1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCInstrInfo.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCHazardRecognizers.h" 17 #include "PPCInstrBuilder.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "ppc-instr-info" 43 44 #define GET_INSTRMAP_INFO 45 #define GET_INSTRINFO_CTOR_DTOR 46 #include "PPCGenInstrInfo.inc" 47 48 STATISTIC(NumStoreSPILLVSRRCAsVec, 49 "Number of spillvsrrc spilled to stack as vec"); 50 STATISTIC(NumStoreSPILLVSRRCAsGpr, 51 "Number of spillvsrrc spilled to stack as gpr"); 52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); 53 STATISTIC(CmpIselsConverted, 54 "Number of ISELs that depend on comparison of constants converted"); 55 STATISTIC(MissedConvertibleImmediateInstrs, 56 "Number of compare-immediate instructions fed by constants"); 57 STATISTIC(NumRcRotatesConvertedToRcAnd, 58 "Number of record-form rotates converted to record-form andi"); 59 60 static cl:: 61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 62 cl::desc("Disable analysis for CTR loops")); 63 64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 65 cl::desc("Disable compare instruction optimization"), cl::Hidden); 66 67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 69 cl::Hidden); 70 71 static cl::opt<bool> 72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, 73 cl::desc("Use the old (incorrect) instruction latency calculation")); 74 75 // Index into the OpcodesForSpill array. 76 enum SpillOpcodeKey { 77 SOK_Int4Spill, 78 SOK_Int8Spill, 79 SOK_Float8Spill, 80 SOK_Float4Spill, 81 SOK_CRSpill, 82 SOK_CRBitSpill, 83 SOK_VRVectorSpill, 84 SOK_VSXVectorSpill, 85 SOK_VectorFloat8Spill, 86 SOK_VectorFloat4Spill, 87 SOK_VRSaveSpill, 88 SOK_QuadFloat8Spill, 89 SOK_QuadFloat4Spill, 90 SOK_QuadBitSpill, 91 SOK_SpillToVSR, 92 SOK_SPESpill, 93 SOK_LastOpcodeSpill // This must be last on the enum. 94 }; 95 96 // Pin the vtable to this file. 97 void PPCInstrInfo::anchor() {} 98 99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) 100 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, 101 /* CatchRetOpcode */ -1, 102 STI.isPPC64() ? PPC::BLR8 : PPC::BLR), 103 Subtarget(STI), RI(STI.getTargetMachine()) {} 104 105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 106 /// this target when scheduling the DAG. 107 ScheduleHazardRecognizer * 108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 109 const ScheduleDAG *DAG) const { 110 unsigned Directive = 111 static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); 112 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 113 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 114 const InstrItineraryData *II = 115 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); 116 return new ScoreboardHazardRecognizer(II, DAG); 117 } 118 119 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 120 } 121 122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 123 /// to use for this target when scheduling the DAG. 124 ScheduleHazardRecognizer * 125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 126 const ScheduleDAG *DAG) const { 127 unsigned Directive = 128 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); 129 130 // FIXME: Leaving this as-is until we have POWER9 scheduling info 131 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) 132 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 133 134 // Most subtargets use a PPC970 recognizer. 135 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 136 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 137 assert(DAG->TII && "No InstrInfo?"); 138 139 return new PPCHazardRecognizer970(*DAG); 140 } 141 142 return new ScoreboardHazardRecognizer(II, DAG); 143 } 144 145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 146 const MachineInstr &MI, 147 unsigned *PredCost) const { 148 if (!ItinData || UseOldLatencyCalc) 149 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); 150 151 // The default implementation of getInstrLatency calls getStageLatency, but 152 // getStageLatency does not do the right thing for us. While we have 153 // itinerary, most cores are fully pipelined, and so the itineraries only 154 // express the first part of the pipeline, not every stage. Instead, we need 155 // to use the listed output operand cycle number (using operand 0 here, which 156 // is an output). 157 158 unsigned Latency = 1; 159 unsigned DefClass = MI.getDesc().getSchedClass(); 160 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 161 const MachineOperand &MO = MI.getOperand(i); 162 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 163 continue; 164 165 int Cycle = ItinData->getOperandCycle(DefClass, i); 166 if (Cycle < 0) 167 continue; 168 169 Latency = std::max(Latency, (unsigned) Cycle); 170 } 171 172 return Latency; 173 } 174 175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 176 const MachineInstr &DefMI, unsigned DefIdx, 177 const MachineInstr &UseMI, 178 unsigned UseIdx) const { 179 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 180 UseMI, UseIdx); 181 182 if (!DefMI.getParent()) 183 return Latency; 184 185 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 186 Register Reg = DefMO.getReg(); 187 188 bool IsRegCR; 189 if (Register::isVirtualRegister(Reg)) { 190 const MachineRegisterInfo *MRI = 191 &DefMI.getParent()->getParent()->getRegInfo(); 192 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 193 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 194 } else { 195 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 196 PPC::CRBITRCRegClass.contains(Reg); 197 } 198 199 if (UseMI.isBranch() && IsRegCR) { 200 if (Latency < 0) 201 Latency = getInstrLatency(ItinData, DefMI); 202 203 // On some cores, there is an additional delay between writing to a condition 204 // register, and using it from a branch. 205 unsigned Directive = Subtarget.getCPUDirective(); 206 switch (Directive) { 207 default: break; 208 case PPC::DIR_7400: 209 case PPC::DIR_750: 210 case PPC::DIR_970: 211 case PPC::DIR_E5500: 212 case PPC::DIR_PWR4: 213 case PPC::DIR_PWR5: 214 case PPC::DIR_PWR5X: 215 case PPC::DIR_PWR6: 216 case PPC::DIR_PWR6X: 217 case PPC::DIR_PWR7: 218 case PPC::DIR_PWR8: 219 // FIXME: Is this needed for POWER9? 220 Latency += 2; 221 break; 222 } 223 } 224 225 return Latency; 226 } 227 228 /// This is an architecture-specific helper function of reassociateOps. 229 /// Set special operand attributes for new instructions after reassociation. 230 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 231 MachineInstr &OldMI2, 232 MachineInstr &NewMI1, 233 MachineInstr &NewMI2) const { 234 // Propagate FP flags from the original instructions. 235 // But clear poison-generating flags because those may not be valid now. 236 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 237 NewMI1.setFlags(IntersectedFlags); 238 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 239 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 240 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 241 242 NewMI2.setFlags(IntersectedFlags); 243 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 244 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 245 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 246 } 247 248 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, 249 uint16_t Flags) const { 250 MI.setFlags(Flags); 251 MI.clearFlag(MachineInstr::MIFlag::NoSWrap); 252 MI.clearFlag(MachineInstr::MIFlag::NoUWrap); 253 MI.clearFlag(MachineInstr::MIFlag::IsExact); 254 } 255 256 // This function does not list all associative and commutative operations, but 257 // only those worth feeding through the machine combiner in an attempt to 258 // reduce the critical path. Mostly, this means floating-point operations, 259 // because they have high latencies (compared to other operations, such and 260 // and/or, which are also associative and commutative, but have low latencies). 261 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 262 switch (Inst.getOpcode()) { 263 // FP Add: 264 case PPC::FADD: 265 case PPC::FADDS: 266 // FP Multiply: 267 case PPC::FMUL: 268 case PPC::FMULS: 269 // Altivec Add: 270 case PPC::VADDFP: 271 // VSX Add: 272 case PPC::XSADDDP: 273 case PPC::XVADDDP: 274 case PPC::XVADDSP: 275 case PPC::XSADDSP: 276 // VSX Multiply: 277 case PPC::XSMULDP: 278 case PPC::XVMULDP: 279 case PPC::XVMULSP: 280 case PPC::XSMULSP: 281 // QPX Add: 282 case PPC::QVFADD: 283 case PPC::QVFADDS: 284 case PPC::QVFADDSs: 285 // QPX Multiply: 286 case PPC::QVFMUL: 287 case PPC::QVFMULS: 288 case PPC::QVFMULSs: 289 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 290 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 291 default: 292 return false; 293 } 294 } 295 296 bool PPCInstrInfo::getMachineCombinerPatterns( 297 MachineInstr &Root, 298 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 299 // Using the machine combiner in this way is potentially expensive, so 300 // restrict to when aggressive optimizations are desired. 301 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) 302 return false; 303 304 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); 305 } 306 307 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 308 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 309 Register &SrcReg, Register &DstReg, 310 unsigned &SubIdx) const { 311 switch (MI.getOpcode()) { 312 default: return false; 313 case PPC::EXTSW: 314 case PPC::EXTSW_32: 315 case PPC::EXTSW_32_64: 316 SrcReg = MI.getOperand(1).getReg(); 317 DstReg = MI.getOperand(0).getReg(); 318 SubIdx = PPC::sub_32; 319 return true; 320 } 321 } 322 323 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 324 int &FrameIndex) const { 325 unsigned Opcode = MI.getOpcode(); 326 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 327 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 328 329 if (End != std::find(OpcodesForSpill, End, Opcode)) { 330 // Check for the operands added by addFrameReference (the immediate is the 331 // offset which defaults to 0). 332 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 333 MI.getOperand(2).isFI()) { 334 FrameIndex = MI.getOperand(2).getIndex(); 335 return MI.getOperand(0).getReg(); 336 } 337 } 338 return 0; 339 } 340 341 // For opcodes with the ReMaterializable flag set, this function is called to 342 // verify the instruction is really rematable. 343 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 344 AliasAnalysis *AA) const { 345 switch (MI.getOpcode()) { 346 default: 347 // This function should only be called for opcodes with the ReMaterializable 348 // flag set. 349 llvm_unreachable("Unknown rematerializable operation!"); 350 break; 351 case PPC::LI: 352 case PPC::LI8: 353 case PPC::LIS: 354 case PPC::LIS8: 355 case PPC::QVGPCI: 356 case PPC::ADDIStocHA: 357 case PPC::ADDIStocHA8: 358 case PPC::ADDItocL: 359 case PPC::LOAD_STACK_GUARD: 360 case PPC::XXLXORz: 361 case PPC::XXLXORspz: 362 case PPC::XXLXORdpz: 363 case PPC::XXLEQVOnes: 364 case PPC::V_SET0B: 365 case PPC::V_SET0H: 366 case PPC::V_SET0: 367 case PPC::V_SETALLONESB: 368 case PPC::V_SETALLONESH: 369 case PPC::V_SETALLONES: 370 case PPC::CRSET: 371 case PPC::CRUNSET: 372 return true; 373 } 374 return false; 375 } 376 377 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 378 int &FrameIndex) const { 379 unsigned Opcode = MI.getOpcode(); 380 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 381 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill; 382 383 if (End != std::find(OpcodesForSpill, End, Opcode)) { 384 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && 385 MI.getOperand(2).isFI()) { 386 FrameIndex = MI.getOperand(2).getIndex(); 387 return MI.getOperand(0).getReg(); 388 } 389 } 390 return 0; 391 } 392 393 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 394 unsigned OpIdx1, 395 unsigned OpIdx2) const { 396 MachineFunction &MF = *MI.getParent()->getParent(); 397 398 // Normal instructions can be commuted the obvious way. 399 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) 400 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 401 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a 402 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because 403 // changing the relative order of the mask operands might change what happens 404 // to the high-bits of the mask (and, thus, the result). 405 406 // Cannot commute if it has a non-zero rotate count. 407 if (MI.getOperand(3).getImm() != 0) 408 return nullptr; 409 410 // If we have a zero rotate count, we have: 411 // M = mask(MB,ME) 412 // Op0 = (Op1 & ~M) | (Op2 & M) 413 // Change this to: 414 // M = mask((ME+1)&31, (MB-1)&31) 415 // Op0 = (Op2 & ~M) | (Op1 & M) 416 417 // Swap op1/op2 418 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && 419 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); 420 Register Reg0 = MI.getOperand(0).getReg(); 421 Register Reg1 = MI.getOperand(1).getReg(); 422 Register Reg2 = MI.getOperand(2).getReg(); 423 unsigned SubReg1 = MI.getOperand(1).getSubReg(); 424 unsigned SubReg2 = MI.getOperand(2).getSubReg(); 425 bool Reg1IsKill = MI.getOperand(1).isKill(); 426 bool Reg2IsKill = MI.getOperand(2).isKill(); 427 bool ChangeReg0 = false; 428 // If machine instrs are no longer in two-address forms, update 429 // destination register as well. 430 if (Reg0 == Reg1) { 431 // Must be two address instruction! 432 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 433 "Expecting a two-address instruction!"); 434 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 435 Reg2IsKill = false; 436 ChangeReg0 = true; 437 } 438 439 // Masks. 440 unsigned MB = MI.getOperand(4).getImm(); 441 unsigned ME = MI.getOperand(5).getImm(); 442 443 // We can't commute a trivial mask (there is no way to represent an all-zero 444 // mask). 445 if (MB == 0 && ME == 31) 446 return nullptr; 447 448 if (NewMI) { 449 // Create a new instruction. 450 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); 451 bool Reg0IsDead = MI.getOperand(0).isDead(); 452 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) 453 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 454 .addReg(Reg2, getKillRegState(Reg2IsKill)) 455 .addReg(Reg1, getKillRegState(Reg1IsKill)) 456 .addImm((ME + 1) & 31) 457 .addImm((MB - 1) & 31); 458 } 459 460 if (ChangeReg0) { 461 MI.getOperand(0).setReg(Reg2); 462 MI.getOperand(0).setSubReg(SubReg2); 463 } 464 MI.getOperand(2).setReg(Reg1); 465 MI.getOperand(1).setReg(Reg2); 466 MI.getOperand(2).setSubReg(SubReg1); 467 MI.getOperand(1).setSubReg(SubReg2); 468 MI.getOperand(2).setIsKill(Reg1IsKill); 469 MI.getOperand(1).setIsKill(Reg2IsKill); 470 471 // Swap the mask around. 472 MI.getOperand(4).setImm((ME + 1) & 31); 473 MI.getOperand(5).setImm((MB - 1) & 31); 474 return &MI; 475 } 476 477 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 478 unsigned &SrcOpIdx1, 479 unsigned &SrcOpIdx2) const { 480 // For VSX A-Type FMA instructions, it is the first two operands that can be 481 // commuted, however, because the non-encoded tied input operand is listed 482 // first, the operands to swap are actually the second and third. 483 484 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); 485 if (AltOpc == -1) 486 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 487 488 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 489 // and SrcOpIdx2. 490 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); 491 } 492 493 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 494 MachineBasicBlock::iterator MI) const { 495 // This function is used for scheduling, and the nop wanted here is the type 496 // that terminates dispatch groups on the POWER cores. 497 unsigned Directive = Subtarget.getCPUDirective(); 498 unsigned Opcode; 499 switch (Directive) { 500 default: Opcode = PPC::NOP; break; 501 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 502 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 503 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ 504 // FIXME: Update when POWER9 scheduling model is ready. 505 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; 506 } 507 508 DebugLoc DL; 509 BuildMI(MBB, MI, DL, get(Opcode)); 510 } 511 512 /// Return the noop instruction to use for a noop. 513 void PPCInstrInfo::getNoop(MCInst &NopInst) const { 514 NopInst.setOpcode(PPC::NOP); 515 } 516 517 // Branch analysis. 518 // Note: If the condition register is set to CTR or CTR8 then this is a 519 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 520 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 521 MachineBasicBlock *&TBB, 522 MachineBasicBlock *&FBB, 523 SmallVectorImpl<MachineOperand> &Cond, 524 bool AllowModify) const { 525 bool isPPC64 = Subtarget.isPPC64(); 526 527 // If the block has no terminators, it just falls into the block after it. 528 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 529 if (I == MBB.end()) 530 return false; 531 532 if (!isUnpredicatedTerminator(*I)) 533 return false; 534 535 if (AllowModify) { 536 // If the BB ends with an unconditional branch to the fallthrough BB, 537 // we eliminate the branch instruction. 538 if (I->getOpcode() == PPC::B && 539 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 540 I->eraseFromParent(); 541 542 // We update iterator after deleting the last branch. 543 I = MBB.getLastNonDebugInstr(); 544 if (I == MBB.end() || !isUnpredicatedTerminator(*I)) 545 return false; 546 } 547 } 548 549 // Get the last instruction in the block. 550 MachineInstr &LastInst = *I; 551 552 // If there is only one terminator instruction, process it. 553 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 554 if (LastInst.getOpcode() == PPC::B) { 555 if (!LastInst.getOperand(0).isMBB()) 556 return true; 557 TBB = LastInst.getOperand(0).getMBB(); 558 return false; 559 } else if (LastInst.getOpcode() == PPC::BCC) { 560 if (!LastInst.getOperand(2).isMBB()) 561 return true; 562 // Block ends with fall-through condbranch. 563 TBB = LastInst.getOperand(2).getMBB(); 564 Cond.push_back(LastInst.getOperand(0)); 565 Cond.push_back(LastInst.getOperand(1)); 566 return false; 567 } else if (LastInst.getOpcode() == PPC::BC) { 568 if (!LastInst.getOperand(1).isMBB()) 569 return true; 570 // Block ends with fall-through condbranch. 571 TBB = LastInst.getOperand(1).getMBB(); 572 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 573 Cond.push_back(LastInst.getOperand(0)); 574 return false; 575 } else if (LastInst.getOpcode() == PPC::BCn) { 576 if (!LastInst.getOperand(1).isMBB()) 577 return true; 578 // Block ends with fall-through condbranch. 579 TBB = LastInst.getOperand(1).getMBB(); 580 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 581 Cond.push_back(LastInst.getOperand(0)); 582 return false; 583 } else if (LastInst.getOpcode() == PPC::BDNZ8 || 584 LastInst.getOpcode() == PPC::BDNZ) { 585 if (!LastInst.getOperand(0).isMBB()) 586 return true; 587 if (DisableCTRLoopAnal) 588 return true; 589 TBB = LastInst.getOperand(0).getMBB(); 590 Cond.push_back(MachineOperand::CreateImm(1)); 591 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 592 true)); 593 return false; 594 } else if (LastInst.getOpcode() == PPC::BDZ8 || 595 LastInst.getOpcode() == PPC::BDZ) { 596 if (!LastInst.getOperand(0).isMBB()) 597 return true; 598 if (DisableCTRLoopAnal) 599 return true; 600 TBB = LastInst.getOperand(0).getMBB(); 601 Cond.push_back(MachineOperand::CreateImm(0)); 602 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 603 true)); 604 return false; 605 } 606 607 // Otherwise, don't know what this is. 608 return true; 609 } 610 611 // Get the instruction before it if it's a terminator. 