1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineOperand.h" 48 #include "llvm/CodeGen/MachineRegisterInfo.h" 49 #include "llvm/CodeGen/RuntimeLibcalls.h" 50 #include "llvm/CodeGen/SelectionDAG.h" 51 #include "llvm/CodeGen/SelectionDAGNodes.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetLowering.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/ValueTypes.h" 56 #include "llvm/IR/CallSite.h" 57 #include "llvm/IR/CallingConv.h" 58 #include "llvm/IR/Constant.h" 59 #include "llvm/IR/Constants.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/DebugLoc.h" 62 #include "llvm/IR/DerivedTypes.h" 63 #include "llvm/IR/Function.h" 64 #include "llvm/IR/GlobalValue.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/Instructions.h" 67 #include "llvm/IR/Intrinsics.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/MC/MCExpr.h" 73 #include "llvm/MC/MCRegisterInfo.h" 74 #include "llvm/Support/AtomicOrdering.h" 75 #include "llvm/Support/BranchProbability.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CodeGen.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/Format.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <list> 94 #include <utility> 95 #include <vector> 96 97 using namespace llvm; 98 99 #define DEBUG_TYPE "ppc-lowering" 100 101 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 102 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 103 104 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 105 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 106 107 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 108 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 109 110 static cl::opt<bool> DisableSCO("disable-ppc-sco", 111 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 112 113 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 114 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 115 116 STATISTIC(NumTailCalls, "Number of tail calls"); 117 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 118 119 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 120 121 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 122 123 // FIXME: Remove this once the bug has been fixed! 124 extern cl::opt<bool> ANDIGlueBug; 125 126 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 127 const PPCSubtarget &STI) 128 : TargetLowering(TM), Subtarget(STI) { 129 // Use _setjmp/_longjmp instead of setjmp/longjmp. 130 setUseUnderscoreSetJmp(true); 131 setUseUnderscoreLongJmp(true); 132 133 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 134 // arguments are at least 4/8 bytes aligned. 135 bool isPPC64 = Subtarget.isPPC64(); 136 setMinStackArgumentAlignment(isPPC64 ? 8:4); 137 138 // Set up the register classes. 139 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 140 if (!useSoftFloat()) { 141 if (hasSPE()) { 142 addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass); 143 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 144 } else { 145 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 146 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 147 } 148 } 149 150 // Match BITREVERSE to customized fast code sequence in the td file. 151 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 152 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 153 154 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 155 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 156 157 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 158 for (MVT VT : MVT::integer_valuetypes()) { 159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 160 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 161 } 162 163 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 164 165 // PowerPC has pre-inc load and store's. 166 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 167 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 168 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 169 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 170 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 171 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 172 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 173 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 174 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 175 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 176 if (!Subtarget.hasSPE()) { 177 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 178 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 180 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 181 } 182 183 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 184 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 185 for (MVT VT : ScalarIntVTs) { 186 setOperationAction(ISD::ADDC, VT, Legal); 187 setOperationAction(ISD::ADDE, VT, Legal); 188 setOperationAction(ISD::SUBC, VT, Legal); 189 setOperationAction(ISD::SUBE, VT, Legal); 190 } 191 192 if (Subtarget.useCRBits()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 194 195 if (isPPC64 || Subtarget.hasFPCVT()) { 196 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 197 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 198 isPPC64 ? MVT::i64 : MVT::i32); 199 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 200 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 201 isPPC64 ? MVT::i64 : MVT::i32); 202 } else { 203 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 204 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 205 } 206 207 // PowerPC does not support direct load/store of condition registers. 208 setOperationAction(ISD::LOAD, MVT::i1, Custom); 209 setOperationAction(ISD::STORE, MVT::i1, Custom); 210 211 // FIXME: Remove this once the ANDI glue bug is fixed: 212 if (ANDIGlueBug) 213 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 214 215 for (MVT VT : MVT::integer_valuetypes()) { 216 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 217 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 218 setTruncStoreAction(VT, MVT::i1, Expand); 219 } 220 221 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 222 } 223 224 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 225 // PPC (the libcall is not available). 226 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 227 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 228 229 // We do not currently implement these libm ops for PowerPC. 230 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 231 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 232 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 233 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 234 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 235 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 236 237 // PowerPC has no SREM/UREM instructions unless we are on P9 238 // On P9 we may use a hardware instruction to compute the remainder. 239 // The instructions are not legalized directly because in the cases where the 240 // result of both the remainder and the division is required it is more 241 // efficient to compute the remainder from the result of the division rather 242 // than use the remainder instruction. 243 if (Subtarget.isISA3_0()) { 244 setOperationAction(ISD::SREM, MVT::i32, Custom); 245 setOperationAction(ISD::UREM, MVT::i32, Custom); 246 setOperationAction(ISD::SREM, MVT::i64, Custom); 247 setOperationAction(ISD::UREM, MVT::i64, Custom); 248 } else { 249 setOperationAction(ISD::SREM, MVT::i32, Expand); 250 setOperationAction(ISD::UREM, MVT::i32, Expand); 251 setOperationAction(ISD::SREM, MVT::i64, Expand); 252 setOperationAction(ISD::UREM, MVT::i64, Expand); 253 } 254 255 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 256 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 257 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 258 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 259 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 260 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 261 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 262 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 263 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 264 265 // We don't support sin/cos/sqrt/fmod/pow 266 setOperationAction(ISD::FSIN , MVT::f64, Expand); 267 setOperationAction(ISD::FCOS , MVT::f64, Expand); 268 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 269 setOperationAction(ISD::FREM , MVT::f64, Expand); 270 setOperationAction(ISD::FPOW , MVT::f64, Expand); 271 setOperationAction(ISD::FSIN , MVT::f32, Expand); 272 setOperationAction(ISD::FCOS , MVT::f32, Expand); 273 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 274 setOperationAction(ISD::FREM , MVT::f32, Expand); 275 setOperationAction(ISD::FPOW , MVT::f32, Expand); 276 if (Subtarget.hasSPE()) { 277 setOperationAction(ISD::FMA , MVT::f64, Expand); 278 setOperationAction(ISD::FMA , MVT::f32, Expand); 279 } else { 280 setOperationAction(ISD::FMA , MVT::f64, Legal); 281 setOperationAction(ISD::FMA , MVT::f32, Legal); 282 } 283 284 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 285 286 // If we're enabling GP optimizations, use hardware square root 287 if (!Subtarget.hasFSQRT() && 288 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 289 Subtarget.hasFRE())) 290 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 291 292 if (!Subtarget.hasFSQRT() && 293 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 294 Subtarget.hasFRES())) 295 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 296 297 if (Subtarget.hasFCPSGN()) { 298 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 299 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 300 } else { 301 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 302 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 303 } 304 305 if (Subtarget.hasFPRND()) { 306 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 307 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 308 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 309 setOperationAction(ISD::FROUND, MVT::f64, Legal); 310 311 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 312 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 313 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 314 setOperationAction(ISD::FROUND, MVT::f32, Legal); 315 } 316 317 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 318 // to speed up scalar BSWAP64. 319 // CTPOP or CTTZ were introduced in P8/P9 respectively 320 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 321 if (Subtarget.hasP9Vector()) 322 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 323 else 324 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 325 if (Subtarget.isISA3_0()) { 326 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 327 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 328 } else { 329 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 330 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 331 } 332 333 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 334 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 335 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 336 } else { 337 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 338 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 339 } 340 341 // PowerPC does not have ROTR 342 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 343 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 344 345 if (!Subtarget.useCRBits()) { 346 // PowerPC does not have Select 347 setOperationAction(ISD::SELECT, MVT::i32, Expand); 348 setOperationAction(ISD::SELECT, MVT::i64, Expand); 349 setOperationAction(ISD::SELECT, MVT::f32, Expand); 350 setOperationAction(ISD::SELECT, MVT::f64, Expand); 351 } 352 353 // PowerPC wants to turn select_cc of FP into fsel when possible. 354 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 355 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 356 357 // PowerPC wants to optimize integer setcc a bit 358 if (!Subtarget.useCRBits()) 359 setOperationAction(ISD::SETCC, MVT::i32, Custom); 360 361 // PowerPC does not have BRCOND which requires SetCC 362 if (!Subtarget.useCRBits()) 363 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 364 365 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 366 367 if (Subtarget.hasSPE()) { 368 // SPE has built-in conversions 369 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 370 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 371 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 372 } else { 373 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 374 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 375 376 // PowerPC does not have [U|S]INT_TO_FP 377 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 378 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 379 } 380 381 if (Subtarget.hasDirectMove() && isPPC64) { 382 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 383 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 384 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 385 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 386 } else { 387 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 388 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 389 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 390 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 391 } 392 393 // We cannot sextinreg(i1). Expand to shifts. 394 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 395 396 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 397 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 398 // support continuation, user-level threading, and etc.. As a result, no 399 // other SjLj exception interfaces are implemented and please don't build 400 // your own exception handling based on them. 401 // LLVM/Clang supports zero-cost DWARF exception handling. 402 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 403 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 404 405 // We want to legalize GlobalAddress and ConstantPool nodes into the 406 // appropriate instructions to materialize the address. 407 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 408 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 409 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 410 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 411 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 412 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 413 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 414 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 415 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 416 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 417 418 // TRAP is legal. 419 setOperationAction(ISD::TRAP, MVT::Other, Legal); 420 421 // TRAMPOLINE is custom lowered. 422 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 423 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 424 425 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 426 setOperationAction(ISD::VASTART , MVT::Other, Custom); 427 428 if (Subtarget.isSVR4ABI()) { 429 if (isPPC64) { 430 // VAARG always uses double-word chunks, so promote anything smaller. 431 setOperationAction(ISD::VAARG, MVT::i1, Promote); 432 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 433 setOperationAction(ISD::VAARG, MVT::i8, Promote); 434 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 435 setOperationAction(ISD::VAARG, MVT::i16, Promote); 436 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 437 setOperationAction(ISD::VAARG, MVT::i32, Promote); 438 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 439 setOperationAction(ISD::VAARG, MVT::Other, Expand); 440 } else { 441 // VAARG is custom lowered with the 32-bit SVR4 ABI. 442 setOperationAction(ISD::VAARG, MVT::Other, Custom); 443 setOperationAction(ISD::VAARG, MVT::i64, Custom); 444 } 445 } else 446 setOperationAction(ISD::VAARG, MVT::Other, Expand); 447 448 if (Subtarget.isSVR4ABI() && !isPPC64) 449 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 450 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 451 else 452 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 453 454 // Use the default implementation. 455 setOperationAction(ISD::VAEND , MVT::Other, Expand); 456 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 457 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 458 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 459 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 460 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 461 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 462 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 463 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 464 465 // We want to custom lower some of our intrinsics. 466 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 467 468 // To handle counter-based loop conditions. 469 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 470 471 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 472 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 473 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 474 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 475 476 // Comparisons that require checking two conditions. 477 if (Subtarget.hasSPE()) { 478 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 479 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 480 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 481 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 482 } 483 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 484 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 485 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 486 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 487 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 488 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 489 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 490 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 491 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 492 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 493 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 494 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 495 496 if (Subtarget.has64BitSupport()) { 497 // They also have instructions for converting between i64 and fp. 498 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 499 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 500 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 501 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 502 // This is just the low 32 bits of a (signed) fp->i64 conversion. 503 // We cannot do this with Promote because i64 is not a legal type. 504 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 505 506 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 507 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 508 } else { 509 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 510 if (Subtarget.hasSPE()) 511 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 512 else 513 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 514 } 515 516 // With the instructions enabled under FPCVT, we can do everything. 517 if (Subtarget.hasFPCVT()) { 518 if (Subtarget.has64BitSupport()) { 519 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 520 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 521 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 522 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 523 } 524 525 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 526 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 527 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 528 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 529 } 530 531 if (Subtarget.use64BitRegs()) { 532 // 64-bit PowerPC implementations can support i64 types directly 533 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 534 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 535 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 536 // 64-bit PowerPC wants to expand i128 shifts itself. 537 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 538 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 539 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 540 } else { 541 // 32-bit PowerPC wants to expand i64 shifts itself. 542 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 543 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 544 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 545 } 546 547 if (Subtarget.hasAltivec()) { 548 // First set operation action for all vector types to expand. Then we 549 // will selectively turn on ones that can be effectively codegen'd. 550 for (MVT VT : MVT::vector_valuetypes()) { 551 // add/sub are legal for all supported vector VT's. 552 setOperationAction(ISD::ADD, VT, Legal); 553 setOperationAction(ISD::SUB, VT, Legal); 554 555 // Vector instructions introduced in P8 556 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 557 setOperationAction(ISD::CTPOP, VT, Legal); 558 setOperationAction(ISD::CTLZ, VT, Legal); 559 } 560 else { 561 setOperationAction(ISD::CTPOP, VT, Expand); 562 setOperationAction(ISD::CTLZ, VT, Expand); 563 } 564 565 // Vector instructions introduced in P9 566 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 567 setOperationAction(ISD::CTTZ, VT, Legal); 568 else 569 setOperationAction(ISD::CTTZ, VT, Expand); 570 571 // We promote all shuffles to v16i8. 572 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 573 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 574 575 // We promote all non-typed operations to v4i32. 576 setOperationAction(ISD::AND , VT, Promote); 577 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 578 setOperationAction(ISD::OR , VT, Promote); 579 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 580 setOperationAction(ISD::XOR , VT, Promote); 581 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 582 setOperationAction(ISD::LOAD , VT, Promote); 583 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 584 setOperationAction(ISD::SELECT, VT, Promote); 585 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 586 setOperationAction(ISD::VSELECT, VT, Legal); 587 setOperationAction(ISD::SELECT_CC, VT, Promote); 588 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 589 setOperationAction(ISD::STORE, VT, Promote); 590 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 591 592 // No other operations are legal. 593 setOperationAction(ISD::MUL , VT, Expand); 594 setOperationAction(ISD::SDIV, VT, Expand); 595 setOperationAction(ISD::SREM, VT, Expand); 596 setOperationAction(ISD::UDIV, VT, Expand); 597 setOperationAction(ISD::UREM, VT, Expand); 598 setOperationAction(ISD::FDIV, VT, Expand); 599 setOperationAction(ISD::FREM, VT, Expand); 600 setOperationAction(ISD::FNEG, VT, Expand); 601 setOperationAction(ISD::FSQRT, VT, Expand); 602 setOperationAction(ISD::FLOG, VT, Expand); 603 setOperationAction(ISD::FLOG10, VT, Expand); 604 setOperationAction(ISD::FLOG2, VT, Expand); 605 setOperationAction(ISD::FEXP, VT, Expand); 606 setOperationAction(ISD::FEXP2, VT, Expand); 607 setOperationAction(ISD::FSIN, VT, Expand); 608 setOperationAction(ISD::FCOS, VT, Expand); 609 setOperationAction(ISD::FABS, VT, Expand); 610 setOperationAction(ISD::FFLOOR, VT, Expand); 611 setOperationAction(ISD::FCEIL, VT, Expand); 612 setOperationAction(ISD::FTRUNC, VT, Expand); 613 setOperationAction(ISD::FRINT, VT, Expand); 614 setOperationAction(ISD::FNEARBYINT, VT, Expand); 615 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 616 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 617 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 618 setOperationAction(ISD::MULHU, VT, Expand); 619 setOperationAction(ISD::MULHS, VT, Expand); 620 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 621 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 622 setOperationAction(ISD::UDIVREM, VT, Expand); 623 setOperationAction(ISD::SDIVREM, VT, Expand); 624 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 625 setOperationAction(ISD::FPOW, VT, Expand); 626 setOperationAction(ISD::BSWAP, VT, Expand); 627 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 628 setOperationAction(ISD::ROTL, VT, Expand); 629 setOperationAction(ISD::ROTR, VT, Expand); 630 631 for (MVT InnerVT : MVT::vector_valuetypes()) { 632 setTruncStoreAction(VT, InnerVT, Expand); 633 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 634 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 635 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 636 } 637 } 638 639 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 640 setOperationAction(ISD::ABS, VT, Custom); 641 642 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 643 // with merges, splats, etc. 644 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 645 646 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 647 // are cheap, so handle them before they get expanded to scalar. 648 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 649 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 650 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 651 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 652 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 653 654 setOperationAction(ISD::AND , MVT::v4i32, Legal); 655 setOperationAction(ISD::OR , MVT::v4i32, Legal); 656 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 657 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 658 setOperationAction(ISD::SELECT, MVT::v4i32, 659 Subtarget.useCRBits() ? Legal : Expand); 660 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 661 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 662 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 663 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 664 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 665 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 666 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 667 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 668 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 669 670 // Without hasP8Altivec set, v2i64 SMAX isn't available. 671 // But ABS custom lowering requires SMAX support. 672 if (!Subtarget.hasP8Altivec()) 673 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 674 675 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 676 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 677 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 678 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 679 680 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 681 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 682 683 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 684 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 685 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 686 } 687 688 if (Subtarget.hasP8Altivec()) 689 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 690 else 691 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 692 693 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 694 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 695 696 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 697 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 698 699 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 700 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 701 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 702 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 703 704 // Altivec does not contain unordered floating-point compare instructions 705 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 706 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 707 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 708 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 709 710 if (Subtarget.hasVSX()) { 711 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 712 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 713 if (Subtarget.hasP8Vector()) { 714 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 715 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 716 } 717 if (Subtarget.hasDirectMove() && isPPC64) { 718 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 719 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 720 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 721 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 722 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 723 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 724 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 725 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 726 } 727 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 728 729 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 730 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 731 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 732 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 733 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 734 735 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 736 737 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 738 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 739 740 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 741 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 742 743 // Share the Altivec comparison restrictions. 744 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 745 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 746 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 747 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 748 749 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 750 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 751 752 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 753 754 if (Subtarget.hasP8Vector()) 755 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 756 757 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 758 759 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 760 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 761 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 762 763 if (Subtarget.hasP8Altivec()) { 764 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 765 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 766 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 767 768 // 128 bit shifts can be accomplished via 3 instructions for SHL and 769 // SRL, but not for SRA because of the instructions available: 770 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 771 // doing 772 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 773 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 774 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 775 776 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 777 } 778 else { 779 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 780 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 781 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 782 783 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 784 785 // VSX v2i64 only supports non-arithmetic operations. 786 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 787 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 788 } 789 790 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 791 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 792 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 793 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 794 795 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 796 797 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 798 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 799 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 800 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 801 802 // Custom handling for partial vectors of integers converted to 803 // floating point. We already have optimal handling for v2i32 through 804 // the DAG combine, so those aren't necessary. 805 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 806 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 807 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 808 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 809 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 810 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 811 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 812 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 813 814 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 815 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 816 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 817 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 818 819 if (Subtarget.hasDirectMove()) 820 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 821 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 822 823 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 824 } 825 826 if (Subtarget.hasP8Altivec()) { 827 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 828 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 829 } 830 831 if (Subtarget.hasP9Vector()) { 832 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 833 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 834 835 // 128 bit shifts can be accomplished via 3 instructions for SHL and 836 // SRL, but not for SRA because of the instructions available: 837 // VS{RL} and VS{RL}O. 838 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 839 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 840 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 841 842 if (EnableQuadPrecision) { 843 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 844 setOperationAction(ISD::FADD, MVT::f128, Legal); 845 setOperationAction(ISD::FSUB, MVT::f128, Legal); 846 setOperationAction(ISD::FDIV, MVT::f128, Legal); 847 setOperationAction(ISD::FMUL, MVT::f128, Legal); 848 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 849 // No extending loads to f128 on PPC. 850 for (MVT FPT : MVT::fp_valuetypes()) 851 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 852 setOperationAction(ISD::FMA, MVT::f128, Legal); 853 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 854 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 855 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 856 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 857 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 858 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 859 860 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 861 setOperationAction(ISD::FRINT, MVT::f128, Legal); 862 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 863 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 864 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 865 setOperationAction(ISD::FROUND, MVT::f128, Legal); 866 867 setOperationAction(ISD::SELECT, MVT::f128, Expand); 868 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 869 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 870 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 871 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 872 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 873 // No implementation for these ops for PowerPC. 874 setOperationAction(ISD::FSIN , MVT::f128, Expand); 875 setOperationAction(ISD::FCOS , MVT::f128, Expand); 876 setOperationAction(ISD::FPOW, MVT::f128, Expand); 877 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 878 setOperationAction(ISD::FREM, MVT::f128, Expand); 879 } 880 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 881 882 } 883 884 if (Subtarget.hasP9Altivec()) { 885 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 886 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 887 } 888 } 889 890 if (Subtarget.hasQPX()) { 891 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 892 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 893 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 894 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 895 896 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 897 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 898 899 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 900 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 901 902 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 903 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 904 905 if (!Subtarget.useCRBits()) 906 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 907 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 908 909 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 910 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 911 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 912 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 913 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 914 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 915 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 916 917 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 918 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 919 920 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 921 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 922 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 923 924 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 925 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 926 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 927 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 928 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 929 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 930 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 931 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 932 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 933 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 934 935 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 936 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 937 938 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 939 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 940 941 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 942 943 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 944 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 945 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 946 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 947 948 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 949 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 950 951 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 952 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 953 954 if (!Subtarget.useCRBits()) 955 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 956 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 957 958 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 959 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 960 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 961 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 962 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 963 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 964 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 965 966 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 967 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 968 969 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 970 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 971 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 972 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 973 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 974 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 975 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 976 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 977 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 978 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 979 980 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 981 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 982 983 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 984 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 985 986 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 987 988 setOperationAction(ISD::AND , MVT::v4i1, Legal); 989 setOperationAction(ISD::OR , MVT::v4i1, Legal); 990 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 991 992 if (!Subtarget.useCRBits()) 993 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 994 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 995 996 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 997 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 998 999 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1000 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1001 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1002 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1003 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1004 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1005 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1006 1007 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1008 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1009 1010 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1011 1012 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1013 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1014 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1015 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1016 1017 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1018 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1019 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1020 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1021 1022 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1023 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1024 1025 // These need to set FE_INEXACT, and so cannot be vectorized here. 1026 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1027 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1028 1029 if (TM.Options.UnsafeFPMath) { 1030 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1031 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1032 1033 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1034 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1035 } else { 1036 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1037 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1038 1039 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1040 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1041 } 1042 } 1043 1044 if (Subtarget.has64BitSupport()) 1045 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1046 1047 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1048 1049 if (!isPPC64) { 1050 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1051 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1052 } 1053 1054 setBooleanContents(ZeroOrOneBooleanContent); 1055 1056 if (Subtarget.hasAltivec()) { 1057 // Altivec instructions set fields to all zeros or all ones. 1058 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1059 } 1060 1061 if (!isPPC64) { 1062 // These libcalls are not available in 32-bit. 1063 setLibcallName(RTLIB::SHL_I128, nullptr); 1064 setLibcallName(RTLIB::SRL_I128, nullptr); 1065 setLibcallName(RTLIB::SRA_I128, nullptr); 1066 } 1067 1068 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1069 1070 // We have target-specific dag combine patterns for the following nodes: 1071 setTargetDAGCombine(ISD::ADD); 1072 setTargetDAGCombine(ISD::SHL); 1073 setTargetDAGCombine(ISD::SRA); 1074 setTargetDAGCombine(ISD::SRL); 1075 setTargetDAGCombine(ISD::MUL); 1076 setTargetDAGCombine(ISD::SINT_TO_FP); 1077 setTargetDAGCombine(ISD::BUILD_VECTOR); 1078 if (Subtarget.hasFPCVT()) 1079 setTargetDAGCombine(ISD::UINT_TO_FP); 1080 setTargetDAGCombine(ISD::LOAD); 1081 setTargetDAGCombine(ISD::STORE); 1082 setTargetDAGCombine(ISD::BR_CC); 1083 if (Subtarget.useCRBits()) 1084 setTargetDAGCombine(ISD::BRCOND); 1085 setTargetDAGCombine(ISD::BSWAP); 1086 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1087 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1088 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1089 1090 setTargetDAGCombine(ISD::SIGN_EXTEND); 1091 setTargetDAGCombine(ISD::ZERO_EXTEND); 1092 setTargetDAGCombine(ISD::ANY_EXTEND); 1093 1094 setTargetDAGCombine(ISD::TRUNCATE); 1095 1096 if (Subtarget.useCRBits()) { 1097 setTargetDAGCombine(ISD::TRUNCATE); 1098 setTargetDAGCombine(ISD::SETCC); 1099 setTargetDAGCombine(ISD::SELECT_CC); 1100 } 1101 1102 // Use reciprocal estimates. 1103 if (TM.Options.UnsafeFPMath) { 1104 setTargetDAGCombine(ISD::FDIV); 1105 setTargetDAGCombine(ISD::FSQRT); 1106 } 1107 1108 if (Subtarget.hasP9Altivec()) { 1109 setTargetDAGCombine(ISD::ABS); 1110 setTargetDAGCombine(ISD::VSELECT); 1111 } 1112 1113 // Darwin long double math library functions have $LDBL128 appended. 1114 if (Subtarget.isDarwin()) { 1115 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1116 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1117 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1118 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1119 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1120 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1121 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1122 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1123 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1124 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1125 } 1126 1127 if (EnableQuadPrecision) { 1128 setLibcallName(RTLIB::LOG_F128, "logf128"); 1129 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1130 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1131 setLibcallName(RTLIB::EXP_F128, "expf128"); 1132 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1133 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1134 setLibcallName(RTLIB::COS_F128, "cosf128"); 1135 setLibcallName(RTLIB::POW_F128, "powf128"); 1136 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1137 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1138 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1139 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1140 } 1141 1142 // With 32 condition bits, we don't need to sink (and duplicate) compares 1143 // aggressively in CodeGenPrep. 1144 if (Subtarget.useCRBits()) { 1145 setHasMultipleConditionRegisters(); 1146 setJumpIsExpensive(); 1147 } 1148 1149 setMinFunctionAlignment(2); 1150 if (Subtarget.isDarwin()) 1151 setPrefFunctionAlignment(4); 1152 1153 switch (Subtarget.getDarwinDirective()) { 1154 default: break; 1155 case PPC::DIR_970: 1156 case PPC::DIR_A2: 1157 case PPC::DIR_E500: 1158 case PPC::DIR_E500mc: 1159 case PPC::DIR_E5500: 1160 case PPC::DIR_PWR4: 1161 case PPC::DIR_PWR5: 1162 case PPC::DIR_PWR5X: 1163 case PPC::DIR_PWR6: 1164 case PPC::DIR_PWR6X: 1165 case PPC::DIR_PWR7: 1166 case PPC::DIR_PWR8: 1167 case PPC::DIR_PWR9: 1168 setPrefFunctionAlignment(4); 1169 setPrefLoopAlignment(4); 1170 break; 1171 } 1172 1173 if (Subtarget.enableMachineScheduler()) 1174 setSchedulingPreference(Sched::Source); 1175 else 1176 setSchedulingPreference(Sched::Hybrid); 1177 1178 computeRegisterProperties(STI.getRegisterInfo()); 1179 1180 // The Freescale cores do better with aggressive inlining of memcpy and 1181 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1182 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1183 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1184 MaxStoresPerMemset = 32; 1185 MaxStoresPerMemsetOptSize = 16; 1186 MaxStoresPerMemcpy = 32; 1187 MaxStoresPerMemcpyOptSize = 8; 1188 MaxStoresPerMemmove = 32; 1189 MaxStoresPerMemmoveOptSize = 8; 1190 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1191 // The A2 also benefits from (very) aggressive inlining of memcpy and 1192 // friends. The overhead of a the function call, even when warm, can be 1193 // over one hundred cycles. 1194 MaxStoresPerMemset = 128; 1195 MaxStoresPerMemcpy = 128; 1196 MaxStoresPerMemmove = 128; 1197 MaxLoadsPerMemcmp = 128; 1198 } else { 1199 MaxLoadsPerMemcmp = 8; 1200 MaxLoadsPerMemcmpOptSize = 4; 1201 } 1202 } 1203 1204 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1205 /// the desired ByVal argument alignment. 1206 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1207 unsigned MaxMaxAlign) { 1208 if (MaxAlign == MaxMaxAlign) 1209 return; 1210 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1211 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1212 MaxAlign = 32; 1213 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1214 MaxAlign = 16; 1215 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1216 unsigned EltAlign = 0; 1217 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1218 if (EltAlign > MaxAlign) 1219 MaxAlign = EltAlign; 1220 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1221 for (auto *EltTy : STy->elements()) { 1222 unsigned EltAlign = 0; 1223 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1224 if (EltAlign > MaxAlign) 1225 MaxAlign = EltAlign; 1226 if (MaxAlign == MaxMaxAlign) 1227 break; 1228 } 1229 } 1230 } 1231 1232 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1233 /// function arguments in the caller parameter area. 1234 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1235 const DataLayout &DL) const { 1236 // Darwin passes everything on 4 byte boundary. 1237 if (Subtarget.isDarwin()) 1238 return 4; 1239 1240 // 16byte and wider vectors are passed on 16byte boundary. 1241 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1242 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1243 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1244 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1245 return Align; 1246 } 1247 1248 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1249 CallingConv:: ID CC, 1250 EVT VT) const { 1251 if (Subtarget.hasSPE() && VT == MVT::f64) 1252 return 2; 1253 return PPCTargetLowering::getNumRegisters(Context, VT); 1254 } 1255 1256 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1257 CallingConv:: ID CC, 1258 EVT VT) const { 1259 if (Subtarget.hasSPE() && VT == MVT::f64) 1260 return MVT::i32; 1261 return PPCTargetLowering::getRegisterType(Context, VT); 1262 } 1263 1264 bool PPCTargetLowering::useSoftFloat() const { 1265 return Subtarget.useSoftFloat(); 1266 } 1267 1268 bool PPCTargetLowering::hasSPE() const { 1269 return Subtarget.hasSPE(); 1270 } 1271 1272 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1273 switch ((PPCISD::NodeType)Opcode) { 1274 case PPCISD::FIRST_NUMBER: break; 1275 case PPCISD::FSEL: return "PPCISD::FSEL"; 1276 case PPCISD::FCFID: return "PPCISD::FCFID"; 1277 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1278 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1279 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1280 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1281 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1282 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1283 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1284 case PPCISD::FP_TO_UINT_IN_VSR: 1285 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1286 case PPCISD::FP_TO_SINT_IN_VSR: 1287 return "PPCISD::FP_TO_SINT_IN_VSR"; 1288 case PPCISD::FRE: return "PPCISD::FRE"; 1289 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1290 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1291 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1292 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1293 case PPCISD::VPERM: return "PPCISD::VPERM"; 1294 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1295 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1296 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1297 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1298 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1299 case PPCISD::CMPB: return "PPCISD::CMPB"; 1300 case PPCISD::Hi: return "PPCISD::Hi"; 1301 case PPCISD::Lo: return "PPCISD::Lo"; 1302 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1303 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1304 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1305 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1306 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1307 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1308 case PPCISD::SRL: return "PPCISD::SRL"; 1309 case PPCISD::SRA: return "PPCISD::SRA"; 1310 case PPCISD::SHL: return "PPCISD::SHL"; 1311 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1312 case PPCISD::CALL: return "PPCISD::CALL"; 1313 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1314 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1315 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1316 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1317 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1318 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1319 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1320 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1321 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1322 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1323 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1324 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1325 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1326 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1327 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1328 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1329 case PPCISD::VCMP: return "PPCISD::VCMP"; 1330 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1331 case PPCISD::LBRX: return "PPCISD::LBRX"; 1332 case PPCISD::STBRX: return "PPCISD::STBRX"; 1333 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1334 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1335 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1336 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1337 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1338 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1339 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1340 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1341 case PPCISD::ST_VSR_SCAL_INT: 1342 return "PPCISD::ST_VSR_SCAL_INT"; 1343 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1344 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1345 case PPCISD::BDZ: return "PPCISD::BDZ"; 1346 case PPCISD::MFFS: return "PPCISD::MFFS"; 1347 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1348 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1349 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1350 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1351 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1352 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1353 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1354 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1355 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1356 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1357 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1358 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1359 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1360 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1361 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1362 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1363 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1364 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1365 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1366 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1367 case PPCISD::SC: return "PPCISD::SC"; 1368 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1369 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1370 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1371 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1372 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1373 case PPCISD::VABSD: return "PPCISD::VABSD"; 1374 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1375 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1376 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1377 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1378 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1379 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1380 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1381 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1382 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1383 case PPCISD::FP_EXTEND_LH: return "PPCISD::FP_EXTEND_LH"; 1384 } 1385 return nullptr; 1386 } 1387 1388 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1389 EVT VT) const { 1390 if (!VT.isVector()) 1391 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1392 1393 if (Subtarget.hasQPX()) 1394 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1395 1396 return VT.changeVectorElementTypeToInteger(); 1397 } 1398 1399 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1400 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1401 return true; 1402 } 1403 1404 //===----------------------------------------------------------------------===// 1405 // Node matching predicates, for use by the tblgen matching code. 1406 //===----------------------------------------------------------------------===// 1407 1408 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1409 static bool isFloatingPointZero(SDValue Op) { 1410 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1411 return CFP->getValueAPF().isZero(); 1412 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1413 // Maybe this has already been legalized into the constant pool? 1414 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1415 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1416 return CFP->getValueAPF().isZero(); 1417 } 1418 return false; 1419 } 1420 1421 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1422 /// true if Op is undef or if it matches the specified value. 1423 static bool isConstantOrUndef(int Op, int Val) { 1424 return Op < 0 || Op == Val; 1425 } 1426 1427 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1428 /// VPKUHUM instruction. 1429 /// The ShuffleKind distinguishes between big-endian operations with 1430 /// two different inputs (0), either-endian operations with two identical 1431 /// inputs (1), and little-endian operations with two different inputs (2). 1432 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1433 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1434 SelectionDAG &DAG) { 1435 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1436 if (ShuffleKind == 0) { 1437 if (IsLE) 1438 return false; 1439 for (unsigned i = 0; i != 16; ++i) 1440 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1441 return false; 1442 } else if (ShuffleKind == 2) { 1443 if (!IsLE) 1444 return false; 1445 for (unsigned i = 0; i != 16; ++i) 1446 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1447 return false; 1448 } else if (ShuffleKind == 1) { 1449 unsigned j = IsLE ? 0 : 1; 1450 for (unsigned i = 0; i != 8; ++i) 1451 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1452 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1453 return false; 1454 } 1455 return true; 1456 } 1457 1458 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1459 /// VPKUWUM instruction. 1460 /// The ShuffleKind distinguishes between big-endian operations with 1461 /// two different inputs (0), either-endian operations with two identical 1462 /// inputs (1), and little-endian operations with two different inputs (2). 1463 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1464 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1465 SelectionDAG &DAG) { 1466 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1467 if (ShuffleKind == 0) { 1468 if (IsLE) 1469 return false; 1470 for (unsigned i = 0; i != 16; i += 2) 1471 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1472 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1473 return false; 1474 } else if (ShuffleKind == 2) { 1475 if (!IsLE) 1476 return false; 1477 for (unsigned i = 0; i != 16; i += 2) 1478 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1479 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1480 return false; 1481 } else if (ShuffleKind == 1) { 1482 unsigned j = IsLE ? 0 : 2; 1483 for (unsigned i = 0; i != 8; i += 2) 1484 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1485 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1486 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1487 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1488 return false; 1489 } 1490 return true; 1491 } 1492 1493 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1494 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1495 /// current subtarget. 1496 /// 1497 /// The ShuffleKind distinguishes between big-endian operations with 1498 /// two different inputs (0), either-endian operations with two identical 1499 /// inputs (1), and little-endian operations with two different inputs (2). 1500 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1501 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1502 SelectionDAG &DAG) { 1503 const PPCSubtarget& Subtarget = 1504 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1505 if (!Subtarget.hasP8Vector()) 1506 return false; 1507 1508 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1509 if (ShuffleKind == 0) { 1510 if (IsLE) 1511 return false; 1512 for (unsigned i = 0; i != 16; i += 4) 1513 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1514 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1515 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1516 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1517 return false; 1518 } else if (ShuffleKind == 2) { 1519 if (!IsLE) 1520 return false; 1521 for (unsigned i = 0; i != 16; i += 4) 1522 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1523 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1524 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1525 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1526 return false; 1527 } else if (ShuffleKind == 1) { 1528 unsigned j = IsLE ? 0 : 4; 1529 for (unsigned i = 0; i != 8; i += 4) 1530 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1531 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1532 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1533 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1534 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1535 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1536 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1537 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1538 return false; 1539 } 1540 return true; 1541 } 1542 1543 /// isVMerge - Common function, used to match vmrg* shuffles. 1544 /// 1545 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1546 unsigned LHSStart, unsigned RHSStart) { 1547 if (N->getValueType(0) != MVT::v16i8) 1548 return false; 1549 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1550 "Unsupported merge size!"); 1551 1552 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1553 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1554 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1555 LHSStart+j+i*UnitSize) || 1556 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1557 RHSStart+j+i*UnitSize)) 1558 return false; 1559 } 1560 return true; 1561 } 1562 1563 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1564 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1565 /// The ShuffleKind distinguishes between big-endian merges with two 1566 /// different inputs (0), either-endian merges with two identical inputs (1), 1567 /// and little-endian merges with two different inputs (2). For the latter, 1568 /// the input operands are swapped (see PPCInstrAltivec.td). 1569 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1570 unsigned ShuffleKind, SelectionDAG &DAG) { 1571 if (DAG.getDataLayout().isLittleEndian()) { 1572 if (ShuffleKind == 1) // unary 1573 return isVMerge(N, UnitSize, 0, 0); 1574 else if (ShuffleKind == 2) // swapped 1575 return isVMerge(N, UnitSize, 0, 16); 1576 else 1577 return false; 1578 } else { 1579 if (ShuffleKind == 1) // unary 1580 return isVMerge(N, UnitSize, 8, 8); 1581 else if (ShuffleKind == 0) // normal 1582 return isVMerge(N, UnitSize, 8, 24); 1583 else 1584 return false; 1585 } 1586 } 1587 1588 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1589 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1590 /// The ShuffleKind distinguishes between big-endian merges with two 1591 /// different inputs (0), either-endian merges with two identical inputs (1), 1592 /// and little-endian merges with two different inputs (2). For the latter, 1593 /// the input operands are swapped (see PPCInstrAltivec.td). 1594 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1595 unsigned ShuffleKind, SelectionDAG &DAG) { 1596 if (DAG.getDataLayout().isLittleEndian()) { 1597 if (ShuffleKind == 1) // unary 1598 return isVMerge(N, UnitSize, 8, 8); 1599 else if (ShuffleKind == 2) // swapped 1600 return isVMerge(N, UnitSize, 8, 24); 1601 else 1602 return false; 1603 } else { 1604 if (ShuffleKind == 1) // unary 1605 return isVMerge(N, UnitSize, 0, 0); 1606 else if (ShuffleKind == 0) // normal 1607 return isVMerge(N, UnitSize, 0, 16); 1608 else 1609 return false; 1610 } 1611 } 1612 1613 /** 1614 * Common function used to match vmrgew and vmrgow shuffles 1615 * 1616 * The indexOffset determines whether to look for even or odd words in 1617 * the shuffle mask. This is based on the of the endianness of the target 1618 * machine. 1619 * - Little Endian: 1620 * - Use offset of 0 to check for odd elements 1621 * - Use offset of 4 to check for even elements 1622 * - Big Endian: 1623 * - Use offset of 0 to check for even elements 1624 * - Use offset of 4 to check for odd elements 1625 * A detailed description of the vector element ordering for little endian and 1626 * big endian can be found at 1627 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1628 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1629 * compiler differences mean to you 1630 * 1631 * The mask to the shuffle vector instruction specifies the indices of the 1632 * elements from the two input vectors to place in the result. The elements are 1633 * numbered in array-access order, starting with the first vector. These vectors 1634 * are always of type v16i8, thus each vector will contain 16 elements of size 1635 * 8. More info on the shuffle vector can be found in the 1636 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1637 * Language Reference. 1638 * 1639 * The RHSStartValue indicates whether the same input vectors are used (unary) 1640 * or two different input vectors are used, based on the following: 1641 * - If the instruction uses the same vector for both inputs, the range of the 1642 * indices will be 0 to 15. In this case, the RHSStart value passed should 1643 * be 0. 1644 * - If the instruction has two different vectors then the range of the 1645 * indices will be 0 to 31. In this case, the RHSStart value passed should 1646 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1647 * to 31 specify elements in the second vector). 1648 * 1649 * \param[in] N The shuffle vector SD Node to analyze 1650 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1651 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1652 * vector to the shuffle_vector instruction 1653 * \return true iff this shuffle vector represents an even or odd word merge 1654 */ 1655 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1656 unsigned RHSStartValue) { 1657 if (N->getValueType(0) != MVT::v16i8) 1658 return false; 1659 1660 for (unsigned i = 0; i < 2; ++i) 1661 for (unsigned j = 0; j < 4; ++j) 1662 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1663 i*RHSStartValue+j+IndexOffset) || 1664 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1665 i*RHSStartValue+j+IndexOffset+8)) 1666 return false; 1667 return true; 1668 } 1669 1670 /** 1671 * Determine if the specified shuffle mask is suitable for the vmrgew or 1672 * vmrgow instructions. 1673 * 1674 * \param[in] N The shuffle vector SD Node to analyze 1675 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1676 * \param[in] ShuffleKind Identify the type of merge: 1677 * - 0 = big-endian merge with two different inputs; 1678 * - 1 = either-endian merge with two identical inputs; 1679 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1680 * little-endian merges). 1681 * \param[in] DAG The current SelectionDAG 1682 * \return true iff this shuffle mask 1683 */ 1684 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1685 unsigned ShuffleKind, SelectionDAG &DAG) { 1686 if (DAG.getDataLayout().isLittleEndian()) { 1687 unsigned indexOffset = CheckEven ? 4 : 0; 1688 if (ShuffleKind == 1) // Unary 1689 return isVMerge(N, indexOffset, 0); 1690 else if (ShuffleKind == 2) // swapped 1691 return isVMerge(N, indexOffset, 16); 1692 else 1693 return false; 1694 } 1695 else { 1696 unsigned indexOffset = CheckEven ? 0 : 4; 1697 if (ShuffleKind == 1) // Unary 1698 return isVMerge(N, indexOffset, 0); 1699 else if (ShuffleKind == 0) // Normal 1700 return isVMerge(N, indexOffset, 16); 1701 else 1702 return false; 1703 } 1704 return false; 1705 } 1706 1707 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1708 /// amount, otherwise return -1. 1709 /// The ShuffleKind distinguishes between big-endian operations with two 1710 /// different inputs (0), either-endian operations with two identical inputs 1711 /// (1), and little-endian operations with two different inputs (2). For the 1712 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1713 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1714 SelectionDAG &DAG) { 1715 if (N->getValueType(0) != MVT::v16i8) 1716 return -1; 1717 1718 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1719 1720 // Find the first non-undef value in the shuffle mask. 1721 unsigned i; 1722 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1723 /*search*/; 1724 1725 if (i == 16) return -1; // all undef. 1726 1727 // Otherwise, check to see if the rest of the elements are consecutively 1728 // numbered from this value. 1729 unsigned ShiftAmt = SVOp->getMaskElt(i); 1730 if (ShiftAmt < i) return -1; 1731 1732 ShiftAmt -= i; 1733 bool isLE = DAG.getDataLayout().isLittleEndian(); 1734 1735 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1736 // Check the rest of the elements to see if they are consecutive. 1737 for (++i; i != 16; ++i) 1738 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1739 return -1; 1740 } else if (ShuffleKind == 1) { 1741 // Check the rest of the elements to see if they are consecutive. 1742 for (++i; i != 16; ++i) 1743 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1744 return -1; 1745 } else 1746 return -1; 1747 1748 if (isLE) 1749 ShiftAmt = 16 - ShiftAmt; 1750 1751 return ShiftAmt; 1752 } 1753 1754 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1755 /// specifies a splat of a single element that is suitable for input to 1756 /// VSPLTB/VSPLTH/VSPLTW. 1757 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1758 assert(N->getValueType(0) == MVT::v16i8 && 1759 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1760 1761 // The consecutive indices need to specify an element, not part of two 1762 // different elements. So abandon ship early if this isn't the case. 1763 if (N->getMaskElt(0) % EltSize != 0) 1764 return false; 1765 1766 // This is a splat operation if each element of the permute is the same, and 1767 // if the value doesn't reference the second vector. 