
4180                                  IsFwdFeederRegKilled))
4181     return false;
4182 
4183   // Get killed info in case fixup needed after transformation.
4184   unsigned ForwardKilledOperandReg = ~0U;
4185   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4186   bool PostRA = !MRI.isSSA();
4187   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
4188     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4189 
4190   // We know that, the MI and DefMI both meet the pattern, and
4191   // the Imm also meet the requirement with the new Imm-form.
4192   // It is safe to do the transformation now.
4193   LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
4194   LLVM_DEBUG(MI.dump());
4195   LLVM_DEBUG(dbgs() << "Fed by:\n");
4196   LLVM_DEBUG(DefMI.dump());
4197 
4198   // Update the base reg first.
4199   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4200                                                         false, false,
4201                                                         RegMO->isKill());
4202 
4203   // Then, update the imm.
4204   if (ImmMO->isImm()) {
4205     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
4206     // directly.
4207     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
4208   }
4209   else {
4210     // Otherwise, it is Constant Pool Index(CPI) or Global,
4211     // which is relocation in fact. We need to replace the special zero
4212     // register with ImmMO.
4213     // Before that, we need to fixup the target flags for imm.
4214     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
4215     if (DefMI.getOpcode() == PPC::ADDItocL)
4216       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
4217 
4218     // MI didn't have the interface such as MI.setOperand(i) though
4219     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4220     // ImmMO, we need to remove ZERO operand and all the operands behind it,
4221     // and, add the ImmMO, then, move back all the operands behind ZERO.
4222     SmallVector<MachineOperand, 2> MOps;
4223     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
4224       MOps.push_back(MI.getOperand(i));
4225       MI.RemoveOperand(i);
4226     }
4227 
4228     // Remove the last MO in the list, which is ZERO operand in fact.
4229     MOps.pop_back();
4230     // Add the imm operand.
4231     MI.addOperand(*ImmMO);
4232     // Now add the rest back.
4233     for (auto &MO : MOps)
4234       MI.addOperand(MO);
4235   }
4236 
4237   // Update the opcode.
4238   MI.setDesc(get(III.ImmOpcode));
4239 
4240   // Fix up killed/dead flag after transformation.
4241   // Pattern 1:
4242   // x = ADD KilledFwdFeederReg, imm
4243   // n = opn KilledFwdFeederReg(killed), regn
4244   // y = XOP 0, x
4245   // Pattern 2:
4246   // x = ADD reg(killed), imm
4247   // y = XOP 0, x
4248   if (IsFwdFeederRegKilled || RegMO->isKill())
4249     fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4250   // Pattern 3:
4251   // ForwardKilledOperandReg = ADD reg, imm
4252   // y = XOP 0, ForwardKilledOperandReg(killed)
4253   if (ForwardKilledOperandReg != ~0U)
4254     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4255 
4256   LLVM_DEBUG(dbgs() << "With:\n");
4257   LLVM_DEBUG(MI.dump());
4258 
4259   return true;
4260 }
4261 
4262 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
4263                                              const ImmInstrInfo &III,
4264                                              unsigned ConstantOpNo,
4265                                              MachineInstr &DefMI) const {
4266   // DefMI must be LI or LI8.
4267   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4268       !DefMI.getOperand(1).isImm())
4269     return false;
4270 
4271   // Get Imm operand and Sign-extend to 64-bits.
4272   int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
4273 
4274   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4275   bool PostRA = !MRI.isSSA();
4276   // Exit early if we can't convert this.
4277   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
4278     return false;
4279   if (Imm % III.ImmMustBeMultipleOf)
4280     return false;
4281   if (III.TruncateImmTo)
4282     Imm &= ((1 << III.TruncateImmTo) - 1);
4283   if (III.SignedImm) {
4284     APInt ActualValue(64, Imm, true);
4285     if (!ActualValue.isSignedIntN(III.ImmWidth))
4286       return false;
4287   } else {
4288     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4289     if ((uint64_t)Imm > UnsignedMax)
4290       return false;
4291   }
4292 
4293   // If we're post-RA, the instructions don't agree on whether register zero is
4294   // special, we can transform this as long as the register operand that will
4295   // end up in the location where zero is special isn't R0.
