1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallSite.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/Constant.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/GlobalValue.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/IntrinsicsPowerPC.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/MC/MCContext.h" 76 #include "llvm/MC/MCExpr.h" 77 #include "llvm/MC/MCRegisterInfo.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 122 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 123 124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 125 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 126 127 STATISTIC(NumTailCalls, "Number of tail calls"); 128 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 129 130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 131 132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 133 134 // FIXME: Remove this once the bug has been fixed! 135 extern cl::opt<bool> ANDIGlueBug; 136 137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 138 const PPCSubtarget &STI) 139 : TargetLowering(TM), Subtarget(STI) { 140 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 141 // arguments are at least 4/8 bytes aligned. 142 bool isPPC64 = Subtarget.isPPC64(); 143 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 144 145 // Set up the register classes. 146 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 147 if (!useSoftFloat()) { 148 if (hasSPE()) { 149 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 150 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 151 } else { 152 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 153 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 154 } 155 } 156 157 // Match BITREVERSE to customized fast code sequence in the td file. 158 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 159 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 160 161 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 162 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 163 164 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 165 for (MVT VT : MVT::integer_valuetypes()) { 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 168 } 169 170 if (Subtarget.isISA3_0()) { 171 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 172 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 173 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 174 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 175 } else { 176 // No extending loads from f16 or HW conversions back and forth. 177 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 178 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 179 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 181 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 182 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 183 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 184 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 185 } 186 187 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 188 189 // PowerPC has pre-inc load and store's. 190 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 191 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 192 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 193 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 194 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 195 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 196 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 197 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 198 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 199 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 200 if (!Subtarget.hasSPE()) { 201 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 202 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 204 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 205 } 206 207 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 208 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 209 for (MVT VT : ScalarIntVTs) { 210 setOperationAction(ISD::ADDC, VT, Legal); 211 setOperationAction(ISD::ADDE, VT, Legal); 212 setOperationAction(ISD::SUBC, VT, Legal); 213 setOperationAction(ISD::SUBE, VT, Legal); 214 } 215 216 if (Subtarget.useCRBits()) { 217 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 218 219 if (isPPC64 || Subtarget.hasFPCVT()) { 220 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 221 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 222 isPPC64 ? MVT::i64 : MVT::i32); 223 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 224 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 225 isPPC64 ? MVT::i64 : MVT::i32); 226 } else { 227 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 228 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 229 } 230 231 // PowerPC does not support direct load/store of condition registers. 232 setOperationAction(ISD::LOAD, MVT::i1, Custom); 233 setOperationAction(ISD::STORE, MVT::i1, Custom); 234 235 // FIXME: Remove this once the ANDI glue bug is fixed: 236 if (ANDIGlueBug) 237 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 238 239 for (MVT VT : MVT::integer_valuetypes()) { 240 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 241 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 242 setTruncStoreAction(VT, MVT::i1, Expand); 243 } 244 245 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 246 } 247 248 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 249 // PPC (the libcall is not available). 250 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 251 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 252 253 // We do not currently implement these libm ops for PowerPC. 254 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 255 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 256 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 257 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 258 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 259 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 260 261 // PowerPC has no SREM/UREM instructions unless we are on P9 262 // On P9 we may use a hardware instruction to compute the remainder. 263 // The instructions are not legalized directly because in the cases where the 264 // result of both the remainder and the division is required it is more 265 // efficient to compute the remainder from the result of the division rather 266 // than use the remainder instruction. 267 if (Subtarget.isISA3_0()) { 268 setOperationAction(ISD::SREM, MVT::i32, Custom); 269 setOperationAction(ISD::UREM, MVT::i32, Custom); 270 setOperationAction(ISD::SREM, MVT::i64, Custom); 271 setOperationAction(ISD::UREM, MVT::i64, Custom); 272 } else { 273 setOperationAction(ISD::SREM, MVT::i32, Expand); 274 setOperationAction(ISD::UREM, MVT::i32, Expand); 275 setOperationAction(ISD::SREM, MVT::i64, Expand); 276 setOperationAction(ISD::UREM, MVT::i64, Expand); 277 } 278 279 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 280 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 281 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 282 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 283 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 284 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 285 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 286 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 287 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 288 289 // Handle constrained floating-point operations of scalar. 290 // TODO: Handle SPE specific operation. 291 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 292 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 293 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 294 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 295 296 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 297 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 298 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 299 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 300 301 // We don't support sin/cos/sqrt/fmod/pow 302 setOperationAction(ISD::FSIN , MVT::f64, Expand); 303 setOperationAction(ISD::FCOS , MVT::f64, Expand); 304 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 305 setOperationAction(ISD::FREM , MVT::f64, Expand); 306 setOperationAction(ISD::FPOW , MVT::f64, Expand); 307 setOperationAction(ISD::FSIN , MVT::f32, Expand); 308 setOperationAction(ISD::FCOS , MVT::f32, Expand); 309 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 310 setOperationAction(ISD::FREM , MVT::f32, Expand); 311 setOperationAction(ISD::FPOW , MVT::f32, Expand); 312 if (Subtarget.hasSPE()) { 313 setOperationAction(ISD::FMA , MVT::f64, Expand); 314 setOperationAction(ISD::FMA , MVT::f32, Expand); 315 } else { 316 setOperationAction(ISD::FMA , MVT::f64, Legal); 317 setOperationAction(ISD::FMA , MVT::f32, Legal); 318 } 319 320 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 321 322 // If we're enabling GP optimizations, use hardware square root 323 if (!Subtarget.hasFSQRT() && 324 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 325 Subtarget.hasFRE())) 326 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 327 328 if (!Subtarget.hasFSQRT() && 329 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 330 Subtarget.hasFRES())) 331 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 332 333 if (Subtarget.hasFCPSGN()) { 334 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 335 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 336 } else { 337 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 338 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 339 } 340 341 if (Subtarget.hasFPRND()) { 342 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 343 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 344 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 345 setOperationAction(ISD::FROUND, MVT::f64, Legal); 346 347 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 348 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 349 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 350 setOperationAction(ISD::FROUND, MVT::f32, Legal); 351 } 352 353 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 354 // to speed up scalar BSWAP64. 355 // CTPOP or CTTZ were introduced in P8/P9 respectively 356 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 357 if (Subtarget.hasP9Vector()) 358 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 359 else 360 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 361 if (Subtarget.isISA3_0()) { 362 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 363 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 364 } else { 365 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 366 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 367 } 368 369 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 370 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 371 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 372 } else { 373 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 374 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 375 } 376 377 // PowerPC does not have ROTR 378 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 379 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 380 381 if (!Subtarget.useCRBits()) { 382 // PowerPC does not have Select 383 setOperationAction(ISD::SELECT, MVT::i32, Expand); 384 setOperationAction(ISD::SELECT, MVT::i64, Expand); 385 setOperationAction(ISD::SELECT, MVT::f32, Expand); 386 setOperationAction(ISD::SELECT, MVT::f64, Expand); 387 } 388 389 // PowerPC wants to turn select_cc of FP into fsel when possible. 390 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 391 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 392 393 // PowerPC wants to optimize integer setcc a bit 394 if (!Subtarget.useCRBits()) 395 setOperationAction(ISD::SETCC, MVT::i32, Custom); 396 397 // PowerPC does not have BRCOND which requires SetCC 398 if (!Subtarget.useCRBits()) 399 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 400 401 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 402 403 if (Subtarget.hasSPE()) { 404 // SPE has built-in conversions 405 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 406 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 407 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 408 } else { 409 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 410 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 411 412 // PowerPC does not have [U|S]INT_TO_FP 413 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 414 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 415 } 416 417 if (Subtarget.hasDirectMove() && isPPC64) { 418 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 419 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 420 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 421 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 422 if (TM.Options.UnsafeFPMath) { 423 setOperationAction(ISD::LRINT, MVT::f64, Legal); 424 setOperationAction(ISD::LRINT, MVT::f32, Legal); 425 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 426 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 427 setOperationAction(ISD::LROUND, MVT::f64, Legal); 428 setOperationAction(ISD::LROUND, MVT::f32, Legal); 429 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 430 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 431 } 432 } else { 433 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 434 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 435 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 436 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 437 } 438 439 // We cannot sextinreg(i1). Expand to shifts. 440 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 441 442 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 443 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 444 // support continuation, user-level threading, and etc.. As a result, no 445 // other SjLj exception interfaces are implemented and please don't build 446 // your own exception handling based on them. 447 // LLVM/Clang supports zero-cost DWARF exception handling. 448 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 449 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 450 451 // We want to legalize GlobalAddress and ConstantPool nodes into the 452 // appropriate instructions to materialize the address. 453 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 454 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 455 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 456 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 457 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 458 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 459 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 460 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 461 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 462 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 463 464 // TRAP is legal. 465 setOperationAction(ISD::TRAP, MVT::Other, Legal); 466 467 // TRAMPOLINE is custom lowered. 468 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 469 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 470 471 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 472 setOperationAction(ISD::VASTART , MVT::Other, Custom); 473 474 if (Subtarget.is64BitELFABI()) { 475 // VAARG always uses double-word chunks, so promote anything smaller. 476 setOperationAction(ISD::VAARG, MVT::i1, Promote); 477 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 478 setOperationAction(ISD::VAARG, MVT::i8, Promote); 479 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 480 setOperationAction(ISD::VAARG, MVT::i16, Promote); 481 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 482 setOperationAction(ISD::VAARG, MVT::i32, Promote); 483 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 484 setOperationAction(ISD::VAARG, MVT::Other, Expand); 485 } else if (Subtarget.is32BitELFABI()) { 486 // VAARG is custom lowered with the 32-bit SVR4 ABI. 487 setOperationAction(ISD::VAARG, MVT::Other, Custom); 488 setOperationAction(ISD::VAARG, MVT::i64, Custom); 489 } else 490 setOperationAction(ISD::VAARG, MVT::Other, Expand); 491 492 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 493 if (Subtarget.is32BitELFABI()) 494 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 495 else 496 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 497 498 // Use the default implementation. 499 setOperationAction(ISD::VAEND , MVT::Other, Expand); 500 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 501 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 502 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 503 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 504 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 505 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 506 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 507 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 508 509 // We want to custom lower some of our intrinsics. 510 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 511 512 // To handle counter-based loop conditions. 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 514 515 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 516 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 517 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 518 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 519 520 // Comparisons that require checking two conditions. 521 if (Subtarget.hasSPE()) { 522 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 523 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 524 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 525 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 526 } 527 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 528 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 529 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 530 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 531 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 532 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 533 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 534 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 535 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 536 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 537 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 538 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 539 540 if (Subtarget.has64BitSupport()) { 541 // They also have instructions for converting between i64 and fp. 542 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 543 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 544 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 545 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 546 // This is just the low 32 bits of a (signed) fp->i64 conversion. 547 // We cannot do this with Promote because i64 is not a legal type. 548 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 549 550 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 551 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 552 } else { 553 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 554 if (Subtarget.hasSPE()) 555 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 556 else 557 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 558 } 559 560 // With the instructions enabled under FPCVT, we can do everything. 561 if (Subtarget.hasFPCVT()) { 562 if (Subtarget.has64BitSupport()) { 563 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 564 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 565 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 566 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 567 } 568 569 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 570 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 571 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 572 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 573 } 574 575 if (Subtarget.use64BitRegs()) { 576 // 64-bit PowerPC implementations can support i64 types directly 577 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 578 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 579 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 580 // 64-bit PowerPC wants to expand i128 shifts itself. 581 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 582 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 583 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 584 } else { 585 // 32-bit PowerPC wants to expand i64 shifts itself. 586 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 587 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 588 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 589 } 590 591 if (Subtarget.hasVSX()) { 592 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 593 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 594 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 595 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 596 } 597 598 if (Subtarget.hasAltivec()) { 599 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 600 setOperationAction(ISD::SADDSAT, VT, Legal); 601 setOperationAction(ISD::SSUBSAT, VT, Legal); 602 setOperationAction(ISD::UADDSAT, VT, Legal); 603 setOperationAction(ISD::USUBSAT, VT, Legal); 604 } 605 // First set operation action for all vector types to expand. Then we 606 // will selectively turn on ones that can be effectively codegen'd. 607 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 608 // add/sub are legal for all supported vector VT's. 609 setOperationAction(ISD::ADD, VT, Legal); 610 setOperationAction(ISD::SUB, VT, Legal); 611 612 // For v2i64, these are only valid with P8Vector. This is corrected after 613 // the loop. 614 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 615 setOperationAction(ISD::SMAX, VT, Legal); 616 setOperationAction(ISD::SMIN, VT, Legal); 617 setOperationAction(ISD::UMAX, VT, Legal); 618 setOperationAction(ISD::UMIN, VT, Legal); 619 } 620 else { 621 setOperationAction(ISD::SMAX, VT, Expand); 622 setOperationAction(ISD::SMIN, VT, Expand); 623 setOperationAction(ISD::UMAX, VT, Expand); 624 setOperationAction(ISD::UMIN, VT, Expand); 625 } 626 627 if (Subtarget.hasVSX()) { 628 setOperationAction(ISD::FMAXNUM, VT, Legal); 629 setOperationAction(ISD::FMINNUM, VT, Legal); 630 } 631 632 // Vector instructions introduced in P8 633 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 634 setOperationAction(ISD::CTPOP, VT, Legal); 635 setOperationAction(ISD::CTLZ, VT, Legal); 636 } 637 else { 638 setOperationAction(ISD::CTPOP, VT, Expand); 639 setOperationAction(ISD::CTLZ, VT, Expand); 640 } 641 642 // Vector instructions introduced in P9 643 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 644 setOperationAction(ISD::CTTZ, VT, Legal); 645 else 646 setOperationAction(ISD::CTTZ, VT, Expand); 647 648 // We promote all shuffles to v16i8. 649 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 650 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 651 652 // We promote all non-typed operations to v4i32. 653 setOperationAction(ISD::AND , VT, Promote); 654 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 655 setOperationAction(ISD::OR , VT, Promote); 656 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 657 setOperationAction(ISD::XOR , VT, Promote); 658 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 659 setOperationAction(ISD::LOAD , VT, Promote); 660 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 661 setOperationAction(ISD::SELECT, VT, Promote); 662 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 663 setOperationAction(ISD::VSELECT, VT, Legal); 664 setOperationAction(ISD::SELECT_CC, VT, Promote); 665 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 666 setOperationAction(ISD::STORE, VT, Promote); 667 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 668 669 // No other operations are legal. 670 setOperationAction(ISD::MUL , VT, Expand); 671 setOperationAction(ISD::SDIV, VT, Expand); 672 setOperationAction(ISD::SREM, VT, Expand); 673 setOperationAction(ISD::UDIV, VT, Expand); 674 setOperationAction(ISD::UREM, VT, Expand); 675 setOperationAction(ISD::FDIV, VT, Expand); 676 setOperationAction(ISD::FREM, VT, Expand); 677 setOperationAction(ISD::FNEG, VT, Expand); 678 setOperationAction(ISD::FSQRT, VT, Expand); 679 setOperationAction(ISD::FLOG, VT, Expand); 680 setOperationAction(ISD::FLOG10, VT, Expand); 681 setOperationAction(ISD::FLOG2, VT, Expand); 682 setOperationAction(ISD::FEXP, VT, Expand); 683 setOperationAction(ISD::FEXP2, VT, Expand); 684 setOperationAction(ISD::FSIN, VT, Expand); 685 setOperationAction(ISD::FCOS, VT, Expand); 686 setOperationAction(ISD::FABS, VT, Expand); 687 setOperationAction(ISD::FFLOOR, VT, Expand); 688 setOperationAction(ISD::FCEIL, VT, Expand); 689 setOperationAction(ISD::FTRUNC, VT, Expand); 690 setOperationAction(ISD::FRINT, VT, Expand); 691 setOperationAction(ISD::FNEARBYINT, VT, Expand); 692 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 693 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 694 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 695 setOperationAction(ISD::MULHU, VT, Expand); 696 setOperationAction(ISD::MULHS, VT, Expand); 697 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 698 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 699 setOperationAction(ISD::UDIVREM, VT, Expand); 700 setOperationAction(ISD::SDIVREM, VT, Expand); 701 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 702 setOperationAction(ISD::FPOW, VT, Expand); 703 setOperationAction(ISD::BSWAP, VT, Expand); 704 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 705 setOperationAction(ISD::ROTL, VT, Expand); 706 setOperationAction(ISD::ROTR, VT, Expand); 707 708 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 709 setTruncStoreAction(VT, InnerVT, Expand); 710 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 711 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 712 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 713 } 714 } 715 if (!Subtarget.hasP8Vector()) { 716 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 717 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 718 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 719 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 720 } 721 722 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 723 setOperationAction(ISD::ABS, VT, Custom); 724 725 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 726 // with merges, splats, etc. 727 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 728 729 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 730 // are cheap, so handle them before they get expanded to scalar. 731 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 732 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 733 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 734 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 735 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 736 737 setOperationAction(ISD::AND , MVT::v4i32, Legal); 738 setOperationAction(ISD::OR , MVT::v4i32, Legal); 739 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 740 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 741 setOperationAction(ISD::SELECT, MVT::v4i32, 742 Subtarget.useCRBits() ? Legal : Expand); 743 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 744 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 745 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 746 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 747 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 748 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 749 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 750 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 751 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 752 753 // Without hasP8Altivec set, v2i64 SMAX isn't available. 754 // But ABS custom lowering requires SMAX support. 