612 MachineInstr &SecondLastInst = *I; 613 614 // If there are three terminators, we don't know what sort of block this is. 615 if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) 616 return true; 617 618 // If the block ends with PPC::B and PPC:BCC, handle it. 619 if (SecondLastInst.getOpcode() == PPC::BCC && 620 LastInst.getOpcode() == PPC::B) { 621 if (!SecondLastInst.getOperand(2).isMBB() || 622 !LastInst.getOperand(0).isMBB()) 623 return true; 624 TBB = SecondLastInst.getOperand(2).getMBB(); 625 Cond.push_back(SecondLastInst.getOperand(0)); 626 Cond.push_back(SecondLastInst.getOperand(1)); 627 FBB = LastInst.getOperand(0).getMBB(); 628 return false; 629 } else if (SecondLastInst.getOpcode() == PPC::BC && 630 LastInst.getOpcode() == PPC::B) { 631 if (!SecondLastInst.getOperand(1).isMBB() || 632 !LastInst.getOperand(0).isMBB()) 633 return true; 634 TBB = SecondLastInst.getOperand(1).getMBB(); 635 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 636 Cond.push_back(SecondLastInst.getOperand(0)); 637 FBB = LastInst.getOperand(0).getMBB(); 638 return false; 639 } else if (SecondLastInst.getOpcode() == PPC::BCn && 640 LastInst.getOpcode() == PPC::B) { 641 if (!SecondLastInst.getOperand(1).isMBB() || 642 !LastInst.getOperand(0).isMBB()) 643 return true; 644 TBB = SecondLastInst.getOperand(1).getMBB(); 645 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 646 Cond.push_back(SecondLastInst.getOperand(0)); 647 FBB = LastInst.getOperand(0).getMBB(); 648 return false; 649 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || 650 SecondLastInst.getOpcode() == PPC::BDNZ) && 651 LastInst.getOpcode() == PPC::B) { 652 if (!SecondLastInst.getOperand(0).isMBB() || 653 !LastInst.getOperand(0).isMBB()) 654 return true; 655 if (DisableCTRLoopAnal) 656 return true; 657 TBB = SecondLastInst.getOperand(0).getMBB(); 658 Cond.push_back(MachineOperand::CreateImm(1)); 659 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 660 true)); 661 FBB = LastInst.getOperand(0).getMBB(); 662 return false; 663 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || 664 SecondLastInst.getOpcode() == PPC::BDZ) && 665 LastInst.getOpcode() == PPC::B) { 666 if (!SecondLastInst.getOperand(0).isMBB() || 667 !LastInst.getOperand(0).isMBB()) 668 return true; 669 if (DisableCTRLoopAnal) 670 return true; 671 TBB = SecondLastInst.getOperand(0).getMBB(); 672 Cond.push_back(MachineOperand::CreateImm(0)); 673 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 674 true)); 675 FBB = LastInst.getOperand(0).getMBB(); 676 return false; 677 } 678 679 // If the block ends with two PPC:Bs, handle it. The second one is not 680 // executed, so remove it. 681 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { 682 if (!SecondLastInst.getOperand(0).isMBB()) 683 return true; 684 TBB = SecondLastInst.getOperand(0).getMBB(); 685 I = LastInst; 686 if (AllowModify) 687 I->eraseFromParent(); 688 return false; 689 } 690 691 // Otherwise, can't handle this. 692 return true; 693 } 694 695 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, 696 int *BytesRemoved) const { 697 assert(!BytesRemoved && "code size not handled"); 698 699 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 700 if (I == MBB.end()) 701 return 0; 702 703 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 704 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 705 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 706 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 707 return 0; 708 709 // Remove the branch. 710 I->eraseFromParent(); 711 712 I = MBB.end(); 713 714 if (I == MBB.begin()) return 1; 715 --I; 716 if (I->getOpcode() != PPC::BCC && 717 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 718 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 719 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 720 return 1; 721 722 // Remove the branch. 723 I->eraseFromParent(); 724 return 2; 725 } 726 727 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, 728 MachineBasicBlock *TBB, 729 MachineBasicBlock *FBB, 730 ArrayRef<MachineOperand> Cond, 731 const DebugLoc &DL, 732 int *BytesAdded) const { 733 // Shouldn't be a fall through. 734 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 735 assert((Cond.size() == 2 || Cond.size() == 0) && 736 "PPC branch conditions have two components!"); 737 assert(!BytesAdded && "code size not handled"); 738 739 bool isPPC64 = Subtarget.isPPC64(); 740 741 // One-way branch. 742 if (!FBB) { 743 if (Cond.empty()) // Unconditional branch 744 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 745 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 746 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 747 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 748 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 749 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 750 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 751 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 752 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 753 else // Conditional branch 754 BuildMI(&MBB, DL, get(PPC::BCC)) 755 .addImm(Cond[0].getImm()) 756 .add(Cond[1]) 757 .addMBB(TBB); 758 return 1; 759 } 760 761 // Two-way Conditional Branch. 762 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 763 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 764 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 765 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 766 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 767 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); 768 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 769 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); 770 else 771 BuildMI(&MBB, DL, get(PPC::BCC)) 772 .addImm(Cond[0].getImm()) 773 .add(Cond[1]) 774 .addMBB(TBB); 775 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 776 return 2; 777 } 778 779 // Select analysis. 780 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 781 ArrayRef<MachineOperand> Cond, 782 Register DstReg, Register TrueReg, 783 Register FalseReg, int &CondCycles, 784 int &TrueCycles, int &FalseCycles) const { 785 if (Cond.size() != 2) 786 return false; 787 788 // If this is really a bdnz-like condition, then it cannot be turned into a 789 // select. 790 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 791 return false; 792 793 // Check register classes. 794 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 795 const TargetRegisterClass *RC = 796 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 797 if (!RC) 798 return false; 799 800 // isel is for regular integer GPRs only. 801 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 802 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 803 !PPC::G8RCRegClass.hasSubClassEq(RC) && 804 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 805 return false; 806 807 // FIXME: These numbers are for the A2, how well they work for other cores is 808 // an open question. On the A2, the isel instruction has a 2-cycle latency 809 // but single-cycle throughput. These numbers are used in combination with 810 // the MispredictPenalty setting from the active SchedMachineModel. 811 CondCycles = 1; 812 TrueCycles = 1; 813 FalseCycles = 1; 814 815 return true; 816 } 817 818 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 819 MachineBasicBlock::iterator MI, 820 const DebugLoc &dl, Register DestReg, 821 ArrayRef<MachineOperand> Cond, Register TrueReg, 822 Register FalseReg) const { 823 assert(Cond.size() == 2 && 824 "PPC branch conditions have two components!"); 825 826 // Get the register classes. 827 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 828 const TargetRegisterClass *RC = 829 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 830 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 831 832 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 833 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 834 assert((Is64Bit || 835 PPC::GPRCRegClass.hasSubClassEq(RC) || 836 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 837 "isel is for regular integer GPRs only"); 838 839 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 840 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); 841 842 unsigned SubIdx = 0; 843 bool SwapOps = false; 844 switch (SelectPred) { 845 case PPC::PRED_EQ: 846 case PPC::PRED_EQ_MINUS: 847 case PPC::PRED_EQ_PLUS: 848 SubIdx = PPC::sub_eq; SwapOps = false; break; 849 case PPC::PRED_NE: 850 case PPC::PRED_NE_MINUS: 851 case PPC::PRED_NE_PLUS: 852 SubIdx = PPC::sub_eq; SwapOps = true; break; 853 case PPC::PRED_LT: 854 case PPC::PRED_LT_MINUS: 855 case PPC::PRED_LT_PLUS: 856 SubIdx = PPC::sub_lt; SwapOps = false; break; 857 case PPC::PRED_GE: 858 case PPC::PRED_GE_MINUS: 859 case PPC::PRED_GE_PLUS: 860 SubIdx = PPC::sub_lt; SwapOps = true; break; 861 case PPC::PRED_GT: 862 case PPC::PRED_GT_MINUS: 863 case PPC::PRED_GT_PLUS: 864 SubIdx = PPC::sub_gt; SwapOps = false; break; 865 case PPC::PRED_LE: 866 case PPC::PRED_LE_MINUS: 867 case PPC::PRED_LE_PLUS: 868 SubIdx = PPC::sub_gt; SwapOps = true; break; 869 case PPC::PRED_UN: 870 case PPC::PRED_UN_MINUS: 871 case PPC::PRED_UN_PLUS: 872 SubIdx = PPC::sub_un; SwapOps = false; break; 873 case PPC::PRED_NU: 874 case PPC::PRED_NU_MINUS: 875 case PPC::PRED_NU_PLUS: 876 SubIdx = PPC::sub_un; SwapOps = true; break; 877 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 878 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 879 } 880 881 Register FirstReg = SwapOps ? FalseReg : TrueReg, 882 SecondReg = SwapOps ? TrueReg : FalseReg; 883 884 // The first input register of isel cannot be r0. If it is a member 885 // of a register class that can be r0, then copy it first (the 886 // register allocator should eliminate the copy). 887 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 888 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 889 const TargetRegisterClass *FirstRC = 890 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 891 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 892 Register OldFirstReg = FirstReg; 893 FirstReg = MRI.createVirtualRegister(FirstRC); 894 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 895 .addReg(OldFirstReg); 896 } 897 898 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 899 .addReg(FirstReg).addReg(SecondReg) 900 .addReg(Cond[1].getReg(), 0, SubIdx); 901 } 902 903 static unsigned getCRBitValue(unsigned CRBit) { 904 unsigned Ret = 4; 905 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || 906 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || 907 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || 908 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) 909 Ret = 3; 910 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || 911 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || 912 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || 913 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) 914 Ret = 2; 915 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || 916 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || 917 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || 918 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) 919 Ret = 1; 920 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || 921 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || 922 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || 923 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) 924 Ret = 0; 925 926 assert(Ret != 4 && "Invalid CR bit register"); 927 return Ret; 928 } 929 930 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 931 MachineBasicBlock::iterator I, 932 const DebugLoc &DL, MCRegister DestReg, 933 MCRegister SrcReg, bool KillSrc) const { 934 // We can end up with self copies and similar things as a result of VSX copy 935 // legalization. Promote them here. 936 const TargetRegisterInfo *TRI = &getRegisterInfo(); 937 if (PPC::F8RCRegClass.contains(DestReg) && 938 PPC::VSRCRegClass.contains(SrcReg)) { 939 MCRegister SuperReg = 940 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 941 942 if (VSXSelfCopyCrash && SrcReg == SuperReg) 943 llvm_unreachable("nop VSX copy"); 944 945 DestReg = SuperReg; 946 } else if (PPC::F8RCRegClass.contains(SrcReg) && 947 PPC::VSRCRegClass.contains(DestReg)) { 948 MCRegister SuperReg = 949 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 950 951 if (VSXSelfCopyCrash && DestReg == SuperReg) 952 llvm_unreachable("nop VSX copy"); 953 954 SrcReg = SuperReg; 955 } 956 957 // Different class register copy 958 if (PPC::CRBITRCRegClass.contains(SrcReg) && 959 PPC::GPRCRegClass.contains(DestReg)) { 960 MCRegister CRReg = getCRFromCRBit(SrcReg); 961 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); 962 getKillRegState(KillSrc); 963 // Rotate the CR bit in the CR fields to be the least significant bit and 964 // then mask with 0x1 (MB = ME = 31). 965 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) 966 .addReg(DestReg, RegState::Kill) 967 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) 968 .addImm(31) 969 .addImm(31); 970 return; 971 } else if (PPC::CRRCRegClass.contains(SrcReg) && 972 PPC::G8RCRegClass.contains(DestReg)) { 973 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); 974 getKillRegState(KillSrc); 975 return; 976 } else if (PPC::CRRCRegClass.contains(SrcReg) && 977 PPC::GPRCRegClass.contains(DestReg)) { 978 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); 979 getKillRegState(KillSrc); 980 return; 981 } else if (PPC::G8RCRegClass.contains(SrcReg) && 982 PPC::VSFRCRegClass.contains(DestReg)) { 983 assert(Subtarget.hasDirectMove() && 984 "Subtarget doesn't support directmove, don't know how to copy."); 985 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); 986 NumGPRtoVSRSpill++; 987 getKillRegState(KillSrc); 988 return; 989 } else if (PPC::VSFRCRegClass.contains(SrcReg) && 990 PPC::G8RCRegClass.contains(DestReg)) { 991 assert(Subtarget.hasDirectMove() && 992 "Subtarget doesn't support directmove, don't know how to copy."); 993 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); 994 getKillRegState(KillSrc); 995 return; 996 } else if (PPC::SPERCRegClass.contains(SrcReg) && 997 PPC::GPRCRegClass.contains(DestReg)) { 998 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); 999 getKillRegState(KillSrc); 1000 return; 1001 } else if (PPC::GPRCRegClass.contains(SrcReg) && 1002 PPC::SPERCRegClass.contains(DestReg)) { 1003 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); 1004 getKillRegState(KillSrc); 1005 return; 1006 } 1007 1008 unsigned Opc; 1009 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 1010 Opc = PPC::OR; 1011 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 1012 Opc = PPC::OR8; 1013 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 1014 Opc = PPC::FMR; 1015 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 1016 Opc = PPC::MCRF; 1017 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 1018 Opc = PPC::VOR; 1019 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 1020 // There are two different ways this can be done: 1021 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 1022 // issue in VSU pipeline 0. 1023 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 1024 // can go to either pipeline. 1025 // We'll always use xxlor here, because in practically all cases where 1026 // copies are generated, they are close enough to some use that the 1027 // lower-latency form is preferable. 1028 Opc = PPC::XXLOR; 1029 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || 1030 PPC::VSSRCRegClass.contains(DestReg, SrcReg)) 1031 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; 1032 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) 1033 Opc = PPC::QVFMR; 1034 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) 1035 Opc = PPC::QVFMRs; 1036 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) 1037 Opc = PPC::QVFMRb; 1038 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 1039 Opc = PPC::CROR; 1040 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) 1041 Opc = PPC::EVOR; 1042 else 1043 llvm_unreachable("Impossible reg-to-reg copy"); 1044 1045 const MCInstrDesc &MCID = get(Opc); 1046 if (MCID.getNumOperands() == 3) 1047 BuildMI(MBB, I, DL, MCID, DestReg) 1048 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 1049 else 1050 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 1051 } 1052 1053 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg, 1054 const TargetRegisterClass *RC) 1055 const { 1056 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray(); 1057 int OpcodeIndex = 0; 1058 1059 if (RC != nullptr) { 1060 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1061 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1062 OpcodeIndex = SOK_Int4Spill; 1063 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1064 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1065 OpcodeIndex = SOK_Int8Spill; 1066 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1067 OpcodeIndex = SOK_Float8Spill; 1068 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1069 OpcodeIndex = SOK_Float4Spill; 1070 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1071 OpcodeIndex = SOK_SPESpill; 1072 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1073 OpcodeIndex = SOK_CRSpill; 1074 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1075 OpcodeIndex = SOK_CRBitSpill; 1076 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1077 OpcodeIndex = SOK_VRVectorSpill; 1078 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1079 OpcodeIndex = SOK_VSXVectorSpill; 1080 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1081 OpcodeIndex = SOK_VectorFloat8Spill; 1082 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1083 OpcodeIndex = SOK_VectorFloat4Spill; 1084 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1085 OpcodeIndex = SOK_VRSaveSpill; 1086 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1087 OpcodeIndex = SOK_QuadFloat8Spill; 1088 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1089 OpcodeIndex = SOK_QuadFloat4Spill; 1090 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1091 OpcodeIndex = SOK_QuadBitSpill; 1092 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1093 OpcodeIndex = SOK_SpillToVSR; 1094 } else { 1095 llvm_unreachable("Unknown regclass!"); 1096 } 1097 } else { 1098 if (PPC::GPRCRegClass.contains(Reg) || 1099 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1100 OpcodeIndex = SOK_Int4Spill; 1101 } else if (PPC::G8RCRegClass.contains(Reg) || 1102 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1103 OpcodeIndex = SOK_Int8Spill; 1104 } else if (PPC::F8RCRegClass.contains(Reg)) { 1105 OpcodeIndex = SOK_Float8Spill; 1106 } else if (PPC::F4RCRegClass.contains(Reg)) { 1107 OpcodeIndex = SOK_Float4Spill; 1108 } else if (PPC::SPERCRegClass.contains(Reg)) { 1109 OpcodeIndex = SOK_SPESpill; 1110 } else if (PPC::CRRCRegClass.contains(Reg)) { 1111 OpcodeIndex = SOK_CRSpill; 1112 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1113 OpcodeIndex = SOK_CRBitSpill; 1114 } else if (PPC::VRRCRegClass.contains(Reg)) { 1115 OpcodeIndex = SOK_VRVectorSpill; 1116 } else if (PPC::VSRCRegClass.contains(Reg)) { 1117 OpcodeIndex = SOK_VSXVectorSpill; 1118 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1119 OpcodeIndex = SOK_VectorFloat8Spill; 1120 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1121 OpcodeIndex = SOK_VectorFloat4Spill; 1122 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1123 OpcodeIndex = SOK_VRSaveSpill; 1124 } else if (PPC::QFRCRegClass.contains(Reg)) { 1125 OpcodeIndex = SOK_QuadFloat8Spill; 1126 } else if (PPC::QSRCRegClass.contains(Reg)) { 1127 OpcodeIndex = SOK_QuadFloat4Spill; 