4296   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4297     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
4298       III.ZeroIsSpecialNew + 1;
4299     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
4300     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4301     // If R0 is in the operand where zero is special for the new instruction,
4302     // it is unsafe to transform if the constant operand isn't that operand.
4303     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
4304         ConstantOpNo != III.ZeroIsSpecialNew)
4305       return false;
4306     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
4307         ConstantOpNo != PosForOrigZero)
4308       return false;
4309   }
4310 
4311   // Get killed info in case fixup needed after transformation.
4312   unsigned ForwardKilledOperandReg = ~0U;
4313   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
4314     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
4315 
4316   unsigned Opc = MI.getOpcode();
4317   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
4318                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
4319                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
4320                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
4321   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
4322                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
4323   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
4324                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
4325   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
4326                     Opc == PPC::SRD_rec;
4327 
4328   MI.setDesc(get(III.ImmOpcode));
4329   if (ConstantOpNo == III.OpNoForForwarding) {
4330     // Converting shifts to immediate form is a bit tricky since they may do
4331     // one of three things:
4332     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
4333     // 2. If the shift amount is zero, the result is unchanged (save for maybe
4334     //    setting CR0)
4335     // 3. If the shift amount is in [1, OpSize), it's just a shift
4336     if (SpecialShift32 || SpecialShift64) {
4337       LoadImmediateInfo LII;
4338       LII.Imm = 0;
4339       LII.SetCR = SetCR;
4340       LII.Is64Bit = SpecialShift64;
4341       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
4342       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
4343         replaceInstrWithLI(MI, LII);
4344       // Shifts by zero don't change the value. If we don't need to set CR0,
4345       // just convert this to a COPY. Can't do this post-RA since we've already
4346       // cleaned up the copies.
4347       else if (!SetCR && ShAmt == 0 && !PostRA) {
4348         MI.RemoveOperand(2);
4349         MI.setDesc(get(PPC::COPY));
4350       } else {
4351         // The 32 bit and 64 bit instructions are quite different.
4352         if (SpecialShift32) {
4353           // Left shifts use (N, 0, 31-N).
4354           // Right shifts use (32-N, N, 31) if 0 < N < 32.
4355           //              use (0, 0, 31)    if N == 0.
4356           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
4357           uint64_t MB = RightShift ? ShAmt : 0;
4358           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
4359           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
4360           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
4361             .addImm(ME);
4362         } else {
4363           // Left shifts use (N, 63-N).
4364           // Right shifts use (64-N, N) if 0 < N < 64.
4365           //              use (0, 0)    if N == 0.
4366           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
4367           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
4368           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
4369           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
4370         }
4371       }
4372     } else
4373       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
4374   }
4375   // Convert commutative instructions (switch the operands and convert the
4376   // desired one to an immediate.
4377   else if (III.IsCommutative) {
4378     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
4379     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
4380   } else
4381     llvm_unreachable("Should have exited early!");
4382 
4383   // For instructions for which the constant register replaces a different
4384   // operand than where the immediate goes, we need to swap them.
4385   if (III.OpNoForForwarding != III.ImmOpNo)
4386     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
4387 
4388   // If the special R0/X0 register index are different for original instruction
4389   // and new instruction, we need to fix up the register class in new
4390   // instruction.
4391   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4392     if (III.ZeroIsSpecialNew) {
4393       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
4394       // need to fix up register class.
4395       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4396       if (Register::isVirtualRegister(RegToModify)) {
4397         const TargetRegisterClass *NewRC =
4398           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
4399           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
4400         MRI.setRegClass(RegToModify, NewRC);
4401       }
4402     }
4403   }
4404 
4405   // Fix up killed/dead flag after transformation.
4406   // Pattern:
4407   // ForwardKilledOperandReg = LI imm
4408   // y = XOP reg, ForwardKilledOperandReg(killed)
4409   if (ForwardKilledOperandReg != ~0U)
4410     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4411   return true;
4412 }
4413 
4414 const TargetRegisterClass *
4415 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
4416   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
4417     return &PPC::VSRCRegClass;
4418   return RC;
4419 }
4420 
4421 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
4422   return PPC::getRecordFormOpcode(Opcode);
4423 }
4424 
4425 // This function returns true if the machine instruction
4426 // always outputs a value by sign-extending a 32 bit value,
4427 // i.e. 0 to 31-th bits are same as 32-th bit.