755 if (!Subtarget.hasP8Altivec()) 756 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 757 758 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 759 if (Subtarget.hasAltivec()) 760 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 761 setOperationAction(ISD::ROTL, VT, Legal); 762 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 763 if (Subtarget.hasP8Altivec()) 764 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 765 766 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 767 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 768 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 769 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 770 771 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 772 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 773 774 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 775 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 776 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 777 } 778 779 if (Subtarget.hasP8Altivec()) 780 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 781 else 782 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 783 784 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 785 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 786 787 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 788 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 789 790 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 791 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 792 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 793 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 794 795 // Altivec does not contain unordered floating-point compare instructions 796 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 797 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 798 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 799 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 800 801 if (Subtarget.hasVSX()) { 802 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 803 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 804 if (Subtarget.hasP8Vector()) { 805 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 806 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 807 } 808 if (Subtarget.hasDirectMove() && isPPC64) { 809 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 810 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 811 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 812 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 813 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 814 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 815 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 816 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 817 } 818 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 819 820 // The nearbyint variants are not allowed to raise the inexact exception 821 // so we can only code-gen them with unsafe math. 822 if (TM.Options.UnsafeFPMath) { 823 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 824 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 825 } 826 827 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 828 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 829 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 830 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 831 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 832 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 833 setOperationAction(ISD::FROUND, MVT::f64, Legal); 834 setOperationAction(ISD::FRINT, MVT::f64, Legal); 835 836 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 837 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 838 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 839 setOperationAction(ISD::FROUND, MVT::f32, Legal); 840 setOperationAction(ISD::FRINT, MVT::f32, Legal); 841 842 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 843 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 844 845 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 846 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 847 848 // Share the Altivec comparison restrictions. 849 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 850 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 851 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 852 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 853 854 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 855 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 856 857 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 858 859 if (Subtarget.hasP8Vector()) 860 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 861 862 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 863 864 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 865 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 866 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 867 868 if (Subtarget.hasP8Altivec()) { 869 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 870 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 871 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 872 873 // 128 bit shifts can be accomplished via 3 instructions for SHL and 874 // SRL, but not for SRA because of the instructions available: 875 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 876 // doing 877 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 878 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 879 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 880 881 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 882 } 883 else { 884 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 885 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 886 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 887 888 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 889 890 // VSX v2i64 only supports non-arithmetic operations. 891 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 892 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 893 } 894 895 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 896 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 897 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 898 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 899 900 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 901 902 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 903 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 904 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 905 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 906 907 // Custom handling for partial vectors of integers converted to 908 // floating point. We already have optimal handling for v2i32 through 909 // the DAG combine, so those aren't necessary. 910 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 911 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 912 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 913 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 914 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 915 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 916 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 917 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 918 919 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 920 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 921 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 922 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 923 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 924 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 925 926 if (Subtarget.hasDirectMove()) 927 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 928 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 929 930 // Handle constrained floating-point operations of vector. 931 // The predictor is `hasVSX` because altivec instruction has 932 // no exception but VSX vector instruction has. 933 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 934 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 935 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 936 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 937 938 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 939 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 940 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 941 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 942 943 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 944 } 945 946 if (Subtarget.hasP8Altivec()) { 947 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 948 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 949 } 950 951 if (Subtarget.hasP9Vector()) { 952 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 953 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 954 955 // 128 bit shifts can be accomplished via 3 instructions for SHL and 956 // SRL, but not for SRA because of the instructions available: 957 // VS{RL} and VS{RL}O. 958 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 959 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 960 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 961 962 if (EnableQuadPrecision) { 963 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 964 setOperationAction(ISD::FADD, MVT::f128, Legal); 965 setOperationAction(ISD::FSUB, MVT::f128, Legal); 966 setOperationAction(ISD::FDIV, MVT::f128, Legal); 967 setOperationAction(ISD::FMUL, MVT::f128, Legal); 968 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 969 // No extending loads to f128 on PPC. 970 for (MVT FPT : MVT::fp_valuetypes()) 971 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 972 setOperationAction(ISD::FMA, MVT::f128, Legal); 973 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 974 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 975 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 976 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 977 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 978 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 979 980 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 981 setOperationAction(ISD::FRINT, MVT::f128, Legal); 982 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 983 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 984 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 985 setOperationAction(ISD::FROUND, MVT::f128, Legal); 986 987 setOperationAction(ISD::SELECT, MVT::f128, Expand); 988 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 989 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 990 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 991 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 992 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 993 // No implementation for these ops for PowerPC. 994 setOperationAction(ISD::FSIN , MVT::f128, Expand); 995 setOperationAction(ISD::FCOS , MVT::f128, Expand); 996 setOperationAction(ISD::FPOW, MVT::f128, Expand); 997 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 998 setOperationAction(ISD::FREM, MVT::f128, Expand); 999 1000 // Handle constrained floating-point operations of fp128 1001 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1002 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1003 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1004 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1005 } 1006 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1007 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1008 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1009 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1010 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1011 } 1012 1013 if (Subtarget.hasP9Altivec()) { 1014 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1015 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1016 1017 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1018 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1019 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1020 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1021 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1022 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1023 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1024 } 1025 } 1026 1027 if (Subtarget.hasQPX()) { 1028 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 1029 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 1030 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 1031 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 1032 1033 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 1034 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 1035 1036 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 1037 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 1038 1039 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 1040 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 1041 1042 if (!Subtarget.useCRBits()) 1043 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 1044 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 1045 1046 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 1047 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 1048 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 1049 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 1050 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 1051 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 1052 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 1053 1054 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 1055 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 1056 1057 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1058 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1059 1060 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1061 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1062 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1063 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1064 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1065 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1066 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1067 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1068 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1069 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1070 1071 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1072 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1073 1074 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1075 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1076 1077 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1078 1079 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1080 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1081 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1082 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1083 1084 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1085 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1086 1087 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1088 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1089 1090 if (!Subtarget.useCRBits()) 1091 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1092 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1093 1094 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1095 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1096 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1097 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1098 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1099 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1100 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1101 1102 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1103 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1104 1105 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1106 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1107 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1108 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1109 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1110 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1111 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1112 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1113 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1114 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1115 1116 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1117 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1118 1119 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1120 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1121 1122 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1123 1124 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1125 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1126 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1127 1128 if (!Subtarget.useCRBits()) 1129 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1130 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1131 1132 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1133 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1134 1135 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1136 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1137 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1138 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1139 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1140 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1141 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1142 1143 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1144 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1145 1146 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1147 1148 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1149 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1150 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1151 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1152 1153 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1154 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1155 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1156 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1157 1158 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1159 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1160 1161 // These need to set FE_INEXACT, and so cannot be vectorized here. 1162 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1163 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1164 1165 if (TM.Options.UnsafeFPMath) { 1166 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1167 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1168 1169 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1170 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1171 } else { 1172 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1173 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1174 1175 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1176 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1177 } 1178 1179 // TODO: Handle constrained floating-point operations of v4f64 1180 } 1181 1182 if (Subtarget.has64BitSupport()) 1183 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1184 1185 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1186 1187 if (!isPPC64) { 1188 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1189 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1190 } 1191 1192 setBooleanContents(ZeroOrOneBooleanContent); 1193 1194 if (Subtarget.hasAltivec()) { 1195 // Altivec instructions set fields to all zeros or all ones. 1196 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1197 } 1198 1199 if (!isPPC64) { 1200 // These libcalls are not available in 32-bit. 1201 setLibcallName(RTLIB::SHL_I128, nullptr); 1202 setLibcallName(RTLIB::SRL_I128, nullptr); 1203 setLibcallName(RTLIB::SRA_I128, nullptr); 1204 } 1205 1206 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1207 1208 // We have target-specific dag combine patterns for the following nodes: 1209 setTargetDAGCombine(ISD::ADD); 1210 setTargetDAGCombine(ISD::SHL); 1211 setTargetDAGCombine(ISD::SRA); 1212 setTargetDAGCombine(ISD::SRL); 1213 setTargetDAGCombine(ISD::MUL); 1214 setTargetDAGCombine(ISD::SINT_TO_FP); 1215 setTargetDAGCombine(ISD::BUILD_VECTOR); 1216 if (Subtarget.hasFPCVT()) 1217 setTargetDAGCombine(ISD::UINT_TO_FP); 1218 setTargetDAGCombine(ISD::LOAD); 1219 setTargetDAGCombine(ISD::STORE); 1220 setTargetDAGCombine(ISD::BR_CC); 1221 if (Subtarget.useCRBits()) 1222 setTargetDAGCombine(ISD::BRCOND); 1223 setTargetDAGCombine(ISD::BSWAP); 1224 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1225 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1226 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1227 1228 setTargetDAGCombine(ISD::SIGN_EXTEND); 1229 setTargetDAGCombine(ISD::ZERO_EXTEND); 1230 setTargetDAGCombine(ISD::ANY_EXTEND); 1231 1232 setTargetDAGCombine(ISD::TRUNCATE); 1233 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1234 1235 1236 if (Subtarget.useCRBits()) { 1237 setTargetDAGCombine(ISD::TRUNCATE); 1238 setTargetDAGCombine(ISD::SETCC); 1239 setTargetDAGCombine(ISD::SELECT_CC); 1240 } 1241 1242 // Use reciprocal estimates. 1243 if (TM.Options.UnsafeFPMath) { 1244 setTargetDAGCombine(ISD::FDIV); 1245 setTargetDAGCombine(ISD::FSQRT); 1246 } 1247 1248 if (Subtarget.hasP9Altivec()) { 1249 setTargetDAGCombine(ISD::ABS); 1250 setTargetDAGCombine(ISD::VSELECT); 1251 } 1252 1253 if (EnableQuadPrecision) { 1254 setLibcallName(RTLIB::LOG_F128, "logf128"); 1255 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1256 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1257 setLibcallName(RTLIB::EXP_F128, "expf128"); 1258 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1259 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1260 setLibcallName(RTLIB::COS_F128, "cosf128"); 1261 setLibcallName(RTLIB::POW_F128, "powf128"); 1262 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1263 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1264 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1265 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1266 } 1267 1268 // With 32 condition bits, we don't need to sink (and duplicate) compares 1269 // aggressively in CodeGenPrep. 1270 if (Subtarget.useCRBits()) { 1271 setHasMultipleConditionRegisters(); 1272 setJumpIsExpensive(); 1273 } 1274 1275 setMinFunctionAlignment(Align(4)); 1276 1277 switch (Subtarget.getCPUDirective()) { 1278 default: break; 1279 case PPC::DIR_970: 1280 case PPC::DIR_A2: 1281 case PPC::DIR_E500: 1282 case PPC::DIR_E500mc: 1283 case PPC::DIR_E5500: 1284 case PPC::DIR_PWR4: 1285 case PPC::DIR_PWR5: 1286 case PPC::DIR_PWR5X: 1287 case PPC::DIR_PWR6: 1288 case PPC::DIR_PWR6X: 1289 case PPC::DIR_PWR7: 1290 case PPC::DIR_PWR8: 1291 case PPC::DIR_PWR9: 1292 case PPC::DIR_PWR_FUTURE: 1293 setPrefLoopAlignment(Align(16)); 1294 setPrefFunctionAlignment(Align(16)); 1295 break; 1296 } 1297 1298 if (Subtarget.enableMachineScheduler()) 1299 setSchedulingPreference(Sched::Source); 1300 else 1301 setSchedulingPreference(Sched::Hybrid); 1302 1303 computeRegisterProperties(STI.getRegisterInfo()); 1304 1305 // The Freescale cores do better with aggressive inlining of memcpy and 1306 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1307 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1308 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1309 MaxStoresPerMemset = 32; 1310 MaxStoresPerMemsetOptSize = 16; 1311 MaxStoresPerMemcpy = 32; 1312 MaxStoresPerMemcpyOptSize = 8; 1313 MaxStoresPerMemmove = 32; 1314 MaxStoresPerMemmoveOptSize = 8; 1315 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1316 // The A2 also benefits from (very) aggressive inlining of memcpy and 1317 // friends. The overhead of a the function call, even when warm, can be 1318 // over one hundred cycles. 1319 MaxStoresPerMemset = 128; 1320 MaxStoresPerMemcpy = 128; 1321 MaxStoresPerMemmove = 128; 1322 MaxLoadsPerMemcmp = 128; 1323 } else { 1324 MaxLoadsPerMemcmp = 8; 1325 MaxLoadsPerMemcmpOptSize = 4; 1326 } 1327 } 1328 1329 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1330 /// the desired ByVal argument alignment. 1331 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1332 unsigned MaxMaxAlign) { 1333 if (MaxAlign == MaxMaxAlign) 1334 return; 1335 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1336 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1337 MaxAlign = 32; 1338 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1339 MaxAlign = 16; 1340 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1341 unsigned EltAlign = 0; 1342 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1343 if (EltAlign > MaxAlign) 1344 MaxAlign = EltAlign; 1345 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1346 for (auto *EltTy : STy->elements()) { 1347 unsigned EltAlign = 0; 1348 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1349 if (EltAlign > MaxAlign) 1350 MaxAlign = EltAlign; 1351 if (MaxAlign == MaxMaxAlign) 1352 break; 1353 } 1354 } 1355 } 1356 1357 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1358 /// function arguments in the caller parameter area. 1359 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1360 const DataLayout &DL) const { 1361 // 16byte and wider vectors are passed on 16byte boundary. 1362 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1363 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1364 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1365 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1366 return Align; 1367 } 1368 1369 bool PPCTargetLowering::useSoftFloat() const { 1370 return Subtarget.useSoftFloat(); 1371 } 1372 1373 bool PPCTargetLowering::hasSPE() const { 1374 return Subtarget.hasSPE(); 1375 } 1376 1377 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1378 return VT.isScalarInteger(); 1379 } 1380 1381 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1382 switch ((PPCISD::NodeType)Opcode) { 1383 case PPCISD::FIRST_NUMBER: break; 1384 case PPCISD::FSEL: return "PPCISD::FSEL"; 1385 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1386 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1387 case PPCISD::FCFID: return "PPCISD::FCFID"; 1388 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1389 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1390 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1391 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1392 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1393 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1394 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1395 case PPCISD::FP_TO_UINT_IN_VSR: 1396 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1397 case PPCISD::FP_TO_SINT_IN_VSR: 1398 return "PPCISD::FP_TO_SINT_IN_VSR"; 1399 case PPCISD::FRE: return "PPCISD::FRE"; 1400 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1401 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1402 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1403 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1404 case PPCISD::VPERM: return "PPCISD::VPERM"; 1405 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1406 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1407 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1408 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1409 case PPCISD::CMPB: return "PPCISD::CMPB"; 1410 case PPCISD::Hi: return "PPCISD::Hi"; 1411 case PPCISD::Lo: return "PPCISD::Lo"; 1412 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1413 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1414 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1415 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1416 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1417 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1418 case PPCISD::SRL: return "PPCISD::SRL"; 1419 case PPCISD::SRA: return "PPCISD::SRA"; 1420 case PPCISD::SHL: return "PPCISD::SHL"; 1421 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1422 case PPCISD::CALL: return "PPCISD::CALL"; 1423 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1424 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1425 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1426 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1427 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1428 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1429 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1430 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1431 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1432 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1433 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1434 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1435 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1436 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1437 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1438 case PPCISD::ANDI_rec_1_EQ_BIT: 1439 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1440 case PPCISD::ANDI_rec_1_GT_BIT: 1441 return "PPCISD::ANDI_rec_1_GT_BIT"; 1442 case PPCISD::VCMP: return "PPCISD::VCMP"; 1443 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1444 case PPCISD::LBRX: return "PPCISD::LBRX"; 1445 case PPCISD::STBRX: return "PPCISD::STBRX"; 1446 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1447 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1448 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1449 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1450 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1451 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1452 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1453 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1454 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1455 case PPCISD::ST_VSR_SCAL_INT: 1456 return "PPCISD::ST_VSR_SCAL_INT"; 1457 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1458 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1459 case PPCISD::BDZ: return "PPCISD::BDZ"; 1460 case PPCISD::MFFS: return "PPCISD::MFFS"; 1461 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1462 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1463 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1464 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1465 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1466 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1467 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1468 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1469 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1470 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1471 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1472 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1473 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1474 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1475 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1476 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1477 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1478 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1479 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1480 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1481 case PPCISD::SC: return "PPCISD::SC"; 1482 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1483 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1484 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1485 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1486 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1487 case PPCISD::VABSD: return "PPCISD::VABSD"; 1488 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1489 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1490 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1491 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1492 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1493 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1494 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1495 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1496 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1497 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1498 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1499 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1500 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1501 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1502 } 1503 return nullptr; 1504 } 1505 1506 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1507 EVT VT) const { 1508 if (!VT.isVector()) 1509 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1510 1511 if (Subtarget.hasQPX()) 1512 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1513 1514 return VT.changeVectorElementTypeToInteger(); 1515 } 1516 1517 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1518 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1519 return true; 1520 } 1521 1522 //===----------------------------------------------------------------------===// 1523 // Node matching predicates, for use by the tblgen matching code. 1524 //===----------------------------------------------------------------------===// 1525 1526 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1527 static bool isFloatingPointZero(SDValue Op) { 1528 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1529 return CFP->getValueAPF().isZero(); 1530 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1531 // Maybe this has already been legalized into the constant pool? 1532 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1533 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1534 return CFP->getValueAPF().isZero(); 1535 } 1536 return false; 1537 } 1538 1539 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1540 /// true if Op is undef or if it matches the specified value. 