1768 unsigned ElementBase = N->getMaskElt(0); 1769 1770 // FIXME: Handle UNDEF elements too! 1771 if (ElementBase >= 16) 1772 return false; 1773 1774 // Check that the indices are consecutive, in the case of a multi-byte element 1775 // splatted with a v16i8 mask. 1776 for (unsigned i = 1; i != EltSize; ++i) 1777 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1778 return false; 1779 1780 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1781 if (N->getMaskElt(i) < 0) continue; 1782 for (unsigned j = 0; j != EltSize; ++j) 1783 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1784 return false; 1785 } 1786 return true; 1787 } 1788 1789 /// Check that the mask is shuffling N byte elements. Within each N byte 1790 /// element of the mask, the indices could be either in increasing or 1791 /// decreasing order as long as they are consecutive. 1792 /// \param[in] N the shuffle vector SD Node to analyze 1793 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1794 /// Word/DoubleWord/QuadWord). 1795 /// \param[in] StepLen the delta indices number among the N byte element, if 1796 /// the mask is in increasing/decreasing order then it is 1/-1. 1797 /// \return true iff the mask is shuffling N byte elements. 1798 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1799 int StepLen) { 1800 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1801 "Unexpected element width."); 1802 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1803 1804 unsigned NumOfElem = 16 / Width; 1805 unsigned MaskVal[16]; // Width is never greater than 16 1806 for (unsigned i = 0; i < NumOfElem; ++i) { 1807 MaskVal[0] = N->getMaskElt(i * Width); 1808 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1809 return false; 1810 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1811 return false; 1812 } 1813 1814 for (unsigned int j = 1; j < Width; ++j) { 1815 MaskVal[j] = N->getMaskElt(i * Width + j); 1816 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1817 return false; 1818 } 1819 } 1820 } 1821 1822 return true; 1823 } 1824 1825 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1826 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1827 if (!isNByteElemShuffleMask(N, 4, 1)) 1828 return false; 1829 1830 // Now we look at mask elements 0,4,8,12 1831 unsigned M0 = N->getMaskElt(0) / 4; 1832 unsigned M1 = N->getMaskElt(4) / 4; 1833 unsigned M2 = N->getMaskElt(8) / 4; 1834 unsigned M3 = N->getMaskElt(12) / 4; 1835 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1836 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1837 1838 // Below, let H and L be arbitrary elements of the shuffle mask 1839 // where H is in the range [4,7] and L is in the range [0,3]. 1840 // H, 1, 2, 3 or L, 5, 6, 7 1841 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1842 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1843 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1844 InsertAtByte = IsLE ? 12 : 0; 1845 Swap = M0 < 4; 1846 return true; 1847 } 1848 // 0, H, 2, 3 or 4, L, 6, 7 1849 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1850 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1851 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1852 InsertAtByte = IsLE ? 8 : 4; 1853 Swap = M1 < 4; 1854 return true; 1855 } 1856 // 0, 1, H, 3 or 4, 5, L, 7 1857 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1858 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1859 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1860 InsertAtByte = IsLE ? 4 : 8; 1861 Swap = M2 < 4; 1862 return true; 1863 } 1864 // 0, 1, 2, H or 4, 5, 6, L 1865 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1866 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1867 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1868 InsertAtByte = IsLE ? 0 : 12; 1869 Swap = M3 < 4; 1870 return true; 1871 } 1872 1873 // If both vector operands for the shuffle are the same vector, the mask will 1874 // contain only elements from the first one and the second one will be undef. 1875 if (N->getOperand(1).isUndef()) { 1876 ShiftElts = 0; 1877 Swap = true; 1878 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1879 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1880 InsertAtByte = IsLE ? 12 : 0; 1881 return true; 1882 } 1883 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1884 InsertAtByte = IsLE ? 8 : 4; 1885 return true; 1886 } 1887 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1888 InsertAtByte = IsLE ? 4 : 8; 1889 return true; 1890 } 1891 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1892 InsertAtByte = IsLE ? 0 : 12; 1893 return true; 1894 } 1895 } 1896 1897 return false; 1898 } 1899 1900 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1901 bool &Swap, bool IsLE) { 1902 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1903 // Ensure each byte index of the word is consecutive. 1904 if (!isNByteElemShuffleMask(N, 4, 1)) 1905 return false; 1906 1907 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1908 unsigned M0 = N->getMaskElt(0) / 4; 1909 unsigned M1 = N->getMaskElt(4) / 4; 1910 unsigned M2 = N->getMaskElt(8) / 4; 1911 unsigned M3 = N->getMaskElt(12) / 4; 1912 1913 // If both vector operands for the shuffle are the same vector, the mask will 1914 // contain only elements from the first one and the second one will be undef. 1915 if (N->getOperand(1).isUndef()) { 1916 assert(M0 < 4 && "Indexing into an undef vector?"); 1917 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1918 return false; 1919 1920 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1921 Swap = false; 1922 return true; 1923 } 1924 1925 // Ensure each word index of the ShuffleVector Mask is consecutive. 1926 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1927 return false; 1928 1929 if (IsLE) { 1930 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1931 // Input vectors don't need to be swapped if the leading element 1932 // of the result is one of the 3 left elements of the second vector 1933 // (or if there is no shift to be done at all). 1934 Swap = false; 1935 ShiftElts = (8 - M0) % 8; 1936 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1937 // Input vectors need to be swapped if the leading element 1938 // of the result is one of the 3 left elements of the first vector 1939 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1940 Swap = true; 1941 ShiftElts = (4 - M0) % 4; 1942 } 1943 1944 return true; 1945 } else { // BE 1946 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1947 // Input vectors don't need to be swapped if the leading element 1948 // of the result is one of the 4 elements of the first vector. 1949 Swap = false; 1950 ShiftElts = M0; 1951 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 1952 // Input vectors need to be swapped if the leading element 1953 // of the result is one of the 4 elements of the right vector. 1954 Swap = true; 1955 ShiftElts = M0 - 4; 1956 } 1957 1958 return true; 1959 } 1960 } 1961 1962 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 1963 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1964 1965 if (!isNByteElemShuffleMask(N, Width, -1)) 1966 return false; 1967 1968 for (int i = 0; i < 16; i += Width) 1969 if (N->getMaskElt(i) != i + Width - 1) 1970 return false; 1971 1972 return true; 1973 } 1974 1975 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 1976 return isXXBRShuffleMaskHelper(N, 2); 1977 } 1978 1979 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 1980 return isXXBRShuffleMaskHelper(N, 4); 1981 } 1982 1983 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 1984 return isXXBRShuffleMaskHelper(N, 8); 1985 } 1986 1987 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 1988 return isXXBRShuffleMaskHelper(N, 16); 1989 } 1990 1991 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 1992 /// if the inputs to the instruction should be swapped and set \p DM to the 1993 /// value for the immediate. 1994 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 1995 /// AND element 0 of the result comes from the first input (LE) or second input 1996 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 1997 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 1998 /// mask. 1999 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2000 bool &Swap, bool IsLE) { 2001 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2002 2003 // Ensure each byte index of the double word is consecutive. 2004 if (!isNByteElemShuffleMask(N, 8, 1)) 2005 return false; 2006 2007 unsigned M0 = N->getMaskElt(0) / 8; 2008 unsigned M1 = N->getMaskElt(8) / 8; 2009 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2010 2011 // If both vector operands for the shuffle are the same vector, the mask will 2012 // contain only elements from the first one and the second one will be undef. 2013 if (N->getOperand(1).isUndef()) { 2014 if ((M0 | M1) < 2) { 2015 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2016 Swap = false; 2017 return true; 2018 } else 2019 return false; 2020 } 2021 2022 if (IsLE) { 2023 if (M0 > 1 && M1 < 2) { 2024 Swap = false; 2025 } else if (M0 < 2 && M1 > 1) { 2026 M0 = (M0 + 2) % 4; 2027 M1 = (M1 + 2) % 4; 2028 Swap = true; 2029 } else 2030 return false; 2031 2032 // Note: if control flow comes here that means Swap is already set above 2033 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2034 return true; 2035 } else { // BE 2036 if (M0 < 2 && M1 > 1) { 2037 Swap = false; 2038 } else if (M0 > 1 && M1 < 2) { 2039 M0 = (M0 + 2) % 4; 2040 M1 = (M1 + 2) % 4; 2041 Swap = true; 2042 } else 2043 return false; 2044 2045 // Note: if control flow comes here that means Swap is already set above 2046 DM = (M0 << 1) + (M1 & 1); 2047 return true; 2048 } 2049 } 2050 2051 2052 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 2053 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 2054 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 2055 SelectionDAG &DAG) { 2056 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2057 assert(isSplatShuffleMask(SVOp, EltSize)); 2058 if (DAG.getDataLayout().isLittleEndian()) 2059 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2060 else 2061 return SVOp->getMaskElt(0) / EltSize; 2062 } 2063 2064 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2065 /// by using a vspltis[bhw] instruction of the specified element size, return 2066 /// the constant being splatted. The ByteSize field indicates the number of 2067 /// bytes of each element [124] -> [bhw]. 2068 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2069 SDValue OpVal(nullptr, 0); 2070 2071 // If ByteSize of the splat is bigger than the element size of the 2072 // build_vector, then we have a case where we are checking for a splat where 2073 // multiple elements of the buildvector are folded together into a single 2074 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2075 unsigned EltSize = 16/N->getNumOperands(); 2076 if (EltSize < ByteSize) { 2077 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2078 SDValue UniquedVals[4]; 2079 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2080 2081 // See if all of the elements in the buildvector agree across. 2082 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2083 if (N->getOperand(i).isUndef()) continue; 2084 // If the element isn't a constant, bail fully out. 2085 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2086 2087 if (!UniquedVals[i&(Multiple-1)].getNode()) 2088 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2089 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2090 return SDValue(); // no match. 2091 } 2092 2093 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2094 // either constant or undef values that are identical for each chunk. See 2095 // if these chunks can form into a larger vspltis*. 2096 2097 // Check to see if all of the leading entries are either 0 or -1. If 2098 // neither, then this won't fit into the immediate field. 2099 bool LeadingZero = true; 2100 bool LeadingOnes = true; 2101 for (unsigned i = 0; i != Multiple-1; ++i) { 2102 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2103 2104 LeadingZero &= isNullConstant(UniquedVals[i]); 2105 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2106 } 2107 // Finally, check the least significant entry. 2108 if (LeadingZero) { 2109 if (!UniquedVals[Multiple-1].getNode()) 2110 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2111 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2112 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2113 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2114 } 2115 if (LeadingOnes) { 2116 if (!UniquedVals[Multiple-1].getNode()) 2117 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2118 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2119 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2120 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2121 } 2122 2123 return SDValue(); 2124 } 2125 2126 // Check to see if this buildvec has a single non-undef value in its elements. 2127 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2128 if (N->getOperand(i).isUndef()) continue; 2129 if (!OpVal.getNode()) 2130 OpVal = N->getOperand(i); 2131 else if (OpVal != N->getOperand(i)) 2132 return SDValue(); 2133 } 2134 2135 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2136 2137 unsigned ValSizeInBytes = EltSize; 2138 uint64_t Value = 0; 2139 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2140 Value = CN->getZExtValue(); 2141 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2142 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2143 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2144 } 2145 2146 // If the splat value is larger than the element value, then we can never do 2147 // this splat. The only case that we could fit the replicated bits into our 2148 // immediate field for would be zero, and we prefer to use vxor for it. 2149 if (ValSizeInBytes < ByteSize) return SDValue(); 2150 2151 // If the element value is larger than the splat value, check if it consists 2152 // of a repeated bit pattern of size ByteSize. 2153 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2154 return SDValue(); 2155 2156 // Properly sign extend the value. 2157 int MaskVal = SignExtend32(Value, ByteSize * 8); 2158 2159 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2160 if (MaskVal == 0) return SDValue(); 2161 2162 // Finally, if this value fits in a 5 bit sext field, return it 2163 if (SignExtend32<5>(MaskVal) == MaskVal) 2164 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2165 return SDValue(); 2166 } 2167 2168 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2169 /// amount, otherwise return -1. 2170 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2171 EVT VT = N->getValueType(0); 2172 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2173 return -1; 2174 2175 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2176 2177 // Find the first non-undef value in the shuffle mask. 2178 unsigned i; 2179 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2180 /*search*/; 2181 2182 if (i == 4) return -1; // all undef. 2183 2184 // Otherwise, check to see if the rest of the elements are consecutively 2185 // numbered from this value. 2186 unsigned ShiftAmt = SVOp->getMaskElt(i); 2187 if (ShiftAmt < i) return -1; 2188 ShiftAmt -= i; 2189 2190 // Check the rest of the elements to see if they are consecutive. 2191 for (++i; i != 4; ++i) 2192 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2193 return -1; 2194 2195 return ShiftAmt; 2196 } 2197 2198 //===----------------------------------------------------------------------===// 2199 // Addressing Mode Selection 2200 //===----------------------------------------------------------------------===// 2201 2202 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2203 /// or 64-bit immediate, and if the value can be accurately represented as a 2204 /// sign extension from a 16-bit value. If so, this returns true and the 2205 /// immediate. 2206 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2207 if (!isa<ConstantSDNode>(N)) 2208 return false; 2209 2210 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2211 if (N->getValueType(0) == MVT::i32) 2212 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2213 else 2214 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2215 } 2216 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2217 return isIntS16Immediate(Op.getNode(), Imm); 2218 } 2219 2220 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2221 /// can be represented as an indexed [r+r] operation. Returns false if it 2222 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2223 /// non-zero and N can be represented by a base register plus a signed 16-bit 2224 /// displacement, make a more precise judgement by checking (displacement % \p 2225 /// EncodingAlignment). 2226 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2227 SDValue &Index, SelectionDAG &DAG, 2228 unsigned EncodingAlignment) const { 2229 int16_t imm = 0; 2230 if (N.getOpcode() == ISD::ADD) { 2231 if (isIntS16Immediate(N.getOperand(1), imm) && 2232 (!EncodingAlignment || !(imm % EncodingAlignment))) 2233 return false; // r+i 2234 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2235 return false; // r+i 2236 2237 Base = N.getOperand(0); 2238 Index = N.getOperand(1); 2239 return true; 2240 } else if (N.getOpcode() == ISD::OR) { 2241 if (isIntS16Immediate(N.getOperand(1), imm) && 2242 (!EncodingAlignment || !(imm % EncodingAlignment))) 2243 return false; // r+i can fold it if we can. 2244 2245 // If this is an or of disjoint bitfields, we can codegen this as an add 2246 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2247 // disjoint. 2248 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2249 2250 if (LHSKnown.Zero.getBoolValue()) { 2251 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2252 // If all of the bits are known zero on the LHS or RHS, the add won't 2253 // carry. 2254 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2255 Base = N.getOperand(0); 2256 Index = N.getOperand(1); 2257 return true; 2258 } 2259 } 2260 } 2261 2262 return false; 2263 } 2264 2265 // If we happen to be doing an i64 load or store into a stack slot that has 2266 // less than a 4-byte alignment, then the frame-index elimination may need to 2267 // use an indexed load or store instruction (because the offset may not be a 2268 // multiple of 4). The extra register needed to hold the offset comes from the 2269 // register scavenger, and it is possible that the scavenger will need to use 2270 // an emergency spill slot. As a result, we need to make sure that a spill slot 2271 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2272 // stack slot. 2273 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2274 // FIXME: This does not handle the LWA case. 2275 if (VT != MVT::i64) 2276 return; 2277 2278 // NOTE: We'll exclude negative FIs here, which come from argument 2279 // lowering, because there are no known test cases triggering this problem 2280 // using packed structures (or similar). We can remove this exclusion if 2281 // we find such a test case. The reason why this is so test-case driven is 2282 // because this entire 'fixup' is only to prevent crashes (from the 2283 // register scavenger) on not-really-valid inputs. For example, if we have: 2284 // %a = alloca i1 2285 // %b = bitcast i1* %a to i64* 2286 // store i64* a, i64 b 2287 // then the store should really be marked as 'align 1', but is not. If it 2288 // were marked as 'align 1' then the indexed form would have been 2289 // instruction-selected initially, and the problem this 'fixup' is preventing 2290 // won't happen regardless. 2291 if (FrameIdx < 0) 2292 return; 2293 2294 MachineFunction &MF = DAG.getMachineFunction(); 2295 MachineFrameInfo &MFI = MF.getFrameInfo(); 2296 2297 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2298 if (Align >= 4) 2299 return; 2300 2301 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2302 FuncInfo->setHasNonRISpills(); 2303 } 2304 2305 /// Returns true if the address N can be represented by a base register plus 2306 /// a signed 16-bit displacement [r+imm], and if it is not better 2307 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2308 /// displacements that are multiples of that value. 2309 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2310 SDValue &Base, 2311 SelectionDAG &DAG, 2312 unsigned EncodingAlignment) const { 2313 // FIXME dl should come from parent load or store, not from address 2314 SDLoc dl(N); 2315 // If this can be more profitably realized as r+r, fail. 2316 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2317 return false; 2318 2319 if (N.getOpcode() == ISD::ADD) { 2320 int16_t imm = 0; 2321 if (isIntS16Immediate(N.getOperand(1), imm) && 2322 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2323 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2324 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2325 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2326 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2327 } else { 2328 Base = N.getOperand(0); 2329 } 2330 return true; // [r+i] 2331 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2332 // Match LOAD (ADD (X, Lo(G))). 2333 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2334 && "Cannot handle constant offsets yet!"); 2335 Disp = N.getOperand(1).getOperand(0); // The global address. 2336 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2337 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2338 Disp.getOpcode() == ISD::TargetConstantPool || 2339 Disp.getOpcode() == ISD::TargetJumpTable); 2340 Base = N.getOperand(0); 2341 return true; // [&g+r] 2342 } 2343 } else if (N.getOpcode() == ISD::OR) { 2344 int16_t imm = 0; 2345 if (isIntS16Immediate(N.getOperand(1), imm) && 2346 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2347 // If this is an or of disjoint bitfields, we can codegen this as an add 2348 // (for better address arithmetic) if the LHS and RHS of the OR are 2349 // provably disjoint. 2350 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2351 2352 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2353 // If all of the bits are known zero on the LHS or RHS, the add won't 2354 // carry. 2355 if (FrameIndexSDNode *FI = 2356 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2357 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2358 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2359 } else { 2360 Base = N.getOperand(0); 2361 } 2362 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2363 return true; 2364 } 2365 } 2366 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2367 // Loading from a constant address. 2368 2369 // If this address fits entirely in a 16-bit sext immediate field, codegen 2370 // this as "d, 0" 2371 int16_t Imm; 2372 if (isIntS16Immediate(CN, Imm) && 2373 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2374 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2375 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2376 CN->getValueType(0)); 2377 return true; 2378 } 2379 2380 // Handle 32-bit sext immediates with LIS + addr mode. 2381 if ((CN->getValueType(0) == MVT::i32 || 2382 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2383 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2384 int Addr = (int)CN->getZExtValue(); 2385 2386 // Otherwise, break this down into an LIS + disp. 2387 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2388 2389 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2390 MVT::i32); 2391 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2392 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2393 return true; 2394 } 2395 } 2396 2397 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2398 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2399 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2400 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2401 } else 2402 Base = N; 2403 return true; // [r+0] 2404 } 2405 2406 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2407 /// represented as an indexed [r+r] operation. 2408 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2409 SDValue &Index, 2410 SelectionDAG &DAG) const { 2411 // Check to see if we can easily represent this as an [r+r] address. This 2412 // will fail if it thinks that the address is more profitably represented as 2413 // reg+imm, e.g. where imm = 0. 2414 if (SelectAddressRegReg(N, Base, Index, DAG)) 2415 return true; 2416 2417 // If the address is the result of an add, we will utilize the fact that the 2418 // address calculation includes an implicit add. However, we can reduce 2419 // register pressure if we do not materialize a constant just for use as the 2420 // index register. We only get rid of the add if it is not an add of a 2421 // value and a 16-bit signed constant and both have a single use. 2422 int16_t imm = 0; 2423 if (N.getOpcode() == ISD::ADD && 2424 (!isIntS16Immediate(N.getOperand(1), imm) || 2425 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2426 Base = N.getOperand(0); 2427 Index = N.getOperand(1); 2428 return true; 2429 } 2430 2431 // Otherwise, do it the hard way, using R0 as the base register. 2432 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2433 N.getValueType()); 2434 Index = N; 2435 return true; 2436 } 2437 2438 /// Returns true if we should use a direct load into vector instruction 2439 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2440 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2441 2442 // If there are any other uses other than scalar to vector, then we should 2443 // keep it as a scalar load -> direct move pattern to prevent multiple 2444 // loads. 2445 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2446 if (!LD) 2447 return false; 2448 2449 EVT MemVT = LD->getMemoryVT(); 2450 if (!MemVT.isSimple()) 2451 return false; 2452 switch(MemVT.getSimpleVT().SimpleTy) { 2453 case MVT::i64: 2454 break; 2455 case MVT::i32: 2456 if (!ST.hasP8Vector()) 2457 return false; 2458 break; 2459 case MVT::i16: 2460 case MVT::i8: 2461 if (!ST.hasP9Vector()) 2462 return false; 2463 break; 2464 default: 2465 return false; 2466 } 2467 2468 SDValue LoadedVal(N, 0); 2469 if (!LoadedVal.hasOneUse()) 2470 return false; 2471 2472 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2473 UI != UE; ++UI) 2474 if (UI.getUse().get().getResNo() == 0 && 2475 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2476 return false; 2477 2478 return true; 2479 } 2480 2481 /// getPreIndexedAddressParts - returns true by value, base pointer and 2482 /// offset pointer and addressing mode by reference if the node's address 2483 /// can be legally represented as pre-indexed load / store address. 2484 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2485 SDValue &Offset, 2486 ISD::MemIndexedMode &AM, 2487 SelectionDAG &DAG) const { 2488 if (DisablePPCPreinc) return false; 2489 2490 bool isLoad = true; 2491 SDValue Ptr; 2492 EVT VT; 2493 unsigned Alignment; 2494 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2495 Ptr = LD->getBasePtr(); 2496 VT = LD->getMemoryVT(); 2497 Alignment = LD->getAlignment(); 2498 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2499 Ptr = ST->getBasePtr(); 2500 VT = ST->getMemoryVT(); 2501 Alignment = ST->getAlignment(); 2502 isLoad = false; 2503 } else 2504 return false; 2505 2506 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2507 // instructions because we can fold these into a more efficient instruction 2508 // instead, (such as LXSD). 2509 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2510 return false; 2511 } 2512 2513 // PowerPC doesn't have preinc load/store instructions for vectors (except 2514 // for QPX, which does have preinc r+r forms). 2515 if (VT.isVector()) { 2516 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2517 return false; 2518 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2519 AM = ISD::PRE_INC; 2520 return true; 2521 } 2522 } 2523 2524 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2525 // Common code will reject creating a pre-inc form if the base pointer 2526 // is a frame index, or if N is a store and the base pointer is either 2527 // the same as or a predecessor of the value being stored. Check for 2528 // those situations here, and try with swapped Base/Offset instead. 2529 bool Swap = false; 2530 2531 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2532 Swap = true; 2533 else if (!isLoad) { 2534 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2535 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2536 Swap = true; 2537 } 2538 2539 if (Swap) 2540 std::swap(Base, Offset); 2541 2542 AM = ISD::PRE_INC; 2543 return true; 2544 } 2545 2546 // LDU/STU can only handle immediates that are a multiple of 4. 2547 if (VT != MVT::i64) { 2548 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2549 return false; 2550 } else { 2551 // LDU/STU need an address with at least 4-byte alignment. 2552 if (Alignment < 4) 2553 return false; 2554 2555 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2556 return false; 2557 } 2558 2559 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2560 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2561 // sext i32 to i64 when addr mode is r+i. 2562 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2563 LD->getExtensionType() == ISD::SEXTLOAD && 2564 isa<ConstantSDNode>(Offset)) 2565 return false; 2566 } 2567 2568 AM = ISD::PRE_INC; 2569 return true; 2570 } 2571 2572 //===----------------------------------------------------------------------===// 2573 // LowerOperation implementation 2574 //===----------------------------------------------------------------------===// 2575 2576 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2577 /// and LoOpFlags to the target MO flags. 2578 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2579 unsigned &HiOpFlags, unsigned &LoOpFlags, 2580 const GlobalValue *GV = nullptr) { 2581 HiOpFlags = PPCII::MO_HA; 2582 LoOpFlags = PPCII::MO_LO; 2583 2584 // Don't use the pic base if not in PIC relocation model. 2585 if (IsPIC) { 2586 HiOpFlags |= PPCII::MO_PIC_FLAG; 2587 LoOpFlags |= PPCII::MO_PIC_FLAG; 2588 } 2589 2590 // If this is a reference to a global value that requires a non-lazy-ptr, make 2591 // sure that instruction lowering adds it. 2592 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2593 HiOpFlags |= PPCII::MO_NLP_FLAG; 2594 LoOpFlags |= PPCII::MO_NLP_FLAG; 2595 2596 if (GV->hasHiddenVisibility()) { 2597 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2598 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2599 } 2600 } 2601 } 2602 2603 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2604 SelectionDAG &DAG) { 2605 SDLoc DL(HiPart); 2606 EVT PtrVT = HiPart.getValueType(); 2607 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2608 2609 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2610 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2611 2612 // With PIC, the first instruction is actually "GR+hi(&G)". 2613 if (isPIC) 2614 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2615 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2616 2617 // Generate non-pic code that has direct accesses to the constant pool. 2618 // The address of the global is just (hi(&g)+lo(&g)). 2619 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2620 } 2621 2622 static void setUsesTOCBasePtr(MachineFunction &MF) { 2623 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2624 FuncInfo->setUsesTOCBasePtr(); 2625 } 2626 2627 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2628 setUsesTOCBasePtr(DAG.getMachineFunction()); 2629 } 2630 2631 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2632 SDValue GA) { 2633 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2634 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2635 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2636 2637 SDValue Ops[] = { GA, Reg }; 2638 return DAG.getMemIntrinsicNode( 2639 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2640 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2641 MachineMemOperand::MOLoad); 2642 } 2643 2644 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2645 SelectionDAG &DAG) const { 2646 EVT PtrVT = Op.getValueType(); 2647 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2648 const Constant *C = CP->getConstVal(); 2649 2650 // 64-bit SVR4 ABI code is always position-independent. 2651 // The actual address of the GlobalValue is stored in the TOC. 2652 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2653 setUsesTOCBasePtr(DAG); 2654 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2655 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2656 } 2657 2658 unsigned MOHiFlag, MOLoFlag; 2659 bool IsPIC = isPositionIndependent(); 2660 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2661 2662 if (IsPIC && Subtarget.isSVR4ABI()) { 2663 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2664 PPCII::MO_PIC_FLAG); 2665 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2666 } 2667 2668 SDValue CPIHi = 2669 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2670 SDValue CPILo = 2671 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2672 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2673 } 2674 2675 // For 64-bit PowerPC, prefer the more compact relative encodings. 2676 // This trades 32 bits per jump table entry for one or two instructions 2677 // on the jump site. 2678 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2679 if (isJumpTableRelative()) 2680 return MachineJumpTableInfo::EK_LabelDifference32; 2681 2682 return TargetLowering::getJumpTableEncoding(); 2683 } 2684 2685 bool PPCTargetLowering::isJumpTableRelative() const { 2686 if (Subtarget.isPPC64()) 2687 return true; 2688 return TargetLowering::isJumpTableRelative(); 2689 } 2690 2691 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2692 SelectionDAG &DAG) const { 2693 if (!Subtarget.isPPC64()) 2694 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2695 2696 switch (getTargetMachine().getCodeModel()) { 2697 case CodeModel::Small: 2698 case CodeModel::Medium: 2699 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2700 default: 2701 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2702 getPointerTy(DAG.getDataLayout())); 2703 } 2704 } 2705 2706 const MCExpr * 2707 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2708 unsigned JTI, 2709 MCContext &Ctx) const { 2710 if (!Subtarget.isPPC64()) 2711 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2712 2713 switch (getTargetMachine().getCodeModel()) { 2714 case CodeModel::Small: 2715 case CodeModel::Medium: 2716 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2717 default: 2718 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2719 } 2720 } 2721 2722 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2723 EVT PtrVT = Op.getValueType(); 2724 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2725 2726 // 64-bit SVR4 ABI code is always position-independent. 2727 // The actual address of the GlobalValue is stored in the TOC. 2728 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2729 setUsesTOCBasePtr(DAG); 2730 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2731 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2732 } 2733 2734 unsigned MOHiFlag, MOLoFlag; 2735 bool IsPIC = isPositionIndependent(); 2736 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2737 2738 if (IsPIC && Subtarget.isSVR4ABI()) { 2739 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2740 PPCII::MO_PIC_FLAG); 2741 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2742 } 2743 2744 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2745 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2746 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2747 } 2748 2749 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2750 SelectionDAG &DAG) const { 2751 EVT PtrVT = Op.getValueType(); 2752 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2753 const BlockAddress *BA = BASDN->getBlockAddress(); 2754 2755 // 64-bit SVR4 ABI code is always position-independent. 2756 // The actual BlockAddress is stored in the TOC. 2757 if (Subtarget.isSVR4ABI() && 2758 (Subtarget.isPPC64() || isPositionIndependent())) { 2759 if (Subtarget.isPPC64()) 2760 setUsesTOCBasePtr(DAG); 2761 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2762 return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA); 2763 } 2764 2765 unsigned MOHiFlag, MOLoFlag; 2766 bool IsPIC = isPositionIndependent(); 2767 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2768 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2769 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2770 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2771 } 2772 2773 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2774 SelectionDAG &DAG) const { 2775 // FIXME: TLS addresses currently use medium model code sequences, 2776 // which is the most useful form. Eventually support for small and 2777 // large models could be added if users need it, at the cost of 2778 // additional complexity. 2779 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2780 if (DAG.getTarget().useEmulatedTLS()) 2781 return LowerToTLSEmulatedModel(GA, DAG); 2782 2783 SDLoc dl(GA); 2784 const GlobalValue *GV = GA->getGlobal(); 2785 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2786 bool is64bit = Subtarget.isPPC64(); 2787 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2788 PICLevel::Level picLevel = M->getPICLevel(); 2789 2790 const TargetMachine &TM = getTargetMachine(); 2791 TLSModel::Model Model = TM.getTLSModel(GV); 2792 2793 if (Model == TLSModel::LocalExec) { 2794 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2795 PPCII::MO_TPREL_HA); 2796 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2797 PPCII::MO_TPREL_LO); 2798 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2799 : DAG.getRegister(PPC::R2, MVT::i32); 2800 2801 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2802 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2803 } 2804 2805 if (Model == TLSModel::InitialExec) { 2806 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2807 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2808 PPCII::MO_TLS); 2809 SDValue GOTPtr; 2810 if (is64bit) { 2811 setUsesTOCBasePtr(DAG); 2812 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2813 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2814 PtrVT, GOTReg, TGA); 2815 } else { 2816 if (!TM.isPositionIndependent()) 2817 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2818 else if (picLevel == PICLevel::SmallPIC) 2819 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2820 else 2821 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2822 } 2823 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2824 PtrVT, TGA, GOTPtr); 2825 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2826 } 2827 2828 if (Model == TLSModel::GeneralDynamic) { 2829 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2830 SDValue GOTPtr; 2831 if (is64bit) { 2832 setUsesTOCBasePtr(DAG); 2833 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2834 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2835 GOTReg, TGA); 2836 } else { 2837 if (picLevel == PICLevel::SmallPIC) 2838 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2839 else 2840 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2841 } 2842 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2843 GOTPtr, TGA, TGA); 2844 } 2845 2846 if (Model == TLSModel::LocalDynamic) { 2847 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2848 SDValue GOTPtr; 2849 if (is64bit) { 2850 setUsesTOCBasePtr(DAG); 2851 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2852 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2853 GOTReg, TGA); 2854 } else { 2855 if (picLevel == PICLevel::SmallPIC) 2856 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2857 else 2858 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2859 } 2860 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2861 PtrVT, GOTPtr, TGA, TGA); 2862 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2863 PtrVT, TLSAddr, TGA); 2864 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2865 } 2866 2867 llvm_unreachable("Unknown TLS model!"); 2868 } 2869 2870 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2871 SelectionDAG &DAG) const { 2872 EVT PtrVT = Op.getValueType(); 2873 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2874 SDLoc DL(GSDN); 2875 const GlobalValue *GV = GSDN->getGlobal(); 2876 2877 // 64-bit SVR4 ABI code is always position-independent. 2878 // The actual address of the GlobalValue is stored in the TOC. 2879 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2880 setUsesTOCBasePtr(DAG); 2881 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2882 return getTOCEntry(DAG, DL, true, GA); 2883 } 2884 2885 unsigned MOHiFlag, MOLoFlag; 2886 bool IsPIC = isPositionIndependent(); 2887 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2888 2889 if (IsPIC && Subtarget.isSVR4ABI()) { 2890 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2891 GSDN->getOffset(), 2892 PPCII::MO_PIC_FLAG); 2893 return getTOCEntry(DAG, DL, false, GA); 2894 } 2895 2896 SDValue GAHi = 2897 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2898 SDValue GALo = 2899 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2900 2901 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2902 2903 // If the global reference is actually to a non-lazy-pointer, we have to do an 2904 // extra load to get the address of the global. 2905 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2906 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2907 return Ptr; 2908 } 2909 2910 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2911 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2912 SDLoc dl(Op); 2913 2914 if (Op.getValueType() == MVT::v2i64) { 2915 // When the operands themselves are v2i64 values, we need to do something 2916 // special because VSX has no underlying comparison operations for these. 2917 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2918 // Equality can be handled by casting to the legal type for Altivec 2919 // comparisons, everything else needs to be expanded. 2920 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2921 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2922 DAG.getSetCC(dl, MVT::v4i32, 2923 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2924 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2925 CC)); 2926 } 2927 2928 return SDValue(); 2929 } 2930 2931 // We handle most of these in the usual way. 2932 return Op; 2933 } 2934 2935 // If we're comparing for equality to zero, expose the fact that this is 2936 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2937 // fold the new nodes. 2938 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2939 return V; 2940 2941 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2942 // Leave comparisons against 0 and -1 alone for now, since they're usually 2943 // optimized. FIXME: revisit this when we can custom lower all setcc 2944 // optimizations. 2945 if (C->isAllOnesValue() || C->isNullValue()) 2946 return SDValue(); 2947 } 2948 2949 // If we have an integer seteq/setne, turn it into a compare against zero 2950 // by xor'ing the rhs with the lhs, which is faster than setting a 2951 // condition register, reading it back out, and masking the correct bit. The 2952 // normal approach here uses sub to do this instead of xor. Using xor exposes 2953 // the result to other bit-twiddling opportunities. 2954 EVT LHSVT = Op.getOperand(0).getValueType(); 2955 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2956 EVT VT = Op.getValueType(); 2957 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2958 Op.getOperand(1)); 2959 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2960 } 2961 return SDValue(); 2962 } 2963 2964 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2965 SDNode *Node = Op.getNode(); 2966 EVT VT = Node->getValueType(0); 2967 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2968 SDValue InChain = Node->getOperand(0); 2969 SDValue VAListPtr = Node->getOperand(1); 2970 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2971 SDLoc dl(Node); 2972 2973 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2974 2975 // gpr_index 2976 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2977 VAListPtr, MachinePointerInfo(SV), MVT::i8); 2978 InChain = GprIndex.getValue(1); 2979 2980 if (VT == MVT::i64) { 2981 // Check if GprIndex is even 2982 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2983 DAG.getConstant(1, dl, MVT::i32)); 2984 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2985 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2986 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2987 DAG.getConstant(1, dl, MVT::i32)); 2988 // Align GprIndex to be even if it isn't 2989 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2990 GprIndex); 2991 } 2992 2993 // fpr index is 1 byte after gpr 2994 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2995 DAG.getConstant(1, dl, MVT::i32)); 2996 2997 // fpr 2998 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2999 FprPtr, MachinePointerInfo(SV), MVT::i8); 3000 InChain = FprIndex.getValue(1); 3001 3002 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3003 DAG.getConstant(8, dl, MVT::i32)); 3004 3005 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3006 DAG.getConstant(4, dl, MVT::i32)); 3007 3008 // areas 3009 SDValue OverflowArea = 3010 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3011 InChain = OverflowArea.getValue(1); 3012 3013 SDValue RegSaveArea = 3014 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3015 InChain = RegSaveArea.getValue(1); 3016 3017 // select overflow_area if index > 8 3018 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3019 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3020 3021 // adjustment constant gpr_index * 4/8 3022 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3023 VT.isInteger() ? GprIndex : FprIndex, 3024 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3025 MVT::i32)); 3026 3027 // OurReg = RegSaveArea + RegConstant 3028 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3029 RegConstant); 3030 3031 // Floating types are 32 bytes into RegSaveArea 3032 if (VT.isFloatingPoint()) 3033 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3034 DAG.getConstant(32, dl, MVT::i32)); 3035 3036 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3037 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3038 VT.isInteger() ? GprIndex : FprIndex, 3039 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3040 MVT::i32)); 3041 3042 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3043 VT.isInteger() ? VAListPtr : FprPtr, 3044 MachinePointerInfo(SV), MVT::i8); 3045 3046 // determine if we should load from reg_save_area or overflow_area 3047 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3048 3049 // increase overflow_area by 4/8 if gpr/fpr > 8 3050 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3051 DAG.getConstant(VT.isInteger() ? 4 : 8, 3052 dl, MVT::i32)); 3053 3054 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3055 OverflowAreaPlusN); 3056 3057 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3058 MachinePointerInfo(), MVT::i32); 3059 3060 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3061 } 3062 3063 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3064 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3065 3066 // We have to copy the entire va_list struct: 3067 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3068 return DAG.getMemcpy(Op.getOperand(0), Op, 3069 Op.getOperand(1), Op.getOperand(2), 3070 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3071 false, MachinePointerInfo(), MachinePointerInfo()); 3072 } 3073 3074 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3075 SelectionDAG &DAG) const { 3076 return Op.getOperand(0); 3077 } 3078 3079 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3080 SelectionDAG &DAG) const { 3081 SDValue Chain = Op.getOperand(0); 3082 SDValue Trmp = Op.getOperand(1); // trampoline 3083 SDValue FPtr = Op.getOperand(2); // nested function 3084 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3085 SDLoc dl(Op); 3086 3087 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3088 bool isPPC64 = (PtrVT == MVT::i64); 3089 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3090 3091 TargetLowering::ArgListTy Args; 3092 TargetLowering::ArgListEntry Entry; 3093 3094 Entry.Ty = IntPtrTy; 3095 Entry.Node = Trmp; Args.push_back(Entry); 3096 3097 // TrampSize == (isPPC64 ? 48 : 40); 3098 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3099 isPPC64 ? MVT::i64 : MVT::i32); 3100 Args.push_back(Entry); 3101 3102 Entry.Node = FPtr; Args.push_back(Entry); 3103 Entry.Node = Nest; Args.push_back(Entry); 3104 3105 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3106 TargetLowering::CallLoweringInfo CLI(DAG); 3107 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3108 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3109 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3110 3111 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3112 return CallResult.second; 3113 } 3114 3115 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3116 MachineFunction &MF = DAG.getMachineFunction(); 3117 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3118 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3119 3120 SDLoc dl(Op); 3121 3122 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3123 // vastart just stores the address of the VarArgsFrameIndex slot into the 3124 // memory location argument. 3125 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3126 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3127 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3128 MachinePointerInfo(SV)); 3129 } 3130 3131 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3132 // We suppose the given va_list is already allocated. 3133 // 3134 // typedef struct { 3135 // char gpr; /* index into the array of 8 GPRs 3136 // * stored in the register save area 3137 // * gpr=0 corresponds to r3, 3138 // * gpr=1 to r4, etc. 3139 // */ 3140 // char fpr; /* index into the array of 8 FPRs 3141 // * stored in the register save area 3142 // * fpr=0 corresponds to f1, 3143 // * fpr=1 to f2, etc. 3144 // */ 3145 // char *overflow_arg_area; 3146 // /* location on stack that holds 3147 // * the next overflow argument 3148 // */ 3149 // char *reg_save_area; 3150 // /* where r3:r10 and f1:f8 (if saved) 3151 // * are stored 3152 // */ 3153 // } va_list[1]; 3154 3155 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3156 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3157 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3158 PtrVT); 3159 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3160 PtrVT); 3161 3162 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3163 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3164 3165 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3166 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3167 3168 uint64_t FPROffset = 1; 3169 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3170 3171 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3172 3173 // Store first byte : number of int regs 3174 SDValue firstStore = 3175 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3176 MachinePointerInfo(SV), MVT::i8); 3177 uint64_t nextOffset = FPROffset; 3178 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3179 ConstFPROffset); 3180 3181 // Store second byte : number of float regs 3182 SDValue secondStore = 3183 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3184 MachinePointerInfo(SV, nextOffset), MVT::i8); 3185 nextOffset += StackOffset; 3186 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3187 3188 // Store second word : arguments given on stack 3189 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3190 MachinePointerInfo(SV, nextOffset)); 3191 nextOffset += FrameOffset; 3192 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3193 3194 // Store third word : arguments given in registers 3195 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3196 MachinePointerInfo(SV, nextOffset)); 3197 } 3198 3199 /// FPR - The set of FP registers that should be allocated for arguments, 3200 /// on Darwin. 3201 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3202 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3203 PPC::F11, PPC::F12, PPC::F13}; 3204 3205 /// QFPR - The set of QPX registers that should be allocated for arguments. 3206 static const MCPhysReg QFPR[] = { 3207 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3208 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3209 3210 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3211 /// the stack. 3212 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3213 unsigned PtrByteSize) { 3214 unsigned ArgSize = ArgVT.getStoreSize(); 3215 if (Flags.isByVal()) 3216 ArgSize = Flags.getByValSize(); 3217 3218 // Round up to multiples of the pointer size, except for array members, 3219 // which are always packed. 3220 if (!Flags.isInConsecutiveRegs()) 3221 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3222 3223 return ArgSize; 3224 } 3225 3226 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3227 /// on the stack. 3228 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3229 ISD::ArgFlagsTy Flags, 3230 unsigned PtrByteSize) { 3231 unsigned Align = PtrByteSize; 3232 3233 // Altivec parameters are padded to a 16 byte boundary. 3234 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3235 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3236 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3237 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3238 Align = 16; 3239 // QPX vector types stored in double-precision are padded to a 32 byte 3240 // boundary. 3241 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3242 Align = 32; 3243 3244 // ByVal parameters are aligned as requested. 3245 if (Flags.isByVal()) { 3246 unsigned BVAlign = Flags.getByValAlign(); 3247 if (BVAlign > PtrByteSize) { 3248 if (BVAlign % PtrByteSize != 0) 3249 llvm_unreachable( 3250 "ByVal alignment is not a multiple of the pointer size"); 3251 3252 Align = BVAlign; 3253 } 3254 } 3255 3256 // Array members are always packed to their original alignment. 3257 if (Flags.isInConsecutiveRegs()) { 3258 // If the array member was split into multiple registers, the first 3259 // needs to be aligned to the size of the full type. (Except for 3260 // ppcf128, which is only aligned as its f64 components.) 3261 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3262 Align = OrigVT.getStoreSize(); 3263 else 3264 Align = ArgVT.getStoreSize(); 3265 } 3266 3267 return Align; 3268 } 3269 3270 /// CalculateStackSlotUsed - Return whether this argument will use its 3271 /// stack slot (instead of being passed in registers). ArgOffset, 3272 /// AvailableFPRs, and AvailableVRs must hold the current argument 3273 /// position, and will be updated to account for this argument. 3274 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3275 ISD::ArgFlagsTy Flags, 3276 unsigned PtrByteSize, 3277 unsigned LinkageSize, 3278 unsigned ParamAreaSize, 3279 unsigned &ArgOffset, 3280 unsigned &AvailableFPRs, 3281 unsigned &AvailableVRs, bool HasQPX) { 3282 bool UseMemory = false; 3283 3284 // Respect alignment of argument on the stack. 3285 unsigned Align = 3286 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3287 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3288 // If there's no space left in the argument save area, we must 3289 // use memory (this check also catches zero-sized arguments). 3290 if (ArgOffset >= LinkageSize + ParamAreaSize) 3291 UseMemory = true; 3292 3293 // Allocate argument on the stack. 3294 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3295 if (Flags.isInConsecutiveRegsLast()) 3296 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3297 // If we overran the argument save area, we must use memory 3298 // (this check catches arguments passed partially in memory) 3299 if (ArgOffset > LinkageSize + ParamAreaSize) 3300 UseMemory = true; 3301 3302 // However, if the argument is actually passed in an FPR or a VR, 3303 // we don't use memory after all. 3304 if (!Flags.isByVal()) { 3305 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3306 // QPX registers overlap with the scalar FP registers. 3307 (HasQPX && (ArgVT == MVT::v4f32 || 3308 ArgVT == MVT::v4f64 || 3309 ArgVT == MVT::v4i1))) 3310 if (AvailableFPRs > 0) { 3311 --AvailableFPRs; 3312 return false; 3313 } 3314 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3315 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3316 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3317 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3318 if (AvailableVRs > 0) { 3319 --AvailableVRs; 3320 return false; 3321 } 3322 } 3323 3324 return UseMemory; 3325 } 3326 3327 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3328 /// ensure minimum alignment required for target. 3329 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3330 unsigned NumBytes) { 3331 unsigned TargetAlign = Lowering->getStackAlignment(); 3332 unsigned AlignMask = TargetAlign - 1; 3333 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3334 return NumBytes; 3335 } 3336 3337 SDValue PPCTargetLowering::LowerFormalArguments( 3338 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3339 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3340 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3341 if (Subtarget.isSVR4ABI()) { 3342 if (Subtarget.isPPC64()) 3343 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 3344 dl, DAG, InVals); 3345 else 3346 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 3347 dl, DAG, InVals); 3348 } else { 3349 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 3350 dl, DAG, InVals); 3351 } 3352 } 3353 3354 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3355 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3356 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3357 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3358 3359 // 32-bit SVR4 ABI Stack Frame Layout: 3360 // +-----------------------------------+ 3361 // +--> | Back chain | 3362 // | +-----------------------------------+ 3363 // | | Floating-point register save area | 3364 // | +-----------------------------------+ 3365 // | | General register save area | 3366 // | +-----------------------------------+ 3367 // | | CR save word | 3368 // | +-----------------------------------+ 3369 // | | VRSAVE save word | 3370 // | +-----------------------------------+ 3371 // | | Alignment padding | 3372 // | +-----------------------------------+ 3373 // | | Vector register save area | 3374 // | +-----------------------------------+ 3375 // | | Local variable space | 3376 // | +-----------------------------------+ 3377 // | | Parameter list area | 3378 // | +-----------------------------------+ 3379 // | | LR save word | 3380 // | +-----------------------------------+ 3381 // SP--> +--- | Back chain | 3382 // +-----------------------------------+ 3383 // 3384 // Specifications: 3385 // System V Application Binary Interface PowerPC Processor Supplement 3386 // AltiVec Technology Programming Interface Manual 3387 3388 MachineFunction &MF = DAG.getMachineFunction(); 3389 MachineFrameInfo &MFI = MF.getFrameInfo(); 3390 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3391 3392 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3393 // Potential tail calls could cause overwriting of argument stack slots. 3394 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3395 (CallConv == CallingConv::Fast)); 3396 unsigned PtrByteSize = 4; 3397 3398 // Assign locations to all of the incoming arguments. 3399 SmallVector<CCValAssign, 16> ArgLocs; 3400 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3401 *DAG.getContext()); 3402 3403 // Reserve space for the linkage area on the stack. 3404 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3405 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3406 if (useSoftFloat() || hasSPE()) 3407 CCInfo.PreAnalyzeFormalArguments(Ins); 3408 3409 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3410 CCInfo.clearWasPPCF128(); 3411 3412 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3413 CCValAssign &VA = ArgLocs[i]; 3414 3415 // Arguments stored in registers. 3416 if (VA.isRegLoc()) { 3417 const TargetRegisterClass *RC; 3418 EVT ValVT = VA.getValVT(); 3419 3420 switch (ValVT.getSimpleVT().SimpleTy) { 3421 default: 3422 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3423 case MVT::i1: 3424 case MVT::i32: 3425 RC = &PPC::GPRCRegClass; 3426 break; 3427 case MVT::f32: 3428 if (Subtarget.hasP8Vector()) 3429 RC = &PPC::VSSRCRegClass; 3430 else if (Subtarget.hasSPE()) 3431 RC = &PPC::SPE4RCRegClass; 3432 else 3433 RC = &PPC::F4RCRegClass; 3434 break; 3435 case MVT::f64: 3436 if (Subtarget.hasVSX()) 3437 RC = &PPC::VSFRCRegClass; 3438 else if (Subtarget.hasSPE()) 3439 RC = &PPC::SPERCRegClass; 3440 else 3441 RC = &PPC::F8RCRegClass; 3442 break; 3443 case MVT::v16i8: 3444 case MVT::v8i16: 3445 case MVT::v4i32: 3446 RC = &PPC::VRRCRegClass; 3447 break; 3448 case MVT::v4f32: 3449 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3450 break; 3451 case MVT::v2f64: 3452 case MVT::v2i64: 3453 RC = &PPC::VRRCRegClass; 3454 break; 3455 case MVT::v4f64: 3456 RC = &PPC::QFRCRegClass; 3457 break; 3458 case MVT::v4i1: 3459 RC = &PPC::QBRCRegClass; 3460 break; 3461 } 3462 3463 // Transform the arguments stored in physical registers into virtual ones. 3464 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3465 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3466 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3467 3468 if (ValVT == MVT::i1) 3469 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3470 3471 InVals.push_back(ArgValue); 3472 } else { 3473 // Argument stored in memory. 3474 assert(VA.isMemLoc()); 3475 3476 // Get the extended size of the argument type in stack 3477 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3478 // Get the actual size of the argument type 3479 unsigned ObjSize = VA.getValVT().getStoreSize(); 3480 unsigned ArgOffset = VA.getLocMemOffset(); 3481 // Stack objects in PPC32 are right justified. 3482 ArgOffset += ArgSize - ObjSize; 3483 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3484 3485 // Create load nodes to retrieve arguments from the stack. 3486 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3487 InVals.push_back( 3488 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3489 } 3490 } 3491 3492 // Assign locations to all of the incoming aggregate by value arguments. 3493 // Aggregates passed by value are stored in the local variable space of the 3494 // caller's stack frame, right above the parameter list area. 3495 SmallVector<CCValAssign, 16> ByValArgLocs; 3496 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3497 ByValArgLocs, *DAG.getContext()); 3498 3499 // Reserve stack space for the allocations in CCInfo. 3500 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3501 3502 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3503 3504 // Area that is at least reserved in the caller of this function. 3505 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3506 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3507 3508 // Set the size that is at least reserved in caller of this function. Tail 3509 // call optimized function's reserved stack space needs to be aligned so that 3510 // taking the difference between two stack areas will result in an aligned 3511 // stack. 3512 MinReservedArea = 3513 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3514 FuncInfo->setMinReservedArea(MinReservedArea); 3515 3516 SmallVector<SDValue, 8> MemOps; 3517 3518 // If the function takes variable number of arguments, make a frame index for 3519 // the start of the first vararg value... for expansion of llvm.va_start. 3520 if (isVarArg) { 3521 static const MCPhysReg GPArgRegs[] = { 3522 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3523 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3524 }; 3525 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3526 3527 static const MCPhysReg FPArgRegs[] = { 3528 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3529 PPC::F8 3530 }; 3531 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3532 3533 if (useSoftFloat() || hasSPE()) 3534 NumFPArgRegs = 0; 3535 3536 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3537 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3538 3539 // Make room for NumGPArgRegs and NumFPArgRegs. 3540 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3541 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3542 3543 FuncInfo->setVarArgsStackOffset( 3544 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3545 CCInfo.getNextStackOffset(), true)); 3546 3547 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3548 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3549 3550 // The fixed integer arguments of a variadic function are stored to the 3551 // VarArgsFrameIndex on the stack so that they may be loaded by 3552 // dereferencing the result of va_next. 3553 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3554 // Get an existing live-in vreg, or add a new one. 3555 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3556 if (!VReg) 3557 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3558 3559 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3560 SDValue Store = 3561 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3562 MemOps.push_back(Store); 3563 // Increment the address by four for the next argument to store 3564 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3565 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3566 } 3567 3568 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3569 // is set. 3570 // The double arguments are stored to the VarArgsFrameIndex 3571 // on the stack. 3572 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3573 // Get an existing live-in vreg, or add a new one. 3574 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3575 if (!VReg) 3576 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3577 3578 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3579 SDValue Store = 3580 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3581 MemOps.push_back(Store); 3582 // Increment the address by eight for the next argument to store 3583 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3584 PtrVT); 3585 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3586 } 3587 } 3588 3589 if (!MemOps.empty()) 3590 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3591 3592 return Chain; 3593 } 3594 3595 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3596 // value to MVT::i64 and then truncate to the correct register size. 3597 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3598 EVT ObjectVT, SelectionDAG &DAG, 3599 SDValue ArgVal, 3600 const SDLoc &dl) const { 3601 if (Flags.isSExt()) 3602 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3603 DAG.getValueType(ObjectVT)); 3604 else if (Flags.isZExt()) 3605 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3606 DAG.getValueType(ObjectVT)); 3607 3608 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3609 } 3610 3611 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3612 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3613 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3614 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3615 // TODO: add description of PPC stack frame format, or at least some docs. 3616 // 3617 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3618 bool isLittleEndian = Subtarget.isLittleEndian(); 3619 MachineFunction &MF = DAG.getMachineFunction(); 3620 MachineFrameInfo &MFI = MF.getFrameInfo(); 3621 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3622 3623 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3624 "fastcc not supported on varargs functions"); 3625 3626 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3627 // Potential tail calls could cause overwriting of argument stack slots. 3628 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3629 (CallConv == CallingConv::Fast)); 3630 unsigned PtrByteSize = 8; 3631 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3632 3633 static const MCPhysReg GPR[] = { 3634 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3635 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3636 }; 3637 static const MCPhysReg VR[] = { 3638 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3639 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3640 }; 3641 3642 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3643 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3644 const unsigned Num_VR_Regs = array_lengthof(VR); 3645 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3646 3647 // Do a first pass over the arguments to determine whether the ABI 3648 // guarantees that our caller has allocated the parameter save area 3649 // on its stack frame. In the ELFv1 ABI, this is always the case; 3650 // in the ELFv2 ABI, it is true if this is a vararg function or if 3651 // any parameter is located in a stack slot. 3652 3653 bool HasParameterArea = !isELFv2ABI || isVarArg; 3654 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3655 unsigned NumBytes = LinkageSize; 3656 unsigned AvailableFPRs = Num_FPR_Regs; 3657 unsigned AvailableVRs = Num_VR_Regs; 3658 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3659 if (Ins[i].Flags.isNest()) 3660 continue; 3661 3662 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3663 PtrByteSize, LinkageSize, ParamAreaSize, 3664 NumBytes, AvailableFPRs, AvailableVRs, 3665 Subtarget.hasQPX())) 3666 HasParameterArea = true; 3667 } 3668 3669 // Add DAG nodes to load the arguments or copy them out of registers. On 3670 // entry to a function on PPC, the arguments start after the linkage area, 3671 // although the first ones are often in registers. 3672 3673 unsigned ArgOffset = LinkageSize; 3674 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3675 unsigned &QFPR_idx = FPR_idx; 3676 SmallVector<SDValue, 8> MemOps; 3677 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3678 unsigned CurArgIdx = 0; 3679 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3680 SDValue ArgVal; 3681 bool needsLoad = false; 3682 EVT ObjectVT = Ins[ArgNo].VT; 3683 EVT OrigVT = Ins[ArgNo].ArgVT; 3684 unsigned ObjSize = ObjectVT.getStoreSize(); 3685 unsigned ArgSize = ObjSize; 3686 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3687 if (Ins[ArgNo].isOrigArg()) { 3688 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3689 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3690 } 3691 // We re-align the argument offset for each argument, except when using the 3692 // fast calling convention, when we need to make sure we do that only when 3693 // we'll actually use a stack slot. 3694 unsigned CurArgOffset, Align; 3695 auto ComputeArgOffset = [&]() { 3696 /* Respect alignment of argument on the stack. */ 3697 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3698 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3699 CurArgOffset = ArgOffset; 3700 }; 3701 3702 if (CallConv != CallingConv::Fast) { 3703 ComputeArgOffset(); 3704 3705 /* Compute GPR index associated with argument offset. */ 3706 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3707 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3708 } 3709 3710 // FIXME the codegen can be much improved in some cases. 