1128 } else if (PPC::QBRCRegClass.contains(Reg)) { 1129 OpcodeIndex = SOK_QuadBitSpill; 1130 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1131 OpcodeIndex = SOK_SpillToVSR; 1132 } else { 1133 llvm_unreachable("Unknown regclass!"); 1134 } 1135 } 1136 return OpcodesForSpill[OpcodeIndex]; 1137 } 1138 1139 unsigned 1140 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg, 1141 const TargetRegisterClass *RC) const { 1142 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray(); 1143 int OpcodeIndex = 0; 1144 1145 if (RC != nullptr) { 1146 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 1147 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 1148 OpcodeIndex = SOK_Int4Spill; 1149 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 1150 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 1151 OpcodeIndex = SOK_Int8Spill; 1152 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 1153 OpcodeIndex = SOK_Float8Spill; 1154 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 1155 OpcodeIndex = SOK_Float4Spill; 1156 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { 1157 OpcodeIndex = SOK_SPESpill; 1158 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 1159 OpcodeIndex = SOK_CRSpill; 1160 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 1161 OpcodeIndex = SOK_CRBitSpill; 1162 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 1163 OpcodeIndex = SOK_VRVectorSpill; 1164 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 1165 OpcodeIndex = SOK_VSXVectorSpill; 1166 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 1167 OpcodeIndex = SOK_VectorFloat8Spill; 1168 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { 1169 OpcodeIndex = SOK_VectorFloat4Spill; 1170 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 1171 OpcodeIndex = SOK_VRSaveSpill; 1172 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { 1173 OpcodeIndex = SOK_QuadFloat8Spill; 1174 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { 1175 OpcodeIndex = SOK_QuadFloat4Spill; 1176 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { 1177 OpcodeIndex = SOK_QuadBitSpill; 1178 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { 1179 OpcodeIndex = SOK_SpillToVSR; 1180 } else { 1181 llvm_unreachable("Unknown regclass!"); 1182 } 1183 } else { 1184 if (PPC::GPRCRegClass.contains(Reg) || 1185 PPC::GPRC_NOR0RegClass.contains(Reg)) { 1186 OpcodeIndex = SOK_Int4Spill; 1187 } else if (PPC::G8RCRegClass.contains(Reg) || 1188 PPC::G8RC_NOX0RegClass.contains(Reg)) { 1189 OpcodeIndex = SOK_Int8Spill; 1190 } else if (PPC::F8RCRegClass.contains(Reg)) { 1191 OpcodeIndex = SOK_Float8Spill; 1192 } else if (PPC::F4RCRegClass.contains(Reg)) { 1193 OpcodeIndex = SOK_Float4Spill; 1194 } else if (PPC::SPERCRegClass.contains(Reg)) { 1195 OpcodeIndex = SOK_SPESpill; 1196 } else if (PPC::CRRCRegClass.contains(Reg)) { 1197 OpcodeIndex = SOK_CRSpill; 1198 } else if (PPC::CRBITRCRegClass.contains(Reg)) { 1199 OpcodeIndex = SOK_CRBitSpill; 1200 } else if (PPC::VRRCRegClass.contains(Reg)) { 1201 OpcodeIndex = SOK_VRVectorSpill; 1202 } else if (PPC::VSRCRegClass.contains(Reg)) { 1203 OpcodeIndex = SOK_VSXVectorSpill; 1204 } else if (PPC::VSFRCRegClass.contains(Reg)) { 1205 OpcodeIndex = SOK_VectorFloat8Spill; 1206 } else if (PPC::VSSRCRegClass.contains(Reg)) { 1207 OpcodeIndex = SOK_VectorFloat4Spill; 1208 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1209 OpcodeIndex = SOK_VRSaveSpill; 1210 } else if (PPC::QFRCRegClass.contains(Reg)) { 1211 OpcodeIndex = SOK_QuadFloat8Spill; 1212 } else if (PPC::QSRCRegClass.contains(Reg)) { 1213 OpcodeIndex = SOK_QuadFloat4Spill; 1214 } else if (PPC::QBRCRegClass.contains(Reg)) { 1215 OpcodeIndex = SOK_QuadBitSpill; 1216 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) { 1217 OpcodeIndex = SOK_SpillToVSR; 1218 } else { 1219 llvm_unreachable("Unknown regclass!"); 1220 } 1221 } 1222 return OpcodesForSpill[OpcodeIndex]; 1223 } 1224 1225 void PPCInstrInfo::StoreRegToStackSlot( 1226 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, 1227 const TargetRegisterClass *RC, 1228 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1229 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC); 1230 DebugLoc DL; 1231 1232 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1233 FuncInfo->setHasSpills(); 1234 1235 NewMIs.push_back(addFrameReference( 1236 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), 1237 FrameIdx)); 1238 1239 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1240 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1241 FuncInfo->setSpillsCR(); 1242 1243 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1244 FuncInfo->setSpillsVRSAVE(); 1245 1246 if (isXFormMemOp(Opcode)) 1247 FuncInfo->setHasNonRISpills(); 1248 } 1249 1250 void PPCInstrInfo::storeRegToStackSlotNoUpd( 1251 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, 1252 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 1253 const TargetRegisterInfo *TRI) const { 1254 MachineFunction &MF = *MBB.getParent(); 1255 SmallVector<MachineInstr *, 4> NewMIs; 1256 1257 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); 1258 1259 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1260 MBB.insert(MI, NewMIs[i]); 1261 1262 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1263 MachineMemOperand *MMO = MF.getMachineMemOperand( 1264 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1265 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 1266 MFI.getObjectAlign(FrameIdx)); 1267 NewMIs.back()->addMemOperand(MF, MMO); 1268 } 1269 1270 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1271 MachineBasicBlock::iterator MI, 1272 Register SrcReg, bool isKill, 1273 int FrameIdx, 1274 const TargetRegisterClass *RC, 1275 const TargetRegisterInfo *TRI) const { 1276 // We need to avoid a situation in which the value from a VRRC register is 1277 // spilled using an Altivec instruction and reloaded into a VSRC register 1278 // using a VSX instruction. The issue with this is that the VSX 1279 // load/store instructions swap the doublewords in the vector and the Altivec 1280 // ones don't. The register classes on the spill/reload may be different if 1281 // the register is defined using an Altivec instruction and is then used by a 1282 // VSX instruction. 1283 RC = updatedRC(RC); 1284 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); 1285 } 1286 1287 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, 1288 unsigned DestReg, int FrameIdx, 1289 const TargetRegisterClass *RC, 1290 SmallVectorImpl<MachineInstr *> &NewMIs) 1291 const { 1292 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC); 1293 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), 1294 FrameIdx)); 1295 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1296 1297 if (PPC::CRRCRegClass.hasSubClassEq(RC) || 1298 PPC::CRBITRCRegClass.hasSubClassEq(RC)) 1299 FuncInfo->setSpillsCR(); 1300 1301 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) 1302 FuncInfo->setSpillsVRSAVE(); 1303 1304 if (isXFormMemOp(Opcode)) 1305 FuncInfo->setHasNonRISpills(); 1306 } 1307 1308 void PPCInstrInfo::loadRegFromStackSlotNoUpd( 1309 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, 1310 int FrameIdx, const TargetRegisterClass *RC, 1311 const TargetRegisterInfo *TRI) const { 1312 MachineFunction &MF = *MBB.getParent(); 1313 SmallVector<MachineInstr*, 4> NewMIs; 1314 DebugLoc DL; 1315 if (MI != MBB.end()) DL = MI->getDebugLoc(); 1316 1317 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1318 FuncInfo->setHasSpills(); 1319 1320 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 1321 1322 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 1323 MBB.insert(MI, NewMIs[i]); 1324 1325 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1326 MachineMemOperand *MMO = MF.getMachineMemOperand( 1327 MachinePointerInfo::getFixedStack(MF, FrameIdx), 1328 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 1329 MFI.getObjectAlign(FrameIdx)); 1330 NewMIs.back()->addMemOperand(MF, MMO); 1331 } 1332 1333 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1334 MachineBasicBlock::iterator MI, 1335 Register DestReg, int FrameIdx, 1336 const TargetRegisterClass *RC, 1337 const TargetRegisterInfo *TRI) const { 1338 // We need to avoid a situation in which the value from a VRRC register is 1339 // spilled using an Altivec instruction and reloaded into a VSRC register 1340 // using a VSX instruction. The issue with this is that the VSX 1341 // load/store instructions swap the doublewords in the vector and the Altivec 1342 // ones don't. The register classes on the spill/reload may be different if 1343 // the register is defined using an Altivec instruction and is then used by a 1344 // VSX instruction. 1345 RC = updatedRC(RC); 1346 1347 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); 1348 } 1349 1350 bool PPCInstrInfo:: 1351 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1352 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 1353 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 1354 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 1355 else 1356 // Leave the CR# the same, but invert the condition. 1357 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 1358 return false; 1359 } 1360 1361 // For some instructions, it is legal to fold ZERO into the RA register field. 1362 // This function performs that fold by replacing the operand with PPC::ZERO, 1363 // it does not consider whether the load immediate zero is no longer in use. 1364 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1365 Register Reg) const { 1366 // A zero immediate should always be loaded with a single li. 1367 unsigned DefOpc = DefMI.getOpcode(); 1368 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 1369 return false; 1370 if (!DefMI.getOperand(1).isImm()) 1371 return false; 1372 if (DefMI.getOperand(1).getImm() != 0) 1373 return false; 1374 1375 // Note that we cannot here invert the arguments of an isel in order to fold 1376 // a ZERO into what is presented as the second argument. All we have here 1377 // is the condition bit, and that might come from a CR-logical bit operation. 1378 1379 const MCInstrDesc &UseMCID = UseMI.getDesc(); 1380 1381 // Only fold into real machine instructions. 1382 if (UseMCID.isPseudo()) 1383 return false; 1384 1385 // We need to find which of the User's operands is to be folded, that will be 1386 // the operand that matches the given register ID. 1387 unsigned UseIdx; 1388 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) 1389 if (UseMI.getOperand(UseIdx).isReg() && 1390 UseMI.getOperand(UseIdx).getReg() == Reg) 1391 break; 1392 1393 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); 1394 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1395 1396 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1397 1398 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1399 // register (which might also be specified as a pointer class kind). 1400 if (UseInfo->isLookupPtrRegClass()) { 1401 if (UseInfo->RegClass /* Kind */ != 1) 1402 return false; 1403 } else { 1404 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1405 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1406 return false; 1407 } 1408 1409 // Make sure this is not tied to an output register (or otherwise 1410 // constrained). This is true for ST?UX registers, for example, which 1411 // are tied to their output registers. 1412 if (UseInfo->Constraints != 0) 1413 return false; 1414 1415 MCRegister ZeroReg; 1416 if (UseInfo->isLookupPtrRegClass()) { 1417 bool isPPC64 = Subtarget.isPPC64(); 1418 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1419 } else { 1420 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1421 PPC::ZERO8 : PPC::ZERO; 1422 } 1423 1424 UseMI.getOperand(UseIdx).setReg(ZeroReg); 1425 return true; 1426 } 1427 1428 // Folds zero into instructions which have a load immediate zero as an operand 1429 // but also recognize zero as immediate zero. If the definition of the load 1430 // has no more users it is deleted. 1431 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1432 Register Reg, MachineRegisterInfo *MRI) const { 1433 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); 1434 if (MRI->use_nodbg_empty(Reg)) 1435 DefMI.eraseFromParent(); 1436 return Changed; 1437 } 1438 1439 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1440 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1441 I != IE; ++I) 1442 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1443 return true; 1444 return false; 1445 } 1446 1447 // We should make sure that, if we're going to predicate both sides of a 1448 // condition (a diamond), that both sides don't define the counter register. We 1449 // can predicate counter-decrement-based branches, but while that predicates 1450 // the branching, it does not predicate the counter decrement. If we tried to 1451 // merge the triangle into one predicated block, we'd decrement the counter 1452 // twice. 1453 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1454 unsigned NumT, unsigned ExtraT, 1455 MachineBasicBlock &FMBB, 1456 unsigned NumF, unsigned ExtraF, 1457 BranchProbability Probability) const { 1458 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1459 } 1460 1461 1462 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { 1463 // The predicated branches are identified by their type, not really by the 1464 // explicit presence of a predicate. Furthermore, some of them can be 1465 // predicated more than once. Because if conversion won't try to predicate 1466 // any instruction which already claims to be predicated (by returning true 1467 // here), always return false. In doing so, we let isPredicable() be the 1468 // final word on whether not the instruction can be (further) predicated. 1469 1470 return false; 1471 } 1472 1473 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, 1474 ArrayRef<MachineOperand> Pred) const { 1475 unsigned OpC = MI.getOpcode(); 1476 if (OpC == PPC::BLR || OpC == PPC::BLR8) { 1477 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1478 bool isPPC64 = Subtarget.isPPC64(); 1479 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) 1480 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1481 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1482 MI.setDesc(get(PPC::BCLR)); 1483 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1484 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1485 MI.setDesc(get(PPC::BCLRn)); 1486 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1487 } else { 1488 MI.setDesc(get(PPC::BCCLR)); 1489 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1490 .addImm(Pred[0].getImm()) 1491 .add(Pred[1]); 1492 } 1493 1494 return true; 1495 } else if (OpC == PPC::B) { 1496 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1497 bool isPPC64 = Subtarget.isPPC64(); 1498 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 1499 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1500 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1501 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1502 MI.RemoveOperand(0); 1503 1504 MI.setDesc(get(PPC::BC)); 1505 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1506 .add(Pred[1]) 1507 .addMBB(MBB); 1508 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1509 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1510 MI.RemoveOperand(0); 1511 1512 MI.setDesc(get(PPC::BCn)); 1513 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1514 .add(Pred[1]) 1515 .addMBB(MBB); 1516 } else { 1517 MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); 1518 MI.RemoveOperand(0); 1519 1520 MI.setDesc(get(PPC::BCC)); 1521 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1522 .addImm(Pred[0].getImm()) 1523 .add(Pred[1]) 1524 .addMBB(MBB); 1525 } 1526 1527 return true; 1528 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || 1529 OpC == PPC::BCTRL8) { 1530 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1531 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1532 1533 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1534 bool isPPC64 = Subtarget.isPPC64(); 1535 1536 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1537 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) 1538 : (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1539 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1540 return true; 1541 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1542 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) 1543 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1544 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); 1545 return true; 1546 } 1547 1548 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) 1549 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1550 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 1551 .addImm(Pred[0].getImm()) 1552 .add(Pred[1]); 1553 return true; 1554 } 1555 1556 return false; 1557 } 1558 1559 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1560 ArrayRef<MachineOperand> Pred2) const { 1561 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1562 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1563 1564 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1565 return false; 1566 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1567 return false; 1568 1569 // P1 can only subsume P2 if they test the same condition register. 1570 if (Pred1[1].getReg() != Pred2[1].getReg()) 1571 return false; 1572 1573 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1574 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1575 1576 if (P1 == P2) 1577 return true; 1578 1579 // Does P1 subsume P2, e.g. GE subsumes GT. 1580 if (P1 == PPC::PRED_LE && 1581 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1582 return true; 1583 if (P1 == PPC::PRED_GE && 1584 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1585 return true; 1586 1587 return false; 1588 } 1589 1590 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, 1591 std::vector<MachineOperand> &Pred) const { 1592 // Note: At the present time, the contents of Pred from this function is 1593 // unused by IfConversion. This implementation follows ARM by pushing the 1594 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1595 // predicate, instructions defining CTR or CTR8 are also included as 1596 // predicate-defining instructions. 1597 1598 const TargetRegisterClass *RCs[] = 1599 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1600 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1601 1602 bool Found = false; 1603 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1604 const MachineOperand &MO = MI.getOperand(i); 1605 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1606 const TargetRegisterClass *RC = RCs[c]; 1607 if (MO.isReg()) { 1608 if (MO.isDef() && RC->contains(MO.getReg())) { 1609 Pred.push_back(MO); 1610 Found = true; 1611 } 1612 } else if (MO.isRegMask()) { 1613 for (TargetRegisterClass::iterator I = RC->begin(), 1614 IE = RC->end(); I != IE; ++I) 1615 if (MO.clobbersPhysReg(*I)) { 1616 Pred.push_back(MO); 1617 Found = true; 1618 } 1619 } 1620 } 1621 } 1622 1623 return Found; 1624 } 1625 1626 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1627 Register &SrcReg2, int &Mask, 1628 int &Value) const { 1629 unsigned Opc = MI.getOpcode(); 1630 1631 switch (Opc) { 1632 default: return false; 1633 case PPC::CMPWI: 1634 case PPC::CMPLWI: 1635 case PPC::CMPDI: 1636 case PPC::CMPLDI: 1637 SrcReg = MI.getOperand(1).getReg(); 1638 SrcReg2 = 0; 1639 Value = MI.getOperand(2).getImm(); 1640 Mask = 0xFFFF; 1641 return true; 1642 case PPC::CMPW: 1643 case PPC::CMPLW: 1644 case PPC::CMPD: 1645 case PPC::CMPLD: 1646 case PPC::FCMPUS: 1647 case PPC::FCMPUD: 1648 SrcReg = MI.getOperand(1).getReg(); 1649 SrcReg2 = MI.getOperand(2).getReg(); 1650 Value = 0; 1651 Mask = 0; 1652 return true; 1653 } 1654 } 1655 1656 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 1657 Register SrcReg2, int Mask, int Value, 1658 const MachineRegisterInfo *MRI) const { 1659 if (DisableCmpOpt) 1660 return false; 1661 1662 int OpC = CmpInstr.getOpcode(); 1663 Register CRReg = CmpInstr.getOperand(0).getReg(); 1664 1665 // FP record forms set CR1 based on the exception status bits, not a 1666 // comparison with zero. 1667 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1668 return false; 1669 1670 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1671 // The record forms set the condition register based on a signed comparison 1672 // with zero (so says the ISA manual). This is not as straightforward as it 1673 // seems, however, because this is always a 64-bit comparison on PPC64, even 1674 // for instructions that are 32-bit in nature (like slw for example). 