4428 static bool isSignExtendingOp(const MachineInstr &MI) {
4429   int Opcode = MI.getOpcode();
4430   if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
4431       Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
4432       Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
4433       Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
4434       Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
4435       Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
4436       Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
4437       Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
4438       Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
4439       Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
4440       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
4441       Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
4442       Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
4443       Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
4444       Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
4445       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
4446       Opcode == PPC::EXTSB8_32_64)
4447     return true;
4448 
4449   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
4450     return true;
4451 
4452   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
4453        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
4454       MI.getOperand(3).getImm() > 0 &&
4455       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
4456     return true;
4457 
4458   return false;
4459 }
4460 
4461 // This function returns true if the machine instruction
4462 // always outputs zeros in higher 32 bits.
4463 static bool isZeroExtendingOp(const MachineInstr &MI) {
4464   int Opcode = MI.getOpcode();
4465   // The 16-bit immediate is sign-extended in li/lis.
4466   // If the most significant bit is zero, all higher bits are zero.
4467   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
4468       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
4469     int64_t Imm = MI.getOperand(1).getImm();
4470     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
4471       return true;
4472   }
4473 
4474   // We have some variations of rotate-and-mask instructions
4475   // that clear higher 32-bits.
4476   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
4477        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
4478        Opcode == PPC::RLDICL_32_64) &&
4479       MI.getOperand(3).getImm() >= 32)
4480     return true;
4481 
4482   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
4483       MI.getOperand(3).getImm() >= 32 &&
4484       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
4485     return true;
4486 
4487   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
4488        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
4489        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
4490       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
4491     return true;
4492 
4493   // There are other instructions that clear higher 32-bits.
4494   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
4495       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
4496       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
4497       Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
4498       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
4499       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
4500       Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
4501       Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
4502       Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
4503       Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
4504       Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
4505       Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
4506       Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
4507       Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
4508       Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
4509       Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
4510       Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
4511       Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
4512       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
4513       Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
4514       Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
4515       Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
4516       Opcode == PPC::MFVSRWZ)
4517     return true;
4518 
4519   return false;
4520 }
4521 
4522 // This function returns true if the input MachineInstr is a TOC save
4523 // instruction.
4524 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
4525   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
4526     return false;
4527   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4528   unsigned StackOffset = MI.getOperand(1).getImm();
4529   Register StackReg = MI.getOperand(2).getReg();
4530   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
4531     return true;
4532 
4533   return false;
4534 }
4535 
4536 // We limit the max depth to track incoming values of PHIs or binary ops
4537 // (e.g. AND) to avoid excessive cost.
4538 const unsigned MAX_DEPTH = 1;
4539 
4540 bool
4541 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
4542                                    const unsigned Depth) const {
4543   const MachineFunction *MF = MI.getParent()->getParent();
4544   const MachineRegisterInfo *MRI = &MF->getRegInfo();
4545 
4546   // If we know this instruction returns sign- or zero-extended result,
4547   // return true.
4548   if (SignExt ? isSignExtendingOp(MI):
4549                 isZeroExtendingOp(MI))
4550     return true;
4551 
4552   switch (MI.getOpcode()) {
4553   case PPC::COPY: {
4554     Register SrcReg = MI.getOperand(1).getReg();
4555 
4556     // In both ELFv1 and v2 ABI, method parameters and the return value
4557     // are sign- or zero-extended.
4558     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
4559       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
4560       // We check the ZExt/SExt flags for a method parameter.
4561       if (MI.getParent()->getBasicBlock() ==
4562           &MF->getFunction().getEntryBlock()) {
4563         Register VReg = MI.getOperand(0).getReg();
4564         if (MF->getRegInfo().isLiveIn(VReg))
4565           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
4566                            FuncInfo->isLiveInZExt(VReg);
4567       }
4568 
4569       // For a method return value, we check the ZExt/SExt flags in attribute.
4570       // We assume the following code sequence for method call.
4571       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
4572       //   BL8_NOP @func,...