3711 // We do not have to keep everything in memory. 3712 if (Flags.isByVal()) { 3713 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3714 3715 if (CallConv == CallingConv::Fast) 3716 ComputeArgOffset(); 3717 3718 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3719 ObjSize = Flags.getByValSize(); 3720 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3721 // Empty aggregate parameters do not take up registers. Examples: 3722 // struct { } a; 3723 // union { } b; 3724 // int c[0]; 3725 // etc. However, we have to provide a place-holder in InVals, so 3726 // pretend we have an 8-byte item at the current address for that 3727 // purpose. 3728 if (!ObjSize) { 3729 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3730 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3731 InVals.push_back(FIN); 3732 continue; 3733 } 3734 3735 // Create a stack object covering all stack doublewords occupied 3736 // by the argument. If the argument is (fully or partially) on 3737 // the stack, or if the argument is fully in registers but the 3738 // caller has allocated the parameter save anyway, we can refer 3739 // directly to the caller's stack frame. Otherwise, create a 3740 // local copy in our own frame. 3741 int FI; 3742 if (HasParameterArea || 3743 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3744 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3745 else 3746 FI = MFI.CreateStackObject(ArgSize, Align, false); 3747 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3748 3749 // Handle aggregates smaller than 8 bytes. 3750 if (ObjSize < PtrByteSize) { 3751 // The value of the object is its address, which differs from the 3752 // address of the enclosing doubleword on big-endian systems. 3753 SDValue Arg = FIN; 3754 if (!isLittleEndian) { 3755 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3756 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3757 } 3758 InVals.push_back(Arg); 3759 3760 if (GPR_idx != Num_GPR_Regs) { 3761 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3762 FuncInfo->addLiveInAttr(VReg, Flags); 3763 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3764 SDValue Store; 3765 3766 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3767 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3768 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3769 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3770 MachinePointerInfo(&*FuncArg), ObjType); 3771 } else { 3772 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3773 // store the whole register as-is to the parameter save area 3774 // slot. 3775 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3776 MachinePointerInfo(&*FuncArg)); 3777 } 3778 3779 MemOps.push_back(Store); 3780 } 3781 // Whether we copied from a register or not, advance the offset 3782 // into the parameter save area by a full doubleword. 3783 ArgOffset += PtrByteSize; 3784 continue; 3785 } 3786 3787 // The value of the object is its address, which is the address of 3788 // its first stack doubleword. 3789 InVals.push_back(FIN); 3790 3791 // Store whatever pieces of the object are in registers to memory. 3792 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3793 if (GPR_idx == Num_GPR_Regs) 3794 break; 3795 3796 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3797 FuncInfo->addLiveInAttr(VReg, Flags); 3798 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3799 SDValue Addr = FIN; 3800 if (j) { 3801 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3802 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3803 } 3804 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3805 MachinePointerInfo(&*FuncArg, j)); 3806 MemOps.push_back(Store); 3807 ++GPR_idx; 3808 } 3809 ArgOffset += ArgSize; 3810 continue; 3811 } 3812 3813 switch (ObjectVT.getSimpleVT().SimpleTy) { 3814 default: llvm_unreachable("Unhandled argument type!"); 3815 case MVT::i1: 3816 case MVT::i32: 3817 case MVT::i64: 3818 if (Flags.isNest()) { 3819 // The 'nest' parameter, if any, is passed in R11. 3820 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3821 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3822 3823 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3824 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3825 3826 break; 3827 } 3828 3829 // These can be scalar arguments or elements of an integer array type 3830 // passed directly. Clang may use those instead of "byval" aggregate 3831 // types to avoid forcing arguments to memory unnecessarily. 3832 if (GPR_idx != Num_GPR_Regs) { 3833 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3834 FuncInfo->addLiveInAttr(VReg, Flags); 3835 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3836 3837 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3838 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3839 // value to MVT::i64 and then truncate to the correct register size. 3840 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3841 } else { 3842 if (CallConv == CallingConv::Fast) 3843 ComputeArgOffset(); 3844 3845 needsLoad = true; 3846 ArgSize = PtrByteSize; 3847 } 3848 if (CallConv != CallingConv::Fast || needsLoad) 3849 ArgOffset += 8; 3850 break; 3851 3852 case MVT::f32: 3853 case MVT::f64: 3854 // These can be scalar arguments or elements of a float array type 3855 // passed directly. The latter are used to implement ELFv2 homogenous 3856 // float aggregates. 3857 if (FPR_idx != Num_FPR_Regs) { 3858 unsigned VReg; 3859 3860 if (ObjectVT == MVT::f32) 3861 VReg = MF.addLiveIn(FPR[FPR_idx], 3862 Subtarget.hasP8Vector() 3863 ? &PPC::VSSRCRegClass 3864 : &PPC::F4RCRegClass); 3865 else 3866 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3867 ? &PPC::VSFRCRegClass 3868 : &PPC::F8RCRegClass); 3869 3870 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3871 ++FPR_idx; 3872 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3873 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3874 // once we support fp <-> gpr moves. 3875 3876 // This can only ever happen in the presence of f32 array types, 3877 // since otherwise we never run out of FPRs before running out 3878 // of GPRs. 3879 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3880 FuncInfo->addLiveInAttr(VReg, Flags); 3881 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3882 3883 if (ObjectVT == MVT::f32) { 3884 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3885 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3886 DAG.getConstant(32, dl, MVT::i32)); 3887 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3888 } 3889 3890 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3891 } else { 3892 if (CallConv == CallingConv::Fast) 3893 ComputeArgOffset(); 3894 3895 needsLoad = true; 3896 } 3897 3898 // When passing an array of floats, the array occupies consecutive 3899 // space in the argument area; only round up to the next doubleword 3900 // at the end of the array. Otherwise, each float takes 8 bytes. 3901 if (CallConv != CallingConv::Fast || needsLoad) { 3902 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3903 ArgOffset += ArgSize; 3904 if (Flags.isInConsecutiveRegsLast()) 3905 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3906 } 3907 break; 3908 case MVT::v4f32: 3909 case MVT::v4i32: 3910 case MVT::v8i16: 3911 case MVT::v16i8: 3912 case MVT::v2f64: 3913 case MVT::v2i64: 3914 case MVT::v1i128: 3915 case MVT::f128: 3916 if (!Subtarget.hasQPX()) { 3917 // These can be scalar arguments or elements of a vector array type 3918 // passed directly. The latter are used to implement ELFv2 homogenous 3919 // vector aggregates. 3920 if (VR_idx != Num_VR_Regs) { 3921 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3922 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3923 ++VR_idx; 3924 } else { 3925 if (CallConv == CallingConv::Fast) 3926 ComputeArgOffset(); 3927 needsLoad = true; 3928 } 3929 if (CallConv != CallingConv::Fast || needsLoad) 3930 ArgOffset += 16; 3931 break; 3932 } // not QPX 3933 3934 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3935 "Invalid QPX parameter type"); 3936 LLVM_FALLTHROUGH; 3937 3938 case MVT::v4f64: 3939 case MVT::v4i1: 3940 // QPX vectors are treated like their scalar floating-point subregisters 3941 // (except that they're larger). 3942 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3943 if (QFPR_idx != Num_QFPR_Regs) { 3944 const TargetRegisterClass *RC; 3945 switch (ObjectVT.getSimpleVT().SimpleTy) { 3946 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3947 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3948 default: RC = &PPC::QBRCRegClass; break; 3949 } 3950 3951 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3952 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3953 ++QFPR_idx; 3954 } else { 3955 if (CallConv == CallingConv::Fast) 3956 ComputeArgOffset(); 3957 needsLoad = true; 3958 } 3959 if (CallConv != CallingConv::Fast || needsLoad) 3960 ArgOffset += Sz; 3961 break; 3962 } 3963 3964 // We need to load the argument to a virtual register if we determined 3965 // above that we ran out of physical registers of the appropriate type. 3966 if (needsLoad) { 3967 if (ObjSize < ArgSize && !isLittleEndian) 3968 CurArgOffset += ArgSize - ObjSize; 3969 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3970 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3971 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 3972 } 3973 3974 InVals.push_back(ArgVal); 3975 } 3976 3977 // Area that is at least reserved in the caller of this function. 3978 unsigned MinReservedArea; 3979 if (HasParameterArea) 3980 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3981 else 3982 MinReservedArea = LinkageSize; 3983 3984 // Set the size that is at least reserved in caller of this function. Tail 3985 // call optimized functions' reserved stack space needs to be aligned so that 3986 // taking the difference between two stack areas will result in an aligned 3987 // stack. 3988 MinReservedArea = 3989 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3990 FuncInfo->setMinReservedArea(MinReservedArea); 3991 3992 // If the function takes variable number of arguments, make a frame index for 3993 // the start of the first vararg value... for expansion of llvm.va_start. 3994 if (isVarArg) { 3995 int Depth = ArgOffset; 3996 3997 FuncInfo->setVarArgsFrameIndex( 3998 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 3999 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4000 4001 // If this function is vararg, store any remaining integer argument regs 4002 // to their spots on the stack so that they may be loaded by dereferencing 4003 // the result of va_next. 4004 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4005 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4006 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4007 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4008 SDValue Store = 4009 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4010 MemOps.push_back(Store); 4011 // Increment the address by four for the next argument to store 4012 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4013 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4014 } 4015 } 4016 4017 if (!MemOps.empty()) 4018 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4019 4020 return Chain; 4021 } 4022 4023 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4024 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4025 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4026 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4027 // TODO: add description of PPC stack frame format, or at least some docs. 4028 // 4029 MachineFunction &MF = DAG.getMachineFunction(); 4030 MachineFrameInfo &MFI = MF.getFrameInfo(); 4031 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4032 4033 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4034 bool isPPC64 = PtrVT == MVT::i64; 4035 // Potential tail calls could cause overwriting of argument stack slots. 4036 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4037 (CallConv == CallingConv::Fast)); 4038 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4039 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4040 unsigned ArgOffset = LinkageSize; 4041 // Area that is at least reserved in caller of this function. 4042 unsigned MinReservedArea = ArgOffset; 4043 4044 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4045 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4046 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4047 }; 4048 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4049 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4050 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4051 }; 4052 static const MCPhysReg VR[] = { 4053 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4054 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4055 }; 4056 4057 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4058 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4059 const unsigned Num_VR_Regs = array_lengthof( VR); 4060 4061 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4062 4063 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4064 4065 // In 32-bit non-varargs functions, the stack space for vectors is after the 4066 // stack space for non-vectors. We do not use this space unless we have 4067 // too many vectors to fit in registers, something that only occurs in 4068 // constructed examples:), but we have to walk the arglist to figure 4069 // that out...for the pathological case, compute VecArgOffset as the 4070 // start of the vector parameter area. Computing VecArgOffset is the 4071 // entire point of the following loop. 4072 unsigned VecArgOffset = ArgOffset; 4073 if (!isVarArg && !isPPC64) { 4074 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4075 ++ArgNo) { 4076 EVT ObjectVT = Ins[ArgNo].VT; 4077 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4078 4079 if (Flags.isByVal()) { 4080 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4081 unsigned ObjSize = Flags.getByValSize(); 4082 unsigned ArgSize = 4083 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4084 VecArgOffset += ArgSize; 4085 continue; 4086 } 4087 4088 switch(ObjectVT.getSimpleVT().SimpleTy) { 4089 default: llvm_unreachable("Unhandled argument type!"); 4090 case MVT::i1: 4091 case MVT::i32: 4092 case MVT::f32: 4093 VecArgOffset += 4; 4094 break; 4095 case MVT::i64: // PPC64 4096 case MVT::f64: 4097 // FIXME: We are guaranteed to be !isPPC64 at this point. 4098 // Does MVT::i64 apply? 4099 VecArgOffset += 8; 4100 break; 4101 case MVT::v4f32: 4102 case MVT::v4i32: 4103 case MVT::v8i16: 4104 case MVT::v16i8: 4105 // Nothing to do, we're only looking at Nonvector args here. 4106 break; 4107 } 4108 } 4109 } 4110 // We've found where the vector parameter area in memory is. Skip the 4111 // first 12 parameters; these don't use that memory. 4112 VecArgOffset = ((VecArgOffset+15)/16)*16; 4113 VecArgOffset += 12*16; 4114 4115 // Add DAG nodes to load the arguments or copy them out of registers. On 4116 // entry to a function on PPC, the arguments start after the linkage area, 4117 // although the first ones are often in registers. 4118 4119 SmallVector<SDValue, 8> MemOps; 4120 unsigned nAltivecParamsAtEnd = 0; 4121 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4122 unsigned CurArgIdx = 0; 4123 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4124 SDValue ArgVal; 4125 bool needsLoad = false; 4126 EVT ObjectVT = Ins[ArgNo].VT; 4127 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4128 unsigned ArgSize = ObjSize; 4129 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4130 if (Ins[ArgNo].isOrigArg()) { 4131 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4132 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4133 } 4134 unsigned CurArgOffset = ArgOffset; 4135 4136 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4137 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4138 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4139 if (isVarArg || isPPC64) { 4140 MinReservedArea = ((MinReservedArea+15)/16)*16; 4141 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4142 Flags, 4143 PtrByteSize); 4144 } else nAltivecParamsAtEnd++; 4145 } else 4146 // Calculate min reserved area. 4147 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4148 Flags, 4149 PtrByteSize); 4150 4151 // FIXME the codegen can be much improved in some cases. 4152 // We do not have to keep everything in memory. 4153 if (Flags.isByVal()) { 4154 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4155 4156 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4157 ObjSize = Flags.getByValSize(); 4158 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4159 // Objects of size 1 and 2 are right justified, everything else is 4160 // left justified. This means the memory address is adjusted forwards. 4161 if (ObjSize==1 || ObjSize==2) { 4162 CurArgOffset = CurArgOffset + (4 - ObjSize); 4163 } 4164 // The value of the object is its address. 4165 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4166 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4167 InVals.push_back(FIN); 4168 if (ObjSize==1 || ObjSize==2) { 4169 if (GPR_idx != Num_GPR_Regs) { 4170 unsigned VReg; 4171 if (isPPC64) 4172 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4173 else 4174 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4175 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4176 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4177 SDValue Store = 4178 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4179 MachinePointerInfo(&*FuncArg), ObjType); 4180 MemOps.push_back(Store); 4181 ++GPR_idx; 4182 } 4183 4184 ArgOffset += PtrByteSize; 4185 4186 continue; 4187 } 4188 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4189 // Store whatever pieces of the object are in registers 4190 // to memory. ArgOffset will be the address of the beginning 4191 // of the object. 4192 if (GPR_idx != Num_GPR_Regs) { 4193 unsigned VReg; 4194 if (isPPC64) 4195 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4196 else 4197 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4198 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4199 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4200 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4201 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4202 MachinePointerInfo(&*FuncArg, j)); 4203 MemOps.push_back(Store); 4204 ++GPR_idx; 4205 ArgOffset += PtrByteSize; 4206 } else { 4207 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4208 break; 4209 } 4210 } 4211 continue; 4212 } 4213 4214 switch (ObjectVT.getSimpleVT().SimpleTy) { 4215 default: llvm_unreachable("Unhandled argument type!"); 4216 case MVT::i1: 4217 case MVT::i32: 4218 if (!isPPC64) { 4219 if (GPR_idx != Num_GPR_Regs) { 4220 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4221 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4222 4223 if (ObjectVT == MVT::i1) 4224 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4225 4226 ++GPR_idx; 4227 } else { 4228 needsLoad = true; 4229 ArgSize = PtrByteSize; 4230 } 4231 // All int arguments reserve stack space in the Darwin ABI. 4232 ArgOffset += PtrByteSize; 4233 break; 4234 } 4235 LLVM_FALLTHROUGH; 4236 case MVT::i64: // PPC64 4237 if (GPR_idx != Num_GPR_Regs) { 4238 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4239 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4240 4241 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4242 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4243 // value to MVT::i64 and then truncate to the correct register size. 4244 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4245 4246 ++GPR_idx; 4247 } else { 4248 needsLoad = true; 4249 ArgSize = PtrByteSize; 4250 } 4251 // All int arguments reserve stack space in the Darwin ABI. 4252 ArgOffset += 8; 4253 break; 4254 4255 case MVT::f32: 4256 case MVT::f64: 4257 // Every 4 bytes of argument space consumes one of the GPRs available for 4258 // argument passing. 4259 if (GPR_idx != Num_GPR_Regs) { 4260 ++GPR_idx; 4261 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4262 ++GPR_idx; 4263 } 4264 if (FPR_idx != Num_FPR_Regs) { 4265 unsigned VReg; 4266 4267 if (ObjectVT == MVT::f32) 4268 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4269 else 4270 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4271 4272 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4273 ++FPR_idx; 4274 } else { 4275 needsLoad = true; 4276 } 4277 4278 // All FP arguments reserve stack space in the Darwin ABI. 4279 ArgOffset += isPPC64 ? 8 : ObjSize; 4280 break; 4281 case MVT::v4f32: 4282 case MVT::v4i32: 4283 case MVT::v8i16: 4284 case MVT::v16i8: 4285 // Note that vector arguments in registers don't reserve stack space, 4286 // except in varargs functions. 4287 if (VR_idx != Num_VR_Regs) { 4288 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4289 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4290 if (isVarArg) { 4291 while ((ArgOffset % 16) != 0) { 4292 ArgOffset += PtrByteSize; 4293 if (GPR_idx != Num_GPR_Regs) 4294 GPR_idx++; 4295 } 4296 ArgOffset += 16; 4297 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4298 } 4299 ++VR_idx; 4300 } else { 4301 if (!isVarArg && !isPPC64) { 4302 // Vectors go after all the nonvectors. 4303 CurArgOffset = VecArgOffset; 4304 VecArgOffset += 16; 4305 } else { 4306 // Vectors are aligned. 4307 ArgOffset = ((ArgOffset+15)/16)*16; 4308 CurArgOffset = ArgOffset; 4309 ArgOffset += 16; 4310 } 4311 needsLoad = true; 4312 } 4313 break; 4314 } 4315 4316 // We need to load the argument to a virtual register if we determined above 4317 // that we ran out of physical registers of the appropriate type. 4318 if (needsLoad) { 4319 int FI = MFI.CreateFixedObject(ObjSize, 4320 CurArgOffset + (ArgSize - ObjSize), 4321 isImmutable); 4322 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4323 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4324 } 4325 4326 InVals.push_back(ArgVal); 4327 } 4328 4329 // Allow for Altivec parameters at the end, if needed. 4330 if (nAltivecParamsAtEnd) { 4331 MinReservedArea = ((MinReservedArea+15)/16)*16; 4332 MinReservedArea += 16*nAltivecParamsAtEnd; 4333 } 4334 4335 // Area that is at least reserved in the caller of this function. 4336 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4337 4338 // Set the size that is at least reserved in caller of this function. Tail 4339 // call optimized functions' reserved stack space needs to be aligned so that 4340 // taking the difference between two stack areas will result in an aligned 4341 // stack. 4342 MinReservedArea = 4343 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4344 FuncInfo->setMinReservedArea(MinReservedArea); 4345 4346 // If the function takes variable number of arguments, make a frame index for 4347 // the start of the first vararg value... for expansion of llvm.va_start. 4348 if (isVarArg) { 4349 int Depth = ArgOffset; 4350 4351 FuncInfo->setVarArgsFrameIndex( 4352 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4353 Depth, true)); 4354 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4355 4356 // If this function is vararg, store any remaining integer argument regs 4357 // to their spots on the stack so that they may be loaded by dereferencing 4358 // the result of va_next. 4359 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4360 unsigned VReg; 4361 4362 if (isPPC64) 4363 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4364 else 4365 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4366 4367 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4368 SDValue Store = 4369 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4370 MemOps.push_back(Store); 4371 // Increment the address by four for the next argument to store 4372 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4373 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4374 } 4375 } 4376 4377 if (!MemOps.empty()) 4378 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4379 4380 return Chain; 4381 } 4382 4383 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4384 /// adjusted to accommodate the arguments for the tailcall. 4385 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4386 unsigned ParamSize) { 4387 4388 if (!isTailCall) return 0; 4389 4390 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4391 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4392 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4393 // Remember only if the new adjustment is bigger. 4394 if (SPDiff < FI->getTailCallSPDelta()) 4395 FI->setTailCallSPDelta(SPDiff); 4396 4397 return SPDiff; 4398 } 4399 4400 static bool isFunctionGlobalAddress(SDValue Callee); 4401 4402 static bool 4403 callsShareTOCBase(const Function *Caller, SDValue Callee, 4404 const TargetMachine &TM) { 4405 // If !G, Callee can be an external symbol. 4406 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4407 if (!G) 4408 return false; 4409 4410 // The medium and large code models are expected to provide a sufficiently 4411 // large TOC to provide all data addressing needs of a module with a 4412 // single TOC. Since each module will be addressed with a single TOC then we 4413 // only need to check that caller and callee don't cross dso boundaries. 4414 if (CodeModel::Medium == TM.getCodeModel() || 4415 CodeModel::Large == TM.getCodeModel()) 4416 return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal()); 4417 4418 // Otherwise we need to ensure callee and caller are in the same section, 4419 // since the linker may allocate multiple TOCs, and we don't know which 4420 // sections will belong to the same TOC base. 4421 4422 const GlobalValue *GV = G->getGlobal(); 4423 if (!GV->isStrongDefinitionForLinker()) 4424 return false; 4425 4426 // Any explicitly-specified sections and section prefixes must also match. 4427 // Also, if we're using -ffunction-sections, then each function is always in 4428 // a different section (the same is true for COMDAT functions). 4429 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4430 GV->getSection() != Caller->getSection()) 4431 return false; 4432 if (const auto *F = dyn_cast<Function>(GV)) { 4433 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4434 return false; 4435 } 4436 4437 // If the callee might be interposed, then we can't assume the ultimate call 4438 // target will be in the same section. Even in cases where we can assume that 4439 // interposition won't happen, in any case where the linker might insert a 4440 // stub to allow for interposition, we must generate code as though 4441 // interposition might occur. To understand why this matters, consider a 4442 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4443 // in the same section, but a is in a different module (i.e. has a different 4444 // TOC base pointer). If the linker allows for interposition between b and c, 4445 // then it will generate a stub for the call edge between b and c which will 4446 // save the TOC pointer into the designated stack slot allocated by b. If we 4447 // return true here, and therefore allow a tail call between b and c, that 4448 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4449 // pointer into the stack slot allocated by a (where the a -> b stub saved 4450 // a's TOC base pointer). If we're not considering a tail call, but rather, 4451 // whether a nop is needed after the call instruction in b, because the linker 4452 // will insert a stub, it might complain about a missing nop if we omit it 4453 // (although many don't complain in this case). 4454 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4455 return false; 4456 4457 return true; 4458 } 4459 4460 static bool 4461 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4462 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4463 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 4464 4465 const unsigned PtrByteSize = 8; 4466 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4467 4468 static const MCPhysReg GPR[] = { 4469 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4470 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4471 }; 4472 static const MCPhysReg VR[] = { 4473 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4474 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4475 }; 4476 4477 const unsigned NumGPRs = array_lengthof(GPR); 4478 const unsigned NumFPRs = 13; 4479 const unsigned NumVRs = array_lengthof(VR); 4480 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4481 4482 unsigned NumBytes = LinkageSize; 4483 unsigned AvailableFPRs = NumFPRs; 4484 unsigned AvailableVRs = NumVRs; 4485 4486 for (const ISD::OutputArg& Param : Outs) { 4487 if (Param.Flags.isNest()) continue; 4488 4489 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4490 PtrByteSize, LinkageSize, ParamAreaSize, 4491 NumBytes, AvailableFPRs, AvailableVRs, 4492 Subtarget.hasQPX())) 4493 return true; 4494 } 4495 return false; 4496 } 4497 4498 static bool 4499 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4500 if (CS.arg_size() != CallerFn->arg_size()) 4501 return false; 4502 4503 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4504 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4505 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4506 4507 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4508 const Value* CalleeArg = *CalleeArgIter; 4509 const Value* CallerArg = &(*CallerArgIter); 4510 if (CalleeArg == CallerArg) 4511 continue; 4512 4513 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4514 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4515 // } 4516 // 1st argument of callee is undef and has the same type as caller. 4517 if (CalleeArg->getType() == CallerArg->getType() && 4518 isa<UndefValue>(CalleeArg)) 4519 continue; 4520 4521 return false; 4522 } 4523 4524 return true; 4525 } 4526 4527 // Returns true if TCO is possible between the callers and callees 4528 // calling conventions. 4529 static bool 4530 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4531 CallingConv::ID CalleeCC) { 4532 // Tail calls are possible with fastcc and ccc. 4533 auto isTailCallableCC = [] (CallingConv::ID CC){ 4534 return CC == CallingConv::C || CC == CallingConv::Fast; 4535 }; 4536 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4537 return false; 4538 4539 // We can safely tail call both fastcc and ccc callees from a c calling 4540 // convention caller. If the caller is fastcc, we may have less stack space 4541 // than a non-fastcc caller with the same signature so disable tail-calls in 4542 // that case. 4543 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4544 } 4545 4546 bool 4547 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4548 SDValue Callee, 4549 CallingConv::ID CalleeCC, 4550 ImmutableCallSite CS, 4551 bool isVarArg, 4552 const SmallVectorImpl<ISD::OutputArg> &Outs, 4553 const SmallVectorImpl<ISD::InputArg> &Ins, 4554 SelectionDAG& DAG) const { 4555 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4556 4557 if (DisableSCO && !TailCallOpt) return false; 4558 4559 // Variadic argument functions are not supported. 4560 if (isVarArg) return false; 4561 4562 auto &Caller = DAG.getMachineFunction().getFunction(); 4563 // Check that the calling conventions are compatible for tco. 4564 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4565 return false; 4566 4567 // Caller contains any byval parameter is not supported. 4568 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4569 return false; 4570 4571 // Callee contains any byval parameter is not supported, too. 4572 // Note: This is a quick work around, because in some cases, e.g. 4573 // caller's stack size > callee's stack size, we are still able to apply 4574 // sibling call optimization. For example, gcc is able to do SCO for caller1 4575 // in the following example, but not for caller2. 4576 // struct test { 4577 // long int a; 4578 // char ary[56]; 4579 // } gTest; 4580 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4581 // b->a = v.a; 4582 // return 0; 4583 // } 4584 // void caller1(struct test a, struct test c, struct test *b) { 4585 // callee(gTest, b); } 4586 // void caller2(struct test *b) { callee(gTest, b); } 4587 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4588 return false; 4589 4590 // If callee and caller use different calling conventions, we cannot pass 4591 // parameters on stack since offsets for the parameter area may be different. 4592 if (Caller.getCallingConv() != CalleeCC && 4593 needStackSlotPassParameters(Subtarget, Outs)) 4594 return false; 4595 4596 // No TCO/SCO on indirect call because Caller have to restore its TOC 4597 if (!isFunctionGlobalAddress(Callee) && 4598 !isa<ExternalSymbolSDNode>(Callee)) 4599 return false; 4600 4601 // If the caller and callee potentially have different TOC bases then we 4602 // cannot tail call since we need to restore the TOC pointer after the call. 4603 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4604 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4605 return false; 4606 4607 // TCO allows altering callee ABI, so we don't have to check further. 4608 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4609 return true; 4610 4611 if (DisableSCO) return false; 4612 4613 // If callee use the same argument list that caller is using, then we can 4614 // apply SCO on this case. If it is not, then we need to check if callee needs 4615 // stack for passing arguments. 4616 if (!hasSameArgumentList(&Caller, CS) && 4617 needStackSlotPassParameters(Subtarget, Outs)) { 4618 return false; 4619 } 4620 4621 return true; 4622 } 4623 4624 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4625 /// for tail call optimization. Targets which want to do tail call 4626 /// optimization should implement this function. 4627 bool 4628 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4629 CallingConv::ID CalleeCC, 4630 bool isVarArg, 4631 const SmallVectorImpl<ISD::InputArg> &Ins, 4632 SelectionDAG& DAG) const { 4633 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4634 return false; 4635 4636 // Variable argument functions are not supported. 4637 if (isVarArg) 4638 return false; 4639 4640 MachineFunction &MF = DAG.getMachineFunction(); 4641 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4642 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4643 // Functions containing by val parameters are not supported. 4644 for (unsigned i = 0; i != Ins.size(); i++) { 4645 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4646 if (Flags.isByVal()) return false; 4647 } 4648 4649 // Non-PIC/GOT tail calls are supported. 4650 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4651 return true; 4652 4653 // At the moment we can only do local tail calls (in same module, hidden 4654 // or protected) if we are generating PIC. 4655 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4656 return G->getGlobal()->hasHiddenVisibility() 4657 || G->getGlobal()->hasProtectedVisibility(); 4658 } 4659 4660 return false; 4661 } 4662 4663 /// isCallCompatibleAddress - Return the immediate to use if the specified 4664 /// 32-bit value is representable in the immediate field of a BxA instruction. 4665 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4666 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4667 if (!C) return nullptr; 4668 4669 int Addr = C->getZExtValue(); 4670 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4671 SignExtend32<26>(Addr) != Addr) 4672 return nullptr; // Top 6 bits have to be sext of immediate. 4673 4674 return DAG 4675 .getConstant( 4676 (int)C->getZExtValue() >> 2, SDLoc(Op), 4677 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4678 .getNode(); 4679 } 4680 4681 namespace { 4682 4683 struct TailCallArgumentInfo { 4684 SDValue Arg; 4685 SDValue FrameIdxOp; 4686 int FrameIdx = 0; 4687 4688 TailCallArgumentInfo() = default; 4689 }; 4690 4691 } // end anonymous namespace 4692 4693 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4694 static void StoreTailCallArgumentsToStackSlot( 4695 SelectionDAG &DAG, SDValue Chain, 4696 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4697 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4698 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4699 SDValue Arg = TailCallArgs[i].Arg; 4700 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4701 int FI = TailCallArgs[i].FrameIdx; 4702 // Store relative to framepointer. 4703 MemOpChains.push_back(DAG.getStore( 4704 Chain, dl, Arg, FIN, 4705 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4706 } 4707 } 4708 4709 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4710 /// the appropriate stack slot for the tail call optimized function call. 4711 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4712 SDValue OldRetAddr, SDValue OldFP, 4713 int SPDiff, const SDLoc &dl) { 4714 if (SPDiff) { 4715 // Calculate the new stack slot for the return address. 4716 MachineFunction &MF = DAG.getMachineFunction(); 4717 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4718 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4719 bool isPPC64 = Subtarget.isPPC64(); 4720 int SlotSize = isPPC64 ? 8 : 4; 4721 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4722 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4723 NewRetAddrLoc, true); 4724 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4725 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4726 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4727 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4728 4729 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4730 // slot as the FP is never overwritten. 4731 if (Subtarget.isDarwinABI()) { 4732 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4733 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4734 true); 4735 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4736 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4737 MachinePointerInfo::getFixedStack( 4738 DAG.getMachineFunction(), NewFPIdx)); 4739 } 4740 } 4741 return Chain; 4742 } 4743 4744 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4745 /// the position of the argument. 4746 static void 4747 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4748 SDValue Arg, int SPDiff, unsigned ArgOffset, 4749 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4750 int Offset = ArgOffset + SPDiff; 4751 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4752 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4753 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4754 SDValue FIN = DAG.getFrameIndex(FI, VT); 4755 TailCallArgumentInfo Info; 4756 Info.Arg = Arg; 4757 Info.FrameIdxOp = FIN; 4758 Info.FrameIdx = FI; 4759 TailCallArguments.push_back(Info); 4760 } 4761 4762 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4763 /// stack slot. Returns the chain as result and the loaded frame pointers in 4764 /// LROpOut/FPOpout. Used when tail calling. 4765 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4766 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4767 SDValue &FPOpOut, const SDLoc &dl) const { 4768 if (SPDiff) { 4769 // Load the LR and FP stack slot for later adjusting. 4770 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4771 LROpOut = getReturnAddrFrameIndex(DAG); 4772 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4773 Chain = SDValue(LROpOut.getNode(), 1); 4774 4775 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4776 // slot as the FP is never overwritten. 4777 if (Subtarget.isDarwinABI()) { 4778 FPOpOut = getFramePointerFrameIndex(DAG); 4779 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4780 Chain = SDValue(FPOpOut.getNode(), 1); 4781 } 4782 } 4783 return Chain; 4784 } 4785 4786 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4787 /// by "Src" to address "Dst" of size "Size". Alignment information is 4788 /// specified by the specific parameter attribute. The copy will be passed as 4789 /// a byval function parameter. 4790 /// Sometimes what we are copying is the end of a larger object, the part that 4791 /// does not fit in registers. 4792 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4793 SDValue Chain, ISD::ArgFlagsTy Flags, 4794 SelectionDAG &DAG, const SDLoc &dl) { 4795 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4796 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4797 false, false, false, MachinePointerInfo(), 4798 MachinePointerInfo()); 4799 } 4800 4801 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4802 /// tail calls. 4803 static void LowerMemOpCallTo( 4804 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4805 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4806 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4807 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4808 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4809 if (!isTailCall) { 4810 if (isVector) { 4811 SDValue StackPtr; 4812 if (isPPC64) 4813 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4814 else 4815 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4816 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4817 DAG.getConstant(ArgOffset, dl, PtrVT)); 4818 } 4819 MemOpChains.push_back( 4820 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4821 // Calculate and remember argument location. 4822 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4823 TailCallArguments); 4824 } 4825 4826 static void 4827 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4828 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4829 SDValue FPOp, 4830 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4831 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4832 // might overwrite each other in case of tail call optimization. 4833 SmallVector<SDValue, 8> MemOpChains2; 4834 // Do not flag preceding copytoreg stuff together with the following stuff. 4835 InFlag = SDValue(); 4836 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4837 MemOpChains2, dl); 4838 if (!MemOpChains2.empty()) 4839 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4840 4841 // Store the return address to the appropriate stack slot. 4842 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4843 4844 // Emit callseq_end just before tailcall node. 4845 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4846 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4847 InFlag = Chain.getValue(1); 4848 } 4849 4850 // Is this global address that of a function that can be called by name? (as 4851 // opposed to something that must hold a descriptor for an indirect call). 4852 static bool isFunctionGlobalAddress(SDValue Callee) { 4853 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4854 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4855 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4856 return false; 4857 4858 return G->getGlobal()->getValueType()->isFunctionTy(); 4859 } 4860 4861 return false; 4862 } 4863 4864 static unsigned 4865 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4866 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4867 bool isPatchPoint, bool hasNest, 4868 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4869 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4870 ImmutableCallSite CS, const PPCSubtarget &Subtarget) { 4871 bool isPPC64 = Subtarget.isPPC64(); 4872 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4873 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4874 4875 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4876 NodeTys.push_back(MVT::Other); // Returns a chain 4877 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4878 4879 unsigned CallOpc = PPCISD::CALL; 4880 4881 bool needIndirectCall = true; 4882 if (!isSVR4ABI || !isPPC64) 4883 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4884 // If this is an absolute destination address, use the munged value. 4885 Callee = SDValue(Dest, 0); 4886 needIndirectCall = false; 4887 } 4888 4889 // PC-relative references to external symbols should go through $stub, unless 4890 // we're building with the leopard linker or later, which automatically 4891 // synthesizes these stubs. 4892 const TargetMachine &TM = DAG.getTarget(); 4893 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 4894 const GlobalValue *GV = nullptr; 4895 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4896 GV = G->getGlobal(); 4897 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4898 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4899 4900 if (isFunctionGlobalAddress(Callee)) { 4901 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4902 // A call to a TLS address is actually an indirect call to a 4903 // thread-specific pointer. 4904 unsigned OpFlags = 0; 4905 if (UsePlt) 4906 OpFlags = PPCII::MO_PLT; 4907 4908 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4909 // every direct call is) turn it into a TargetGlobalAddress / 4910 // TargetExternalSymbol node so that legalize doesn't hack it. 4911 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4912 Callee.getValueType(), 0, OpFlags); 4913 needIndirectCall = false; 4914 } 4915 4916 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4917 unsigned char OpFlags = 0; 4918 4919 if (UsePlt) 4920 OpFlags = PPCII::MO_PLT; 4921 4922 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4923 OpFlags); 4924 needIndirectCall = false; 4925 } 4926 4927 if (isPatchPoint) { 4928 // We'll form an invalid direct call when lowering a patchpoint; the full 4929 // sequence for an indirect call is complicated, and many of the 4930 // instructions introduced might have side effects (and, thus, can't be 4931 // removed later). The call itself will be removed as soon as the 4932 // argument/return lowering is complete, so the fact that it has the wrong 4933 // kind of operands should not really matter. 4934 needIndirectCall = false; 4935 } 4936 4937 if (needIndirectCall) { 4938 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4939 // to do the call, we can't use PPCISD::CALL. 4940 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4941 4942 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4943 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4944 // entry point, but to the function descriptor (the function entry point 4945 // address is part of the function descriptor though). 4946 // The function descriptor is a three doubleword structure with the 4947 // following fields: function entry point, TOC base address and 4948 // environment pointer. 4949 // Thus for a call through a function pointer, the following actions need 4950 // to be performed: 4951 // 1. Save the TOC of the caller in the TOC save area of its stack 4952 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4953 // 2. Load the address of the function entry point from the function 4954 // descriptor. 4955 // 3. Load the TOC of the callee from the function descriptor into r2. 4956 // 4. Load the environment pointer from the function descriptor into 4957 // r11. 4958 // 5. Branch to the function entry point address. 4959 // 6. On return of the callee, the TOC of the caller needs to be 4960 // restored (this is done in FinishCall()). 4961 // 4962 // The loads are scheduled at the beginning of the call sequence, and the 4963 // register copies are flagged together to ensure that no other 4964 // operations can be scheduled in between. E.g. without flagging the 4965 // copies together, a TOC access in the caller could be scheduled between 4966 // the assignment of the callee TOC and the branch to the callee, which 4967 // results in the TOC access going through the TOC of the callee instead 4968 // of going through the TOC of the caller, which leads to incorrect code. 4969 4970 // Load the address of the function entry point from the function 4971 // descriptor. 4972 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4973 if (LDChain.getValueType() == MVT::Glue) 4974 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4975 4976 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 4977 ? (MachineMemOperand::MODereferenceable | 4978 MachineMemOperand::MOInvariant) 4979 : MachineMemOperand::MONone; 4980 4981 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 4982 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4983 /* Alignment = */ 8, MMOFlags); 4984 4985 // Load environment pointer into r11. 4986 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4987 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4988 SDValue LoadEnvPtr = 4989 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 4990 /* Alignment = */ 8, MMOFlags); 4991 4992 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4993 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4994 SDValue TOCPtr = 4995 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 4996 /* Alignment = */ 8, MMOFlags); 4997 4998 setUsesTOCBasePtr(DAG); 4999 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 5000 InFlag); 5001 Chain = TOCVal.getValue(0); 5002 InFlag = TOCVal.getValue(1); 5003 5004 // If the function call has an explicit 'nest' parameter, it takes the 5005 // place of the environment pointer. 5006 if (!hasNest) { 5007 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 5008 InFlag); 5009 5010 Chain = EnvVal.getValue(0); 5011 InFlag = EnvVal.getValue(1); 5012 } 5013 5014 MTCTROps[0] = Chain; 5015 MTCTROps[1] = LoadFuncPtr; 5016 MTCTROps[2] = InFlag; 5017 } 5018 5019 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 5020 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 5021 InFlag = Chain.getValue(1); 5022 5023 NodeTys.clear(); 5024 NodeTys.push_back(MVT::Other); 5025 NodeTys.push_back(MVT::Glue); 5026 Ops.push_back(Chain); 5027 CallOpc = PPCISD::BCTRL; 5028 Callee.setNode(nullptr); 5029 // Add use of X11 (holding environment pointer) 5030 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 5031 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 5032 // Add CTR register as callee so a bctr can be emitted later. 5033 if (isTailCall) 5034 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 5035 } 5036 5037 // If this is a direct call, pass the chain and the callee. 5038 if (Callee.getNode()) { 5039 Ops.push_back(Chain); 5040 Ops.push_back(Callee); 5041 } 5042 // If this is a tail call add stack pointer delta. 5043 if (isTailCall) 5044 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5045 5046 // Add argument registers to the end of the list so that they are known live 5047 // into the call. 5048 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5049 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5050 RegsToPass[i].second.getValueType())); 5051 5052 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 5053 // into the call. 5054 // We do need to reserve X2 to appease the verifier for the PATCHPOINT. 5055 if (isSVR4ABI && isPPC64) { 5056 setUsesTOCBasePtr(DAG); 5057 5058 // We cannot add X2 as an operand here for PATCHPOINT, because there is no 5059 // way to mark dependencies as implicit here. We will add the X2 dependency 5060 // in EmitInstrWithCustomInserter. 5061 if (!isPatchPoint) 5062 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 5063 } 5064 5065 return CallOpc; 5066 } 5067 5068 SDValue PPCTargetLowering::LowerCallResult( 5069 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5070 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5071 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5072 SmallVector<CCValAssign, 16> RVLocs; 5073 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5074 *DAG.getContext()); 5075 5076 CCRetInfo.AnalyzeCallResult( 5077 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5078 ? RetCC_PPC_Cold 5079 : RetCC_PPC); 5080 5081 // Copy all of the result registers out of their specified physreg. 5082 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5083 CCValAssign &VA = RVLocs[i]; 5084 assert(VA.isRegLoc() && "Can only return in registers!"); 5085 5086 SDValue Val = DAG.getCopyFromReg(Chain, dl, 5087 VA.getLocReg(), VA.getLocVT(), InFlag); 5088 Chain = Val.getValue(1); 5089 InFlag = Val.getValue(2); 5090 5091 switch (VA.getLocInfo()) { 5092 default: llvm_unreachable("Unknown loc info!"); 5093 case CCValAssign::Full: break; 5094 case CCValAssign::AExt: 5095 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5096 break; 5097 case CCValAssign::ZExt: 5098 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5099 DAG.getValueType(VA.getValVT())); 5100 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5101 break; 5102 case CCValAssign::SExt: 5103 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5104 DAG.getValueType(VA.getValVT())); 5105 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5106 break; 5107 } 5108 5109 InVals.push_back(Val); 5110 } 5111 5112 return Chain; 5113 } 5114 5115 SDValue PPCTargetLowering::FinishCall( 5116 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5117 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5118 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 5119 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5120 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5121 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5122 std::vector<EVT> NodeTys; 5123 SmallVector<SDValue, 8> Ops; 5124 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 5125 SPDiff, isTailCall, isPatchPoint, hasNest, 5126 RegsToPass, Ops, NodeTys, CS, Subtarget); 5127 5128 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5129 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 5130 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5131 5132 // When performing tail call optimization the callee pops its arguments off 5133 // the stack. Account for this here so these bytes can be pushed back on in 5134 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5135 int BytesCalleePops = 5136 (CallConv == CallingConv::Fast && 5137 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 5138 5139 // Add a register mask operand representing the call-preserved registers. 5140 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5141 const uint32_t *Mask = 5142 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5143 assert(Mask && "Missing call preserved mask for calling convention"); 5144 Ops.push_back(DAG.getRegisterMask(Mask)); 5145 5146 if (InFlag.getNode()) 5147 Ops.push_back(InFlag); 5148 5149 // Emit tail call. 5150 if (isTailCall) { 5151 assert(((Callee.getOpcode() == ISD::Register && 5152 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5153 Callee.getOpcode() == ISD::TargetExternalSymbol || 5154 Callee.getOpcode() == ISD::TargetGlobalAddress || 5155 isa<ConstantSDNode>(Callee)) && 5156 "Expecting an global address, external symbol, absolute value or register"); 5157 5158 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5159 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 5160 } 5161 5162 // Add a NOP immediately after the branch instruction when using the 64-bit 5163 // SVR4 or the AIX ABI. 5164 // At link time, if caller and callee are in a different module and 5165 // thus have a different TOC, the call will be replaced with a call to a stub 5166 // function which saves the current TOC, loads the TOC of the callee and 5167 // branches to the callee. The NOP will be replaced with a load instruction 5168 // which restores the TOC of the caller from the TOC save slot of the current 5169 // stack frame. If caller and callee belong to the same module (and have the 5170 // same TOC), the NOP will remain unchanged, or become some other NOP. 5171 5172 MachineFunction &MF = DAG.getMachineFunction(); 5173 if (!isTailCall && !isPatchPoint && 5174 ((Subtarget.isSVR4ABI() && Subtarget.isPPC64()) || 5175 Subtarget.isAIXABI())) { 5176 if (CallOpc == PPCISD::BCTRL) { 5177 if (Subtarget.isAIXABI()) 5178 report_fatal_error("Indirect call on AIX is not implemented."); 5179 5180 // This is a call through a function pointer. 5181 // Restore the caller TOC from the save area into R2. 5182 // See PrepareCall() for more information about calls through function 5183 // pointers in the 64-bit SVR4 ABI. 5184 // We are using a target-specific load with r2 hard coded, because the 5185 // result of a target-independent load would never go directly into r2, 5186 // since r2 is a reserved register (which prevents the register allocator 5187 // from allocating it), resulting in an additional register being 5188 // allocated and an unnecessary move instruction being generated. 5189 CallOpc = PPCISD::BCTRL_LOAD_TOC; 5190 5191 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5192 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 5193 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5194 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5195 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5196 5197 // The address needs to go after the chain input but before the flag (or 5198 // any other variadic arguments). 5199 Ops.insert(std::next(Ops.begin()), AddTOC); 5200 } else if (CallOpc == PPCISD::CALL && 5201 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) { 5202 // Otherwise insert NOP for non-local calls. 5203 CallOpc = PPCISD::CALL_NOP; 5204 } 5205 } 5206 5207 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 5208 InFlag = Chain.getValue(1); 5209 5210 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5211 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5212 InFlag, dl); 5213 if (!Ins.empty()) 5214 InFlag = Chain.getValue(1); 5215 5216 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 5217 Ins, dl, DAG, InVals); 5218 } 5219 5220 SDValue 5221 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5222 SmallVectorImpl<SDValue> &InVals) const { 5223 SelectionDAG &DAG = CLI.DAG; 5224 SDLoc &dl = CLI.DL; 5225 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5226 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5227 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5228 SDValue Chain = CLI.Chain; 5229 SDValue Callee = CLI.Callee; 5230 bool &isTailCall = CLI.IsTailCall; 5231 CallingConv::ID CallConv = CLI.CallConv; 5232 bool isVarArg = CLI.IsVarArg; 5233 bool isPatchPoint = CLI.IsPatchPoint; 5234 ImmutableCallSite CS = CLI.CS; 5235 5236 if (isTailCall) { 5237 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5238 isTailCall = false; 5239 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5240 isTailCall = 5241 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5242 isVarArg, Outs, Ins, DAG); 5243 else 5244 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5245 Ins, DAG); 5246 if (isTailCall) { 5247 ++NumTailCalls; 5248 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5249 ++NumSiblingCalls; 5250 5251 assert(isa<GlobalAddressSDNode>(Callee) && 5252 "Callee should be an llvm::Function object."); 5253 LLVM_DEBUG( 5254 const GlobalValue *GV = 5255 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5256 const unsigned Width = 5257 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5258 dbgs() << "TCO caller: " 5259 << left_justify(DAG.getMachineFunction().getName(), Width) 5260 << ", callee linkage: " << GV->getVisibility() << ", " 5261 << GV->getLinkage() << "\n"); 5262 } 5263 } 5264 5265 if (!isTailCall && CS && CS.isMustTailCall()) 5266 report_fatal_error("failed to perform tail call elimination on a call " 5267 "site marked musttail"); 5268 5269 // When long calls (i.e. indirect calls) are always used, calls are always 5270 // made via function pointer. If we have a function name, first translate it 5271 // into a pointer. 5272 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5273 !isTailCall) 5274 Callee = LowerGlobalAddress(Callee, DAG); 5275 5276 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5277 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5278 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5279 dl, DAG, InVals, CS); 5280 5281 if (Subtarget.isSVR4ABI()) 5282 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5283 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5284 dl, DAG, InVals, CS); 5285 5286 if (Subtarget.isAIXABI()) 5287 return LowerCall_AIX(Chain, Callee, CallConv, isVarArg, 5288 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5289 dl, DAG, InVals, CS); 5290 5291 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5292 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5293 dl, DAG, InVals, CS); 5294 } 5295 5296 SDValue PPCTargetLowering::LowerCall_32SVR4( 5297 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5298 bool isTailCall, bool isPatchPoint, 5299 const SmallVectorImpl<ISD::OutputArg> &Outs, 5300 const SmallVectorImpl<SDValue> &OutVals, 5301 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5302 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5303 ImmutableCallSite CS) const { 5304 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5305 // of the 32-bit SVR4 ABI stack frame layout. 5306 5307 assert((CallConv == CallingConv::C || 5308 CallConv == CallingConv::Cold || 5309 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5310 5311 unsigned PtrByteSize = 4; 5312 5313 MachineFunction &MF = DAG.getMachineFunction(); 5314 5315 // Mark this function as potentially containing a function that contains a 5316 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5317 // and restoring the callers stack pointer in this functions epilog. This is 5318 // done because by tail calling the called function might overwrite the value 5319 // in this function's (MF) stack pointer stack slot 0(SP). 5320 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5321 CallConv == CallingConv::Fast) 5322 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5323 5324 // Count how many bytes are to be pushed on the stack, including the linkage 5325 // area, parameter list area and the part of the local variable space which 5326 // contains copies of aggregates which are passed by value. 5327 5328 // Assign locations to all of the outgoing arguments. 5329 SmallVector<CCValAssign, 16> ArgLocs; 5330 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5331 5332 // Reserve space for the linkage area on the stack. 5333 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5334 PtrByteSize); 5335 if (useSoftFloat()) 5336 CCInfo.PreAnalyzeCallOperands(Outs); 5337 5338 if (isVarArg) { 5339 // Handle fixed and variable vector arguments differently. 5340 // Fixed vector arguments go into registers as long as registers are 5341 // available. Variable vector arguments always go into memory. 5342 unsigned NumArgs = Outs.size(); 5343 5344 for (unsigned i = 0; i != NumArgs; ++i) { 5345 MVT ArgVT = Outs[i].VT; 5346 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5347 bool Result; 5348 5349 if (Outs[i].IsFixed) { 5350 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5351 CCInfo); 5352 } else { 5353 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5354 ArgFlags, CCInfo); 5355 } 5356 5357 if (Result) { 5358 #ifndef NDEBUG 5359 errs() << "Call operand #" << i << " has unhandled type " 5360 << EVT(ArgVT).getEVTString() << "\n"; 5361 #endif 5362 llvm_unreachable(nullptr); 5363 } 5364 } 5365 } else { 5366 // All arguments are treated the same. 5367 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5368 } 5369 CCInfo.clearWasPPCF128(); 5370 5371 // Assign locations to all of the outgoing aggregate by value arguments. 5372 SmallVector<CCValAssign, 16> ByValArgLocs; 5373 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5374 5375 // Reserve stack space for the allocations in CCInfo. 5376 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5377 5378 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5379 5380 // Size of the linkage area, parameter list area and the part of the local 5381 // space variable where copies of aggregates which are passed by value are 5382 // stored. 5383 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5384 5385 // Calculate by how many bytes the stack has to be adjusted in case of tail 5386 // call optimization. 5387 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5388 5389 // Adjust the stack pointer for the new arguments... 5390 // These operations are automatically eliminated by the prolog/epilog pass 5391 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5392 SDValue CallSeqStart = Chain; 5393 5394 // Load the return address and frame pointer so it can be moved somewhere else 5395 // later. 5396 SDValue LROp, FPOp; 5397 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5398 5399 // Set up a copy of the stack pointer for use loading and storing any 5400 // arguments that may not fit in the registers available for argument 5401 // passing. 5402 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5403 5404 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5405 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5406 SmallVector<SDValue, 8> MemOpChains; 5407 5408 bool seenFloatArg = false; 5409 // Walk the register/memloc assignments, inserting copies/loads. 5410 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 5411 i != e; 5412 ++i) { 5413 CCValAssign &VA = ArgLocs[i]; 5414 SDValue Arg = OutVals[i]; 5415 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5416 5417 if (Flags.isByVal()) { 5418 // Argument is an aggregate which is passed by value, thus we need to 5419 // create a copy of it in the local variable space of the current stack 5420 // frame (which is the stack frame of the caller) and pass the address of 5421 // this copy to the callee. 5422 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5423 CCValAssign &ByValVA = ByValArgLocs[j++]; 5424 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5425 5426 // Memory reserved in the local variable space of the callers stack frame. 5427 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5428 5429 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5430 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5431 StackPtr, PtrOff); 5432 5433 // Create a copy of the argument in the local area of the current 5434 // stack frame. 5435 SDValue MemcpyCall = 5436 CreateCopyOfByValArgument(Arg, PtrOff, 5437 CallSeqStart.getNode()->getOperand(0), 5438 Flags, DAG, dl); 5439 5440 // This must go outside the CALLSEQ_START..END. 5441 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5442 SDLoc(MemcpyCall)); 5443 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5444 NewCallSeqStart.getNode()); 5445 Chain = CallSeqStart = NewCallSeqStart; 5446 5447 // Pass the address of the aggregate copy on the stack either in a 5448 // physical register or in the parameter list area of the current stack 5449 // frame to the callee. 5450 Arg = PtrOff; 5451 } 5452 5453 // When useCRBits() is true, there can be i1 arguments. 5454 // It is because getRegisterType(MVT::i1) => MVT::i1, 5455 // and for other integer types getRegisterType() => MVT::i32. 5456 // Extend i1 and ensure callee will get i32. 5457 if (Arg.getValueType() == MVT::i1) 5458 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5459 dl, MVT::i32, Arg); 5460 5461 if (VA.isRegLoc()) { 5462 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5463 // Put argument in a physical register. 5464 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5465 } else { 5466 // Put argument in the parameter list area of the current stack frame. 5467 assert(VA.isMemLoc()); 5468 unsigned LocMemOffset = VA.getLocMemOffset(); 5469 5470 if (!isTailCall) { 5471 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5472 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5473 StackPtr, PtrOff); 5474 5475 MemOpChains.push_back( 5476 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5477 } else { 5478 // Calculate and remember argument location. 5479 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5480 TailCallArguments); 5481 } 5482 } 5483 } 5484 5485 if (!MemOpChains.empty()) 5486 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5487 5488 // Build a sequence of copy-to-reg nodes chained together with token chain 5489 // and flag operands which copy the outgoing args into the appropriate regs. 5490 SDValue InFlag; 5491 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5492 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5493 RegsToPass[i].second, InFlag); 5494 InFlag = Chain.getValue(1); 5495 } 5496 5497 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5498 // registers. 5499 if (isVarArg) { 5500 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5501 SDValue Ops[] = { Chain, InFlag }; 5502 5503 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5504 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5505 5506 InFlag = Chain.getValue(1); 5507 } 5508 5509 if (isTailCall) 5510 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5511 TailCallArguments); 5512 5513 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5514 /* unused except on PPC64 ELFv1 */ false, DAG, 5515 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5516 NumBytes, Ins, InVals, CS); 5517 } 5518 5519 // Copy an argument into memory, being careful to do this outside the 5520 // call sequence for the call to which the argument belongs. 5521 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5522 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5523 SelectionDAG &DAG, const SDLoc &dl) const { 5524 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5525 CallSeqStart.getNode()->getOperand(0), 5526 Flags, DAG, dl); 5527 // The MEMCPY must go outside the CALLSEQ_START..END. 5528 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5529 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5530 SDLoc(MemcpyCall)); 5531 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5532 NewCallSeqStart.getNode()); 5533 return NewCallSeqStart; 5534 } 5535 5536 SDValue PPCTargetLowering::LowerCall_64SVR4( 5537 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5538 bool isTailCall, bool isPatchPoint, 5539 const SmallVectorImpl<ISD::OutputArg> &Outs, 5540 const SmallVectorImpl<SDValue> &OutVals, 5541 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5542 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5543 ImmutableCallSite CS) const { 5544 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5545 bool isLittleEndian = Subtarget.isLittleEndian(); 5546 unsigned NumOps = Outs.size(); 5547 bool hasNest = false; 5548 bool IsSibCall = false; 5549 5550 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5551 unsigned PtrByteSize = 8; 5552 5553 MachineFunction &MF = DAG.getMachineFunction(); 5554 5555 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5556 IsSibCall = true; 5557 5558 // Mark this function as potentially containing a function that contains a 5559 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5560 // and restoring the callers stack pointer in this functions epilog. This is 5561 // done because by tail calling the called function might overwrite the value 5562 // in this function's (MF) stack pointer stack slot 0(SP). 