1541 static bool isConstantOrUndef(int Op, int Val) { 1542 return Op < 0 || Op == Val; 1543 } 1544 1545 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1546 /// VPKUHUM instruction. 1547 /// The ShuffleKind distinguishes between big-endian operations with 1548 /// two different inputs (0), either-endian operations with two identical 1549 /// inputs (1), and little-endian operations with two different inputs (2). 1550 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1551 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1552 SelectionDAG &DAG) { 1553 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1554 if (ShuffleKind == 0) { 1555 if (IsLE) 1556 return false; 1557 for (unsigned i = 0; i != 16; ++i) 1558 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1559 return false; 1560 } else if (ShuffleKind == 2) { 1561 if (!IsLE) 1562 return false; 1563 for (unsigned i = 0; i != 16; ++i) 1564 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1565 return false; 1566 } else if (ShuffleKind == 1) { 1567 unsigned j = IsLE ? 0 : 1; 1568 for (unsigned i = 0; i != 8; ++i) 1569 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1570 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1571 return false; 1572 } 1573 return true; 1574 } 1575 1576 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1577 /// VPKUWUM instruction. 1578 /// The ShuffleKind distinguishes between big-endian operations with 1579 /// two different inputs (0), either-endian operations with two identical 1580 /// inputs (1), and little-endian operations with two different inputs (2). 1581 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1582 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1583 SelectionDAG &DAG) { 1584 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1585 if (ShuffleKind == 0) { 1586 if (IsLE) 1587 return false; 1588 for (unsigned i = 0; i != 16; i += 2) 1589 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1590 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1591 return false; 1592 } else if (ShuffleKind == 2) { 1593 if (!IsLE) 1594 return false; 1595 for (unsigned i = 0; i != 16; i += 2) 1596 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1597 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1598 return false; 1599 } else if (ShuffleKind == 1) { 1600 unsigned j = IsLE ? 0 : 2; 1601 for (unsigned i = 0; i != 8; i += 2) 1602 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1603 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1604 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1605 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1606 return false; 1607 } 1608 return true; 1609 } 1610 1611 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1612 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1613 /// current subtarget. 1614 /// 1615 /// The ShuffleKind distinguishes between big-endian operations with 1616 /// two different inputs (0), either-endian operations with two identical 1617 /// inputs (1), and little-endian operations with two different inputs (2). 1618 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1619 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1620 SelectionDAG &DAG) { 1621 const PPCSubtarget& Subtarget = 1622 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1623 if (!Subtarget.hasP8Vector()) 1624 return false; 1625 1626 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1627 if (ShuffleKind == 0) { 1628 if (IsLE) 1629 return false; 1630 for (unsigned i = 0; i != 16; i += 4) 1631 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1632 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1633 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1634 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1635 return false; 1636 } else if (ShuffleKind == 2) { 1637 if (!IsLE) 1638 return false; 1639 for (unsigned i = 0; i != 16; i += 4) 1640 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1641 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1642 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1643 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1644 return false; 1645 } else if (ShuffleKind == 1) { 1646 unsigned j = IsLE ? 0 : 4; 1647 for (unsigned i = 0; i != 8; i += 4) 1648 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1649 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1650 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1651 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1652 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1653 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1654 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1655 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1656 return false; 1657 } 1658 return true; 1659 } 1660 1661 /// isVMerge - Common function, used to match vmrg* shuffles. 1662 /// 1663 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1664 unsigned LHSStart, unsigned RHSStart) { 1665 if (N->getValueType(0) != MVT::v16i8) 1666 return false; 1667 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1668 "Unsupported merge size!"); 1669 1670 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1671 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1672 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1673 LHSStart+j+i*UnitSize) || 1674 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1675 RHSStart+j+i*UnitSize)) 1676 return false; 1677 } 1678 return true; 1679 } 1680 1681 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1682 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1683 /// The ShuffleKind distinguishes between big-endian merges with two 1684 /// different inputs (0), either-endian merges with two identical inputs (1), 1685 /// and little-endian merges with two different inputs (2). For the latter, 1686 /// the input operands are swapped (see PPCInstrAltivec.td). 1687 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1688 unsigned ShuffleKind, SelectionDAG &DAG) { 1689 if (DAG.getDataLayout().isLittleEndian()) { 1690 if (ShuffleKind == 1) // unary 1691 return isVMerge(N, UnitSize, 0, 0); 1692 else if (ShuffleKind == 2) // swapped 1693 return isVMerge(N, UnitSize, 0, 16); 1694 else 1695 return false; 1696 } else { 1697 if (ShuffleKind == 1) // unary 1698 return isVMerge(N, UnitSize, 8, 8); 1699 else if (ShuffleKind == 0) // normal 1700 return isVMerge(N, UnitSize, 8, 24); 1701 else 1702 return false; 1703 } 1704 } 1705 1706 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1707 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1708 /// The ShuffleKind distinguishes between big-endian merges with two 1709 /// different inputs (0), either-endian merges with two identical inputs (1), 1710 /// and little-endian merges with two different inputs (2). For the latter, 1711 /// the input operands are swapped (see PPCInstrAltivec.td). 1712 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1713 unsigned ShuffleKind, SelectionDAG &DAG) { 1714 if (DAG.getDataLayout().isLittleEndian()) { 1715 if (ShuffleKind == 1) // unary 1716 return isVMerge(N, UnitSize, 8, 8); 1717 else if (ShuffleKind == 2) // swapped 1718 return isVMerge(N, UnitSize, 8, 24); 1719 else 1720 return false; 1721 } else { 1722 if (ShuffleKind == 1) // unary 1723 return isVMerge(N, UnitSize, 0, 0); 1724 else if (ShuffleKind == 0) // normal 1725 return isVMerge(N, UnitSize, 0, 16); 1726 else 1727 return false; 1728 } 1729 } 1730 1731 /** 1732 * Common function used to match vmrgew and vmrgow shuffles 1733 * 1734 * The indexOffset determines whether to look for even or odd words in 1735 * the shuffle mask. This is based on the of the endianness of the target 1736 * machine. 1737 * - Little Endian: 1738 * - Use offset of 0 to check for odd elements 1739 * - Use offset of 4 to check for even elements 1740 * - Big Endian: 1741 * - Use offset of 0 to check for even elements 1742 * - Use offset of 4 to check for odd elements 1743 * A detailed description of the vector element ordering for little endian and 1744 * big endian can be found at 1745 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1746 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1747 * compiler differences mean to you 1748 * 1749 * The mask to the shuffle vector instruction specifies the indices of the 1750 * elements from the two input vectors to place in the result. The elements are 1751 * numbered in array-access order, starting with the first vector. These vectors 1752 * are always of type v16i8, thus each vector will contain 16 elements of size 1753 * 8. More info on the shuffle vector can be found in the 1754 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1755 * Language Reference. 1756 * 1757 * The RHSStartValue indicates whether the same input vectors are used (unary) 1758 * or two different input vectors are used, based on the following: 1759 * - If the instruction uses the same vector for both inputs, the range of the 1760 * indices will be 0 to 15. In this case, the RHSStart value passed should 1761 * be 0. 1762 * - If the instruction has two different vectors then the range of the 1763 * indices will be 0 to 31. In this case, the RHSStart value passed should 1764 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1765 * to 31 specify elements in the second vector). 1766 * 1767 * \param[in] N The shuffle vector SD Node to analyze 1768 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1769 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1770 * vector to the shuffle_vector instruction 1771 * \return true iff this shuffle vector represents an even or odd word merge 1772 */ 1773 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1774 unsigned RHSStartValue) { 1775 if (N->getValueType(0) != MVT::v16i8) 1776 return false; 1777 1778 for (unsigned i = 0; i < 2; ++i) 1779 for (unsigned j = 0; j < 4; ++j) 1780 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1781 i*RHSStartValue+j+IndexOffset) || 1782 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1783 i*RHSStartValue+j+IndexOffset+8)) 1784 return false; 1785 return true; 1786 } 1787 1788 /** 1789 * Determine if the specified shuffle mask is suitable for the vmrgew or 1790 * vmrgow instructions. 1791 * 1792 * \param[in] N The shuffle vector SD Node to analyze 1793 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1794 * \param[in] ShuffleKind Identify the type of merge: 1795 * - 0 = big-endian merge with two different inputs; 1796 * - 1 = either-endian merge with two identical inputs; 1797 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1798 * little-endian merges). 1799 * \param[in] DAG The current SelectionDAG 1800 * \return true iff this shuffle mask 1801 */ 1802 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1803 unsigned ShuffleKind, SelectionDAG &DAG) { 1804 if (DAG.getDataLayout().isLittleEndian()) { 1805 unsigned indexOffset = CheckEven ? 4 : 0; 1806 if (ShuffleKind == 1) // Unary 1807 return isVMerge(N, indexOffset, 0); 1808 else if (ShuffleKind == 2) // swapped 1809 return isVMerge(N, indexOffset, 16); 1810 else 1811 return false; 1812 } 1813 else { 1814 unsigned indexOffset = CheckEven ? 0 : 4; 1815 if (ShuffleKind == 1) // Unary 1816 return isVMerge(N, indexOffset, 0); 1817 else if (ShuffleKind == 0) // Normal 1818 return isVMerge(N, indexOffset, 16); 1819 else 1820 return false; 1821 } 1822 return false; 1823 } 1824 1825 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1826 /// amount, otherwise return -1. 1827 /// The ShuffleKind distinguishes between big-endian operations with two 1828 /// different inputs (0), either-endian operations with two identical inputs 1829 /// (1), and little-endian operations with two different inputs (2). For the 1830 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1831 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1832 SelectionDAG &DAG) { 1833 if (N->getValueType(0) != MVT::v16i8) 1834 return -1; 1835 1836 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1837 1838 // Find the first non-undef value in the shuffle mask. 1839 unsigned i; 1840 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1841 /*search*/; 1842 1843 if (i == 16) return -1; // all undef. 1844 1845 // Otherwise, check to see if the rest of the elements are consecutively 1846 // numbered from this value. 1847 unsigned ShiftAmt = SVOp->getMaskElt(i); 1848 if (ShiftAmt < i) return -1; 1849 1850 ShiftAmt -= i; 1851 bool isLE = DAG.getDataLayout().isLittleEndian(); 1852 1853 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1854 // Check the rest of the elements to see if they are consecutive. 1855 for (++i; i != 16; ++i) 1856 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1857 return -1; 1858 } else if (ShuffleKind == 1) { 1859 // Check the rest of the elements to see if they are consecutive. 1860 for (++i; i != 16; ++i) 1861 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1862 return -1; 1863 } else 1864 return -1; 1865 1866 if (isLE) 1867 ShiftAmt = 16 - ShiftAmt; 1868 1869 return ShiftAmt; 1870 } 1871 1872 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1873 /// specifies a splat of a single element that is suitable for input to 1874 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1875 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1876 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1877 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1878 1879 // The consecutive indices need to specify an element, not part of two 1880 // different elements. So abandon ship early if this isn't the case. 1881 if (N->getMaskElt(0) % EltSize != 0) 1882 return false; 1883 1884 // This is a splat operation if each element of the permute is the same, and 1885 // if the value doesn't reference the second vector. 1886 unsigned ElementBase = N->getMaskElt(0); 1887 1888 // FIXME: Handle UNDEF elements too! 1889 if (ElementBase >= 16) 1890 return false; 1891 1892 // Check that the indices are consecutive, in the case of a multi-byte element 1893 // splatted with a v16i8 mask. 1894 for (unsigned i = 1; i != EltSize; ++i) 1895 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1896 return false; 1897 1898 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1899 if (N->getMaskElt(i) < 0) continue; 1900 for (unsigned j = 0; j != EltSize; ++j) 1901 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1902 return false; 1903 } 1904 return true; 1905 } 1906 1907 /// Check that the mask is shuffling N byte elements. Within each N byte 1908 /// element of the mask, the indices could be either in increasing or 1909 /// decreasing order as long as they are consecutive. 1910 /// \param[in] N the shuffle vector SD Node to analyze 1911 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1912 /// Word/DoubleWord/QuadWord). 1913 /// \param[in] StepLen the delta indices number among the N byte element, if 1914 /// the mask is in increasing/decreasing order then it is 1/-1. 1915 /// \return true iff the mask is shuffling N byte elements. 1916 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1917 int StepLen) { 1918 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1919 "Unexpected element width."); 1920 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1921 1922 unsigned NumOfElem = 16 / Width; 1923 unsigned MaskVal[16]; // Width is never greater than 16 1924 for (unsigned i = 0; i < NumOfElem; ++i) { 1925 MaskVal[0] = N->getMaskElt(i * Width); 1926 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1927 return false; 1928 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1929 return false; 1930 } 1931 1932 for (unsigned int j = 1; j < Width; ++j) { 1933 MaskVal[j] = N->getMaskElt(i * Width + j); 1934 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1935 return false; 1936 } 1937 } 1938 } 1939 1940 return true; 1941 } 1942 1943 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1944 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1945 if (!isNByteElemShuffleMask(N, 4, 1)) 1946 return false; 1947 1948 // Now we look at mask elements 0,4,8,12 1949 unsigned M0 = N->getMaskElt(0) / 4; 1950 unsigned M1 = N->getMaskElt(4) / 4; 1951 unsigned M2 = N->getMaskElt(8) / 4; 1952 unsigned M3 = N->getMaskElt(12) / 4; 1953 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1954 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1955 1956 // Below, let H and L be arbitrary elements of the shuffle mask 1957 // where H is in the range [4,7] and L is in the range [0,3]. 1958 // H, 1, 2, 3 or L, 5, 6, 7 1959 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1960 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1961 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1962 InsertAtByte = IsLE ? 12 : 0; 1963 Swap = M0 < 4; 1964 return true; 1965 } 1966 // 0, H, 2, 3 or 4, L, 6, 7 1967 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1968 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1969 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1970 InsertAtByte = IsLE ? 8 : 4; 1971 Swap = M1 < 4; 1972 return true; 1973 } 1974 // 0, 1, H, 3 or 4, 5, L, 7 1975 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1976 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1977 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1978 InsertAtByte = IsLE ? 4 : 8; 1979 Swap = M2 < 4; 1980 return true; 1981 } 1982 // 0, 1, 2, H or 4, 5, 6, L 1983 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1984 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1985 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1986 InsertAtByte = IsLE ? 0 : 12; 1987 Swap = M3 < 4; 1988 return true; 1989 } 1990 1991 // If both vector operands for the shuffle are the same vector, the mask will 1992 // contain only elements from the first one and the second one will be undef. 1993 if (N->getOperand(1).isUndef()) { 1994 ShiftElts = 0; 1995 Swap = true; 1996 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1997 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1998 InsertAtByte = IsLE ? 12 : 0; 1999 return true; 2000 } 2001 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2002 InsertAtByte = IsLE ? 8 : 4; 2003 return true; 2004 } 2005 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2006 InsertAtByte = IsLE ? 4 : 8; 2007 return true; 2008 } 2009 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2010 InsertAtByte = IsLE ? 0 : 12; 2011 return true; 2012 } 2013 } 2014 2015 return false; 2016 } 2017 2018 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2019 bool &Swap, bool IsLE) { 2020 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2021 // Ensure each byte index of the word is consecutive. 2022 if (!isNByteElemShuffleMask(N, 4, 1)) 2023 return false; 2024 2025 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2026 unsigned M0 = N->getMaskElt(0) / 4; 2027 unsigned M1 = N->getMaskElt(4) / 4; 2028 unsigned M2 = N->getMaskElt(8) / 4; 2029 unsigned M3 = N->getMaskElt(12) / 4; 2030 2031 // If both vector operands for the shuffle are the same vector, the mask will 2032 // contain only elements from the first one and the second one will be undef. 2033 if (N->getOperand(1).isUndef()) { 2034 assert(M0 < 4 && "Indexing into an undef vector?"); 2035 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2036 return false; 2037 2038 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2039 Swap = false; 2040 return true; 2041 } 2042 2043 // Ensure each word index of the ShuffleVector Mask is consecutive. 2044 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2045 return false; 2046 2047 if (IsLE) { 2048 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2049 // Input vectors don't need to be swapped if the leading element 2050 // of the result is one of the 3 left elements of the second vector 2051 // (or if there is no shift to be done at all). 2052 Swap = false; 2053 ShiftElts = (8 - M0) % 8; 2054 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2055 // Input vectors need to be swapped if the leading element 2056 // of the result is one of the 3 left elements of the first vector 2057 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2058 Swap = true; 2059 ShiftElts = (4 - M0) % 4; 2060 } 2061 2062 return true; 2063 } else { // BE 2064 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2065 // Input vectors don't need to be swapped if the leading element 2066 // of the result is one of the 4 elements of the first vector. 2067 Swap = false; 2068 ShiftElts = M0; 2069 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2070 // Input vectors need to be swapped if the leading element 2071 // of the result is one of the 4 elements of the right vector. 2072 Swap = true; 2073 ShiftElts = M0 - 4; 2074 } 2075 2076 return true; 2077 } 2078 } 2079 2080 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2081 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2082 2083 if (!isNByteElemShuffleMask(N, Width, -1)) 2084 return false; 2085 2086 for (int i = 0; i < 16; i += Width) 2087 if (N->getMaskElt(i) != i + Width - 1) 2088 return false; 2089 2090 return true; 2091 } 2092 2093 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2094 return isXXBRShuffleMaskHelper(N, 2); 2095 } 2096 2097 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2098 return isXXBRShuffleMaskHelper(N, 4); 2099 } 2100 2101 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2102 return isXXBRShuffleMaskHelper(N, 8); 2103 } 2104 2105 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2106 return isXXBRShuffleMaskHelper(N, 16); 2107 } 2108 2109 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2110 /// if the inputs to the instruction should be swapped and set \p DM to the 2111 /// value for the immediate. 2112 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2113 /// AND element 0 of the result comes from the first input (LE) or second input 2114 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2115 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2116 /// mask. 2117 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2118 bool &Swap, bool IsLE) { 2119 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2120 2121 // Ensure each byte index of the double word is consecutive. 2122 if (!isNByteElemShuffleMask(N, 8, 1)) 2123 return false; 2124 2125 unsigned M0 = N->getMaskElt(0) / 8; 2126 unsigned M1 = N->getMaskElt(8) / 8; 2127 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2128 2129 // If both vector operands for the shuffle are the same vector, the mask will 2130 // contain only elements from the first one and the second one will be undef. 2131 if (N->getOperand(1).isUndef()) { 2132 if ((M0 | M1) < 2) { 2133 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2134 Swap = false; 2135 return true; 2136 } else 2137 return false; 2138 } 2139 2140 if (IsLE) { 2141 if (M0 > 1 && M1 < 2) { 2142 Swap = false; 2143 } else if (M0 < 2 && M1 > 1) { 2144 M0 = (M0 + 2) % 4; 2145 M1 = (M1 + 2) % 4; 2146 Swap = true; 2147 } else 2148 return false; 2149 2150 // Note: if control flow comes here that means Swap is already set above 2151 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2152 return true; 2153 } else { // BE 2154 if (M0 < 2 && M1 > 1) { 2155 Swap = false; 2156 } else if (M0 > 1 && M1 < 2) { 2157 M0 = (M0 + 2) % 4; 2158 M1 = (M1 + 2) % 4; 2159 Swap = true; 2160 } else 2161 return false; 2162 2163 // Note: if control flow comes here that means Swap is already set above 2164 DM = (M0 << 1) + (M1 & 1); 2165 return true; 2166 } 2167 } 2168 2169 2170 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2171 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2172 /// elements are counted from the left of the vector register). 2173 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2174 SelectionDAG &DAG) { 2175 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2176 assert(isSplatShuffleMask(SVOp, EltSize)); 2177 if (DAG.getDataLayout().isLittleEndian()) 2178 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2179 else 2180 return SVOp->getMaskElt(0) / EltSize; 2181 } 2182 2183 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2184 /// by using a vspltis[bhw] instruction of the specified element size, return 2185 /// the constant being splatted. The ByteSize field indicates the number of 2186 /// bytes of each element [124] -> [bhw]. 2187 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2188 SDValue OpVal(nullptr, 0); 2189 2190 // If ByteSize of the splat is bigger than the element size of the 2191 // build_vector, then we have a case where we are checking for a splat where 2192 // multiple elements of the buildvector are folded together into a single 2193 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2194 unsigned EltSize = 16/N->getNumOperands(); 2195 if (EltSize < ByteSize) { 2196 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2197 SDValue UniquedVals[4]; 2198 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2199 2200 // See if all of the elements in the buildvector agree across. 2201 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2202 if (N->getOperand(i).isUndef()) continue; 2203 // If the element isn't a constant, bail fully out. 2204 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2205 2206 if (!UniquedVals[i&(Multiple-1)].getNode()) 2207 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2208 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2209 return SDValue(); // no match. 2210 } 2211 2212 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2213 // either constant or undef values that are identical for each chunk. See 2214 // if these chunks can form into a larger vspltis*. 