4573       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
4574       //   %5 = COPY %x3; G8RC:%5
4575       if (SrcReg == PPC::X3) {
4576         const MachineBasicBlock *MBB = MI.getParent();
4577         MachineBasicBlock::const_instr_iterator II =
4578           MachineBasicBlock::const_instr_iterator(&MI);
4579         if (II != MBB->instr_begin() &&
4580             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
4581           const MachineInstr &CallMI = *(--II);
4582           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
4583             const Function *CalleeFn =
4584               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
4585             if (!CalleeFn)
4586               return false;
4587             const IntegerType *IntTy =
4588               dyn_cast<IntegerType>(CalleeFn->getReturnType());
4589             const AttributeSet &Attrs =
4590               CalleeFn->getAttributes().getRetAttributes();
4591             if (IntTy && IntTy->getBitWidth() <= 32)
4592               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
4593                                                   Attribute::ZExt);
4594           }
4595         }
4596       }
4597     }
4598 
4599     // If this is a copy from another register, we recursively check source.
4600     if (!Register::isVirtualRegister(SrcReg))
4601       return false;
4602     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4603     if (SrcMI != NULL)
4604       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4605 
4606     return false;
4607   }
4608 
4609   case PPC::ANDI_rec:
4610   case PPC::ANDIS_rec:
4611   case PPC::ORI:
4612   case PPC::ORIS:
4613   case PPC::XORI:
4614   case PPC::XORIS:
4615   case PPC::ANDI8_rec:
4616   case PPC::ANDIS8_rec:
4617   case PPC::ORI8:
4618   case PPC::ORIS8:
4619   case PPC::XORI8:
4620   case PPC::XORIS8: {
4621     // logical operation with 16-bit immediate does not change the upper bits.
4622     // So, we track the operand register as we do for register copy.
4623     Register SrcReg = MI.getOperand(1).getReg();
4624     if (!Register::isVirtualRegister(SrcReg))
4625       return false;
4626     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4627     if (SrcMI != NULL)
4628       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
4629 
4630     return false;
4631   }
4632 
4633   // If all incoming values are sign-/zero-extended,
4634   // the output of OR, ISEL or PHI is also sign-/zero-extended.
4635   case PPC::OR:
4636   case PPC::OR8:
4637   case PPC::ISEL:
4638   case PPC::PHI: {
4639     if (Depth >= MAX_DEPTH)
4640       return false;
4641 
4642     // The input registers for PHI are operand 1, 3, ...
4643     // The input registers for others are operand 1 and 2.
4644     unsigned E = 3, D = 1;
4645     if (MI.getOpcode() == PPC::PHI) {
4646       E = MI.getNumOperands();
4647       D = 2;
4648     }
4649 
4650     for (unsigned I = 1; I != E; I += D) {
4651       if (MI.getOperand(I).isReg()) {
4652         Register SrcReg = MI.getOperand(I).getReg();
4653         if (!Register::isVirtualRegister(SrcReg))
4654           return false;
4655         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
4656         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
4657           return false;
4658       }
4659       else
4660         return false;
4661     }
4662     return true;
4663   }
4664 
4665   // If at least one of the incoming values of an AND is zero extended
4666   // then the output is also zero-extended. If both of the incoming values
4667   // are sign-extended then the output is also sign extended.
4668   case PPC::AND:
4669   case PPC::AND8: {
4670     if (Depth >= MAX_DEPTH)
4671        return false;
4672 
4673     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
4674 
4675     Register SrcReg1 = MI.getOperand(1).getReg();
4676     Register SrcReg2 = MI.getOperand(2).getReg();
4677 
4678     if (!Register::isVirtualRegister(SrcReg1) ||
4679         !Register::isVirtualRegister(SrcReg2))
4680       return false;
4681 
4682     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
4683     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
4684     if (!MISrc1 || !MISrc2)
4685         return false;
4686 
4687     if(SignExt)
4688         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
4689                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4690     else
4691         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
4692                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
4693   }
4694 
4695   default:
4696     break;
4697   }
4698   return false;
4699 }
4700 
4701 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
4702   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
4703 }
4704 
4705 namespace {
4706 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
4707   MachineInstr *Loop, *EndLoop, *LoopCount;
4708   MachineFunction *MF;
4709   const TargetInstrInfo *TII;
4710   int64_t TripCount;
4711 
4712 public:
4713   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
4714                        MachineInstr *LoopCount)
4715       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
4716         MF(Loop->getParent()->getParent()),
4717         TII(MF->getSubtarget().getInstrInfo()) {
4718     // Inspect the Loop instruction up-front, as it may be deleted when we call
4719     // createTripCountGreaterCondition.
4720     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
4721       TripCount = LoopCount->getOperand(1).getImm();
4722     else
4723       TripCount = -1;
4724   }
4725 
4726   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
4727     // Only ignore the terminator.