5563 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5564 CallConv == CallingConv::Fast) 5565 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5566 5567 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5568 "fastcc not supported on varargs functions"); 5569 5570 // Count how many bytes are to be pushed on the stack, including the linkage 5571 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5572 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5573 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5574 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5575 unsigned NumBytes = LinkageSize; 5576 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5577 unsigned &QFPR_idx = FPR_idx; 5578 5579 static const MCPhysReg GPR[] = { 5580 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5581 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5582 }; 5583 static const MCPhysReg VR[] = { 5584 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5585 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5586 }; 5587 5588 const unsigned NumGPRs = array_lengthof(GPR); 5589 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5590 const unsigned NumVRs = array_lengthof(VR); 5591 const unsigned NumQFPRs = NumFPRs; 5592 5593 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5594 // can be passed to the callee in registers. 5595 // For the fast calling convention, there is another check below. 5596 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5597 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5598 if (!HasParameterArea) { 5599 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5600 unsigned AvailableFPRs = NumFPRs; 5601 unsigned AvailableVRs = NumVRs; 5602 unsigned NumBytesTmp = NumBytes; 5603 for (unsigned i = 0; i != NumOps; ++i) { 5604 if (Outs[i].Flags.isNest()) continue; 5605 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5606 PtrByteSize, LinkageSize, ParamAreaSize, 5607 NumBytesTmp, AvailableFPRs, AvailableVRs, 5608 Subtarget.hasQPX())) 5609 HasParameterArea = true; 5610 } 5611 } 5612 5613 // When using the fast calling convention, we don't provide backing for 5614 // arguments that will be in registers. 5615 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5616 5617 // Avoid allocating parameter area for fastcc functions if all the arguments 5618 // can be passed in the registers. 5619 if (CallConv == CallingConv::Fast) 5620 HasParameterArea = false; 5621 5622 // Add up all the space actually used. 5623 for (unsigned i = 0; i != NumOps; ++i) { 5624 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5625 EVT ArgVT = Outs[i].VT; 5626 EVT OrigVT = Outs[i].ArgVT; 5627 5628 if (Flags.isNest()) 5629 continue; 5630 5631 if (CallConv == CallingConv::Fast) { 5632 if (Flags.isByVal()) { 5633 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5634 if (NumGPRsUsed > NumGPRs) 5635 HasParameterArea = true; 5636 } else { 5637 switch (ArgVT.getSimpleVT().SimpleTy) { 5638 default: llvm_unreachable("Unexpected ValueType for argument!"); 5639 case MVT::i1: 5640 case MVT::i32: 5641 case MVT::i64: 5642 if (++NumGPRsUsed <= NumGPRs) 5643 continue; 5644 break; 5645 case MVT::v4i32: 5646 case MVT::v8i16: 5647 case MVT::v16i8: 5648 case MVT::v2f64: 5649 case MVT::v2i64: 5650 case MVT::v1i128: 5651 case MVT::f128: 5652 if (++NumVRsUsed <= NumVRs) 5653 continue; 5654 break; 5655 case MVT::v4f32: 5656 // When using QPX, this is handled like a FP register, otherwise, it 5657 // is an Altivec register. 5658 if (Subtarget.hasQPX()) { 5659 if (++NumFPRsUsed <= NumFPRs) 5660 continue; 5661 } else { 5662 if (++NumVRsUsed <= NumVRs) 5663 continue; 5664 } 5665 break; 5666 case MVT::f32: 5667 case MVT::f64: 5668 case MVT::v4f64: // QPX 5669 case MVT::v4i1: // QPX 5670 if (++NumFPRsUsed <= NumFPRs) 5671 continue; 5672 break; 5673 } 5674 HasParameterArea = true; 5675 } 5676 } 5677 5678 /* Respect alignment of argument on the stack. */ 5679 unsigned Align = 5680 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5681 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5682 5683 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5684 if (Flags.isInConsecutiveRegsLast()) 5685 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5686 } 5687 5688 unsigned NumBytesActuallyUsed = NumBytes; 5689 5690 // In the old ELFv1 ABI, 5691 // the prolog code of the callee may store up to 8 GPR argument registers to 5692 // the stack, allowing va_start to index over them in memory if its varargs. 5693 // Because we cannot tell if this is needed on the caller side, we have to 5694 // conservatively assume that it is needed. As such, make sure we have at 5695 // least enough stack space for the caller to store the 8 GPRs. 5696 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5697 // really requires memory operands, e.g. a vararg function. 5698 if (HasParameterArea) 5699 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5700 else 5701 NumBytes = LinkageSize; 5702 5703 // Tail call needs the stack to be aligned. 5704 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5705 CallConv == CallingConv::Fast) 5706 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5707 5708 int SPDiff = 0; 5709 5710 // Calculate by how many bytes the stack has to be adjusted in case of tail 5711 // call optimization. 5712 if (!IsSibCall) 5713 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5714 5715 // To protect arguments on the stack from being clobbered in a tail call, 5716 // force all the loads to happen before doing any other lowering. 5717 if (isTailCall) 5718 Chain = DAG.getStackArgumentTokenFactor(Chain); 5719 5720 // Adjust the stack pointer for the new arguments... 5721 // These operations are automatically eliminated by the prolog/epilog pass 5722 if (!IsSibCall) 5723 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5724 SDValue CallSeqStart = Chain; 5725 5726 // Load the return address and frame pointer so it can be move somewhere else 5727 // later. 5728 SDValue LROp, FPOp; 5729 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5730 5731 // Set up a copy of the stack pointer for use loading and storing any 5732 // arguments that may not fit in the registers available for argument 5733 // passing. 5734 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5735 5736 // Figure out which arguments are going to go in registers, and which in 5737 // memory. Also, if this is a vararg function, floating point operations 5738 // must be stored to our stack, and loaded into integer regs as well, if 5739 // any integer regs are available for argument passing. 5740 unsigned ArgOffset = LinkageSize; 5741 5742 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5743 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5744 5745 SmallVector<SDValue, 8> MemOpChains; 5746 for (unsigned i = 0; i != NumOps; ++i) { 5747 SDValue Arg = OutVals[i]; 5748 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5749 EVT ArgVT = Outs[i].VT; 5750 EVT OrigVT = Outs[i].ArgVT; 5751 5752 // PtrOff will be used to store the current argument to the stack if a 5753 // register cannot be found for it. 5754 SDValue PtrOff; 5755 5756 // We re-align the argument offset for each argument, except when using the 5757 // fast calling convention, when we need to make sure we do that only when 5758 // we'll actually use a stack slot. 5759 auto ComputePtrOff = [&]() { 5760 /* Respect alignment of argument on the stack. */ 5761 unsigned Align = 5762 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5763 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5764 5765 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5766 5767 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5768 }; 5769 5770 if (CallConv != CallingConv::Fast) { 5771 ComputePtrOff(); 5772 5773 /* Compute GPR index associated with argument offset. */ 5774 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5775 GPR_idx = std::min(GPR_idx, NumGPRs); 5776 } 5777 5778 // Promote integers to 64-bit values. 5779 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5780 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5781 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5782 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5783 } 5784 5785 // FIXME memcpy is used way more than necessary. Correctness first. 5786 // Note: "by value" is code for passing a structure by value, not 5787 // basic types. 5788 if (Flags.isByVal()) { 5789 // Note: Size includes alignment padding, so 5790 // struct x { short a; char b; } 5791 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5792 // These are the proper values we need for right-justifying the 5793 // aggregate in a parameter register. 5794 unsigned Size = Flags.getByValSize(); 5795 5796 // An empty aggregate parameter takes up no storage and no 5797 // registers. 5798 if (Size == 0) 5799 continue; 5800 5801 if (CallConv == CallingConv::Fast) 5802 ComputePtrOff(); 5803 5804 // All aggregates smaller than 8 bytes must be passed right-justified. 5805 if (Size==1 || Size==2 || Size==4) { 5806 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5807 if (GPR_idx != NumGPRs) { 5808 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5809 MachinePointerInfo(), VT); 5810 MemOpChains.push_back(Load.getValue(1)); 5811 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5812 5813 ArgOffset += PtrByteSize; 5814 continue; 5815 } 5816 } 5817 5818 if (GPR_idx == NumGPRs && Size < 8) { 5819 SDValue AddPtr = PtrOff; 5820 if (!isLittleEndian) { 5821 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5822 PtrOff.getValueType()); 5823 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5824 } 5825 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5826 CallSeqStart, 5827 Flags, DAG, dl); 5828 ArgOffset += PtrByteSize; 5829 continue; 5830 } 5831 // Copy entire object into memory. There are cases where gcc-generated 5832 // code assumes it is there, even if it could be put entirely into 5833 // registers. (This is not what the doc says.) 5834 5835 // FIXME: The above statement is likely due to a misunderstanding of the 5836 // documents. All arguments must be copied into the parameter area BY 5837 // THE CALLEE in the event that the callee takes the address of any 5838 // formal argument. That has not yet been implemented. However, it is 5839 // reasonable to use the stack area as a staging area for the register 5840 // load. 5841 5842 // Skip this for small aggregates, as we will use the same slot for a 5843 // right-justified copy, below. 5844 if (Size >= 8) 5845 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5846 CallSeqStart, 5847 Flags, DAG, dl); 5848 5849 // When a register is available, pass a small aggregate right-justified. 5850 if (Size < 8 && GPR_idx != NumGPRs) { 5851 // The easiest way to get this right-justified in a register 5852 // is to copy the structure into the rightmost portion of a 5853 // local variable slot, then load the whole slot into the 5854 // register. 5855 // FIXME: The memcpy seems to produce pretty awful code for 5856 // small aggregates, particularly for packed ones. 5857 // FIXME: It would be preferable to use the slot in the 5858 // parameter save area instead of a new local variable. 5859 SDValue AddPtr = PtrOff; 5860 if (!isLittleEndian) { 5861 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5862 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5863 } 5864 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5865 CallSeqStart, 5866 Flags, DAG, dl); 5867 5868 // Load the slot into the register. 5869 SDValue Load = 5870 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5871 MemOpChains.push_back(Load.getValue(1)); 5872 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5873 5874 // Done with this argument. 5875 ArgOffset += PtrByteSize; 5876 continue; 5877 } 5878 5879 // For aggregates larger than PtrByteSize, copy the pieces of the 5880 // object that fit into registers from the parameter save area. 5881 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5882 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5883 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5884 if (GPR_idx != NumGPRs) { 5885 SDValue Load = 5886 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5887 MemOpChains.push_back(Load.getValue(1)); 5888 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5889 ArgOffset += PtrByteSize; 5890 } else { 5891 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5892 break; 5893 } 5894 } 5895 continue; 5896 } 5897 5898 switch (Arg.getSimpleValueType().SimpleTy) { 5899 default: llvm_unreachable("Unexpected ValueType for argument!"); 5900 case MVT::i1: 5901 case MVT::i32: 5902 case MVT::i64: 5903 if (Flags.isNest()) { 5904 // The 'nest' parameter, if any, is passed in R11. 5905 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5906 hasNest = true; 5907 break; 5908 } 5909 5910 // These can be scalar arguments or elements of an integer array type 5911 // passed directly. Clang may use those instead of "byval" aggregate 5912 // types to avoid forcing arguments to memory unnecessarily. 5913 if (GPR_idx != NumGPRs) { 5914 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5915 } else { 5916 if (CallConv == CallingConv::Fast) 5917 ComputePtrOff(); 5918 5919 assert(HasParameterArea && 5920 "Parameter area must exist to pass an argument in memory."); 5921 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5922 true, isTailCall, false, MemOpChains, 5923 TailCallArguments, dl); 5924 if (CallConv == CallingConv::Fast) 5925 ArgOffset += PtrByteSize; 5926 } 5927 if (CallConv != CallingConv::Fast) 5928 ArgOffset += PtrByteSize; 5929 break; 5930 case MVT::f32: 5931 case MVT::f64: { 5932 // These can be scalar arguments or elements of a float array type 5933 // passed directly. The latter are used to implement ELFv2 homogenous 5934 // float aggregates. 5935 5936 // Named arguments go into FPRs first, and once they overflow, the 5937 // remaining arguments go into GPRs and then the parameter save area. 5938 // Unnamed arguments for vararg functions always go to GPRs and 5939 // then the parameter save area. For now, put all arguments to vararg 5940 // routines always in both locations (FPR *and* GPR or stack slot). 5941 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5942 bool NeededLoad = false; 5943 5944 // First load the argument into the next available FPR. 5945 if (FPR_idx != NumFPRs) 5946 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5947 5948 // Next, load the argument into GPR or stack slot if needed. 5949 if (!NeedGPROrStack) 5950 ; 5951 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5952 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5953 // once we support fp <-> gpr moves. 5954 5955 // In the non-vararg case, this can only ever happen in the 5956 // presence of f32 array types, since otherwise we never run 5957 // out of FPRs before running out of GPRs. 5958 SDValue ArgVal; 5959 5960 // Double values are always passed in a single GPR. 5961 if (Arg.getValueType() != MVT::f32) { 5962 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5963 5964 // Non-array float values are extended and passed in a GPR. 5965 } else if (!Flags.isInConsecutiveRegs()) { 5966 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5967 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5968 5969 // If we have an array of floats, we collect every odd element 5970 // together with its predecessor into one GPR. 5971 } else if (ArgOffset % PtrByteSize != 0) { 5972 SDValue Lo, Hi; 5973 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5974 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5975 if (!isLittleEndian) 5976 std::swap(Lo, Hi); 5977 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5978 5979 // The final element, if even, goes into the first half of a GPR. 5980 } else if (Flags.isInConsecutiveRegsLast()) { 5981 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5982 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5983 if (!isLittleEndian) 5984 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5985 DAG.getConstant(32, dl, MVT::i32)); 5986 5987 // Non-final even elements are skipped; they will be handled 5988 // together the with subsequent argument on the next go-around. 5989 } else 5990 ArgVal = SDValue(); 5991 5992 if (ArgVal.getNode()) 5993 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5994 } else { 5995 if (CallConv == CallingConv::Fast) 5996 ComputePtrOff(); 5997 5998 // Single-precision floating-point values are mapped to the 5999 // second (rightmost) word of the stack doubleword. 6000 if (Arg.getValueType() == MVT::f32 && 6001 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6002 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6003 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6004 } 6005 6006 assert(HasParameterArea && 6007 "Parameter area must exist to pass an argument in memory."); 6008 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6009 true, isTailCall, false, MemOpChains, 6010 TailCallArguments, dl); 6011 6012 NeededLoad = true; 6013 } 6014 // When passing an array of floats, the array occupies consecutive 6015 // space in the argument area; only round up to the next doubleword 6016 // at the end of the array. Otherwise, each float takes 8 bytes. 6017 if (CallConv != CallingConv::Fast || NeededLoad) { 6018 ArgOffset += (Arg.getValueType() == MVT::f32 && 6019 Flags.isInConsecutiveRegs()) ? 4 : 8; 6020 if (Flags.isInConsecutiveRegsLast()) 6021 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6022 } 6023 break; 6024 } 6025 case MVT::v4f32: 6026 case MVT::v4i32: 6027 case MVT::v8i16: 6028 case MVT::v16i8: 6029 case MVT::v2f64: 6030 case MVT::v2i64: 6031 case MVT::v1i128: 6032 case MVT::f128: 6033 if (!Subtarget.hasQPX()) { 6034 // These can be scalar arguments or elements of a vector array type 6035 // passed directly. The latter are used to implement ELFv2 homogenous 6036 // vector aggregates. 6037 6038 // For a varargs call, named arguments go into VRs or on the stack as 6039 // usual; unnamed arguments always go to the stack or the corresponding 6040 // GPRs when within range. For now, we always put the value in both 6041 // locations (or even all three). 6042 if (isVarArg) { 6043 assert(HasParameterArea && 6044 "Parameter area must exist if we have a varargs call."); 6045 // We could elide this store in the case where the object fits 6046 // entirely in R registers. Maybe later. 6047 SDValue Store = 6048 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6049 MemOpChains.push_back(Store); 6050 if (VR_idx != NumVRs) { 6051 SDValue Load = 6052 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6053 MemOpChains.push_back(Load.getValue(1)); 6054 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6055 } 6056 ArgOffset += 16; 6057 for (unsigned i=0; i<16; i+=PtrByteSize) { 6058 if (GPR_idx == NumGPRs) 6059 break; 6060 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6061 DAG.getConstant(i, dl, PtrVT)); 6062 SDValue Load = 6063 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6064 MemOpChains.push_back(Load.getValue(1)); 6065 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6066 } 6067 break; 6068 } 6069 6070 // Non-varargs Altivec params go into VRs or on the stack. 6071 if (VR_idx != NumVRs) { 6072 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6073 } else { 6074 if (CallConv == CallingConv::Fast) 6075 ComputePtrOff(); 6076 6077 assert(HasParameterArea && 6078 "Parameter area must exist to pass an argument in memory."); 6079 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6080 true, isTailCall, true, MemOpChains, 6081 TailCallArguments, dl); 6082 if (CallConv == CallingConv::Fast) 6083 ArgOffset += 16; 6084 } 6085 6086 if (CallConv != CallingConv::Fast) 6087 ArgOffset += 16; 6088 break; 6089 } // not QPX 6090 6091 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6092 "Invalid QPX parameter type"); 6093 6094 LLVM_FALLTHROUGH; 6095 case MVT::v4f64: 6096 case MVT::v4i1: { 6097 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6098 if (isVarArg) { 6099 assert(HasParameterArea && 6100 "Parameter area must exist if we have a varargs call."); 6101 // We could elide this store in the case where the object fits 6102 // entirely in R registers. Maybe later. 6103 SDValue Store = 6104 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6105 MemOpChains.push_back(Store); 6106 if (QFPR_idx != NumQFPRs) { 6107 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6108 PtrOff, MachinePointerInfo()); 6109 MemOpChains.push_back(Load.getValue(1)); 6110 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6111 } 6112 ArgOffset += (IsF32 ? 16 : 32); 6113 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6114 if (GPR_idx == NumGPRs) 6115 break; 6116 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6117 DAG.getConstant(i, dl, PtrVT)); 6118 SDValue Load = 6119 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6120 MemOpChains.push_back(Load.getValue(1)); 6121 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6122 } 6123 break; 6124 } 6125 6126 // Non-varargs QPX params go into registers or on the stack. 6127 if (QFPR_idx != NumQFPRs) { 6128 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6129 } else { 6130 if (CallConv == CallingConv::Fast) 6131 ComputePtrOff(); 6132 6133 assert(HasParameterArea && 6134 "Parameter area must exist to pass an argument in memory."); 6135 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6136 true, isTailCall, true, MemOpChains, 6137 TailCallArguments, dl); 6138 if (CallConv == CallingConv::Fast) 6139 ArgOffset += (IsF32 ? 16 : 32); 6140 } 6141 6142 if (CallConv != CallingConv::Fast) 6143 ArgOffset += (IsF32 ? 16 : 32); 6144 break; 6145 } 6146 } 6147 } 6148 6149 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6150 "mismatch in size of parameter area"); 6151 (void)NumBytesActuallyUsed; 6152 6153 if (!MemOpChains.empty()) 6154 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6155 6156 // Check if this is an indirect call (MTCTR/BCTRL). 6157 // See PrepareCall() for more information about calls through function 6158 // pointers in the 64-bit SVR4 ABI. 6159 if (!isTailCall && !isPatchPoint && 6160 !isFunctionGlobalAddress(Callee) && 6161 !isa<ExternalSymbolSDNode>(Callee)) { 6162 // Load r2 into a virtual register and store it to the TOC save area. 6163 setUsesTOCBasePtr(DAG); 6164 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6165 // TOC save area offset. 6166 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6167 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6168 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6169 Chain = DAG.getStore( 6170 Val.getValue(1), dl, Val, AddPtr, 6171 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6172 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6173 // This does not mean the MTCTR instruction must use R12; it's easier 6174 // to model this as an extra parameter, so do that. 6175 if (isELFv2ABI && !isPatchPoint) 6176 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6177 } 6178 6179 // Build a sequence of copy-to-reg nodes chained together with token chain 6180 // and flag operands which copy the outgoing args into the appropriate regs. 6181 SDValue InFlag; 6182 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6183 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6184 RegsToPass[i].second, InFlag); 6185 InFlag = Chain.getValue(1); 6186 } 6187 6188 if (isTailCall && !IsSibCall) 6189 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6190 TailCallArguments); 6191 6192 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6193 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6194 SPDiff, NumBytes, Ins, InVals, CS); 6195 } 6196 6197 SDValue PPCTargetLowering::LowerCall_Darwin( 6198 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6199 bool isTailCall, bool isPatchPoint, 6200 const SmallVectorImpl<ISD::OutputArg> &Outs, 6201 const SmallVectorImpl<SDValue> &OutVals, 6202 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6203 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6204 ImmutableCallSite CS) const { 6205 unsigned NumOps = Outs.size(); 6206 6207 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6208 bool isPPC64 = PtrVT == MVT::i64; 6209 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6210 6211 MachineFunction &MF = DAG.getMachineFunction(); 6212 6213 // Mark this function as potentially containing a function that contains a 6214 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6215 // and restoring the callers stack pointer in this functions epilog. This is 6216 // done because by tail calling the called function might overwrite the value 6217 // in this function's (MF) stack pointer stack slot 0(SP). 6218 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6219 CallConv == CallingConv::Fast) 6220 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6221 6222 // Count how many bytes are to be pushed on the stack, including the linkage 6223 // area, and parameter passing area. We start with 24/48 bytes, which is 6224 // prereserved space for [SP][CR][LR][3 x unused]. 6225 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6226 unsigned NumBytes = LinkageSize; 6227 6228 // Add up all the space actually used. 6229 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6230 // they all go in registers, but we must reserve stack space for them for 6231 // possible use by the caller. In varargs or 64-bit calls, parameters are 6232 // assigned stack space in order, with padding so Altivec parameters are 6233 // 16-byte aligned. 6234 unsigned nAltivecParamsAtEnd = 0; 6235 for (unsigned i = 0; i != NumOps; ++i) { 6236 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6237 EVT ArgVT = Outs[i].VT; 6238 // Varargs Altivec parameters are padded to a 16 byte boundary. 6239 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6240 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6241 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6242 if (!isVarArg && !isPPC64) { 6243 // Non-varargs Altivec parameters go after all the non-Altivec 6244 // parameters; handle those later so we know how much padding we need. 6245 nAltivecParamsAtEnd++; 6246 continue; 6247 } 6248 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6249 NumBytes = ((NumBytes+15)/16)*16; 6250 } 6251 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6252 } 6253 6254 // Allow for Altivec parameters at the end, if needed. 6255 if (nAltivecParamsAtEnd) { 6256 NumBytes = ((NumBytes+15)/16)*16; 6257 NumBytes += 16*nAltivecParamsAtEnd; 6258 } 6259 6260 // The prolog code of the callee may store up to 8 GPR argument registers to 6261 // the stack, allowing va_start to index over them in memory if its varargs. 6262 // Because we cannot tell if this is needed on the caller side, we have to 6263 // conservatively assume that it is needed. As such, make sure we have at 6264 // least enough stack space for the caller to store the 8 GPRs. 6265 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6266 6267 // Tail call needs the stack to be aligned. 6268 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6269 CallConv == CallingConv::Fast) 6270 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6271 6272 // Calculate by how many bytes the stack has to be adjusted in case of tail 6273 // call optimization. 6274 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6275 6276 // To protect arguments on the stack from being clobbered in a tail call, 6277 // force all the loads to happen before doing any other lowering. 6278 if (isTailCall) 6279 Chain = DAG.getStackArgumentTokenFactor(Chain); 6280 6281 // Adjust the stack pointer for the new arguments... 6282 // These operations are automatically eliminated by the prolog/epilog pass 6283 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6284 SDValue CallSeqStart = Chain; 6285 6286 // Load the return address and frame pointer so it can be move somewhere else 6287 // later. 6288 SDValue LROp, FPOp; 6289 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6290 6291 // Set up a copy of the stack pointer for use loading and storing any 6292 // arguments that may not fit in the registers available for argument 6293 // passing. 6294 SDValue StackPtr; 6295 if (isPPC64) 6296 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6297 else 6298 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6299 6300 // Figure out which arguments are going to go in registers, and which in 6301 // memory. Also, if this is a vararg function, floating point operations 6302 // must be stored to our stack, and loaded into integer regs as well, if 6303 // any integer regs are available for argument passing. 6304 unsigned ArgOffset = LinkageSize; 6305 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6306 6307 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6308 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6309 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6310 }; 6311 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6312 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6313 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6314 }; 6315 static const MCPhysReg VR[] = { 6316 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6317 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6318 }; 6319 const unsigned NumGPRs = array_lengthof(GPR_32); 6320 const unsigned NumFPRs = 13; 6321 const unsigned NumVRs = array_lengthof(VR); 6322 6323 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6324 6325 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6326 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6327 6328 SmallVector<SDValue, 8> MemOpChains; 6329 for (unsigned i = 0; i != NumOps; ++i) { 6330 SDValue Arg = OutVals[i]; 6331 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6332 6333 // PtrOff will be used to store the current argument to the stack if a 6334 // register cannot be found for it. 6335 SDValue PtrOff; 6336 6337 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6338 6339 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6340 6341 // On PPC64, promote integers to 64-bit values. 6342 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6343 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6344 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6345 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6346 } 6347 6348 // FIXME memcpy is used way more than necessary. Correctness first. 6349 // Note: "by value" is code for passing a structure by value, not 6350 // basic types. 6351 if (Flags.isByVal()) { 6352 unsigned Size = Flags.getByValSize(); 6353 // Very small objects are passed right-justified. Everything else is 6354 // passed left-justified. 6355 if (Size==1 || Size==2) { 6356 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6357 if (GPR_idx != NumGPRs) { 6358 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6359 MachinePointerInfo(), VT); 6360 MemOpChains.push_back(Load.getValue(1)); 6361 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6362 6363 ArgOffset += PtrByteSize; 6364 } else { 6365 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6366 PtrOff.getValueType()); 6367 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6368 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6369 CallSeqStart, 6370 Flags, DAG, dl); 6371 ArgOffset += PtrByteSize; 6372 } 6373 continue; 6374 } 6375 // Copy entire object into memory. There are cases where gcc-generated 6376 // code assumes it is there, even if it could be put entirely into 6377 // registers. (This is not what the doc says.) 6378 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6379 CallSeqStart, 6380 Flags, DAG, dl); 6381 6382 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6383 // copy the pieces of the object that fit into registers from the 6384 // parameter save area. 6385 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6386 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6387 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6388 if (GPR_idx != NumGPRs) { 6389 SDValue Load = 6390 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6391 MemOpChains.push_back(Load.getValue(1)); 6392 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6393 ArgOffset += PtrByteSize; 6394 } else { 6395 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6396 break; 6397 } 6398 } 6399 continue; 6400 } 6401 6402 switch (Arg.getSimpleValueType().SimpleTy) { 6403 default: llvm_unreachable("Unexpected ValueType for argument!"); 6404 case MVT::i1: 6405 case MVT::i32: 6406 case MVT::i64: 6407 if (GPR_idx != NumGPRs) { 6408 if (Arg.getValueType() == MVT::i1) 6409 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6410 6411 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6412 } else { 6413 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6414 isPPC64, isTailCall, false, MemOpChains, 6415 TailCallArguments, dl); 6416 } 6417 ArgOffset += PtrByteSize; 6418 break; 6419 case MVT::f32: 6420 case MVT::f64: 6421 if (FPR_idx != NumFPRs) { 6422 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6423 6424 if (isVarArg) { 6425 SDValue Store = 6426 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6427 MemOpChains.push_back(Store); 6428 6429 // Float varargs are always shadowed in available integer registers 6430 if (GPR_idx != NumGPRs) { 6431 SDValue Load = 6432 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6433 MemOpChains.push_back(Load.getValue(1)); 6434 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6435 } 6436 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6437 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6438 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6439 SDValue Load = 6440 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6441 MemOpChains.push_back(Load.getValue(1)); 6442 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6443 } 6444 } else { 6445 // If we have any FPRs remaining, we may also have GPRs remaining. 6446 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6447 // GPRs. 6448 if (GPR_idx != NumGPRs) 6449 ++GPR_idx; 6450 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6451 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6452 ++GPR_idx; 6453 } 6454 } else 6455 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6456 isPPC64, isTailCall, false, MemOpChains, 6457 TailCallArguments, dl); 6458 if (isPPC64) 6459 ArgOffset += 8; 6460 else 6461 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6462 break; 6463 case MVT::v4f32: 6464 case MVT::v4i32: 6465 case MVT::v8i16: 6466 case MVT::v16i8: 6467 if (isVarArg) { 6468 // These go aligned on the stack, or in the corresponding R registers 6469 // when within range. The Darwin PPC ABI doc claims they also go in 6470 // V registers; in fact gcc does this only for arguments that are 6471 // prototyped, not for those that match the ... We do it for all 6472 // arguments, seems to work. 6473 while (ArgOffset % 16 !=0) { 6474 ArgOffset += PtrByteSize; 6475 if (GPR_idx != NumGPRs) 6476 GPR_idx++; 6477 } 6478 // We could elide this store in the case where the object fits 6479 // entirely in R registers. Maybe later. 6480 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6481 DAG.getConstant(ArgOffset, dl, PtrVT)); 6482 SDValue Store = 6483 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6484 MemOpChains.push_back(Store); 6485 if (VR_idx != NumVRs) { 6486 SDValue Load = 6487 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6488 MemOpChains.push_back(Load.getValue(1)); 6489 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6490 } 6491 ArgOffset += 16; 6492 for (unsigned i=0; i<16; i+=PtrByteSize) { 6493 if (GPR_idx == NumGPRs) 6494 break; 6495 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6496 DAG.getConstant(i, dl, PtrVT)); 6497 SDValue Load = 6498 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6499 MemOpChains.push_back(Load.getValue(1)); 6500 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6501 } 6502 break; 6503 } 6504 6505 // Non-varargs Altivec params generally go in registers, but have 6506 // stack space allocated at the end. 6507 if (VR_idx != NumVRs) { 6508 // Doesn't have GPR space allocated. 6509 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6510 } else if (nAltivecParamsAtEnd==0) { 6511 // We are emitting Altivec params in order. 6512 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6513 isPPC64, isTailCall, true, MemOpChains, 6514 TailCallArguments, dl); 6515 ArgOffset += 16; 6516 } 6517 break; 6518 } 6519 } 6520 // If all Altivec parameters fit in registers, as they usually do, 6521 // they get stack space following the non-Altivec parameters. We 6522 // don't track this here because nobody below needs it. 6523 // If there are more Altivec parameters than fit in registers emit 6524 // the stores here. 6525 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6526 unsigned j = 0; 6527 // Offset is aligned; skip 1st 12 params which go in V registers. 6528 ArgOffset = ((ArgOffset+15)/16)*16; 6529 ArgOffset += 12*16; 6530 for (unsigned i = 0; i != NumOps; ++i) { 6531 SDValue Arg = OutVals[i]; 6532 EVT ArgType = Outs[i].VT; 6533 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6534 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6535 if (++j > NumVRs) { 6536 SDValue PtrOff; 6537 // We are emitting Altivec params in order. 6538 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6539 isPPC64, isTailCall, true, MemOpChains, 6540 TailCallArguments, dl); 6541 ArgOffset += 16; 6542 } 6543 } 6544 } 6545 } 6546 6547 if (!MemOpChains.empty()) 6548 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6549 6550 // On Darwin, R12 must contain the address of an indirect callee. This does 6551 // not mean the MTCTR instruction must use R12; it's easier to model this as 6552 // an extra parameter, so do that. 6553 if (!isTailCall && 6554 !isFunctionGlobalAddress(Callee) && 6555 !isa<ExternalSymbolSDNode>(Callee) && 6556 !isBLACompatibleAddress(Callee, DAG)) 6557 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6558 PPC::R12), Callee)); 6559 6560 // Build a sequence of copy-to-reg nodes chained together with token chain 6561 // and flag operands which copy the outgoing args into the appropriate regs. 6562 SDValue InFlag; 6563 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6564 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6565 RegsToPass[i].second, InFlag); 6566 InFlag = Chain.getValue(1); 6567 } 6568 6569 if (isTailCall) 6570 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6571 TailCallArguments); 6572 6573 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6574 /* unused except on PPC64 ELFv1 */ false, DAG, 6575 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6576 NumBytes, Ins, InVals, CS); 6577 } 6578 6579 6580 SDValue PPCTargetLowering::LowerCall_AIX( 6581 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6582 bool isTailCall, bool isPatchPoint, 6583 const SmallVectorImpl<ISD::OutputArg> &Outs, 6584 const SmallVectorImpl<SDValue> &OutVals, 6585 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6586 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6587 ImmutableCallSite CS) const { 6588 6589 assert((CallConv == CallingConv::C || CallConv == CallingConv::Fast) && 6590 "Unimplemented calling convention!"); 6591 if (isVarArg || isPatchPoint) 6592 report_fatal_error("This call type is unimplemented on AIX."); 6593 6594 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6595 bool isPPC64 = PtrVT == MVT::i64; 6596 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6597 unsigned NumOps = Outs.size(); 6598 6599 if (NumOps != 0) 6600 report_fatal_error("Call lowering with parameters is not implemented " 6601 "on AIX yet."); 6602 6603 // Count how many bytes are to be pushed on the stack, including the linkage 6604 // area, parameter list area. 6605 // On XCOFF, we start with 24/48, which is reserved space for 6606 // [SP][CR][LR][2 x reserved][TOC]. 6607 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6608 6609 // The prolog code of the callee may store up to 8 GPR argument registers to 6610 // the stack, allowing va_start to index over them in memory if the callee 6611 // is variadic. 6612 // Because we cannot tell if this is needed on the caller side, we have to 6613 // conservatively assume that it is needed. As such, make sure we have at 6614 // least enough stack space for the caller to store the 8 GPRs. 6615 unsigned NumBytes = LinkageSize + 8 * PtrByteSize; 6616 6617 // Adjust the stack pointer for the new arguments... 6618 // These operations are automatically eliminated by the prolog/epilog 6619 // inserter pass. 6620 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6621 SDValue CallSeqStart = Chain; 6622 6623 if (!isFunctionGlobalAddress(Callee) && 6624 !isa<ExternalSymbolSDNode>(Callee)) 6625 report_fatal_error("Handling of indirect call is unimplemented!"); 6626 6627 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6628 SDValue InFlag; 6629 6630 if (isTailCall) 6631 report_fatal_error("Handling of tail call is unimplemented!"); 6632 int SPDiff = 0; 6633 6634 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6635 /* unused except on PPC64 ELFv1 */ false, DAG, 6636 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6637 NumBytes, Ins, InVals, CS); 6638 } 6639 6640 bool 6641 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6642 MachineFunction &MF, bool isVarArg, 6643 const SmallVectorImpl<ISD::OutputArg> &Outs, 6644 LLVMContext &Context) const { 6645 SmallVector<CCValAssign, 16> RVLocs; 6646 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6647 return CCInfo.CheckReturn( 6648 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6649 ? RetCC_PPC_Cold 6650 : RetCC_PPC); 6651 } 6652 6653 SDValue 6654 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6655 bool isVarArg, 6656 const SmallVectorImpl<ISD::OutputArg> &Outs, 6657 const SmallVectorImpl<SDValue> &OutVals, 6658 const SDLoc &dl, SelectionDAG &DAG) const { 6659 SmallVector<CCValAssign, 16> RVLocs; 6660 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6661 *DAG.getContext()); 6662 CCInfo.AnalyzeReturn(Outs, 6663 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6664 ? RetCC_PPC_Cold 6665 : RetCC_PPC); 6666 6667 SDValue Flag; 6668 SmallVector<SDValue, 4> RetOps(1, Chain); 6669 6670 // Copy the result values into the output registers. 6671 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6672 CCValAssign &VA = RVLocs[i]; 6673 assert(VA.isRegLoc() && "Can only return in registers!"); 6674 6675 SDValue Arg = OutVals[i]; 6676 6677 switch (VA.getLocInfo()) { 6678 default: llvm_unreachable("Unknown loc info!"); 6679 case CCValAssign::Full: break; 6680 case CCValAssign::AExt: 6681 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6682 break; 6683 case CCValAssign::ZExt: 6684 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6685 break; 6686 case CCValAssign::SExt: 6687 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6688 break; 6689 } 6690 6691 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6692 Flag = Chain.getValue(1); 6693 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6694 } 6695 6696 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6697 const MCPhysReg *I = 6698 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6699 if (I) { 6700 for (; *I; ++I) { 6701 6702 if (PPC::G8RCRegClass.contains(*I)) 6703 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6704 else if (PPC::F8RCRegClass.contains(*I)) 6705 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6706 else if (PPC::CRRCRegClass.contains(*I)) 6707 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6708 else if (PPC::VRRCRegClass.contains(*I)) 6709 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6710 else 6711 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6712 } 6713 } 6714 6715 RetOps[0] = Chain; // Update chain. 6716 6717 // Add the flag if we have it. 6718 if (Flag.getNode()) 6719 RetOps.push_back(Flag); 6720 6721 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6722 } 6723 6724 SDValue 6725 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6726 SelectionDAG &DAG) const { 6727 SDLoc dl(Op); 6728 6729 // Get the correct type for integers. 6730 EVT IntVT = Op.getValueType(); 6731 6732 // Get the inputs. 6733 SDValue Chain = Op.getOperand(0); 6734 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6735 // Build a DYNAREAOFFSET node. 6736 SDValue Ops[2] = {Chain, FPSIdx}; 6737 SDVTList VTs = DAG.getVTList(IntVT); 6738 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6739 } 6740 6741 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6742 SelectionDAG &DAG) const { 6743 // When we pop the dynamic allocation we need to restore the SP link. 6744 SDLoc dl(Op); 6745 6746 // Get the correct type for pointers. 6747 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6748 6749 // Construct the stack pointer operand. 6750 bool isPPC64 = Subtarget.isPPC64(); 6751 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6752 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6753 6754 // Get the operands for the STACKRESTORE. 6755 SDValue Chain = Op.getOperand(0); 6756 SDValue SaveSP = Op.getOperand(1); 6757 6758 // Load the old link SP. 6759 SDValue LoadLinkSP = 6760 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6761 6762 // Restore the stack pointer. 6763 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6764 6765 // Store the old link SP. 6766 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6767 } 6768 6769 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6770 MachineFunction &MF = DAG.getMachineFunction(); 6771 bool isPPC64 = Subtarget.isPPC64(); 6772 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6773 6774 // Get current frame pointer save index. The users of this index will be 6775 // primarily DYNALLOC instructions. 6776 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6777 int RASI = FI->getReturnAddrSaveIndex(); 6778 6779 // If the frame pointer save index hasn't been defined yet. 6780 if (!RASI) { 6781 // Find out what the fix offset of the frame pointer save area. 6782 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6783 // Allocate the frame index for frame pointer save area. 6784 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6785 // Save the result. 6786 FI->setReturnAddrSaveIndex(RASI); 6787 } 6788 return DAG.getFrameIndex(RASI, PtrVT); 6789 } 6790 6791 SDValue 6792 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6793 MachineFunction &MF = DAG.getMachineFunction(); 6794 bool isPPC64 = Subtarget.isPPC64(); 6795 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6796 6797 // Get current frame pointer save index. The users of this index will be 6798 // primarily DYNALLOC instructions. 6799 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6800 int FPSI = FI->getFramePointerSaveIndex(); 6801 6802 // If the frame pointer save index hasn't been defined yet. 6803 if (!FPSI) { 6804 // Find out what the fix offset of the frame pointer save area. 6805 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6806 // Allocate the frame index for frame pointer save area. 6807 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6808 // Save the result. 6809 FI->setFramePointerSaveIndex(FPSI); 6810 } 6811 return DAG.getFrameIndex(FPSI, PtrVT); 6812 } 6813 6814 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6815 SelectionDAG &DAG) const { 6816 // Get the inputs. 6817 SDValue Chain = Op.getOperand(0); 6818 SDValue Size = Op.getOperand(1); 6819 SDLoc dl(Op); 6820 6821 // Get the correct type for pointers. 6822 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6823 // Negate the size. 6824 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6825 DAG.getConstant(0, dl, PtrVT), Size); 6826 // Construct a node for the frame pointer save index. 6827 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6828 // Build a DYNALLOC node. 6829 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6830 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6831 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6832 } 6833 6834 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 6835 SelectionDAG &DAG) const { 6836 MachineFunction &MF = DAG.getMachineFunction(); 6837 6838 bool isPPC64 = Subtarget.isPPC64(); 6839 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6840 6841 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 6842 return DAG.getFrameIndex(FI, PtrVT); 6843 } 6844 6845 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6846 SelectionDAG &DAG) const { 6847 SDLoc DL(Op); 6848 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6849 DAG.getVTList(MVT::i32, MVT::Other), 6850 Op.getOperand(0), Op.getOperand(1)); 6851 } 6852 6853 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6854 SelectionDAG &DAG) const { 6855 SDLoc DL(Op); 6856 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6857 Op.getOperand(0), Op.getOperand(1)); 6858 } 6859 6860 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6861 if (Op.getValueType().isVector()) 6862 return LowerVectorLoad(Op, DAG); 6863 6864 assert(Op.getValueType() == MVT::i1 && 6865 "Custom lowering only for i1 loads"); 6866 6867 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6868 6869 SDLoc dl(Op); 6870 LoadSDNode *LD = cast<LoadSDNode>(Op); 6871 6872 SDValue Chain = LD->getChain(); 6873 SDValue BasePtr = LD->getBasePtr(); 6874 MachineMemOperand *MMO = LD->getMemOperand(); 6875 6876 SDValue NewLD = 6877 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6878 BasePtr, MVT::i8, MMO); 6879 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6880 6881 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6882 return DAG.getMergeValues(Ops, dl); 6883 } 6884 6885 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6886 if (Op.getOperand(1).getValueType().isVector()) 6887 return LowerVectorStore(Op, DAG); 6888 6889 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6890 "Custom lowering only for i1 stores"); 6891 6892 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6893 6894 SDLoc dl(Op); 6895 StoreSDNode *ST = cast<StoreSDNode>(Op); 6896 6897 SDValue Chain = ST->getChain(); 6898 SDValue BasePtr = ST->getBasePtr(); 6899 SDValue Value = ST->getValue(); 6900 MachineMemOperand *MMO = ST->getMemOperand(); 6901 6902 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6903 Value); 6904 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6905 } 6906 6907 // FIXME: Remove this once the ANDI glue bug is fixed: 6908 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6909 assert(Op.getValueType() == MVT::i1 && 6910 "Custom lowering only for i1 results"); 6911 6912 SDLoc DL(Op); 6913 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6914 Op.getOperand(0)); 6915 } 6916 6917 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 6918 SelectionDAG &DAG) const { 6919 6920 // Implements a vector truncate that fits in a vector register as a shuffle. 6921 // We want to legalize vector truncates down to where the source fits in 6922 // a vector register (and target is therefore smaller than vector register 6923 // size). At that point legalization will try to custom lower the sub-legal 6924 // result and get here - where we can contain the truncate as a single target 6925 // operation. 6926 6927 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 6928 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 6929 // 6930 // We will implement it for big-endian ordering as this (where x denotes 6931 // undefined): 6932 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 6933 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 6934 // 6935 // The same operation in little-endian ordering will be: 6936 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 6937 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 6938 6939 assert(Op.getValueType().isVector() && "Vector type expected."); 6940 6941 SDLoc DL(Op); 6942 SDValue N1 = Op.getOperand(0); 6943 unsigned SrcSize = N1.getValueType().getSizeInBits(); 6944 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 6945 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 6946 6947 EVT TrgVT = Op.getValueType(); 6948 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 6949 EVT EltVT = TrgVT.getVectorElementType(); 6950 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 6951 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 6952 6953 // First list the elements we want to keep. 6954 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 6955 SmallVector<int, 16> ShuffV; 6956 if (Subtarget.isLittleEndian()) 6957 for (unsigned i = 0; i < TrgNumElts; ++i) 6958 ShuffV.push_back(i * SizeMult); 6959 else 6960 for (unsigned i = 1; i <= TrgNumElts; ++i) 6961 ShuffV.push_back(i * SizeMult - 1); 6962 6963 // Populate the remaining elements with undefs. 6964 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 6965 // ShuffV.push_back(i + WideNumElts); 6966 ShuffV.push_back(WideNumElts + 1); 6967 6968 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 6969 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 6970 } 6971 6972 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6973 /// possible. 6974 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6975 // Not FP? Not a fsel. 6976 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6977 !Op.getOperand(2).getValueType().isFloatingPoint()) 6978 return Op; 6979 6980 // We might be able to do better than this under some circumstances, but in 6981 // general, fsel-based lowering of select is a finite-math-only optimization. 6982 // For more information, see section F.3 of the 2.06 ISA specification. 6983 if (!DAG.getTarget().Options.NoInfsFPMath || 6984 !DAG.getTarget().Options.NoNaNsFPMath) 6985 return Op; 6986 // TODO: Propagate flags from the select rather than global settings. 6987 SDNodeFlags Flags; 6988 Flags.setNoInfs(true); 6989 Flags.setNoNaNs(true); 6990 6991 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6992 6993 EVT ResVT = Op.getValueType(); 6994 EVT CmpVT = Op.getOperand(0).getValueType(); 6995 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6996 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6997 SDLoc dl(Op); 6998 6999 // If the RHS of the comparison is a 0.0, we don't need to do the 7000 // subtraction at all. 7001 SDValue Sel1; 7002 if (isFloatingPointZero(RHS)) 7003 switch (CC) { 7004 default: break; // SETUO etc aren't handled by fsel. 7005 case ISD::SETNE: 7006 std::swap(TV, FV); 7007 LLVM_FALLTHROUGH; 7008 case ISD::SETEQ: 7009 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7010 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7011 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7012 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7013 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7014 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7015 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7016 case ISD::SETULT: 7017 case ISD::SETLT: 7018 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7019 LLVM_FALLTHROUGH; 7020 case ISD::SETOGE: 7021 case ISD::SETGE: 7022 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7023 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7024 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7025 case ISD::SETUGT: 7026 case ISD::SETGT: 7027 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7028 LLVM_FALLTHROUGH; 7029 case ISD::SETOLE: 7030 case ISD::SETLE: 7031 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7032 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7033 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7034 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7035 } 7036 7037 SDValue Cmp; 7038 switch (CC) { 7039 default: break; // SETUO etc aren't handled by fsel. 7040 case ISD::SETNE: 7041 std::swap(TV, FV); 7042 LLVM_FALLTHROUGH; 7043 case ISD::SETEQ: 7044 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7045 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7046 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7047 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7048 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7049 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7050 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7051 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7052 case ISD::SETULT: 7053 case ISD::SETLT: 7054 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7055 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7056 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7057 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7058 case ISD::SETOGE: 7059 case ISD::SETGE: 7060 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7061 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7062 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7063 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7064 case ISD::SETUGT: 7065 case ISD::SETGT: 7066 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7067 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7068 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7069 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7070 case ISD::SETOLE: 7071 case ISD::SETLE: 7072 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7073 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7074 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7075 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7076 } 7077 return Op; 7078 } 7079 7080 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7081 SelectionDAG &DAG, 7082 const SDLoc &dl) const { 7083 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7084 SDValue Src = Op.getOperand(0); 7085 if (Src.getValueType() == MVT::f32) 7086 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7087 7088 SDValue Tmp; 7089 switch (Op.getSimpleValueType().SimpleTy) { 7090 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7091 case MVT::i32: 7092 Tmp = DAG.getNode( 7093 Op.getOpcode() == ISD::FP_TO_SINT 7094 ? PPCISD::FCTIWZ 7095 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7096 dl, MVT::f64, Src); 7097 break; 7098 case MVT::i64: 7099 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7100 "i64 FP_TO_UINT is supported only with FPCVT"); 7101 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7102 PPCISD::FCTIDUZ, 7103 dl, MVT::f64, Src); 7104 break; 7105 } 7106 7107 // Convert the FP value to an int value through memory. 7108 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7109 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7110 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7111 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7112 MachinePointerInfo MPI = 7113 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7114 7115 // Emit a store to the stack slot. 7116 SDValue Chain; 7117 if (i32Stack) { 7118 MachineFunction &MF = DAG.getMachineFunction(); 7119 MachineMemOperand *MMO = 7120 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7121 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7122 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7123 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7124 } else 7125 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7126 7127 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7128 // add in a bias on big endian. 7129 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7130 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7131 DAG.getConstant(4, dl, FIPtr.getValueType())); 7132 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7133 } 7134 7135 RLI.Chain = Chain; 7136 RLI.Ptr = FIPtr; 7137 RLI.MPI = MPI; 7138 } 7139 7140 /// Custom lowers floating point to integer conversions to use 7141 /// the direct move instructions available in ISA 2.07 to avoid the 7142 /// need for load/store combinations. 7143 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7144 SelectionDAG &DAG, 7145 const SDLoc &dl) const { 7146 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7147 SDValue Src = Op.getOperand(0); 7148 7149 if (Src.getValueType() == MVT::f32) 7150 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7151 7152 SDValue Tmp; 7153 switch (Op.getSimpleValueType().SimpleTy) { 7154 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7155 case MVT::i32: 7156 Tmp = DAG.getNode( 7157 Op.getOpcode() == ISD::FP_TO_SINT 7158 ? PPCISD::FCTIWZ 7159 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7160 dl, MVT::f64, Src); 7161 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7162 break; 7163 case MVT::i64: 7164 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7165 "i64 FP_TO_UINT is supported only with FPCVT"); 7166 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7167 PPCISD::FCTIDUZ, 7168 dl, MVT::f64, Src); 7169 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7170 break; 7171 } 7172 return Tmp; 7173 } 7174 7175 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7176 const SDLoc &dl) const { 7177 7178 // FP to INT conversions are legal for f128. 7179 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7180 return Op; 7181 7182 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7183 // PPC (the libcall is not available). 7184 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7185 if (Op.getValueType() == MVT::i32) { 7186 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7187 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7188 MVT::f64, Op.getOperand(0), 7189 DAG.getIntPtrConstant(0, dl)); 7190 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7191 MVT::f64, Op.getOperand(0), 7192 DAG.getIntPtrConstant(1, dl)); 7193 7194 // Add the two halves of the long double in round-to-zero mode. 7195 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7196 7197 // Now use a smaller FP_TO_SINT. 7198 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7199 } 7200 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7201 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7202 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7203 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7204 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7205 // FIXME: generated code sucks. 7206 // TODO: Are there fast-math-flags to propagate to this FSUB? 7207 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7208 Op.getOperand(0), Tmp); 7209 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7210 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7211 DAG.getConstant(0x80000000, dl, MVT::i32)); 7212 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7213 Op.getOperand(0)); 7214 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7215 ISD::SETGE); 7216 } 7217 } 7218 7219 return SDValue(); 7220 } 7221 7222 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7223 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7224 7225 ReuseLoadInfo RLI; 7226 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7227 7228 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7229 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7230 } 7231 7232 // We're trying to insert a regular store, S, and then a load, L. If the 7233 // incoming value, O, is a load, we might just be able to have our load use the 7234 // address used by O. However, we don't know if anything else will store to 7235 // that address before we can load from it. To prevent this situation, we need 7236 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7237 // the same chain operand as O, we create a token factor from the chain results 7238 // of O and L, and we replace all uses of O's chain result with that token 7239 // factor (see spliceIntoChain below for this last part). 7240 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7241 ReuseLoadInfo &RLI, 7242 SelectionDAG &DAG, 7243 ISD::LoadExtType ET) const { 7244 SDLoc dl(Op); 7245 if (ET == ISD::NON_EXTLOAD && 7246 (Op.getOpcode() == ISD::FP_TO_UINT || 7247 Op.getOpcode() == ISD::FP_TO_SINT) && 7248 isOperationLegalOrCustom(Op.getOpcode(), 7249 Op.getOperand(0).getValueType())) { 7250 7251 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7252 return true; 7253 } 7254 7255 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7256 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7257 LD->isNonTemporal()) 7258 return false; 7259 if (LD->getMemoryVT() != MemVT) 7260 return false; 7261 7262 RLI.Ptr = LD->getBasePtr(); 7263 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7264 assert(LD->getAddressingMode() == ISD::PRE_INC && 7265 "Non-pre-inc AM on PPC?"); 7266 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7267 LD->getOffset()); 7268 } 7269 7270 RLI.Chain = LD->getChain(); 7271 RLI.MPI = LD->getPointerInfo(); 7272 RLI.IsDereferenceable = LD->isDereferenceable(); 7273 RLI.IsInvariant = LD->isInvariant(); 7274 RLI.Alignment = LD->getAlignment(); 7275 RLI.AAInfo = LD->getAAInfo(); 7276 RLI.Ranges = LD->getRanges(); 7277 7278 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7279 return true; 7280 } 7281 7282 // Given the head of the old chain, ResChain, insert a token factor containing 7283 // it and NewResChain, and make users of ResChain now be users of that token 7284 // factor. 7285 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7286 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7287 SDValue NewResChain, 7288 SelectionDAG &DAG) const { 7289 if (!ResChain) 7290 return; 7291 7292 SDLoc dl(NewResChain); 7293 7294 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7295 NewResChain, DAG.getUNDEF(MVT::Other)); 7296 assert(TF.getNode() != NewResChain.getNode() && 7297 "A new TF really is required here"); 7298 7299 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7300 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7301 } 7302 7303 /// Analyze profitability of direct move 7304 /// prefer float load to int load plus direct move 7305 /// when there is no integer use of int load 7306 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7307 SDNode *Origin = Op.getOperand(0).getNode(); 7308 if (Origin->getOpcode() != ISD::LOAD) 7309 return true; 7310 7311 // If there is no LXSIBZX/LXSIHZX, like Power8, 7312 // prefer direct move if the memory size is 1 or 2 bytes. 7313 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7314 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7315 return true; 7316 7317 for (SDNode::use_iterator UI = Origin->use_begin(), 7318 UE = Origin->use_end(); 7319 UI != UE; ++UI) { 7320 7321 // Only look at the users of the loaded value. 7322 if (UI.getUse().get().getResNo() != 0) 7323 continue; 7324 7325 if (UI->getOpcode() != ISD::SINT_TO_FP && 7326 UI->getOpcode() != ISD::UINT_TO_FP) 7327 return true; 7328 } 7329 7330 return false; 7331 } 7332 7333 /// Custom lowers integer to floating point conversions to use 7334 /// the direct move instructions available in ISA 2.07 to avoid the 7335 /// need for load/store combinations. 7336 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7337 SelectionDAG &DAG, 7338 const SDLoc &dl) const { 7339 assert((Op.getValueType() == MVT::f32 || 7340 Op.getValueType() == MVT::f64) && 7341 "Invalid floating point type as target of conversion"); 7342 assert(Subtarget.hasFPCVT() && 7343 "Int to FP conversions with direct moves require FPCVT"); 7344 SDValue FP; 7345 SDValue Src = Op.getOperand(0); 7346 bool SinglePrec = Op.getValueType() == MVT::f32; 7347 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7348 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7349 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7350 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7351 7352 if (WordInt) { 7353 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7354 dl, MVT::f64, Src); 7355 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7356 } 7357 else { 7358 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7359 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7360 } 7361 7362 return FP; 7363 } 7364 7365 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7366 7367 EVT VecVT = Vec.getValueType(); 7368 assert(VecVT.isVector() && "Expected a vector type."); 7369 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7370 7371 EVT EltVT = VecVT.getVectorElementType(); 7372 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7373 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7374 7375 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7376 SmallVector<SDValue, 16> Ops(NumConcat); 7377 Ops[0] = Vec; 7378 SDValue UndefVec = DAG.getUNDEF(VecVT); 7379 for (unsigned i = 1; i < NumConcat; ++i) 7380 Ops[i] = UndefVec; 7381 7382 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7383 } 7384 7385 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7386 const SDLoc &dl) const { 7387 7388 unsigned Opc = Op.getOpcode(); 7389 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 7390 "Unexpected conversion type"); 7391 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7392 "Supports conversions to v2f64/v4f32 only."); 7393 7394 bool SignedConv = Opc == ISD::SINT_TO_FP; 7395 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7396 7397 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 7398 EVT WideVT = Wide.getValueType(); 7399 unsigned WideNumElts = WideVT.getVectorNumElements(); 7400 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7401 7402 SmallVector<int, 16> ShuffV; 7403 for (unsigned i = 0; i < WideNumElts; ++i) 7404 ShuffV.push_back(i + WideNumElts); 7405 7406 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7407 int SaveElts = FourEltRes ? 4 : 2; 7408 if (Subtarget.isLittleEndian()) 7409 for (int i = 0; i < SaveElts; i++) 7410 ShuffV[i * Stride] = i; 7411 else 7412 for (int i = 1; i <= SaveElts; i++) 7413 ShuffV[i * Stride - 1] = i - 1; 7414 7415 SDValue ShuffleSrc2 = 7416 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7417 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7418 unsigned ExtendOp = 7419 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST; 7420 7421 SDValue Extend; 7422 if (!Subtarget.hasP9Altivec() && SignedConv) { 7423 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7424 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7425 DAG.getValueType(Op.getOperand(0).getValueType())); 7426 } else 7427 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange); 7428 7429 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7430 } 7431 7432 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7433 SelectionDAG &DAG) const { 7434 SDLoc dl(Op); 7435 7436 EVT InVT = Op.getOperand(0).getValueType(); 7437 EVT OutVT = Op.getValueType(); 7438 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7439 isOperationCustom(Op.getOpcode(), InVT)) 7440 return LowerINT_TO_FPVector(Op, DAG, dl); 7441 7442 // Conversions to f128 are legal. 