2215 2216 // Check to see if all of the leading entries are either 0 or -1. If 2217 // neither, then this won't fit into the immediate field. 2218 bool LeadingZero = true; 2219 bool LeadingOnes = true; 2220 for (unsigned i = 0; i != Multiple-1; ++i) { 2221 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2222 2223 LeadingZero &= isNullConstant(UniquedVals[i]); 2224 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2225 } 2226 // Finally, check the least significant entry. 2227 if (LeadingZero) { 2228 if (!UniquedVals[Multiple-1].getNode()) 2229 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2230 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2231 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2232 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2233 } 2234 if (LeadingOnes) { 2235 if (!UniquedVals[Multiple-1].getNode()) 2236 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2237 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2238 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2239 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2240 } 2241 2242 return SDValue(); 2243 } 2244 2245 // Check to see if this buildvec has a single non-undef value in its elements. 2246 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2247 if (N->getOperand(i).isUndef()) continue; 2248 if (!OpVal.getNode()) 2249 OpVal = N->getOperand(i); 2250 else if (OpVal != N->getOperand(i)) 2251 return SDValue(); 2252 } 2253 2254 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2255 2256 unsigned ValSizeInBytes = EltSize; 2257 uint64_t Value = 0; 2258 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2259 Value = CN->getZExtValue(); 2260 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2261 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2262 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2263 } 2264 2265 // If the splat value is larger than the element value, then we can never do 2266 // this splat. The only case that we could fit the replicated bits into our 2267 // immediate field for would be zero, and we prefer to use vxor for it. 2268 if (ValSizeInBytes < ByteSize) return SDValue(); 2269 2270 // If the element value is larger than the splat value, check if it consists 2271 // of a repeated bit pattern of size ByteSize. 2272 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2273 return SDValue(); 2274 2275 // Properly sign extend the value. 2276 int MaskVal = SignExtend32(Value, ByteSize * 8); 2277 2278 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2279 if (MaskVal == 0) return SDValue(); 2280 2281 // Finally, if this value fits in a 5 bit sext field, return it 2282 if (SignExtend32<5>(MaskVal) == MaskVal) 2283 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2284 return SDValue(); 2285 } 2286 2287 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2288 /// amount, otherwise return -1. 2289 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2290 EVT VT = N->getValueType(0); 2291 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2292 return -1; 2293 2294 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2295 2296 // Find the first non-undef value in the shuffle mask. 2297 unsigned i; 2298 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2299 /*search*/; 2300 2301 if (i == 4) return -1; // all undef. 2302 2303 // Otherwise, check to see if the rest of the elements are consecutively 2304 // numbered from this value. 2305 unsigned ShiftAmt = SVOp->getMaskElt(i); 2306 if (ShiftAmt < i) return -1; 2307 ShiftAmt -= i; 2308 2309 // Check the rest of the elements to see if they are consecutive. 2310 for (++i; i != 4; ++i) 2311 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2312 return -1; 2313 2314 return ShiftAmt; 2315 } 2316 2317 //===----------------------------------------------------------------------===// 2318 // Addressing Mode Selection 2319 //===----------------------------------------------------------------------===// 2320 2321 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2322 /// or 64-bit immediate, and if the value can be accurately represented as a 2323 /// sign extension from a 16-bit value. If so, this returns true and the 2324 /// immediate. 2325 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2326 if (!isa<ConstantSDNode>(N)) 2327 return false; 2328 2329 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2330 if (N->getValueType(0) == MVT::i32) 2331 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2332 else 2333 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2334 } 2335 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2336 return isIntS16Immediate(Op.getNode(), Imm); 2337 } 2338 2339 2340 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2341 /// be represented as an indexed [r+r] operation. 2342 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2343 SDValue &Index, 2344 SelectionDAG &DAG) const { 2345 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2346 UI != E; ++UI) { 2347 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2348 if (Memop->getMemoryVT() == MVT::f64) { 2349 Base = N.getOperand(0); 2350 Index = N.getOperand(1); 2351 return true; 2352 } 2353 } 2354 } 2355 return false; 2356 } 2357 2358 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2359 /// can be represented as an indexed [r+r] operation. Returns false if it 2360 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2361 /// non-zero and N can be represented by a base register plus a signed 16-bit 2362 /// displacement, make a more precise judgement by checking (displacement % \p 2363 /// EncodingAlignment). 2364 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2365 SDValue &Index, SelectionDAG &DAG, 2366 unsigned EncodingAlignment) const { 2367 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2368 // a [pc+imm]. 2369 if (SelectAddressPCRel(N, Base)) 2370 return false; 2371 2372 int16_t imm = 0; 2373 if (N.getOpcode() == ISD::ADD) { 2374 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2375 // SPE load/store can only handle 8-bit offsets. 2376 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2377 return true; 2378 if (isIntS16Immediate(N.getOperand(1), imm) && 2379 (!EncodingAlignment || !(imm % EncodingAlignment))) 2380 return false; // r+i 2381 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2382 return false; // r+i 2383 2384 Base = N.getOperand(0); 2385 Index = N.getOperand(1); 2386 return true; 2387 } else if (N.getOpcode() == ISD::OR) { 2388 if (isIntS16Immediate(N.getOperand(1), imm) && 2389 (!EncodingAlignment || !(imm % EncodingAlignment))) 2390 return false; // r+i can fold it if we can. 2391 2392 // If this is an or of disjoint bitfields, we can codegen this as an add 2393 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2394 // disjoint. 2395 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2396 2397 if (LHSKnown.Zero.getBoolValue()) { 2398 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2399 // If all of the bits are known zero on the LHS or RHS, the add won't 2400 // carry. 2401 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2402 Base = N.getOperand(0); 2403 Index = N.getOperand(1); 2404 return true; 2405 } 2406 } 2407 } 2408 2409 return false; 2410 } 2411 2412 // If we happen to be doing an i64 load or store into a stack slot that has 2413 // less than a 4-byte alignment, then the frame-index elimination may need to 2414 // use an indexed load or store instruction (because the offset may not be a 2415 // multiple of 4). The extra register needed to hold the offset comes from the 2416 // register scavenger, and it is possible that the scavenger will need to use 2417 // an emergency spill slot. As a result, we need to make sure that a spill slot 2418 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2419 // stack slot. 2420 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2421 // FIXME: This does not handle the LWA case. 2422 if (VT != MVT::i64) 2423 return; 2424 2425 // NOTE: We'll exclude negative FIs here, which come from argument 2426 // lowering, because there are no known test cases triggering this problem 2427 // using packed structures (or similar). We can remove this exclusion if 2428 // we find such a test case. The reason why this is so test-case driven is 2429 // because this entire 'fixup' is only to prevent crashes (from the 2430 // register scavenger) on not-really-valid inputs. For example, if we have: 2431 // %a = alloca i1 2432 // %b = bitcast i1* %a to i64* 2433 // store i64* a, i64 b 2434 // then the store should really be marked as 'align 1', but is not. If it 2435 // were marked as 'align 1' then the indexed form would have been 2436 // instruction-selected initially, and the problem this 'fixup' is preventing 2437 // won't happen regardless. 2438 if (FrameIdx < 0) 2439 return; 2440 2441 MachineFunction &MF = DAG.getMachineFunction(); 2442 MachineFrameInfo &MFI = MF.getFrameInfo(); 2443 2444 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2445 return; 2446 2447 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2448 FuncInfo->setHasNonRISpills(); 2449 } 2450 2451 /// Returns true if the address N can be represented by a base register plus 2452 /// a signed 16-bit displacement [r+imm], and if it is not better 2453 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2454 /// displacements that are multiples of that value. 2455 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2456 SDValue &Base, 2457 SelectionDAG &DAG, 2458 unsigned EncodingAlignment) const { 2459 // FIXME dl should come from parent load or store, not from address 2460 SDLoc dl(N); 2461 2462 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2463 // a [pc+imm]. 2464 if (SelectAddressPCRel(N, Base)) 2465 return false; 2466 2467 // If this can be more profitably realized as r+r, fail. 2468 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2469 return false; 2470 2471 if (N.getOpcode() == ISD::ADD) { 2472 int16_t imm = 0; 2473 if (isIntS16Immediate(N.getOperand(1), imm) && 2474 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2475 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2476 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2477 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2478 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2479 } else { 2480 Base = N.getOperand(0); 2481 } 2482 return true; // [r+i] 2483 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2484 // Match LOAD (ADD (X, Lo(G))). 2485 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2486 && "Cannot handle constant offsets yet!"); 2487 Disp = N.getOperand(1).getOperand(0); // The global address. 2488 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2489 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2490 Disp.getOpcode() == ISD::TargetConstantPool || 2491 Disp.getOpcode() == ISD::TargetJumpTable); 2492 Base = N.getOperand(0); 2493 return true; // [&g+r] 2494 } 2495 } else if (N.getOpcode() == ISD::OR) { 2496 int16_t imm = 0; 2497 if (isIntS16Immediate(N.getOperand(1), imm) && 2498 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2499 // If this is an or of disjoint bitfields, we can codegen this as an add 2500 // (for better address arithmetic) if the LHS and RHS of the OR are 2501 // provably disjoint. 2502 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2503 2504 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2505 // If all of the bits are known zero on the LHS or RHS, the add won't 2506 // carry. 2507 if (FrameIndexSDNode *FI = 2508 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2509 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2510 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2511 } else { 2512 Base = N.getOperand(0); 2513 } 2514 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2515 return true; 2516 } 2517 } 2518 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2519 // Loading from a constant address. 2520 2521 // If this address fits entirely in a 16-bit sext immediate field, codegen 2522 // this as "d, 0" 2523 int16_t Imm; 2524 if (isIntS16Immediate(CN, Imm) && 2525 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2526 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2527 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2528 CN->getValueType(0)); 2529 return true; 2530 } 2531 2532 // Handle 32-bit sext immediates with LIS + addr mode. 2533 if ((CN->getValueType(0) == MVT::i32 || 2534 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2535 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2536 int Addr = (int)CN->getZExtValue(); 2537 2538 // Otherwise, break this down into an LIS + disp. 2539 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2540 2541 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2542 MVT::i32); 2543 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2544 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2545 return true; 2546 } 2547 } 2548 2549 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2550 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2551 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2552 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2553 } else 2554 Base = N; 2555 return true; // [r+0] 2556 } 2557 2558 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2559 /// represented as an indexed [r+r] operation. 2560 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2561 SDValue &Index, 2562 SelectionDAG &DAG) const { 2563 // Check to see if we can easily represent this as an [r+r] address. This 2564 // will fail if it thinks that the address is more profitably represented as 2565 // reg+imm, e.g. where imm = 0. 2566 if (SelectAddressRegReg(N, Base, Index, DAG)) 2567 return true; 2568 2569 // If the address is the result of an add, we will utilize the fact that the 2570 // address calculation includes an implicit add. However, we can reduce 2571 // register pressure if we do not materialize a constant just for use as the 2572 // index register. We only get rid of the add if it is not an add of a 2573 // value and a 16-bit signed constant and both have a single use. 2574 int16_t imm = 0; 2575 if (N.getOpcode() == ISD::ADD && 2576 (!isIntS16Immediate(N.getOperand(1), imm) || 2577 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2578 Base = N.getOperand(0); 2579 Index = N.getOperand(1); 2580 return true; 2581 } 2582 2583 // Otherwise, do it the hard way, using R0 as the base register. 2584 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2585 N.getValueType()); 2586 Index = N; 2587 return true; 2588 } 2589 2590 /// Returns true if this address is a PC Relative address. 2591 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG. 2592 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2593 ConstantPoolSDNode *ConstPoolNode = 2594 dyn_cast<ConstantPoolSDNode>(N.getNode()); 2595 bool HasFlag = ConstPoolNode && 2596 ConstPoolNode->getTargetFlags() == PPCII::MO_PCREL_FLAG; 2597 bool HasNode = N.getOpcode() == PPCISD::MAT_PCREL_ADDR; 2598 if (HasFlag || HasNode) { 2599 Base = N; 2600 return true; 2601 } 2602 return false; 2603 } 2604 2605 /// Returns true if we should use a direct load into vector instruction 2606 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2607 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2608 2609 // If there are any other uses other than scalar to vector, then we should 2610 // keep it as a scalar load -> direct move pattern to prevent multiple 2611 // loads. 2612 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2613 if (!LD) 2614 return false; 2615 2616 EVT MemVT = LD->getMemoryVT(); 2617 if (!MemVT.isSimple()) 2618 return false; 2619 switch(MemVT.getSimpleVT().SimpleTy) { 2620 case MVT::i64: 2621 break; 2622 case MVT::i32: 2623 if (!ST.hasP8Vector()) 2624 return false; 2625 break; 2626 case MVT::i16: 2627 case MVT::i8: 2628 if (!ST.hasP9Vector()) 2629 return false; 2630 break; 2631 default: 2632 return false; 2633 } 2634 2635 SDValue LoadedVal(N, 0); 2636 if (!LoadedVal.hasOneUse()) 2637 return false; 2638 2639 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2640 UI != UE; ++UI) 2641 if (UI.getUse().get().getResNo() == 0 && 2642 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2643 return false; 2644 2645 return true; 2646 } 2647 2648 /// getPreIndexedAddressParts - returns true by value, base pointer and 2649 /// offset pointer and addressing mode by reference if the node's address 2650 /// can be legally represented as pre-indexed load / store address. 2651 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2652 SDValue &Offset, 2653 ISD::MemIndexedMode &AM, 2654 SelectionDAG &DAG) const { 2655 if (DisablePPCPreinc) return false; 2656 2657 bool isLoad = true; 2658 SDValue Ptr; 2659 EVT VT; 2660 unsigned Alignment; 2661 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2662 Ptr = LD->getBasePtr(); 2663 VT = LD->getMemoryVT(); 2664 Alignment = LD->getAlignment(); 2665 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2666 Ptr = ST->getBasePtr(); 2667 VT = ST->getMemoryVT(); 2668 Alignment = ST->getAlignment(); 2669 isLoad = false; 2670 } else 2671 return false; 2672 2673 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2674 // instructions because we can fold these into a more efficient instruction 2675 // instead, (such as LXSD). 2676 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2677 return false; 2678 } 2679 2680 // PowerPC doesn't have preinc load/store instructions for vectors (except 2681 // for QPX, which does have preinc r+r forms). 2682 if (VT.isVector()) { 2683 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2684 return false; 2685 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2686 AM = ISD::PRE_INC; 2687 return true; 2688 } 2689 } 2690 2691 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2692 // Common code will reject creating a pre-inc form if the base pointer 2693 // is a frame index, or if N is a store and the base pointer is either 2694 // the same as or a predecessor of the value being stored. Check for 2695 // those situations here, and try with swapped Base/Offset instead. 2696 bool Swap = false; 2697 2698 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2699 Swap = true; 2700 else if (!isLoad) { 2701 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2702 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2703 Swap = true; 2704 } 2705 2706 if (Swap) 2707 std::swap(Base, Offset); 2708 2709 AM = ISD::PRE_INC; 2710 return true; 2711 } 2712 2713 // LDU/STU can only handle immediates that are a multiple of 4. 2714 if (VT != MVT::i64) { 2715 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2716 return false; 2717 } else { 2718 // LDU/STU need an address with at least 4-byte alignment. 2719 if (Alignment < 4) 2720 return false; 2721 2722 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2723 return false; 2724 } 2725 2726 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2727 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2728 // sext i32 to i64 when addr mode is r+i. 2729 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2730 LD->getExtensionType() == ISD::SEXTLOAD && 2731 isa<ConstantSDNode>(Offset)) 2732 return false; 2733 } 2734 2735 AM = ISD::PRE_INC; 2736 return true; 2737 } 2738 2739 //===----------------------------------------------------------------------===// 2740 // LowerOperation implementation 2741 //===----------------------------------------------------------------------===// 2742 2743 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2744 /// and LoOpFlags to the target MO flags. 2745 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2746 unsigned &HiOpFlags, unsigned &LoOpFlags, 2747 const GlobalValue *GV = nullptr) { 2748 HiOpFlags = PPCII::MO_HA; 2749 LoOpFlags = PPCII::MO_LO; 2750 2751 // Don't use the pic base if not in PIC relocation model. 2752 if (IsPIC) { 2753 HiOpFlags |= PPCII::MO_PIC_FLAG; 2754 LoOpFlags |= PPCII::MO_PIC_FLAG; 2755 } 2756 } 2757 2758 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2759 SelectionDAG &DAG) { 2760 SDLoc DL(HiPart); 2761 EVT PtrVT = HiPart.getValueType(); 2762 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2763 2764 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2765 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2766 2767 // With PIC, the first instruction is actually "GR+hi(&G)". 2768 if (isPIC) 2769 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2770 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2771 2772 // Generate non-pic code that has direct accesses to the constant pool. 2773 // The address of the global is just (hi(&g)+lo(&g)). 2774 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2775 } 2776 2777 static void setUsesTOCBasePtr(MachineFunction &MF) { 2778 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2779 FuncInfo->setUsesTOCBasePtr(); 2780 } 2781 2782 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2783 setUsesTOCBasePtr(DAG.getMachineFunction()); 2784 } 2785 2786 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2787 SDValue GA) const { 2788 const bool Is64Bit = Subtarget.isPPC64(); 2789 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2790 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2791 : Subtarget.isAIXABI() 2792 ? DAG.getRegister(PPC::R2, VT) 2793 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2794 SDValue Ops[] = { GA, Reg }; 2795 return DAG.getMemIntrinsicNode( 2796 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2797 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2798 MachineMemOperand::MOLoad); 2799 } 2800 2801 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2802 SelectionDAG &DAG) const { 2803 EVT PtrVT = Op.getValueType(); 2804 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2805 const Constant *C = CP->getConstVal(); 2806 2807 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2808 // The actual address of the GlobalValue is stored in the TOC. 2809 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2810 if (Subtarget.hasPCRelativeMemops()) { 2811 SDLoc DL(CP); 2812 EVT Ty = getPointerTy(DAG.getDataLayout()); 2813 SDValue ConstPool = DAG.getTargetConstantPool(C, Ty, 2814 CP->getAlignment(), 2815 CP->getOffset(), 2816 PPCII::MO_PCREL_FLAG); 2817 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2818 } 2819 setUsesTOCBasePtr(DAG); 2820 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2821 return getTOCEntry(DAG, SDLoc(CP), GA); 2822 } 2823 2824 unsigned MOHiFlag, MOLoFlag; 2825 bool IsPIC = isPositionIndependent(); 2826 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2827 2828 if (IsPIC && Subtarget.isSVR4ABI()) { 2829 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2830 PPCII::MO_PIC_FLAG); 2831 return getTOCEntry(DAG, SDLoc(CP), GA); 2832 } 2833 2834 SDValue CPIHi = 2835 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2836 SDValue CPILo = 2837 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2838 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2839 } 2840 2841 // For 64-bit PowerPC, prefer the more compact relative encodings. 2842 // This trades 32 bits per jump table entry for one or two instructions 2843 // on the jump site. 2844 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2845 if (isJumpTableRelative()) 2846 return MachineJumpTableInfo::EK_LabelDifference32; 2847 2848 return TargetLowering::getJumpTableEncoding(); 2849 } 2850 2851 bool PPCTargetLowering::isJumpTableRelative() const { 2852 if (UseAbsoluteJumpTables) 2853 return false; 2854 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2855 return true; 2856 return TargetLowering::isJumpTableRelative(); 2857 } 2858 2859 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2860 SelectionDAG &DAG) const { 2861 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2862 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2863 2864 switch (getTargetMachine().getCodeModel()) { 2865 case CodeModel::Small: 2866 case CodeModel::Medium: 2867 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2868 default: 2869 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2870 getPointerTy(DAG.getDataLayout())); 2871 } 2872 } 2873 2874 const MCExpr * 2875 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2876 unsigned JTI, 2877 MCContext &Ctx) const { 2878 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2879 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2880 2881 switch (getTargetMachine().getCodeModel()) { 2882 case CodeModel::Small: 2883 case CodeModel::Medium: 2884 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2885 default: 2886 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2887 } 2888 } 2889 2890 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2891 EVT PtrVT = Op.getValueType(); 2892 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2893 2894 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2895 // The actual address of the GlobalValue is stored in the TOC. 2896 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2897 setUsesTOCBasePtr(DAG); 2898 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2899 return getTOCEntry(DAG, SDLoc(JT), GA); 2900 } 2901 2902 unsigned MOHiFlag, MOLoFlag; 2903 bool IsPIC = isPositionIndependent(); 2904 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2905 2906 if (IsPIC && Subtarget.isSVR4ABI()) { 2907 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2908 PPCII::MO_PIC_FLAG); 2909 return getTOCEntry(DAG, SDLoc(GA), GA); 2910 } 2911 2912 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2913 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2914 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2915 } 2916 2917 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2918 SelectionDAG &DAG) const { 2919 EVT PtrVT = Op.getValueType(); 2920 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2921 const BlockAddress *BA = BASDN->getBlockAddress(); 2922 2923 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2924 // The actual BlockAddress is stored in the TOC. 2925 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2926 setUsesTOCBasePtr(DAG); 2927 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2928 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2929 } 2930 2931 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2932 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2933 return getTOCEntry( 2934 DAG, SDLoc(BASDN), 2935 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2936 2937 unsigned MOHiFlag, MOLoFlag; 2938 bool IsPIC = isPositionIndependent(); 2939 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2940 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2941 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2942 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2943 } 2944 2945 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2946 SelectionDAG &DAG) const { 2947 // FIXME: TLS addresses currently use medium model code sequences, 2948 // which is the most useful form. Eventually support for small and 2949 // large models could be added if users need it, at the cost of 2950 // additional complexity. 