1675 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1676 // for equality checks (as those don't depend on the sign). On PPC64, 1677 // we are restricted to equality for unsigned 64-bit comparisons and for 1678 // signed 32-bit comparisons the applicability is more restricted. 1679 bool isPPC64 = Subtarget.isPPC64(); 1680 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1681 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1682 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1683 1684 // Look through copies unless that gets us to a physical register. 1685 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); 1686 if (ActualSrc.isVirtual()) 1687 SrcReg = ActualSrc; 1688 1689 // Get the unique definition of SrcReg. 1690 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1691 if (!MI) return false; 1692 1693 bool equalityOnly = false; 1694 bool noSub = false; 1695 if (isPPC64) { 1696 if (is32BitSignedCompare) { 1697 // We can perform this optimization only if MI is sign-extending. 1698 if (isSignExtended(*MI)) 1699 noSub = true; 1700 else 1701 return false; 1702 } else if (is32BitUnsignedCompare) { 1703 // We can perform this optimization, equality only, if MI is 1704 // zero-extending. 1705 if (isZeroExtended(*MI)) { 1706 noSub = true; 1707 equalityOnly = true; 1708 } else 1709 return false; 1710 } else 1711 equalityOnly = is64BitUnsignedCompare; 1712 } else 1713 equalityOnly = is32BitUnsignedCompare; 1714 1715 if (equalityOnly) { 1716 // We need to check the uses of the condition register in order to reject 1717 // non-equality comparisons. 1718 for (MachineRegisterInfo::use_instr_iterator 1719 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1720 I != IE; ++I) { 1721 MachineInstr *UseMI = &*I; 1722 if (UseMI->getOpcode() == PPC::BCC) { 1723 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1724 unsigned PredCond = PPC::getPredicateCondition(Pred); 1725 // We ignore hint bits when checking for non-equality comparisons. 1726 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 1727 return false; 1728 } else if (UseMI->getOpcode() == PPC::ISEL || 1729 UseMI->getOpcode() == PPC::ISEL8) { 1730 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1731 if (SubIdx != PPC::sub_eq) 1732 return false; 1733 } else 1734 return false; 1735 } 1736 } 1737 1738 MachineBasicBlock::iterator I = CmpInstr; 1739 1740 // Scan forward to find the first use of the compare. 1741 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; 1742 ++I) { 1743 bool FoundUse = false; 1744 for (MachineRegisterInfo::use_instr_iterator 1745 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); 1746 J != JE; ++J) 1747 if (&*J == &*I) { 1748 FoundUse = true; 1749 break; 1750 } 1751 1752 if (FoundUse) 1753 break; 1754 } 1755 1756 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1757 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1758 1759 // There are two possible candidates which can be changed to set CR[01]. 1760 // One is MI, the other is a SUB instruction. 1761 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1762 MachineInstr *Sub = nullptr; 1763 if (SrcReg2 != 0) 1764 // MI is not a candidate for CMPrr. 1765 MI = nullptr; 1766 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1767 // same BB as the comparison. This is to allow the check below to avoid calls 1768 // (and other explicit clobbers); instead we should really check for these 1769 // more explicitly (in at least a few predecessors). 1770 else if (MI->getParent() != CmpInstr.getParent()) 1771 return false; 1772 else if (Value != 0) { 1773 // The record-form instructions set CR bit based on signed comparison 1774 // against 0. We try to convert a compare against 1 or -1 into a compare 1775 // against 0 to exploit record-form instructions. For example, we change 1776 // the condition "greater than -1" into "greater than or equal to 0" 1777 // and "less than 1" into "less than or equal to 0". 1778 1779 // Since we optimize comparison based on a specific branch condition, 1780 // we don't optimize if condition code is used by more than once. 1781 if (equalityOnly || !MRI->hasOneUse(CRReg)) 1782 return false; 1783 1784 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); 1785 if (UseMI->getOpcode() != PPC::BCC) 1786 return false; 1787 1788 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); 1789 unsigned PredCond = PPC::getPredicateCondition(Pred); 1790 unsigned PredHint = PPC::getPredicateHint(Pred); 1791 int16_t Immed = (int16_t)Value; 1792 1793 // When modifying the condition in the predicate, we propagate hint bits 1794 // from the original predicate to the new one. 1795 if (Immed == -1 && PredCond == PPC::PRED_GT) 1796 // We convert "greater than -1" into "greater than or equal to 0", 1797 // since we are assuming signed comparison by !equalityOnly 1798 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); 1799 else if (Immed == -1 && PredCond == PPC::PRED_LE) 1800 // We convert "less than or equal to -1" into "less than 0". 1801 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); 1802 else if (Immed == 1 && PredCond == PPC::PRED_LT) 1803 // We convert "less than 1" into "less than or equal to 0". 1804 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); 1805 else if (Immed == 1 && PredCond == PPC::PRED_GE) 1806 // We convert "greater than or equal to 1" into "greater than 0". 1807 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); 1808 else 1809 return false; 1810 1811 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred)); 1812 } 1813 1814 // Search for Sub. 1815 --I; 1816 1817 // Get ready to iterate backward from CmpInstr. 1818 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); 1819 1820 for (; I != E && !noSub; --I) { 1821 const MachineInstr &Instr = *I; 1822 unsigned IOpC = Instr.getOpcode(); 1823 1824 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || 1825 Instr.readsRegister(PPC::CR0, TRI))) 1826 // This instruction modifies or uses the record condition register after 1827 // the one we want to change. While we could do this transformation, it 1828 // would likely not be profitable. This transformation removes one 1829 // instruction, and so even forcing RA to generate one move probably 1830 // makes it unprofitable. 1831 return false; 1832 1833 // Check whether CmpInstr can be made redundant by the current instruction. 1834 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1835 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1836 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1837 ((Instr.getOperand(1).getReg() == SrcReg && 1838 Instr.getOperand(2).getReg() == SrcReg2) || 1839 (Instr.getOperand(1).getReg() == SrcReg2 && 1840 Instr.getOperand(2).getReg() == SrcReg))) { 1841 Sub = &*I; 1842 break; 1843 } 1844 1845 if (I == B) 1846 // The 'and' is below the comparison instruction. 1847 return false; 1848 } 1849 1850 // Return false if no candidates exist. 1851 if (!MI && !Sub) 1852 return false; 1853 1854 // The single candidate is called MI. 1855 if (!MI) MI = Sub; 1856 1857 int NewOpC = -1; 1858 int MIOpC = MI->getOpcode(); 1859 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || 1860 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) 1861 NewOpC = MIOpC; 1862 else { 1863 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1864 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1865 NewOpC = MIOpC; 1866 } 1867 1868 // FIXME: On the non-embedded POWER architectures, only some of the record 1869 // forms are fast, and we should use only the fast ones. 1870 1871 // The defining instruction has a record form (or is already a record 1872 // form). It is possible, however, that we'll need to reverse the condition 1873 // code of the users. 1874 if (NewOpC == -1) 1875 return false; 1876 1877 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1878 // needs to be updated to be based on SUB. Push the condition code 1879 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1880 // condition code of these operands will be modified. 1881 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to 1882 // comparison against 0, which may modify predicate. 1883 bool ShouldSwap = false; 1884 if (Sub && Value == 0) { 1885 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1886 Sub->getOperand(2).getReg() == SrcReg; 1887 1888 // The operands to subf are the opposite of sub, so only in the fixed-point 1889 // case, invert the order. 1890 ShouldSwap = !ShouldSwap; 1891 } 1892 1893 if (ShouldSwap) 1894 for (MachineRegisterInfo::use_instr_iterator 1895 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1896 I != IE; ++I) { 1897 MachineInstr *UseMI = &*I; 1898 if (UseMI->getOpcode() == PPC::BCC) { 1899 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1900 unsigned PredCond = PPC::getPredicateCondition(Pred); 1901 assert((!equalityOnly || 1902 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && 1903 "Invalid predicate for equality-only optimization"); 1904 (void)PredCond; // To suppress warning in release build. 1905 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1906 PPC::getSwappedPredicate(Pred))); 1907 } else if (UseMI->getOpcode() == PPC::ISEL || 1908 UseMI->getOpcode() == PPC::ISEL8) { 1909 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1910 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1911 "Invalid CR bit for equality-only optimization"); 1912 1913 if (NewSubReg == PPC::sub_lt) 1914 NewSubReg = PPC::sub_gt; 1915 else if (NewSubReg == PPC::sub_gt) 1916 NewSubReg = PPC::sub_lt; 1917 1918 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1919 NewSubReg)); 1920 } else // We need to abort on a user we don't understand. 1921 return false; 1922 } 1923 assert(!(Value != 0 && ShouldSwap) && 1924 "Non-zero immediate support and ShouldSwap" 1925 "may conflict in updating predicate"); 1926 1927 // Create a new virtual register to hold the value of the CR set by the 1928 // record-form instruction. If the instruction was not previously in 1929 // record form, then set the kill flag on the CR. 1930 CmpInstr.eraseFromParent(); 1931 1932 MachineBasicBlock::iterator MII = MI; 1933 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1934 get(TargetOpcode::COPY), CRReg) 1935 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1936 1937 // Even if CR0 register were dead before, it is alive now since the 1938 // instruction we just built uses it. 1939 MI->clearRegisterDeads(PPC::CR0); 1940 1941 if (MIOpC != NewOpC) { 1942 // We need to be careful here: we're replacing one instruction with 1943 // another, and we need to make sure that we get all of the right 1944 // implicit uses and defs. On the other hand, the caller may be holding 1945 // an iterator to this instruction, and so we can't delete it (this is 1946 // specifically the case if this is the instruction directly after the 1947 // compare). 1948 1949 // Rotates are expensive instructions. If we're emitting a record-form 1950 // rotate that can just be an andi/andis, we should just emit that. 1951 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { 1952 Register GPRRes = MI->getOperand(0).getReg(); 1953 int64_t SH = MI->getOperand(2).getImm(); 1954 int64_t MB = MI->getOperand(3).getImm(); 1955 int64_t ME = MI->getOperand(4).getImm(); 1956 // We can only do this if both the start and end of the mask are in the 1957 // same halfword. 1958 bool MBInLoHWord = MB >= 16; 1959 bool MEInLoHWord = ME >= 16; 1960 uint64_t Mask = ~0LLU; 1961 1962 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { 1963 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 1964 // The mask value needs to shift right 16 if we're emitting andis. 1965 Mask >>= MBInLoHWord ? 0 : 16; 1966 NewOpC = MIOpC == PPC::RLWINM 1967 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) 1968 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); 1969 } else if (MRI->use_empty(GPRRes) && (ME == 31) && 1970 (ME - MB + 1 == SH) && (MB >= 16)) { 1971 // If we are rotating by the exact number of bits as are in the mask 1972 // and the mask is in the least significant bits of the register, 1973 // that's just an andis. (as long as the GPR result has no uses). 1974 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); 1975 Mask >>= 16; 1976 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; 1977 } 1978 // If we've set the mask, we can transform. 1979 if (Mask != ~0LLU) { 1980 MI->RemoveOperand(4); 1981 MI->RemoveOperand(3); 1982 MI->getOperand(2).setImm(Mask); 1983 NumRcRotatesConvertedToRcAnd++; 1984 } 1985 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { 1986 int64_t MB = MI->getOperand(3).getImm(); 1987 if (MB >= 48) { 1988 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; 1989 NewOpC = PPC::ANDI8_rec; 1990 MI->RemoveOperand(3); 1991 MI->getOperand(2).setImm(Mask); 1992 NumRcRotatesConvertedToRcAnd++; 1993 } 1994 } 1995 1996 const MCInstrDesc &NewDesc = get(NewOpC); 1997 MI->setDesc(NewDesc); 1998 1999 if (NewDesc.ImplicitDefs) 2000 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); 2001 *ImpDefs; ++ImpDefs) 2002 if (!MI->definesRegister(*ImpDefs)) 2003 MI->addOperand(*MI->getParent()->getParent(), 2004 MachineOperand::CreateReg(*ImpDefs, true, true)); 2005 if (NewDesc.ImplicitUses) 2006 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); 2007 *ImpUses; ++ImpUses) 2008 if (!MI->readsRegister(*ImpUses)) 2009 MI->addOperand(*MI->getParent()->getParent(), 2010 MachineOperand::CreateReg(*ImpUses, false, true)); 2011 } 2012 assert(MI->definesRegister(PPC::CR0) && 2013 "Record-form instruction does not define cr0?"); 2014 2015 // Modify the condition code of operands in OperandsToUpdate. 2016 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2017 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2018 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 2019 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 2020 2021 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 2022 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 2023 2024 return true; 2025 } 2026 2027 /// GetInstSize - Return the number of bytes of code the specified 2028 /// instruction may be. This returns the maximum number of bytes. 2029 /// 2030 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 2031 unsigned Opcode = MI.getOpcode(); 2032 2033 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { 2034 const MachineFunction *MF = MI.getParent()->getParent(); 2035 const char *AsmStr = MI.getOperand(0).getSymbolName(); 2036 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 2037 } else if (Opcode == TargetOpcode::STACKMAP) { 2038 StackMapOpers Opers(&MI); 2039 return Opers.getNumPatchBytes(); 2040 } else if (Opcode == TargetOpcode::PATCHPOINT) { 2041 PatchPointOpers Opers(&MI); 2042 return Opers.getNumPatchBytes(); 2043 } else { 2044 return get(Opcode).getSize(); 2045 } 2046 } 2047 2048 std::pair<unsigned, unsigned> 2049 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 2050 const unsigned Mask = PPCII::MO_ACCESS_MASK; 2051 return std::make_pair(TF & Mask, TF & ~Mask); 2052 } 2053 2054 ArrayRef<std::pair<unsigned, const char *>> 2055 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 2056 using namespace PPCII; 2057 static const std::pair<unsigned, const char *> TargetFlags[] = { 2058 {MO_LO, "ppc-lo"}, 2059 {MO_HA, "ppc-ha"}, 2060 {MO_TPREL_LO, "ppc-tprel-lo"}, 2061 {MO_TPREL_HA, "ppc-tprel-ha"}, 2062 {MO_DTPREL_LO, "ppc-dtprel-lo"}, 2063 {MO_TLSLD_LO, "ppc-tlsld-lo"}, 2064 {MO_TOC_LO, "ppc-toc-lo"}, 2065 {MO_TLS, "ppc-tls"}}; 2066 return makeArrayRef(TargetFlags); 2067 } 2068 2069 ArrayRef<std::pair<unsigned, const char *>> 2070 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 2071 using namespace PPCII; 2072 static const std::pair<unsigned, const char *> TargetFlags[] = { 2073 {MO_PLT, "ppc-plt"}, 2074 {MO_PIC_FLAG, "ppc-pic"}, 2075 {MO_PCREL_FLAG, "ppc-pcrel"}, 2076 {MO_GOT_FLAG, "ppc-got"}}; 2077 return makeArrayRef(TargetFlags); 2078 } 2079 2080 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. 2081 // The VSX versions have the advantage of a full 64-register target whereas 2082 // the FP ones have the advantage of lower latency and higher throughput. So 2083 // what we are after is using the faster instructions in low register pressure 2084 // situations and using the larger register file in high register pressure 2085 // situations. 