7443 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7444 return Op; 7445 7446 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7447 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7448 return SDValue(); 7449 7450 SDValue Value = Op.getOperand(0); 7451 // The values are now known to be -1 (false) or 1 (true). To convert this 7452 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7453 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7454 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7455 7456 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7457 7458 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7459 7460 if (Op.getValueType() != MVT::v4f64) 7461 Value = DAG.getNode(ISD::FP_ROUND, dl, 7462 Op.getValueType(), Value, 7463 DAG.getIntPtrConstant(1, dl)); 7464 return Value; 7465 } 7466 7467 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7468 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7469 return SDValue(); 7470 7471 if (Op.getOperand(0).getValueType() == MVT::i1) 7472 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7473 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7474 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7475 7476 // If we have direct moves, we can do all the conversion, skip the store/load 7477 // however, without FPCVT we can't do most conversions. 7478 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7479 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7480 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7481 7482 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7483 "UINT_TO_FP is supported only with FPCVT"); 7484 7485 // If we have FCFIDS, then use it when converting to single-precision. 7486 // Otherwise, convert to double-precision and then round. 7487 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7488 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7489 : PPCISD::FCFIDS) 7490 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7491 : PPCISD::FCFID); 7492 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7493 ? MVT::f32 7494 : MVT::f64; 7495 7496 if (Op.getOperand(0).getValueType() == MVT::i64) { 7497 SDValue SINT = Op.getOperand(0); 7498 // When converting to single-precision, we actually need to convert 7499 // to double-precision first and then round to single-precision. 7500 // To avoid double-rounding effects during that operation, we have 7501 // to prepare the input operand. Bits that might be truncated when 7502 // converting to double-precision are replaced by a bit that won't 7503 // be lost at this stage, but is below the single-precision rounding 7504 // position. 7505 // 7506 // However, if -enable-unsafe-fp-math is in effect, accept double 7507 // rounding to avoid the extra overhead. 7508 if (Op.getValueType() == MVT::f32 && 7509 !Subtarget.hasFPCVT() && 7510 !DAG.getTarget().Options.UnsafeFPMath) { 7511 7512 // Twiddle input to make sure the low 11 bits are zero. (If this 7513 // is the case, we are guaranteed the value will fit into the 53 bit 7514 // mantissa of an IEEE double-precision value without rounding.) 7515 // If any of those low 11 bits were not zero originally, make sure 7516 // bit 12 (value 2048) is set instead, so that the final rounding 7517 // to single-precision gets the correct result. 7518 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7519 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7520 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7521 Round, DAG.getConstant(2047, dl, MVT::i64)); 7522 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7523 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7524 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7525 7526 // However, we cannot use that value unconditionally: if the magnitude 7527 // of the input value is small, the bit-twiddling we did above might 7528 // end up visibly changing the output. Fortunately, in that case, we 7529 // don't need to twiddle bits since the original input will convert 7530 // exactly to double-precision floating-point already. Therefore, 7531 // construct a conditional to use the original value if the top 11 7532 // bits are all sign-bit copies, and use the rounded value computed 7533 // above otherwise. 7534 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7535 SINT, DAG.getConstant(53, dl, MVT::i32)); 7536 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7537 Cond, DAG.getConstant(1, dl, MVT::i64)); 7538 Cond = DAG.getSetCC(dl, MVT::i32, 7539 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7540 7541 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7542 } 7543 7544 ReuseLoadInfo RLI; 7545 SDValue Bits; 7546 7547 MachineFunction &MF = DAG.getMachineFunction(); 7548 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7549 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7550 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7551 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7552 } else if (Subtarget.hasLFIWAX() && 7553 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7554 MachineMemOperand *MMO = 7555 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7556 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7557 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7558 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7559 DAG.getVTList(MVT::f64, MVT::Other), 7560 Ops, MVT::i32, MMO); 7561 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7562 } else if (Subtarget.hasFPCVT() && 7563 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7564 MachineMemOperand *MMO = 7565 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7566 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7567 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7568 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 7569 DAG.getVTList(MVT::f64, MVT::Other), 7570 Ops, MVT::i32, MMO); 7571 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7572 } else if (((Subtarget.hasLFIWAX() && 7573 SINT.getOpcode() == ISD::SIGN_EXTEND) || 7574 (Subtarget.hasFPCVT() && 7575 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 7576 SINT.getOperand(0).getValueType() == MVT::i32) { 7577 MachineFrameInfo &MFI = MF.getFrameInfo(); 7578 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7579 7580 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7581 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7582 7583 SDValue Store = 7584 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 7585 MachinePointerInfo::getFixedStack( 7586 DAG.getMachineFunction(), FrameIdx)); 7587 7588 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7589 "Expected an i32 store"); 7590 7591 RLI.Ptr = FIdx; 7592 RLI.Chain = Store; 7593 RLI.MPI = 7594 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7595 RLI.Alignment = 4; 7596 7597 MachineMemOperand *MMO = 7598 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7599 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7600 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7601 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 7602 PPCISD::LFIWZX : PPCISD::LFIWAX, 7603 dl, DAG.getVTList(MVT::f64, MVT::Other), 7604 Ops, MVT::i32, MMO); 7605 } else 7606 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 7607 7608 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 7609 7610 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7611 FP = DAG.getNode(ISD::FP_ROUND, dl, 7612 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 7613 return FP; 7614 } 7615 7616 assert(Op.getOperand(0).getValueType() == MVT::i32 && 7617 "Unhandled INT_TO_FP type in custom expander!"); 7618 // Since we only generate this in 64-bit mode, we can take advantage of 7619 // 64-bit registers. In particular, sign extend the input value into the 7620 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 7621 // then lfd it and fcfid it. 7622 MachineFunction &MF = DAG.getMachineFunction(); 7623 MachineFrameInfo &MFI = MF.getFrameInfo(); 7624 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7625 7626 SDValue Ld; 7627 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 7628 ReuseLoadInfo RLI; 7629 bool ReusingLoad; 7630 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 7631 DAG))) { 7632 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7633 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7634 7635 SDValue Store = 7636 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7637 MachinePointerInfo::getFixedStack( 7638 DAG.getMachineFunction(), FrameIdx)); 7639 7640 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7641 "Expected an i32 store"); 7642 7643 RLI.Ptr = FIdx; 7644 RLI.Chain = Store; 7645 RLI.MPI = 7646 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7647 RLI.Alignment = 4; 7648 } 7649 7650 MachineMemOperand *MMO = 7651 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7652 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7653 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7654 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 7655 PPCISD::LFIWZX : PPCISD::LFIWAX, 7656 dl, DAG.getVTList(MVT::f64, MVT::Other), 7657 Ops, MVT::i32, MMO); 7658 if (ReusingLoad) 7659 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 7660 } else { 7661 assert(Subtarget.isPPC64() && 7662 "i32->FP without LFIWAX supported only on PPC64"); 7663 7664 int FrameIdx = MFI.CreateStackObject(8, 8, false); 7665 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7666 7667 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 7668 Op.getOperand(0)); 7669 7670 // STD the extended value into the stack slot. 7671 SDValue Store = DAG.getStore( 7672 DAG.getEntryNode(), dl, Ext64, FIdx, 7673 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7674 7675 // Load the value as a double. 7676 Ld = DAG.getLoad( 7677 MVT::f64, dl, Store, FIdx, 7678 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7679 } 7680 7681 // FCFID it and return it. 7682 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 7683 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7684 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 7685 DAG.getIntPtrConstant(0, dl)); 7686 return FP; 7687 } 7688 7689 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 7690 SelectionDAG &DAG) const { 7691 SDLoc dl(Op); 7692 /* 7693 The rounding mode is in bits 30:31 of FPSR, and has the following 7694 settings: 7695 00 Round to nearest 7696 01 Round to 0 7697 10 Round to +inf 7698 11 Round to -inf 7699 7700 FLT_ROUNDS, on the other hand, expects the following: 7701 -1 Undefined 7702 0 Round to 0 7703 1 Round to nearest 7704 2 Round to +inf 7705 3 Round to -inf 7706 7707 To perform the conversion, we do: 7708 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7709 */ 7710 7711 MachineFunction &MF = DAG.getMachineFunction(); 7712 EVT VT = Op.getValueType(); 7713 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7714 7715 // Save FP Control Word to register 7716 EVT NodeTys[] = { 7717 MVT::f64, // return register 7718 MVT::Glue // unused in this context 7719 }; 7720 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7721 7722 // Save FP register to stack slot 7723 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7724 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7725 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7726 MachinePointerInfo()); 7727 7728 // Load FP Control Word from low 32 bits of stack slot. 7729 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7730 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7731 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7732 7733 // Transform as necessary 7734 SDValue CWD1 = 7735 DAG.getNode(ISD::AND, dl, MVT::i32, 7736 CWD, DAG.getConstant(3, dl, MVT::i32)); 7737 SDValue CWD2 = 7738 DAG.getNode(ISD::SRL, dl, MVT::i32, 7739 DAG.getNode(ISD::AND, dl, MVT::i32, 7740 DAG.getNode(ISD::XOR, dl, MVT::i32, 7741 CWD, DAG.getConstant(3, dl, MVT::i32)), 7742 DAG.getConstant(3, dl, MVT::i32)), 7743 DAG.getConstant(1, dl, MVT::i32)); 7744 7745 SDValue RetVal = 7746 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7747 7748 return DAG.getNode((VT.getSizeInBits() < 16 ? 7749 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7750 } 7751 7752 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7753 EVT VT = Op.getValueType(); 7754 unsigned BitWidth = VT.getSizeInBits(); 7755 SDLoc dl(Op); 7756 assert(Op.getNumOperands() == 3 && 7757 VT == Op.getOperand(1).getValueType() && 7758 "Unexpected SHL!"); 7759 7760 // Expand into a bunch of logical ops. Note that these ops 7761 // depend on the PPC behavior for oversized shift amounts. 7762 SDValue Lo = Op.getOperand(0); 7763 SDValue Hi = Op.getOperand(1); 7764 SDValue Amt = Op.getOperand(2); 7765 EVT AmtVT = Amt.getValueType(); 7766 7767 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7768 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7769 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7770 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7771 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7772 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7773 DAG.getConstant(-BitWidth, dl, AmtVT)); 7774 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7775 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7776 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7777 SDValue OutOps[] = { OutLo, OutHi }; 7778 return DAG.getMergeValues(OutOps, dl); 7779 } 7780 7781 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7782 EVT VT = Op.getValueType(); 7783 SDLoc dl(Op); 7784 unsigned BitWidth = VT.getSizeInBits(); 7785 assert(Op.getNumOperands() == 3 && 7786 VT == Op.getOperand(1).getValueType() && 7787 "Unexpected SRL!"); 7788 7789 // Expand into a bunch of logical ops. Note that these ops 7790 // depend on the PPC behavior for oversized shift amounts. 7791 SDValue Lo = Op.getOperand(0); 7792 SDValue Hi = Op.getOperand(1); 7793 SDValue Amt = Op.getOperand(2); 7794 EVT AmtVT = Amt.getValueType(); 7795 7796 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7797 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7798 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7799 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7800 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7801 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7802 DAG.getConstant(-BitWidth, dl, AmtVT)); 7803 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 7804 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7805 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 7806 SDValue OutOps[] = { OutLo, OutHi }; 7807 return DAG.getMergeValues(OutOps, dl); 7808 } 7809 7810 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 7811 SDLoc dl(Op); 7812 EVT VT = Op.getValueType(); 7813 unsigned BitWidth = VT.getSizeInBits(); 7814 assert(Op.getNumOperands() == 3 && 7815 VT == Op.getOperand(1).getValueType() && 7816 "Unexpected SRA!"); 7817 7818 // Expand into a bunch of logical ops, followed by a select_cc. 7819 SDValue Lo = Op.getOperand(0); 7820 SDValue Hi = Op.getOperand(1); 7821 SDValue Amt = Op.getOperand(2); 7822 EVT AmtVT = Amt.getValueType(); 7823 7824 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7825 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7826 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7827 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7828 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7829 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7830 DAG.getConstant(-BitWidth, dl, AmtVT)); 7831 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7832 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7833 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7834 Tmp4, Tmp6, ISD::SETLE); 7835 SDValue OutOps[] = { OutLo, OutHi }; 7836 return DAG.getMergeValues(OutOps, dl); 7837 } 7838 7839 //===----------------------------------------------------------------------===// 7840 // Vector related lowering. 7841 // 7842 7843 /// BuildSplatI - Build a canonical splati of Val with an element size of 7844 /// SplatSize. Cast the result to VT. 7845 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 7846 SelectionDAG &DAG, const SDLoc &dl) { 7847 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 7848 7849 static const MVT VTys[] = { // canonical VT to use for each size. 7850 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 7851 }; 7852 7853 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7854 7855 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7856 if (Val == -1) 7857 SplatSize = 1; 7858 7859 EVT CanonicalVT = VTys[SplatSize-1]; 7860 7861 // Build a canonical splat for this value. 7862 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7863 } 7864 7865 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7866 /// specified intrinsic ID. 7867 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 7868 const SDLoc &dl, EVT DestVT = MVT::Other) { 7869 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7870 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7871 DAG.getConstant(IID, dl, MVT::i32), Op); 7872 } 7873 7874 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7875 /// specified intrinsic ID. 7876 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7877 SelectionDAG &DAG, const SDLoc &dl, 7878 EVT DestVT = MVT::Other) { 7879 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7880 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7881 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7882 } 7883 7884 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7885 /// specified intrinsic ID. 7886 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7887 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 7888 EVT DestVT = MVT::Other) { 7889 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7890 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7891 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7892 } 7893 7894 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7895 /// amount. The result has the specified value type. 7896 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7897 SelectionDAG &DAG, const SDLoc &dl) { 7898 // Force LHS/RHS to be the right type. 7899 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7900 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7901 7902 int Ops[16]; 7903 for (unsigned i = 0; i != 16; ++i) 7904 Ops[i] = i + Amt; 7905 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7906 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7907 } 7908 7909 /// Do we have an efficient pattern in a .td file for this node? 7910 /// 7911 /// \param V - pointer to the BuildVectorSDNode being matched 7912 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 7913 /// 7914 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 7915 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 7916 /// the opposite is true (expansion is beneficial) are: 7917 /// - The node builds a vector out of integers that are not 32 or 64-bits 7918 /// - The node builds a vector out of constants 7919 /// - The node is a "load-and-splat" 7920 /// In all other cases, we will choose to keep the BUILD_VECTOR. 7921 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 7922 bool HasDirectMove, 7923 bool HasP8Vector) { 7924 EVT VecVT = V->getValueType(0); 7925 bool RightType = VecVT == MVT::v2f64 || 7926 (HasP8Vector && VecVT == MVT::v4f32) || 7927 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 7928 if (!RightType) 7929 return false; 7930 7931 bool IsSplat = true; 7932 bool IsLoad = false; 7933 SDValue Op0 = V->getOperand(0); 7934 7935 // This function is called in a block that confirms the node is not a constant 7936 // splat. So a constant BUILD_VECTOR here means the vector is built out of 7937 // different constants. 7938 if (V->isConstant()) 7939 return false; 7940 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 7941 if (V->getOperand(i).isUndef()) 7942 return false; 7943 // We want to expand nodes that represent load-and-splat even if the 7944 // loaded value is a floating point truncation or conversion to int. 7945 if (V->getOperand(i).getOpcode() == ISD::LOAD || 7946 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 7947 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7948 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 7949 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7950 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 7951 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 7952 IsLoad = true; 7953 // If the operands are different or the input is not a load and has more 7954 // uses than just this BV node, then it isn't a splat. 7955 if (V->getOperand(i) != Op0 || 7956 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 7957 IsSplat = false; 7958 } 7959 return !(IsSplat && IsLoad); 7960 } 7961 7962 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 7963 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 7964 7965 SDLoc dl(Op); 7966 SDValue Op0 = Op->getOperand(0); 7967 7968 if (!EnableQuadPrecision || 7969 (Op.getValueType() != MVT::f128 ) || 7970 (Op0.getOpcode() != ISD::BUILD_PAIR) || 7971 (Op0.getOperand(0).getValueType() != MVT::i64) || 7972 (Op0.getOperand(1).getValueType() != MVT::i64)) 7973 return SDValue(); 7974 7975 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 7976 Op0.getOperand(1)); 7977 } 7978 7979 // If this is a case we can't handle, return null and let the default 7980 // expansion code take care of it. If we CAN select this case, and if it 7981 // selects to a single instruction, return Op. Otherwise, if we can codegen 7982 // this case more efficiently than a constant pool load, lower it to the 7983 // sequence of ops that should be used. 7984 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7985 SelectionDAG &DAG) const { 7986 SDLoc dl(Op); 7987 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7988 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7989 7990 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7991 // We first build an i32 vector, load it into a QPX register, 7992 // then convert it to a floating-point vector and compare it 7993 // to a zero vector to get the boolean result. 7994 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7995 int FrameIdx = MFI.CreateStackObject(16, 16, false); 7996 MachinePointerInfo PtrInfo = 7997 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7998 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7999 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8000 8001 assert(BVN->getNumOperands() == 4 && 8002 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8003 8004 bool IsConst = true; 8005 for (unsigned i = 0; i < 4; ++i) { 8006 if (BVN->getOperand(i).isUndef()) continue; 8007 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8008 IsConst = false; 8009 break; 8010 } 8011 } 8012 8013 if (IsConst) { 8014 Constant *One = 8015 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8016 Constant *NegOne = 8017 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8018 8019 Constant *CV[4]; 8020 for (unsigned i = 0; i < 4; ++i) { 8021 if (BVN->getOperand(i).isUndef()) 8022 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8023 else if (isNullConstant(BVN->getOperand(i))) 8024 CV[i] = NegOne; 8025 else 8026 CV[i] = One; 8027 } 8028 8029 Constant *CP = ConstantVector::get(CV); 8030 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8031 16 /* alignment */); 8032 8033 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8034 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8035 return DAG.getMemIntrinsicNode( 8036 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8037 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8038 } 8039 8040 SmallVector<SDValue, 4> Stores; 8041 for (unsigned i = 0; i < 4; ++i) { 8042 if (BVN->getOperand(i).isUndef()) continue; 8043 8044 unsigned Offset = 4*i; 8045 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8046 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8047 8048 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8049 if (StoreSize > 4) { 8050 Stores.push_back( 8051 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8052 PtrInfo.getWithOffset(Offset), MVT::i32)); 8053 } else { 8054 SDValue StoreValue = BVN->getOperand(i); 8055 if (StoreSize < 4) 8056 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8057 8058 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8059 PtrInfo.getWithOffset(Offset))); 8060 } 8061 } 8062 8063 SDValue StoreChain; 8064 if (!Stores.empty()) 8065 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8066 else 8067 StoreChain = DAG.getEntryNode(); 8068 8069 // Now load from v4i32 into the QPX register; this will extend it to 8070 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8071 // is typed as v4f64 because the QPX register integer states are not 8072 // explicitly represented. 8073 8074 SDValue Ops[] = {StoreChain, 8075 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8076 FIdx}; 8077 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8078 8079 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8080 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8081 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8082 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8083 LoadedVect); 8084 8085 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8086 8087 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8088 } 8089 8090 // All other QPX vectors are handled by generic code. 8091 if (Subtarget.hasQPX()) 8092 return SDValue(); 8093 8094 // Check if this is a splat of a constant value. 8095 APInt APSplatBits, APSplatUndef; 8096 unsigned SplatBitSize; 8097 bool HasAnyUndefs; 8098 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8099 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8100 SplatBitSize > 32) { 8101 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8102 // lowered to VSX instructions under certain conditions. 8103 // Without VSX, there is no pattern more efficient than expanding the node. 8104 if (Subtarget.hasVSX() && 8105 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8106 Subtarget.hasP8Vector())) 8107 return Op; 8108 return SDValue(); 8109 } 8110 8111 unsigned SplatBits = APSplatBits.getZExtValue(); 8112 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8113 unsigned SplatSize = SplatBitSize / 8; 8114 8115 // First, handle single instruction cases. 8116 8117 // All zeros? 8118 if (SplatBits == 0) { 8119 // Canonicalize all zero vectors to be v4i32. 8120 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8121 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8122 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8123 } 8124 return Op; 8125 } 8126 8127 // We have XXSPLTIB for constant splats one byte wide 8128 if (Subtarget.hasP9Vector() && SplatSize == 1) { 8129 // This is a splat of 1-byte elements with some elements potentially undef. 8130 // Rather than trying to match undef in the SDAG patterns, ensure that all 8131 // elements are the same constant. 8132 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 8133 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 8134 dl, MVT::i32)); 8135 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 8136 if (Op.getValueType() != MVT::v16i8) 8137 return DAG.getBitcast(Op.getValueType(), NewBV); 8138 return NewBV; 8139 } 8140 8141 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 8142 // detect that constant splats like v8i16: 0xABAB are really just splats 8143 // of a 1-byte constant. In this case, we need to convert the node to a 8144 // splat of v16i8 and a bitcast. 8145 if (Op.getValueType() != MVT::v16i8) 8146 return DAG.getBitcast(Op.getValueType(), 8147 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 8148 8149 return Op; 8150 } 8151 8152 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8153 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8154 (32-SplatBitSize)); 8155 if (SextVal >= -16 && SextVal <= 15) 8156 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8157 8158 // Two instruction sequences. 8159 8160 // If this value is in the range [-32,30] and is even, use: 8161 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8162 // If this value is in the range [17,31] and is odd, use: 8163 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8164 // If this value is in the range [-31,-17] and is odd, use: 8165 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8166 // Note the last two are three-instruction sequences. 8167 if (SextVal >= -32 && SextVal <= 31) { 8168 // To avoid having these optimizations undone by constant folding, 8169 // we convert to a pseudo that will be expanded later into one of 8170 // the above forms. 8171 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8172 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8173 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8174 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8175 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8176 if (VT == Op.getValueType()) 8177 return RetVal; 8178 else 8179 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8180 } 8181 8182 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8183 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8184 // for fneg/fabs. 8185 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8186 // Make -1 and vspltisw -1: 8187 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8188 8189 // Make the VSLW intrinsic, computing 0x8000_0000. 8190 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8191 OnesV, DAG, dl); 8192 8193 // xor by OnesV to invert it. 8194 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8195 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8196 } 8197 8198 // Check to see if this is a wide variety of vsplti*, binop self cases. 8199 static const signed char SplatCsts[] = { 8200 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8201 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8202 }; 8203 8204 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8205 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8206 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8207 int i = SplatCsts[idx]; 8208 8209 // Figure out what shift amount will be used by altivec if shifted by i in 8210 // this splat size. 8211 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8212 8213 // vsplti + shl self. 8214 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8215 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8216 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8217 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8218 Intrinsic::ppc_altivec_vslw 8219 }; 8220 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8221 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8222 } 8223 8224 // vsplti + srl self. 8225 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8226 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8227 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8228 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8229 Intrinsic::ppc_altivec_vsrw 8230 }; 8231 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8232 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8233 } 8234 8235 // vsplti + sra self. 8236 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8237 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8238 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8239 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8240 Intrinsic::ppc_altivec_vsraw 8241 }; 8242 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8243 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8244 } 8245 8246 // vsplti + rol self. 8247 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8248 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8249 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8250 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8251 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8252 Intrinsic::ppc_altivec_vrlw 8253 }; 8254 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8255 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8256 } 8257 8258 // t = vsplti c, result = vsldoi t, t, 1 8259 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8260 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8261 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8262 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8263 } 8264 // t = vsplti c, result = vsldoi t, t, 2 8265 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8266 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8267 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8268 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8269 } 8270 // t = vsplti c, result = vsldoi t, t, 3 8271 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8272 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8273 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8274 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8275 } 8276 } 8277 8278 return SDValue(); 8279 } 8280 8281 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8282 /// the specified operations to build the shuffle. 8283 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8284 SDValue RHS, SelectionDAG &DAG, 8285 const SDLoc &dl) { 8286 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8287 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8288 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8289 8290 enum { 8291 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8292 OP_VMRGHW, 8293 OP_VMRGLW, 8294 OP_VSPLTISW0, 8295 OP_VSPLTISW1, 8296 OP_VSPLTISW2, 8297 OP_VSPLTISW3, 8298 OP_VSLDOI4, 8299 OP_VSLDOI8, 8300 OP_VSLDOI12 8301 }; 8302 8303 if (OpNum == OP_COPY) { 8304 if (LHSID == (1*9+2)*9+3) return LHS; 8305 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8306 return RHS; 8307 } 8308 8309 SDValue OpLHS, OpRHS; 8310 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8311 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8312 8313 int ShufIdxs[16]; 8314 switch (OpNum) { 8315 default: llvm_unreachable("Unknown i32 permute!"); 8316 case OP_VMRGHW: 8317 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8318 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8319 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8320 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8321 break; 8322 case OP_VMRGLW: 8323 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8324 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8325 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8326 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8327 break; 8328 case OP_VSPLTISW0: 8329 for (unsigned i = 0; i != 16; ++i) 8330 ShufIdxs[i] = (i&3)+0; 8331 break; 8332 case OP_VSPLTISW1: 8333 for (unsigned i = 0; i != 16; ++i) 8334 ShufIdxs[i] = (i&3)+4; 8335 break; 8336 case OP_VSPLTISW2: 8337 for (unsigned i = 0; i != 16; ++i) 8338 ShufIdxs[i] = (i&3)+8; 8339 break; 8340 case OP_VSPLTISW3: 8341 for (unsigned i = 0; i != 16; ++i) 8342 ShufIdxs[i] = (i&3)+12; 8343 break; 8344 case OP_VSLDOI4: 8345 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8346 case OP_VSLDOI8: 8347 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8348 case OP_VSLDOI12: 8349 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8350 } 8351 EVT VT = OpLHS.getValueType(); 8352 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8353 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8354 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8355 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8356 } 8357 8358 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8359 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8360 /// SDValue. 8361 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8362 SelectionDAG &DAG) const { 8363 const unsigned BytesInVector = 16; 8364 bool IsLE = Subtarget.isLittleEndian(); 8365 SDLoc dl(N); 8366 SDValue V1 = N->getOperand(0); 8367 SDValue V2 = N->getOperand(1); 8368 unsigned ShiftElts = 0, InsertAtByte = 0; 8369 bool Swap = false; 8370 8371 // Shifts required to get the byte we want at element 7. 8372 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8373 0, 15, 14, 13, 12, 11, 10, 9}; 8374 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8375 1, 2, 3, 4, 5, 6, 7, 8}; 8376 8377 ArrayRef<int> Mask = N->getMask(); 8378 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8379 8380 // For each mask element, find out if we're just inserting something 8381 // from V2 into V1 or vice versa. 8382 // Possible permutations inserting an element from V2 into V1: 8383 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8384 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8385 // ... 8386 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8387 // Inserting from V1 into V2 will be similar, except mask range will be 8388 // [16,31]. 8389 8390 bool FoundCandidate = false; 8391 // If both vector operands for the shuffle are the same vector, the mask 8392 // will contain only elements from the first one and the second one will be 8393 // undef. 8394 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8395 // Go through the mask of half-words to find an element that's being moved 8396 // from one vector to the other. 8397 for (unsigned i = 0; i < BytesInVector; ++i) { 8398 unsigned CurrentElement = Mask[i]; 8399 // If 2nd operand is undefined, we should only look for element 7 in the 8400 // Mask. 8401 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8402 continue; 8403 8404 bool OtherElementsInOrder = true; 8405 // Examine the other elements in the Mask to see if they're in original 8406 // order. 8407 for (unsigned j = 0; j < BytesInVector; ++j) { 8408 if (j == i) 8409 continue; 8410 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8411 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8412 // in which we always assume we're always picking from the 1st operand. 8413 int MaskOffset = 8414 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8415 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8416 OtherElementsInOrder = false; 8417 break; 8418 } 8419 } 8420 // If other elements are in original order, we record the number of shifts 8421 // we need to get the element we want into element 7. Also record which byte 8422 // in the vector we should insert into. 8423 if (OtherElementsInOrder) { 8424 // If 2nd operand is undefined, we assume no shifts and no swapping. 8425 if (V2.isUndef()) { 8426 ShiftElts = 0; 8427 Swap = false; 8428 } else { 8429 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8430 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8431 : BigEndianShifts[CurrentElement & 0xF]; 8432 Swap = CurrentElement < BytesInVector; 8433 } 8434 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8435 FoundCandidate = true; 8436 break; 8437 } 8438 } 8439 8440 if (!FoundCandidate) 8441 return SDValue(); 8442 8443 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8444 // optionally with VECSHL if shift is required. 8445 if (Swap) 8446 std::swap(V1, V2); 8447 if (V2.isUndef()) 8448 V2 = V1; 8449 if (ShiftElts) { 8450 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8451 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8452 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8453 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8454 } 8455 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8456 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8457 } 8458 8459 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8460 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8461 /// SDValue. 8462 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8463 SelectionDAG &DAG) const { 8464 const unsigned NumHalfWords = 8; 8465 const unsigned BytesInVector = NumHalfWords * 2; 8466 // Check that the shuffle is on half-words. 8467 if (!isNByteElemShuffleMask(N, 2, 1)) 8468 return SDValue(); 8469 8470 bool IsLE = Subtarget.isLittleEndian(); 8471 SDLoc dl(N); 8472 SDValue V1 = N->getOperand(0); 8473 SDValue V2 = N->getOperand(1); 8474 unsigned ShiftElts = 0, InsertAtByte = 0; 8475 bool Swap = false; 8476 8477 // Shifts required to get the half-word we want at element 3. 8478 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8479 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8480 8481 uint32_t Mask = 0; 8482 uint32_t OriginalOrderLow = 0x1234567; 8483 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8484 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8485 // 32-bit space, only need 4-bit nibbles per element. 8486 for (unsigned i = 0; i < NumHalfWords; ++i) { 8487 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8488 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8489 } 8490 8491 // For each mask element, find out if we're just inserting something 8492 // from V2 into V1 or vice versa. Possible permutations inserting an element 8493 // from V2 into V1: 8494 // X, 1, 2, 3, 4, 5, 6, 7 8495 // 0, X, 2, 3, 4, 5, 6, 7 8496 // 0, 1, X, 3, 4, 5, 6, 7 8497 // 0, 1, 2, X, 4, 5, 6, 7 8498 // 0, 1, 2, 3, X, 5, 6, 7 8499 // 0, 1, 2, 3, 4, X, 6, 7 8500 // 0, 1, 2, 3, 4, 5, X, 7 8501 // 0, 1, 2, 3, 4, 5, 6, X 8502 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8503 8504 bool FoundCandidate = false; 8505 // Go through the mask of half-words to find an element that's being moved 8506 // from one vector to the other. 8507 for (unsigned i = 0; i < NumHalfWords; ++i) { 8508 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8509 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8510 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8511 uint32_t TargetOrder = 0x0; 8512 8513 // If both vector operands for the shuffle are the same vector, the mask 8514 // will contain only elements from the first one and the second one will be 8515 // undef. 8516 if (V2.isUndef()) { 8517 ShiftElts = 0; 8518 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8519 TargetOrder = OriginalOrderLow; 8520 Swap = false; 8521 // Skip if not the correct element or mask of other elements don't equal 8522 // to our expected order. 8523 if (MaskOneElt == VINSERTHSrcElem && 8524 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8525 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8526 FoundCandidate = true; 8527 break; 8528 } 8529 } else { // If both operands are defined. 8530 // Target order is [8,15] if the current mask is between [0,7]. 8531 TargetOrder = 8532 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 8533 // Skip if mask of other elements don't equal our expected order. 8534 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8535 // We only need the last 3 bits for the number of shifts. 8536 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 8537 : BigEndianShifts[MaskOneElt & 0x7]; 8538 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8539 Swap = MaskOneElt < NumHalfWords; 8540 FoundCandidate = true; 8541 break; 8542 } 8543 } 8544 } 8545 8546 if (!FoundCandidate) 8547 return SDValue(); 8548 8549 // Candidate found, construct the proper SDAG sequence with VINSERTH, 8550 // optionally with VECSHL if shift is required. 8551 if (Swap) 8552 std::swap(V1, V2); 8553 if (V2.isUndef()) 8554 V2 = V1; 8555 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8556 if (ShiftElts) { 8557 // Double ShiftElts because we're left shifting on v16i8 type. 8558 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8559 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 8560 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 8561 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8562 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8563 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8564 } 8565 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 8566 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8567 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8568 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8569 } 8570 8571 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 8572 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 8573 /// return the code it can be lowered into. Worst case, it can always be 8574 /// lowered into a vperm. 8575 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 8576 SelectionDAG &DAG) const { 8577 SDLoc dl(Op); 8578 SDValue V1 = Op.getOperand(0); 8579 SDValue V2 = Op.getOperand(1); 8580 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 8581 EVT VT = Op.getValueType(); 8582 bool isLittleEndian = Subtarget.isLittleEndian(); 8583 8584 unsigned ShiftElts, InsertAtByte; 8585 bool Swap = false; 8586 if (Subtarget.hasP9Vector() && 8587 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 8588 isLittleEndian)) { 8589 if (Swap) 8590 std::swap(V1, V2); 8591 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8592 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 8593 if (ShiftElts) { 8594 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 8595 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8596 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 8597 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8598 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8599 } 8600 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 8601 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8602 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8603 } 8604 8605 if (Subtarget.hasP9Altivec()) { 8606 SDValue NewISDNode; 8607 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 8608 return NewISDNode; 8609 8610 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 8611 return NewISDNode; 8612 } 8613 8614 if (Subtarget.hasVSX() && 8615 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8616 if (Swap) 8617 std::swap(V1, V2); 8618 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8619 SDValue Conv2 = 8620 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 8621 8622 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 8623 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8624 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 8625 } 8626 8627 if (Subtarget.hasVSX() && 8628 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8629 if (Swap) 8630 std::swap(V1, V2); 8631 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8632 SDValue Conv2 = 8633 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 8634 8635 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 8636 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8637 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 8638 } 8639 8640 if (Subtarget.hasP9Vector()) { 8641 if (PPC::isXXBRHShuffleMask(SVOp)) { 8642 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8643 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 8644 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 8645 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 8646 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8647 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 8648 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 8649 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 8650 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8651 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 8652 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 8653 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 8654 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 8655 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 8656 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 8657 } 8658 } 8659 8660 if (Subtarget.hasVSX()) { 8661 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 8662 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 8663 8664 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8665 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 8666 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8667 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 8668 } 8669 8670 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 8671 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 8672 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 8673 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 8674 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 8675 } 8676 } 8677 8678 if (Subtarget.hasQPX()) { 8679 if (VT.getVectorNumElements() != 4) 8680 return SDValue(); 8681 8682 if (V2.isUndef()) V2 = V1; 8683 8684 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 8685 if (AlignIdx != -1) { 8686 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 8687 DAG.getConstant(AlignIdx, dl, MVT::i32)); 8688 } else if (SVOp->isSplat()) { 8689 int SplatIdx = SVOp->getSplatIndex(); 8690 if (SplatIdx >= 4) { 8691 std::swap(V1, V2); 8692 SplatIdx -= 4; 8693 } 8694 8695 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 8696 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8697 } 8698 8699 // Lower this into a qvgpci/qvfperm pair. 8700 8701 // Compute the qvgpci literal 8702 unsigned idx = 0; 8703 for (unsigned i = 0; i < 4; ++i) { 8704 int m = SVOp->getMaskElt(i); 8705 unsigned mm = m >= 0 ? (unsigned) m : i; 8706 idx |= mm << (3-i)*3; 8707 } 8708 8709 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 8710 DAG.getConstant(idx, dl, MVT::i32)); 8711 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 8712 } 8713 8714 // Cases that are handled by instructions that take permute immediates 8715 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 8716 // selected by the instruction selector. 8717 if (V2.isUndef()) { 8718 if (PPC::isSplatShuffleMask(SVOp, 1) || 8719 PPC::isSplatShuffleMask(SVOp, 2) || 8720 PPC::isSplatShuffleMask(SVOp, 4) || 8721 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 8722 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 8723 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 8724 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 8725 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 8726 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 8727 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 8728 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 8729 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 8730 (Subtarget.hasP8Altivec() && ( 8731 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 8732 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 8733 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 8734 return Op; 8735 } 8736 } 8737 8738 // Altivec has a variety of "shuffle immediates" that take two vector inputs 8739 // and produce a fixed permutation. If any of these match, do not lower to 8740 // VPERM. 8741 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 8742 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 8743 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 8744 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 8745 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8746 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8747 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8748 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8749 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8750 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8751 (Subtarget.hasP8Altivec() && ( 8752 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 8753 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 8754 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 8755 return Op; 8756 8757 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 8758 // perfect shuffle table to emit an optimal matching sequence. 8759 ArrayRef<int> PermMask = SVOp->getMask(); 8760 8761 unsigned PFIndexes[4]; 8762 bool isFourElementShuffle = true; 8763 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 8764 unsigned EltNo = 8; // Start out undef. 8765 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 8766 if (PermMask[i*4+j] < 0) 8767 continue; // Undef, ignore it. 8768 8769 unsigned ByteSource = PermMask[i*4+j]; 8770 if ((ByteSource & 3) != j) { 8771 isFourElementShuffle = false; 8772 break; 8773 } 8774 8775 if (EltNo == 8) { 8776 EltNo = ByteSource/4; 8777 } else if (EltNo != ByteSource/4) { 8778 isFourElementShuffle = false; 8779 break; 8780 } 8781 } 8782 PFIndexes[i] = EltNo; 8783 } 8784 8785 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 8786 // perfect shuffle vector to determine if it is cost effective to do this as 8787 // discrete instructions, or whether we should use a vperm. 8788 // For now, we skip this for little endian until such time as we have a 8789 // little-endian perfect shuffle table. 8790 if (isFourElementShuffle && !isLittleEndian) { 8791 // Compute the index in the perfect shuffle table. 8792 unsigned PFTableIndex = 8793 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 8794 8795 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8796 unsigned Cost = (PFEntry >> 30); 8797 8798 // Determining when to avoid vperm is tricky. Many things affect the cost 8799 // of vperm, particularly how many times the perm mask needs to be computed. 8800 // For example, if the perm mask can be hoisted out of a loop or is already 8801 // used (perhaps because there are multiple permutes with the same shuffle 8802 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 8803 // the loop requires an extra register. 8804 // 8805 // As a compromise, we only emit discrete instructions if the shuffle can be 8806 // generated in 3 or fewer operations. When we have loop information 8807 // available, if this block is within a loop, we should avoid using vperm 8808 // for 3-operation perms and use a constant pool load instead. 8809 if (Cost < 3) 8810 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 8811 } 8812 8813 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 8814 // vector that will get spilled to the constant pool. 8815 if (V2.isUndef()) V2 = V1; 8816 8817 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 8818 // that it is in input element units, not in bytes. Convert now. 8819 8820 // For little endian, the order of the input vectors is reversed, and 8821 // the permutation mask is complemented with respect to 31. This is 8822 // necessary to produce proper semantics with the big-endian-biased vperm 8823 // instruction. 8824 EVT EltVT = V1.getValueType().getVectorElementType(); 8825 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 8826 8827 SmallVector<SDValue, 16> ResultMask; 8828 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 8829 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 8830 8831 for (unsigned j = 0; j != BytesPerElement; ++j) 8832 if (isLittleEndian) 8833 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 8834 dl, MVT::i32)); 8835 else 8836 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 8837 MVT::i32)); 8838 } 8839 8840 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 8841 if (isLittleEndian) 8842 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8843 V2, V1, VPermMask); 8844 else 8845 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8846 V1, V2, VPermMask); 8847 } 8848 8849 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 8850 /// vector comparison. If it is, return true and fill in Opc/isDot with 8851 /// information about the intrinsic. 8852 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 8853 bool &isDot, const PPCSubtarget &Subtarget) { 8854 unsigned IntrinsicID = 8855 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 8856 CompareOpc = -1; 8857 isDot = false; 8858 switch (IntrinsicID) { 8859 default: 8860 return false; 8861 // Comparison predicates. 8862 case Intrinsic::ppc_altivec_vcmpbfp_p: 8863 CompareOpc = 966; 8864 isDot = true; 8865 break; 8866 case Intrinsic::ppc_altivec_vcmpeqfp_p: 8867 CompareOpc = 198; 8868 isDot = true; 8869 break; 8870 case Intrinsic::ppc_altivec_vcmpequb_p: 8871 CompareOpc = 6; 8872 isDot = true; 8873 break; 8874 case Intrinsic::ppc_altivec_vcmpequh_p: 8875 CompareOpc = 70; 8876 isDot = true; 8877 break; 8878 case Intrinsic::ppc_altivec_vcmpequw_p: 8879 CompareOpc = 134; 8880 isDot = true; 8881 break; 8882 case Intrinsic::ppc_altivec_vcmpequd_p: 8883 if (Subtarget.hasP8Altivec()) { 8884 CompareOpc = 199; 8885 isDot = true; 8886 } else 8887 return false; 8888 break; 8889 case Intrinsic::ppc_altivec_vcmpneb_p: 8890 case Intrinsic::ppc_altivec_vcmpneh_p: 8891 case Intrinsic::ppc_altivec_vcmpnew_p: 8892 case Intrinsic::ppc_altivec_vcmpnezb_p: 8893 case Intrinsic::ppc_altivec_vcmpnezh_p: 8894 case Intrinsic::ppc_altivec_vcmpnezw_p: 8895 if (Subtarget.hasP9Altivec()) { 8896 switch (IntrinsicID) { 8897 default: 8898 llvm_unreachable("Unknown comparison intrinsic."); 8899 case Intrinsic::ppc_altivec_vcmpneb_p: 8900 CompareOpc = 7; 8901 break; 8902 case Intrinsic::ppc_altivec_vcmpneh_p: 8903 CompareOpc = 71; 8904 break; 8905 case Intrinsic::ppc_altivec_vcmpnew_p: 8906 CompareOpc = 135; 8907 break; 8908 case Intrinsic::ppc_altivec_vcmpnezb_p: 8909 CompareOpc = 263; 8910 break; 8911 case Intrinsic::ppc_altivec_vcmpnezh_p: 8912 CompareOpc = 327; 8913 break; 8914 case Intrinsic::ppc_altivec_vcmpnezw_p: 8915 CompareOpc = 391; 8916 break; 8917 } 8918 isDot = true; 8919 } else 8920 return false; 8921 break; 8922 case Intrinsic::ppc_altivec_vcmpgefp_p: 8923 CompareOpc = 454; 8924 isDot = true; 8925 break; 8926 case Intrinsic::ppc_altivec_vcmpgtfp_p: 8927 CompareOpc = 710; 8928 isDot = true; 8929 break; 8930 case Intrinsic::ppc_altivec_vcmpgtsb_p: 8931 CompareOpc = 774; 8932 isDot = true; 8933 break; 8934 case Intrinsic::ppc_altivec_vcmpgtsh_p: 8935 CompareOpc = 838; 8936 isDot = true; 8937 break; 8938 case Intrinsic::ppc_altivec_vcmpgtsw_p: 8939 CompareOpc = 902; 8940 isDot = true; 8941 break; 8942 case Intrinsic::ppc_altivec_vcmpgtsd_p: 8943 if (Subtarget.hasP8Altivec()) { 8944 CompareOpc = 967; 8945 isDot = true; 8946 } else 8947 return false; 8948 break; 8949 case Intrinsic::ppc_altivec_vcmpgtub_p: 8950 CompareOpc = 518; 8951 isDot = true; 8952 break; 8953 case Intrinsic::ppc_altivec_vcmpgtuh_p: 8954 CompareOpc = 582; 8955 isDot = true; 8956 break; 8957 case Intrinsic::ppc_altivec_vcmpgtuw_p: 8958 CompareOpc = 646; 8959 isDot = true; 8960 break; 8961 case Intrinsic::ppc_altivec_vcmpgtud_p: 8962 if (Subtarget.hasP8Altivec()) { 8963 CompareOpc = 711; 8964 isDot = true; 8965 } else 8966 return false; 8967 break; 8968 8969 // VSX predicate comparisons use the same infrastructure 8970 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8971 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8972 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8973 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8974 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8975 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8976 if (Subtarget.hasVSX()) { 8977 switch (IntrinsicID) { 8978 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8979 CompareOpc = 99; 8980 break; 8981 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8982 CompareOpc = 115; 8983 break; 8984 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8985 CompareOpc = 107; 8986 break; 8987 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8988 CompareOpc = 67; 8989 break; 8990 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8991 CompareOpc = 83; 8992 break; 8993 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8994 CompareOpc = 75; 8995 break; 8996 } 8997 isDot = true; 8998 } else 8999 return false; 9000 break; 9001 9002 // Normal Comparisons. 9003 case Intrinsic::ppc_altivec_vcmpbfp: 9004 CompareOpc = 966; 9005 break; 9006 case Intrinsic::ppc_altivec_vcmpeqfp: 9007 CompareOpc = 198; 9008 break; 9009 case Intrinsic::ppc_altivec_vcmpequb: 9010 CompareOpc = 6; 9011 break; 9012 case Intrinsic::ppc_altivec_vcmpequh: 9013 CompareOpc = 70; 9014 break; 9015 case Intrinsic::ppc_altivec_vcmpequw: 9016 CompareOpc = 134; 9017 break; 9018 case Intrinsic::ppc_altivec_vcmpequd: 9019 if (Subtarget.hasP8Altivec()) 9020 CompareOpc = 199; 9021 else 9022 return false; 9023 break; 9024 case Intrinsic::ppc_altivec_vcmpneb: 9025 case Intrinsic::ppc_altivec_vcmpneh: 9026 case Intrinsic::ppc_altivec_vcmpnew: 9027 case Intrinsic::ppc_altivec_vcmpnezb: 9028 case Intrinsic::ppc_altivec_vcmpnezh: 9029 case Intrinsic::ppc_altivec_vcmpnezw: 9030 if (Subtarget.hasP9Altivec()) 9031 switch (IntrinsicID) { 9032 default: 9033 llvm_unreachable("Unknown comparison intrinsic."); 9034 case Intrinsic::ppc_altivec_vcmpneb: 9035 CompareOpc = 7; 9036 break; 9037 case Intrinsic::ppc_altivec_vcmpneh: 9038 CompareOpc = 71; 9039 break; 9040 case Intrinsic::ppc_altivec_vcmpnew: 9041 CompareOpc = 135; 9042 break; 9043 case Intrinsic::ppc_altivec_vcmpnezb: 9044 CompareOpc = 263; 9045 break; 9046 case Intrinsic::ppc_altivec_vcmpnezh: 9047 CompareOpc = 327; 9048 break; 9049 case Intrinsic::ppc_altivec_vcmpnezw: 9050 CompareOpc = 391; 9051 break; 9052 } 9053 else 9054 return false; 9055 break; 9056 case Intrinsic::ppc_altivec_vcmpgefp: 9057 CompareOpc = 454; 9058 break; 9059 case Intrinsic::ppc_altivec_vcmpgtfp: 9060 CompareOpc = 710; 9061 break; 9062 case Intrinsic::ppc_altivec_vcmpgtsb: 9063 CompareOpc = 774; 9064 break; 9065 case Intrinsic::ppc_altivec_vcmpgtsh: 9066 CompareOpc = 838; 9067 break; 9068 case Intrinsic::ppc_altivec_vcmpgtsw: 9069 CompareOpc = 902; 9070 break; 9071 case Intrinsic::ppc_altivec_vcmpgtsd: 9072 if (Subtarget.hasP8Altivec()) 9073 CompareOpc = 967; 9074 else 9075 return false; 9076 break; 9077 case Intrinsic::ppc_altivec_vcmpgtub: 9078 CompareOpc = 518; 9079 break; 9080 case Intrinsic::ppc_altivec_vcmpgtuh: 9081 CompareOpc = 582; 9082 break; 9083 case Intrinsic::ppc_altivec_vcmpgtuw: 9084 CompareOpc = 646; 9085 break; 9086 case Intrinsic::ppc_altivec_vcmpgtud: 9087 if (Subtarget.hasP8Altivec()) 9088 CompareOpc = 711; 9089 else 9090 return false; 9091 break; 9092 } 9093 return true; 9094 } 9095 9096 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9097 /// lower, do it, otherwise return null. 9098 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9099 SelectionDAG &DAG) const { 9100 unsigned IntrinsicID = 9101 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9102 9103 SDLoc dl(Op); 9104 9105 if (IntrinsicID == Intrinsic::thread_pointer) { 9106 // Reads the thread pointer register, used for __builtin_thread_pointer. 9107 if (Subtarget.isPPC64()) 9108 return DAG.getRegister(PPC::X13, MVT::i64); 9109 return DAG.getRegister(PPC::R2, MVT::i32); 9110 } 9111 9112 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9113 // opcode number of the comparison. 9114 int CompareOpc; 9115 bool isDot; 9116 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9117 return SDValue(); // Don't custom lower most intrinsics. 9118 9119 // If this is a non-dot comparison, make the VCMP node and we are done. 9120 if (!isDot) { 9121 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9122 Op.getOperand(1), Op.getOperand(2), 9123 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9124 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9125 } 9126 9127 // Create the PPCISD altivec 'dot' comparison node. 9128 SDValue Ops[] = { 9129 Op.getOperand(2), // LHS 9130 Op.getOperand(3), // RHS 9131 DAG.getConstant(CompareOpc, dl, MVT::i32) 9132 }; 9133 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9134 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9135 9136 // Now that we have the comparison, emit a copy from the CR to a GPR. 9137 // This is flagged to the above dot comparison. 9138 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9139 DAG.getRegister(PPC::CR6, MVT::i32), 9140 CompNode.getValue(1)); 9141 9142 // Unpack the result based on how the target uses it. 9143 unsigned BitNo; // Bit # of CR6. 9144 bool InvertBit; // Invert result? 9145 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9146 default: // Can't happen, don't crash on invalid number though. 9147 case 0: // Return the value of the EQ bit of CR6. 9148 BitNo = 0; InvertBit = false; 9149 break; 9150 case 1: // Return the inverted value of the EQ bit of CR6. 9151 BitNo = 0; InvertBit = true; 9152 break; 9153 case 2: // Return the value of the LT bit of CR6. 9154 BitNo = 2; InvertBit = false; 9155 break; 9156 case 3: // Return the inverted value of the LT bit of CR6. 9157 BitNo = 2; InvertBit = true; 9158 break; 9159 } 9160 9161 // Shift the bit into the low position. 9162 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9163 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9164 // Isolate the bit. 9165 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9166 DAG.getConstant(1, dl, MVT::i32)); 9167 9168 // If we are supposed to, toggle the bit. 9169 if (InvertBit) 9170 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9171 DAG.getConstant(1, dl, MVT::i32)); 9172 return Flags; 9173 } 9174 9175 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9176 SelectionDAG &DAG) const { 9177 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9178 // the beginning of the argument list. 9179 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9180 SDLoc DL(Op); 9181 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9182 case Intrinsic::ppc_cfence: { 9183 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9184 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9185 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9186 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9187 Op.getOperand(ArgStart + 1)), 9188 Op.getOperand(0)), 9189 0); 9190 } 9191 default: 9192 break; 9193 } 9194 return SDValue(); 9195 } 9196 9197 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9198 // Check for a DIV with the same operands as this REM. 9199 for (auto UI : Op.getOperand(1)->uses()) { 9200 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9201 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9202 if (UI->getOperand(0) == Op.getOperand(0) && 9203 UI->getOperand(1) == Op.getOperand(1)) 9204 return SDValue(); 9205 } 9206 return Op; 9207 } 9208 9209 // Lower scalar BSWAP64 to xxbrd. 9210 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9211 SDLoc dl(Op); 9212 // MTVSRDD 9213 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9214 Op.getOperand(0)); 9215 // XXBRD 9216 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 9217 // MFVSRD 9218 int VectorIndex = 0; 9219 if (Subtarget.isLittleEndian()) 9220 VectorIndex = 1; 9221 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9222 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9223 return Op; 9224 } 9225 9226 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9227 // compared to a value that is atomically loaded (atomic loads zero-extend). 9228 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9229 SelectionDAG &DAG) const { 9230 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9231 "Expecting an atomic compare-and-swap here."); 9232 SDLoc dl(Op); 9233 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9234 EVT MemVT = AtomicNode->getMemoryVT(); 9235 if (MemVT.getSizeInBits() >= 32) 9236 return Op; 9237 9238 SDValue CmpOp = Op.getOperand(2); 9239 // If this is already correctly zero-extended, leave it alone. 9240 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9241 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9242 return Op; 9243 9244 // Clear the high bits of the compare operand. 9245 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9246 SDValue NewCmpOp = 9247 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9248 DAG.getConstant(MaskVal, dl, MVT::i32)); 9249 9250 // Replace the existing compare operand with the properly zero-extended one. 9251 SmallVector<SDValue, 4> Ops; 9252 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9253 Ops.push_back(AtomicNode->getOperand(i)); 9254 Ops[2] = NewCmpOp; 9255 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9256 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9257 auto NodeTy = 9258 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9259 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9260 } 9261 9262 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9263 SelectionDAG &DAG) const { 9264 SDLoc dl(Op); 9265 // Create a stack slot that is 16-byte aligned. 9266 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9267 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9268 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9269 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9270 9271 // Store the input value into Value#0 of the stack slot. 9272 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9273 MachinePointerInfo()); 9274 // Load it out. 9275 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9276 } 9277 9278 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9279 SelectionDAG &DAG) const { 9280 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9281 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9282 9283 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9284 // We have legal lowering for constant indices but not for variable ones. 9285 if (!C) 9286 return SDValue(); 9287 9288 EVT VT = Op.getValueType(); 9289 SDLoc dl(Op); 9290 SDValue V1 = Op.getOperand(0); 9291 SDValue V2 = Op.getOperand(1); 9292 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9293 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9294 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9295 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9296 unsigned InsertAtElement = C->getZExtValue(); 9297 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9298 if (Subtarget.isLittleEndian()) { 9299 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9300 } 9301 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9302 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9303 } 9304 return Op; 9305 } 9306 9307 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9308 SelectionDAG &DAG) const { 9309 SDLoc dl(Op); 9310 SDNode *N = Op.getNode(); 9311 9312 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9313 "Unknown extract_vector_elt type"); 9314 9315 SDValue Value = N->getOperand(0); 9316 9317 // The first part of this is like the store lowering except that we don't 9318 // need to track the chain. 9319 9320 // The values are now known to be -1 (false) or 1 (true). To convert this 9321 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9322 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9323 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9324 9325 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9326 // understand how to form the extending load. 9327 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9328 9329 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9330 9331 // Now convert to an integer and store. 9332 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9333 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9334 Value); 9335 9336 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9337 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9338 MachinePointerInfo PtrInfo = 9339 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9340 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9341 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9342 9343 SDValue StoreChain = DAG.getEntryNode(); 9344 SDValue Ops[] = {StoreChain, 9345 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9346 Value, FIdx}; 9347 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9348 9349 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9350 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9351 9352 // Extract the value requested. 