2951 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2952 if (DAG.getTarget().useEmulatedTLS()) 2953 return LowerToTLSEmulatedModel(GA, DAG); 2954 2955 SDLoc dl(GA); 2956 const GlobalValue *GV = GA->getGlobal(); 2957 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2958 bool is64bit = Subtarget.isPPC64(); 2959 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2960 PICLevel::Level picLevel = M->getPICLevel(); 2961 2962 const TargetMachine &TM = getTargetMachine(); 2963 TLSModel::Model Model = TM.getTLSModel(GV); 2964 2965 if (Model == TLSModel::LocalExec) { 2966 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2967 PPCII::MO_TPREL_HA); 2968 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2969 PPCII::MO_TPREL_LO); 2970 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2971 : DAG.getRegister(PPC::R2, MVT::i32); 2972 2973 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2974 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2975 } 2976 2977 if (Model == TLSModel::InitialExec) { 2978 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2979 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2980 PPCII::MO_TLS); 2981 SDValue GOTPtr; 2982 if (is64bit) { 2983 setUsesTOCBasePtr(DAG); 2984 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2985 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2986 PtrVT, GOTReg, TGA); 2987 } else { 2988 if (!TM.isPositionIndependent()) 2989 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2990 else if (picLevel == PICLevel::SmallPIC) 2991 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2992 else 2993 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2994 } 2995 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2996 PtrVT, TGA, GOTPtr); 2997 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2998 } 2999 3000 if (Model == TLSModel::GeneralDynamic) { 3001 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3002 SDValue GOTPtr; 3003 if (is64bit) { 3004 setUsesTOCBasePtr(DAG); 3005 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3006 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3007 GOTReg, TGA); 3008 } else { 3009 if (picLevel == PICLevel::SmallPIC) 3010 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3011 else 3012 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3013 } 3014 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3015 GOTPtr, TGA, TGA); 3016 } 3017 3018 if (Model == TLSModel::LocalDynamic) { 3019 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3020 SDValue GOTPtr; 3021 if (is64bit) { 3022 setUsesTOCBasePtr(DAG); 3023 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3024 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3025 GOTReg, TGA); 3026 } else { 3027 if (picLevel == PICLevel::SmallPIC) 3028 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3029 else 3030 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3031 } 3032 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3033 PtrVT, GOTPtr, TGA, TGA); 3034 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3035 PtrVT, TLSAddr, TGA); 3036 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3037 } 3038 3039 llvm_unreachable("Unknown TLS model!"); 3040 } 3041 3042 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3043 SelectionDAG &DAG) const { 3044 EVT PtrVT = Op.getValueType(); 3045 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3046 SDLoc DL(GSDN); 3047 const GlobalValue *GV = GSDN->getGlobal(); 3048 3049 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3050 // The actual address of the GlobalValue is stored in the TOC. 3051 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3052 setUsesTOCBasePtr(DAG); 3053 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3054 return getTOCEntry(DAG, DL, GA); 3055 } 3056 3057 unsigned MOHiFlag, MOLoFlag; 3058 bool IsPIC = isPositionIndependent(); 3059 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3060 3061 if (IsPIC && Subtarget.isSVR4ABI()) { 3062 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3063 GSDN->getOffset(), 3064 PPCII::MO_PIC_FLAG); 3065 return getTOCEntry(DAG, DL, GA); 3066 } 3067 3068 SDValue GAHi = 3069 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3070 SDValue GALo = 3071 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3072 3073 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3074 } 3075 3076 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3077 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3078 SDLoc dl(Op); 3079 3080 if (Op.getValueType() == MVT::v2i64) { 3081 // When the operands themselves are v2i64 values, we need to do something 3082 // special because VSX has no underlying comparison operations for these. 3083 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3084 // Equality can be handled by casting to the legal type for Altivec 3085 // comparisons, everything else needs to be expanded. 3086 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3087 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3088 DAG.getSetCC(dl, MVT::v4i32, 3089 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3090 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3091 CC)); 3092 } 3093 3094 return SDValue(); 3095 } 3096 3097 // We handle most of these in the usual way. 3098 return Op; 3099 } 3100 3101 // If we're comparing for equality to zero, expose the fact that this is 3102 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3103 // fold the new nodes. 3104 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3105 return V; 3106 3107 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3108 // Leave comparisons against 0 and -1 alone for now, since they're usually 3109 // optimized. FIXME: revisit this when we can custom lower all setcc 3110 // optimizations. 3111 if (C->isAllOnesValue() || C->isNullValue()) 3112 return SDValue(); 3113 } 3114 3115 // If we have an integer seteq/setne, turn it into a compare against zero 3116 // by xor'ing the rhs with the lhs, which is faster than setting a 3117 // condition register, reading it back out, and masking the correct bit. The 3118 // normal approach here uses sub to do this instead of xor. Using xor exposes 3119 // the result to other bit-twiddling opportunities. 3120 EVT LHSVT = Op.getOperand(0).getValueType(); 3121 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3122 EVT VT = Op.getValueType(); 3123 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3124 Op.getOperand(1)); 3125 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3126 } 3127 return SDValue(); 3128 } 3129 3130 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3131 SDNode *Node = Op.getNode(); 3132 EVT VT = Node->getValueType(0); 3133 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3134 SDValue InChain = Node->getOperand(0); 3135 SDValue VAListPtr = Node->getOperand(1); 3136 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3137 SDLoc dl(Node); 3138 3139 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3140 3141 // gpr_index 3142 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3143 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3144 InChain = GprIndex.getValue(1); 3145 3146 if (VT == MVT::i64) { 3147 // Check if GprIndex is even 3148 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3149 DAG.getConstant(1, dl, MVT::i32)); 3150 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3151 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3152 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3153 DAG.getConstant(1, dl, MVT::i32)); 3154 // Align GprIndex to be even if it isn't 3155 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3156 GprIndex); 3157 } 3158 3159 // fpr index is 1 byte after gpr 3160 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3161 DAG.getConstant(1, dl, MVT::i32)); 3162 3163 // fpr 3164 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3165 FprPtr, MachinePointerInfo(SV), MVT::i8); 3166 InChain = FprIndex.getValue(1); 3167 3168 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3169 DAG.getConstant(8, dl, MVT::i32)); 3170 3171 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3172 DAG.getConstant(4, dl, MVT::i32)); 3173 3174 // areas 3175 SDValue OverflowArea = 3176 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3177 InChain = OverflowArea.getValue(1); 3178 3179 SDValue RegSaveArea = 3180 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3181 InChain = RegSaveArea.getValue(1); 3182 3183 // select overflow_area if index > 8 3184 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3185 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3186 3187 // adjustment constant gpr_index * 4/8 3188 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3189 VT.isInteger() ? GprIndex : FprIndex, 3190 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3191 MVT::i32)); 3192 3193 // OurReg = RegSaveArea + RegConstant 3194 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3195 RegConstant); 3196 3197 // Floating types are 32 bytes into RegSaveArea 3198 if (VT.isFloatingPoint()) 3199 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3200 DAG.getConstant(32, dl, MVT::i32)); 3201 3202 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3203 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3204 VT.isInteger() ? GprIndex : FprIndex, 3205 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3206 MVT::i32)); 3207 3208 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3209 VT.isInteger() ? VAListPtr : FprPtr, 3210 MachinePointerInfo(SV), MVT::i8); 3211 3212 // determine if we should load from reg_save_area or overflow_area 3213 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3214 3215 // increase overflow_area by 4/8 if gpr/fpr > 8 3216 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3217 DAG.getConstant(VT.isInteger() ? 4 : 8, 3218 dl, MVT::i32)); 3219 3220 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3221 OverflowAreaPlusN); 3222 3223 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3224 MachinePointerInfo(), MVT::i32); 3225 3226 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3227 } 3228 3229 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3230 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3231 3232 // We have to copy the entire va_list struct: 3233 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3234 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3235 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3236 false, true, false, MachinePointerInfo(), 3237 MachinePointerInfo()); 3238 } 3239 3240 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3241 SelectionDAG &DAG) const { 3242 if (Subtarget.isAIXABI()) 3243 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3244 3245 return Op.getOperand(0); 3246 } 3247 3248 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3249 SelectionDAG &DAG) const { 3250 if (Subtarget.isAIXABI()) 3251 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3252 3253 SDValue Chain = Op.getOperand(0); 3254 SDValue Trmp = Op.getOperand(1); // trampoline 3255 SDValue FPtr = Op.getOperand(2); // nested function 3256 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3257 SDLoc dl(Op); 3258 3259 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3260 bool isPPC64 = (PtrVT == MVT::i64); 3261 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3262 3263 TargetLowering::ArgListTy Args; 3264 TargetLowering::ArgListEntry Entry; 3265 3266 Entry.Ty = IntPtrTy; 3267 Entry.Node = Trmp; Args.push_back(Entry); 3268 3269 // TrampSize == (isPPC64 ? 48 : 40); 3270 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3271 isPPC64 ? MVT::i64 : MVT::i32); 3272 Args.push_back(Entry); 3273 3274 Entry.Node = FPtr; Args.push_back(Entry); 3275 Entry.Node = Nest; Args.push_back(Entry); 3276 3277 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3278 TargetLowering::CallLoweringInfo CLI(DAG); 3279 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3280 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3281 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3282 3283 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3284 return CallResult.second; 3285 } 3286 3287 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3288 MachineFunction &MF = DAG.getMachineFunction(); 3289 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3290 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3291 3292 SDLoc dl(Op); 3293 3294 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3295 // vastart just stores the address of the VarArgsFrameIndex slot into the 3296 // memory location argument. 3297 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3298 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3299 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3300 MachinePointerInfo(SV)); 3301 } 3302 3303 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3304 // We suppose the given va_list is already allocated. 3305 // 3306 // typedef struct { 3307 // char gpr; /* index into the array of 8 GPRs 3308 // * stored in the register save area 3309 // * gpr=0 corresponds to r3, 3310 // * gpr=1 to r4, etc. 3311 // */ 3312 // char fpr; /* index into the array of 8 FPRs 3313 // * stored in the register save area 3314 // * fpr=0 corresponds to f1, 3315 // * fpr=1 to f2, etc. 3316 // */ 3317 // char *overflow_arg_area; 3318 // /* location on stack that holds 3319 // * the next overflow argument 3320 // */ 3321 // char *reg_save_area; 3322 // /* where r3:r10 and f1:f8 (if saved) 3323 // * are stored 3324 // */ 3325 // } va_list[1]; 3326 3327 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3328 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3329 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3330 PtrVT); 3331 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3332 PtrVT); 3333 3334 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3335 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3336 3337 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3338 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3339 3340 uint64_t FPROffset = 1; 3341 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3342 3343 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3344 3345 // Store first byte : number of int regs 3346 SDValue firstStore = 3347 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3348 MachinePointerInfo(SV), MVT::i8); 3349 uint64_t nextOffset = FPROffset; 3350 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3351 ConstFPROffset); 3352 3353 // Store second byte : number of float regs 3354 SDValue secondStore = 3355 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3356 MachinePointerInfo(SV, nextOffset), MVT::i8); 3357 nextOffset += StackOffset; 3358 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3359 3360 // Store second word : arguments given on stack 3361 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3362 MachinePointerInfo(SV, nextOffset)); 3363 nextOffset += FrameOffset; 3364 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3365 3366 // Store third word : arguments given in registers 3367 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3368 MachinePointerInfo(SV, nextOffset)); 3369 } 3370 3371 /// FPR - The set of FP registers that should be allocated for arguments 3372 /// on Darwin and AIX. 3373 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3374 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3375 PPC::F11, PPC::F12, PPC::F13}; 3376 3377 /// QFPR - The set of QPX registers that should be allocated for arguments. 3378 static const MCPhysReg QFPR[] = { 3379 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3380 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3381 3382 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3383 /// the stack. 3384 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3385 unsigned PtrByteSize) { 3386 unsigned ArgSize = ArgVT.getStoreSize(); 3387 if (Flags.isByVal()) 3388 ArgSize = Flags.getByValSize(); 3389 3390 // Round up to multiples of the pointer size, except for array members, 3391 // which are always packed. 3392 if (!Flags.isInConsecutiveRegs()) 3393 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3394 3395 return ArgSize; 3396 } 3397 3398 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3399 /// on the stack. 3400 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3401 ISD::ArgFlagsTy Flags, 3402 unsigned PtrByteSize) { 3403 Align Alignment(PtrByteSize); 3404 3405 // Altivec parameters are padded to a 16 byte boundary. 3406 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3407 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3408 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3409 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3410 Alignment = Align(16); 3411 // QPX vector types stored in double-precision are padded to a 32 byte 3412 // boundary. 3413 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3414 Alignment = Align(32); 3415 3416 // ByVal parameters are aligned as requested. 3417 if (Flags.isByVal()) { 3418 auto BVAlign = Flags.getNonZeroByValAlign(); 3419 if (BVAlign > PtrByteSize) { 3420 if (BVAlign.value() % PtrByteSize != 0) 3421 llvm_unreachable( 3422 "ByVal alignment is not a multiple of the pointer size"); 3423 3424 Alignment = BVAlign; 3425 } 3426 } 3427 3428 // Array members are always packed to their original alignment. 3429 if (Flags.isInConsecutiveRegs()) { 3430 // If the array member was split into multiple registers, the first 3431 // needs to be aligned to the size of the full type. (Except for 3432 // ppcf128, which is only aligned as its f64 components.) 3433 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3434 Alignment = Align(OrigVT.getStoreSize()); 3435 else 3436 Alignment = Align(ArgVT.getStoreSize()); 3437 } 3438 3439 return Alignment; 3440 } 3441 3442 /// CalculateStackSlotUsed - Return whether this argument will use its 3443 /// stack slot (instead of being passed in registers). ArgOffset, 3444 /// AvailableFPRs, and AvailableVRs must hold the current argument 3445 /// position, and will be updated to account for this argument. 3446 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3447 ISD::ArgFlagsTy Flags, 3448 unsigned PtrByteSize, 3449 unsigned LinkageSize, 3450 unsigned ParamAreaSize, 3451 unsigned &ArgOffset, 3452 unsigned &AvailableFPRs, 3453 unsigned &AvailableVRs, bool HasQPX) { 3454 bool UseMemory = false; 3455 3456 // Respect alignment of argument on the stack. 3457 Align Alignment = 3458 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3459 ArgOffset = alignTo(ArgOffset, Alignment); 3460 // If there's no space left in the argument save area, we must 3461 // use memory (this check also catches zero-sized arguments). 3462 if (ArgOffset >= LinkageSize + ParamAreaSize) 3463 UseMemory = true; 3464 3465 // Allocate argument on the stack. 3466 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3467 if (Flags.isInConsecutiveRegsLast()) 3468 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3469 // If we overran the argument save area, we must use memory 3470 // (this check catches arguments passed partially in memory) 3471 if (ArgOffset > LinkageSize + ParamAreaSize) 3472 UseMemory = true; 3473 3474 // However, if the argument is actually passed in an FPR or a VR, 3475 // we don't use memory after all. 3476 if (!Flags.isByVal()) { 3477 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3478 // QPX registers overlap with the scalar FP registers. 3479 (HasQPX && (ArgVT == MVT::v4f32 || 3480 ArgVT == MVT::v4f64 || 3481 ArgVT == MVT::v4i1))) 3482 if (AvailableFPRs > 0) { 3483 --AvailableFPRs; 3484 return false; 3485 } 3486 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3487 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3488 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3489 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3490 if (AvailableVRs > 0) { 3491 --AvailableVRs; 3492 return false; 3493 } 3494 } 3495 3496 return UseMemory; 3497 } 3498 3499 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3500 /// ensure minimum alignment required for target. 3501 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3502 unsigned NumBytes) { 3503 return alignTo(NumBytes, Lowering->getStackAlign()); 3504 } 3505 3506 SDValue PPCTargetLowering::LowerFormalArguments( 3507 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3508 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3509 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3510 if (Subtarget.isAIXABI()) 3511 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3512 InVals); 3513 if (Subtarget.is64BitELFABI()) 3514 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3515 InVals); 3516 if (Subtarget.is32BitELFABI()) 3517 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3518 InVals); 3519 3520 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3521 InVals); 3522 } 3523 3524 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3525 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3526 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3527 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3528 3529 // 32-bit SVR4 ABI Stack Frame Layout: 3530 // +-----------------------------------+ 3531 // +--> | Back chain | 3532 // | +-----------------------------------+ 3533 // | | Floating-point register save area | 3534 // | +-----------------------------------+ 3535 // | | General register save area | 3536 // | +-----------------------------------+ 3537 // | | CR save word | 3538 // | +-----------------------------------+ 3539 // | | VRSAVE save word | 3540 // | +-----------------------------------+ 3541 // | | Alignment padding | 3542 // | +-----------------------------------+ 3543 // | | Vector register save area | 3544 // | +-----------------------------------+ 3545 // | | Local variable space | 3546 // | +-----------------------------------+ 3547 // | | Parameter list area | 3548 // | +-----------------------------------+ 3549 // | | LR save word | 3550 // | +-----------------------------------+ 3551 // SP--> +--- | Back chain | 3552 // +-----------------------------------+ 3553 // 3554 // Specifications: 3555 // System V Application Binary Interface PowerPC Processor Supplement 3556 // AltiVec Technology Programming Interface Manual 3557 3558 MachineFunction &MF = DAG.getMachineFunction(); 3559 MachineFrameInfo &MFI = MF.getFrameInfo(); 3560 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3561 3562 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3563 // Potential tail calls could cause overwriting of argument stack slots. 3564 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3565 (CallConv == CallingConv::Fast)); 3566 unsigned PtrByteSize = 4; 3567 3568 // Assign locations to all of the incoming arguments. 3569 SmallVector<CCValAssign, 16> ArgLocs; 3570 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3571 *DAG.getContext()); 3572 3573 // Reserve space for the linkage area on the stack. 3574 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3575 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3576 if (useSoftFloat()) 3577 CCInfo.PreAnalyzeFormalArguments(Ins); 3578 3579 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3580 CCInfo.clearWasPPCF128(); 3581 3582 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3583 CCValAssign &VA = ArgLocs[i]; 3584 3585 // Arguments stored in registers. 3586 if (VA.isRegLoc()) { 3587 const TargetRegisterClass *RC; 3588 EVT ValVT = VA.getValVT(); 3589 3590 switch (ValVT.getSimpleVT().SimpleTy) { 3591 default: 3592 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3593 case MVT::i1: 3594 case MVT::i32: 3595 RC = &PPC::GPRCRegClass; 3596 break; 3597 case MVT::f32: 3598 if (Subtarget.hasP8Vector()) 3599 RC = &PPC::VSSRCRegClass; 3600 else if (Subtarget.hasSPE()) 3601 RC = &PPC::GPRCRegClass; 3602 else 3603 RC = &PPC::F4RCRegClass; 3604 break; 3605 case MVT::f64: 3606 if (Subtarget.hasVSX()) 3607 RC = &PPC::VSFRCRegClass; 3608 else if (Subtarget.hasSPE()) 3609 // SPE passes doubles in GPR pairs. 3610 RC = &PPC::GPRCRegClass; 3611 else 3612 RC = &PPC::F8RCRegClass; 3613 break; 3614 case MVT::v16i8: 3615 case MVT::v8i16: 3616 case MVT::v4i32: 3617 RC = &PPC::VRRCRegClass; 3618 break; 3619 case MVT::v4f32: 3620 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3621 break; 3622 case MVT::v2f64: 3623 case MVT::v2i64: 3624 RC = &PPC::VRRCRegClass; 3625 break; 3626 case MVT::v4f64: 3627 RC = &PPC::QFRCRegClass; 3628 break; 3629 case MVT::v4i1: 3630 RC = &PPC::QBRCRegClass; 3631 break; 3632 } 3633 3634 SDValue ArgValue; 3635 // Transform the arguments stored in physical registers into 3636 // virtual ones. 3637 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3638 assert(i + 1 < e && "No second half of double precision argument"); 3639 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3640 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3641 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3642 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3643 if (!Subtarget.isLittleEndian()) 3644 std::swap (ArgValueLo, ArgValueHi); 3645 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3646 ArgValueHi); 3647 } else { 3648 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3649 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3650 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3651 if (ValVT == MVT::i1) 3652 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3653 } 3654 3655 InVals.push_back(ArgValue); 3656 } else { 3657 // Argument stored in memory. 3658 assert(VA.isMemLoc()); 3659 3660 // Get the extended size of the argument type in stack 3661 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3662 // Get the actual size of the argument type 3663 unsigned ObjSize = VA.getValVT().getStoreSize(); 3664 unsigned ArgOffset = VA.getLocMemOffset(); 3665 // Stack objects in PPC32 are right justified. 3666 ArgOffset += ArgSize - ObjSize; 3667 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3668 3669 // Create load nodes to retrieve arguments from the stack. 3670 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3671 InVals.push_back( 3672 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3673 } 3674 } 3675 3676 // Assign locations to all of the incoming aggregate by value arguments. 3677 // Aggregates passed by value are stored in the local variable space of the 3678 // caller's stack frame, right above the parameter list area. 3679 SmallVector<CCValAssign, 16> ByValArgLocs; 3680 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3681 ByValArgLocs, *DAG.getContext()); 3682 3683 // Reserve stack space for the allocations in CCInfo. 3684 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3685 3686 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3687 3688 // Area that is at least reserved in the caller of this function. 3689 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3690 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3691 3692 // Set the size that is at least reserved in caller of this function. Tail 3693 // call optimized function's reserved stack space needs to be aligned so that 3694 // taking the difference between two stack areas will result in an aligned 3695 // stack. 3696 MinReservedArea = 3697 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3698 FuncInfo->setMinReservedArea(MinReservedArea); 3699 3700 SmallVector<SDValue, 8> MemOps; 3701 3702 // If the function takes variable number of arguments, make a frame index for 3703 // the start of the first vararg value... for expansion of llvm.va_start. 3704 if (isVarArg) { 3705 static const MCPhysReg GPArgRegs[] = { 3706 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3707 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3708 }; 3709 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3710 3711 static const MCPhysReg FPArgRegs[] = { 3712 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3713 PPC::F8 3714 }; 3715 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3716 3717 if (useSoftFloat() || hasSPE()) 3718 NumFPArgRegs = 0; 3719 3720 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3721 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3722 3723 // Make room for NumGPArgRegs and NumFPArgRegs. 3724 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3725 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3726 3727 FuncInfo->setVarArgsStackOffset( 3728 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3729 CCInfo.getNextStackOffset(), true)); 3730 3731 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3732 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3733 3734 // The fixed integer arguments of a variadic function are stored to the 3735 // VarArgsFrameIndex on the stack so that they may be loaded by 3736 // dereferencing the result of va_next. 3737 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3738 // Get an existing live-in vreg, or add a new one. 3739 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3740 if (!VReg) 3741 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3742 3743 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3744 SDValue Store = 3745 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3746 MemOps.push_back(Store); 3747 // Increment the address by four for the next argument to store 3748 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3749 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3750 } 3751 3752 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3753 // is set. 3754 // The double arguments are stored to the VarArgsFrameIndex 3755 // on the stack. 3756 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3757 // Get an existing live-in vreg, or add a new one. 3758 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3759 if (!VReg) 3760 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3761 3762 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3763 SDValue Store = 3764 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3765 MemOps.push_back(Store); 3766 // Increment the address by eight for the next argument to store 3767 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3768 PtrVT); 3769 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3770 } 3771 } 3772 3773 if (!MemOps.empty()) 3774 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3775 3776 return Chain; 3777 } 3778 3779 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3780 // value to MVT::i64 and then truncate to the correct register size. 3781 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3782 EVT ObjectVT, SelectionDAG &DAG, 3783 SDValue ArgVal, 3784 const SDLoc &dl) const { 3785 if (Flags.isSExt()) 3786 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3787 DAG.getValueType(ObjectVT)); 3788 else if (Flags.isZExt()) 3789 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3790 DAG.getValueType(ObjectVT)); 3791 3792 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3793 } 3794 3795 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3796 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3797 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3798 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3799 // TODO: add description of PPC stack frame format, or at least some docs. 3800 // 3801 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3802 bool isLittleEndian = Subtarget.isLittleEndian(); 3803 MachineFunction &MF = DAG.getMachineFunction(); 3804 MachineFrameInfo &MFI = MF.getFrameInfo(); 3805 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3806 3807 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3808 "fastcc not supported on varargs functions"); 3809 3810 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3811 // Potential tail calls could cause overwriting of argument stack slots. 