2086 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { 2087 unsigned UpperOpcode, LowerOpcode; 2088 switch (MI.getOpcode()) { 2089 case PPC::DFLOADf32: 2090 UpperOpcode = PPC::LXSSP; 2091 LowerOpcode = PPC::LFS; 2092 break; 2093 case PPC::DFLOADf64: 2094 UpperOpcode = PPC::LXSD; 2095 LowerOpcode = PPC::LFD; 2096 break; 2097 case PPC::DFSTOREf32: 2098 UpperOpcode = PPC::STXSSP; 2099 LowerOpcode = PPC::STFS; 2100 break; 2101 case PPC::DFSTOREf64: 2102 UpperOpcode = PPC::STXSD; 2103 LowerOpcode = PPC::STFD; 2104 break; 2105 case PPC::XFLOADf32: 2106 UpperOpcode = PPC::LXSSPX; 2107 LowerOpcode = PPC::LFSX; 2108 break; 2109 case PPC::XFLOADf64: 2110 UpperOpcode = PPC::LXSDX; 2111 LowerOpcode = PPC::LFDX; 2112 break; 2113 case PPC::XFSTOREf32: 2114 UpperOpcode = PPC::STXSSPX; 2115 LowerOpcode = PPC::STFSX; 2116 break; 2117 case PPC::XFSTOREf64: 2118 UpperOpcode = PPC::STXSDX; 2119 LowerOpcode = PPC::STFDX; 2120 break; 2121 case PPC::LIWAX: 2122 UpperOpcode = PPC::LXSIWAX; 2123 LowerOpcode = PPC::LFIWAX; 2124 break; 2125 case PPC::LIWZX: 2126 UpperOpcode = PPC::LXSIWZX; 2127 LowerOpcode = PPC::LFIWZX; 2128 break; 2129 case PPC::STIWX: 2130 UpperOpcode = PPC::STXSIWX; 2131 LowerOpcode = PPC::STFIWX; 2132 break; 2133 default: 2134 llvm_unreachable("Unknown Operation!"); 2135 } 2136 2137 Register TargetReg = MI.getOperand(0).getReg(); 2138 unsigned Opcode; 2139 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || 2140 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) 2141 Opcode = LowerOpcode; 2142 else 2143 Opcode = UpperOpcode; 2144 MI.setDesc(get(Opcode)); 2145 return true; 2146 } 2147 2148 static bool isAnImmediateOperand(const MachineOperand &MO) { 2149 return MO.isCPI() || MO.isGlobal() || MO.isImm(); 2150 } 2151 2152 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2153 auto &MBB = *MI.getParent(); 2154 auto DL = MI.getDebugLoc(); 2155 2156 switch (MI.getOpcode()) { 2157 case TargetOpcode::LOAD_STACK_GUARD: { 2158 assert(Subtarget.isTargetLinux() && 2159 "Only Linux target is expected to contain LOAD_STACK_GUARD"); 2160 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; 2161 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; 2162 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); 2163 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2164 .addImm(Offset) 2165 .addReg(Reg); 2166 return true; 2167 } 2168 case PPC::DFLOADf32: 2169 case PPC::DFLOADf64: 2170 case PPC::DFSTOREf32: 2171 case PPC::DFSTOREf64: { 2172 assert(Subtarget.hasP9Vector() && 2173 "Invalid D-Form Pseudo-ops on Pre-P9 target."); 2174 assert(MI.getOperand(2).isReg() && 2175 isAnImmediateOperand(MI.getOperand(1)) && 2176 "D-form op must have register and immediate operands"); 2177 return expandVSXMemPseudo(MI); 2178 } 2179 case PPC::XFLOADf32: 2180 case PPC::XFSTOREf32: 2181 case PPC::LIWAX: 2182 case PPC::LIWZX: 2183 case PPC::STIWX: { 2184 assert(Subtarget.hasP8Vector() && 2185 "Invalid X-Form Pseudo-ops on Pre-P8 target."); 2186 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2187 "X-form op must have register and register operands"); 2188 return expandVSXMemPseudo(MI); 2189 } 2190 case PPC::XFLOADf64: 2191 case PPC::XFSTOREf64: { 2192 assert(Subtarget.hasVSX() && 2193 "Invalid X-Form Pseudo-ops on target that has no VSX."); 2194 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && 2195 "X-form op must have register and register operands"); 2196 return expandVSXMemPseudo(MI); 2197 } 2198 case PPC::SPILLTOVSR_LD: { 2199 Register TargetReg = MI.getOperand(0).getReg(); 2200 if (PPC::VSFRCRegClass.contains(TargetReg)) { 2201 MI.setDesc(get(PPC::DFLOADf64)); 2202 return expandPostRAPseudo(MI); 2203 } 2204 else 2205 MI.setDesc(get(PPC::LD)); 2206 return true; 2207 } 2208 case PPC::SPILLTOVSR_ST: { 2209 Register SrcReg = MI.getOperand(0).getReg(); 2210 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2211 NumStoreSPILLVSRRCAsVec++; 2212 MI.setDesc(get(PPC::DFSTOREf64)); 2213 return expandPostRAPseudo(MI); 2214 } else { 2215 NumStoreSPILLVSRRCAsGpr++; 2216 MI.setDesc(get(PPC::STD)); 2217 } 2218 return true; 2219 } 2220 case PPC::SPILLTOVSR_LDX: { 2221 Register TargetReg = MI.getOperand(0).getReg(); 2222 if (PPC::VSFRCRegClass.contains(TargetReg)) 2223 MI.setDesc(get(PPC::LXSDX)); 2224 else 2225 MI.setDesc(get(PPC::LDX)); 2226 return true; 2227 } 2228 case PPC::SPILLTOVSR_STX: { 2229 Register SrcReg = MI.getOperand(0).getReg(); 2230 if (PPC::VSFRCRegClass.contains(SrcReg)) { 2231 NumStoreSPILLVSRRCAsVec++; 2232 MI.setDesc(get(PPC::STXSDX)); 2233 } else { 2234 NumStoreSPILLVSRRCAsGpr++; 2235 MI.setDesc(get(PPC::STDX)); 2236 } 2237 return true; 2238 } 2239 2240 case PPC::CFENCE8: { 2241 auto Val = MI.getOperand(0).getReg(); 2242 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); 2243 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) 2244 .addImm(PPC::PRED_NE_MINUS) 2245 .addReg(PPC::CR7) 2246 .addImm(1); 2247 MI.setDesc(get(PPC::ISYNC)); 2248 MI.RemoveOperand(0); 2249 return true; 2250 } 2251 } 2252 return false; 2253 } 2254 2255 // Essentially a compile-time implementation of a compare->isel sequence. 2256 // It takes two constants to compare, along with the true/false registers 2257 // and the comparison type (as a subreg to a CR field) and returns one 2258 // of the true/false registers, depending on the comparison results. 2259 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, 2260 unsigned TrueReg, unsigned FalseReg, 2261 unsigned CRSubReg) { 2262 // Signed comparisons. The immediates are assumed to be sign-extended. 2263 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { 2264 switch (CRSubReg) { 2265 default: llvm_unreachable("Unknown integer comparison type."); 2266 case PPC::sub_lt: 2267 return Imm1 < Imm2 ? TrueReg : FalseReg; 2268 case PPC::sub_gt: 2269 return Imm1 > Imm2 ? TrueReg : FalseReg; 2270 case PPC::sub_eq: 2271 return Imm1 == Imm2 ? TrueReg : FalseReg; 2272 } 2273 } 2274 // Unsigned comparisons. 2275 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { 2276 switch (CRSubReg) { 2277 default: llvm_unreachable("Unknown integer comparison type."); 2278 case PPC::sub_lt: 2279 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; 2280 case PPC::sub_gt: 2281 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; 2282 case PPC::sub_eq: 2283 return Imm1 == Imm2 ? TrueReg : FalseReg; 2284 } 2285 } 2286 return PPC::NoRegister; 2287 } 2288 2289 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, 2290 unsigned OpNo, 2291 int64_t Imm) const { 2292 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); 2293 // Replace the REG with the Immediate. 2294 Register InUseReg = MI.getOperand(OpNo).getReg(); 2295 MI.getOperand(OpNo).ChangeToImmediate(Imm); 2296 2297 if (MI.implicit_operands().empty()) 2298 return; 2299 2300 // We need to make sure that the MI didn't have any implicit use 2301 // of this REG any more. 2302 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2303 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); 2304 if (UseOpIdx >= 0) { 2305 MachineOperand &MO = MI.getOperand(UseOpIdx); 2306 if (MO.isImplicit()) 2307 // The operands must always be in the following order: 2308 // - explicit reg defs, 2309 // - other explicit operands (reg uses, immediates, etc.), 2310 // - implicit reg defs 2311 // - implicit reg uses 2312 // Therefore, removing the implicit operand won't change the explicit 2313 // operands layout. 2314 MI.RemoveOperand(UseOpIdx); 2315 } 2316 } 2317 2318 // Replace an instruction with one that materializes a constant (and sets 2319 // CR0 if the original instruction was a record-form instruction). 2320 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, 2321 const LoadImmediateInfo &LII) const { 2322 // Remove existing operands. 2323 int OperandToKeep = LII.SetCR ? 1 : 0; 2324 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) 2325 MI.RemoveOperand(i); 2326 2327 // Replace the instruction. 2328 if (LII.SetCR) { 2329 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); 2330 // Set the immediate. 2331 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2332 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); 2333 return; 2334 } 2335 else 2336 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); 2337 2338 // Set the immediate. 2339 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 2340 .addImm(LII.Imm); 2341 } 2342 2343 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, 2344 bool &SeenIntermediateUse) const { 2345 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && 2346 "Should be called after register allocation."); 2347 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2348 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; 2349 It++; 2350 SeenIntermediateUse = false; 2351 for (; It != E; ++It) { 2352 if (It->modifiesRegister(Reg, TRI)) 2353 return &*It; 2354 if (It->readsRegister(Reg, TRI)) 2355 SeenIntermediateUse = true; 2356 } 2357 return nullptr; 2358 } 2359 2360 MachineInstr *PPCInstrInfo::getForwardingDefMI( 2361 MachineInstr &MI, 2362 unsigned &OpNoForForwarding, 2363 bool &SeenIntermediateUse) const { 2364 OpNoForForwarding = ~0U; 2365 MachineInstr *DefMI = nullptr; 2366 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); 2367 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2368 // If we're in SSA, get the defs through the MRI. Otherwise, only look 2369 // within the basic block to see if the register is defined using an LI/LI8. 2370 if (MRI->isSSA()) { 2371 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2372 if (!MI.getOperand(i).isReg()) 2373 continue; 2374 Register Reg = MI.getOperand(i).getReg(); 2375 if (!Register::isVirtualRegister(Reg)) 2376 continue; 2377 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI); 2378 if (Register::isVirtualRegister(TrueReg)) { 2379 DefMI = MRI->getVRegDef(TrueReg); 2380 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) { 2381 OpNoForForwarding = i; 2382 break; 2383 } 2384 } 2385 } 2386 } else { 2387 // Looking back through the definition for each operand could be expensive, 2388 // so exit early if this isn't an instruction that either has an immediate 2389 // form or is already an immediate form that we can handle. 2390 ImmInstrInfo III; 2391 unsigned Opc = MI.getOpcode(); 2392 bool ConvertibleImmForm = 2393 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || 2394 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || 2395 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || 2396 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || 2397 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || 2398 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || 2399 Opc == PPC::RLWINM8_rec; 2400 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) 2401 ? isVFRegister(MI.getOperand(0).getReg()) 2402 : false; 2403 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) 2404 return nullptr; 2405 2406 // Don't convert or %X, %Y, %Y since that's just a register move. 2407 if ((Opc == PPC::OR || Opc == PPC::OR8) && 2408 MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 2409 return nullptr; 2410 for (int i = 1, e = MI.getNumOperands(); i < e; i++) { 2411 MachineOperand &MO = MI.getOperand(i); 2412 SeenIntermediateUse = false; 2413 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { 2414 Register Reg = MI.getOperand(i).getReg(); 2415 // If we see another use of this reg between the def and the MI, 2416 // we want to flat it so the def isn't deleted. 2417 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); 2418 if (DefMI) { 2419 // Is this register defined by some form of add-immediate (including 2420 // load-immediate) within this basic block? 2421 switch (DefMI->getOpcode()) { 2422 default: 2423 break; 2424 case PPC::LI: 2425 case PPC::LI8: 2426 case PPC::ADDItocL: 2427 case PPC::ADDI: 2428 case PPC::ADDI8: 2429 OpNoForForwarding = i; 2430 return DefMI; 2431 } 2432 } 2433 } 2434 } 2435 } 2436 return OpNoForForwarding == ~0U ? nullptr : DefMI; 2437 } 2438 2439 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const { 2440 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2441 // Power 8 2442 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2443 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, 2444 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2445 PPC::SPILLTOVSR_ST, PPC::EVSTDD}, 2446 // Power 9 2447 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, 2448 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, 2449 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, 2450 PPC::SPILLTOVSR_ST}}; 2451 2452 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2453 } 2454 2455 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const { 2456 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = { 2457 // Power 8 2458 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2459 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, 2460 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2461 PPC::SPILLTOVSR_LD, PPC::EVLDD}, 2462 // Power 9 2463 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, 2464 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32, 2465 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb, 2466 PPC::SPILLTOVSR_LD}}; 2467 2468 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0]; 2469 } 2470 2471 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI, 2472 unsigned RegNo) const { 2473 const MachineRegisterInfo &MRI = 2474 StartMI.getParent()->getParent()->getRegInfo(); 2475 if (MRI.isSSA()) 2476 return; 2477 2478 // Instructions between [StartMI, EndMI] should be in same basic block. 2479 assert((StartMI.getParent() == EndMI.getParent()) && 2480 "Instructions are not in same basic block"); 2481 2482 bool IsKillSet = false; 2483 2484 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { 2485 MachineOperand &MO = MI.getOperand(Index); 2486 if (MO.isReg() && MO.isUse() && MO.isKill() && 2487 getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) 2488 MO.setIsKill(false); 2489 }; 2490 2491 // Set killed flag for EndMI. 2492 // No need to do anything if EndMI defines RegNo. 2493 int UseIndex = 2494 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); 2495 if (UseIndex != -1) { 2496 EndMI.getOperand(UseIndex).setIsKill(true); 2497 IsKillSet = true; 2498 // Clear killed flag for other EndMI operands related to RegNo. In some 2499 // upexpected cases, killed may be set multiple times for same register 2500 // operand in same MI. 2501 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i) 2502 if (i != UseIndex) 2503 clearOperandKillInfo(EndMI, i); 2504 } 2505 2506 // Walking the inst in reverse order (EndMI -> StartMI]. 2507 MachineBasicBlock::reverse_iterator It = EndMI; 2508 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend(); 2509 // EndMI has been handled above, skip it here. 2510 It++; 2511 MachineOperand *MO = nullptr; 2512 for (; It != E; ++It) { 2513 // Skip insturctions which could not be a def/use of RegNo. 2514 if (It->isDebugInstr() || It->isPosition()) 2515 continue; 2516 2517 // Clear killed flag for all It operands related to RegNo. In some 2518 // upexpected cases, killed may be set multiple times for same register 2519 // operand in same MI. 2520 for (int i = 0, e = It->getNumOperands(); i != e; ++i) 2521 clearOperandKillInfo(*It, i); 2522 2523 // If killed is not set, set killed for its last use or set dead for its def 2524 // if no use found. 2525 if (!IsKillSet) { 2526 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { 2527 // Use found, set it killed. 2528 IsKillSet = true; 2529 MO->setIsKill(true); 2530 continue; 2531 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, 2532 &getRegisterInfo()))) { 2533 // No use found, set dead for its def. 2534 assert(&*It == &StartMI && "No new def between StartMI and EndMI."); 2535 MO->setIsDead(true); 2536 break; 2537 } 2538 } 2539 2540 if ((&*It) == &StartMI) 2541 break; 2542 } 2543 // Ensure RegMo liveness is killed after EndMI. 2544 assert((IsKillSet || (MO && MO->isDead())) && 2545 "RegNo should be killed or dead"); 2546 } 2547 2548 // This opt tries to convert the following imm form to an index form to save an 2549 // add for stack variables. 2550 // Return false if no such pattern found. 2551 // 2552 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2553 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg 2554 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) 2555 // 2556 // can be converted to: 2557 // 2558 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) 2559 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) 2560 // 2561 // In order to eliminate ADD instr, make sure that: 2562 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in 2563 // new ADDI instr and ADDI can only take int16 Imm. 2564 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use 2565 // between ADDI and ADD instr since its original def in ADDI will be changed 2566 // in new ADDI instr. And also there should be no new def for it between 2567 // ADD and Imm instr as ToBeChangedReg will be used in Index instr. 2568 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use 2569 // between ADD and Imm instr since ADD instr will be eliminated. 2570 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be 2571 // moved to Index instr. 2572 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { 2573 MachineFunction *MF = MI.getParent()->getParent(); 2574 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2575 bool PostRA = !MRI->isSSA(); 2576 // Do this opt after PEI which is after RA. The reason is stack slot expansion 2577 // in PEI may expose such opportunities since in PEI, stack slot offsets to 2578 // frame base(OffsetAddi) are determined. 2579 if (!PostRA) 2580 return false; 2581 unsigned ToBeDeletedReg = 0; 2582 int64_t OffsetImm = 0; 2583 unsigned XFormOpcode = 0; 2584 ImmInstrInfo III; 2585 2586 // Check if Imm instr meets requirement. 2587 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, 2588 III)) 2589 return false; 2590 2591 bool OtherIntermediateUse = false; 2592 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); 2593 2594 // Exit if there is other use between ADD and Imm instr or no def found. 2595 if (OtherIntermediateUse || !ADDMI) 2596 return false; 2597 2598 // Check if ADD instr meets requirement. 2599 if (!isADDInstrEligibleForFolding(*ADDMI)) 2600 return false; 2601 2602 unsigned ScaleRegIdx = 0; 2603 int64_t OffsetAddi = 0; 2604 MachineInstr *ADDIMI = nullptr; 2605 2606 // Check if there is a valid ToBeChangedReg in ADDMI. 2607 // 1: It must be killed. 2608 // 2: Its definition must be a valid ADDIMI. 2609 // 3: It must satify int16 offset requirement. 2610 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) 2611 ScaleRegIdx = 2; 2612 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) 2613 ScaleRegIdx = 1; 2614 else 2615 return false; 2616 2617 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); 2618 unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg(); 2619 unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); 2620 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, 2621 MachineBasicBlock::iterator End) { 2622 for (auto It = ++Start; It != End; It++) 2623 if (It->modifiesRegister(Reg, &getRegisterInfo())) 2624 return true; 2625 return false; 2626 }; 2627 2628 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is 2629 // treated as special zero when ScaleReg is R0/X0 register. 2630 if (III.ZeroIsSpecialOrig == III.ImmOpNo && 2631 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) 2632 return false; 2633 2634 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr 2635 // and Imm Instr. 2636 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) 2637 return false; 2638 2639 // Now start to do the transformation. 2640 LLVM_DEBUG(dbgs() << "Replace instruction: " 2641 << "\n"); 2642 LLVM_DEBUG(ADDIMI->dump()); 2643 LLVM_DEBUG(ADDMI->dump()); 2644 LLVM_DEBUG(MI.dump()); 2645 LLVM_DEBUG(dbgs() << "with: " 2646 << "\n"); 2647 2648 // Update ADDI instr. 2649 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); 2650 2651 // Update Imm instr. 2652 MI.setDesc(get(XFormOpcode)); 2653 MI.getOperand(III.ImmOpNo) 2654 .ChangeToRegister(ScaleReg, false, false, 2655 ADDMI->getOperand(ScaleRegIdx).isKill()); 2656 2657 MI.getOperand(III.OpNoForForwarding) 2658 .ChangeToRegister(ToBeChangedReg, false, false, true); 2659 2660 // Eliminate ADD instr. 2661 ADDMI->eraseFromParent(); 2662 2663 LLVM_DEBUG(ADDIMI->dump()); 2664 LLVM_DEBUG(MI.dump()); 2665 2666 return true; 2667 } 2668 2669 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, 2670 int64_t &Imm) const { 2671 unsigned Opc = ADDIMI.getOpcode(); 2672 2673 // Exit if the instruction is not ADDI. 2674 if (Opc != PPC::ADDI && Opc != PPC::ADDI8) 2675 return false; 2676 2677 Imm = ADDIMI.getOperand(2).getImm(); 2678 2679 return true; 2680 } 2681 2682 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { 2683 unsigned Opc = ADDMI.getOpcode(); 2684 2685 // Exit if the instruction is not ADD. 2686 return Opc == PPC::ADD4 || Opc == PPC::ADD8; 2687 } 2688 2689 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, 2690 unsigned &ToBeDeletedReg, 2691 unsigned &XFormOpcode, 2692 int64_t &OffsetImm, 2693 ImmInstrInfo &III) const { 2694 // Only handle load/store. 2695 if (!MI.mayLoadOrStore()) 2696 return false; 2697 2698 unsigned Opc = MI.getOpcode(); 2699 2700 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); 2701 2702 // Exit if instruction has no index form. 2703 if (XFormOpcode == PPC::INSTRUCTION_LIST_END) 2704 return false; 2705 2706 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. 2707 if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), 2708 III, true)) 2709 return false; 2710 2711 if (!III.IsSummingOperands) 2712 return false; 2713 2714 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); 2715 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); 2716 // Only support imm operands, not relocation slots or others. 