9353 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9354 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9355 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9356 9357 SDValue IntVal = 9358 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9359 9360 if (!Subtarget.useCRBits()) 9361 return IntVal; 9362 9363 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9364 } 9365 9366 /// Lowering for QPX v4i1 loads 9367 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9368 SelectionDAG &DAG) const { 9369 SDLoc dl(Op); 9370 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9371 SDValue LoadChain = LN->getChain(); 9372 SDValue BasePtr = LN->getBasePtr(); 9373 9374 if (Op.getValueType() == MVT::v4f64 || 9375 Op.getValueType() == MVT::v4f32) { 9376 EVT MemVT = LN->getMemoryVT(); 9377 unsigned Alignment = LN->getAlignment(); 9378 9379 // If this load is properly aligned, then it is legal. 9380 if (Alignment >= MemVT.getStoreSize()) 9381 return Op; 9382 9383 EVT ScalarVT = Op.getValueType().getScalarType(), 9384 ScalarMemVT = MemVT.getScalarType(); 9385 unsigned Stride = ScalarMemVT.getStoreSize(); 9386 9387 SDValue Vals[4], LoadChains[4]; 9388 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9389 SDValue Load; 9390 if (ScalarVT != ScalarMemVT) 9391 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9392 BasePtr, 9393 LN->getPointerInfo().getWithOffset(Idx * Stride), 9394 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9395 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9396 else 9397 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9398 LN->getPointerInfo().getWithOffset(Idx * Stride), 9399 MinAlign(Alignment, Idx * Stride), 9400 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9401 9402 if (Idx == 0 && LN->isIndexed()) { 9403 assert(LN->getAddressingMode() == ISD::PRE_INC && 9404 "Unknown addressing mode on vector load"); 9405 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9406 LN->getAddressingMode()); 9407 } 9408 9409 Vals[Idx] = Load; 9410 LoadChains[Idx] = Load.getValue(1); 9411 9412 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9413 DAG.getConstant(Stride, dl, 9414 BasePtr.getValueType())); 9415 } 9416 9417 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9418 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9419 9420 if (LN->isIndexed()) { 9421 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9422 return DAG.getMergeValues(RetOps, dl); 9423 } 9424 9425 SDValue RetOps[] = { Value, TF }; 9426 return DAG.getMergeValues(RetOps, dl); 9427 } 9428 9429 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9430 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9431 9432 // To lower v4i1 from a byte array, we load the byte elements of the 9433 // vector and then reuse the BUILD_VECTOR logic. 9434 9435 SDValue VectElmts[4], VectElmtChains[4]; 9436 for (unsigned i = 0; i < 4; ++i) { 9437 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9438 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9439 9440 VectElmts[i] = DAG.getExtLoad( 9441 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9442 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9443 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9444 VectElmtChains[i] = VectElmts[i].getValue(1); 9445 } 9446 9447 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9448 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9449 9450 SDValue RVals[] = { Value, LoadChain }; 9451 return DAG.getMergeValues(RVals, dl); 9452 } 9453 9454 /// Lowering for QPX v4i1 stores 9455 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9456 SelectionDAG &DAG) const { 9457 SDLoc dl(Op); 9458 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9459 SDValue StoreChain = SN->getChain(); 9460 SDValue BasePtr = SN->getBasePtr(); 9461 SDValue Value = SN->getValue(); 9462 9463 if (Value.getValueType() == MVT::v4f64 || 9464 Value.getValueType() == MVT::v4f32) { 9465 EVT MemVT = SN->getMemoryVT(); 9466 unsigned Alignment = SN->getAlignment(); 9467 9468 // If this store is properly aligned, then it is legal. 9469 if (Alignment >= MemVT.getStoreSize()) 9470 return Op; 9471 9472 EVT ScalarVT = Value.getValueType().getScalarType(), 9473 ScalarMemVT = MemVT.getScalarType(); 9474 unsigned Stride = ScalarMemVT.getStoreSize(); 9475 9476 SDValue Stores[4]; 9477 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9478 SDValue Ex = DAG.getNode( 9479 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9480 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9481 SDValue Store; 9482 if (ScalarVT != ScalarMemVT) 9483 Store = 9484 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9485 SN->getPointerInfo().getWithOffset(Idx * Stride), 9486 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9487 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9488 else 9489 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 9490 SN->getPointerInfo().getWithOffset(Idx * Stride), 9491 MinAlign(Alignment, Idx * Stride), 9492 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9493 9494 if (Idx == 0 && SN->isIndexed()) { 9495 assert(SN->getAddressingMode() == ISD::PRE_INC && 9496 "Unknown addressing mode on vector store"); 9497 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 9498 SN->getAddressingMode()); 9499 } 9500 9501 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9502 DAG.getConstant(Stride, dl, 9503 BasePtr.getValueType())); 9504 Stores[Idx] = Store; 9505 } 9506 9507 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9508 9509 if (SN->isIndexed()) { 9510 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 9511 return DAG.getMergeValues(RetOps, dl); 9512 } 9513 9514 return TF; 9515 } 9516 9517 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 9518 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 9519 9520 // The values are now known to be -1 (false) or 1 (true). To convert this 9521 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9522 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9523 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9524 9525 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9526 // understand how to form the extending load. 9527 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9528 9529 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9530 9531 // Now convert to an integer and store. 9532 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9533 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9534 Value); 9535 9536 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9537 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9538 MachinePointerInfo PtrInfo = 9539 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9540 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9541 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9542 9543 SDValue Ops[] = {StoreChain, 9544 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9545 Value, FIdx}; 9546 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9547 9548 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9549 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9550 9551 // Move data into the byte array. 9552 SDValue Loads[4], LoadChains[4]; 9553 for (unsigned i = 0; i < 4; ++i) { 9554 unsigned Offset = 4*i; 9555 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9556 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9557 9558 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 9559 PtrInfo.getWithOffset(Offset)); 9560 LoadChains[i] = Loads[i].getValue(1); 9561 } 9562 9563 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9564 9565 SDValue Stores[4]; 9566 for (unsigned i = 0; i < 4; ++i) { 9567 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9568 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9569 9570 Stores[i] = DAG.getTruncStore( 9571 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 9572 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 9573 SN->getAAInfo()); 9574 } 9575 9576 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9577 9578 return StoreChain; 9579 } 9580 9581 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 9582 SDLoc dl(Op); 9583 if (Op.getValueType() == MVT::v4i32) { 9584 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9585 9586 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 9587 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 9588 9589 SDValue RHSSwap = // = vrlw RHS, 16 9590 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 9591 9592 // Shrinkify inputs to v8i16. 9593 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 9594 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 9595 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 9596 9597 // Low parts multiplied together, generating 32-bit results (we ignore the 9598 // top parts). 9599 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 9600 LHS, RHS, DAG, dl, MVT::v4i32); 9601 9602 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 9603 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 9604 // Shift the high parts up 16 bits. 9605 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 9606 Neg16, DAG, dl); 9607 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 9608 } else if (Op.getValueType() == MVT::v8i16) { 9609 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9610 9611 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 9612 9613 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 9614 LHS, RHS, Zero, DAG, dl); 9615 } else if (Op.getValueType() == MVT::v16i8) { 9616 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9617 bool isLittleEndian = Subtarget.isLittleEndian(); 9618 9619 // Multiply the even 8-bit parts, producing 16-bit sums. 9620 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 9621 LHS, RHS, DAG, dl, MVT::v8i16); 9622 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 9623 9624 // Multiply the odd 8-bit parts, producing 16-bit sums. 9625 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 9626 LHS, RHS, DAG, dl, MVT::v8i16); 9627 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 9628 9629 // Merge the results together. Because vmuleub and vmuloub are 9630 // instructions with a big-endian bias, we must reverse the 9631 // element numbering and reverse the meaning of "odd" and "even" 9632 // when generating little endian code. 9633 int Ops[16]; 9634 for (unsigned i = 0; i != 8; ++i) { 9635 if (isLittleEndian) { 9636 Ops[i*2 ] = 2*i; 9637 Ops[i*2+1] = 2*i+16; 9638 } else { 9639 Ops[i*2 ] = 2*i+1; 9640 Ops[i*2+1] = 2*i+1+16; 9641 } 9642 } 9643 if (isLittleEndian) 9644 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 9645 else 9646 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 9647 } else { 9648 llvm_unreachable("Unknown mul to lower!"); 9649 } 9650 } 9651 9652 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 9653 9654 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 9655 9656 EVT VT = Op.getValueType(); 9657 assert(VT.isVector() && 9658 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 9659 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 9660 VT == MVT::v16i8) && 9661 "Unexpected vector element type!"); 9662 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 9663 "Current subtarget doesn't support smax v2i64!"); 9664 9665 // For vector abs, it can be lowered to: 9666 // abs x 9667 // ==> 9668 // y = -x 9669 // smax(x, y) 9670 9671 SDLoc dl(Op); 9672 SDValue X = Op.getOperand(0); 9673 SDValue Zero = DAG.getConstant(0, dl, VT); 9674 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 9675 9676 // SMAX patch https://reviews.llvm.org/D47332 9677 // hasn't landed yet, so use intrinsic first here. 9678 // TODO: Should use SMAX directly once SMAX patch landed 9679 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 9680 if (VT == MVT::v2i64) 9681 BifID = Intrinsic::ppc_altivec_vmaxsd; 9682 else if (VT == MVT::v8i16) 9683 BifID = Intrinsic::ppc_altivec_vmaxsh; 9684 else if (VT == MVT::v16i8) 9685 BifID = Intrinsic::ppc_altivec_vmaxsb; 9686 9687 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 9688 } 9689 9690 // Custom lowering for fpext vf32 to v2f64 9691 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 9692 9693 assert(Op.getOpcode() == ISD::FP_EXTEND && 9694 "Should only be called for ISD::FP_EXTEND"); 9695 9696 // We only want to custom lower an extend from v2f32 to v2f64. 9697 if (Op.getValueType() != MVT::v2f64 || 9698 Op.getOperand(0).getValueType() != MVT::v2f32) 9699 return SDValue(); 9700 9701 SDLoc dl(Op); 9702 SDValue Op0 = Op.getOperand(0); 9703 9704 switch (Op0.getOpcode()) { 9705 default: 9706 return SDValue(); 9707 case ISD::FADD: 9708 case ISD::FMUL: 9709 case ISD::FSUB: { 9710 SDValue NewLoad[2]; 9711 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 9712 // Ensure both input are loads. 9713 SDValue LdOp = Op0.getOperand(i); 9714 if (LdOp.getOpcode() != ISD::LOAD) 9715 return SDValue(); 9716 // Generate new load node. 9717 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 9718 SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() }; 9719 NewLoad[i] = 9720 DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl, 9721 DAG.getVTList(MVT::v4f32, MVT::Other), 9722 LoadOps, LD->getMemoryVT(), 9723 LD->getMemOperand()); 9724 } 9725 SDValue NewOp = DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, 9726 NewLoad[0], NewLoad[1], 9727 Op0.getNode()->getFlags()); 9728 return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewOp); 9729 } 9730 case ISD::LOAD: { 9731 LoadSDNode *LD = cast<LoadSDNode>(Op0); 9732 SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() }; 9733 SDValue NewLd = 9734 DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl, 9735 DAG.getVTList(MVT::v4f32, MVT::Other), 9736 LoadOps, LD->getMemoryVT(), LD->getMemOperand()); 9737 return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewLd); 9738 } 9739 } 9740 llvm_unreachable("ERROR:Should return for all cases within swtich."); 9741 } 9742 9743 /// LowerOperation - Provide custom lowering hooks for some operations. 9744 /// 9745 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9746 switch (Op.getOpcode()) { 9747 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 9748 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 9749 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 9750 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 9751 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 9752 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 9753 case ISD::SETCC: return LowerSETCC(Op, DAG); 9754 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 9755 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 9756 9757 // Variable argument lowering. 9758 case ISD::VASTART: return LowerVASTART(Op, DAG); 9759 case ISD::VAARG: return LowerVAARG(Op, DAG); 9760 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 9761 9762 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 9763 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 9764 case ISD::GET_DYNAMIC_AREA_OFFSET: 9765 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 9766 9767 // Exception handling lowering. 9768 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 9769 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 9770 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 9771 9772 case ISD::LOAD: return LowerLOAD(Op, DAG); 9773 case ISD::STORE: return LowerSTORE(Op, DAG); 9774 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 9775 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 9776 case ISD::FP_TO_UINT: 9777 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 9778 case ISD::UINT_TO_FP: 9779 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 9780 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 9781 9782 // Lower 64-bit shifts. 9783 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 9784 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 9785 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 9786 9787 // Vector-related lowering. 9788 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 9789 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 9790 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 9791 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 9792 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 9793 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 9794 case ISD::MUL: return LowerMUL(Op, DAG); 9795 case ISD::ABS: return LowerABS(Op, DAG); 9796 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 9797 9798 // For counter-based loop handling. 9799 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 9800 9801 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 9802 9803 // Frame & Return address. 9804 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 9805 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 9806 9807 case ISD::INTRINSIC_VOID: 9808 return LowerINTRINSIC_VOID(Op, DAG); 9809 case ISD::SREM: 9810 case ISD::UREM: 9811 return LowerREM(Op, DAG); 9812 case ISD::BSWAP: 9813 return LowerBSWAP(Op, DAG); 9814 case ISD::ATOMIC_CMP_SWAP: 9815 return LowerATOMIC_CMP_SWAP(Op, DAG); 9816 } 9817 } 9818 9819 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 9820 SmallVectorImpl<SDValue>&Results, 9821 SelectionDAG &DAG) const { 9822 SDLoc dl(N); 9823 switch (N->getOpcode()) { 9824 default: 9825 llvm_unreachable("Do not know how to custom type legalize this operation!"); 9826 case ISD::READCYCLECOUNTER: { 9827 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 9828 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 9829 9830 Results.push_back(RTB); 9831 Results.push_back(RTB.getValue(1)); 9832 Results.push_back(RTB.getValue(2)); 9833 break; 9834 } 9835 case ISD::INTRINSIC_W_CHAIN: { 9836 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 9837 Intrinsic::ppc_is_decremented_ctr_nonzero) 9838 break; 9839 9840 assert(N->getValueType(0) == MVT::i1 && 9841 "Unexpected result type for CTR decrement intrinsic"); 9842 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 9843 N->getValueType(0)); 9844 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 9845 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 9846 N->getOperand(1)); 9847 9848 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 9849 Results.push_back(NewInt.getValue(1)); 9850 break; 9851 } 9852 case ISD::VAARG: { 9853 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 9854 return; 9855 9856 EVT VT = N->getValueType(0); 9857 9858 if (VT == MVT::i64) { 9859 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 9860 9861 Results.push_back(NewNode); 9862 Results.push_back(NewNode.getValue(1)); 9863 } 9864 return; 9865 } 9866 case ISD::FP_TO_SINT: 9867 case ISD::FP_TO_UINT: 9868 // LowerFP_TO_INT() can only handle f32 and f64. 9869 if (N->getOperand(0).getValueType() == MVT::ppcf128) 9870 return; 9871 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 9872 return; 9873 case ISD::TRUNCATE: { 9874 EVT TrgVT = N->getValueType(0); 9875 if (TrgVT.isVector() && 9876 isOperationCustom(N->getOpcode(), TrgVT) && 9877 N->getOperand(0).getValueType().getSizeInBits() <= 128) 9878 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 9879 return; 9880 } 9881 case ISD::BITCAST: 9882 // Don't handle bitcast here. 9883 return; 9884 } 9885 } 9886 9887 //===----------------------------------------------------------------------===// 9888 // Other Lowering Code 9889 //===----------------------------------------------------------------------===// 9890 9891 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 9892 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 9893 Function *Func = Intrinsic::getDeclaration(M, Id); 9894 return Builder.CreateCall(Func, {}); 9895 } 9896 9897 // The mappings for emitLeading/TrailingFence is taken from 9898 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 9899 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 9900 Instruction *Inst, 9901 AtomicOrdering Ord) const { 9902 if (Ord == AtomicOrdering::SequentiallyConsistent) 9903 return callIntrinsic(Builder, Intrinsic::ppc_sync); 9904 if (isReleaseOrStronger(Ord)) 9905 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9906 return nullptr; 9907 } 9908 9909 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 9910 Instruction *Inst, 9911 AtomicOrdering Ord) const { 9912 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 9913 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 9914 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 9915 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 9916 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 9917 return Builder.CreateCall( 9918 Intrinsic::getDeclaration( 9919 Builder.GetInsertBlock()->getParent()->getParent(), 9920 Intrinsic::ppc_cfence, {Inst->getType()}), 9921 {Inst}); 9922 // FIXME: Can use isync for rmw operation. 9923 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9924 } 9925 return nullptr; 9926 } 9927 9928 MachineBasicBlock * 9929 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 9930 unsigned AtomicSize, 9931 unsigned BinOpcode, 9932 unsigned CmpOpcode, 9933 unsigned CmpPred) const { 9934 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9935 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9936 9937 auto LoadMnemonic = PPC::LDARX; 9938 auto StoreMnemonic = PPC::STDCX; 9939 switch (AtomicSize) { 9940 default: 9941 llvm_unreachable("Unexpected size of atomic entity"); 9942 case 1: 9943 LoadMnemonic = PPC::LBARX; 9944 StoreMnemonic = PPC::STBCX; 9945 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9946 break; 9947 case 2: 9948 LoadMnemonic = PPC::LHARX; 9949 StoreMnemonic = PPC::STHCX; 9950 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9951 break; 9952 case 4: 9953 LoadMnemonic = PPC::LWARX; 9954 StoreMnemonic = PPC::STWCX; 9955 break; 9956 case 8: 9957 LoadMnemonic = PPC::LDARX; 9958 StoreMnemonic = PPC::STDCX; 9959 break; 9960 } 9961 9962 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9963 MachineFunction *F = BB->getParent(); 9964 MachineFunction::iterator It = ++BB->getIterator(); 9965 9966 unsigned dest = MI.getOperand(0).getReg(); 9967 unsigned ptrA = MI.getOperand(1).getReg(); 9968 unsigned ptrB = MI.getOperand(2).getReg(); 9969 unsigned incr = MI.getOperand(3).getReg(); 9970 DebugLoc dl = MI.getDebugLoc(); 9971 9972 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 9973 MachineBasicBlock *loop2MBB = 9974 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 9975 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9976 F->insert(It, loopMBB); 9977 if (CmpOpcode) 9978 F->insert(It, loop2MBB); 9979 F->insert(It, exitMBB); 9980 exitMBB->splice(exitMBB->begin(), BB, 9981 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9982 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9983 9984 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9985 unsigned TmpReg = (!BinOpcode) ? incr : 9986 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 9987 : &PPC::GPRCRegClass); 9988 9989 // thisMBB: 9990 // ... 9991 // fallthrough --> loopMBB 9992 BB->addSuccessor(loopMBB); 9993 9994 // loopMBB: 9995 // l[wd]arx dest, ptr 9996 // add r0, dest, incr 9997 // st[wd]cx. r0, ptr 9998 // bne- loopMBB 9999 // fallthrough --> exitMBB 10000 10001 // For max/min... 10002 // loopMBB: 10003 // l[wd]arx dest, ptr 10004 // cmpl?[wd] incr, dest 10005 // bgt exitMBB 10006 // loop2MBB: 10007 // st[wd]cx. dest, ptr 10008 // bne- loopMBB 10009 // fallthrough --> exitMBB 10010 10011 BB = loopMBB; 10012 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10013 .addReg(ptrA).addReg(ptrB); 10014 if (BinOpcode) 10015 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10016 if (CmpOpcode) { 10017 // Signed comparisons of byte or halfword values must be sign-extended. 10018 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10019 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10020 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10021 ExtReg).addReg(dest); 10022 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10023 .addReg(incr).addReg(ExtReg); 10024 } else 10025 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10026 .addReg(incr).addReg(dest); 10027 10028 BuildMI(BB, dl, TII->get(PPC::BCC)) 10029 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10030 BB->addSuccessor(loop2MBB); 10031 BB->addSuccessor(exitMBB); 10032 BB = loop2MBB; 10033 } 10034 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10035 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10036 BuildMI(BB, dl, TII->get(PPC::BCC)) 10037 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10038 BB->addSuccessor(loopMBB); 10039 BB->addSuccessor(exitMBB); 10040 10041 // exitMBB: 10042 // ... 10043 BB = exitMBB; 10044 return BB; 10045 } 10046 10047 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10048 MachineInstr &MI, MachineBasicBlock *BB, 10049 bool is8bit, // operation 10050 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10051 // If we support part-word atomic mnemonics, just use them 10052 if (Subtarget.hasPartwordAtomics()) 10053 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10054 CmpPred); 10055 10056 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10057 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10058 // In 64 bit mode we have to use 64 bits for addresses, even though the 10059 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10060 // registers without caring whether they're 32 or 64, but here we're 10061 // doing actual arithmetic on the addresses. 10062 bool is64bit = Subtarget.isPPC64(); 10063 bool isLittleEndian = Subtarget.isLittleEndian(); 10064 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10065 10066 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10067 MachineFunction *F = BB->getParent(); 10068 MachineFunction::iterator It = ++BB->getIterator(); 10069 10070 unsigned dest = MI.getOperand(0).getReg(); 10071 unsigned ptrA = MI.getOperand(1).getReg(); 10072 unsigned ptrB = MI.getOperand(2).getReg(); 10073 unsigned incr = MI.getOperand(3).getReg(); 10074 DebugLoc dl = MI.getDebugLoc(); 10075 10076 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10077 MachineBasicBlock *loop2MBB = 10078 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10079 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10080 F->insert(It, loopMBB); 10081 if (CmpOpcode) 10082 F->insert(It, loop2MBB); 10083 F->insert(It, exitMBB); 10084 exitMBB->splice(exitMBB->begin(), BB, 10085 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10086 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10087 10088 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10089 const TargetRegisterClass *RC = 10090 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10091 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10092 10093 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 10094 unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10095 unsigned ShiftReg = 10096 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10097 unsigned Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10098 unsigned MaskReg = RegInfo.createVirtualRegister(GPRC); 10099 unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10100 unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10101 unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10102 unsigned Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10103 unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10104 unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10105 unsigned Ptr1Reg; 10106 unsigned TmpReg = 10107 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10108 10109 // thisMBB: 10110 // ... 10111 // fallthrough --> loopMBB 10112 BB->addSuccessor(loopMBB); 10113 10114 // The 4-byte load must be aligned, while a char or short may be 10115 // anywhere in the word. Hence all this nasty bookkeeping code. 10116 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10117 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10118 // xori shift, shift1, 24 [16] 10119 // rlwinm ptr, ptr1, 0, 0, 29 10120 // slw incr2, incr, shift 10121 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10122 // slw mask, mask2, shift 10123 // loopMBB: 10124 // lwarx tmpDest, ptr 10125 // add tmp, tmpDest, incr2 10126 // andc tmp2, tmpDest, mask 10127 // and tmp3, tmp, mask 10128 // or tmp4, tmp3, tmp2 10129 // stwcx. tmp4, ptr 10130 // bne- loopMBB 10131 // fallthrough --> exitMBB 10132 // srw dest, tmpDest, shift 10133 if (ptrA != ZeroReg) { 10134 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10135 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10136 .addReg(ptrA) 10137 .addReg(ptrB); 10138 } else { 10139 Ptr1Reg = ptrB; 10140 } 10141 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10142 // mode. 10143 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10144 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10145 .addImm(3) 10146 .addImm(27) 10147 .addImm(is8bit ? 28 : 27); 10148 if (!isLittleEndian) 10149 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10150 .addReg(Shift1Reg) 10151 .addImm(is8bit ? 24 : 16); 10152 if (is64bit) 10153 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10154 .addReg(Ptr1Reg) 10155 .addImm(0) 10156 .addImm(61); 10157 else 10158 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10159 .addReg(Ptr1Reg) 10160 .addImm(0) 10161 .addImm(0) 10162 .addImm(29); 10163 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10164 if (is8bit) 10165 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10166 else { 10167 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10168 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10169 .addReg(Mask3Reg) 10170 .addImm(65535); 10171 } 10172 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10173 .addReg(Mask2Reg) 10174 .addReg(ShiftReg); 10175 10176 BB = loopMBB; 10177 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10178 .addReg(ZeroReg) 10179 .addReg(PtrReg); 10180 if (BinOpcode) 10181 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10182 .addReg(Incr2Reg) 10183 .addReg(TmpDestReg); 10184 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10185 .addReg(TmpDestReg) 10186 .addReg(MaskReg); 10187 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10188 if (CmpOpcode) { 10189 // For unsigned comparisons, we can directly compare the shifted values. 10190 // For signed comparisons we shift and sign extend. 10191 unsigned SReg = RegInfo.createVirtualRegister(GPRC); 10192 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10193 .addReg(TmpDestReg) 10194 .addReg(MaskReg); 10195 unsigned ValueReg = SReg; 10196 unsigned CmpReg = Incr2Reg; 10197 if (CmpOpcode == PPC::CMPW) { 10198 ValueReg = RegInfo.createVirtualRegister(GPRC); 10199 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10200 .addReg(SReg) 10201 .addReg(ShiftReg); 10202 unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC); 10203 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10204 .addReg(ValueReg); 10205 ValueReg = ValueSReg; 10206 CmpReg = incr; 10207 } 10208 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10209 .addReg(CmpReg) 10210 .addReg(ValueReg); 10211 BuildMI(BB, dl, TII->get(PPC::BCC)) 10212 .addImm(CmpPred) 10213 .addReg(PPC::CR0) 10214 .addMBB(exitMBB); 10215 BB->addSuccessor(loop2MBB); 10216 BB->addSuccessor(exitMBB); 10217 BB = loop2MBB; 10218 } 10219 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10220 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10221 .addReg(Tmp4Reg) 10222 .addReg(ZeroReg) 10223 .addReg(PtrReg); 10224 BuildMI(BB, dl, TII->get(PPC::BCC)) 10225 .addImm(PPC::PRED_NE) 10226 .addReg(PPC::CR0) 10227 .addMBB(loopMBB); 10228 BB->addSuccessor(loopMBB); 10229 BB->addSuccessor(exitMBB); 10230 10231 // exitMBB: 10232 // ... 10233 BB = exitMBB; 10234 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10235 .addReg(TmpDestReg) 10236 .addReg(ShiftReg); 10237 return BB; 10238 } 10239 10240 llvm::MachineBasicBlock * 10241 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10242 MachineBasicBlock *MBB) const { 10243 DebugLoc DL = MI.getDebugLoc(); 10244 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10245 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10246 10247 MachineFunction *MF = MBB->getParent(); 10248 MachineRegisterInfo &MRI = MF->getRegInfo(); 10249 10250 const BasicBlock *BB = MBB->getBasicBlock(); 10251 MachineFunction::iterator I = ++MBB->getIterator(); 10252 10253 unsigned DstReg = MI.getOperand(0).getReg(); 10254 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10255 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10256 unsigned mainDstReg = MRI.createVirtualRegister(RC); 10257 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 10258 10259 MVT PVT = getPointerTy(MF->getDataLayout()); 10260 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10261 "Invalid Pointer Size!"); 10262 // For v = setjmp(buf), we generate 10263 // 10264 // thisMBB: 10265 // SjLjSetup mainMBB 10266 // bl mainMBB 10267 // v_restore = 1 10268 // b sinkMBB 10269 // 10270 // mainMBB: 10271 // buf[LabelOffset] = LR 10272 // v_main = 0 10273 // 10274 // sinkMBB: 10275 // v = phi(main, restore) 10276 // 10277 10278 MachineBasicBlock *thisMBB = MBB; 10279 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10280 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10281 MF->insert(I, mainMBB); 10282 MF->insert(I, sinkMBB); 10283 10284 MachineInstrBuilder MIB; 10285 10286 // Transfer the remainder of BB and its successor edges to sinkMBB. 10287 sinkMBB->splice(sinkMBB->begin(), MBB, 10288 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10289 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10290 10291 // Note that the structure of the jmp_buf used here is not compatible 10292 // with that used by libc, and is not designed to be. Specifically, it 10293 // stores only those 'reserved' registers that LLVM does not otherwise 10294 // understand how to spill. Also, by convention, by the time this 10295 // intrinsic is called, Clang has already stored the frame address in the 10296 // first slot of the buffer and stack address in the third. Following the 10297 // X86 target code, we'll store the jump address in the second slot. We also 10298 // need to save the TOC pointer (R2) to handle jumps between shared 10299 // libraries, and that will be stored in the fourth slot. The thread 10300 // identifier (R13) is not affected. 10301 10302 // thisMBB: 10303 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10304 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10305 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10306 10307 // Prepare IP either in reg. 10308 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10309 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 10310 unsigned BufReg = MI.getOperand(1).getReg(); 10311 10312 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 10313 setUsesTOCBasePtr(*MBB->getParent()); 10314 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10315 .addReg(PPC::X2) 10316 .addImm(TOCOffset) 10317 .addReg(BufReg) 10318 .cloneMemRefs(MI); 10319 } 10320 10321 // Naked functions never have a base pointer, and so we use r1. For all 10322 // other functions, this decision must be delayed until during PEI. 10323 unsigned BaseReg; 10324 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10325 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10326 else 10327 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10328 10329 MIB = BuildMI(*thisMBB, MI, DL, 10330 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10331 .addReg(BaseReg) 10332 .addImm(BPOffset) 10333 .addReg(BufReg) 10334 .cloneMemRefs(MI); 10335 10336 // Setup 10337 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10338 MIB.addRegMask(TRI->getNoPreservedMask()); 10339 10340 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10341 10342 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10343 .addMBB(mainMBB); 10344 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10345 10346 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10347 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10348 10349 // mainMBB: 10350 // mainDstReg = 0 10351 MIB = 10352 BuildMI(mainMBB, DL, 10353 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10354 10355 // Store IP 10356 if (Subtarget.isPPC64()) { 10357 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10358 .addReg(LabelReg) 10359 .addImm(LabelOffset) 10360 .addReg(BufReg); 10361 } else { 10362 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10363 .addReg(LabelReg) 10364 .addImm(LabelOffset) 10365 .addReg(BufReg); 10366 } 10367 MIB.cloneMemRefs(MI); 10368 10369 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10370 mainMBB->addSuccessor(sinkMBB); 10371 10372 // sinkMBB: 10373 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10374 TII->get(PPC::PHI), DstReg) 10375 .addReg(mainDstReg).addMBB(mainMBB) 10376 .addReg(restoreDstReg).addMBB(thisMBB); 10377 10378 MI.eraseFromParent(); 10379 return sinkMBB; 10380 } 10381 10382 MachineBasicBlock * 10383 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10384 MachineBasicBlock *MBB) const { 10385 DebugLoc DL = MI.getDebugLoc(); 10386 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10387 10388 MachineFunction *MF = MBB->getParent(); 10389 MachineRegisterInfo &MRI = MF->getRegInfo(); 10390 10391 MVT PVT = getPointerTy(MF->getDataLayout()); 10392 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10393 "Invalid Pointer Size!"); 10394 10395 const TargetRegisterClass *RC = 10396 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10397 unsigned Tmp = MRI.createVirtualRegister(RC); 10398 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10399 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10400 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10401 unsigned BP = 10402 (PVT == MVT::i64) 10403 ? PPC::X30 10404 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10405 : PPC::R30); 10406 10407 MachineInstrBuilder MIB; 10408 10409 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10410 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10411 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10412 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10413 10414 unsigned BufReg = MI.getOperand(0).getReg(); 10415 10416 // Reload FP (the jumped-to function may not have had a 10417 // frame pointer, and if so, then its r31 will be restored 10418 // as necessary). 10419 if (PVT == MVT::i64) { 10420 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10421 .addImm(0) 10422 .addReg(BufReg); 10423 } else { 10424 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10425 .addImm(0) 10426 .addReg(BufReg); 10427 } 10428 MIB.cloneMemRefs(MI); 10429 10430 // Reload IP 10431 if (PVT == MVT::i64) { 10432 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10433 .addImm(LabelOffset) 10434 .addReg(BufReg); 10435 } else { 10436 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10437 .addImm(LabelOffset) 10438 .addReg(BufReg); 10439 } 10440 MIB.cloneMemRefs(MI); 10441 10442 // Reload SP 10443 if (PVT == MVT::i64) { 10444 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10445 .addImm(SPOffset) 10446 .addReg(BufReg); 10447 } else { 10448 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10449 .addImm(SPOffset) 10450 .addReg(BufReg); 10451 } 10452 MIB.cloneMemRefs(MI); 10453 10454 // Reload BP 10455 if (PVT == MVT::i64) { 10456 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10457 .addImm(BPOffset) 10458 .addReg(BufReg); 10459 } else { 10460 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10461 .addImm(BPOffset) 10462 .addReg(BufReg); 10463 } 10464 MIB.cloneMemRefs(MI); 10465 10466 // Reload TOC 10467 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 10468 setUsesTOCBasePtr(*MBB->getParent()); 10469 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 10470 .addImm(TOCOffset) 10471 .addReg(BufReg) 10472 .cloneMemRefs(MI); 10473 } 10474 10475 // Jump 10476 BuildMI(*MBB, MI, DL, 10477 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 10478 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 10479 10480 MI.eraseFromParent(); 10481 return MBB; 10482 } 10483 10484 MachineBasicBlock * 10485 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10486 MachineBasicBlock *BB) const { 10487 if (MI.getOpcode() == TargetOpcode::STACKMAP || 10488 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10489 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 10490 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10491 // Call lowering should have added an r2 operand to indicate a dependence 10492 // on the TOC base pointer value. It can't however, because there is no 10493 // way to mark the dependence as implicit there, and so the stackmap code 10494 // will confuse it with a regular operand. Instead, add the dependence 10495 // here. 10496 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 10497 } 10498 10499 return emitPatchPoint(MI, BB); 10500 } 10501 10502 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 10503 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 10504 return emitEHSjLjSetJmp(MI, BB); 10505 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 10506 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 10507 return emitEHSjLjLongJmp(MI, BB); 10508 } 10509 10510 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10511 10512 // To "insert" these instructions we actually have to insert their 10513 // control-flow patterns. 10514 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10515 MachineFunction::iterator It = ++BB->getIterator(); 10516 10517 MachineFunction *F = BB->getParent(); 10518 10519 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10520 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 10521 MI.getOpcode() == PPC::SELECT_I8) { 10522 SmallVector<MachineOperand, 2> Cond; 10523 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10524 MI.getOpcode() == PPC::SELECT_CC_I8) 10525 Cond.push_back(MI.getOperand(4)); 10526 else 10527 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 10528 Cond.push_back(MI.getOperand(1)); 10529 10530 DebugLoc dl = MI.getDebugLoc(); 10531 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 10532 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 10533 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10534 MI.getOpcode() == PPC::SELECT_CC_I8 || 10535 MI.getOpcode() == PPC::SELECT_CC_F4 || 10536 MI.getOpcode() == PPC::SELECT_CC_F8 || 10537 MI.getOpcode() == PPC::SELECT_CC_F16 || 10538 MI.getOpcode() == PPC::SELECT_CC_QFRC || 10539 MI.getOpcode() == PPC::SELECT_CC_QSRC || 10540 MI.getOpcode() == PPC::SELECT_CC_QBRC || 10541 MI.getOpcode() == PPC::SELECT_CC_VRRC || 10542 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 10543 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 10544 MI.getOpcode() == PPC::SELECT_CC_VSRC || 10545 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 10546 MI.getOpcode() == PPC::SELECT_CC_SPE || 10547 MI.getOpcode() == PPC::SELECT_I4 || 10548 MI.getOpcode() == PPC::SELECT_I8 || 10549 MI.getOpcode() == PPC::SELECT_F4 || 10550 MI.getOpcode() == PPC::SELECT_F8 || 10551 MI.getOpcode() == PPC::SELECT_F16 || 10552 MI.getOpcode() == PPC::SELECT_QFRC || 10553 MI.getOpcode() == PPC::SELECT_QSRC || 10554 MI.getOpcode() == PPC::SELECT_QBRC || 10555 MI.getOpcode() == PPC::SELECT_SPE || 10556 MI.getOpcode() == PPC::SELECT_SPE4 || 10557 MI.getOpcode() == PPC::SELECT_VRRC || 10558 MI.getOpcode() == PPC::SELECT_VSFRC || 10559 MI.getOpcode() == PPC::SELECT_VSSRC || 10560 MI.getOpcode() == PPC::SELECT_VSRC) { 10561 // The incoming instruction knows the destination vreg to set, the 10562 // condition code register to branch on, the true/false values to 10563 // select between, and a branch opcode to use. 10564 10565 // thisMBB: 10566 // ... 10567 // TrueVal = ... 10568 // cmpTY ccX, r1, r2 10569 // bCC copy1MBB 10570 // fallthrough --> copy0MBB 10571 MachineBasicBlock *thisMBB = BB; 10572 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 10573 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10574 DebugLoc dl = MI.getDebugLoc(); 10575 F->insert(It, copy0MBB); 10576 F->insert(It, sinkMBB); 10577 10578 // Transfer the remainder of BB and its successor edges to sinkMBB. 10579 sinkMBB->splice(sinkMBB->begin(), BB, 10580 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10581 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10582 10583 // Next, add the true and fallthrough blocks as its successors. 10584 BB->addSuccessor(copy0MBB); 10585 BB->addSuccessor(sinkMBB); 10586 10587 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 10588 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 10589 MI.getOpcode() == PPC::SELECT_F16 || 10590 MI.getOpcode() == PPC::SELECT_SPE4 || 10591 MI.getOpcode() == PPC::SELECT_SPE || 10592 MI.getOpcode() == PPC::SELECT_QFRC || 10593 MI.getOpcode() == PPC::SELECT_QSRC || 10594 MI.getOpcode() == PPC::SELECT_QBRC || 10595 MI.getOpcode() == PPC::SELECT_VRRC || 10596 MI.getOpcode() == PPC::SELECT_VSFRC || 10597 MI.getOpcode() == PPC::SELECT_VSSRC || 10598 MI.getOpcode() == PPC::SELECT_VSRC) { 10599 BuildMI(BB, dl, TII->get(PPC::BC)) 10600 .addReg(MI.getOperand(1).getReg()) 10601 .addMBB(sinkMBB); 10602 } else { 10603 unsigned SelectPred = MI.getOperand(4).getImm(); 10604 BuildMI(BB, dl, TII->get(PPC::BCC)) 10605 .addImm(SelectPred) 10606 .addReg(MI.getOperand(1).getReg()) 10607 .addMBB(sinkMBB); 10608 } 10609 10610 // copy0MBB: 10611 // %FalseValue = ... 10612 // # fallthrough to sinkMBB 10613 BB = copy0MBB; 10614 10615 // Update machine-CFG edges 10616 BB->addSuccessor(sinkMBB); 10617 10618 // sinkMBB: 10619 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 10620 // ... 10621 BB = sinkMBB; 10622 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 10623 .addReg(MI.getOperand(3).getReg()) 10624 .addMBB(copy0MBB) 10625 .addReg(MI.getOperand(2).getReg()) 10626 .addMBB(thisMBB); 10627 } else if (MI.getOpcode() == PPC::ReadTB) { 10628 // To read the 64-bit time-base register on a 32-bit target, we read the 10629 // two halves. Should the counter have wrapped while it was being read, we 10630 // need to try again. 10631 // ... 10632 // readLoop: 10633 // mfspr Rx,TBU # load from TBU 10634 // mfspr Ry,TB # load from TB 10635 // mfspr Rz,TBU # load from TBU 10636 // cmpw crX,Rx,Rz # check if 'old'='new' 10637 // bne readLoop # branch if they're not equal 10638 // ... 10639 10640 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 10641 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10642 DebugLoc dl = MI.getDebugLoc(); 10643 F->insert(It, readMBB); 10644 F->insert(It, sinkMBB); 10645 10646 // Transfer the remainder of BB and its successor edges to sinkMBB. 10647 sinkMBB->splice(sinkMBB->begin(), BB, 10648 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10649 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10650 10651 BB->addSuccessor(readMBB); 10652 BB = readMBB; 10653 10654 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10655 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10656 unsigned LoReg = MI.getOperand(0).getReg(); 10657 unsigned HiReg = MI.getOperand(1).getReg(); 10658 10659 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 10660 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 10661 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 10662 10663 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10664 10665 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 10666 .addReg(HiReg) 10667 .addReg(ReadAgainReg); 10668 BuildMI(BB, dl, TII->get(PPC::BCC)) 10669 .addImm(PPC::PRED_NE) 10670 .addReg(CmpReg) 10671 .addMBB(readMBB); 10672 10673 BB->addSuccessor(readMBB); 10674 BB->addSuccessor(sinkMBB); 10675 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 10676 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 10677 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 10678 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 10679 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 10680 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 10681 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 10682 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 10683 10684 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 10685 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 10686 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 10687 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 10688 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 10689 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 10690 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 10691 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 10692 10693 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 10694 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 10695 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 10696 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 10697 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 10698 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 10699 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 10700 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 10701 10702 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 10703 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 10704 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 10705 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 10706 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 10707 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 10708 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 10709 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 10710 10711 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 10712 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 10713 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 10714 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 10715 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 10716 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 10717 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 10718 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 10719 10720 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 10721 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 10722 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 10723 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 10724 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 10725 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 10726 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 10727 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 10728 10729 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 10730 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 10731 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 10732 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 10733 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 10734 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 10735 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 10736 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 10737 10738 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 10739 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 10740 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 10741 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 10742 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 10743 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 10744 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 10745 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 10746 10747 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 10748 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 10749 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 10750 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 10751 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 10752 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 10753 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 10754 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 10755 10756 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 10757 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 10758 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 10759 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 10760 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 10761 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 10762 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 10763 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 10764 10765 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 10766 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 10767 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 10768 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 10769 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 10770 BB = EmitAtomicBinary(MI, BB, 4, 0); 10771 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 10772 BB = EmitAtomicBinary(MI, BB, 8, 0); 10773 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 10774 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 10775 (Subtarget.hasPartwordAtomics() && 10776 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 10777 (Subtarget.hasPartwordAtomics() && 10778 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 10779 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 10780 10781 auto LoadMnemonic = PPC::LDARX; 10782 auto StoreMnemonic = PPC::STDCX; 10783 switch (MI.getOpcode()) { 10784 default: 10785 llvm_unreachable("Compare and swap of unknown size"); 10786 case PPC::ATOMIC_CMP_SWAP_I8: 10787 LoadMnemonic = PPC::LBARX; 10788 StoreMnemonic = PPC::STBCX; 10789 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10790 break; 10791 case PPC::ATOMIC_CMP_SWAP_I16: 10792 LoadMnemonic = PPC::LHARX; 10793 StoreMnemonic = PPC::STHCX; 10794 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10795 break; 10796 case PPC::ATOMIC_CMP_SWAP_I32: 10797 LoadMnemonic = PPC::LWARX; 10798 StoreMnemonic = PPC::STWCX; 10799 break; 10800 case PPC::ATOMIC_CMP_SWAP_I64: 10801 LoadMnemonic = PPC::LDARX; 10802 StoreMnemonic = PPC::STDCX; 10803 break; 10804 } 10805 unsigned dest = MI.getOperand(0).getReg(); 10806 unsigned ptrA = MI.getOperand(1).getReg(); 10807 unsigned ptrB = MI.getOperand(2).getReg(); 10808 unsigned oldval = MI.getOperand(3).getReg(); 10809 unsigned newval = MI.getOperand(4).getReg(); 10810 DebugLoc dl = MI.getDebugLoc(); 10811 10812 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10813 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10814 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10815 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10816 F->insert(It, loop1MBB); 10817 F->insert(It, loop2MBB); 10818 F->insert(It, midMBB); 10819 F->insert(It, exitMBB); 10820 exitMBB->splice(exitMBB->begin(), BB, 10821 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10822 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10823 10824 // thisMBB: 10825 // ... 10826 // fallthrough --> loopMBB 10827 BB->addSuccessor(loop1MBB); 10828 10829 // loop1MBB: 10830 // l[bhwd]arx dest, ptr 10831 // cmp[wd] dest, oldval 10832 // bne- midMBB 10833 // loop2MBB: 10834 // st[bhwd]cx. newval, ptr 10835 // bne- loopMBB 10836 // b exitBB 10837 // midMBB: 10838 // st[bhwd]cx. dest, ptr 10839 // exitBB: 10840 BB = loop1MBB; 10841 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 10842 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 10843 .addReg(oldval) 10844 .addReg(dest); 10845 BuildMI(BB, dl, TII->get(PPC::BCC)) 10846 .addImm(PPC::PRED_NE) 10847 .addReg(PPC::CR0) 10848 .addMBB(midMBB); 10849 BB->addSuccessor(loop2MBB); 10850 BB->addSuccessor(midMBB); 10851 10852 BB = loop2MBB; 10853 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10854 .addReg(newval) 10855 .addReg(ptrA) 10856 .addReg(ptrB); 10857 BuildMI(BB, dl, TII->get(PPC::BCC)) 10858 .addImm(PPC::PRED_NE) 10859 .addReg(PPC::CR0) 10860 .addMBB(loop1MBB); 10861 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10862 BB->addSuccessor(loop1MBB); 10863 BB->addSuccessor(exitMBB); 10864 10865 BB = midMBB; 10866 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10867 .addReg(dest) 10868 .addReg(ptrA) 10869 .addReg(ptrB); 10870 BB->addSuccessor(exitMBB); 10871 10872 // exitMBB: 10873 // ... 10874 BB = exitMBB; 10875 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 10876 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 10877 // We must use 64-bit registers for addresses when targeting 64-bit, 10878 // since we're actually doing arithmetic on them. Other registers 10879 // can be 32-bit. 10880 bool is64bit = Subtarget.isPPC64(); 10881 bool isLittleEndian = Subtarget.isLittleEndian(); 10882 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 10883 10884 unsigned dest = MI.getOperand(0).getReg(); 10885 unsigned ptrA = MI.getOperand(1).getReg(); 10886 unsigned ptrB = MI.getOperand(2).getReg(); 10887 unsigned oldval = MI.getOperand(3).getReg(); 10888 unsigned newval = MI.getOperand(4).getReg(); 10889 DebugLoc dl = MI.getDebugLoc(); 10890 10891 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10892 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10893 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10894 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10895 F->insert(It, loop1MBB); 10896 F->insert(It, loop2MBB); 10897 F->insert(It, midMBB); 10898 F->insert(It, exitMBB); 10899 exitMBB->splice(exitMBB->begin(), BB, 10900 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10901 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10902 10903 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10904 const TargetRegisterClass *RC = 10905 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10906 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10907 10908 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 10909 unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10910 unsigned ShiftReg = 10911 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10912 unsigned NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 10913 unsigned NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 10914 unsigned OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 10915 unsigned OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 10916 unsigned MaskReg = RegInfo.createVirtualRegister(GPRC); 10917 unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10918 unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10919 unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10920 unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10921 unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10922 unsigned Ptr1Reg; 10923 unsigned TmpReg = RegInfo.createVirtualRegister(GPRC); 10924 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10925 // thisMBB: 10926 // ... 10927 // fallthrough --> loopMBB 10928 BB->addSuccessor(loop1MBB); 10929 10930 // The 4-byte load must be aligned, while a char or short may be 10931 // anywhere in the word. Hence all this nasty bookkeeping code. 10932 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10933 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10934 // xori shift, shift1, 24 [16] 10935 // rlwinm ptr, ptr1, 0, 0, 29 10936 // slw newval2, newval, shift 10937 // slw oldval2, oldval,shift 10938 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10939 // slw mask, mask2, shift 10940 // and newval3, newval2, mask 10941 // and oldval3, oldval2, mask 10942 // loop1MBB: 10943 // lwarx tmpDest, ptr 10944 // and tmp, tmpDest, mask 10945 // cmpw tmp, oldval3 10946 // bne- midMBB 10947 // loop2MBB: 10948 // andc tmp2, tmpDest, mask 10949 // or tmp4, tmp2, newval3 10950 // stwcx. tmp4, ptr 10951 // bne- loop1MBB 10952 // b exitBB 10953 // midMBB: 10954 // stwcx. tmpDest, ptr 10955 // exitBB: 10956 // srw dest, tmpDest, shift 10957 if (ptrA != ZeroReg) { 10958 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10959 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10960 .addReg(ptrA) 10961 .addReg(ptrB); 10962 } else { 10963 Ptr1Reg = ptrB; 10964 } 10965 10966 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10967 // mode. 10968 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10969 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10970 .addImm(3) 10971 .addImm(27) 10972 .addImm(is8bit ? 28 : 27); 10973 if (!isLittleEndian) 10974 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10975 .addReg(Shift1Reg) 10976 .addImm(is8bit ? 24 : 16); 10977 if (is64bit) 10978 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10979 .addReg(Ptr1Reg) 10980 .addImm(0) 10981 .addImm(61); 10982 else 10983 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10984 .addReg(Ptr1Reg) 10985 .addImm(0) 10986 .addImm(0) 10987 .addImm(29); 10988 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 10989 .addReg(newval) 10990 .addReg(ShiftReg); 10991 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 10992 .addReg(oldval) 10993 .addReg(ShiftReg); 10994 if (is8bit) 10995 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10996 else { 10997 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10998 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10999 .addReg(Mask3Reg) 11000 .addImm(65535); 11001 } 11002 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11003 .addReg(Mask2Reg) 11004 .addReg(ShiftReg); 11005 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11006 .addReg(NewVal2Reg) 11007 .addReg(MaskReg); 11008 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11009 .addReg(OldVal2Reg) 11010 .addReg(MaskReg); 11011 11012 BB = loop1MBB; 11013 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11014 .addReg(ZeroReg) 11015 .addReg(PtrReg); 11016 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11017 .addReg(TmpDestReg) 11018 .addReg(MaskReg); 11019 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11020 .addReg(TmpReg) 11021 .addReg(OldVal3Reg); 11022 BuildMI(BB, dl, TII->get(PPC::BCC)) 11023 .addImm(PPC::PRED_NE) 11024 .addReg(PPC::CR0) 11025 .addMBB(midMBB); 11026 BB->addSuccessor(loop2MBB); 11027 BB->addSuccessor(midMBB); 11028 11029 BB = loop2MBB; 11030 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11031 .addReg(TmpDestReg) 11032 .addReg(MaskReg); 11033 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11034 .addReg(Tmp2Reg) 11035 .addReg(NewVal3Reg); 11036 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11037 .addReg(Tmp4Reg) 11038 .addReg(ZeroReg) 11039 .addReg(PtrReg); 11040 BuildMI(BB, dl, TII->get(PPC::BCC)) 11041 .addImm(PPC::PRED_NE) 11042 .addReg(PPC::CR0) 11043 .addMBB(loop1MBB); 11044 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11045 BB->addSuccessor(loop1MBB); 11046 BB->addSuccessor(exitMBB); 11047 11048 BB = midMBB; 11049 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11050 .addReg(TmpDestReg) 11051 .addReg(ZeroReg) 11052 .addReg(PtrReg); 11053 BB->addSuccessor(exitMBB); 11054 11055 // exitMBB: 11056 // ... 11057 BB = exitMBB; 11058 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11059 .addReg(TmpReg) 11060 .addReg(ShiftReg); 11061 } else if (MI.getOpcode() == PPC::FADDrtz) { 11062 // This pseudo performs an FADD with rounding mode temporarily forced 11063 // to round-to-zero. We emit this via custom inserter since the FPSCR 11064 // is not modeled at the SelectionDAG level. 11065 unsigned Dest = MI.getOperand(0).getReg(); 11066 unsigned Src1 = MI.getOperand(1).getReg(); 11067 unsigned Src2 = MI.getOperand(2).getReg(); 11068 DebugLoc dl = MI.getDebugLoc(); 11069 11070 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11071 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11072 11073 // Save FPSCR value. 11074 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11075 11076 // Set rounding mode to round-to-zero. 11077 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11078 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11079 11080 // Perform addition. 11081 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11082 11083 // Restore FPSCR value. 11084 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11085 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11086 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 11087 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11088 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 11089 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11090 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 11091 ? PPC::ANDIo8 11092 : PPC::ANDIo; 11093 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11094 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 11095 11096 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11097 unsigned Dest = RegInfo.createVirtualRegister( 11098 Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11099 11100 DebugLoc dl = MI.getDebugLoc(); 11101 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 11102 .addReg(MI.getOperand(1).getReg()) 11103 .addImm(1); 11104 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 11105 MI.getOperand(0).getReg()) 11106 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 11107 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11108 DebugLoc Dl = MI.getDebugLoc(); 11109 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11110 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11111 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11112 return BB; 11113 } else if (MI.getOpcode() == PPC::SETRNDi) { 11114 DebugLoc dl = MI.getDebugLoc(); 11115 unsigned OldFPSCRReg = MI.getOperand(0).getReg(); 11116 11117 // Save FPSCR value. 11118 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11119 11120 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11121 // the following settings: 11122 // 00 Round to nearest 11123 // 01 Round to 0 11124 // 10 Round to +inf 11125 // 11 Round to -inf 11126 11127 // When the operand is immediate, using the two least significant bits of 11128 // the immediate to set the bits 62:63 of FPSCR. 11129 unsigned Mode = MI.getOperand(1).getImm(); 11130 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11131 .addImm(31); 11132 11133 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 11134 .addImm(30); 11135 } else if (MI.getOpcode() == PPC::SETRND) { 11136 DebugLoc dl = MI.getDebugLoc(); 11137 11138 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 11139 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 11140 // If the target doesn't have DirectMove, we should use stack to do the 11141 // conversion, because the target doesn't have the instructions like mtvsrd 11142 // or mfvsrd to do this conversion directly. 11143 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 11144 if (Subtarget.hasDirectMove()) { 11145 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 11146 .addReg(SrcReg); 11147 } else { 11148 // Use stack to do the register copy. 11149 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 11150 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11151 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 11152 if (RC == &PPC::F8RCRegClass) { 11153 // Copy register from F8RCRegClass to G8RCRegclass. 11154 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 11155 "Unsupported RegClass."); 11156 11157 StoreOp = PPC::STFD; 11158 LoadOp = PPC::LD; 11159 } else { 11160 // Copy register from G8RCRegClass to F8RCRegclass. 11161 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 11162 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 11163 "Unsupported RegClass."); 11164 } 11165 11166 MachineFrameInfo &MFI = F->getFrameInfo(); 11167 int FrameIdx = MFI.CreateStackObject(8, 8, false); 11168 11169 MachineMemOperand *MMOStore = F->getMachineMemOperand( 11170 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11171 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 11172 MFI.getObjectAlignment(FrameIdx)); 11173 11174 // Store the SrcReg into the stack. 11175 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 11176 .addReg(SrcReg) 11177 .addImm(0) 11178 .addFrameIndex(FrameIdx) 11179 .addMemOperand(MMOStore); 11180 11181 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 11182 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11183 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 11184 MFI.getObjectAlignment(FrameIdx)); 11185 11186 // Load from the stack where SrcReg is stored, and save to DestReg, 11187 // so we have done the RegClass conversion from RegClass::SrcReg to 11188 // RegClass::DestReg. 11189 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 11190 .addImm(0) 11191 .addFrameIndex(FrameIdx) 11192 .addMemOperand(MMOLoad); 11193 } 11194 }; 11195 11196 unsigned OldFPSCRReg = MI.getOperand(0).getReg(); 11197 11198 // Save FPSCR value. 11199 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11200 11201 // When the operand is gprc register, use two least significant bits of the 11202 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 11203 // 11204 // copy OldFPSCRTmpReg, OldFPSCRReg 11205 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 11206 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 11207 // copy NewFPSCRReg, NewFPSCRTmpReg 11208 // mtfsf 255, NewFPSCRReg 11209 MachineOperand SrcOp = MI.getOperand(1); 11210 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11211 unsigned OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11212 11213 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 11214 11215 unsigned ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11216 unsigned ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11217 11218 // The first operand of INSERT_SUBREG should be a register which has 11219 // subregisters, we only care about its RegClass, so we should use an 11220 // IMPLICIT_DEF register. 11221 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 11222 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 11223 .addReg(ImDefReg) 11224 .add(SrcOp) 11225 .addImm(1); 11226 11227 unsigned NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11228 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 11229 .addReg(OldFPSCRTmpReg) 11230 .addReg(ExtSrcReg) 11231 .addImm(0) 11232 .addImm(62); 11233 11234 unsigned NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11235 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 11236 11237 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 11238 // bits of FPSCR. 