3812 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3813 (CallConv == CallingConv::Fast)); 3814 unsigned PtrByteSize = 8; 3815 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3816 3817 static const MCPhysReg GPR[] = { 3818 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3819 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3820 }; 3821 static const MCPhysReg VR[] = { 3822 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3823 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3824 }; 3825 3826 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3827 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3828 const unsigned Num_VR_Regs = array_lengthof(VR); 3829 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3830 3831 // Do a first pass over the arguments to determine whether the ABI 3832 // guarantees that our caller has allocated the parameter save area 3833 // on its stack frame. In the ELFv1 ABI, this is always the case; 3834 // in the ELFv2 ABI, it is true if this is a vararg function or if 3835 // any parameter is located in a stack slot. 3836 3837 bool HasParameterArea = !isELFv2ABI || isVarArg; 3838 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3839 unsigned NumBytes = LinkageSize; 3840 unsigned AvailableFPRs = Num_FPR_Regs; 3841 unsigned AvailableVRs = Num_VR_Regs; 3842 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3843 if (Ins[i].Flags.isNest()) 3844 continue; 3845 3846 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3847 PtrByteSize, LinkageSize, ParamAreaSize, 3848 NumBytes, AvailableFPRs, AvailableVRs, 3849 Subtarget.hasQPX())) 3850 HasParameterArea = true; 3851 } 3852 3853 // Add DAG nodes to load the arguments or copy them out of registers. On 3854 // entry to a function on PPC, the arguments start after the linkage area, 3855 // although the first ones are often in registers. 3856 3857 unsigned ArgOffset = LinkageSize; 3858 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3859 unsigned &QFPR_idx = FPR_idx; 3860 SmallVector<SDValue, 8> MemOps; 3861 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3862 unsigned CurArgIdx = 0; 3863 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3864 SDValue ArgVal; 3865 bool needsLoad = false; 3866 EVT ObjectVT = Ins[ArgNo].VT; 3867 EVT OrigVT = Ins[ArgNo].ArgVT; 3868 unsigned ObjSize = ObjectVT.getStoreSize(); 3869 unsigned ArgSize = ObjSize; 3870 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3871 if (Ins[ArgNo].isOrigArg()) { 3872 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3873 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3874 } 3875 // We re-align the argument offset for each argument, except when using the 3876 // fast calling convention, when we need to make sure we do that only when 3877 // we'll actually use a stack slot. 3878 unsigned CurArgOffset; 3879 Align Alignment; 3880 auto ComputeArgOffset = [&]() { 3881 /* Respect alignment of argument on the stack. */ 3882 Alignment = 3883 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3884 ArgOffset = alignTo(ArgOffset, Alignment); 3885 CurArgOffset = ArgOffset; 3886 }; 3887 3888 if (CallConv != CallingConv::Fast) { 3889 ComputeArgOffset(); 3890 3891 /* Compute GPR index associated with argument offset. */ 3892 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3893 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3894 } 3895 3896 // FIXME the codegen can be much improved in some cases. 3897 // We do not have to keep everything in memory. 3898 if (Flags.isByVal()) { 3899 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3900 3901 if (CallConv == CallingConv::Fast) 3902 ComputeArgOffset(); 3903 3904 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3905 ObjSize = Flags.getByValSize(); 3906 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3907 // Empty aggregate parameters do not take up registers. Examples: 3908 // struct { } a; 3909 // union { } b; 3910 // int c[0]; 3911 // etc. However, we have to provide a place-holder in InVals, so 3912 // pretend we have an 8-byte item at the current address for that 3913 // purpose. 3914 if (!ObjSize) { 3915 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3916 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3917 InVals.push_back(FIN); 3918 continue; 3919 } 3920 3921 // Create a stack object covering all stack doublewords occupied 3922 // by the argument. If the argument is (fully or partially) on 3923 // the stack, or if the argument is fully in registers but the 3924 // caller has allocated the parameter save anyway, we can refer 3925 // directly to the caller's stack frame. Otherwise, create a 3926 // local copy in our own frame. 3927 int FI; 3928 if (HasParameterArea || 3929 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3930 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3931 else 3932 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 3933 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3934 3935 // Handle aggregates smaller than 8 bytes. 3936 if (ObjSize < PtrByteSize) { 3937 // The value of the object is its address, which differs from the 3938 // address of the enclosing doubleword on big-endian systems. 3939 SDValue Arg = FIN; 3940 if (!isLittleEndian) { 3941 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3942 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3943 } 3944 InVals.push_back(Arg); 3945 3946 if (GPR_idx != Num_GPR_Regs) { 3947 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3948 FuncInfo->addLiveInAttr(VReg, Flags); 3949 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3950 SDValue Store; 3951 3952 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3953 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3954 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3955 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3956 MachinePointerInfo(&*FuncArg), ObjType); 3957 } else { 3958 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3959 // store the whole register as-is to the parameter save area 3960 // slot. 3961 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3962 MachinePointerInfo(&*FuncArg)); 3963 } 3964 3965 MemOps.push_back(Store); 3966 } 3967 // Whether we copied from a register or not, advance the offset 3968 // into the parameter save area by a full doubleword. 3969 ArgOffset += PtrByteSize; 3970 continue; 3971 } 3972 3973 // The value of the object is its address, which is the address of 3974 // its first stack doubleword. 3975 InVals.push_back(FIN); 3976 3977 // Store whatever pieces of the object are in registers to memory. 3978 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3979 if (GPR_idx == Num_GPR_Regs) 3980 break; 3981 3982 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3983 FuncInfo->addLiveInAttr(VReg, Flags); 3984 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3985 SDValue Addr = FIN; 3986 if (j) { 3987 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3988 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3989 } 3990 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3991 MachinePointerInfo(&*FuncArg, j)); 3992 MemOps.push_back(Store); 3993 ++GPR_idx; 3994 } 3995 ArgOffset += ArgSize; 3996 continue; 3997 } 3998 3999 switch (ObjectVT.getSimpleVT().SimpleTy) { 4000 default: llvm_unreachable("Unhandled argument type!"); 4001 case MVT::i1: 4002 case MVT::i32: 4003 case MVT::i64: 4004 if (Flags.isNest()) { 4005 // The 'nest' parameter, if any, is passed in R11. 4006 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4007 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4008 4009 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4010 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4011 4012 break; 4013 } 4014 4015 // These can be scalar arguments or elements of an integer array type 4016 // passed directly. Clang may use those instead of "byval" aggregate 4017 // types to avoid forcing arguments to memory unnecessarily. 4018 if (GPR_idx != Num_GPR_Regs) { 4019 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4020 FuncInfo->addLiveInAttr(VReg, Flags); 4021 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4022 4023 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4024 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4025 // value to MVT::i64 and then truncate to the correct register size. 4026 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4027 } else { 4028 if (CallConv == CallingConv::Fast) 4029 ComputeArgOffset(); 4030 4031 needsLoad = true; 4032 ArgSize = PtrByteSize; 4033 } 4034 if (CallConv != CallingConv::Fast || needsLoad) 4035 ArgOffset += 8; 4036 break; 4037 4038 case MVT::f32: 4039 case MVT::f64: 4040 // These can be scalar arguments or elements of a float array type 4041 // passed directly. The latter are used to implement ELFv2 homogenous 4042 // float aggregates. 4043 if (FPR_idx != Num_FPR_Regs) { 4044 unsigned VReg; 4045 4046 if (ObjectVT == MVT::f32) 4047 VReg = MF.addLiveIn(FPR[FPR_idx], 4048 Subtarget.hasP8Vector() 4049 ? &PPC::VSSRCRegClass 4050 : &PPC::F4RCRegClass); 4051 else 4052 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4053 ? &PPC::VSFRCRegClass 4054 : &PPC::F8RCRegClass); 4055 4056 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4057 ++FPR_idx; 4058 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4059 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4060 // once we support fp <-> gpr moves. 4061 4062 // This can only ever happen in the presence of f32 array types, 4063 // since otherwise we never run out of FPRs before running out 4064 // of GPRs. 4065 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4066 FuncInfo->addLiveInAttr(VReg, Flags); 4067 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4068 4069 if (ObjectVT == MVT::f32) { 4070 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4071 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4072 DAG.getConstant(32, dl, MVT::i32)); 4073 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4074 } 4075 4076 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4077 } else { 4078 if (CallConv == CallingConv::Fast) 4079 ComputeArgOffset(); 4080 4081 needsLoad = true; 4082 } 4083 4084 // When passing an array of floats, the array occupies consecutive 4085 // space in the argument area; only round up to the next doubleword 4086 // at the end of the array. Otherwise, each float takes 8 bytes. 4087 if (CallConv != CallingConv::Fast || needsLoad) { 4088 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4089 ArgOffset += ArgSize; 4090 if (Flags.isInConsecutiveRegsLast()) 4091 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4092 } 4093 break; 4094 case MVT::v4f32: 4095 case MVT::v4i32: 4096 case MVT::v8i16: 4097 case MVT::v16i8: 4098 case MVT::v2f64: 4099 case MVT::v2i64: 4100 case MVT::v1i128: 4101 case MVT::f128: 4102 if (!Subtarget.hasQPX()) { 4103 // These can be scalar arguments or elements of a vector array type 4104 // passed directly. The latter are used to implement ELFv2 homogenous 4105 // vector aggregates. 4106 if (VR_idx != Num_VR_Regs) { 4107 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4108 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4109 ++VR_idx; 4110 } else { 4111 if (CallConv == CallingConv::Fast) 4112 ComputeArgOffset(); 4113 needsLoad = true; 4114 } 4115 if (CallConv != CallingConv::Fast || needsLoad) 4116 ArgOffset += 16; 4117 break; 4118 } // not QPX 4119 4120 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4121 "Invalid QPX parameter type"); 4122 LLVM_FALLTHROUGH; 4123 4124 case MVT::v4f64: 4125 case MVT::v4i1: 4126 // QPX vectors are treated like their scalar floating-point subregisters 4127 // (except that they're larger). 4128 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4129 if (QFPR_idx != Num_QFPR_Regs) { 4130 const TargetRegisterClass *RC; 4131 switch (ObjectVT.getSimpleVT().SimpleTy) { 4132 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4133 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4134 default: RC = &PPC::QBRCRegClass; break; 4135 } 4136 4137 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4138 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4139 ++QFPR_idx; 4140 } else { 4141 if (CallConv == CallingConv::Fast) 4142 ComputeArgOffset(); 4143 needsLoad = true; 4144 } 4145 if (CallConv != CallingConv::Fast || needsLoad) 4146 ArgOffset += Sz; 4147 break; 4148 } 4149 4150 // We need to load the argument to a virtual register if we determined 4151 // above that we ran out of physical registers of the appropriate type. 4152 if (needsLoad) { 4153 if (ObjSize < ArgSize && !isLittleEndian) 4154 CurArgOffset += ArgSize - ObjSize; 4155 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4156 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4157 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4158 } 4159 4160 InVals.push_back(ArgVal); 4161 } 4162 4163 // Area that is at least reserved in the caller of this function. 4164 unsigned MinReservedArea; 4165 if (HasParameterArea) 4166 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4167 else 4168 MinReservedArea = LinkageSize; 4169 4170 // Set the size that is at least reserved in caller of this function. Tail 4171 // call optimized functions' reserved stack space needs to be aligned so that 4172 // taking the difference between two stack areas will result in an aligned 4173 // stack. 4174 MinReservedArea = 4175 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4176 FuncInfo->setMinReservedArea(MinReservedArea); 4177 4178 // If the function takes variable number of arguments, make a frame index for 4179 // the start of the first vararg value... for expansion of llvm.va_start. 4180 if (isVarArg) { 4181 int Depth = ArgOffset; 4182 4183 FuncInfo->setVarArgsFrameIndex( 4184 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4185 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4186 4187 // If this function is vararg, store any remaining integer argument regs 4188 // to their spots on the stack so that they may be loaded by dereferencing 4189 // the result of va_next. 4190 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4191 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4192 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4193 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4194 SDValue Store = 4195 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4196 MemOps.push_back(Store); 4197 // Increment the address by four for the next argument to store 4198 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4199 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4200 } 4201 } 4202 4203 if (!MemOps.empty()) 4204 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4205 4206 return Chain; 4207 } 4208 4209 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4210 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4211 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4212 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4213 // TODO: add description of PPC stack frame format, or at least some docs. 4214 // 4215 MachineFunction &MF = DAG.getMachineFunction(); 4216 MachineFrameInfo &MFI = MF.getFrameInfo(); 4217 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4218 4219 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4220 bool isPPC64 = PtrVT == MVT::i64; 4221 // Potential tail calls could cause overwriting of argument stack slots. 4222 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4223 (CallConv == CallingConv::Fast)); 4224 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4225 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4226 unsigned ArgOffset = LinkageSize; 4227 // Area that is at least reserved in caller of this function. 4228 unsigned MinReservedArea = ArgOffset; 4229 4230 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4231 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4232 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4233 }; 4234 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4235 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4236 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4237 }; 4238 static const MCPhysReg VR[] = { 4239 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4240 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4241 }; 4242 4243 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4244 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4245 const unsigned Num_VR_Regs = array_lengthof( VR); 4246 4247 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4248 4249 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4250 4251 // In 32-bit non-varargs functions, the stack space for vectors is after the 4252 // stack space for non-vectors. We do not use this space unless we have 4253 // too many vectors to fit in registers, something that only occurs in 4254 // constructed examples:), but we have to walk the arglist to figure 4255 // that out...for the pathological case, compute VecArgOffset as the 4256 // start of the vector parameter area. Computing VecArgOffset is the 4257 // entire point of the following loop. 4258 unsigned VecArgOffset = ArgOffset; 4259 if (!isVarArg && !isPPC64) { 4260 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4261 ++ArgNo) { 4262 EVT ObjectVT = Ins[ArgNo].VT; 4263 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4264 4265 if (Flags.isByVal()) { 4266 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4267 unsigned ObjSize = Flags.getByValSize(); 4268 unsigned ArgSize = 4269 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4270 VecArgOffset += ArgSize; 4271 continue; 4272 } 4273 4274 switch(ObjectVT.getSimpleVT().SimpleTy) { 4275 default: llvm_unreachable("Unhandled argument type!"); 4276 case MVT::i1: 4277 case MVT::i32: 4278 case MVT::f32: 4279 VecArgOffset += 4; 4280 break; 4281 case MVT::i64: // PPC64 4282 case MVT::f64: 4283 // FIXME: We are guaranteed to be !isPPC64 at this point. 4284 // Does MVT::i64 apply? 4285 VecArgOffset += 8; 4286 break; 4287 case MVT::v4f32: 4288 case MVT::v4i32: 4289 case MVT::v8i16: 4290 case MVT::v16i8: 4291 // Nothing to do, we're only looking at Nonvector args here. 4292 break; 4293 } 4294 } 4295 } 4296 // We've found where the vector parameter area in memory is. Skip the 4297 // first 12 parameters; these don't use that memory. 4298 VecArgOffset = ((VecArgOffset+15)/16)*16; 4299 VecArgOffset += 12*16; 4300 4301 // Add DAG nodes to load the arguments or copy them out of registers. On 4302 // entry to a function on PPC, the arguments start after the linkage area, 4303 // although the first ones are often in registers. 4304 4305 SmallVector<SDValue, 8> MemOps; 4306 unsigned nAltivecParamsAtEnd = 0; 4307 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4308 unsigned CurArgIdx = 0; 4309 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4310 SDValue ArgVal; 4311 bool needsLoad = false; 4312 EVT ObjectVT = Ins[ArgNo].VT; 4313 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4314 unsigned ArgSize = ObjSize; 4315 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4316 if (Ins[ArgNo].isOrigArg()) { 4317 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4318 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4319 } 4320 unsigned CurArgOffset = ArgOffset; 4321 4322 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4323 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4324 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4325 if (isVarArg || isPPC64) { 4326 MinReservedArea = ((MinReservedArea+15)/16)*16; 4327 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4328 Flags, 4329 PtrByteSize); 4330 } else nAltivecParamsAtEnd++; 4331 } else 4332 // Calculate min reserved area. 4333 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4334 Flags, 4335 PtrByteSize); 4336 4337 // FIXME the codegen can be much improved in some cases. 4338 // We do not have to keep everything in memory. 4339 if (Flags.isByVal()) { 4340 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4341 4342 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4343 ObjSize = Flags.getByValSize(); 4344 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4345 // Objects of size 1 and 2 are right justified, everything else is 4346 // left justified. This means the memory address is adjusted forwards. 4347 if (ObjSize==1 || ObjSize==2) { 4348 CurArgOffset = CurArgOffset + (4 - ObjSize); 4349 } 4350 // The value of the object is its address. 4351 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4352 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4353 InVals.push_back(FIN); 4354 if (ObjSize==1 || ObjSize==2) { 4355 if (GPR_idx != Num_GPR_Regs) { 4356 unsigned VReg; 4357 if (isPPC64) 4358 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4359 else 4360 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4361 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4362 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4363 SDValue Store = 4364 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4365 MachinePointerInfo(&*FuncArg), ObjType); 4366 MemOps.push_back(Store); 4367 ++GPR_idx; 4368 } 4369 4370 ArgOffset += PtrByteSize; 4371 4372 continue; 4373 } 4374 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4375 // Store whatever pieces of the object are in registers 4376 // to memory. ArgOffset will be the address of the beginning 4377 // of the object. 4378 if (GPR_idx != Num_GPR_Regs) { 4379 unsigned VReg; 4380 if (isPPC64) 4381 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4382 else 4383 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4384 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4385 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4386 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4387 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4388 MachinePointerInfo(&*FuncArg, j)); 4389 MemOps.push_back(Store); 4390 ++GPR_idx; 4391 ArgOffset += PtrByteSize; 4392 } else { 4393 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4394 break; 4395 } 4396 } 4397 continue; 4398 } 4399 4400 switch (ObjectVT.getSimpleVT().SimpleTy) { 4401 default: llvm_unreachable("Unhandled argument type!"); 4402 case MVT::i1: 4403 case MVT::i32: 4404 if (!isPPC64) { 4405 if (GPR_idx != Num_GPR_Regs) { 4406 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4407 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4408 4409 if (ObjectVT == MVT::i1) 4410 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4411 4412 ++GPR_idx; 4413 } else { 4414 needsLoad = true; 4415 ArgSize = PtrByteSize; 4416 } 4417 // All int arguments reserve stack space in the Darwin ABI. 4418 ArgOffset += PtrByteSize; 4419 break; 4420 } 4421 LLVM_FALLTHROUGH; 4422 case MVT::i64: // PPC64 4423 if (GPR_idx != Num_GPR_Regs) { 4424 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4425 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4426 4427 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4428 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4429 // value to MVT::i64 and then truncate to the correct register size. 4430 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4431 4432 ++GPR_idx; 4433 } else { 4434 needsLoad = true; 4435 ArgSize = PtrByteSize; 4436 } 4437 // All int arguments reserve stack space in the Darwin ABI. 4438 ArgOffset += 8; 4439 break; 4440 4441 case MVT::f32: 4442 case MVT::f64: 4443 // Every 4 bytes of argument space consumes one of the GPRs available for 4444 // argument passing. 4445 if (GPR_idx != Num_GPR_Regs) { 4446 ++GPR_idx; 4447 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4448 ++GPR_idx; 4449 } 4450 if (FPR_idx != Num_FPR_Regs) { 4451 unsigned VReg; 4452 4453 if (ObjectVT == MVT::f32) 4454 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4455 else 4456 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4457 4458 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4459 ++FPR_idx; 4460 } else { 4461 needsLoad = true; 4462 } 4463 4464 // All FP arguments reserve stack space in the Darwin ABI. 4465 ArgOffset += isPPC64 ? 8 : ObjSize; 4466 break; 4467 case MVT::v4f32: 4468 case MVT::v4i32: 4469 case MVT::v8i16: 4470 case MVT::v16i8: 4471 // Note that vector arguments in registers don't reserve stack space, 4472 // except in varargs functions. 4473 if (VR_idx != Num_VR_Regs) { 4474 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4475 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4476 if (isVarArg) { 4477 while ((ArgOffset % 16) != 0) { 4478 ArgOffset += PtrByteSize; 4479 if (GPR_idx != Num_GPR_Regs) 4480 GPR_idx++; 4481 } 4482 ArgOffset += 16; 4483 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4484 } 4485 ++VR_idx; 4486 } else { 4487 if (!isVarArg && !isPPC64) { 4488 // Vectors go after all the nonvectors. 4489 CurArgOffset = VecArgOffset; 4490 VecArgOffset += 16; 4491 } else { 4492 // Vectors are aligned. 4493 ArgOffset = ((ArgOffset+15)/16)*16; 4494 CurArgOffset = ArgOffset; 4495 ArgOffset += 16; 4496 } 4497 needsLoad = true; 4498 } 4499 break; 4500 } 4501 4502 // We need to load the argument to a virtual register if we determined above 4503 // that we ran out of physical registers of the appropriate type. 4504 if (needsLoad) { 4505 int FI = MFI.CreateFixedObject(ObjSize, 4506 CurArgOffset + (ArgSize - ObjSize), 4507 isImmutable); 4508 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4509 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4510 } 4511 4512 InVals.push_back(ArgVal); 4513 } 4514 4515 // Allow for Altivec parameters at the end, if needed. 4516 if (nAltivecParamsAtEnd) { 4517 MinReservedArea = ((MinReservedArea+15)/16)*16; 4518 MinReservedArea += 16*nAltivecParamsAtEnd; 4519 } 4520 4521 // Area that is at least reserved in the caller of this function. 4522 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4523 4524 // Set the size that is at least reserved in caller of this function. Tail 4525 // call optimized functions' reserved stack space needs to be aligned so that 4526 // taking the difference between two stack areas will result in an aligned 4527 // stack. 4528 MinReservedArea = 4529 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4530 FuncInfo->setMinReservedArea(MinReservedArea); 4531 4532 // If the function takes variable number of arguments, make a frame index for 4533 // the start of the first vararg value... for expansion of llvm.va_start. 4534 if (isVarArg) { 4535 int Depth = ArgOffset; 4536 4537 FuncInfo->setVarArgsFrameIndex( 4538 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4539 Depth, true)); 4540 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4541 4542 // If this function is vararg, store any remaining integer argument regs 4543 // to their spots on the stack so that they may be loaded by dereferencing 4544 // the result of va_next. 4545 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4546 unsigned VReg; 4547 4548 if (isPPC64) 4549 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4550 else 4551 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4552 4553 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4554 SDValue Store = 4555 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4556 MemOps.push_back(Store); 4557 // Increment the address by four for the next argument to store 4558 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4559 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4560 } 4561 } 4562 4563 if (!MemOps.empty()) 4564 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4565 4566 return Chain; 4567 } 4568 4569 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4570 /// adjusted to accommodate the arguments for the tailcall. 4571 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4572 unsigned ParamSize) { 4573 4574 if (!isTailCall) return 0; 4575 4576 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4577 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4578 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4579 // Remember only if the new adjustment is bigger. 4580 if (SPDiff < FI->getTailCallSPDelta()) 4581 FI->setTailCallSPDelta(SPDiff); 4582 4583 return SPDiff; 4584 } 4585 4586 static bool isFunctionGlobalAddress(SDValue Callee); 4587 4588 static bool 4589 callsShareTOCBase(const Function *Caller, SDValue Callee, 4590 const TargetMachine &TM) { 4591 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4592 // don't have enough information to determine if the caller and calle share 4593 // the same TOC base, so we have to pessimistically assume they don't for 4594 // correctness. 