2717 if (!ImmOperand.isImm()) 2718 return false; 2719 2720 assert(RegOperand.isReg() && "Instruction format is not right"); 2721 2722 // There are other use for ToBeDeletedReg after Imm instr, can not delete it. 2723 if (!RegOperand.isKill()) 2724 return false; 2725 2726 ToBeDeletedReg = RegOperand.getReg(); 2727 OffsetImm = ImmOperand.getImm(); 2728 2729 return true; 2730 } 2731 2732 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, 2733 MachineInstr *&ADDIMI, 2734 int64_t &OffsetAddi, 2735 int64_t OffsetImm) const { 2736 assert((Index == 1 || Index == 2) && "Invalid operand index for add."); 2737 MachineOperand &MO = ADDMI->getOperand(Index); 2738 2739 if (!MO.isKill()) 2740 return false; 2741 2742 bool OtherIntermediateUse = false; 2743 2744 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); 2745 // Currently handle only one "add + Imminstr" pair case, exit if other 2746 // intermediate use for ToBeChangedReg found. 2747 // TODO: handle the cases where there are other "add + Imminstr" pairs 2748 // with same offset in Imminstr which is like: 2749 // 2750 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi 2751 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 2752 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) 2753 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 2754 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) 2755 // 2756 // can be converted to: 2757 // 2758 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, 2759 // (OffsetAddi + OffsetImm) 2760 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg 2761 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) 2762 2763 if (OtherIntermediateUse || !ADDIMI) 2764 return false; 2765 // Check if ADDI instr meets requirement. 2766 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) 2767 return false; 2768 2769 if (isInt<16>(OffsetAddi + OffsetImm)) 2770 return true; 2771 return false; 2772 } 2773 2774 // If this instruction has an immediate form and one of its operands is a 2775 // result of a load-immediate or an add-immediate, convert it to 2776 // the immediate form if the constant is in range. 2777 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, 2778 MachineInstr **KilledDef) const { 2779 MachineFunction *MF = MI.getParent()->getParent(); 2780 MachineRegisterInfo *MRI = &MF->getRegInfo(); 2781 bool PostRA = !MRI->isSSA(); 2782 bool SeenIntermediateUse = true; 2783 unsigned ForwardingOperand = ~0U; 2784 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, 2785 SeenIntermediateUse); 2786 if (!DefMI) 2787 return false; 2788 assert(ForwardingOperand < MI.getNumOperands() && 2789 "The forwarding operand needs to be valid at this point"); 2790 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); 2791 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; 2792 Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg(); 2793 if (KilledDef && KillFwdDefMI) 2794 *KilledDef = DefMI; 2795 2796 ImmInstrInfo III; 2797 bool IsVFReg = MI.getOperand(0).isReg() 2798 ? isVFRegister(MI.getOperand(0).getReg()) 2799 : false; 2800 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); 2801 // If this is a reg+reg instruction that has a reg+imm form, 2802 // and one of the operands is produced by an add-immediate, 2803 // try to convert it. 2804 if (HasImmForm && 2805 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, 2806 KillFwdDefMI)) 2807 return true; 2808 2809 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) || 2810 !DefMI->getOperand(1).isImm()) 2811 return false; 2812 2813 int64_t Immediate = DefMI->getOperand(1).getImm(); 2814 // Sign-extend to 64-bits. 2815 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 2816 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 2817 2818 // If this is a reg+reg instruction that has a reg+imm form, 2819 // and one of the operands is produced by LI, convert it now. 2820 if (HasImmForm) 2821 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm); 2822 2823 bool ReplaceWithLI = false; 2824 bool Is64BitLI = false; 2825 int64_t NewImm = 0; 2826 bool SetCR = false; 2827 unsigned Opc = MI.getOpcode(); 2828 switch (Opc) { 2829 default: return false; 2830 2831 // FIXME: Any branches conditional on such a comparison can be made 2832 // unconditional. At this time, this happens too infrequently to be worth 2833 // the implementation effort, but if that ever changes, we could convert 2834 // such a pattern here. 2835 case PPC::CMPWI: 2836 case PPC::CMPLWI: 2837 case PPC::CMPDI: 2838 case PPC::CMPLDI: { 2839 // Doing this post-RA would require dataflow analysis to reliably find uses 2840 // of the CR register set by the compare. 2841 // No need to fixup killed/dead flag since this transformation is only valid 2842 // before RA. 2843 if (PostRA) 2844 return false; 2845 // If a compare-immediate is fed by an immediate and is itself an input of 2846 // an ISEL (the most common case) into a COPY of the correct register. 2847 bool Changed = false; 2848 Register DefReg = MI.getOperand(0).getReg(); 2849 int64_t Comparand = MI.getOperand(2).getImm(); 2850 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ? 2851 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand; 2852 2853 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { 2854 unsigned UseOpc = CompareUseMI.getOpcode(); 2855 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) 2856 continue; 2857 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); 2858 Register TrueReg = CompareUseMI.getOperand(1).getReg(); 2859 Register FalseReg = CompareUseMI.getOperand(2).getReg(); 2860 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg, 2861 FalseReg, CRSubReg); 2862 if (RegToCopy == PPC::NoRegister) 2863 continue; 2864 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. 2865 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { 2866 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); 2867 replaceInstrOperandWithImm(CompareUseMI, 1, 0); 2868 CompareUseMI.RemoveOperand(3); 2869 CompareUseMI.RemoveOperand(2); 2870 continue; 2871 } 2872 LLVM_DEBUG( 2873 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); 2874 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump()); 2875 LLVM_DEBUG(dbgs() << "Is converted to:\n"); 2876 // Convert to copy and remove unneeded operands. 2877 CompareUseMI.setDesc(get(PPC::COPY)); 2878 CompareUseMI.RemoveOperand(3); 2879 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1); 2880 CmpIselsConverted++; 2881 Changed = true; 2882 LLVM_DEBUG(CompareUseMI.dump()); 2883 } 2884 if (Changed) 2885 return true; 2886 // This may end up incremented multiple times since this function is called 2887 // during a fixed-point transformation, but it is only meant to indicate the 2888 // presence of this opportunity. 2889 MissedConvertibleImmediateInstrs++; 2890 return false; 2891 } 2892 2893 // Immediate forms - may simply be convertable to an LI. 2894 case PPC::ADDI: 2895 case PPC::ADDI8: { 2896 // Does the sum fit in a 16-bit signed field? 2897 int64_t Addend = MI.getOperand(2).getImm(); 2898 if (isInt<16>(Addend + SExtImm)) { 2899 ReplaceWithLI = true; 2900 Is64BitLI = Opc == PPC::ADDI8; 2901 NewImm = Addend + SExtImm; 2902 break; 2903 } 2904 return false; 2905 } 2906 case PPC::RLDICL: 2907 case PPC::RLDICL_rec: 2908 case PPC::RLDICL_32: 2909 case PPC::RLDICL_32_64: { 2910 // Use APInt's rotate function. 2911 int64_t SH = MI.getOperand(2).getImm(); 2912 int64_t MB = MI.getOperand(3).getImm(); 2913 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, 2914 SExtImm, true); 2915 InVal = InVal.rotl(SH); 2916 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; 2917 InVal &= Mask; 2918 // Can't replace negative values with an LI as that will sign-extend 2919 // and not clear the left bits. If we're setting the CR bit, we will use 2920 // ANDI_rec which won't sign extend, so that's safe. 2921 if (isUInt<15>(InVal.getSExtValue()) || 2922 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { 2923 ReplaceWithLI = true; 2924 Is64BitLI = Opc != PPC::RLDICL_32; 2925 NewImm = InVal.getSExtValue(); 2926 SetCR = Opc == PPC::RLDICL_rec; 2927 break; 2928 } 2929 return false; 2930 } 2931 case PPC::RLWINM: 2932 case PPC::RLWINM8: 2933 case PPC::RLWINM_rec: 2934 case PPC::RLWINM8_rec: { 2935 int64_t SH = MI.getOperand(2).getImm(); 2936 int64_t MB = MI.getOperand(3).getImm(); 2937 int64_t ME = MI.getOperand(4).getImm(); 2938 APInt InVal(32, SExtImm, true); 2939 InVal = InVal.rotl(SH); 2940 // Set the bits ( MB + 32 ) to ( ME + 32 ). 2941 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); 2942 InVal &= Mask; 2943 // Can't replace negative values with an LI as that will sign-extend 2944 // and not clear the left bits. If we're setting the CR bit, we will use 2945 // ANDI_rec which won't sign extend, so that's safe. 2946 bool ValueFits = isUInt<15>(InVal.getSExtValue()); 2947 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && 2948 isUInt<16>(InVal.getSExtValue())); 2949 if (ValueFits) { 2950 ReplaceWithLI = true; 2951 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; 2952 NewImm = InVal.getSExtValue(); 2953 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; 2954 break; 2955 } 2956 return false; 2957 } 2958 case PPC::ORI: 2959 case PPC::ORI8: 2960 case PPC::XORI: 2961 case PPC::XORI8: { 2962 int64_t LogicalImm = MI.getOperand(2).getImm(); 2963 int64_t Result = 0; 2964 if (Opc == PPC::ORI || Opc == PPC::ORI8) 2965 Result = LogicalImm | SExtImm; 2966 else 2967 Result = LogicalImm ^ SExtImm; 2968 if (isInt<16>(Result)) { 2969 ReplaceWithLI = true; 2970 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; 2971 NewImm = Result; 2972 break; 2973 } 2974 return false; 2975 } 2976 } 2977 2978 if (ReplaceWithLI) { 2979 // We need to be careful with CR-setting instructions we're replacing. 2980 if (SetCR) { 2981 // We don't know anything about uses when we're out of SSA, so only 2982 // replace if the new immediate will be reproduced. 2983 bool ImmChanged = (SExtImm & NewImm) != NewImm; 2984 if (PostRA && ImmChanged) 2985 return false; 2986 2987 if (!PostRA) { 2988 // If the defining load-immediate has no other uses, we can just replace 2989 // the immediate with the new immediate. 2990 if (MRI->hasOneUse(DefMI->getOperand(0).getReg())) 2991 DefMI->getOperand(1).setImm(NewImm); 2992 2993 // If we're not using the GPR result of the CR-setting instruction, we 2994 // just need to and with zero/non-zero depending on the new immediate. 2995 else if (MRI->use_empty(MI.getOperand(0).getReg())) { 2996 if (NewImm) { 2997 assert(Immediate && "Transformation converted zero to non-zero?"); 2998 NewImm = Immediate; 2999 } 3000 } 3001 else if (ImmChanged) 3002 return false; 3003 } 3004 } 3005 3006 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3007 LLVM_DEBUG(MI.dump()); 3008 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3009 LLVM_DEBUG(DefMI->dump()); 3010 LoadImmediateInfo LII; 3011 LII.Imm = NewImm; 3012 LII.Is64Bit = Is64BitLI; 3013 LII.SetCR = SetCR; 3014 // If we're setting the CR, the original load-immediate must be kept (as an 3015 // operand to ANDI_rec/ANDI8_rec). 3016 if (KilledDef && SetCR) 3017 *KilledDef = nullptr; 3018 replaceInstrWithLI(MI, LII); 3019 3020 // Fixup killed/dead flag after transformation. 3021 // Pattern: 3022 // ForwardingOperandReg = LI imm1 3023 // y = op2 imm2, ForwardingOperandReg(killed) 3024 if (IsForwardingOperandKilled) 3025 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg); 3026 3027 LLVM_DEBUG(dbgs() << "With:\n"); 3028 LLVM_DEBUG(MI.dump()); 3029 return true; 3030 } 3031 return false; 3032 } 3033 3034 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, 3035 ImmInstrInfo &III, bool PostRA) const { 3036 // The vast majority of the instructions would need their operand 2 replaced 3037 // with an immediate when switching to the reg+imm form. A marked exception 3038 // are the update form loads/stores for which a constant operand 2 would need 3039 // to turn into a displacement and move operand 1 to the operand 2 position. 3040 III.ImmOpNo = 2; 3041 III.OpNoForForwarding = 2; 3042 III.ImmWidth = 16; 3043 III.ImmMustBeMultipleOf = 1; 3044 III.TruncateImmTo = 0; 3045 III.IsSummingOperands = false; 3046 switch (Opc) { 3047 default: return false; 3048 case PPC::ADD4: 3049 case PPC::ADD8: 3050 III.SignedImm = true; 3051 III.ZeroIsSpecialOrig = 0; 3052 III.ZeroIsSpecialNew = 1; 3053 III.IsCommutative = true; 3054 III.IsSummingOperands = true; 3055 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; 3056 break; 3057 case PPC::ADDC: 3058 case PPC::ADDC8: 3059 III.SignedImm = true; 3060 III.ZeroIsSpecialOrig = 0; 3061 III.ZeroIsSpecialNew = 0; 3062 III.IsCommutative = true; 3063 III.IsSummingOperands = true; 3064 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; 3065 break; 3066 case PPC::ADDC_rec: 3067 III.SignedImm = true; 3068 III.ZeroIsSpecialOrig = 0; 3069 III.ZeroIsSpecialNew = 0; 3070 III.IsCommutative = true; 3071 III.IsSummingOperands = true; 3072 III.ImmOpcode = PPC::ADDIC_rec; 3073 break; 3074 case PPC::SUBFC: 3075 case PPC::SUBFC8: 3076 III.SignedImm = true; 3077 III.ZeroIsSpecialOrig = 0; 3078 III.ZeroIsSpecialNew = 0; 3079 III.IsCommutative = false; 3080 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; 3081 break; 3082 case PPC::CMPW: 3083 case PPC::CMPD: 3084 III.SignedImm = true; 3085 III.ZeroIsSpecialOrig = 0; 3086 III.ZeroIsSpecialNew = 0; 3087 III.IsCommutative = false; 3088 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; 3089 break; 3090 case PPC::CMPLW: 3091 case PPC::CMPLD: 3092 III.SignedImm = false; 3093 III.ZeroIsSpecialOrig = 0; 3094 III.ZeroIsSpecialNew = 0; 3095 III.IsCommutative = false; 3096 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; 3097 break; 3098 case PPC::AND_rec: 3099 case PPC::AND8_rec: 3100 case PPC::OR: 3101 case PPC::OR8: 3102 case PPC::XOR: 3103 case PPC::XOR8: 3104 III.SignedImm = false; 3105 III.ZeroIsSpecialOrig = 0; 3106 III.ZeroIsSpecialNew = 0; 3107 III.IsCommutative = true; 3108 switch(Opc) { 3109 default: llvm_unreachable("Unknown opcode"); 3110 case PPC::AND_rec: 3111 III.ImmOpcode = PPC::ANDI_rec; 3112 break; 3113 case PPC::AND8_rec: 3114 III.ImmOpcode = PPC::ANDI8_rec; 3115 break; 3116 case PPC::OR: III.ImmOpcode = PPC::ORI; break; 3117 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; 3118 case PPC::XOR: III.ImmOpcode = PPC::XORI; break; 3119 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; 3120 } 3121 break; 3122 case PPC::RLWNM: 3123 case PPC::RLWNM8: 3124 case PPC::RLWNM_rec: 3125 case PPC::RLWNM8_rec: 3126 case PPC::SLW: 3127 case PPC::SLW8: 3128 case PPC::SLW_rec: 3129 case PPC::SLW8_rec: 3130 case PPC::SRW: 3131 case PPC::SRW8: 3132 case PPC::SRW_rec: 3133 case PPC::SRW8_rec: 3134 case PPC::SRAW: 3135 case PPC::SRAW_rec: 3136 III.SignedImm = false; 3137 III.ZeroIsSpecialOrig = 0; 3138 III.ZeroIsSpecialNew = 0; 3139 III.IsCommutative = false; 3140 // This isn't actually true, but the instructions ignore any of the 3141 // upper bits, so any immediate loaded with an LI is acceptable. 3142 // This does not apply to shift right algebraic because a value 3143 // out of range will produce a -1/0. 3144 III.ImmWidth = 16; 3145 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || 3146 Opc == PPC::RLWNM8_rec) 3147 III.TruncateImmTo = 5; 3148 else 3149 III.TruncateImmTo = 6; 3150 switch(Opc) { 3151 default: llvm_unreachable("Unknown opcode"); 3152 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; 3153 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; 3154 case PPC::RLWNM_rec: 3155 III.ImmOpcode = PPC::RLWINM_rec; 3156 break; 3157 case PPC::RLWNM8_rec: 3158 III.ImmOpcode = PPC::RLWINM8_rec; 3159 break; 3160 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; 3161 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; 3162 case PPC::SLW_rec: 3163 III.ImmOpcode = PPC::RLWINM_rec; 3164 break; 3165 case PPC::SLW8_rec: 3166 III.ImmOpcode = PPC::RLWINM8_rec; 3167 break; 3168 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; 3169 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; 3170 case PPC::SRW_rec: 3171 III.ImmOpcode = PPC::RLWINM_rec; 3172 break; 3173 case PPC::SRW8_rec: 3174 III.ImmOpcode = PPC::RLWINM8_rec; 3175 break; 3176 case PPC::SRAW: 3177 III.ImmWidth = 5; 3178 III.TruncateImmTo = 0; 3179 III.ImmOpcode = PPC::SRAWI; 3180 break; 3181 case PPC::SRAW_rec: 3182 III.ImmWidth = 5; 3183 III.TruncateImmTo = 0; 3184 III.ImmOpcode = PPC::SRAWI_rec; 3185 break; 3186 } 3187 break; 3188 case PPC::RLDCL: 3189 case PPC::RLDCL_rec: 3190 case PPC::RLDCR: 3191 case PPC::RLDCR_rec: 3192 case PPC::SLD: 3193 case PPC::SLD_rec: 3194 case PPC::SRD: 3195 case PPC::SRD_rec: 3196 case PPC::SRAD: 3197 case PPC::SRAD_rec: 3198 III.SignedImm = false; 3199 III.ZeroIsSpecialOrig = 0; 3200 III.ZeroIsSpecialNew = 0; 3201 III.IsCommutative = false; 3202 // This isn't actually true, but the instructions ignore any of the 3203 // upper bits, so any immediate loaded with an LI is acceptable. 3204 // This does not apply to shift right algebraic because a value 3205 // out of range will produce a -1/0. 