11239 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 11240 .addImm(255) 11241 .addReg(NewFPSCRReg) 11242 .addImm(0) 11243 .addImm(0); 11244 } else { 11245 llvm_unreachable("Unexpected instr type to insert"); 11246 } 11247 11248 MI.eraseFromParent(); // The pseudo instruction is gone now. 11249 return BB; 11250 } 11251 11252 //===----------------------------------------------------------------------===// 11253 // Target Optimization Hooks 11254 //===----------------------------------------------------------------------===// 11255 11256 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 11257 // For the estimates, convergence is quadratic, so we essentially double the 11258 // number of digits correct after every iteration. For both FRE and FRSQRTE, 11259 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 11260 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 11261 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 11262 if (VT.getScalarType() == MVT::f64) 11263 RefinementSteps++; 11264 return RefinementSteps; 11265 } 11266 11267 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 11268 int Enabled, int &RefinementSteps, 11269 bool &UseOneConstNR, 11270 bool Reciprocal) const { 11271 EVT VT = Operand.getValueType(); 11272 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 11273 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 11274 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11275 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11276 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11277 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11278 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11279 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11280 11281 // The Newton-Raphson computation with a single constant does not provide 11282 // enough accuracy on some CPUs. 11283 UseOneConstNR = !Subtarget.needsTwoConstNR(); 11284 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 11285 } 11286 return SDValue(); 11287 } 11288 11289 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 11290 int Enabled, 11291 int &RefinementSteps) const { 11292 EVT VT = Operand.getValueType(); 11293 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 11294 (VT == MVT::f64 && Subtarget.hasFRE()) || 11295 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11296 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11297 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11298 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11299 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11300 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11301 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 11302 } 11303 return SDValue(); 11304 } 11305 11306 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 11307 // Note: This functionality is used only when unsafe-fp-math is enabled, and 11308 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 11309 // enabled for division), this functionality is redundant with the default 11310 // combiner logic (once the division -> reciprocal/multiply transformation 11311 // has taken place). As a result, this matters more for older cores than for 11312 // newer ones. 11313 11314 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 11315 // reciprocal if there are two or more FDIVs (for embedded cores with only 11316 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 11317 switch (Subtarget.getDarwinDirective()) { 11318 default: 11319 return 3; 11320 case PPC::DIR_440: 11321 case PPC::DIR_A2: 11322 case PPC::DIR_E500: 11323 case PPC::DIR_E500mc: 11324 case PPC::DIR_E5500: 11325 return 2; 11326 } 11327 } 11328 11329 // isConsecutiveLSLoc needs to work even if all adds have not yet been 11330 // collapsed, and so we need to look through chains of them. 11331 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 11332 int64_t& Offset, SelectionDAG &DAG) { 11333 if (DAG.isBaseWithConstantOffset(Loc)) { 11334 Base = Loc.getOperand(0); 11335 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 11336 11337 // The base might itself be a base plus an offset, and if so, accumulate 11338 // that as well. 11339 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 11340 } 11341 } 11342 11343 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 11344 unsigned Bytes, int Dist, 11345 SelectionDAG &DAG) { 11346 if (VT.getSizeInBits() / 8 != Bytes) 11347 return false; 11348 11349 SDValue BaseLoc = Base->getBasePtr(); 11350 if (Loc.getOpcode() == ISD::FrameIndex) { 11351 if (BaseLoc.getOpcode() != ISD::FrameIndex) 11352 return false; 11353 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11354 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 11355 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 11356 int FS = MFI.getObjectSize(FI); 11357 int BFS = MFI.getObjectSize(BFI); 11358 if (FS != BFS || FS != (int)Bytes) return false; 11359 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 11360 } 11361 11362 SDValue Base1 = Loc, Base2 = BaseLoc; 11363 int64_t Offset1 = 0, Offset2 = 0; 11364 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 11365 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 11366 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 11367 return true; 11368 11369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11370 const GlobalValue *GV1 = nullptr; 11371 const GlobalValue *GV2 = nullptr; 11372 Offset1 = 0; 11373 Offset2 = 0; 11374 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 11375 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 11376 if (isGA1 && isGA2 && GV1 == GV2) 11377 return Offset1 == (Offset2 + Dist*Bytes); 11378 return false; 11379 } 11380 11381 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 11382 // not enforce equality of the chain operands. 11383 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 11384 unsigned Bytes, int Dist, 11385 SelectionDAG &DAG) { 11386 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 11387 EVT VT = LS->getMemoryVT(); 11388 SDValue Loc = LS->getBasePtr(); 11389 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 11390 } 11391 11392 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 11393 EVT VT; 11394 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11395 default: return false; 11396 case Intrinsic::ppc_qpx_qvlfd: 11397 case Intrinsic::ppc_qpx_qvlfda: 11398 VT = MVT::v4f64; 11399 break; 11400 case Intrinsic::ppc_qpx_qvlfs: 11401 case Intrinsic::ppc_qpx_qvlfsa: 11402 VT = MVT::v4f32; 11403 break; 11404 case Intrinsic::ppc_qpx_qvlfcd: 11405 case Intrinsic::ppc_qpx_qvlfcda: 11406 VT = MVT::v2f64; 11407 break; 11408 case Intrinsic::ppc_qpx_qvlfcs: 11409 case Intrinsic::ppc_qpx_qvlfcsa: 11410 VT = MVT::v2f32; 11411 break; 11412 case Intrinsic::ppc_qpx_qvlfiwa: 11413 case Intrinsic::ppc_qpx_qvlfiwz: 11414 case Intrinsic::ppc_altivec_lvx: 11415 case Intrinsic::ppc_altivec_lvxl: 11416 case Intrinsic::ppc_vsx_lxvw4x: 11417 case Intrinsic::ppc_vsx_lxvw4x_be: 11418 VT = MVT::v4i32; 11419 break; 11420 case Intrinsic::ppc_vsx_lxvd2x: 11421 case Intrinsic::ppc_vsx_lxvd2x_be: 11422 VT = MVT::v2f64; 11423 break; 11424 case Intrinsic::ppc_altivec_lvebx: 11425 VT = MVT::i8; 11426 break; 11427 case Intrinsic::ppc_altivec_lvehx: 11428 VT = MVT::i16; 11429 break; 11430 case Intrinsic::ppc_altivec_lvewx: 11431 VT = MVT::i32; 11432 break; 11433 } 11434 11435 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 11436 } 11437 11438 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 11439 EVT VT; 11440 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11441 default: return false; 11442 case Intrinsic::ppc_qpx_qvstfd: 11443 case Intrinsic::ppc_qpx_qvstfda: 11444 VT = MVT::v4f64; 11445 break; 11446 case Intrinsic::ppc_qpx_qvstfs: 11447 case Intrinsic::ppc_qpx_qvstfsa: 11448 VT = MVT::v4f32; 11449 break; 11450 case Intrinsic::ppc_qpx_qvstfcd: 11451 case Intrinsic::ppc_qpx_qvstfcda: 11452 VT = MVT::v2f64; 11453 break; 11454 case Intrinsic::ppc_qpx_qvstfcs: 11455 case Intrinsic::ppc_qpx_qvstfcsa: 11456 VT = MVT::v2f32; 11457 break; 11458 case Intrinsic::ppc_qpx_qvstfiw: 11459 case Intrinsic::ppc_qpx_qvstfiwa: 11460 case Intrinsic::ppc_altivec_stvx: 11461 case Intrinsic::ppc_altivec_stvxl: 11462 case Intrinsic::ppc_vsx_stxvw4x: 11463 VT = MVT::v4i32; 11464 break; 11465 case Intrinsic::ppc_vsx_stxvd2x: 11466 VT = MVT::v2f64; 11467 break; 11468 case Intrinsic::ppc_vsx_stxvw4x_be: 11469 VT = MVT::v4i32; 11470 break; 11471 case Intrinsic::ppc_vsx_stxvd2x_be: 11472 VT = MVT::v2f64; 11473 break; 11474 case Intrinsic::ppc_altivec_stvebx: 11475 VT = MVT::i8; 11476 break; 11477 case Intrinsic::ppc_altivec_stvehx: 11478 VT = MVT::i16; 11479 break; 11480 case Intrinsic::ppc_altivec_stvewx: 11481 VT = MVT::i32; 11482 break; 11483 } 11484 11485 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 11486 } 11487 11488 return false; 11489 } 11490 11491 // Return true is there is a nearyby consecutive load to the one provided 11492 // (regardless of alignment). We search up and down the chain, looking though 11493 // token factors and other loads (but nothing else). As a result, a true result 11494 // indicates that it is safe to create a new consecutive load adjacent to the 11495 // load provided. 11496 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 11497 SDValue Chain = LD->getChain(); 11498 EVT VT = LD->getMemoryVT(); 11499 11500 SmallSet<SDNode *, 16> LoadRoots; 11501 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 11502 SmallSet<SDNode *, 16> Visited; 11503 11504 // First, search up the chain, branching to follow all token-factor operands. 11505 // If we find a consecutive load, then we're done, otherwise, record all 11506 // nodes just above the top-level loads and token factors. 11507 while (!Queue.empty()) { 11508 SDNode *ChainNext = Queue.pop_back_val(); 11509 if (!Visited.insert(ChainNext).second) 11510 continue; 11511 11512 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 11513 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11514 return true; 11515 11516 if (!Visited.count(ChainLD->getChain().getNode())) 11517 Queue.push_back(ChainLD->getChain().getNode()); 11518 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 11519 for (const SDUse &O : ChainNext->ops()) 11520 if (!Visited.count(O.getNode())) 11521 Queue.push_back(O.getNode()); 11522 } else 11523 LoadRoots.insert(ChainNext); 11524 } 11525 11526 // Second, search down the chain, starting from the top-level nodes recorded 11527 // in the first phase. These top-level nodes are the nodes just above all 11528 // loads and token factors. Starting with their uses, recursively look though 11529 // all loads (just the chain uses) and token factors to find a consecutive 11530 // load. 11531 Visited.clear(); 11532 Queue.clear(); 11533 11534 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 11535 IE = LoadRoots.end(); I != IE; ++I) { 11536 Queue.push_back(*I); 11537 11538 while (!Queue.empty()) { 11539 SDNode *LoadRoot = Queue.pop_back_val(); 11540 if (!Visited.insert(LoadRoot).second) 11541 continue; 11542 11543 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 11544 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11545 return true; 11546 11547 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 11548 UE = LoadRoot->use_end(); UI != UE; ++UI) 11549 if (((isa<MemSDNode>(*UI) && 11550 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 11551 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 11552 Queue.push_back(*UI); 11553 } 11554 } 11555 11556 return false; 11557 } 11558 11559 /// This function is called when we have proved that a SETCC node can be replaced 11560 /// by subtraction (and other supporting instructions) so that the result of 11561 /// comparison is kept in a GPR instead of CR. This function is purely for 11562 /// codegen purposes and has some flags to guide the codegen process. 11563 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 11564 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 11565 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11566 11567 // Zero extend the operands to the largest legal integer. Originally, they 11568 // must be of a strictly smaller size. 11569 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 11570 DAG.getConstant(Size, DL, MVT::i32)); 11571 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 11572 DAG.getConstant(Size, DL, MVT::i32)); 11573 11574 // Swap if needed. Depends on the condition code. 11575 if (Swap) 11576 std::swap(Op0, Op1); 11577 11578 // Subtract extended integers. 11579 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 11580 11581 // Move the sign bit to the least significant position and zero out the rest. 11582 // Now the least significant bit carries the result of original comparison. 11583 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 11584 DAG.getConstant(Size - 1, DL, MVT::i32)); 11585 auto Final = Shifted; 11586 11587 // Complement the result if needed. Based on the condition code. 11588 if (Complement) 11589 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 11590 DAG.getConstant(1, DL, MVT::i64)); 11591 11592 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 11593 } 11594 11595 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 11596 DAGCombinerInfo &DCI) const { 11597 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11598 11599 SelectionDAG &DAG = DCI.DAG; 11600 SDLoc DL(N); 11601 11602 // Size of integers being compared has a critical role in the following 11603 // analysis, so we prefer to do this when all types are legal. 11604 if (!DCI.isAfterLegalizeDAG()) 11605 return SDValue(); 11606 11607 // If all users of SETCC extend its value to a legal integer type 11608 // then we replace SETCC with a subtraction 11609 for (SDNode::use_iterator UI = N->use_begin(), 11610 UE = N->use_end(); UI != UE; ++UI) { 11611 if (UI->getOpcode() != ISD::ZERO_EXTEND) 11612 return SDValue(); 11613 } 11614 11615 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11616 auto OpSize = N->getOperand(0).getValueSizeInBits(); 11617 11618 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 11619 11620 if (OpSize < Size) { 11621 switch (CC) { 11622 default: break; 11623 case ISD::SETULT: 11624 return generateEquivalentSub(N, Size, false, false, DL, DAG); 11625 case ISD::SETULE: 11626 return generateEquivalentSub(N, Size, true, true, DL, DAG); 11627 case ISD::SETUGT: 11628 return generateEquivalentSub(N, Size, false, true, DL, DAG); 11629 case ISD::SETUGE: 11630 return generateEquivalentSub(N, Size, true, false, DL, DAG); 11631 } 11632 } 11633 11634 return SDValue(); 11635 } 11636 11637 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 11638 DAGCombinerInfo &DCI) const { 11639 SelectionDAG &DAG = DCI.DAG; 11640 SDLoc dl(N); 11641 11642 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 11643 // If we're tracking CR bits, we need to be careful that we don't have: 11644 // trunc(binary-ops(zext(x), zext(y))) 11645 // or 11646 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 11647 // such that we're unnecessarily moving things into GPRs when it would be 11648 // better to keep them in CR bits. 11649 11650 // Note that trunc here can be an actual i1 trunc, or can be the effective 11651 // truncation that comes from a setcc or select_cc. 11652 if (N->getOpcode() == ISD::TRUNCATE && 11653 N->getValueType(0) != MVT::i1) 11654 return SDValue(); 11655 11656 if (N->getOperand(0).getValueType() != MVT::i32 && 11657 N->getOperand(0).getValueType() != MVT::i64) 11658 return SDValue(); 11659 11660 if (N->getOpcode() == ISD::SETCC || 11661 N->getOpcode() == ISD::SELECT_CC) { 11662 // If we're looking at a comparison, then we need to make sure that the 11663 // high bits (all except for the first) don't matter the result. 11664 ISD::CondCode CC = 11665 cast<CondCodeSDNode>(N->getOperand( 11666 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 11667 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 11668 11669 if (ISD::isSignedIntSetCC(CC)) { 11670 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 11671 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 11672 return SDValue(); 11673 } else if (ISD::isUnsignedIntSetCC(CC)) { 11674 if (!DAG.MaskedValueIsZero(N->getOperand(0), 11675 APInt::getHighBitsSet(OpBits, OpBits-1)) || 11676 !DAG.MaskedValueIsZero(N->getOperand(1), 11677 APInt::getHighBitsSet(OpBits, OpBits-1))) 11678 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 11679 : SDValue()); 11680 } else { 11681 // This is neither a signed nor an unsigned comparison, just make sure 11682 // that the high bits are equal. 11683 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 11684 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 11685 11686 // We don't really care about what is known about the first bit (if 11687 // anything), so clear it in all masks prior to comparing them. 11688 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 11689 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 11690 11691 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 11692 return SDValue(); 11693 } 11694 } 11695 11696 // We now know that the higher-order bits are irrelevant, we just need to 11697 // make sure that all of the intermediate operations are bit operations, and 11698 // all inputs are extensions. 11699 if (N->getOperand(0).getOpcode() != ISD::AND && 11700 N->getOperand(0).getOpcode() != ISD::OR && 11701 N->getOperand(0).getOpcode() != ISD::XOR && 11702 N->getOperand(0).getOpcode() != ISD::SELECT && 11703 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 11704 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 11705 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 11706 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 11707 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 11708 return SDValue(); 11709 11710 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 11711 N->getOperand(1).getOpcode() != ISD::AND && 11712 N->getOperand(1).getOpcode() != ISD::OR && 11713 N->getOperand(1).getOpcode() != ISD::XOR && 11714 N->getOperand(1).getOpcode() != ISD::SELECT && 11715 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 11716 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 11717 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 11718 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 11719 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 11720 return SDValue(); 11721 11722 SmallVector<SDValue, 4> Inputs; 11723 SmallVector<SDValue, 8> BinOps, PromOps; 11724 SmallPtrSet<SDNode *, 16> Visited; 11725 11726 for (unsigned i = 0; i < 2; ++i) { 11727 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11728 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11729 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11730 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11731 isa<ConstantSDNode>(N->getOperand(i))) 11732 Inputs.push_back(N->getOperand(i)); 11733 else 11734 BinOps.push_back(N->getOperand(i)); 11735 11736 if (N->getOpcode() == ISD::TRUNCATE) 11737 break; 11738 } 11739 11740 // Visit all inputs, collect all binary operations (and, or, xor and 11741 // select) that are all fed by extensions. 11742 while (!BinOps.empty()) { 11743 SDValue BinOp = BinOps.back(); 11744 BinOps.pop_back(); 11745 11746 if (!Visited.insert(BinOp.getNode()).second) 11747 continue; 11748 11749 PromOps.push_back(BinOp); 11750 11751 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11752 // The condition of the select is not promoted. 11753 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11754 continue; 11755 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11756 continue; 11757 11758 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11759 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11760 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11761 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11762 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11763 Inputs.push_back(BinOp.getOperand(i)); 11764 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11765 BinOp.getOperand(i).getOpcode() == ISD::OR || 11766 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11767 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11768 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 11769 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11770 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11771 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11772 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 11773 BinOps.push_back(BinOp.getOperand(i)); 11774 } else { 11775 // We have an input that is not an extension or another binary 11776 // operation; we'll abort this transformation. 11777 return SDValue(); 11778 } 11779 } 11780 } 11781 11782 // Make sure that this is a self-contained cluster of operations (which 11783 // is not quite the same thing as saying that everything has only one 11784 // use). 11785 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11786 if (isa<ConstantSDNode>(Inputs[i])) 11787 continue; 11788 11789 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11790 UE = Inputs[i].getNode()->use_end(); 11791 UI != UE; ++UI) { 11792 SDNode *User = *UI; 11793 if (User != N && !Visited.count(User)) 11794 return SDValue(); 11795 11796 // Make sure that we're not going to promote the non-output-value 11797 // operand(s) or SELECT or SELECT_CC. 11798 // FIXME: Although we could sometimes handle this, and it does occur in 11799 // practice that one of the condition inputs to the select is also one of 11800 // the outputs, we currently can't deal with this. 11801 if (User->getOpcode() == ISD::SELECT) { 11802 if (User->getOperand(0) == Inputs[i]) 11803 return SDValue(); 11804 } else if (User->getOpcode() == ISD::SELECT_CC) { 11805 if (User->getOperand(0) == Inputs[i] || 11806 User->getOperand(1) == Inputs[i]) 11807 return SDValue(); 11808 } 11809 } 11810 } 11811 11812 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11813 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11814 UE = PromOps[i].getNode()->use_end(); 11815 UI != UE; ++UI) { 11816 SDNode *User = *UI; 11817 if (User != N && !Visited.count(User)) 11818 return SDValue(); 11819 11820 // Make sure that we're not going to promote the non-output-value 11821 // operand(s) or SELECT or SELECT_CC. 11822 // FIXME: Although we could sometimes handle this, and it does occur in 11823 // practice that one of the condition inputs to the select is also one of 11824 // the outputs, we currently can't deal with this. 11825 if (User->getOpcode() == ISD::SELECT) { 11826 if (User->getOperand(0) == PromOps[i]) 11827 return SDValue(); 11828 } else if (User->getOpcode() == ISD::SELECT_CC) { 11829 if (User->getOperand(0) == PromOps[i] || 11830 User->getOperand(1) == PromOps[i]) 11831 return SDValue(); 11832 } 11833 } 11834 } 11835 11836 // Replace all inputs with the extension operand. 11837 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11838 // Constants may have users outside the cluster of to-be-promoted nodes, 11839 // and so we need to replace those as we do the promotions. 11840 if (isa<ConstantSDNode>(Inputs[i])) 11841 continue; 11842 else 11843 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 11844 } 11845 11846 std::list<HandleSDNode> PromOpHandles; 11847 for (auto &PromOp : PromOps) 11848 PromOpHandles.emplace_back(PromOp); 11849 11850 // Replace all operations (these are all the same, but have a different 11851 // (i1) return type). DAG.getNode will validate that the types of 11852 // a binary operator match, so go through the list in reverse so that 11853 // we've likely promoted both operands first. Any intermediate truncations or 11854 // extensions disappear. 11855 while (!PromOpHandles.empty()) { 11856 SDValue PromOp = PromOpHandles.back().getValue(); 11857 PromOpHandles.pop_back(); 11858 11859 if (PromOp.getOpcode() == ISD::TRUNCATE || 11860 PromOp.getOpcode() == ISD::SIGN_EXTEND || 11861 PromOp.getOpcode() == ISD::ZERO_EXTEND || 11862 PromOp.getOpcode() == ISD::ANY_EXTEND) { 11863 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 11864 PromOp.getOperand(0).getValueType() != MVT::i1) { 11865 // The operand is not yet ready (see comment below). 11866 PromOpHandles.emplace_front(PromOp); 11867 continue; 11868 } 11869 11870 SDValue RepValue = PromOp.getOperand(0); 11871 if (isa<ConstantSDNode>(RepValue)) 11872 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 11873 11874 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 11875 continue; 11876 } 11877 11878 unsigned C; 11879 switch (PromOp.getOpcode()) { 11880 default: C = 0; break; 11881 case ISD::SELECT: C = 1; break; 11882 case ISD::SELECT_CC: C = 2; break; 11883 } 11884 11885 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 11886 PromOp.getOperand(C).getValueType() != MVT::i1) || 11887 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 11888 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 11889 // The to-be-promoted operands of this node have not yet been 11890 // promoted (this should be rare because we're going through the 11891 // list backward, but if one of the operands has several users in 11892 // this cluster of to-be-promoted nodes, it is possible). 11893 PromOpHandles.emplace_front(PromOp); 11894 continue; 11895 } 11896 11897 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 11898 PromOp.getNode()->op_end()); 11899 11900 // If there are any constant inputs, make sure they're replaced now. 11901 for (unsigned i = 0; i < 2; ++i) 11902 if (isa<ConstantSDNode>(Ops[C+i])) 11903 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 11904 11905 DAG.ReplaceAllUsesOfValueWith(PromOp, 11906 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 11907 } 11908 11909 // Now we're left with the initial truncation itself. 11910 if (N->getOpcode() == ISD::TRUNCATE) 11911 return N->getOperand(0); 11912 11913 // Otherwise, this is a comparison. The operands to be compared have just 11914 // changed type (to i1), but everything else is the same. 11915 return SDValue(N, 0); 11916 } 11917 11918 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 11919 DAGCombinerInfo &DCI) const { 11920 SelectionDAG &DAG = DCI.DAG; 11921 SDLoc dl(N); 11922 11923 // If we're tracking CR bits, we need to be careful that we don't have: 11924 // zext(binary-ops(trunc(x), trunc(y))) 11925 // or 11926 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 11927 // such that we're unnecessarily moving things into CR bits that can more 11928 // efficiently stay in GPRs. Note that if we're not certain that the high 11929 // bits are set as required by the final extension, we still may need to do 11930 // some masking to get the proper behavior. 11931 11932 // This same functionality is important on PPC64 when dealing with 11933 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 11934 // the return values of functions. Because it is so similar, it is handled 11935 // here as well. 11936 11937 if (N->getValueType(0) != MVT::i32 && 11938 N->getValueType(0) != MVT::i64) 11939 return SDValue(); 11940 11941 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 11942 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 11943 return SDValue(); 11944 11945 if (N->getOperand(0).getOpcode() != ISD::AND && 11946 N->getOperand(0).getOpcode() != ISD::OR && 11947 N->getOperand(0).getOpcode() != ISD::XOR && 11948 N->getOperand(0).getOpcode() != ISD::SELECT && 11949 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 11950 return SDValue(); 11951 11952 SmallVector<SDValue, 4> Inputs; 11953 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 11954 SmallPtrSet<SDNode *, 16> Visited; 11955 11956 // Visit all inputs, collect all binary operations (and, or, xor and 11957 // select) that are all fed by truncations. 11958 while (!BinOps.empty()) { 11959 SDValue BinOp = BinOps.back(); 11960 BinOps.pop_back(); 11961 11962 if (!Visited.insert(BinOp.getNode()).second) 11963 continue; 11964 11965 PromOps.push_back(BinOp); 11966 11967 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11968 // The condition of the select is not promoted. 11969 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11970 continue; 11971 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11972 continue; 11973 11974 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11975 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11976 Inputs.push_back(BinOp.getOperand(i)); 11977 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11978 BinOp.getOperand(i).getOpcode() == ISD::OR || 11979 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11980 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11981 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 11982 BinOps.push_back(BinOp.getOperand(i)); 11983 } else { 11984 // We have an input that is not a truncation or another binary 11985 // operation; we'll abort this transformation. 11986 return SDValue(); 11987 } 11988 } 11989 } 11990 11991 // The operands of a select that must be truncated when the select is 11992 // promoted because the operand is actually part of the to-be-promoted set. 11993 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 11994 11995 // Make sure that this is a self-contained cluster of operations (which 11996 // is not quite the same thing as saying that everything has only one 11997 // use). 11998 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11999 if (isa<ConstantSDNode>(Inputs[i])) 12000 continue; 12001 12002 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12003 UE = Inputs[i].getNode()->use_end(); 12004 UI != UE; ++UI) { 12005 SDNode *User = *UI; 12006 if (User != N && !Visited.count(User)) 12007 return SDValue(); 12008 12009 // If we're going to promote the non-output-value operand(s) or SELECT or 12010 // SELECT_CC, record them for truncation. 12011 if (User->getOpcode() == ISD::SELECT) { 12012 if (User->getOperand(0) == Inputs[i]) 12013 SelectTruncOp[0].insert(std::make_pair(User, 12014 User->getOperand(0).getValueType())); 12015 } else if (User->getOpcode() == ISD::SELECT_CC) { 12016 if (User->getOperand(0) == Inputs[i]) 12017 SelectTruncOp[0].insert(std::make_pair(User, 12018 User->getOperand(0).getValueType())); 12019 if (User->getOperand(1) == Inputs[i]) 12020 SelectTruncOp[1].insert(std::make_pair(User, 12021 User->getOperand(1).getValueType())); 12022 } 12023 } 12024 } 12025 12026 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12027 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12028 UE = PromOps[i].getNode()->use_end(); 12029 UI != UE; ++UI) { 12030 SDNode *User = *UI; 12031 if (User != N && !Visited.count(User)) 12032 return SDValue(); 12033 12034 // If we're going to promote the non-output-value operand(s) or SELECT or 12035 // SELECT_CC, record them for truncation. 12036 if (User->getOpcode() == ISD::SELECT) { 12037 if (User->getOperand(0) == PromOps[i]) 12038 SelectTruncOp[0].insert(std::make_pair(User, 12039 User->getOperand(0).getValueType())); 12040 } else if (User->getOpcode() == ISD::SELECT_CC) { 12041 if (User->getOperand(0) == PromOps[i]) 12042 SelectTruncOp[0].insert(std::make_pair(User, 12043 User->getOperand(0).getValueType())); 12044 if (User->getOperand(1) == PromOps[i]) 12045 SelectTruncOp[1].insert(std::make_pair(User, 12046 User->getOperand(1).getValueType())); 12047 } 12048 } 12049 } 12050 12051 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12052 bool ReallyNeedsExt = false; 12053 if (N->getOpcode() != ISD::ANY_EXTEND) { 12054 // If all of the inputs are not already sign/zero extended, then 12055 // we'll still need to do that at the end. 12056 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12057 if (isa<ConstantSDNode>(Inputs[i])) 12058 continue; 12059 12060 unsigned OpBits = 12061 Inputs[i].getOperand(0).getValueSizeInBits(); 12062 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12063 12064 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12065 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12066 APInt::getHighBitsSet(OpBits, 12067 OpBits-PromBits))) || 12068 (N->getOpcode() == ISD::SIGN_EXTEND && 12069 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12070 (OpBits-(PromBits-1)))) { 12071 ReallyNeedsExt = true; 12072 break; 12073 } 12074 } 12075 } 12076 12077 // Replace all inputs, either with the truncation operand, or a 12078 // truncation or extension to the final output type. 12079 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12080 // Constant inputs need to be replaced with the to-be-promoted nodes that 12081 // use them because they might have users outside of the cluster of 12082 // promoted nodes. 12083 if (isa<ConstantSDNode>(Inputs[i])) 12084 continue; 12085 12086 SDValue InSrc = Inputs[i].getOperand(0); 12087 if (Inputs[i].getValueType() == N->getValueType(0)) 12088 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12089 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12090 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12091 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12092 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12093 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12094 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12095 else 12096 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12097 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12098 } 12099 12100 std::list<HandleSDNode> PromOpHandles; 12101 for (auto &PromOp : PromOps) 12102 PromOpHandles.emplace_back(PromOp); 12103 12104 // Replace all operations (these are all the same, but have a different 12105 // (promoted) return type). DAG.getNode will validate that the types of 12106 // a binary operator match, so go through the list in reverse so that 12107 // we've likely promoted both operands first. 12108 while (!PromOpHandles.empty()) { 12109 SDValue PromOp = PromOpHandles.back().getValue(); 12110 PromOpHandles.pop_back(); 12111 12112 unsigned C; 12113 switch (PromOp.getOpcode()) { 12114 default: C = 0; break; 12115 case ISD::SELECT: C = 1; break; 12116 case ISD::SELECT_CC: C = 2; break; 12117 } 12118 12119 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12120 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12121 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12122 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12123 // The to-be-promoted operands of this node have not yet been 12124 // promoted (this should be rare because we're going through the 12125 // list backward, but if one of the operands has several users in 12126 // this cluster of to-be-promoted nodes, it is possible). 12127 PromOpHandles.emplace_front(PromOp); 12128 continue; 12129 } 12130 12131 // For SELECT and SELECT_CC nodes, we do a similar check for any 12132 // to-be-promoted comparison inputs. 12133 if (PromOp.getOpcode() == ISD::SELECT || 12134 PromOp.getOpcode() == ISD::SELECT_CC) { 12135 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12136 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12137 (SelectTruncOp[1].count(PromOp.getNode()) && 12138 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12139 PromOpHandles.emplace_front(PromOp); 12140 continue; 12141 } 12142 } 12143 12144 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12145 PromOp.getNode()->op_end()); 12146 12147 // If this node has constant inputs, then they'll need to be promoted here. 12148 for (unsigned i = 0; i < 2; ++i) { 12149 if (!isa<ConstantSDNode>(Ops[C+i])) 12150 continue; 12151 if (Ops[C+i].getValueType() == N->getValueType(0)) 12152 continue; 12153 12154 if (N->getOpcode() == ISD::SIGN_EXTEND) 12155 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12156 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12157 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12158 else 12159 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12160 } 12161 12162 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 12163 // truncate them again to the original value type. 12164 if (PromOp.getOpcode() == ISD::SELECT || 12165 PromOp.getOpcode() == ISD::SELECT_CC) { 12166 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 12167 if (SI0 != SelectTruncOp[0].end()) 12168 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 12169 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 12170 if (SI1 != SelectTruncOp[1].end()) 12171 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 12172 } 12173 12174 DAG.ReplaceAllUsesOfValueWith(PromOp, 12175 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 12176 } 12177 12178 // Now we're left with the initial extension itself. 12179 if (!ReallyNeedsExt) 12180 return N->getOperand(0); 12181 12182 // To zero extend, just mask off everything except for the first bit (in the 12183 // i1 case). 12184 if (N->getOpcode() == ISD::ZERO_EXTEND) 12185 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 12186 DAG.getConstant(APInt::getLowBitsSet( 12187 N->getValueSizeInBits(0), PromBits), 12188 dl, N->getValueType(0))); 12189 12190 assert(N->getOpcode() == ISD::SIGN_EXTEND && 12191 "Invalid extension type"); 12192 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 12193 SDValue ShiftCst = 12194 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 12195 return DAG.getNode( 12196 ISD::SRA, dl, N->getValueType(0), 12197 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 12198 ShiftCst); 12199 } 12200 12201 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 12202 DAGCombinerInfo &DCI) const { 12203 assert(N->getOpcode() == ISD::SETCC && 12204 "Should be called with a SETCC node"); 12205 12206 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12207 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 12208 SDValue LHS = N->getOperand(0); 12209 SDValue RHS = N->getOperand(1); 12210 12211 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 12212 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 12213 LHS.hasOneUse()) 12214 std::swap(LHS, RHS); 12215 12216 // x == 0-y --> x+y == 0 12217 // x != 0-y --> x+y != 0 12218 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 12219 RHS.hasOneUse()) { 12220 SDLoc DL(N); 12221 SelectionDAG &DAG = DCI.DAG; 12222 EVT VT = N->getValueType(0); 12223 EVT OpVT = LHS.getValueType(); 12224 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 12225 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 12226 } 12227 } 12228 12229 return DAGCombineTruncBoolExt(N, DCI); 12230 } 12231 12232 // Is this an extending load from an f32 to an f64? 12233 static bool isFPExtLoad(SDValue Op) { 12234 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 12235 return LD->getExtensionType() == ISD::EXTLOAD && 12236 Op.getValueType() == MVT::f64; 12237 return false; 12238 } 12239 12240 /// Reduces the number of fp-to-int conversion when building a vector. 12241 /// 12242 /// If this vector is built out of floating to integer conversions, 12243 /// transform it to a vector built out of floating point values followed by a 12244 /// single floating to integer conversion of the vector. 12245 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 12246 /// becomes (fptosi (build_vector ($A, $B, ...))) 12247 SDValue PPCTargetLowering:: 12248 combineElementTruncationToVectorTruncation(SDNode *N, 12249 DAGCombinerInfo &DCI) const { 12250 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12251 "Should be called with a BUILD_VECTOR node"); 12252 12253 SelectionDAG &DAG = DCI.DAG; 12254 SDLoc dl(N); 12255 12256 SDValue FirstInput = N->getOperand(0); 12257 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 12258 "The input operand must be an fp-to-int conversion."); 12259 12260 // This combine happens after legalization so the fp_to_[su]i nodes are 12261 // already converted to PPCSISD nodes. 12262 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 12263 if (FirstConversion == PPCISD::FCTIDZ || 12264 FirstConversion == PPCISD::FCTIDUZ || 12265 FirstConversion == PPCISD::FCTIWZ || 12266 FirstConversion == PPCISD::FCTIWUZ) { 12267 bool IsSplat = true; 12268 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 12269 FirstConversion == PPCISD::FCTIWUZ; 12270 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 12271 SmallVector<SDValue, 4> Ops; 12272 EVT TargetVT = N->getValueType(0); 12273 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12274 SDValue NextOp = N->getOperand(i); 12275 if (NextOp.getOpcode() != PPCISD::MFVSR) 12276 return SDValue(); 12277 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 12278 if (NextConversion != FirstConversion) 12279 return SDValue(); 12280 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 12281 // This is not valid if the input was originally double precision. It is 12282 // also not profitable to do unless this is an extending load in which 12283 // case doing this combine will allow us to combine consecutive loads. 12284 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 12285 return SDValue(); 12286 if (N->getOperand(i) != FirstInput) 12287 IsSplat = false; 12288 } 12289 12290 // If this is a splat, we leave it as-is since there will be only a single 12291 // fp-to-int conversion followed by a splat of the integer. This is better 12292 // for 32-bit and smaller ints and neutral for 64-bit ints. 12293 if (IsSplat) 12294 return SDValue(); 12295 12296 // Now that we know we have the right type of node, get its operands 12297 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12298 SDValue In = N->getOperand(i).getOperand(0); 12299 if (Is32Bit) { 12300 // For 32-bit values, we need to add an FP_ROUND node (if we made it 12301 // here, we know that all inputs are extending loads so this is safe). 12302 if (In.isUndef()) 12303 Ops.push_back(DAG.getUNDEF(SrcVT)); 12304 else { 12305 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 12306 MVT::f32, In.getOperand(0), 12307 DAG.getIntPtrConstant(1, dl)); 12308 Ops.push_back(Trunc); 12309 } 12310 } else 12311 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 12312 } 12313 12314 unsigned Opcode; 12315 if (FirstConversion == PPCISD::FCTIDZ || 12316 FirstConversion == PPCISD::FCTIWZ) 12317 Opcode = ISD::FP_TO_SINT; 12318 else 12319 Opcode = ISD::FP_TO_UINT; 12320 12321 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 12322 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 12323 return DAG.getNode(Opcode, dl, TargetVT, BV); 12324 } 12325 return SDValue(); 12326 } 12327 12328 /// Reduce the number of loads when building a vector. 12329 /// 12330 /// Building a vector out of multiple loads can be converted to a load 12331 /// of the vector type if the loads are consecutive. If the loads are 12332 /// consecutive but in descending order, a shuffle is added at the end 12333 /// to reorder the vector. 12334 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 12335 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12336 "Should be called with a BUILD_VECTOR node"); 12337 12338 SDLoc dl(N); 12339 12340 // Return early for non byte-sized type, as they can't be consecutive. 12341 if (!N->getValueType(0).getVectorElementType().isByteSized()) 12342 return SDValue(); 12343 12344 bool InputsAreConsecutiveLoads = true; 12345 bool InputsAreReverseConsecutive = true; 12346 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 12347 SDValue FirstInput = N->getOperand(0); 12348 bool IsRoundOfExtLoad = false; 12349 12350 if (FirstInput.getOpcode() == ISD::FP_ROUND && 12351 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 12352 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 12353 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 12354 } 12355 // Not a build vector of (possibly fp_rounded) loads. 12356 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 12357 N->getNumOperands() == 1) 12358 return SDValue(); 12359 12360 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 12361 // If any inputs are fp_round(extload), they all must be. 12362 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 12363 return SDValue(); 12364 12365 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 12366 N->getOperand(i); 12367 if (NextInput.getOpcode() != ISD::LOAD) 12368 return SDValue(); 12369 12370 SDValue PreviousInput = 12371 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 12372 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 12373 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 12374 12375 // If any inputs are fp_round(extload), they all must be. 12376 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 12377 return SDValue(); 12378 12379 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 12380 InputsAreConsecutiveLoads = false; 12381 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 12382 InputsAreReverseConsecutive = false; 12383 12384 // Exit early if the loads are neither consecutive nor reverse consecutive. 12385 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 12386 return SDValue(); 12387 } 12388 12389 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 12390 "The loads cannot be both consecutive and reverse consecutive."); 12391 12392 SDValue FirstLoadOp = 12393 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 12394 SDValue LastLoadOp = 12395 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 12396 N->getOperand(N->getNumOperands()-1); 12397 12398 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 12399 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 12400 if (InputsAreConsecutiveLoads) { 12401 assert(LD1 && "Input needs to be a LoadSDNode."); 12402 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 12403 LD1->getBasePtr(), LD1->getPointerInfo(), 12404 LD1->getAlignment()); 12405 } 12406 if (InputsAreReverseConsecutive) { 12407 assert(LDL && "Input needs to be a LoadSDNode."); 12408 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 12409 LDL->getBasePtr(), LDL->getPointerInfo(), 12410 LDL->getAlignment()); 12411 SmallVector<int, 16> Ops; 12412 for (int i = N->getNumOperands() - 1; i >= 0; i--) 12413 Ops.push_back(i); 12414 12415 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 12416 DAG.getUNDEF(N->getValueType(0)), Ops); 12417 } 12418 return SDValue(); 12419 } 12420 12421 // This function adds the required vector_shuffle needed to get 12422 // the elements of the vector extract in the correct position 12423 // as specified by the CorrectElems encoding. 12424 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 12425 SDValue Input, uint64_t Elems, 12426 uint64_t CorrectElems) { 12427 SDLoc dl(N); 12428 12429 unsigned NumElems = Input.getValueType().getVectorNumElements(); 12430 SmallVector<int, 16> ShuffleMask(NumElems, -1); 12431 12432 // Knowing the element indices being extracted from the original 12433 // vector and the order in which they're being inserted, just put 12434 // them at element indices required for the instruction. 12435 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12436 if (DAG.getDataLayout().isLittleEndian()) 12437 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 12438 else 12439 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 12440 CorrectElems = CorrectElems >> 8; 12441 Elems = Elems >> 8; 12442 } 12443 12444 SDValue Shuffle = 12445 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 12446 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 12447 12448 EVT Ty = N->getValueType(0); 12449 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 12450 return BV; 12451 } 12452 12453 // Look for build vector patterns where input operands come from sign 12454 // extended vector_extract elements of specific indices. If the correct indices 12455 // aren't used, add a vector shuffle to fix up the indices and create a new 12456 // PPCISD:SExtVElems node which selects the vector sign extend instructions 12457 // during instruction selection. 12458 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 12459 // This array encodes the indices that the vector sign extend instructions 12460 // extract from when extending from one type to another for both BE and LE. 12461 // The right nibble of each byte corresponds to the LE incides. 12462 // and the left nibble of each byte corresponds to the BE incides. 12463 // For example: 0x3074B8FC byte->word 12464 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 12465 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 12466 // For example: 0x000070F8 byte->double word 12467 // For LE: the allowed indices are: 0x0,0x8 12468 // For BE: the allowed indices are: 0x7,0xF 12469 uint64_t TargetElems[] = { 12470 0x3074B8FC, // b->w 12471 0x000070F8, // b->d 12472 0x10325476, // h->w 12473 0x00003074, // h->d 12474 0x00001032, // w->d 12475 }; 12476 12477 uint64_t Elems = 0; 12478 int Index; 12479 SDValue Input; 12480 12481 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 12482 if (!Op) 12483 return false; 12484 if (Op.getOpcode() != ISD::SIGN_EXTEND && 12485 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 12486 return false; 12487 12488 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 12489 // of the right width. 12490 SDValue Extract = Op.getOperand(0); 12491 if (Extract.getOpcode() == ISD::ANY_EXTEND) 12492 Extract = Extract.getOperand(0); 12493 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12494 return false; 12495 12496 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 12497 if (!ExtOp) 12498 return false; 12499 12500 Index = ExtOp->getZExtValue(); 12501 if (Input && Input != Extract.getOperand(0)) 12502 return false; 12503 12504 if (!Input) 12505 Input = Extract.getOperand(0); 12506 12507 Elems = Elems << 8; 12508 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 12509 Elems |= Index; 12510 12511 return true; 12512 }; 12513 12514 // If the build vector operands aren't sign extended vector extracts, 12515 // of the same input vector, then return. 12516 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12517 if (!isSExtOfVecExtract(N->getOperand(i))) { 12518 return SDValue(); 12519 } 12520 } 12521 12522 // If the vector extract indicies are not correct, add the appropriate 12523 // vector_shuffle. 12524 int TgtElemArrayIdx; 12525 int InputSize = Input.getValueType().getScalarSizeInBits(); 12526 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 12527 if (InputSize + OutputSize == 40) 12528 TgtElemArrayIdx = 0; 12529 else if (InputSize + OutputSize == 72) 12530 TgtElemArrayIdx = 1; 12531 else if (InputSize + OutputSize == 48) 12532 TgtElemArrayIdx = 2; 12533 else if (InputSize + OutputSize == 80) 12534 TgtElemArrayIdx = 3; 12535 else if (InputSize + OutputSize == 96) 12536 TgtElemArrayIdx = 4; 12537 else 12538 return SDValue(); 12539 12540 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 12541 CorrectElems = DAG.getDataLayout().isLittleEndian() 12542 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 12543 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 12544 if (Elems != CorrectElems) { 12545 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 12546 } 12547 12548 // Regular lowering will catch cases where a shuffle is not needed. 12549 return SDValue(); 12550 } 12551 12552 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 12553 DAGCombinerInfo &DCI) const { 12554 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12555 "Should be called with a BUILD_VECTOR node"); 12556 12557 SelectionDAG &DAG = DCI.DAG; 12558 SDLoc dl(N); 12559 12560 if (!Subtarget.hasVSX()) 12561 return SDValue(); 12562 12563 // The target independent DAG combiner will leave a build_vector of 12564 // float-to-int conversions intact. We can generate MUCH better code for 12565 // a float-to-int conversion of a vector of floats. 12566 SDValue FirstInput = N->getOperand(0); 12567 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 12568 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 12569 if (Reduced) 12570 return Reduced; 12571 } 12572 12573 // If we're building a vector out of consecutive loads, just load that 12574 // vector type. 12575 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 12576 if (Reduced) 12577 return Reduced; 12578 12579 // If we're building a vector out of extended elements from another vector 12580 // we have P9 vector integer extend instructions. The code assumes legal 12581 // input types (i.e. it can't handle things like v4i16) so do not run before 12582 // legalization. 12583 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 12584 Reduced = combineBVOfVecSExt(N, DAG); 12585 if (Reduced) 12586 return Reduced; 12587 } 12588 12589 12590 if (N->getValueType(0) != MVT::v2f64) 12591 return SDValue(); 12592 12593 // Looking for: 12594 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 12595 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 12596 FirstInput.getOpcode() != ISD::UINT_TO_FP) 12597 return SDValue(); 12598 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 12599 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 12600 return SDValue(); 12601 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 12602 return SDValue(); 12603 12604 SDValue Ext1 = FirstInput.getOperand(0); 12605 SDValue Ext2 = N->getOperand(1).getOperand(0); 12606 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12607 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12608 return SDValue(); 12609 12610 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 12611 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 12612 if (!Ext1Op || !Ext2Op) 12613 return SDValue(); 12614 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 12615 Ext1.getOperand(0) != Ext2.getOperand(0)) 12616 return SDValue(); 12617 12618 int FirstElem = Ext1Op->getZExtValue(); 12619 int SecondElem = Ext2Op->getZExtValue(); 12620 int SubvecIdx; 12621 if (FirstElem == 0 && SecondElem == 1) 12622 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 12623 else if (FirstElem == 2 && SecondElem == 3) 12624 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 12625 else 12626 return SDValue(); 12627 12628 SDValue SrcVec = Ext1.getOperand(0); 12629 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 12630 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 12631 return DAG.getNode(NodeType, dl, MVT::v2f64, 12632 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 12633 } 12634 12635 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 12636 DAGCombinerInfo &DCI) const { 12637 assert((N->getOpcode() == ISD::SINT_TO_FP || 12638 N->getOpcode() == ISD::UINT_TO_FP) && 12639 "Need an int -> FP conversion node here"); 12640 12641 if (useSoftFloat() || !Subtarget.has64BitSupport()) 12642 return SDValue(); 12643 12644 SelectionDAG &DAG = DCI.DAG; 12645 SDLoc dl(N); 12646 SDValue Op(N, 0); 12647 12648 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 12649 // from the hardware. 12650 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 12651 return SDValue(); 12652 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 12653 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 12654 return SDValue(); 12655 12656 SDValue FirstOperand(Op.getOperand(0)); 12657 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 12658 (FirstOperand.getValueType() == MVT::i8 || 12659 FirstOperand.getValueType() == MVT::i16); 12660 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 12661 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 12662 bool DstDouble = Op.getValueType() == MVT::f64; 12663 unsigned ConvOp = Signed ? 12664 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 12665 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 12666 SDValue WidthConst = 12667 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 12668 dl, false); 12669 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 12670 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 12671 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 12672 DAG.getVTList(MVT::f64, MVT::Other), 12673 Ops, MVT::i8, LDN->getMemOperand()); 12674 12675 // For signed conversion, we need to sign-extend the value in the VSR 12676 if (Signed) { 12677 SDValue ExtOps[] = { Ld, WidthConst }; 12678 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 12679 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 12680 } else 12681 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 12682 } 12683 12684 12685 // For i32 intermediate values, unfortunately, the conversion functions 12686 // leave the upper 32 bits of the value are undefined. Within the set of 12687 // scalar instructions, we have no method for zero- or sign-extending the 12688 // value. Thus, we cannot handle i32 intermediate values here. 12689 if (Op.getOperand(0).getValueType() == MVT::i32) 12690 return SDValue(); 12691 12692 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 12693 "UINT_TO_FP is supported only with FPCVT"); 12694 12695 // If we have FCFIDS, then use it when converting to single-precision. 12696 // Otherwise, convert to double-precision and then round. 12697 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12698 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 12699 : PPCISD::FCFIDS) 12700 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 12701 : PPCISD::FCFID); 12702 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12703 ? MVT::f32 12704 : MVT::f64; 12705 12706 // If we're converting from a float, to an int, and back to a float again, 12707 // then we don't need the store/load pair at all. 12708 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 12709 Subtarget.hasFPCVT()) || 12710 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 12711 SDValue Src = Op.getOperand(0).getOperand(0); 12712 if (Src.getValueType() == MVT::f32) { 12713 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 12714 DCI.AddToWorklist(Src.getNode()); 12715 } else if (Src.getValueType() != MVT::f64) { 12716 // Make sure that we don't pick up a ppc_fp128 source value. 12717 return SDValue(); 12718 } 12719 12720 unsigned FCTOp = 12721 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 12722 PPCISD::FCTIDUZ; 12723 12724 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 12725 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 12726 12727 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 12728 FP = DAG.getNode(ISD::FP_ROUND, dl, 12729 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 12730 DCI.AddToWorklist(FP.getNode()); 12731 } 12732 12733 return FP; 12734 } 12735 12736 return SDValue(); 12737 } 12738 12739 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 12740 // builtins) into loads with swaps. 12741 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 12742 DAGCombinerInfo &DCI) const { 12743 SelectionDAG &DAG = DCI.DAG; 12744 SDLoc dl(N); 12745 SDValue Chain; 12746 SDValue Base; 12747 MachineMemOperand *MMO; 12748 12749 switch (N->getOpcode()) { 12750 default: 12751 llvm_unreachable("Unexpected opcode for little endian VSX load"); 12752 case ISD::LOAD: { 12753 LoadSDNode *LD = cast<LoadSDNode>(N); 12754 Chain = LD->getChain(); 12755 Base = LD->getBasePtr(); 12756 MMO = LD->getMemOperand(); 12757 // If the MMO suggests this isn't a load of a full vector, leave 12758 // things alone. For a built-in, we have to make the change for 12759 // correctness, so if there is a size problem that will be a bug. 12760 if (MMO->getSize() < 16) 12761 return SDValue(); 12762 break; 12763 } 12764 case ISD::INTRINSIC_W_CHAIN: { 12765 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12766 Chain = Intrin->getChain(); 12767 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 12768 // us what we want. Get operand 2 instead. 12769 Base = Intrin->getOperand(2); 12770 MMO = Intrin->getMemOperand(); 12771 break; 12772 } 12773 } 12774 12775 MVT VecTy = N->getValueType(0).getSimpleVT(); 12776 12777 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 12778 // aligned and the type is a vector with elements up to 4 bytes 12779 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12780 && VecTy.getScalarSizeInBits() <= 32 ) { 12781 return SDValue(); 12782 } 12783 12784 SDValue LoadOps[] = { Chain, Base }; 12785 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 12786 DAG.getVTList(MVT::v2f64, MVT::Other), 12787 LoadOps, MVT::v2f64, MMO); 12788 12789 DCI.AddToWorklist(Load.getNode()); 12790 Chain = Load.getValue(1); 12791 SDValue Swap = DAG.getNode( 12792 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 12793 DCI.AddToWorklist(Swap.getNode()); 12794 12795 // Add a bitcast if the resulting load type doesn't match v2f64. 12796 if (VecTy != MVT::v2f64) { 12797 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 12798 DCI.AddToWorklist(N.getNode()); 12799 // Package {bitcast value, swap's chain} to match Load's shape. 12800 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 12801 N, Swap.getValue(1)); 12802 } 12803 12804 return Swap; 12805 } 12806 12807 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 12808 // builtins) into stores with swaps. 12809 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 12810 DAGCombinerInfo &DCI) const { 12811 SelectionDAG &DAG = DCI.DAG; 12812 SDLoc dl(N); 12813 SDValue Chain; 12814 SDValue Base; 12815 unsigned SrcOpnd; 12816 MachineMemOperand *MMO; 12817 12818 switch (N->getOpcode()) { 12819 default: 12820 llvm_unreachable("Unexpected opcode for little endian VSX store"); 12821 case ISD::STORE: { 12822 StoreSDNode *ST = cast<StoreSDNode>(N); 12823 Chain = ST->getChain(); 12824 Base = ST->getBasePtr(); 12825 MMO = ST->getMemOperand(); 12826 SrcOpnd = 1; 12827 // If the MMO suggests this isn't a store of a full vector, leave 12828 // things alone. For a built-in, we have to make the change for 12829 // correctness, so if there is a size problem that will be a bug. 12830 if (MMO->getSize() < 16) 12831 return SDValue(); 12832 break; 12833 } 12834 case ISD::INTRINSIC_VOID: { 12835 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12836 Chain = Intrin->getChain(); 12837 // Intrin->getBasePtr() oddly does not get what we want. 12838 Base = Intrin->getOperand(3); 12839 MMO = Intrin->getMemOperand(); 12840 SrcOpnd = 2; 12841 break; 12842 } 12843 } 12844 12845 SDValue Src = N->getOperand(SrcOpnd); 12846 MVT VecTy = Src.getValueType().getSimpleVT(); 12847 12848 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 12849 // aligned and the type is a vector with elements up to 4 bytes 12850 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12851 && VecTy.getScalarSizeInBits() <= 32 ) { 12852 return SDValue(); 12853 } 12854 12855 // All stores are done as v2f64 and possible bit cast. 12856 if (VecTy != MVT::v2f64) { 12857 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 12858 DCI.AddToWorklist(Src.getNode()); 12859 } 12860 12861 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 12862 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 12863 DCI.AddToWorklist(Swap.getNode()); 12864 Chain = Swap.getValue(1); 12865 SDValue StoreOps[] = { Chain, Swap, Base }; 12866 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 12867 DAG.getVTList(MVT::Other), 12868 StoreOps, VecTy, MMO); 12869 DCI.AddToWorklist(Store.getNode()); 12870 return Store; 12871 } 12872 12873 // Handle DAG combine for STORE (FP_TO_INT F). 12874 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 12875 DAGCombinerInfo &DCI) const { 12876 12877 SelectionDAG &DAG = DCI.DAG; 12878 SDLoc dl(N); 12879 unsigned Opcode = N->getOperand(1).getOpcode(); 12880 12881 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 12882 && "Not a FP_TO_INT Instruction!"); 12883 12884 SDValue Val = N->getOperand(1).getOperand(0); 12885 EVT Op1VT = N->getOperand(1).getValueType(); 12886 EVT ResVT = Val.getValueType(); 12887 12888 // Floating point types smaller than 32 bits are not legal on Power. 12889 if (ResVT.getScalarSizeInBits() < 32) 12890 return SDValue(); 12891 12892 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 12893 bool ValidTypeForStoreFltAsInt = 12894 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 12895 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 12896 12897 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 12898 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 12899 return SDValue(); 12900 12901 // Extend f32 values to f64 12902 if (ResVT.getScalarSizeInBits() == 32) { 12903 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 12904 DCI.AddToWorklist(Val.getNode()); 12905 } 12906 12907 // Set signed or unsigned conversion opcode. 12908 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 12909 PPCISD::FP_TO_SINT_IN_VSR : 12910 PPCISD::FP_TO_UINT_IN_VSR; 12911 12912 Val = DAG.getNode(ConvOpcode, 12913 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 12914 DCI.AddToWorklist(Val.getNode()); 12915 12916 // Set number of bytes being converted. 12917 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 12918 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 12919 DAG.getIntPtrConstant(ByteSize, dl, false), 12920 DAG.getValueType(Op1VT) }; 12921 12922 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 12923 DAG.getVTList(MVT::Other), Ops, 12924 cast<StoreSDNode>(N)->getMemoryVT(), 12925 cast<StoreSDNode>(N)->getMemOperand()); 12926 12927 DCI.AddToWorklist(Val.getNode()); 12928 return Val; 12929 } 12930 12931 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 12932 DAGCombinerInfo &DCI) const { 12933 SelectionDAG &DAG = DCI.DAG; 12934 SDLoc dl(N); 12935 switch (N->getOpcode()) { 12936 default: break; 12937 case ISD::ADD: 12938 return combineADD(N, DCI); 12939 case ISD::SHL: 12940 return combineSHL(N, DCI); 12941 case ISD::SRA: 12942 return combineSRA(N, DCI); 12943 case ISD::SRL: 12944 return combineSRL(N, DCI); 12945 case ISD::MUL: 12946 return combineMUL(N, DCI); 12947 case PPCISD::SHL: 12948 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 12949 return N->getOperand(0); 12950 break; 12951 case PPCISD::SRL: 12952 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 12953 return N->getOperand(0); 12954 break; 12955 case PPCISD::SRA: 12956 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 12957 if (C->isNullValue() || // 0 >>s V -> 0. 12958 C->isAllOnesValue()) // -1 >>s V -> -1. 12959 return N->getOperand(0); 12960 } 12961 break; 12962 case ISD::SIGN_EXTEND: 12963 case ISD::ZERO_EXTEND: 12964 case ISD::ANY_EXTEND: 12965 return DAGCombineExtBoolTrunc(N, DCI); 12966 case ISD::TRUNCATE: 12967 return combineTRUNCATE(N, DCI); 12968 case ISD::SETCC: 12969 if (SDValue CSCC = combineSetCC(N, DCI)) 12970 return CSCC; 12971 LLVM_FALLTHROUGH; 12972 case ISD::SELECT_CC: 12973 return DAGCombineTruncBoolExt(N, DCI); 12974 case ISD::SINT_TO_FP: 12975 case ISD::UINT_TO_FP: 12976 return combineFPToIntToFP(N, DCI); 12977 case ISD::STORE: { 12978 12979 EVT Op1VT = N->getOperand(1).getValueType(); 12980 unsigned Opcode = N->getOperand(1).getOpcode(); 12981 12982 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 12983 SDValue Val= combineStoreFPToInt(N, DCI); 12984 if (Val) 12985 return Val; 12986 } 12987 12988 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 12989 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 12990 N->getOperand(1).getNode()->hasOneUse() && 12991 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 12992 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 12993 12994 // STBRX can only handle simple types and it makes no sense to store less 12995 // two bytes in byte-reversed order. 12996 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 12997 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 12998 break; 12999 13000 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13001 // Do an any-extend to 32-bits if this is a half-word input. 13002 if (BSwapOp.getValueType() == MVT::i16) 13003 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13004 13005 // If the type of BSWAP operand is wider than stored memory width 13006 // it need to be shifted to the right side before STBRX. 13007 if (Op1VT.bitsGT(mVT)) { 13008 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13009 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13010 DAG.getConstant(Shift, dl, MVT::i32)); 13011 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13012 if (Op1VT == MVT::i64) 13013 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13014 } 13015 13016 SDValue Ops[] = { 13017 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13018 }; 13019 return 13020 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13021 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13022 cast<StoreSDNode>(N)->getMemOperand()); 13023 } 13024 13025 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13026 // So it can increase the chance of CSE constant construction. 13027 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13028 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13029 // Need to sign-extended to 64-bits to handle negative values. 13030 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13031 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13032 MemVT.getSizeInBits()); 13033 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13034 13035 // DAG.getTruncStore() can't be used here because it doesn't accept 13036 // the general (base + offset) addressing mode. 13037 // So we use UpdateNodeOperands and setTruncatingStore instead. 13038 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13039 N->getOperand(3)); 13040 cast<StoreSDNode>(N)->setTruncatingStore(true); 13041 return SDValue(N, 0); 13042 } 13043 13044 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13045 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13046 if (Op1VT.isSimple()) { 13047 MVT StoreVT = Op1VT.getSimpleVT(); 13048 if (Subtarget.needsSwapsForVSXMemOps() && 13049 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 13050 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 13051 return expandVSXStoreForLE(N, DCI); 13052 } 13053 break; 13054 } 13055 case ISD::LOAD: { 13056 LoadSDNode *LD = cast<LoadSDNode>(N); 13057 EVT VT = LD->getValueType(0); 13058 13059 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13060 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13061 if (VT.isSimple()) { 13062 MVT LoadVT = VT.getSimpleVT(); 13063 if (Subtarget.needsSwapsForVSXMemOps() && 13064 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 13065 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 13066 return expandVSXLoadForLE(N, DCI); 13067 } 13068 13069 // We sometimes end up with a 64-bit integer load, from which we extract 13070 // two single-precision floating-point numbers. This happens with 13071 // std::complex<float>, and other similar structures, because of the way we 13072 // canonicalize structure copies. However, if we lack direct moves, 13073 // then the final bitcasts from the extracted integer values to the 13074 // floating-point numbers turn into store/load pairs. Even with direct moves, 13075 // just loading the two floating-point numbers is likely better. 13076 auto ReplaceTwoFloatLoad = [&]() { 13077 if (VT != MVT::i64) 13078 return false; 13079 13080 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 13081 LD->isVolatile()) 13082 return false; 13083 13084 // We're looking for a sequence like this: 13085 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 13086 // t16: i64 = srl t13, Constant:i32<32> 13087 // t17: i32 = truncate t16 13088 // t18: f32 = bitcast t17 13089 // t19: i32 = truncate t13 13090 // t20: f32 = bitcast t19 13091 13092 if (!LD->hasNUsesOfValue(2, 0)) 13093 return false; 13094 13095 auto UI = LD->use_begin(); 13096 while (UI.getUse().getResNo() != 0) ++UI; 13097 SDNode *Trunc = *UI++; 13098 while (UI.getUse().getResNo() != 0) ++UI; 13099 SDNode *RightShift = *UI; 13100 if (Trunc->getOpcode() != ISD::TRUNCATE) 13101 std::swap(Trunc, RightShift); 13102 13103 if (Trunc->getOpcode() != ISD::TRUNCATE || 13104 Trunc->getValueType(0) != MVT::i32 || 13105 !Trunc->hasOneUse()) 13106 return false; 13107 if (RightShift->getOpcode() != ISD::SRL || 13108 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 13109 RightShift->getConstantOperandVal(1) != 32 || 13110 !RightShift->hasOneUse()) 13111 return false; 13112 13113 SDNode *Trunc2 = *RightShift->use_begin(); 13114 if (Trunc2->getOpcode() != ISD::TRUNCATE || 13115 Trunc2->getValueType(0) != MVT::i32 || 13116 !Trunc2->hasOneUse()) 13117 return false; 13118 13119 SDNode *Bitcast = *Trunc->use_begin(); 13120 SDNode *Bitcast2 = *Trunc2->use_begin(); 13121 13122 if (Bitcast->getOpcode() != ISD::BITCAST || 13123 Bitcast->getValueType(0) != MVT::f32) 13124 return false; 13125 if (Bitcast2->getOpcode() != ISD::BITCAST || 13126 Bitcast2->getValueType(0) != MVT::f32) 13127 return false; 13128 13129 if (Subtarget.isLittleEndian()) 13130 std::swap(Bitcast, Bitcast2); 13131 13132 // Bitcast has the second float (in memory-layout order) and Bitcast2 13133 // has the first one. 13134 13135 SDValue BasePtr = LD->getBasePtr(); 13136 if (LD->isIndexed()) { 13137 assert(LD->getAddressingMode() == ISD::PRE_INC && 13138 "Non-pre-inc AM on PPC?"); 13139 BasePtr = 13140 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 13141 LD->getOffset()); 13142 } 13143 13144 auto MMOFlags = 13145 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 13146 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 13147 LD->getPointerInfo(), LD->getAlignment(), 13148 MMOFlags, LD->getAAInfo()); 13149 SDValue AddPtr = 13150 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 13151 BasePtr, DAG.getIntPtrConstant(4, dl)); 13152 SDValue FloatLoad2 = DAG.getLoad( 13153 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 13154 LD->getPointerInfo().getWithOffset(4), 13155 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 13156 13157 if (LD->isIndexed()) { 13158 // Note that DAGCombine should re-form any pre-increment load(s) from 13159 // what is produced here if that makes sense. 