4595 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4596 if (!G) 4597 return false; 4598 4599 const GlobalValue *GV = G->getGlobal(); 4600 // The medium and large code models are expected to provide a sufficiently 4601 // large TOC to provide all data addressing needs of a module with a 4602 // single TOC. Since each module will be addressed with a single TOC then we 4603 // only need to check that caller and callee don't cross dso boundaries. 4604 if (CodeModel::Medium == TM.getCodeModel() || 4605 CodeModel::Large == TM.getCodeModel()) 4606 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4607 4608 // Otherwise we need to ensure callee and caller are in the same section, 4609 // since the linker may allocate multiple TOCs, and we don't know which 4610 // sections will belong to the same TOC base. 4611 4612 if (!GV->isStrongDefinitionForLinker()) 4613 return false; 4614 4615 // Any explicitly-specified sections and section prefixes must also match. 4616 // Also, if we're using -ffunction-sections, then each function is always in 4617 // a different section (the same is true for COMDAT functions). 4618 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4619 GV->getSection() != Caller->getSection()) 4620 return false; 4621 if (const auto *F = dyn_cast<Function>(GV)) { 4622 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4623 return false; 4624 } 4625 4626 // If the callee might be interposed, then we can't assume the ultimate call 4627 // target will be in the same section. Even in cases where we can assume that 4628 // interposition won't happen, in any case where the linker might insert a 4629 // stub to allow for interposition, we must generate code as though 4630 // interposition might occur. To understand why this matters, consider a 4631 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4632 // in the same section, but a is in a different module (i.e. has a different 4633 // TOC base pointer). If the linker allows for interposition between b and c, 4634 // then it will generate a stub for the call edge between b and c which will 4635 // save the TOC pointer into the designated stack slot allocated by b. If we 4636 // return true here, and therefore allow a tail call between b and c, that 4637 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4638 // pointer into the stack slot allocated by a (where the a -> b stub saved 4639 // a's TOC base pointer). If we're not considering a tail call, but rather, 4640 // whether a nop is needed after the call instruction in b, because the linker 4641 // will insert a stub, it might complain about a missing nop if we omit it 4642 // (although many don't complain in this case). 4643 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4644 return false; 4645 4646 return true; 4647 } 4648 4649 static bool 4650 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4651 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4652 assert(Subtarget.is64BitELFABI()); 4653 4654 const unsigned PtrByteSize = 8; 4655 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4656 4657 static const MCPhysReg GPR[] = { 4658 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4659 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4660 }; 4661 static const MCPhysReg VR[] = { 4662 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4663 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4664 }; 4665 4666 const unsigned NumGPRs = array_lengthof(GPR); 4667 const unsigned NumFPRs = 13; 4668 const unsigned NumVRs = array_lengthof(VR); 4669 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4670 4671 unsigned NumBytes = LinkageSize; 4672 unsigned AvailableFPRs = NumFPRs; 4673 unsigned AvailableVRs = NumVRs; 4674 4675 for (const ISD::OutputArg& Param : Outs) { 4676 if (Param.Flags.isNest()) continue; 4677 4678 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4679 PtrByteSize, LinkageSize, ParamAreaSize, 4680 NumBytes, AvailableFPRs, AvailableVRs, 4681 Subtarget.hasQPX())) 4682 return true; 4683 } 4684 return false; 4685 } 4686 4687 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4688 if (CB.arg_size() != CallerFn->arg_size()) 4689 return false; 4690 4691 auto CalleeArgIter = CB.arg_begin(); 4692 auto CalleeArgEnd = CB.arg_end(); 4693 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4694 4695 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4696 const Value* CalleeArg = *CalleeArgIter; 4697 const Value* CallerArg = &(*CallerArgIter); 4698 if (CalleeArg == CallerArg) 4699 continue; 4700 4701 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4702 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4703 // } 4704 // 1st argument of callee is undef and has the same type as caller. 4705 if (CalleeArg->getType() == CallerArg->getType() && 4706 isa<UndefValue>(CalleeArg)) 4707 continue; 4708 4709 return false; 4710 } 4711 4712 return true; 4713 } 4714 4715 // Returns true if TCO is possible between the callers and callees 4716 // calling conventions. 4717 static bool 4718 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4719 CallingConv::ID CalleeCC) { 4720 // Tail calls are possible with fastcc and ccc. 4721 auto isTailCallableCC = [] (CallingConv::ID CC){ 4722 return CC == CallingConv::C || CC == CallingConv::Fast; 4723 }; 4724 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4725 return false; 4726 4727 // We can safely tail call both fastcc and ccc callees from a c calling 4728 // convention caller. If the caller is fastcc, we may have less stack space 4729 // than a non-fastcc caller with the same signature so disable tail-calls in 4730 // that case. 4731 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4732 } 4733 4734 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4735 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4736 const SmallVectorImpl<ISD::OutputArg> &Outs, 4737 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4738 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4739 4740 // FIXME: Tail calls are currently disabled when using PC Relative addressing. 4741 // The issue is that PC Relative is only partially implemented and so there 4742 // is currently a mix of functions that require the TOC and functions that do 4743 // not require it. If we have A calls B calls C and both A and B require the 4744 // TOC and C does not and is marked as clobbering R2 then it is not safe for 4745 // B to tail call C. Since we do not have the information of whether or not 4746 // a funciton needs to use the TOC here in this function we need to be 4747 // conservatively safe and disable all tail calls for now. 4748 if (Subtarget.isUsingPCRelativeCalls()) return false; 4749 4750 if (DisableSCO && !TailCallOpt) return false; 4751 4752 // Variadic argument functions are not supported. 4753 if (isVarArg) return false; 4754 4755 auto &Caller = DAG.getMachineFunction().getFunction(); 4756 // Check that the calling conventions are compatible for tco. 4757 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4758 return false; 4759 4760 // Caller contains any byval parameter is not supported. 4761 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4762 return false; 4763 4764 // Callee contains any byval parameter is not supported, too. 4765 // Note: This is a quick work around, because in some cases, e.g. 4766 // caller's stack size > callee's stack size, we are still able to apply 4767 // sibling call optimization. For example, gcc is able to do SCO for caller1 4768 // in the following example, but not for caller2. 4769 // struct test { 4770 // long int a; 4771 // char ary[56]; 4772 // } gTest; 4773 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4774 // b->a = v.a; 4775 // return 0; 4776 // } 4777 // void caller1(struct test a, struct test c, struct test *b) { 4778 // callee(gTest, b); } 4779 // void caller2(struct test *b) { callee(gTest, b); } 4780 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4781 return false; 4782 4783 // If callee and caller use different calling conventions, we cannot pass 4784 // parameters on stack since offsets for the parameter area may be different. 4785 if (Caller.getCallingConv() != CalleeCC && 4786 needStackSlotPassParameters(Subtarget, Outs)) 4787 return false; 4788 4789 // No TCO/SCO on indirect call because Caller have to restore its TOC 4790 if (!isFunctionGlobalAddress(Callee) && 4791 !isa<ExternalSymbolSDNode>(Callee)) 4792 return false; 4793 4794 // If the caller and callee potentially have different TOC bases then we 4795 // cannot tail call since we need to restore the TOC pointer after the call. 4796 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4797 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4798 return false; 4799 4800 // TCO allows altering callee ABI, so we don't have to check further. 4801 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4802 return true; 4803 4804 if (DisableSCO) return false; 4805 4806 // If callee use the same argument list that caller is using, then we can 4807 // apply SCO on this case. If it is not, then we need to check if callee needs 4808 // stack for passing arguments. 4809 assert(CB && "Expected to have a CallBase!"); 4810 if (!hasSameArgumentList(&Caller, *CB) && 4811 needStackSlotPassParameters(Subtarget, Outs)) { 4812 return false; 4813 } 4814 4815 return true; 4816 } 4817 4818 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4819 /// for tail call optimization. Targets which want to do tail call 4820 /// optimization should implement this function. 4821 bool 4822 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4823 CallingConv::ID CalleeCC, 4824 bool isVarArg, 4825 const SmallVectorImpl<ISD::InputArg> &Ins, 4826 SelectionDAG& DAG) const { 4827 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4828 return false; 4829 4830 // Variable argument functions are not supported. 4831 if (isVarArg) 4832 return false; 4833 4834 MachineFunction &MF = DAG.getMachineFunction(); 4835 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4836 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4837 // Functions containing by val parameters are not supported. 4838 for (unsigned i = 0; i != Ins.size(); i++) { 4839 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4840 if (Flags.isByVal()) return false; 4841 } 4842 4843 // Non-PIC/GOT tail calls are supported. 4844 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4845 return true; 4846 4847 // At the moment we can only do local tail calls (in same module, hidden 4848 // or protected) if we are generating PIC. 4849 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4850 return G->getGlobal()->hasHiddenVisibility() 4851 || G->getGlobal()->hasProtectedVisibility(); 4852 } 4853 4854 return false; 4855 } 4856 4857 /// isCallCompatibleAddress - Return the immediate to use if the specified 4858 /// 32-bit value is representable in the immediate field of a BxA instruction. 4859 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4860 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4861 if (!C) return nullptr; 4862 4863 int Addr = C->getZExtValue(); 4864 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4865 SignExtend32<26>(Addr) != Addr) 4866 return nullptr; // Top 6 bits have to be sext of immediate. 4867 4868 return DAG 4869 .getConstant( 4870 (int)C->getZExtValue() >> 2, SDLoc(Op), 4871 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4872 .getNode(); 4873 } 4874 4875 namespace { 4876 4877 struct TailCallArgumentInfo { 4878 SDValue Arg; 4879 SDValue FrameIdxOp; 4880 int FrameIdx = 0; 4881 4882 TailCallArgumentInfo() = default; 4883 }; 4884 4885 } // end anonymous namespace 4886 4887 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4888 static void StoreTailCallArgumentsToStackSlot( 4889 SelectionDAG &DAG, SDValue Chain, 4890 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4891 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4892 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4893 SDValue Arg = TailCallArgs[i].Arg; 4894 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4895 int FI = TailCallArgs[i].FrameIdx; 4896 // Store relative to framepointer. 4897 MemOpChains.push_back(DAG.getStore( 4898 Chain, dl, Arg, FIN, 4899 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4900 } 4901 } 4902 4903 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4904 /// the appropriate stack slot for the tail call optimized function call. 4905 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4906 SDValue OldRetAddr, SDValue OldFP, 4907 int SPDiff, const SDLoc &dl) { 4908 if (SPDiff) { 4909 // Calculate the new stack slot for the return address. 4910 MachineFunction &MF = DAG.getMachineFunction(); 4911 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4912 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4913 bool isPPC64 = Subtarget.isPPC64(); 4914 int SlotSize = isPPC64 ? 8 : 4; 4915 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4916 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4917 NewRetAddrLoc, true); 4918 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4919 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4920 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4921 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4922 } 4923 return Chain; 4924 } 4925 4926 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4927 /// the position of the argument. 4928 static void 4929 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4930 SDValue Arg, int SPDiff, unsigned ArgOffset, 4931 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4932 int Offset = ArgOffset + SPDiff; 4933 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4934 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4935 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4936 SDValue FIN = DAG.getFrameIndex(FI, VT); 4937 TailCallArgumentInfo Info; 4938 Info.Arg = Arg; 4939 Info.FrameIdxOp = FIN; 4940 Info.FrameIdx = FI; 4941 TailCallArguments.push_back(Info); 4942 } 4943 4944 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4945 /// stack slot. Returns the chain as result and the loaded frame pointers in 4946 /// LROpOut/FPOpout. Used when tail calling. 4947 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4948 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4949 SDValue &FPOpOut, const SDLoc &dl) const { 4950 if (SPDiff) { 4951 // Load the LR and FP stack slot for later adjusting. 4952 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4953 LROpOut = getReturnAddrFrameIndex(DAG); 4954 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4955 Chain = SDValue(LROpOut.getNode(), 1); 4956 } 4957 return Chain; 4958 } 4959 4960 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4961 /// by "Src" to address "Dst" of size "Size". Alignment information is 4962 /// specified by the specific parameter attribute. The copy will be passed as 4963 /// a byval function parameter. 4964 /// Sometimes what we are copying is the end of a larger object, the part that 4965 /// does not fit in registers. 4966 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4967 SDValue Chain, ISD::ArgFlagsTy Flags, 4968 SelectionDAG &DAG, const SDLoc &dl) { 4969 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4970 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 4971 Flags.getNonZeroByValAlign(), false, false, false, 4972 MachinePointerInfo(), MachinePointerInfo()); 4973 } 4974 4975 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4976 /// tail calls. 4977 static void LowerMemOpCallTo( 4978 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4979 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4980 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4981 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4982 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4983 if (!isTailCall) { 4984 if (isVector) { 4985 SDValue StackPtr; 4986 if (isPPC64) 4987 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4988 else 4989 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4990 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4991 DAG.getConstant(ArgOffset, dl, PtrVT)); 4992 } 4993 MemOpChains.push_back( 4994 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4995 // Calculate and remember argument location. 4996 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4997 TailCallArguments); 4998 } 4999 5000 static void 5001 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5002 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5003 SDValue FPOp, 5004 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5005 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5006 // might overwrite each other in case of tail call optimization. 5007 SmallVector<SDValue, 8> MemOpChains2; 5008 // Do not flag preceding copytoreg stuff together with the following stuff. 5009 InFlag = SDValue(); 5010 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5011 MemOpChains2, dl); 5012 if (!MemOpChains2.empty()) 5013 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5014 5015 // Store the return address to the appropriate stack slot. 5016 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5017 5018 // Emit callseq_end just before tailcall node. 5019 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5020 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5021 InFlag = Chain.getValue(1); 5022 } 5023 5024 // Is this global address that of a function that can be called by name? (as 5025 // opposed to something that must hold a descriptor for an indirect call). 5026 static bool isFunctionGlobalAddress(SDValue Callee) { 5027 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5028 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5029 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5030 return false; 5031 5032 return G->getGlobal()->getValueType()->isFunctionTy(); 5033 } 5034 5035 return false; 5036 } 5037 5038 SDValue PPCTargetLowering::LowerCallResult( 5039 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5040 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5041 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5042 SmallVector<CCValAssign, 16> RVLocs; 5043 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5044 *DAG.getContext()); 5045 5046 CCRetInfo.AnalyzeCallResult( 5047 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5048 ? RetCC_PPC_Cold 5049 : RetCC_PPC); 5050 5051 // Copy all of the result registers out of their specified physreg. 5052 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5053 CCValAssign &VA = RVLocs[i]; 5054 assert(VA.isRegLoc() && "Can only return in registers!"); 5055 5056 SDValue Val; 5057 5058 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5059 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5060 InFlag); 5061 Chain = Lo.getValue(1); 5062 InFlag = Lo.getValue(2); 5063 VA = RVLocs[++i]; // skip ahead to next loc 5064 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5065 InFlag); 5066 Chain = Hi.getValue(1); 5067 InFlag = Hi.getValue(2); 5068 if (!Subtarget.isLittleEndian()) 5069 std::swap (Lo, Hi); 5070 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5071 } else { 5072 Val = DAG.getCopyFromReg(Chain, dl, 5073 VA.getLocReg(), VA.getLocVT(), InFlag); 5074 Chain = Val.getValue(1); 5075 InFlag = Val.getValue(2); 5076 } 5077 5078 switch (VA.getLocInfo()) { 5079 default: llvm_unreachable("Unknown loc info!"); 5080 case CCValAssign::Full: break; 5081 case CCValAssign::AExt: 5082 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5083 break; 5084 case CCValAssign::ZExt: 5085 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5086 DAG.getValueType(VA.getValVT())); 5087 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5088 break; 5089 case CCValAssign::SExt: 5090 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5091 DAG.getValueType(VA.getValVT())); 5092 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5093 break; 5094 } 5095 5096 InVals.push_back(Val); 5097 } 5098 5099 return Chain; 5100 } 5101 5102 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5103 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5104 // PatchPoint calls are not indirect. 5105 if (isPatchPoint) 5106 return false; 5107 5108 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5109 return false; 5110 5111 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5112 // becuase the immediate function pointer points to a descriptor instead of 5113 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5114 // pointer immediate points to the global entry point, while the BLA would 5115 // need to jump to the local entry point (see rL211174). 5116 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5117 isBLACompatibleAddress(Callee, DAG)) 5118 return false; 5119 5120 return true; 5121 } 5122 5123 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5124 const Function &Caller, 5125 const SDValue &Callee, 5126 const PPCSubtarget &Subtarget, 5127 const TargetMachine &TM) { 5128 if (CFlags.IsTailCall) 5129 return PPCISD::TC_RETURN; 5130 5131 // This is a call through a function pointer. 5132 if (CFlags.IsIndirect) { 5133 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5134 // indirect calls. The save of the caller's TOC pointer to the stack will be 5135 // inserted into the DAG as part of call lowering. The restore of the TOC 5136 // pointer is modeled by using a pseudo instruction for the call opcode that 5137 // represents the 2 instruction sequence of an indirect branch and link, 5138 // immediately followed by a load of the TOC pointer from the the stack save 5139 // slot into gpr2. 5140 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5141 return PPCISD::BCTRL_LOAD_TOC; 5142 5143 // An indirect call that does not need a TOC restore. 5144 return PPCISD::BCTRL; 5145 } 5146 5147 // FIXME: At this moment indirect calls are treated ahead of the 5148 // PC Relative condition because binaries can still contain a possible 5149 // mix of functions that use a TOC and functions that do not use a TOC. 5150 // Once the PC Relative feature is complete this condition should be moved 5151 // up ahead of the indirect calls and should return a PPCISD::BCTRL for 5152 // that case. 5153 if (Subtarget.isUsingPCRelativeCalls()) { 5154 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5155 return PPCISD::CALL_NOTOC; 5156 } 5157 5158 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5159 // immediately following the call instruction if the caller and callee may 5160 // have different TOC bases. At link time if the linker determines the calls 5161 // may not share a TOC base, the call is redirected to a trampoline inserted 5162 // by the linker. The trampoline will (among other things) save the callers 5163 // TOC pointer at an ABI designated offset in the linkage area and the linker 5164 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5165 // into gpr2. 5166 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5167 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5168 : PPCISD::CALL_NOP; 5169 5170 return PPCISD::CALL; 5171 } 5172 5173 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5174 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5175 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5176 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5177 return SDValue(Dest, 0); 5178 5179 // Returns true if the callee is local, and false otherwise. 5180 auto isLocalCallee = [&]() { 5181 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5182 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5183 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5184 5185 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5186 !dyn_cast_or_null<GlobalIFunc>(GV); 5187 }; 5188 5189 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5190 // a static relocation model causes some versions of GNU LD (2.17.50, at 5191 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5192 // built with secure-PLT. 5193 bool UsePlt = 5194 Subtarget.is32BitELFABI() && !isLocalCallee() && 5195 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5196 5197 // On AIX, direct function calls reference the symbol for the function's 5198 // entry point, which is named by prepending a "." before the function's 5199 // C-linkage name. 5200 const auto getAIXFuncEntryPointSymbolSDNode = 5201 [&](StringRef FuncName, bool IsDeclaration, 5202 const XCOFF::StorageClass &SC) { 5203 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5204 5205 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5206 Context.getOrCreateSymbol(Twine(".") + Twine(FuncName))); 5207 5208 if (IsDeclaration && !S->hasRepresentedCsectSet()) { 5209 // On AIX, an undefined symbol needs to be associated with a 5210 // MCSectionXCOFF to get the correct storage mapping class. 5211 // In this case, XCOFF::XMC_PR. 5212 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5213 S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5214 SectionKind::getMetadata()); 5215 S->setRepresentedCsect(Sec); 5216 } 5217 5218 MVT PtrVT = 5219 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5220 return DAG.getMCSymbol(S, PtrVT); 5221 }; 5222 5223 if (isFunctionGlobalAddress(Callee)) { 5224 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5225 const GlobalValue *GV = G->getGlobal(); 5226 5227 if (!Subtarget.isAIXABI()) 5228 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5229 UsePlt ? PPCII::MO_PLT : 0); 5230 5231 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5232 const GlobalObject *GO = cast<GlobalObject>(GV); 5233 const XCOFF::StorageClass SC = 5234 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5235 return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(), 5236 SC); 5237 } 5238 5239 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5240 const char *SymName = S->getSymbol(); 5241 if (!Subtarget.isAIXABI()) 5242 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5243 UsePlt ? PPCII::MO_PLT : 0); 5244 5245 // If there exists a user-declared function whose name is the same as the 5246 // ExternalSymbol's, then we pick up the user-declared version. 5247 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5248 if (const Function *F = 5249 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) { 5250 const XCOFF::StorageClass SC = 5251 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F); 5252 return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(), 5253 SC); 5254 } 5255 5256 return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT); 5257 } 5258 5259 // No transformation needed. 5260 assert(Callee.getNode() && "What no callee?"); 5261 return Callee; 5262 } 5263 5264 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5265 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5266 "Expected a CALLSEQ_STARTSDNode."); 5267 5268 // The last operand is the chain, except when the node has glue. If the node 5269 // has glue, then the last operand is the glue, and the chain is the second 5270 // last operand. 5271 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5272 if (LastValue.getValueType() != MVT::Glue) 5273 return LastValue; 5274 5275 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5276 } 5277 5278 // Creates the node that moves a functions address into the count register 5279 // to prepare for an indirect call instruction. 5280 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5281 SDValue &Glue, SDValue &Chain, 5282 const SDLoc &dl) { 5283 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5284 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5285 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5286 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5287 // The glue is the second value produced. 5288 Glue = Chain.getValue(1); 5289 } 5290 5291 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5292 SDValue &Glue, SDValue &Chain, 5293 SDValue CallSeqStart, 5294 const CallBase *CB, const SDLoc &dl, 5295 bool hasNest, 5296 const PPCSubtarget &Subtarget) { 5297 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5298 // entry point, but to the function descriptor (the function entry point 5299 // address is part of the function descriptor though). 5300 // The function descriptor is a three doubleword structure with the 5301 // following fields: function entry point, TOC base address and 5302 // environment pointer. 5303 // Thus for a call through a function pointer, the following actions need 5304 // to be performed: 5305 // 1. Save the TOC of the caller in the TOC save area of its stack 5306 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5307 // 2. Load the address of the function entry point from the function 5308 // descriptor. 5309 // 3. Load the TOC of the callee from the function descriptor into r2. 5310 // 4. Load the environment pointer from the function descriptor into 5311 // r11. 5312 // 5. Branch to the function entry point address. 5313 // 6. On return of the callee, the TOC of the caller needs to be 5314 // restored (this is done in FinishCall()). 