3206 III.ImmWidth = 16; 3207 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || 3208 Opc == PPC::RLDCR_rec) 3209 III.TruncateImmTo = 6; 3210 else 3211 III.TruncateImmTo = 7; 3212 switch(Opc) { 3213 default: llvm_unreachable("Unknown opcode"); 3214 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; 3215 case PPC::RLDCL_rec: 3216 III.ImmOpcode = PPC::RLDICL_rec; 3217 break; 3218 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; 3219 case PPC::RLDCR_rec: 3220 III.ImmOpcode = PPC::RLDICR_rec; 3221 break; 3222 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; 3223 case PPC::SLD_rec: 3224 III.ImmOpcode = PPC::RLDICR_rec; 3225 break; 3226 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; 3227 case PPC::SRD_rec: 3228 III.ImmOpcode = PPC::RLDICL_rec; 3229 break; 3230 case PPC::SRAD: 3231 III.ImmWidth = 6; 3232 III.TruncateImmTo = 0; 3233 III.ImmOpcode = PPC::SRADI; 3234 break; 3235 case PPC::SRAD_rec: 3236 III.ImmWidth = 6; 3237 III.TruncateImmTo = 0; 3238 III.ImmOpcode = PPC::SRADI_rec; 3239 break; 3240 } 3241 break; 3242 // Loads and stores: 3243 case PPC::LBZX: 3244 case PPC::LBZX8: 3245 case PPC::LHZX: 3246 case PPC::LHZX8: 3247 case PPC::LHAX: 3248 case PPC::LHAX8: 3249 case PPC::LWZX: 3250 case PPC::LWZX8: 3251 case PPC::LWAX: 3252 case PPC::LDX: 3253 case PPC::LFSX: 3254 case PPC::LFDX: 3255 case PPC::STBX: 3256 case PPC::STBX8: 3257 case PPC::STHX: 3258 case PPC::STHX8: 3259 case PPC::STWX: 3260 case PPC::STWX8: 3261 case PPC::STDX: 3262 case PPC::STFSX: 3263 case PPC::STFDX: 3264 III.SignedImm = true; 3265 III.ZeroIsSpecialOrig = 1; 3266 III.ZeroIsSpecialNew = 2; 3267 III.IsCommutative = true; 3268 III.IsSummingOperands = true; 3269 III.ImmOpNo = 1; 3270 III.OpNoForForwarding = 2; 3271 switch(Opc) { 3272 default: llvm_unreachable("Unknown opcode"); 3273 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; 3274 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; 3275 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; 3276 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; 3277 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; 3278 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; 3279 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; 3280 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; 3281 case PPC::LWAX: 3282 III.ImmOpcode = PPC::LWA; 3283 III.ImmMustBeMultipleOf = 4; 3284 break; 3285 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; 3286 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; 3287 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; 3288 case PPC::STBX: III.ImmOpcode = PPC::STB; break; 3289 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; 3290 case PPC::STHX: III.ImmOpcode = PPC::STH; break; 3291 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; 3292 case PPC::STWX: III.ImmOpcode = PPC::STW; break; 3293 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; 3294 case PPC::STDX: 3295 III.ImmOpcode = PPC::STD; 3296 III.ImmMustBeMultipleOf = 4; 3297 break; 3298 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; 3299 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; 3300 } 3301 break; 3302 case PPC::LBZUX: 3303 case PPC::LBZUX8: 3304 case PPC::LHZUX: 3305 case PPC::LHZUX8: 3306 case PPC::LHAUX: 3307 case PPC::LHAUX8: 3308 case PPC::LWZUX: 3309 case PPC::LWZUX8: 3310 case PPC::LDUX: 3311 case PPC::LFSUX: 3312 case PPC::LFDUX: 3313 case PPC::STBUX: 3314 case PPC::STBUX8: 3315 case PPC::STHUX: 3316 case PPC::STHUX8: 3317 case PPC::STWUX: 3318 case PPC::STWUX8: 3319 case PPC::STDUX: 3320 case PPC::STFSUX: 3321 case PPC::STFDUX: 3322 III.SignedImm = true; 3323 III.ZeroIsSpecialOrig = 2; 3324 III.ZeroIsSpecialNew = 3; 3325 III.IsCommutative = false; 3326 III.IsSummingOperands = true; 3327 III.ImmOpNo = 2; 3328 III.OpNoForForwarding = 3; 3329 switch(Opc) { 3330 default: llvm_unreachable("Unknown opcode"); 3331 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; 3332 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; 3333 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; 3334 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; 3335 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; 3336 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; 3337 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; 3338 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; 3339 case PPC::LDUX: 3340 III.ImmOpcode = PPC::LDU; 3341 III.ImmMustBeMultipleOf = 4; 3342 break; 3343 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; 3344 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; 3345 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; 3346 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; 3347 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; 3348 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; 3349 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; 3350 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; 3351 case PPC::STDUX: 3352 III.ImmOpcode = PPC::STDU; 3353 III.ImmMustBeMultipleOf = 4; 3354 break; 3355 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; 3356 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; 3357 } 3358 break; 3359 // Power9 and up only. For some of these, the X-Form version has access to all 3360 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those 3361 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded 3362 // into or stored from is one of the VR registers. 3363 case PPC::LXVX: 3364 case PPC::LXSSPX: 3365 case PPC::LXSDX: 3366 case PPC::STXVX: 3367 case PPC::STXSSPX: 3368 case PPC::STXSDX: 3369 case PPC::XFLOADf32: 3370 case PPC::XFLOADf64: 3371 case PPC::XFSTOREf32: 3372 case PPC::XFSTOREf64: 3373 if (!Subtarget.hasP9Vector()) 3374 return false; 3375 III.SignedImm = true; 3376 III.ZeroIsSpecialOrig = 1; 3377 III.ZeroIsSpecialNew = 2; 3378 III.IsCommutative = true; 3379 III.IsSummingOperands = true; 3380 III.ImmOpNo = 1; 3381 III.OpNoForForwarding = 2; 3382 III.ImmMustBeMultipleOf = 4; 3383 switch(Opc) { 3384 default: llvm_unreachable("Unknown opcode"); 3385 case PPC::LXVX: 3386 III.ImmOpcode = PPC::LXV; 3387 III.ImmMustBeMultipleOf = 16; 3388 break; 3389 case PPC::LXSSPX: 3390 if (PostRA) { 3391 if (IsVFReg) 3392 III.ImmOpcode = PPC::LXSSP; 3393 else { 3394 III.ImmOpcode = PPC::LFS; 3395 III.ImmMustBeMultipleOf = 1; 3396 } 3397 break; 3398 } 3399 LLVM_FALLTHROUGH; 3400 case PPC::XFLOADf32: 3401 III.ImmOpcode = PPC::DFLOADf32; 3402 break; 3403 case PPC::LXSDX: 3404 if (PostRA) { 3405 if (IsVFReg) 3406 III.ImmOpcode = PPC::LXSD; 3407 else { 3408 III.ImmOpcode = PPC::LFD; 3409 III.ImmMustBeMultipleOf = 1; 3410 } 3411 break; 3412 } 3413 LLVM_FALLTHROUGH; 3414 case PPC::XFLOADf64: 3415 III.ImmOpcode = PPC::DFLOADf64; 3416 break; 3417 case PPC::STXVX: 3418 III.ImmOpcode = PPC::STXV; 3419 III.ImmMustBeMultipleOf = 16; 3420 break; 3421 case PPC::STXSSPX: 3422 if (PostRA) { 3423 if (IsVFReg) 3424 III.ImmOpcode = PPC::STXSSP; 3425 else { 3426 III.ImmOpcode = PPC::STFS; 3427 III.ImmMustBeMultipleOf = 1; 3428 } 3429 break; 3430 } 3431 LLVM_FALLTHROUGH; 3432 case PPC::XFSTOREf32: 3433 III.ImmOpcode = PPC::DFSTOREf32; 3434 break; 3435 case PPC::STXSDX: 3436 if (PostRA) { 3437 if (IsVFReg) 3438 III.ImmOpcode = PPC::STXSD; 3439 else { 3440 III.ImmOpcode = PPC::STFD; 3441 III.ImmMustBeMultipleOf = 1; 3442 } 3443 break; 3444 } 3445 LLVM_FALLTHROUGH; 3446 case PPC::XFSTOREf64: 3447 III.ImmOpcode = PPC::DFSTOREf64; 3448 break; 3449 } 3450 break; 3451 } 3452 return true; 3453 } 3454 3455 // Utility function for swaping two arbitrary operands of an instruction. 3456 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { 3457 assert(Op1 != Op2 && "Cannot swap operand with itself."); 3458 3459 unsigned MaxOp = std::max(Op1, Op2); 3460 unsigned MinOp = std::min(Op1, Op2); 3461 MachineOperand MOp1 = MI.getOperand(MinOp); 3462 MachineOperand MOp2 = MI.getOperand(MaxOp); 3463 MI.RemoveOperand(std::max(Op1, Op2)); 3464 MI.RemoveOperand(std::min(Op1, Op2)); 3465 3466 // If the operands we are swapping are the two at the end (the common case) 3467 // we can just remove both and add them in the opposite order. 3468 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { 3469 MI.addOperand(MOp2); 3470 MI.addOperand(MOp1); 3471 } else { 3472 // Store all operands in a temporary vector, remove them and re-add in the 3473 // right order. 3474 SmallVector<MachineOperand, 2> MOps; 3475 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. 3476 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { 3477 MOps.push_back(MI.getOperand(i)); 3478 MI.RemoveOperand(i); 3479 } 3480 // MOp2 needs to be added next. 3481 MI.addOperand(MOp2); 3482 // Now add the rest. 3483 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { 3484 if (i == MaxOp) 3485 MI.addOperand(MOp1); 3486 else { 3487 MI.addOperand(MOps.back()); 3488 MOps.pop_back(); 3489 } 3490 } 3491 } 3492 } 3493 3494 // Check if the 'MI' that has the index OpNoForForwarding 3495 // meets the requirement described in the ImmInstrInfo. 3496 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, 3497 const ImmInstrInfo &III, 3498 unsigned OpNoForForwarding 3499 ) const { 3500 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 3501 // would not work pre-RA, we can only do the check post RA. 3502 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3503 if (MRI.isSSA()) 3504 return false; 3505 3506 // Cannot do the transform if MI isn't summing the operands. 3507 if (!III.IsSummingOperands) 3508 return false; 3509 3510 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. 3511 if (!III.ZeroIsSpecialOrig) 3512 return false; 3513 3514 // We cannot do the transform if the operand we are trying to replace 3515 // isn't the same as the operand the instruction allows. 3516 if (OpNoForForwarding != III.OpNoForForwarding) 3517 return false; 3518 3519 // Check if the instruction we are trying to transform really has 3520 // the special zero register as its operand. 3521 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && 3522 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) 3523 return false; 3524 3525 // This machine instruction is convertible if it is, 3526 // 1. summing the operands. 3527 // 2. one of the operands is special zero register. 3528 // 3. the operand we are trying to replace is allowed by the MI. 3529 return true; 3530 } 3531 3532 // Check if the DefMI is the add inst and set the ImmMO and RegMO 3533 // accordingly. 3534 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, 3535 const ImmInstrInfo &III, 3536 MachineOperand *&ImmMO, 3537 MachineOperand *&RegMO) const { 3538 unsigned Opc = DefMI.getOpcode(); 3539 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) 3540 return false; 3541 3542 assert(DefMI.getNumOperands() >= 3 && 3543 "Add inst must have at least three operands"); 3544 RegMO = &DefMI.getOperand(1); 3545 ImmMO = &DefMI.getOperand(2); 3546 3547 // This DefMI is elgible for forwarding if it is: 3548 // 1. add inst 3549 // 2. one of the operands is Imm/CPI/Global. 3550 return isAnImmediateOperand(*ImmMO); 3551 } 3552 3553 bool PPCInstrInfo::isRegElgibleForForwarding( 3554 const MachineOperand &RegMO, const MachineInstr &DefMI, 3555 const MachineInstr &MI, bool KillDefMI, 3556 bool &IsFwdFeederRegKilled) const { 3557 // x = addi y, imm 3558 // ... 3559 // z = lfdx 0, x -> z = lfd imm(y) 3560 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF 3561 // of "y" between the DEF of "x" and "z". 3562 // The query is only valid post RA. 3563 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3564 if (MRI.isSSA()) 3565 return false; 3566 3567 Register Reg = RegMO.getReg(); 3568 3569 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. 3570 MachineBasicBlock::const_reverse_iterator It = MI; 3571 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); 3572 It++; 3573 for (; It != E; ++It) { 3574 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3575 return false; 3576 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) 3577 IsFwdFeederRegKilled = true; 3578 // Made it to DefMI without encountering a clobber. 3579 if ((&*It) == &DefMI) 3580 break; 3581 } 3582 assert((&*It) == &DefMI && "DefMI is missing"); 3583 3584 // If DefMI also defines the register to be forwarded, we can only forward it 3585 // if DefMI is being erased. 3586 if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) 3587 return KillDefMI; 3588 3589 return true; 3590 } 3591 3592 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, 3593 const MachineInstr &DefMI, 3594 const ImmInstrInfo &III, 3595 int64_t &Imm) const { 3596 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); 3597 if (DefMI.getOpcode() == PPC::ADDItocL) { 3598 // The operand for ADDItocL is CPI, which isn't imm at compiling time, 3599 // However, we know that, it is 16-bit width, and has the alignment of 4. 3600 // Check if the instruction met the requirement. 3601 if (III.ImmMustBeMultipleOf > 4 || 3602 III.TruncateImmTo || III.ImmWidth != 16) 3603 return false; 3604 3605 // Going from XForm to DForm loads means that the displacement needs to be 3606 // not just an immediate but also a multiple of 4, or 16 depending on the 3607 // load. A DForm load cannot be represented if it is a multiple of say 2. 3608 // XForm loads do not have this restriction. 3609 if (ImmMO.isGlobal() && 3610 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf) 3611 return false; 3612 3613 return true; 3614 } 3615 3616 if (ImmMO.isImm()) { 3617 // It is Imm, we need to check if the Imm fit the range. 3618 int64_t Immediate = ImmMO.getImm(); 3619 // Sign-extend to 64-bits. 3620 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ? 3621 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate; 3622 3623 if (Imm % III.ImmMustBeMultipleOf) 3624 return false; 3625 if (III.TruncateImmTo) 3626 Imm &= ((1 << III.TruncateImmTo) - 1); 3627 if (III.SignedImm) { 3628 APInt ActualValue(64, Imm, true); 3629 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3630 return false; 3631 } else { 3632 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3633 if ((uint64_t)Imm > UnsignedMax) 3634 return false; 3635 } 3636 } 3637 else 3638 return false; 3639 3640 // This ImmMO is forwarded if it meets the requriement describle 3641 // in ImmInstrInfo 3642 return true; 3643 } 3644 3645 // If an X-Form instruction is fed by an add-immediate and one of its operands 3646 // is the literal zero, attempt to forward the source of the add-immediate to 3647 // the corresponding D-Form instruction with the displacement coming from 3648 // the immediate being added. 3649 bool PPCInstrInfo::transformToImmFormFedByAdd( 3650 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, 3651 MachineInstr &DefMI, bool KillDefMI) const { 3652 // RegMO ImmMO 3653 // | | 3654 // x = addi reg, imm <----- DefMI 3655 // y = op 0 , x <----- MI 3656 // | 3657 // OpNoForForwarding 3658 // Check if the MI meet the requirement described in the III. 3659 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) 3660 return false; 3661 3662 // Check if the DefMI meet the requirement 3663 // described in the III. If yes, set the ImmMO and RegMO accordingly. 3664 MachineOperand *ImmMO = nullptr; 3665 MachineOperand *RegMO = nullptr; 3666 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) 3667 return false; 3668 assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); 3669 3670 // As we get the Imm operand now, we need to check if the ImmMO meet 3671 // the requirement described in the III. If yes set the Imm. 3672 int64_t Imm = 0; 3673 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) 3674 return false; 3675 3676 bool IsFwdFeederRegKilled = false; 3677 // Check if the RegMO can be forwarded to MI. 3678 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, 3679 IsFwdFeederRegKilled)) 3680 return false; 3681 3682 // Get killed info in case fixup needed after transformation. 3683 unsigned ForwardKilledOperandReg = ~0U; 3684 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3685 bool PostRA = !MRI.isSSA(); 3686 if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) 3687 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); 3688 3689 // We know that, the MI and DefMI both meet the pattern, and 3690 // the Imm also meet the requirement with the new Imm-form. 3691 // It is safe to do the transformation now. 3692 LLVM_DEBUG(dbgs() << "Replacing instruction:\n"); 3693 LLVM_DEBUG(MI.dump()); 3694 LLVM_DEBUG(dbgs() << "Fed by:\n"); 3695 LLVM_DEBUG(DefMI.dump()); 3696 3697 // Update the base reg first. 3698 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), 3699 false, false, 3700 RegMO->isKill()); 3701 3702 // Then, update the imm. 3703 if (ImmMO->isImm()) { 3704 // If the ImmMO is Imm, change the operand that has ZERO to that Imm 3705 // directly. 3706 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); 3707 } 3708 else { 3709 // Otherwise, it is Constant Pool Index(CPI) or Global, 3710 // which is relocation in fact. We need to replace the special zero 3711 // register with ImmMO. 3712 // Before that, we need to fixup the target flags for imm. 3713 // For some reason, we miss to set the flag for the ImmMO if it is CPI. 3714 if (DefMI.getOpcode() == PPC::ADDItocL) 3715 ImmMO->setTargetFlags(PPCII::MO_TOC_LO); 3716 3717 // MI didn't have the interface such as MI.setOperand(i) though 3718 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with 3719 // ImmMO, we need to remove ZERO operand and all the operands behind it, 3720 // and, add the ImmMO, then, move back all the operands behind ZERO. 3721 SmallVector<MachineOperand, 2> MOps; 3722 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { 3723 MOps.push_back(MI.getOperand(i)); 3724 MI.RemoveOperand(i); 3725 } 3726 3727 // Remove the last MO in the list, which is ZERO operand in fact. 3728 MOps.pop_back(); 3729 // Add the imm operand. 3730 MI.addOperand(*ImmMO); 3731 // Now add the rest back. 3732 for (auto &MO : MOps) 3733 MI.addOperand(MO); 3734 } 3735 3736 // Update the opcode. 3737 MI.setDesc(get(III.ImmOpcode)); 3738 3739 // Fix up killed/dead flag after transformation. 3740 // Pattern 1: 3741 // x = ADD KilledFwdFeederReg, imm 3742 // n = opn KilledFwdFeederReg(killed), regn 3743 // y = XOP 0, x 3744 // Pattern 2: 3745 // x = ADD reg(killed), imm 3746 // y = XOP 0, x 3747 if (IsFwdFeederRegKilled || RegMO->isKill()) 3748 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg()); 3749 // Pattern 3: 3750 // ForwardKilledOperandReg = ADD reg, imm 3751 // y = XOP 0, ForwardKilledOperandReg(killed) 3752 if (ForwardKilledOperandReg != ~0U) 3753 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3754 3755 LLVM_DEBUG(dbgs() << "With:\n"); 3756 LLVM_DEBUG(MI.dump()); 3757 3758 return true; 3759 } 3760 3761 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, 3762 const ImmInstrInfo &III, 3763 unsigned ConstantOpNo, 3764 MachineInstr &DefMI, 3765 int64_t Imm) const { 3766 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3767 bool PostRA = !MRI.isSSA(); 3768 // Exit early if we can't convert this. 3769 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) 3770 return false; 3771 if (Imm % III.ImmMustBeMultipleOf) 3772 return false; 3773 if (III.TruncateImmTo) 3774 Imm &= ((1 << III.TruncateImmTo) - 1); 3775 if (III.SignedImm) { 3776 APInt ActualValue(64, Imm, true); 3777 if (!ActualValue.isSignedIntN(III.ImmWidth)) 3778 return false; 3779 } else { 3780 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; 3781 if ((uint64_t)Imm > UnsignedMax) 3782 return false; 3783 } 3784 3785 // If we're post-RA, the instructions don't agree on whether register zero is 3786 // special, we can transform this as long as the register operand that will 3787 // end up in the location where zero is special isn't R0. 3788 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3789 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : 3790 III.ZeroIsSpecialNew + 1; 3791 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); 3792 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3793 // If R0 is in the operand where zero is special for the new instruction, 3794 // it is unsafe to transform if the constant operand isn't that operand. 3795 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && 3796 ConstantOpNo != III.ZeroIsSpecialNew) 3797 return false; 3798 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && 3799 ConstantOpNo != PosForOrigZero) 3800 return false; 3801 } 3802 3803 // Get killed info in case fixup needed after transformation. 3804 unsigned ForwardKilledOperandReg = ~0U; 3805 if (PostRA && MI.getOperand(ConstantOpNo).isKill()) 3806 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); 3807 3808 unsigned Opc = MI.getOpcode(); 3809 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || 3810 Opc == PPC::SRW || Opc == PPC::SRW_rec || 3811 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || 3812 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; 3813 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || 3814 Opc == PPC::SRD || Opc == PPC::SRD_rec; 3815 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || 3816 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; 3817 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || 3818 Opc == PPC::SRD_rec; 3819 3820 MI.setDesc(get(III.ImmOpcode)); 3821 if (ConstantOpNo == III.OpNoForForwarding) { 3822 // Converting shifts to immediate form is a bit tricky since they may do 3823 // one of three things: 3824 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero 3825 // 2. If the shift amount is zero, the result is unchanged (save for maybe 3826 // setting CR0) 3827 // 3. If the shift amount is in [1, OpSize), it's just a shift 3828 if (SpecialShift32 || SpecialShift64) { 3829 LoadImmediateInfo LII; 3830 LII.Imm = 0; 3831 LII.SetCR = SetCR; 3832 LII.Is64Bit = SpecialShift64; 3833 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); 3834 if (Imm & (SpecialShift32 ? 0x20 : 0x40)) 3835 replaceInstrWithLI(MI, LII); 3836 // Shifts by zero don't change the value. If we don't need to set CR0, 3837 // just convert this to a COPY. Can't do this post-RA since we've already 3838 // cleaned up the copies. 