13160 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 13161 } 13162 13163 DCI.CombineTo(Bitcast2, FloatLoad); 13164 DCI.CombineTo(Bitcast, FloatLoad2); 13165 13166 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 13167 SDValue(FloatLoad2.getNode(), 1)); 13168 return true; 13169 }; 13170 13171 if (ReplaceTwoFloatLoad()) 13172 return SDValue(N, 0); 13173 13174 EVT MemVT = LD->getMemoryVT(); 13175 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 13176 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 13177 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 13178 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 13179 if (LD->isUnindexed() && VT.isVector() && 13180 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 13181 // P8 and later hardware should just use LOAD. 13182 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 13183 VT == MVT::v4i32 || VT == MVT::v4f32)) || 13184 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 13185 LD->getAlignment() >= ScalarABIAlignment)) && 13186 LD->getAlignment() < ABIAlignment) { 13187 // This is a type-legal unaligned Altivec or QPX load. 13188 SDValue Chain = LD->getChain(); 13189 SDValue Ptr = LD->getBasePtr(); 13190 bool isLittleEndian = Subtarget.isLittleEndian(); 13191 13192 // This implements the loading of unaligned vectors as described in 13193 // the venerable Apple Velocity Engine overview. Specifically: 13194 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 13195 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 13196 // 13197 // The general idea is to expand a sequence of one or more unaligned 13198 // loads into an alignment-based permutation-control instruction (lvsl 13199 // or lvsr), a series of regular vector loads (which always truncate 13200 // their input address to an aligned address), and a series of 13201 // permutations. The results of these permutations are the requested 13202 // loaded values. The trick is that the last "extra" load is not taken 13203 // from the address you might suspect (sizeof(vector) bytes after the 13204 // last requested load), but rather sizeof(vector) - 1 bytes after the 13205 // last requested vector. The point of this is to avoid a page fault if 13206 // the base address happened to be aligned. This works because if the 13207 // base address is aligned, then adding less than a full vector length 13208 // will cause the last vector in the sequence to be (re)loaded. 13209 // Otherwise, the next vector will be fetched as you might suspect was 13210 // necessary. 13211 13212 // We might be able to reuse the permutation generation from 13213 // a different base address offset from this one by an aligned amount. 13214 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 13215 // optimization later. 13216 Intrinsic::ID Intr, IntrLD, IntrPerm; 13217 MVT PermCntlTy, PermTy, LDTy; 13218 if (Subtarget.hasAltivec()) { 13219 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 13220 Intrinsic::ppc_altivec_lvsl; 13221 IntrLD = Intrinsic::ppc_altivec_lvx; 13222 IntrPerm = Intrinsic::ppc_altivec_vperm; 13223 PermCntlTy = MVT::v16i8; 13224 PermTy = MVT::v4i32; 13225 LDTy = MVT::v4i32; 13226 } else { 13227 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 13228 Intrinsic::ppc_qpx_qvlpcls; 13229 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 13230 Intrinsic::ppc_qpx_qvlfs; 13231 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 13232 PermCntlTy = MVT::v4f64; 13233 PermTy = MVT::v4f64; 13234 LDTy = MemVT.getSimpleVT(); 13235 } 13236 13237 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 13238 13239 // Create the new MMO for the new base load. It is like the original MMO, 13240 // but represents an area in memory almost twice the vector size centered 13241 // on the original address. If the address is unaligned, we might start 13242 // reading up to (sizeof(vector)-1) bytes below the address of the 13243 // original unaligned load. 13244 MachineFunction &MF = DAG.getMachineFunction(); 13245 MachineMemOperand *BaseMMO = 13246 MF.getMachineMemOperand(LD->getMemOperand(), 13247 -(long)MemVT.getStoreSize()+1, 13248 2*MemVT.getStoreSize()-1); 13249 13250 // Create the new base load. 13251 SDValue LDXIntID = 13252 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 13253 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 13254 SDValue BaseLoad = 13255 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13256 DAG.getVTList(PermTy, MVT::Other), 13257 BaseLoadOps, LDTy, BaseMMO); 13258 13259 // Note that the value of IncOffset (which is provided to the next 13260 // load's pointer info offset value, and thus used to calculate the 13261 // alignment), and the value of IncValue (which is actually used to 13262 // increment the pointer value) are different! This is because we 13263 // require the next load to appear to be aligned, even though it 13264 // is actually offset from the base pointer by a lesser amount. 13265 int IncOffset = VT.getSizeInBits() / 8; 13266 int IncValue = IncOffset; 13267 13268 // Walk (both up and down) the chain looking for another load at the real 13269 // (aligned) offset (the alignment of the other load does not matter in 13270 // this case). If found, then do not use the offset reduction trick, as 13271 // that will prevent the loads from being later combined (as they would 13272 // otherwise be duplicates). 13273 if (!findConsecutiveLoad(LD, DAG)) 13274 --IncValue; 13275 13276 SDValue Increment = 13277 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 13278 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 13279 13280 MachineMemOperand *ExtraMMO = 13281 MF.getMachineMemOperand(LD->getMemOperand(), 13282 1, 2*MemVT.getStoreSize()-1); 13283 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 13284 SDValue ExtraLoad = 13285 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13286 DAG.getVTList(PermTy, MVT::Other), 13287 ExtraLoadOps, LDTy, ExtraMMO); 13288 13289 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 13290 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 13291 13292 // Because vperm has a big-endian bias, we must reverse the order 13293 // of the input vectors and complement the permute control vector 13294 // when generating little endian code. We have already handled the 13295 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 13296 // and ExtraLoad here. 13297 SDValue Perm; 13298 if (isLittleEndian) 13299 Perm = BuildIntrinsicOp(IntrPerm, 13300 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 13301 else 13302 Perm = BuildIntrinsicOp(IntrPerm, 13303 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 13304 13305 if (VT != PermTy) 13306 Perm = Subtarget.hasAltivec() ? 13307 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 13308 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 13309 DAG.getTargetConstant(1, dl, MVT::i64)); 13310 // second argument is 1 because this rounding 13311 // is always exact. 13312 13313 // The output of the permutation is our loaded result, the TokenFactor is 13314 // our new chain. 13315 DCI.CombineTo(N, Perm, TF); 13316 return SDValue(N, 0); 13317 } 13318 } 13319 break; 13320 case ISD::INTRINSIC_WO_CHAIN: { 13321 bool isLittleEndian = Subtarget.isLittleEndian(); 13322 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 13323 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 13324 : Intrinsic::ppc_altivec_lvsl); 13325 if ((IID == Intr || 13326 IID == Intrinsic::ppc_qpx_qvlpcld || 13327 IID == Intrinsic::ppc_qpx_qvlpcls) && 13328 N->getOperand(1)->getOpcode() == ISD::ADD) { 13329 SDValue Add = N->getOperand(1); 13330 13331 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 13332 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 13333 13334 if (DAG.MaskedValueIsZero(Add->getOperand(1), 13335 APInt::getAllOnesValue(Bits /* alignment */) 13336 .zext(Add.getScalarValueSizeInBits()))) { 13337 SDNode *BasePtr = Add->getOperand(0).getNode(); 13338 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13339 UE = BasePtr->use_end(); 13340 UI != UE; ++UI) { 13341 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13342 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 13343 // We've found another LVSL/LVSR, and this address is an aligned 13344 // multiple of that one. The results will be the same, so use the 13345 // one we've just found instead. 13346 13347 return SDValue(*UI, 0); 13348 } 13349 } 13350 } 13351 13352 if (isa<ConstantSDNode>(Add->getOperand(1))) { 13353 SDNode *BasePtr = Add->getOperand(0).getNode(); 13354 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13355 UE = BasePtr->use_end(); UI != UE; ++UI) { 13356 if (UI->getOpcode() == ISD::ADD && 13357 isa<ConstantSDNode>(UI->getOperand(1)) && 13358 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 13359 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 13360 (1ULL << Bits) == 0) { 13361 SDNode *OtherAdd = *UI; 13362 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 13363 VE = OtherAdd->use_end(); VI != VE; ++VI) { 13364 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13365 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 13366 return SDValue(*VI, 0); 13367 } 13368 } 13369 } 13370 } 13371 } 13372 } 13373 13374 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 13375 // Expose the vabsduw/h/b opportunity for down stream 13376 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 13377 (IID == Intrinsic::ppc_altivec_vmaxsw || 13378 IID == Intrinsic::ppc_altivec_vmaxsh || 13379 IID == Intrinsic::ppc_altivec_vmaxsb)) { 13380 SDValue V1 = N->getOperand(1); 13381 SDValue V2 = N->getOperand(2); 13382 if ((V1.getSimpleValueType() == MVT::v4i32 || 13383 V1.getSimpleValueType() == MVT::v8i16 || 13384 V1.getSimpleValueType() == MVT::v16i8) && 13385 V1.getSimpleValueType() == V2.getSimpleValueType()) { 13386 // (0-a, a) 13387 if (V1.getOpcode() == ISD::SUB && 13388 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 13389 V1.getOperand(1) == V2) { 13390 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 13391 } 13392 // (a, 0-a) 13393 if (V2.getOpcode() == ISD::SUB && 13394 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 13395 V2.getOperand(1) == V1) { 13396 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13397 } 13398 // (x-y, y-x) 13399 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 13400 V1.getOperand(0) == V2.getOperand(1) && 13401 V1.getOperand(1) == V2.getOperand(0)) { 13402 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13403 } 13404 } 13405 } 13406 } 13407 13408 break; 13409 case ISD::INTRINSIC_W_CHAIN: 13410 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13411 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13412 if (Subtarget.needsSwapsForVSXMemOps()) { 13413 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13414 default: 13415 break; 13416 case Intrinsic::ppc_vsx_lxvw4x: 13417 case Intrinsic::ppc_vsx_lxvd2x: 13418 return expandVSXLoadForLE(N, DCI); 13419 } 13420 } 13421 break; 13422 case ISD::INTRINSIC_VOID: 13423 // For little endian, VSX stores require generating xxswapd/stxvd2x. 13424 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13425 if (Subtarget.needsSwapsForVSXMemOps()) { 13426 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13427 default: 13428 break; 13429 case Intrinsic::ppc_vsx_stxvw4x: 13430 case Intrinsic::ppc_vsx_stxvd2x: 13431 return expandVSXStoreForLE(N, DCI); 13432 } 13433 } 13434 break; 13435 case ISD::BSWAP: 13436 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 13437 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 13438 N->getOperand(0).hasOneUse() && 13439 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 13440 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 13441 N->getValueType(0) == MVT::i64))) { 13442 SDValue Load = N->getOperand(0); 13443 LoadSDNode *LD = cast<LoadSDNode>(Load); 13444 // Create the byte-swapping load. 13445 SDValue Ops[] = { 13446 LD->getChain(), // Chain 13447 LD->getBasePtr(), // Ptr 13448 DAG.getValueType(N->getValueType(0)) // VT 13449 }; 13450 SDValue BSLoad = 13451 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 13452 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 13453 MVT::i64 : MVT::i32, MVT::Other), 13454 Ops, LD->getMemoryVT(), LD->getMemOperand()); 13455 13456 // If this is an i16 load, insert the truncate. 13457 SDValue ResVal = BSLoad; 13458 if (N->getValueType(0) == MVT::i16) 13459 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 13460 13461 // First, combine the bswap away. This makes the value produced by the 13462 // load dead. 13463 DCI.CombineTo(N, ResVal); 13464 13465 // Next, combine the load away, we give it a bogus result value but a real 13466 // chain result. The result value is dead because the bswap is dead. 13467 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 13468 13469 // Return N so it doesn't get rechecked! 13470 return SDValue(N, 0); 13471 } 13472 break; 13473 case PPCISD::VCMP: 13474 // If a VCMPo node already exists with exactly the same operands as this 13475 // node, use its result instead of this node (VCMPo computes both a CR6 and 13476 // a normal output). 13477 // 13478 if (!N->getOperand(0).hasOneUse() && 13479 !N->getOperand(1).hasOneUse() && 13480 !N->getOperand(2).hasOneUse()) { 13481 13482 // Scan all of the users of the LHS, looking for VCMPo's that match. 13483 SDNode *VCMPoNode = nullptr; 13484 13485 SDNode *LHSN = N->getOperand(0).getNode(); 13486 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 13487 UI != E; ++UI) 13488 if (UI->getOpcode() == PPCISD::VCMPo && 13489 UI->getOperand(1) == N->getOperand(1) && 13490 UI->getOperand(2) == N->getOperand(2) && 13491 UI->getOperand(0) == N->getOperand(0)) { 13492 VCMPoNode = *UI; 13493 break; 13494 } 13495 13496 // If there is no VCMPo node, or if the flag value has a single use, don't 13497 // transform this. 13498 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 13499 break; 13500 13501 // Look at the (necessarily single) use of the flag value. If it has a 13502 // chain, this transformation is more complex. Note that multiple things 13503 // could use the value result, which we should ignore. 13504 SDNode *FlagUser = nullptr; 13505 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 13506 FlagUser == nullptr; ++UI) { 13507 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 13508 SDNode *User = *UI; 13509 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 13510 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 13511 FlagUser = User; 13512 break; 13513 } 13514 } 13515 } 13516 13517 // If the user is a MFOCRF instruction, we know this is safe. 13518 // Otherwise we give up for right now. 13519 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 13520 return SDValue(VCMPoNode, 0); 13521 } 13522 break; 13523 case ISD::BRCOND: { 13524 SDValue Cond = N->getOperand(1); 13525 SDValue Target = N->getOperand(2); 13526 13527 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13528 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 13529 Intrinsic::ppc_is_decremented_ctr_nonzero) { 13530 13531 // We now need to make the intrinsic dead (it cannot be instruction 13532 // selected). 13533 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 13534 assert(Cond.getNode()->hasOneUse() && 13535 "Counter decrement has more than one use"); 13536 13537 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 13538 N->getOperand(0), Target); 13539 } 13540 } 13541 break; 13542 case ISD::BR_CC: { 13543 // If this is a branch on an altivec predicate comparison, lower this so 13544 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 13545 // lowering is done pre-legalize, because the legalizer lowers the predicate 13546 // compare down to code that is difficult to reassemble. 13547 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 13548 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 13549 13550 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 13551 // value. If so, pass-through the AND to get to the intrinsic. 13552 if (LHS.getOpcode() == ISD::AND && 13553 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 13554 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 13555 Intrinsic::ppc_is_decremented_ctr_nonzero && 13556 isa<ConstantSDNode>(LHS.getOperand(1)) && 13557 !isNullConstant(LHS.getOperand(1))) 13558 LHS = LHS.getOperand(0); 13559 13560 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13561 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 13562 Intrinsic::ppc_is_decremented_ctr_nonzero && 13563 isa<ConstantSDNode>(RHS)) { 13564 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 13565 "Counter decrement comparison is not EQ or NE"); 13566 13567 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13568 bool isBDNZ = (CC == ISD::SETEQ && Val) || 13569 (CC == ISD::SETNE && !Val); 13570 13571 // We now need to make the intrinsic dead (it cannot be instruction 13572 // selected). 13573 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 13574 assert(LHS.getNode()->hasOneUse() && 13575 "Counter decrement has more than one use"); 13576 13577 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 13578 N->getOperand(0), N->getOperand(4)); 13579 } 13580 13581 int CompareOpc; 13582 bool isDot; 13583 13584 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13585 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 13586 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 13587 assert(isDot && "Can't compare against a vector result!"); 13588 13589 // If this is a comparison against something other than 0/1, then we know 13590 // that the condition is never/always true. 13591 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13592 if (Val != 0 && Val != 1) { 13593 if (CC == ISD::SETEQ) // Cond never true, remove branch. 13594 return N->getOperand(0); 13595 // Always !=, turn it into an unconditional branch. 13596 return DAG.getNode(ISD::BR, dl, MVT::Other, 13597 N->getOperand(0), N->getOperand(4)); 13598 } 13599 13600 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 13601 13602 // Create the PPCISD altivec 'dot' comparison node. 13603 SDValue Ops[] = { 13604 LHS.getOperand(2), // LHS of compare 13605 LHS.getOperand(3), // RHS of compare 13606 DAG.getConstant(CompareOpc, dl, MVT::i32) 13607 }; 13608 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 13609 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 13610 13611 // Unpack the result based on how the target uses it. 13612 PPC::Predicate CompOpc; 13613 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 13614 default: // Can't happen, don't crash on invalid number though. 13615 case 0: // Branch on the value of the EQ bit of CR6. 13616 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 13617 break; 13618 case 1: // Branch on the inverted value of the EQ bit of CR6. 13619 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 13620 break; 13621 case 2: // Branch on the value of the LT bit of CR6. 13622 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 13623 break; 13624 case 3: // Branch on the inverted value of the LT bit of CR6. 13625 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 13626 break; 13627 } 13628 13629 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 13630 DAG.getConstant(CompOpc, dl, MVT::i32), 13631 DAG.getRegister(PPC::CR6, MVT::i32), 13632 N->getOperand(4), CompNode.getValue(1)); 13633 } 13634 break; 13635 } 13636 case ISD::BUILD_VECTOR: 13637 return DAGCombineBuildVector(N, DCI); 13638 case ISD::ABS: 13639 return combineABS(N, DCI); 13640 case ISD::VSELECT: 13641 return combineVSelect(N, DCI); 13642 } 13643 13644 return SDValue(); 13645 } 13646 13647 SDValue 13648 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 13649 SelectionDAG &DAG, 13650 SmallVectorImpl<SDNode *> &Created) const { 13651 // fold (sdiv X, pow2) 13652 EVT VT = N->getValueType(0); 13653 if (VT == MVT::i64 && !Subtarget.isPPC64()) 13654 return SDValue(); 13655 if ((VT != MVT::i32 && VT != MVT::i64) || 13656 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 13657 return SDValue(); 13658 13659 SDLoc DL(N); 13660 SDValue N0 = N->getOperand(0); 13661 13662 bool IsNegPow2 = (-Divisor).isPowerOf2(); 13663 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 13664 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 13665 13666 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 13667 Created.push_back(Op.getNode()); 13668 13669 if (IsNegPow2) { 13670 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 13671 Created.push_back(Op.getNode()); 13672 } 13673 13674 return Op; 13675 } 13676 13677 //===----------------------------------------------------------------------===// 13678 // Inline Assembly Support 13679 //===----------------------------------------------------------------------===// 13680 13681 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 13682 KnownBits &Known, 13683 const APInt &DemandedElts, 13684 const SelectionDAG &DAG, 13685 unsigned Depth) const { 13686 Known.resetAll(); 13687 switch (Op.getOpcode()) { 13688 default: break; 13689 case PPCISD::LBRX: { 13690 // lhbrx is known to have the top bits cleared out. 13691 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 13692 Known.Zero = 0xFFFF0000; 13693 break; 13694 } 13695 case ISD::INTRINSIC_WO_CHAIN: { 13696 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 13697 default: break; 13698 case Intrinsic::ppc_altivec_vcmpbfp_p: 13699 case Intrinsic::ppc_altivec_vcmpeqfp_p: 13700 case Intrinsic::ppc_altivec_vcmpequb_p: 13701 case Intrinsic::ppc_altivec_vcmpequh_p: 13702 case Intrinsic::ppc_altivec_vcmpequw_p: 13703 case Intrinsic::ppc_altivec_vcmpequd_p: 13704 case Intrinsic::ppc_altivec_vcmpgefp_p: 13705 case Intrinsic::ppc_altivec_vcmpgtfp_p: 13706 case Intrinsic::ppc_altivec_vcmpgtsb_p: 13707 case Intrinsic::ppc_altivec_vcmpgtsh_p: 13708 case Intrinsic::ppc_altivec_vcmpgtsw_p: 13709 case Intrinsic::ppc_altivec_vcmpgtsd_p: 13710 case Intrinsic::ppc_altivec_vcmpgtub_p: 13711 case Intrinsic::ppc_altivec_vcmpgtuh_p: 13712 case Intrinsic::ppc_altivec_vcmpgtuw_p: 13713 case Intrinsic::ppc_altivec_vcmpgtud_p: 13714 Known.Zero = ~1U; // All bits but the low one are known to be zero. 13715 break; 13716 } 13717 } 13718 } 13719 } 13720 13721 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 13722 switch (Subtarget.getDarwinDirective()) { 13723 default: break; 13724 case PPC::DIR_970: 13725 case PPC::DIR_PWR4: 13726 case PPC::DIR_PWR5: 13727 case PPC::DIR_PWR5X: 13728 case PPC::DIR_PWR6: 13729 case PPC::DIR_PWR6X: 13730 case PPC::DIR_PWR7: 13731 case PPC::DIR_PWR8: 13732 case PPC::DIR_PWR9: { 13733 if (!ML) 13734 break; 13735 13736 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 13737 13738 // For small loops (between 5 and 8 instructions), align to a 32-byte 13739 // boundary so that the entire loop fits in one instruction-cache line. 13740 uint64_t LoopSize = 0; 13741 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 13742 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 13743 LoopSize += TII->getInstSizeInBytes(*J); 13744 if (LoopSize > 32) 13745 break; 13746 } 13747 13748 if (LoopSize > 16 && LoopSize <= 32) 13749 return 5; 13750 13751 break; 13752 } 13753 } 13754 13755 return TargetLowering::getPrefLoopAlignment(ML); 13756 } 13757 13758 /// getConstraintType - Given a constraint, return the type of 13759 /// constraint it is for this target. 13760 PPCTargetLowering::ConstraintType 13761 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 13762 if (Constraint.size() == 1) { 13763 switch (Constraint[0]) { 13764 default: break; 13765 case 'b': 13766 case 'r': 13767 case 'f': 13768 case 'd': 13769 case 'v': 13770 case 'y': 13771 return C_RegisterClass; 13772 case 'Z': 13773 // FIXME: While Z does indicate a memory constraint, it specifically 13774 // indicates an r+r address (used in conjunction with the 'y' modifier 13775 // in the replacement string). Currently, we're forcing the base 13776 // register to be r0 in the asm printer (which is interpreted as zero) 13777 // and forming the complete address in the second register. This is 13778 // suboptimal. 13779 return C_Memory; 13780 } 13781 } else if (Constraint == "wc") { // individual CR bits. 13782 return C_RegisterClass; 13783 } else if (Constraint == "wa" || Constraint == "wd" || 13784 Constraint == "wf" || Constraint == "ws" || 13785 Constraint == "wi") { 13786 return C_RegisterClass; // VSX registers. 13787 } 13788 return TargetLowering::getConstraintType(Constraint); 13789 } 13790 13791 /// Examine constraint type and operand type and determine a weight value. 13792 /// This object must already have been set up with the operand type 13793 /// and the current alternative constraint selected. 13794 TargetLowering::ConstraintWeight 13795 PPCTargetLowering::getSingleConstraintMatchWeight( 13796 AsmOperandInfo &info, const char *constraint) const { 13797 ConstraintWeight weight = CW_Invalid; 13798 Value *CallOperandVal = info.CallOperandVal; 13799 // If we don't have a value, we can't do a match, 13800 // but allow it at the lowest weight. 13801 if (!CallOperandVal) 13802 return CW_Default; 13803 Type *type = CallOperandVal->getType(); 13804 13805 // Look at the constraint type. 13806 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 13807 return CW_Register; // an individual CR bit. 13808 else if ((StringRef(constraint) == "wa" || 13809 StringRef(constraint) == "wd" || 13810 StringRef(constraint) == "wf") && 13811 type->isVectorTy()) 13812 return CW_Register; 13813 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 13814 return CW_Register; 13815 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 13816 return CW_Register; // just hold 64-bit integers data. 13817 13818 switch (*constraint) { 13819 default: 13820 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 13821 break; 13822 case 'b': 13823 if (type->isIntegerTy()) 13824 weight = CW_Register; 13825 break; 13826 case 'f': 13827 if (type->isFloatTy()) 13828 weight = CW_Register; 13829 break; 13830 case 'd': 13831 if (type->isDoubleTy()) 13832 weight = CW_Register; 13833 break; 13834 case 'v': 13835 if (type->isVectorTy()) 13836 weight = CW_Register; 13837 break; 13838 case 'y': 13839 weight = CW_Register; 13840 break; 13841 case 'Z': 13842 weight = CW_Memory; 13843 break; 13844 } 13845 return weight; 13846 } 13847 13848 std::pair<unsigned, const TargetRegisterClass *> 13849 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 13850 StringRef Constraint, 13851 MVT VT) const { 13852 if (Constraint.size() == 1) { 13853 // GCC RS6000 Constraint Letters 13854 switch (Constraint[0]) { 13855 case 'b': // R1-R31 13856 if (VT == MVT::i64 && Subtarget.isPPC64()) 13857 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 13858 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 13859 case 'r': // R0-R31 13860 if (VT == MVT::i64 && Subtarget.isPPC64()) 13861 return std::make_pair(0U, &PPC::G8RCRegClass); 13862 return std::make_pair(0U, &PPC::GPRCRegClass); 13863 // 'd' and 'f' constraints are both defined to be "the floating point 13864 // registers", where one is for 32-bit and the other for 64-bit. We don't 13865 // really care overly much here so just give them all the same reg classes. 13866 case 'd': 13867 case 'f': 13868 if (Subtarget.hasSPE()) { 13869 if (VT == MVT::f32 || VT == MVT::i32) 13870 return std::make_pair(0U, &PPC::SPE4RCRegClass); 13871 if (VT == MVT::f64 || VT == MVT::i64) 13872 return std::make_pair(0U, &PPC::SPERCRegClass); 13873 } else { 13874 if (VT == MVT::f32 || VT == MVT::i32) 13875 return std::make_pair(0U, &PPC::F4RCRegClass); 13876 if (VT == MVT::f64 || VT == MVT::i64) 13877 return std::make_pair(0U, &PPC::F8RCRegClass); 13878 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13879 return std::make_pair(0U, &PPC::QFRCRegClass); 13880 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13881 return std::make_pair(0U, &PPC::QSRCRegClass); 13882 } 13883 break; 13884 case 'v': 13885 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13886 return std::make_pair(0U, &PPC::QFRCRegClass); 13887 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13888 return std::make_pair(0U, &PPC::QSRCRegClass); 13889 if (Subtarget.hasAltivec()) 13890 return std::make_pair(0U, &PPC::VRRCRegClass); 13891 break; 13892 case 'y': // crrc 13893 return std::make_pair(0U, &PPC::CRRCRegClass); 13894 } 13895 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 13896 // An individual CR bit. 13897 return std::make_pair(0U, &PPC::CRBITRCRegClass); 13898 } else if ((Constraint == "wa" || Constraint == "wd" || 13899 Constraint == "wf" || Constraint == "wi") && 13900 Subtarget.hasVSX()) { 13901 return std::make_pair(0U, &PPC::VSRCRegClass); 13902 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 13903 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 13904 return std::make_pair(0U, &PPC::VSSRCRegClass); 13905 else 13906 return std::make_pair(0U, &PPC::VSFRCRegClass); 13907 } 13908 13909 std::pair<unsigned, const TargetRegisterClass *> R = 13910 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 13911 13912 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 13913 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 13914 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 13915 // register. 13916 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 13917 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 13918 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 13919 PPC::GPRCRegClass.contains(R.first)) 13920 return std::make_pair(TRI->getMatchingSuperReg(R.first, 13921 PPC::sub_32, &PPC::G8RCRegClass), 13922 &PPC::G8RCRegClass); 13923 13924 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 13925 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 13926 R.first = PPC::CR0; 13927 R.second = &PPC::CRRCRegClass; 13928 } 13929 13930 return R; 13931 } 13932 13933 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 13934 /// vector. If it is invalid, don't add anything to Ops. 13935 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 13936 std::string &Constraint, 13937 std::vector<SDValue>&Ops, 13938 SelectionDAG &DAG) const { 13939 SDValue Result; 13940 13941 // Only support length 1 constraints. 13942 if (Constraint.length() > 1) return; 13943 13944 char Letter = Constraint[0]; 13945 switch (Letter) { 13946 default: break; 13947 case 'I': 13948 case 'J': 13949 case 'K': 13950 case 'L': 13951 case 'M': 13952 case 'N': 13953 case 'O': 13954 case 'P': { 13955 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 13956 if (!CST) return; // Must be an immediate to match. 13957 SDLoc dl(Op); 13958 int64_t Value = CST->getSExtValue(); 13959 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 13960 // numbers are printed as such. 13961 switch (Letter) { 13962 default: llvm_unreachable("Unknown constraint letter!"); 13963 case 'I': // "I" is a signed 16-bit constant. 13964 if (isInt<16>(Value)) 13965 Result = DAG.getTargetConstant(Value, dl, TCVT); 13966 break; 13967 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 13968 if (isShiftedUInt<16, 16>(Value)) 13969 Result = DAG.getTargetConstant(Value, dl, TCVT); 13970 break; 13971 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 13972 if (isShiftedInt<16, 16>(Value)) 13973 Result = DAG.getTargetConstant(Value, dl, TCVT); 13974 break; 13975 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 13976 if (isUInt<16>(Value)) 13977 Result = DAG.getTargetConstant(Value, dl, TCVT); 13978 break; 13979 case 'M': // "M" is a constant that is greater than 31. 13980 if (Value > 31) 13981 Result = DAG.getTargetConstant(Value, dl, TCVT); 13982 break; 13983 case 'N': // "N" is a positive constant that is an exact power of two. 13984 if (Value > 0 && isPowerOf2_64(Value)) 13985 Result = DAG.getTargetConstant(Value, dl, TCVT); 13986 break; 13987 case 'O': // "O" is the constant zero. 13988 if (Value == 0) 13989 Result = DAG.getTargetConstant(Value, dl, TCVT); 13990 break; 13991 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 13992 if (isInt<16>(-Value)) 13993 Result = DAG.getTargetConstant(Value, dl, TCVT); 13994 break; 13995 } 13996 break; 13997 } 13998 } 13999 14000 if (Result.getNode()) { 14001 Ops.push_back(Result); 14002 return; 14003 } 14004 14005 // Handle standard constraint letters. 14006 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14007 } 14008 14009 // isLegalAddressingMode - Return true if the addressing mode represented 14010 // by AM is legal for this target, for a load/store of the specified type. 14011 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14012 const AddrMode &AM, Type *Ty, 14013 unsigned AS, Instruction *I) const { 14014 // PPC does not allow r+i addressing modes for vectors! 14015 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14016 return false; 14017 14018 // PPC allows a sign-extended 16-bit immediate field. 14019 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14020 return false; 14021 14022 // No global is ever allowed as a base. 14023 if (AM.BaseGV) 14024 return false; 14025 14026 // PPC only support r+r, 14027 switch (AM.Scale) { 14028 case 0: // "r+i" or just "i", depending on HasBaseReg. 14029 break; 14030 case 1: 14031 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 14032 return false; 14033 // Otherwise we have r+r or r+i. 14034 break; 14035 case 2: 14036 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 14037 return false; 14038 // Allow 2*r as r+r. 14039 break; 14040 default: 14041 // No other scales are supported. 14042 return false; 14043 } 14044 14045 return true; 14046 } 14047 14048 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 14049 SelectionDAG &DAG) const { 14050 MachineFunction &MF = DAG.getMachineFunction(); 14051 MachineFrameInfo &MFI = MF.getFrameInfo(); 14052 MFI.setReturnAddressIsTaken(true); 14053 14054 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 14055 return SDValue(); 14056 14057 SDLoc dl(Op); 14058 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14059 14060 // Make sure the function does not optimize away the store of the RA to 14061 // the stack. 14062 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 14063 FuncInfo->setLRStoreRequired(); 14064 bool isPPC64 = Subtarget.isPPC64(); 14065 auto PtrVT = getPointerTy(MF.getDataLayout()); 14066 14067 if (Depth > 0) { 14068 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 14069 SDValue Offset = 14070 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 14071 isPPC64 ? MVT::i64 : MVT::i32); 14072 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 14073 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 14074 MachinePointerInfo()); 14075 } 14076 14077 // Just load the return address off the stack. 14078 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 14079 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 14080 MachinePointerInfo()); 14081 } 14082 14083 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 14084 SelectionDAG &DAG) const { 14085 SDLoc dl(Op); 14086 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14087 14088 MachineFunction &MF = DAG.getMachineFunction(); 14089 MachineFrameInfo &MFI = MF.getFrameInfo(); 14090 MFI.setFrameAddressIsTaken(true); 14091 14092 EVT PtrVT = getPointerTy(MF.getDataLayout()); 14093 bool isPPC64 = PtrVT == MVT::i64; 14094 14095 // Naked functions never have a frame pointer, and so we use r1. For all 14096 // other functions, this decision must be delayed until during PEI. 14097 unsigned FrameReg; 14098 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 14099 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 14100 else 14101 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 14102 14103 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 14104 PtrVT); 14105 while (Depth--) 14106 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 14107 FrameAddr, MachinePointerInfo()); 14108 return FrameAddr; 14109 } 14110 14111 // FIXME? Maybe this could be a TableGen attribute on some registers and 14112 // this table could be generated automatically from RegInfo. 14113 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 14114 SelectionDAG &DAG) const { 14115 bool isPPC64 = Subtarget.isPPC64(); 14116 bool isDarwinABI = Subtarget.isDarwinABI(); 14117 14118 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 14119 (!isPPC64 && VT != MVT::i32)) 14120 report_fatal_error("Invalid register global variable type"); 14121 14122 bool is64Bit = isPPC64 && VT == MVT::i64; 14123 unsigned Reg = StringSwitch<unsigned>(RegName) 14124 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 14125 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 14126 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 14127 (is64Bit ? PPC::X13 : PPC::R13)) 14128 .Default(0); 14129 14130 if (Reg) 14131 return Reg; 14132 report_fatal_error("Invalid register name global variable"); 14133 } 14134 14135 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 14136 // 32-bit SVR4 ABI access everything as got-indirect. 14137 if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 14138 return true; 14139 14140 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 14141 // If it is small or large code model, module locals are accessed 14142 // indirectly by loading their address from .toc/.got. The difference 14143 // is that for large code model we have ADDISTocHa + LDtocL and for 14144 // small code model we simply have LDtoc. 14145 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 14146 return true; 14147 14148 // JumpTable and BlockAddress are accessed as got-indirect. 14149 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 14150 return true; 14151 14152 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) { 14153 const GlobalValue *GV = G->getGlobal(); 14154 unsigned char GVFlags = Subtarget.classifyGlobalReference(GV); 14155 // The NLP flag indicates that a global access has to use an 14156 // extra indirection. 14157 if (GVFlags & PPCII::MO_NLP_FLAG) 14158 return true; 14159 } 14160 14161 return false; 14162 } 14163 14164 bool 14165 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 14166 // The PowerPC target isn't yet aware of offsets. 14167 return false; 14168 } 14169 14170 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 14171 const CallInst &I, 14172 MachineFunction &MF, 14173 unsigned Intrinsic) const { 14174 switch (Intrinsic) { 14175 case Intrinsic::ppc_qpx_qvlfd: 14176 case Intrinsic::ppc_qpx_qvlfs: 14177 case Intrinsic::ppc_qpx_qvlfcd: 14178 case Intrinsic::ppc_qpx_qvlfcs: 14179 case Intrinsic::ppc_qpx_qvlfiwa: 14180 case Intrinsic::ppc_qpx_qvlfiwz: 14181 case Intrinsic::ppc_altivec_lvx: 14182 case Intrinsic::ppc_altivec_lvxl: 14183 case Intrinsic::ppc_altivec_lvebx: 14184 case Intrinsic::ppc_altivec_lvehx: 14185 case Intrinsic::ppc_altivec_lvewx: 14186 case Intrinsic::ppc_vsx_lxvd2x: 14187 case Intrinsic::ppc_vsx_lxvw4x: { 14188 EVT VT; 14189 switch (Intrinsic) { 14190 case Intrinsic::ppc_altivec_lvebx: 14191 VT = MVT::i8; 14192 break; 14193 case Intrinsic::ppc_altivec_lvehx: 14194 VT = MVT::i16; 14195 break; 14196 case Intrinsic::ppc_altivec_lvewx: 14197 VT = MVT::i32; 14198 break; 14199 case Intrinsic::ppc_vsx_lxvd2x: 14200 VT = MVT::v2f64; 14201 break; 14202 case Intrinsic::ppc_qpx_qvlfd: 14203 VT = MVT::v4f64; 14204 break; 14205 case Intrinsic::ppc_qpx_qvlfs: 14206 VT = MVT::v4f32; 14207 break; 14208 case Intrinsic::ppc_qpx_qvlfcd: 14209 VT = MVT::v2f64; 14210 break; 14211 case Intrinsic::ppc_qpx_qvlfcs: 14212 VT = MVT::v2f32; 14213 break; 14214 default: 14215 VT = MVT::v4i32; 14216 break; 14217 } 14218 14219 Info.opc = ISD::INTRINSIC_W_CHAIN; 14220 Info.memVT = VT; 14221 Info.ptrVal = I.getArgOperand(0); 14222 Info.offset = -VT.getStoreSize()+1; 14223 Info.size = 2*VT.getStoreSize()-1; 14224 Info.align = 1; 14225 Info.flags = MachineMemOperand::MOLoad; 14226 return true; 14227 } 14228 case Intrinsic::ppc_qpx_qvlfda: 14229 case Intrinsic::ppc_qpx_qvlfsa: 14230 case Intrinsic::ppc_qpx_qvlfcda: 14231 case Intrinsic::ppc_qpx_qvlfcsa: 14232 case Intrinsic::ppc_qpx_qvlfiwaa: 14233 case Intrinsic::ppc_qpx_qvlfiwza: { 14234 EVT VT; 14235 switch (Intrinsic) { 14236 case Intrinsic::ppc_qpx_qvlfda: 14237 VT = MVT::v4f64; 14238 break; 14239 case Intrinsic::ppc_qpx_qvlfsa: 14240 VT = MVT::v4f32; 14241 break; 14242 case Intrinsic::ppc_qpx_qvlfcda: 14243 VT = MVT::v2f64; 14244 break; 14245 case Intrinsic::ppc_qpx_qvlfcsa: 14246 VT = MVT::v2f32; 14247 break; 14248 default: 14249 VT = MVT::v4i32; 14250 break; 14251 } 14252 14253 Info.opc = ISD::INTRINSIC_W_CHAIN; 14254 Info.memVT = VT; 14255 Info.ptrVal = I.getArgOperand(0); 14256 Info.offset = 0; 14257 Info.size = VT.getStoreSize(); 14258 Info.align = 1; 14259 Info.flags = MachineMemOperand::MOLoad; 14260 return true; 14261 } 14262 case Intrinsic::ppc_qpx_qvstfd: 14263 case Intrinsic::ppc_qpx_qvstfs: 14264 case Intrinsic::ppc_qpx_qvstfcd: 14265 case Intrinsic::ppc_qpx_qvstfcs: 14266 case Intrinsic::ppc_qpx_qvstfiw: 14267 case Intrinsic::ppc_altivec_stvx: 14268 case Intrinsic::ppc_altivec_stvxl: 14269 case Intrinsic::ppc_altivec_stvebx: 14270 case Intrinsic::ppc_altivec_stvehx: 14271 case Intrinsic::ppc_altivec_stvewx: 14272 case Intrinsic::ppc_vsx_stxvd2x: 14273 case Intrinsic::ppc_vsx_stxvw4x: { 14274 EVT VT; 14275 switch (Intrinsic) { 14276 case Intrinsic::ppc_altivec_stvebx: 14277 VT = MVT::i8; 14278 break; 14279 case Intrinsic::ppc_altivec_stvehx: 14280 VT = MVT::i16; 14281 break; 14282 case Intrinsic::ppc_altivec_stvewx: 14283 VT = MVT::i32; 14284 break; 14285 case Intrinsic::ppc_vsx_stxvd2x: 14286 VT = MVT::v2f64; 14287 break; 14288 case Intrinsic::ppc_qpx_qvstfd: 14289 VT = MVT::v4f64; 14290 break; 14291 case Intrinsic::ppc_qpx_qvstfs: 14292 VT = MVT::v4f32; 14293 break; 14294 case Intrinsic::ppc_qpx_qvstfcd: 14295 VT = MVT::v2f64; 14296 break; 14297 case Intrinsic::ppc_qpx_qvstfcs: 14298 VT = MVT::v2f32; 14299 break; 14300 default: 14301 VT = MVT::v4i32; 14302 break; 14303 } 14304 14305 Info.opc = ISD::INTRINSIC_VOID; 14306 Info.memVT = VT; 14307 Info.ptrVal = I.getArgOperand(1); 14308 Info.offset = -VT.getStoreSize()+1; 14309 Info.size = 2*VT.getStoreSize()-1; 14310 Info.align = 1; 14311 Info.flags = MachineMemOperand::MOStore; 14312 return true; 14313 } 14314 case Intrinsic::ppc_qpx_qvstfda: 14315 case Intrinsic::ppc_qpx_qvstfsa: 14316 case Intrinsic::ppc_qpx_qvstfcda: 14317 case Intrinsic::ppc_qpx_qvstfcsa: 14318 case Intrinsic::ppc_qpx_qvstfiwa: { 14319 EVT VT; 14320 switch (Intrinsic) { 14321 case Intrinsic::ppc_qpx_qvstfda: 14322 VT = MVT::v4f64; 14323 break; 14324 case Intrinsic::ppc_qpx_qvstfsa: 14325 VT = MVT::v4f32; 14326 break; 14327 case Intrinsic::ppc_qpx_qvstfcda: 14328 VT = MVT::v2f64; 14329 break; 14330 case Intrinsic::ppc_qpx_qvstfcsa: 14331 VT = MVT::v2f32; 14332 break; 14333 default: 14334 VT = MVT::v4i32; 14335 break; 14336 } 14337 14338 Info.opc = ISD::INTRINSIC_VOID; 14339 Info.memVT = VT; 14340 Info.ptrVal = I.getArgOperand(1); 14341 Info.offset = 0; 14342 Info.size = VT.getStoreSize(); 14343 Info.align = 1; 14344 Info.flags = MachineMemOperand::MOStore; 14345 return true; 14346 } 14347 default: 14348 break; 14349 } 14350 14351 return false; 14352 } 14353 14354 /// getOptimalMemOpType - Returns the target specific optimal type for load 14355 /// and store operations as a result of memset, memcpy, and memmove 14356 /// lowering. If DstAlign is zero that means it's safe to destination 14357 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 14358 /// means there isn't a need to check it against alignment requirement, 14359 /// probably because the source does not need to be loaded. If 'IsMemset' is 14360 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 14361 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 14362 /// source is constant so it does not need to be loaded. 14363 /// It returns EVT::Other if the type should be determined using generic 14364 /// target-independent logic. 14365 EVT PPCTargetLowering::getOptimalMemOpType( 14366 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 14367 bool ZeroMemset, bool MemcpyStrSrc, 14368 const AttributeList &FuncAttributes) const { 14369 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 14370 // When expanding a memset, require at least two QPX instructions to cover 14371 // the cost of loading the value to be stored from the constant pool. 14372 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 14373 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 14374 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 14375 return MVT::v4f64; 14376 } 14377 14378 // We should use Altivec/VSX loads and stores when available. For unaligned 14379 // addresses, unaligned VSX loads are only fast starting with the P8. 14380 if (Subtarget.hasAltivec() && Size >= 16 && 14381 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 14382 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 14383 return MVT::v4i32; 14384 } 14385 14386 if (Subtarget.isPPC64()) { 14387 return MVT::i64; 14388 } 14389 14390 return MVT::i32; 14391 } 14392 14393 /// Returns true if it is beneficial to convert a load of a constant 14394 /// to just the constant itself. 14395 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 14396 Type *Ty) const { 14397 assert(Ty->isIntegerTy()); 14398 14399 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 14400 return !(BitSize == 0 || BitSize > 64); 14401 } 14402 14403 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 14404 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 14405 return false; 14406 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 14407 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 14408 return NumBits1 == 64 && NumBits2 == 32; 14409 } 14410 14411 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 14412 if (!VT1.isInteger() || !VT2.isInteger()) 14413 return false; 14414 unsigned NumBits1 = VT1.getSizeInBits(); 14415 unsigned NumBits2 = VT2.getSizeInBits(); 14416 return NumBits1 == 64 && NumBits2 == 32; 14417 } 14418 14419 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 14420 // Generally speaking, zexts are not free, but they are free when they can be 14421 // folded with other operations. 14422 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 14423 EVT MemVT = LD->getMemoryVT(); 14424 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 14425 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 14426 (LD->getExtensionType() == ISD::NON_EXTLOAD || 14427 LD->getExtensionType() == ISD::ZEXTLOAD)) 14428 return true; 14429 } 14430 14431 // FIXME: Add other cases... 14432 // - 32-bit shifts with a zext to i64 14433 // - zext after ctlz, bswap, etc. 14434 // - zext after and by a constant mask 14435 14436 return TargetLowering::isZExtFree(Val, VT2); 14437 } 14438 14439 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 14440 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 14441 "invalid fpext types"); 14442 // Extending to float128 is not free. 14443 if (DestVT == MVT::f128) 14444 return false; 14445 return true; 14446 } 14447 14448 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 14449 return isInt<16>(Imm) || isUInt<16>(Imm); 14450 } 14451 14452 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 14453 return isInt<16>(Imm) || isUInt<16>(Imm); 14454 } 14455 14456 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 14457 unsigned, 14458 unsigned, 14459 bool *Fast) const { 14460 if (DisablePPCUnaligned) 14461 return false; 14462 14463 // PowerPC supports unaligned memory access for simple non-vector types. 14464 // Although accessing unaligned addresses is not as efficient as accessing 14465 // aligned addresses, it is generally more efficient than manual expansion, 14466 // and generally only traps for software emulation when crossing page 14467 // boundaries. 14468 14469 if (!VT.isSimple()) 14470 return false; 14471 14472 if (VT.getSimpleVT().isVector()) { 14473 if (Subtarget.hasVSX()) { 14474 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 14475 VT != MVT::v4f32 && VT != MVT::v4i32) 14476 return false; 14477 } else { 14478 return false; 14479 } 14480 } 14481 14482 if (VT == MVT::ppcf128) 14483 return false; 14484 14485 if (Fast) 14486 *Fast = true; 14487 14488 return true; 14489 } 14490 14491 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 14492 VT = VT.getScalarType(); 14493 14494 if (!VT.isSimple()) 14495 return false; 14496 14497 switch (VT.getSimpleVT().SimpleTy) { 14498 case MVT::f32: 14499 case MVT::f64: 14500 return true; 14501 case MVT::f128: 14502 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 14503 default: 14504 break; 14505 } 14506 14507 return false; 14508 } 14509 14510 const MCPhysReg * 14511 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 14512 // LR is a callee-save register, but we must treat it as clobbered by any call 14513 // site. Hence we include LR in the scratch registers, which are in turn added 14514 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 14515 // to CTR, which is used by any indirect call. 14516 static const MCPhysReg ScratchRegs[] = { 14517 PPC::X12, PPC::LR8, PPC::CTR8, 0 14518 }; 14519 14520 return ScratchRegs; 14521 } 14522 14523 unsigned PPCTargetLowering::getExceptionPointerRegister( 14524 const Constant *PersonalityFn) const { 14525 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 14526 } 14527 14528 unsigned PPCTargetLowering::getExceptionSelectorRegister( 14529 const Constant *PersonalityFn) const { 14530 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 14531 } 14532 14533 bool 14534 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 14535 EVT VT , unsigned DefinedValues) const { 14536 if (VT == MVT::v2i64) 14537 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 14538 14539 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 14540 return true; 14541 14542 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 14543 } 14544 14545 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 14546 if (DisableILPPref || Subtarget.enableMachineScheduler()) 14547 return TargetLowering::getSchedulingPreference(N); 14548 14549 return Sched::ILP; 14550 } 14551 14552 // Create a fast isel object. 14553 FastISel * 14554 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 14555 const TargetLibraryInfo *LibInfo) const { 14556 return PPC::createFastISel(FuncInfo, LibInfo); 14557 } 14558 14559 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 14560 if (Subtarget.isDarwinABI()) return; 14561 if (!Subtarget.isPPC64()) return; 14562 14563 // Update IsSplitCSR in PPCFunctionInfo 14564 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 14565 PFI->setIsSplitCSR(true); 14566 } 14567 14568 void PPCTargetLowering::insertCopiesSplitCSR( 14569 MachineBasicBlock *Entry, 14570 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 14571 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 14572 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 14573 if (!IStart) 14574 return; 14575 14576 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 14577 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 14578 MachineBasicBlock::iterator MBBI = Entry->begin(); 14579 for (const MCPhysReg *I = IStart; *I; ++I) { 14580 const TargetRegisterClass *RC = nullptr; 14581 if (PPC::G8RCRegClass.contains(*I)) 14582 RC = &PPC::G8RCRegClass; 14583 else if (PPC::F8RCRegClass.contains(*I)) 14584 RC = &PPC::F8RCRegClass; 14585 else if (PPC::CRRCRegClass.contains(*I)) 14586 RC = &PPC::CRRCRegClass; 14587 else if (PPC::VRRCRegClass.contains(*I)) 14588 RC = &PPC::VRRCRegClass; 14589 else 14590 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 14591 14592 unsigned NewVR = MRI->createVirtualRegister(RC); 14593 // Create copy from CSR to a virtual register. 14594 // FIXME: this currently does not emit CFI pseudo-instructions, it works 14595 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 14596 // nounwind. If we want to generalize this later, we may need to emit 14597 // CFI pseudo-instructions. 14598 assert(Entry->getParent()->getFunction().hasFnAttribute( 14599 Attribute::NoUnwind) && 14600 "Function should be nounwind in insertCopiesSplitCSR!"); 14601 Entry->addLiveIn(*I); 14602 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 14603 .addReg(*I); 14604 14605 // Insert the copy-back instructions right before the terminator. 14606 for (auto *Exit : Exits) 14607 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 14608 TII->get(TargetOpcode::COPY), *I) 14609 .addReg(NewVR); 14610 } 14611 } 14612 14613 // Override to enable LOAD_STACK_GUARD lowering on Linux. 14614 bool PPCTargetLowering::useLoadStackGuardNode() const { 14615 if (!Subtarget.isTargetLinux()) 14616 return TargetLowering::useLoadStackGuardNode(); 14617 return true; 14618 } 14619 14620 // Override to disable global variable loading on Linux. 14621 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 14622 if (!Subtarget.isTargetLinux()) 14623 return TargetLowering::insertSSPDeclarations(M); 14624 } 14625 14626 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 14627 bool ForCodeSize) const { 14628 if (!VT.isSimple() || !Subtarget.hasVSX()) 14629 return false; 14630 14631 switch(VT.getSimpleVT().SimpleTy) { 14632 default: 14633 // For FP types that are currently not supported by PPC backend, return 14634 // false. Examples: f16, f80. 14635 return false; 14636 case MVT::f32: 14637 case MVT::f64: 14638 case MVT::ppcf128: 14639 return Imm.isPosZero(); 14640 } 14641 } 14642 14643 // For vector shift operation op, fold 14644 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 14645 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 14646 SelectionDAG &DAG) { 14647 SDValue N0 = N->getOperand(0); 14648 SDValue N1 = N->getOperand(1); 14649 EVT VT = N0.getValueType(); 14650 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 14651 unsigned Opcode = N->getOpcode(); 14652 unsigned TargetOpcode; 14653 14654 switch (Opcode) { 14655 default: 14656 llvm_unreachable("Unexpected shift operation"); 14657 case ISD::SHL: 14658 TargetOpcode = PPCISD::SHL; 14659 break; 14660 case ISD::SRL: 14661 TargetOpcode = PPCISD::SRL; 14662 break; 14663 case ISD::SRA: 14664 TargetOpcode = PPCISD::SRA; 14665 break; 14666 } 14667 14668 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 14669 N1->getOpcode() == ISD::AND) 14670 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 14671 if (Mask->getZExtValue() == OpSizeInBits - 1) 14672 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 14673 14674 return SDValue(); 14675 } 14676 14677 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 14678 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14679 return Value; 14680 14681 SDValue N0 = N->getOperand(0); 14682 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 14683 if (!Subtarget.isISA3_0() || 14684 N0.getOpcode() != ISD::SIGN_EXTEND || 14685 N0.getOperand(0).getValueType() != MVT::i32 || 14686 CN1 == nullptr || N->getValueType(0) != MVT::i64) 14687 return SDValue(); 14688 14689 // We can't save an operation here if the value is already extended, and 14690 // the existing shift is easier to combine. 14691 SDValue ExtsSrc = N0.getOperand(0); 14692 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 14693 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 14694 return SDValue(); 14695 14696 SDLoc DL(N0); 14697 SDValue ShiftBy = SDValue(CN1, 0); 14698 // We want the shift amount to be i32 on the extswli, but the shift could 14699 // have an i64. 14700 if (ShiftBy.getValueType() == MVT::i64) 14701 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 14702 14703 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 14704 ShiftBy); 14705 } 14706 14707 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 14708 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14709 return Value; 14710 14711 return SDValue(); 14712 } 14713 14714 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 14715 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14716 return Value; 14717 14718 return SDValue(); 14719 } 14720 14721 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 14722 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 14723 // When C is zero, the equation (addi Z, -C) can be simplified to Z 14724 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 14725 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 14726 const PPCSubtarget &Subtarget) { 14727 if (!Subtarget.isPPC64()) 14728 return SDValue(); 14729 14730 SDValue LHS = N->getOperand(0); 14731 SDValue RHS = N->getOperand(1); 14732 14733 auto isZextOfCompareWithConstant = [](SDValue Op) { 14734 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 14735 Op.getValueType() != MVT::i64) 14736 return false; 14737 14738 SDValue Cmp = Op.getOperand(0); 14739 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 14740 Cmp.getOperand(0).getValueType() != MVT::i64) 14741 return false; 14742 14743 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 14744 int64_t NegConstant = 0 - Constant->getSExtValue(); 14745 // Due to the limitations of the addi instruction, 14746 // -C is required to be [-32768, 32767]. 14747 return isInt<16>(NegConstant); 14748 } 14749 14750 return false; 14751 }; 14752 14753 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 14754 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 14755 14756 // If there is a pattern, canonicalize a zext operand to the RHS. 14757 if (LHSHasPattern && !RHSHasPattern) 14758 std::swap(LHS, RHS); 14759 else if (!LHSHasPattern && !RHSHasPattern) 14760 return SDValue(); 14761 14762 SDLoc DL(N); 14763 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 14764 SDValue Cmp = RHS.getOperand(0); 14765 SDValue Z = Cmp.getOperand(0); 14766 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 14767 14768 assert(Constant && "Constant Should not be a null pointer."); 14769 int64_t NegConstant = 0 - Constant->getSExtValue(); 14770 14771 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 14772 default: break; 14773 case ISD::SETNE: { 14774 // when C == 0 14775 // --> addze X, (addic Z, -1).carry 14776 // / 14777 // add X, (zext(setne Z, C))-- 14778 // \ when -32768 <= -C <= 32767 && C != 0 14779 // --> addze X, (addic (addi Z, -C), -1).carry 14780 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 14781 DAG.getConstant(NegConstant, DL, MVT::i64)); 14782 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 14783 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 14784 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 14785 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 14786 SDValue(Addc.getNode(), 1)); 14787 } 14788 case ISD::SETEQ: { 14789 // when C == 0 14790 // --> addze X, (subfic Z, 0).carry 14791 // / 14792 // add X, (zext(sete Z, C))-- 14793 // \ when -32768 <= -C <= 32767 && C != 0 14794 // --> addze X, (subfic (addi Z, -C), 0).carry 14795 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 14796 DAG.getConstant(NegConstant, DL, MVT::i64)); 14797 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 14798 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 14799 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 14800 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 14801 SDValue(Subc.getNode(), 1)); 14802 } 14803 } 14804 14805 return SDValue(); 14806 } 14807 14808 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 14809 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 14810 return Value; 14811 14812 return SDValue(); 14813 } 14814 14815 // Detect TRUNCATE operations on bitcasts of float128 values. 14816 // What we are looking for here is the situtation where we extract a subset 14817 // of bits from a 128 bit float. 14818 // This can be of two forms: 14819 // 1) BITCAST of f128 feeding TRUNCATE 14820 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 14821 // The reason this is required is because we do not have a legal i128 type 14822 // and so we want to prevent having to store the f128 and then reload part 14823 // of it. 14824 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 14825 DAGCombinerInfo &DCI) const { 14826 // If we are using CRBits then try that first. 14827 if (Subtarget.useCRBits()) { 14828 // Check if CRBits did anything and return that if it did. 14829 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 14830 return CRTruncValue; 14831 } 14832 14833 SDLoc dl(N); 14834 SDValue Op0 = N->getOperand(0); 14835 14836 // Looking for a truncate of i128 to i64. 14837 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 14838 return SDValue(); 14839 14840 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 14841 14842 // SRL feeding TRUNCATE. 14843 if (Op0.getOpcode() == ISD::SRL) { 14844 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 14845 // The right shift has to be by 64 bits. 14846 if (!ConstNode || ConstNode->getZExtValue() != 64) 14847 return SDValue(); 14848 14849 // Switch the element number to extract. 14850 EltToExtract = EltToExtract ? 0 : 1; 14851 // Update Op0 past the SRL. 14852 Op0 = Op0.getOperand(0); 14853 } 14854 14855 // BITCAST feeding a TRUNCATE possibly via SRL. 14856 if (Op0.getOpcode() == ISD::BITCAST && 14857 Op0.getValueType() == MVT::i128 && 14858 Op0.getOperand(0).getValueType() == MVT::f128) { 14859 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 14860 return DCI.DAG.getNode( 14861 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 14862 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 14863 } 14864 return SDValue(); 14865 } 14866 14867 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 14868 SelectionDAG &DAG = DCI.DAG; 14869 14870 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 14871 if (!ConstOpOrElement) 14872 return SDValue(); 14873 14874 // An imul is usually smaller than the alternative sequence for legal type. 14875 if (DAG.getMachineFunction().getFunction().hasMinSize() && 14876 isOperationLegal(ISD::MUL, N->getValueType(0))) 14877 return SDValue(); 14878 14879 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 14880 switch (this->Subtarget.getDarwinDirective()) { 14881 default: 14882 // TODO: enhance the condition for subtarget before pwr8 14883 return false; 14884 case PPC::DIR_PWR8: 14885 // type mul add shl 14886 // scalar 4 1 1 14887 // vector 7 2 2 14888 return true; 14889 case PPC::DIR_PWR9: 14890 // type mul add shl 14891 // scalar 5 2 2 14892 // vector 7 2 2 14893 14894 // The cycle RATIO of related operations are showed as a table above. 14895 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 14896 // scalar and vector type. For 2 instrs patterns, add/sub + shl 14897 // are 4, it is always profitable; but for 3 instrs patterns 14898 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 14899 // So we should only do it for vector type. 14900 return IsAddOne && IsNeg ? VT.isVector() : true; 14901 } 14902 }; 14903 14904 EVT VT = N->getValueType(0); 14905 SDLoc DL(N); 14906 14907 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 14908 bool IsNeg = MulAmt.isNegative(); 14909 APInt MulAmtAbs = MulAmt.abs(); 14910 14911 if ((MulAmtAbs - 1).isPowerOf2()) { 14912 // (mul x, 2^N + 1) => (add (shl x, N), x) 14913 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 14914 14915 if (!IsProfitable(IsNeg, true, VT)) 14916 return SDValue(); 14917 14918 SDValue Op0 = N->getOperand(0); 14919 SDValue Op1 = 14920 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 14921 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 14922 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 14923 14924 if (!IsNeg) 14925 return Res; 14926 14927 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 14928 } else if ((MulAmtAbs + 1).isPowerOf2()) { 14929 // (mul x, 2^N - 1) => (sub (shl x, N), x) 14930 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 14931 14932 if (!IsProfitable(IsNeg, false, VT)) 14933 return SDValue(); 14934 14935 SDValue Op0 = N->getOperand(0); 14936 SDValue Op1 = 14937 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 14938 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 14939 14940 if (!IsNeg) 14941 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 14942 else 14943 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 14944 14945 } else { 14946 return SDValue(); 14947 } 14948 } 14949 14950 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 14951 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 14952 if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64()) 14953 return false; 14954 14955 // If not a tail call then no need to proceed. 14956 if (!CI->isTailCall()) 14957 return false; 14958 14959 // If tail calls are disabled for the caller then we are done. 14960 const Function *Caller = CI->getParent()->getParent(); 14961 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 14962 if (Attr.getValueAsString() == "true") 14963 return false; 14964 14965 // If sibling calls have been disabled and tail-calls aren't guaranteed 14966 // there is no reason to duplicate. 14967 auto &TM = getTargetMachine(); 14968 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 14969 return false; 14970 14971 // Can't tail call a function called indirectly, or if it has variadic args. 14972 const Function *Callee = CI->getCalledFunction(); 14973 if (!Callee || Callee->isVarArg()) 14974 return false; 14975 14976 // Make sure the callee and caller calling conventions are eligible for tco. 14977 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 14978 CI->getCallingConv())) 14979 return false; 14980 14981 // If the function is local then we have a good chance at tail-calling it 14982 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 14983 } 14984 14985 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 14986 if (!Subtarget.hasVSX()) 14987 return false; 14988 if (Subtarget.hasP9Vector() && VT == MVT::f128) 14989 return true; 14990 return VT == MVT::f32 || VT == MVT::f64 || 14991 VT == MVT::v4f32 || VT == MVT::v2f64; 14992 } 14993 14994 bool PPCTargetLowering:: 14995 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 14996 const Value *Mask = AndI.getOperand(1); 14997 // If the mask is suitable for andi. or andis. we should sink the and. 14998 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 14999 // Can't handle constants wider than 64-bits. 15000 if (CI->getBitWidth() > 64) 15001 return false; 15002 int64_t ConstVal = CI->getZExtValue(); 15003 return isUInt<16>(ConstVal) || 15004 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15005 } 15006 15007 // For non-constant masks, we can always use the record-form and. 15008 return true; 15009 } 15010 15011 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15012 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15013 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15014 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15015 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 15016 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 15017 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 15018 assert(Subtarget.hasP9Altivec() && 15019 "Only combine this when P9 altivec supported!"); 15020 EVT VT = N->getValueType(0); 15021 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15022 return SDValue(); 15023 15024 SelectionDAG &DAG = DCI.DAG; 15025 SDLoc dl(N); 15026 if (N->getOperand(0).getOpcode() == ISD::SUB) { 15027 // Even for signed integers, if it's known to be positive (as signed 15028 // integer) due to zero-extended inputs. 15029 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 15030 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 15031 if ((SubOpcd0 == ISD::ZERO_EXTEND || 15032 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 15033 (SubOpcd1 == ISD::ZERO_EXTEND || 15034 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 15035 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15036 N->getOperand(0)->getOperand(0), 15037 N->getOperand(0)->getOperand(1), 15038 DAG.getTargetConstant(0, dl, MVT::i32)); 15039 } 15040 15041 // For type v4i32, it can be optimized with xvnegsp + vabsduw 15042 if (N->getOperand(0).getValueType() == MVT::v4i32 && 15043 N->getOperand(0).hasOneUse()) { 15044 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15045 N->getOperand(0)->getOperand(0), 15046 N->getOperand(0)->getOperand(1), 15047 DAG.getTargetConstant(1, dl, MVT::i32)); 15048 } 15049 } 15050 15051 return SDValue(); 15052 } 15053 15054 // For type v4i32/v8ii16/v16i8, transform 15055 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 15056 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 15057 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 15058 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 15059 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 15060 DAGCombinerInfo &DCI) const { 15061 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 15062 assert(Subtarget.hasP9Altivec() && 15063 "Only combine this when P9 altivec supported!"); 15064 15065 SelectionDAG &DAG = DCI.DAG; 15066 SDLoc dl(N); 15067 SDValue Cond = N->getOperand(0); 15068 SDValue TrueOpnd = N->getOperand(1); 15069 SDValue FalseOpnd = N->getOperand(2); 15070 EVT VT = N->getOperand(1).getValueType(); 15071 15072 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 15073 FalseOpnd.getOpcode() != ISD::SUB) 15074 return SDValue(); 15075 15076 // ABSD only available for type v4i32/v8i16/v16i8 15077 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15078 return SDValue(); 15079 15080 // At least to save one more dependent computation 15081 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 15082 return SDValue(); 15083 15084 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15085 15086 // Can only handle unsigned comparison here 15087 switch (CC) { 15088 default: 15089 return SDValue(); 15090 case ISD::SETUGT: 15091 case ISD::SETUGE: 15092 break; 15093 case ISD::SETULT: 15094 case ISD::SETULE: 15095 std::swap(TrueOpnd, FalseOpnd); 15096 break; 15097 } 15098 15099 SDValue CmpOpnd1 = Cond.getOperand(0); 15100 SDValue CmpOpnd2 = Cond.getOperand(1); 15101 15102 // SETCC CmpOpnd1 CmpOpnd2 cond 15103 // TrueOpnd = CmpOpnd1 - CmpOpnd2 15104 // FalseOpnd = CmpOpnd2 - CmpOpnd1 15105 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 15106 TrueOpnd.getOperand(1) == CmpOpnd2 && 15107 FalseOpnd.getOperand(0) == CmpOpnd2 && 15108 FalseOpnd.getOperand(1) == CmpOpnd1) { 15109 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 15110 CmpOpnd1, CmpOpnd2, 15111 DAG.getTargetConstant(0, dl, MVT::i32)); 15112 } 15113 15114 return SDValue(); 15115 } 15116