4728     return MI == EndLoop;
4729   }
4730 
4731   Optional<bool>
4732   createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
4733                                   SmallVectorImpl<MachineOperand> &Cond) override {
4734     if (TripCount == -1) {
4735       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4736       // so we don't need to generate any thing here.
4737       Cond.push_back(MachineOperand::CreateImm(0));
4738       Cond.push_back(MachineOperand::CreateReg(
4739           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
4740           true));
4741       return {};
4742     }
4743 
4744     return TripCount > TC;
4745   }
4746 
4747   void setPreheader(MachineBasicBlock *NewPreheader) override {
4748     // Do nothing. We want the LOOP setup instruction to stay in the *old*
4749     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
4750   }
4751 
4752   void adjustTripCount(int TripCountAdjust) override {
4753     // If the loop trip count is a compile-time value, then just change the
4754     // value.
4755     if (LoopCount->getOpcode() == PPC::LI8 ||
4756         LoopCount->getOpcode() == PPC::LI) {
4757       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
4758       LoopCount->getOperand(1).setImm(TripCount);
4759       return;
4760     }
4761 
4762     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
4763     // so we don't need to generate any thing here.
4764   }
4765 
4766   void disposed() override {
4767     Loop->eraseFromParent();
4768     // Ensure the loop setup instruction is deleted too.
4769     LoopCount->eraseFromParent();
4770   }
4771 };
4772 } // namespace
4773 
4774 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4775 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
4776   // We really "analyze" only hardware loops right now.
4777   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
4778   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
4779   if (Preheader == LoopBB)
4780     Preheader = *std::next(LoopBB->pred_begin());
4781   MachineFunction *MF = Preheader->getParent();
4782 
4783   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
4784     SmallPtrSet<MachineBasicBlock *, 8> Visited;
4785     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
4786       Register LoopCountReg = LoopInst->getOperand(0).getReg();
4787       MachineRegisterInfo &MRI = MF->getRegInfo();
4788       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
4789       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
4790     }
4791   }
4792   return nullptr;
4793 }
4794 
4795 MachineInstr *PPCInstrInfo::findLoopInstr(
4796     MachineBasicBlock &PreHeader,
4797     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
4798 
4799   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
4800 
4801   // The loop set-up instruction should be in preheader
4802   for (auto &I : PreHeader.instrs())
4803     if (I.getOpcode() == LOOPi)
4804       return &I;
4805   return nullptr;
4806 }
4807 
4808 // Return true if get the base operand, byte offset of an instruction and the
4809 // memory width. Width is the size of memory that is being loaded/stored.
4810 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4811     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
4812     unsigned &Width, const TargetRegisterInfo *TRI) const {
4813   if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
4814     return false;
4815 
4816   // Handle only loads/stores with base register followed by immediate offset.
4817   if (!LdSt.getOperand(1).isImm() ||
4818       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
4819     return false;
4820   if (!LdSt.getOperand(1).isImm() ||
4821       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
4822     return false;
4823 
4824   if (!LdSt.hasOneMemOperand())
4825     return false;
4826 
4827   Width = (*LdSt.memoperands_begin())->getSize();
4828   Offset = LdSt.getOperand(1).getImm();
4829   BaseReg = &LdSt.getOperand(2);
4830   return true;
4831 }
4832 
4833 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4834     const MachineInstr &MIa, const MachineInstr &MIb) const {
4835   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4836   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4837 
4838   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4839       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4840     return false;
4841 
4842   // Retrieve the base register, offset from the base register and width. Width
4843   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
4844   // base registers are identical, and the offset of a lower memory access +
4845   // the width doesn't overlap the offset of a higher memory access,
4846   // then the memory accesses are different.
4847   const TargetRegisterInfo *TRI = &getRegisterInfo();
4848   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4849   int64_t OffsetA = 0, OffsetB = 0;
4850   unsigned int WidthA = 0, WidthB = 0;
4851   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4852       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4853     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4854       int LowOffset = std::min(OffsetA, OffsetB);
4855       int HighOffset = std::max(OffsetA, OffsetB);
4856       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4857       if (LowOffset + LowWidth <= HighOffset)
4858         return true;
4859     }
4860   }
4861   return false;
4862 }
4863