3839 else if (!SetCR && ShAmt == 0 && !PostRA) { 3840 MI.RemoveOperand(2); 3841 MI.setDesc(get(PPC::COPY)); 3842 } else { 3843 // The 32 bit and 64 bit instructions are quite different. 3844 if (SpecialShift32) { 3845 // Left shifts use (N, 0, 31-N). 3846 // Right shifts use (32-N, N, 31) if 0 < N < 32. 3847 // use (0, 0, 31) if N == 0. 3848 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; 3849 uint64_t MB = RightShift ? ShAmt : 0; 3850 uint64_t ME = RightShift ? 31 : 31 - ShAmt; 3851 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3852 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) 3853 .addImm(ME); 3854 } else { 3855 // Left shifts use (N, 63-N). 3856 // Right shifts use (64-N, N) if 0 < N < 64. 3857 // use (0, 0) if N == 0. 3858 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; 3859 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; 3860 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); 3861 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); 3862 } 3863 } 3864 } else 3865 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3866 } 3867 // Convert commutative instructions (switch the operands and convert the 3868 // desired one to an immediate. 3869 else if (III.IsCommutative) { 3870 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); 3871 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); 3872 } else 3873 llvm_unreachable("Should have exited early!"); 3874 3875 // For instructions for which the constant register replaces a different 3876 // operand than where the immediate goes, we need to swap them. 3877 if (III.OpNoForForwarding != III.ImmOpNo) 3878 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); 3879 3880 // If the special R0/X0 register index are different for original instruction 3881 // and new instruction, we need to fix up the register class in new 3882 // instruction. 3883 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { 3884 if (III.ZeroIsSpecialNew) { 3885 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no 3886 // need to fix up register class. 3887 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); 3888 if (Register::isVirtualRegister(RegToModify)) { 3889 const TargetRegisterClass *NewRC = 3890 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? 3891 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; 3892 MRI.setRegClass(RegToModify, NewRC); 3893 } 3894 } 3895 } 3896 3897 // Fix up killed/dead flag after transformation. 3898 // Pattern: 3899 // ForwardKilledOperandReg = LI imm 3900 // y = XOP reg, ForwardKilledOperandReg(killed) 3901 if (ForwardKilledOperandReg != ~0U) 3902 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg); 3903 return true; 3904 } 3905 3906 const TargetRegisterClass * 3907 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { 3908 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) 3909 return &PPC::VSRCRegClass; 3910 return RC; 3911 } 3912 3913 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { 3914 return PPC::getRecordFormOpcode(Opcode); 3915 } 3916 3917 // This function returns true if the machine instruction 3918 // always outputs a value by sign-extending a 32 bit value, 3919 // i.e. 0 to 31-th bits are same as 32-th bit. 3920 static bool isSignExtendingOp(const MachineInstr &MI) { 3921 int Opcode = MI.getOpcode(); 3922 if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS || 3923 Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec || 3924 Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA || 3925 Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 || 3926 Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 || 3927 Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX || 3928 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU || 3929 Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 3930 Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 || 3931 Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 3932 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB || 3933 Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH || 3934 Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 || 3935 Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW || 3936 Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 || 3937 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 || 3938 Opcode == PPC::EXTSB8_32_64) 3939 return true; 3940 3941 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33) 3942 return true; 3943 3944 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3945 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && 3946 MI.getOperand(3).getImm() > 0 && 3947 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3948 return true; 3949 3950 return false; 3951 } 3952 3953 // This function returns true if the machine instruction 3954 // always outputs zeros in higher 32 bits. 3955 static bool isZeroExtendingOp(const MachineInstr &MI) { 3956 int Opcode = MI.getOpcode(); 3957 // The 16-bit immediate is sign-extended in li/lis. 3958 // If the most significant bit is zero, all higher bits are zero. 3959 if (Opcode == PPC::LI || Opcode == PPC::LI8 || 3960 Opcode == PPC::LIS || Opcode == PPC::LIS8) { 3961 int64_t Imm = MI.getOperand(1).getImm(); 3962 if (((uint64_t)Imm & ~0x7FFFuLL) == 0) 3963 return true; 3964 } 3965 3966 // We have some variations of rotate-and-mask instructions 3967 // that clear higher 32-bits. 3968 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 3969 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || 3970 Opcode == PPC::RLDICL_32_64) && 3971 MI.getOperand(3).getImm() >= 32) 3972 return true; 3973 3974 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 3975 MI.getOperand(3).getImm() >= 32 && 3976 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm()) 3977 return true; 3978 3979 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 3980 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 3981 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 3982 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm()) 3983 return true; 3984 3985 // There are other instructions that clear higher 32-bits. 3986 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 3987 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 3988 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 || 3989 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 3990 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec || 3991 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW || 3992 Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec || 3993 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI || 3994 Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI || 3995 Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX || 3996 Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX || 3997 Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX || 3998 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ || 3999 Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 4000 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 || 4001 Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 || 4002 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 || 4003 Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 4004 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 || 4005 Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec || 4006 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec || 4007 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec || 4008 Opcode == PPC::MFVSRWZ) 4009 return true; 4010 4011 return false; 4012 } 4013 4014 // This function returns true if the input MachineInstr is a TOC save 4015 // instruction. 4016 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { 4017 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) 4018 return false; 4019 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4020 unsigned StackOffset = MI.getOperand(1).getImm(); 4021 Register StackReg = MI.getOperand(2).getReg(); 4022 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset) 4023 return true; 4024 4025 return false; 4026 } 4027 4028 // We limit the max depth to track incoming values of PHIs or binary ops 4029 // (e.g. AND) to avoid excessive cost. 4030 const unsigned MAX_DEPTH = 1; 4031 4032 bool 4033 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt, 4034 const unsigned Depth) const { 4035 const MachineFunction *MF = MI.getParent()->getParent(); 4036 const MachineRegisterInfo *MRI = &MF->getRegInfo(); 4037 4038 // If we know this instruction returns sign- or zero-extended result, 4039 // return true. 4040 if (SignExt ? isSignExtendingOp(MI): 4041 isZeroExtendingOp(MI)) 4042 return true; 4043 4044 switch (MI.getOpcode()) { 4045 case PPC::COPY: { 4046 Register SrcReg = MI.getOperand(1).getReg(); 4047 4048 // In both ELFv1 and v2 ABI, method parameters and the return value 4049 // are sign- or zero-extended. 4050 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { 4051 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 4052 // We check the ZExt/SExt flags for a method parameter. 4053 if (MI.getParent()->getBasicBlock() == 4054 &MF->getFunction().getEntryBlock()) { 4055 Register VReg = MI.getOperand(0).getReg(); 4056 if (MF->getRegInfo().isLiveIn(VReg)) 4057 return SignExt ? FuncInfo->isLiveInSExt(VReg) : 4058 FuncInfo->isLiveInZExt(VReg); 4059 } 4060 4061 // For a method return value, we check the ZExt/SExt flags in attribute. 4062 // We assume the following code sequence for method call. 4063 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 4064 // BL8_NOP @func,... 4065 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 4066 // %5 = COPY %x3; G8RC:%5 4067 if (SrcReg == PPC::X3) { 4068 const MachineBasicBlock *MBB = MI.getParent(); 4069 MachineBasicBlock::const_instr_iterator II = 4070 MachineBasicBlock::const_instr_iterator(&MI); 4071 if (II != MBB->instr_begin() && 4072 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) { 4073 const MachineInstr &CallMI = *(--II); 4074 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) { 4075 const Function *CalleeFn = 4076 dyn_cast<Function>(CallMI.getOperand(0).getGlobal()); 4077 if (!CalleeFn) 4078 return false; 4079 const IntegerType *IntTy = 4080 dyn_cast<IntegerType>(CalleeFn->getReturnType()); 4081 const AttributeSet &Attrs = 4082 CalleeFn->getAttributes().getRetAttributes(); 4083 if (IntTy && IntTy->getBitWidth() <= 32) 4084 return Attrs.hasAttribute(SignExt ? Attribute::SExt : 4085 Attribute::ZExt); 4086 } 4087 } 4088 } 4089 } 4090 4091 // If this is a copy from another register, we recursively check source. 4092 if (!Register::isVirtualRegister(SrcReg)) 4093 return false; 4094 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4095 if (SrcMI != NULL) 4096 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4097 4098 return false; 4099 } 4100 4101 case PPC::ANDI_rec: 4102 case PPC::ANDIS_rec: 4103 case PPC::ORI: 4104 case PPC::ORIS: 4105 case PPC::XORI: 4106 case PPC::XORIS: 4107 case PPC::ANDI8_rec: 4108 case PPC::ANDIS8_rec: 4109 case PPC::ORI8: 4110 case PPC::ORIS8: 4111 case PPC::XORI8: 4112 case PPC::XORIS8: { 4113 // logical operation with 16-bit immediate does not change the upper bits. 4114 // So, we track the operand register as we do for register copy. 4115 Register SrcReg = MI.getOperand(1).getReg(); 4116 if (!Register::isVirtualRegister(SrcReg)) 4117 return false; 4118 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4119 if (SrcMI != NULL) 4120 return isSignOrZeroExtended(*SrcMI, SignExt, Depth); 4121 4122 return false; 4123 } 4124 4125 // If all incoming values are sign-/zero-extended, 4126 // the output of OR, ISEL or PHI is also sign-/zero-extended. 4127 case PPC::OR: 4128 case PPC::OR8: 4129 case PPC::ISEL: 4130 case PPC::PHI: { 4131 if (Depth >= MAX_DEPTH) 4132 return false; 4133 4134 // The input registers for PHI are operand 1, 3, ... 4135 // The input registers for others are operand 1 and 2. 4136 unsigned E = 3, D = 1; 4137 if (MI.getOpcode() == PPC::PHI) { 4138 E = MI.getNumOperands(); 4139 D = 2; 4140 } 4141 4142 for (unsigned I = 1; I != E; I += D) { 4143 if (MI.getOperand(I).isReg()) { 4144 Register SrcReg = MI.getOperand(I).getReg(); 4145 if (!Register::isVirtualRegister(SrcReg)) 4146 return false; 4147 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 4148 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1)) 4149 return false; 4150 } 4151 else 4152 return false; 4153 } 4154 return true; 4155 } 4156 4157 // If at least one of the incoming values of an AND is zero extended 4158 // then the output is also zero-extended. If both of the incoming values 4159 // are sign-extended then the output is also sign extended. 4160 case PPC::AND: 4161 case PPC::AND8: { 4162 if (Depth >= MAX_DEPTH) 4163 return false; 4164 4165 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg()); 4166 4167 Register SrcReg1 = MI.getOperand(1).getReg(); 4168 Register SrcReg2 = MI.getOperand(2).getReg(); 4169 4170 if (!Register::isVirtualRegister(SrcReg1) || 4171 !Register::isVirtualRegister(SrcReg2)) 4172 return false; 4173 4174 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1); 4175 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2); 4176 if (!MISrc1 || !MISrc2) 4177 return false; 4178 4179 if(SignExt) 4180 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) && 4181 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4182 else 4183 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) || 4184 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1); 4185 } 4186 4187 default: 4188 break; 4189 } 4190 return false; 4191 } 4192 4193 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { 4194 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); 4195 } 4196 4197 namespace { 4198 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 4199 MachineInstr *Loop, *EndLoop, *LoopCount; 4200 MachineFunction *MF; 4201 const TargetInstrInfo *TII; 4202 int64_t TripCount; 4203 4204 public: 4205 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, 4206 MachineInstr *LoopCount) 4207 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), 4208 MF(Loop->getParent()->getParent()), 4209 TII(MF->getSubtarget().getInstrInfo()) { 4210 // Inspect the Loop instruction up-front, as it may be deleted when we call 4211 // createTripCountGreaterCondition. 4212 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) 4213 TripCount = LoopCount->getOperand(1).getImm(); 4214 else 4215 TripCount = -1; 4216 } 4217 4218 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 4219 // Only ignore the terminator. 4220 return MI == EndLoop; 4221 } 4222 4223 Optional<bool> 4224 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 4225 SmallVectorImpl<MachineOperand> &Cond) override { 4226 if (TripCount == -1) { 4227 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4228 // so we don't need to generate any thing here. 4229 Cond.push_back(MachineOperand::CreateImm(0)); 4230 Cond.push_back(MachineOperand::CreateReg( 4231 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, 4232 true)); 4233 return {}; 4234 } 4235 4236 return TripCount > TC; 4237 } 4238 4239 void setPreheader(MachineBasicBlock *NewPreheader) override { 4240 // Do nothing. We want the LOOP setup instruction to stay in the *old* 4241 // preheader, so we can use BDZ in the prologs to adapt the loop trip count. 4242 } 4243 4244 void adjustTripCount(int TripCountAdjust) override { 4245 // If the loop trip count is a compile-time value, then just change the 4246 // value. 4247 if (LoopCount->getOpcode() == PPC::LI8 || 4248 LoopCount->getOpcode() == PPC::LI) { 4249 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; 4250 LoopCount->getOperand(1).setImm(TripCount); 4251 return; 4252 } 4253 4254 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, 4255 // so we don't need to generate any thing here. 4256 } 4257 4258 void disposed() override { 4259 Loop->eraseFromParent(); 4260 // Ensure the loop setup instruction is deleted too. 4261 LoopCount->eraseFromParent(); 4262 } 4263 }; 4264 } // namespace 4265 4266 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 4267 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 4268 // We really "analyze" only hardware loops right now. 4269 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 4270 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 4271 if (Preheader == LoopBB) 4272 Preheader = *std::next(LoopBB->pred_begin()); 4273 MachineFunction *MF = Preheader->getParent(); 4274 4275 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { 4276 SmallPtrSet<MachineBasicBlock *, 8> Visited; 4277 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { 4278 Register LoopCountReg = LoopInst->getOperand(0).getReg(); 4279 MachineRegisterInfo &MRI = MF->getRegInfo(); 4280 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); 4281 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); 4282 } 4283 } 4284 return nullptr; 4285 } 4286 4287 MachineInstr *PPCInstrInfo::findLoopInstr( 4288 MachineBasicBlock &PreHeader, 4289 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { 4290 4291 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); 4292 4293 // The loop set-up instruction should be in preheader 4294 for (auto &I : PreHeader.instrs()) 4295 if (I.getOpcode() == LOOPi) 4296 return &I; 4297 return nullptr; 4298 } 4299 4300 // Return true if get the base operand, byte offset of an instruction and the 4301 // memory width. Width is the size of memory that is being loaded/stored. 4302 bool PPCInstrInfo::getMemOperandWithOffsetWidth( 4303 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, 4304 unsigned &Width, const TargetRegisterInfo *TRI) const { 4305 if (!LdSt.mayLoadOrStore()) 4306 return false; 4307 4308 // Handle only loads/stores with base register followed by immediate offset. 4309 if (LdSt.getNumExplicitOperands() != 3) 4310 return false; 4311 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg()) 4312 return false; 4313 4314 if (!LdSt.hasOneMemOperand()) 4315 return false; 4316 4317 Width = (*LdSt.memoperands_begin())->getSize(); 4318 Offset = LdSt.getOperand(1).getImm(); 4319 BaseReg = &LdSt.getOperand(2); 4320 return true; 4321 } 4322 4323 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( 4324 const MachineInstr &MIa, const MachineInstr &MIb) const { 4325 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 4326 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 4327 4328 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 4329 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 4330 return false; 4331 4332 // Retrieve the base register, offset from the base register and width. Width 4333 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If 4334 // base registers are identical, and the offset of a lower memory access + 4335 // the width doesn't overlap the offset of a higher memory access, 4336 // then the memory accesses are different. 4337 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4338 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 4339 int64_t OffsetA = 0, OffsetB = 0; 4340 unsigned int WidthA = 0, WidthB = 0; 4341 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && 4342 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { 4343 if (BaseOpA->isIdenticalTo(*BaseOpB)) { 4344 int LowOffset = std::min(OffsetA, OffsetB); 4345 int HighOffset = std::max(OffsetA, OffsetB); 4346 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 4347 if (LowOffset + LowWidth <= HighOffset) 4348 return true; 4349 } 4350 } 4351 return false; 4352 } 4353