5315 // 5316 // The loads are scheduled at the beginning of the call sequence, and the 5317 // register copies are flagged together to ensure that no other 5318 // operations can be scheduled in between. E.g. without flagging the 5319 // copies together, a TOC access in the caller could be scheduled between 5320 // the assignment of the callee TOC and the branch to the callee, which leads 5321 // to incorrect code. 5322 5323 // Start by loading the function address from the descriptor. 5324 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5325 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5326 ? (MachineMemOperand::MODereferenceable | 5327 MachineMemOperand::MOInvariant) 5328 : MachineMemOperand::MONone; 5329 5330 MachinePointerInfo MPI(CB ? CB->getCalledValue() : nullptr); 5331 5332 // Registers used in building the DAG. 5333 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5334 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5335 5336 // Offsets of descriptor members. 5337 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5338 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5339 5340 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5341 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5342 5343 // One load for the functions entry point address. 5344 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5345 Alignment, MMOFlags); 5346 5347 // One for loading the TOC anchor for the module that contains the called 5348 // function. 5349 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5350 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5351 SDValue TOCPtr = 5352 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5353 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5354 5355 // One for loading the environment pointer. 5356 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5357 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5358 SDValue LoadEnvPtr = 5359 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5360 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5361 5362 5363 // Then copy the newly loaded TOC anchor to the TOC pointer. 5364 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5365 Chain = TOCVal.getValue(0); 5366 Glue = TOCVal.getValue(1); 5367 5368 // If the function call has an explicit 'nest' parameter, it takes the 5369 // place of the environment pointer. 5370 assert((!hasNest || !Subtarget.isAIXABI()) && 5371 "Nest parameter is not supported on AIX."); 5372 if (!hasNest) { 5373 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5374 Chain = EnvVal.getValue(0); 5375 Glue = EnvVal.getValue(1); 5376 } 5377 5378 // The rest of the indirect call sequence is the same as the non-descriptor 5379 // DAG. 5380 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5381 } 5382 5383 static void 5384 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5385 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5386 SelectionDAG &DAG, 5387 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5388 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5389 const PPCSubtarget &Subtarget) { 5390 const bool IsPPC64 = Subtarget.isPPC64(); 5391 // MVT for a general purpose register. 5392 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5393 5394 // First operand is always the chain. 5395 Ops.push_back(Chain); 5396 5397 // If it's a direct call pass the callee as the second operand. 5398 if (!CFlags.IsIndirect) 5399 Ops.push_back(Callee); 5400 else { 5401 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5402 5403 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5404 // on the stack (this would have been done in `LowerCall_64SVR4` or 5405 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5406 // represents both the indirect branch and a load that restores the TOC 5407 // pointer from the linkage area. The operand for the TOC restore is an add 5408 // of the TOC save offset to the stack pointer. This must be the second 5409 // operand: after the chain input but before any other variadic arguments. 5410 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 5411 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5412 5413 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5414 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5415 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5416 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5417 Ops.push_back(AddTOC); 5418 } 5419 5420 // Add the register used for the environment pointer. 5421 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5422 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5423 RegVT)); 5424 5425 5426 // Add CTR register as callee so a bctr can be emitted later. 5427 if (CFlags.IsTailCall) 5428 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5429 } 5430 5431 // If this is a tail call add stack pointer delta. 5432 if (CFlags.IsTailCall) 5433 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5434 5435 // Add argument registers to the end of the list so that they are known live 5436 // into the call. 5437 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5438 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5439 RegsToPass[i].second.getValueType())); 5440 5441 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5442 // no way to mark dependencies as implicit here. 5443 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5444 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5445 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5446 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5447 5448 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5449 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5450 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5451 5452 // Add a register mask operand representing the call-preserved registers. 5453 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5454 const uint32_t *Mask = 5455 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5456 assert(Mask && "Missing call preserved mask for calling convention"); 5457 Ops.push_back(DAG.getRegisterMask(Mask)); 5458 5459 // If the glue is valid, it is the last operand. 5460 if (Glue.getNode()) 5461 Ops.push_back(Glue); 5462 } 5463 5464 SDValue PPCTargetLowering::FinishCall( 5465 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5466 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5467 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5468 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5469 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5470 5471 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5472 Subtarget.isAIXABI()) 5473 setUsesTOCBasePtr(DAG); 5474 5475 unsigned CallOpc = 5476 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5477 Subtarget, DAG.getTarget()); 5478 5479 if (!CFlags.IsIndirect) 5480 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5481 else if (Subtarget.usesFunctionDescriptors()) 5482 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5483 dl, CFlags.HasNest, Subtarget); 5484 else 5485 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5486 5487 // Build the operand list for the call instruction. 5488 SmallVector<SDValue, 8> Ops; 5489 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5490 SPDiff, Subtarget); 5491 5492 // Emit tail call. 5493 if (CFlags.IsTailCall) { 5494 assert(((Callee.getOpcode() == ISD::Register && 5495 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5496 Callee.getOpcode() == ISD::TargetExternalSymbol || 5497 Callee.getOpcode() == ISD::TargetGlobalAddress || 5498 isa<ConstantSDNode>(Callee)) && 5499 "Expecting a global address, external symbol, absolute value or " 5500 "register"); 5501 assert(CallOpc == PPCISD::TC_RETURN && 5502 "Unexpected call opcode for a tail call."); 5503 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5504 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5505 } 5506 5507 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5508 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5509 Glue = Chain.getValue(1); 5510 5511 // When performing tail call optimization the callee pops its arguments off 5512 // the stack. Account for this here so these bytes can be pushed back on in 5513 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5514 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5515 getTargetMachine().Options.GuaranteedTailCallOpt) 5516 ? NumBytes 5517 : 0; 5518 5519 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5520 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5521 Glue, dl); 5522 Glue = Chain.getValue(1); 5523 5524 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5525 DAG, InVals); 5526 } 5527 5528 SDValue 5529 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5530 SmallVectorImpl<SDValue> &InVals) const { 5531 SelectionDAG &DAG = CLI.DAG; 5532 SDLoc &dl = CLI.DL; 5533 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5534 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5535 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5536 SDValue Chain = CLI.Chain; 5537 SDValue Callee = CLI.Callee; 5538 bool &isTailCall = CLI.IsTailCall; 5539 CallingConv::ID CallConv = CLI.CallConv; 5540 bool isVarArg = CLI.IsVarArg; 5541 bool isPatchPoint = CLI.IsPatchPoint; 5542 const CallBase *CB = CLI.CB; 5543 5544 if (isTailCall) { 5545 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5546 isTailCall = false; 5547 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5548 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5549 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5550 else 5551 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5552 Ins, DAG); 5553 if (isTailCall) { 5554 ++NumTailCalls; 5555 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5556 ++NumSiblingCalls; 5557 5558 assert(isa<GlobalAddressSDNode>(Callee) && 5559 "Callee should be an llvm::Function object."); 5560 LLVM_DEBUG( 5561 const GlobalValue *GV = 5562 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5563 const unsigned Width = 5564 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5565 dbgs() << "TCO caller: " 5566 << left_justify(DAG.getMachineFunction().getName(), Width) 5567 << ", callee linkage: " << GV->getVisibility() << ", " 5568 << GV->getLinkage() << "\n"); 5569 } 5570 } 5571 5572 if (!isTailCall && CB && CB->isMustTailCall()) 5573 report_fatal_error("failed to perform tail call elimination on a call " 5574 "site marked musttail"); 5575 5576 // When long calls (i.e. indirect calls) are always used, calls are always 5577 // made via function pointer. If we have a function name, first translate it 5578 // into a pointer. 5579 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5580 !isTailCall) 5581 Callee = LowerGlobalAddress(Callee, DAG); 5582 5583 CallFlags CFlags( 5584 CallConv, isTailCall, isVarArg, isPatchPoint, 5585 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5586 // hasNest 5587 Subtarget.is64BitELFABI() && 5588 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); })); 5589 5590 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5591 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5592 InVals, CB); 5593 5594 if (Subtarget.isSVR4ABI()) 5595 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5596 InVals, CB); 5597 5598 if (Subtarget.isAIXABI()) 5599 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5600 InVals, CB); 5601 5602 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5603 InVals, CB); 5604 } 5605 5606 SDValue PPCTargetLowering::LowerCall_32SVR4( 5607 SDValue Chain, SDValue Callee, CallFlags CFlags, 5608 const SmallVectorImpl<ISD::OutputArg> &Outs, 5609 const SmallVectorImpl<SDValue> &OutVals, 5610 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5611 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5612 const CallBase *CB) const { 5613 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5614 // of the 32-bit SVR4 ABI stack frame layout. 5615 5616 const CallingConv::ID CallConv = CFlags.CallConv; 5617 const bool IsVarArg = CFlags.IsVarArg; 5618 const bool IsTailCall = CFlags.IsTailCall; 5619 5620 assert((CallConv == CallingConv::C || 5621 CallConv == CallingConv::Cold || 5622 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5623 5624 unsigned PtrByteSize = 4; 5625 5626 MachineFunction &MF = DAG.getMachineFunction(); 5627 5628 // Mark this function as potentially containing a function that contains a 5629 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5630 // and restoring the callers stack pointer in this functions epilog. This is 5631 // done because by tail calling the called function might overwrite the value 5632 // in this function's (MF) stack pointer stack slot 0(SP). 5633 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5634 CallConv == CallingConv::Fast) 5635 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5636 5637 // Count how many bytes are to be pushed on the stack, including the linkage 5638 // area, parameter list area and the part of the local variable space which 5639 // contains copies of aggregates which are passed by value. 5640 5641 // Assign locations to all of the outgoing arguments. 5642 SmallVector<CCValAssign, 16> ArgLocs; 5643 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5644 5645 // Reserve space for the linkage area on the stack. 5646 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5647 PtrByteSize); 5648 if (useSoftFloat()) 5649 CCInfo.PreAnalyzeCallOperands(Outs); 5650 5651 if (IsVarArg) { 5652 // Handle fixed and variable vector arguments differently. 5653 // Fixed vector arguments go into registers as long as registers are 5654 // available. Variable vector arguments always go into memory. 5655 unsigned NumArgs = Outs.size(); 5656 5657 for (unsigned i = 0; i != NumArgs; ++i) { 5658 MVT ArgVT = Outs[i].VT; 5659 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5660 bool Result; 5661 5662 if (Outs[i].IsFixed) { 5663 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5664 CCInfo); 5665 } else { 5666 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5667 ArgFlags, CCInfo); 5668 } 5669 5670 if (Result) { 5671 #ifndef NDEBUG 5672 errs() << "Call operand #" << i << " has unhandled type " 5673 << EVT(ArgVT).getEVTString() << "\n"; 5674 #endif 5675 llvm_unreachable(nullptr); 5676 } 5677 } 5678 } else { 5679 // All arguments are treated the same. 5680 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5681 } 5682 CCInfo.clearWasPPCF128(); 5683 5684 // Assign locations to all of the outgoing aggregate by value arguments. 5685 SmallVector<CCValAssign, 16> ByValArgLocs; 5686 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5687 5688 // Reserve stack space for the allocations in CCInfo. 5689 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5690 5691 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5692 5693 // Size of the linkage area, parameter list area and the part of the local 5694 // space variable where copies of aggregates which are passed by value are 5695 // stored. 5696 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5697 5698 // Calculate by how many bytes the stack has to be adjusted in case of tail 5699 // call optimization. 5700 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5701 5702 // Adjust the stack pointer for the new arguments... 5703 // These operations are automatically eliminated by the prolog/epilog pass 5704 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5705 SDValue CallSeqStart = Chain; 5706 5707 // Load the return address and frame pointer so it can be moved somewhere else 5708 // later. 5709 SDValue LROp, FPOp; 5710 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5711 5712 // Set up a copy of the stack pointer for use loading and storing any 5713 // arguments that may not fit in the registers available for argument 5714 // passing. 5715 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5716 5717 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5718 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5719 SmallVector<SDValue, 8> MemOpChains; 5720 5721 bool seenFloatArg = false; 5722 // Walk the register/memloc assignments, inserting copies/loads. 5723 // i - Tracks the index into the list of registers allocated for the call 5724 // RealArgIdx - Tracks the index into the list of actual function arguments 5725 // j - Tracks the index into the list of byval arguments 5726 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5727 i != e; 5728 ++i, ++RealArgIdx) { 5729 CCValAssign &VA = ArgLocs[i]; 5730 SDValue Arg = OutVals[RealArgIdx]; 5731 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5732 5733 if (Flags.isByVal()) { 5734 // Argument is an aggregate which is passed by value, thus we need to 5735 // create a copy of it in the local variable space of the current stack 5736 // frame (which is the stack frame of the caller) and pass the address of 5737 // this copy to the callee. 5738 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5739 CCValAssign &ByValVA = ByValArgLocs[j++]; 5740 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5741 5742 // Memory reserved in the local variable space of the callers stack frame. 5743 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5744 5745 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5746 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5747 StackPtr, PtrOff); 5748 5749 // Create a copy of the argument in the local area of the current 5750 // stack frame. 5751 SDValue MemcpyCall = 5752 CreateCopyOfByValArgument(Arg, PtrOff, 5753 CallSeqStart.getNode()->getOperand(0), 5754 Flags, DAG, dl); 5755 5756 // This must go outside the CALLSEQ_START..END. 5757 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5758 SDLoc(MemcpyCall)); 5759 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5760 NewCallSeqStart.getNode()); 5761 Chain = CallSeqStart = NewCallSeqStart; 5762 5763 // Pass the address of the aggregate copy on the stack either in a 5764 // physical register or in the parameter list area of the current stack 5765 // frame to the callee. 5766 Arg = PtrOff; 5767 } 5768 5769 // When useCRBits() is true, there can be i1 arguments. 5770 // It is because getRegisterType(MVT::i1) => MVT::i1, 5771 // and for other integer types getRegisterType() => MVT::i32. 5772 // Extend i1 and ensure callee will get i32. 5773 if (Arg.getValueType() == MVT::i1) 5774 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5775 dl, MVT::i32, Arg); 5776 5777 if (VA.isRegLoc()) { 5778 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5779 // Put argument in a physical register. 5780 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5781 bool IsLE = Subtarget.isLittleEndian(); 5782 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5783 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5784 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5785 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5786 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5787 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5788 SVal.getValue(0))); 5789 } else 5790 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5791 } else { 5792 // Put argument in the parameter list area of the current stack frame. 5793 assert(VA.isMemLoc()); 5794 unsigned LocMemOffset = VA.getLocMemOffset(); 5795 5796 if (!IsTailCall) { 5797 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5798 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5799 StackPtr, PtrOff); 5800 5801 MemOpChains.push_back( 5802 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5803 } else { 5804 // Calculate and remember argument location. 5805 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5806 TailCallArguments); 5807 } 5808 } 5809 } 5810 5811 if (!MemOpChains.empty()) 5812 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5813 5814 // Build a sequence of copy-to-reg nodes chained together with token chain 5815 // and flag operands which copy the outgoing args into the appropriate regs. 5816 SDValue InFlag; 5817 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5818 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5819 RegsToPass[i].second, InFlag); 5820 InFlag = Chain.getValue(1); 5821 } 5822 5823 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5824 // registers. 5825 if (IsVarArg) { 5826 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5827 SDValue Ops[] = { Chain, InFlag }; 5828 5829 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5830 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5831 5832 InFlag = Chain.getValue(1); 5833 } 5834 5835 if (IsTailCall) 5836 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5837 TailCallArguments); 5838 5839 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5840 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5841 } 5842 5843 // Copy an argument into memory, being careful to do this outside the 5844 // call sequence for the call to which the argument belongs. 5845 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5846 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5847 SelectionDAG &DAG, const SDLoc &dl) const { 5848 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5849 CallSeqStart.getNode()->getOperand(0), 5850 Flags, DAG, dl); 5851 // The MEMCPY must go outside the CALLSEQ_START..END. 5852 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5853 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5854 SDLoc(MemcpyCall)); 5855 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5856 NewCallSeqStart.getNode()); 5857 return NewCallSeqStart; 5858 } 5859 5860 SDValue PPCTargetLowering::LowerCall_64SVR4( 5861 SDValue Chain, SDValue Callee, CallFlags CFlags, 5862 const SmallVectorImpl<ISD::OutputArg> &Outs, 5863 const SmallVectorImpl<SDValue> &OutVals, 5864 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5865 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5866 const CallBase *CB) const { 5867 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5868 bool isLittleEndian = Subtarget.isLittleEndian(); 5869 unsigned NumOps = Outs.size(); 5870 bool IsSibCall = false; 5871 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5872 5873 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5874 unsigned PtrByteSize = 8; 5875 5876 MachineFunction &MF = DAG.getMachineFunction(); 5877 5878 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5879 IsSibCall = true; 5880 5881 // Mark this function as potentially containing a function that contains a 5882 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5883 // and restoring the callers stack pointer in this functions epilog. This is 5884 // done because by tail calling the called function might overwrite the value 5885 // in this function's (MF) stack pointer stack slot 0(SP). 5886 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5887 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5888 5889 assert(!(IsFastCall && CFlags.IsVarArg) && 5890 "fastcc not supported on varargs functions"); 5891 5892 // Count how many bytes are to be pushed on the stack, including the linkage 5893 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5894 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5895 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5896 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5897 unsigned NumBytes = LinkageSize; 5898 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5899 unsigned &QFPR_idx = FPR_idx; 5900 5901 static const MCPhysReg GPR[] = { 5902 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5903 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5904 }; 5905 static const MCPhysReg VR[] = { 5906 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5907 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5908 }; 5909 5910 const unsigned NumGPRs = array_lengthof(GPR); 5911 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5912 const unsigned NumVRs = array_lengthof(VR); 5913 const unsigned NumQFPRs = NumFPRs; 5914 5915 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5916 // can be passed to the callee in registers. 5917 // For the fast calling convention, there is another check below. 5918 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5919 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5920 if (!HasParameterArea) { 5921 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5922 unsigned AvailableFPRs = NumFPRs; 5923 unsigned AvailableVRs = NumVRs; 5924 unsigned NumBytesTmp = NumBytes; 5925 for (unsigned i = 0; i != NumOps; ++i) { 5926 if (Outs[i].Flags.isNest()) continue; 5927 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5928 PtrByteSize, LinkageSize, ParamAreaSize, 5929 NumBytesTmp, AvailableFPRs, AvailableVRs, 5930 Subtarget.hasQPX())) 5931 HasParameterArea = true; 5932 } 5933 } 5934 5935 // When using the fast calling convention, we don't provide backing for 5936 // arguments that will be in registers. 5937 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5938 5939 // Avoid allocating parameter area for fastcc functions if all the arguments 5940 // can be passed in the registers. 5941 if (IsFastCall) 5942 HasParameterArea = false; 5943 5944 // Add up all the space actually used. 5945 for (unsigned i = 0; i != NumOps; ++i) { 5946 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5947 EVT ArgVT = Outs[i].VT; 5948 EVT OrigVT = Outs[i].ArgVT; 5949 5950 if (Flags.isNest()) 5951 continue; 5952 5953 if (IsFastCall) { 5954 if (Flags.isByVal()) { 5955 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5956 if (NumGPRsUsed > NumGPRs) 5957 HasParameterArea = true; 5958 } else { 5959 switch (ArgVT.getSimpleVT().SimpleTy) { 5960 default: llvm_unreachable("Unexpected ValueType for argument!"); 5961 case MVT::i1: 5962 case MVT::i32: 5963 case MVT::i64: 5964 if (++NumGPRsUsed <= NumGPRs) 5965 continue; 5966 break; 5967 case MVT::v4i32: 5968 case MVT::v8i16: 5969 case MVT::v16i8: 5970 case MVT::v2f64: 5971 case MVT::v2i64: 5972 case MVT::v1i128: 5973 case MVT::f128: 5974 if (++NumVRsUsed <= NumVRs) 5975 continue; 5976 break; 5977 case MVT::v4f32: 5978 // When using QPX, this is handled like a FP register, otherwise, it 5979 // is an Altivec register. 5980 if (Subtarget.hasQPX()) { 5981 if (++NumFPRsUsed <= NumFPRs) 5982 continue; 5983 } else { 5984 if (++NumVRsUsed <= NumVRs) 5985 continue; 5986 } 5987 break; 5988 case MVT::f32: 5989 case MVT::f64: 5990 case MVT::v4f64: // QPX 5991 case MVT::v4i1: // QPX 5992 if (++NumFPRsUsed <= NumFPRs) 5993 continue; 5994 break; 5995 } 5996 HasParameterArea = true; 5997 } 5998 } 5999 6000 /* Respect alignment of argument on the stack. */ 6001 auto Alignement = 6002 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6003 NumBytes = alignTo(NumBytes, Alignement); 6004 6005 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6006 if (Flags.isInConsecutiveRegsLast()) 6007 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6008 } 6009 6010 unsigned NumBytesActuallyUsed = NumBytes; 6011 6012 // In the old ELFv1 ABI, 6013 // the prolog code of the callee may store up to 8 GPR argument registers to 6014 // the stack, allowing va_start to index over them in memory if its varargs. 6015 // Because we cannot tell if this is needed on the caller side, we have to 6016 // conservatively assume that it is needed. As such, make sure we have at 6017 // least enough stack space for the caller to store the 8 GPRs. 6018 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6019 // really requires memory operands, e.g. a vararg function. 6020 if (HasParameterArea) 6021 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6022 else 6023 NumBytes = LinkageSize; 6024 6025 // Tail call needs the stack to be aligned. 6026 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6027 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6028 6029 int SPDiff = 0; 6030 6031 // Calculate by how many bytes the stack has to be adjusted in case of tail 6032 // call optimization. 6033 if (!IsSibCall) 6034 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6035 6036 // To protect arguments on the stack from being clobbered in a tail call, 6037 // force all the loads to happen before doing any other lowering. 6038 if (CFlags.IsTailCall) 6039 Chain = DAG.getStackArgumentTokenFactor(Chain); 6040 6041 // Adjust the stack pointer for the new arguments... 6042 // These operations are automatically eliminated by the prolog/epilog pass 6043 if (!IsSibCall) 6044 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6045 SDValue CallSeqStart = Chain; 6046 6047 // Load the return address and frame pointer so it can be move somewhere else 6048 // later. 6049 SDValue LROp, FPOp; 6050 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6051 6052 // Set up a copy of the stack pointer for use loading and storing any 6053 // arguments that may not fit in the registers available for argument 6054 // passing. 6055 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6056 6057 // Figure out which arguments are going to go in registers, and which in 6058 // memory. Also, if this is a vararg function, floating point operations 6059 // must be stored to our stack, and loaded into integer regs as well, if 6060 // any integer regs are available for argument passing. 6061 unsigned ArgOffset = LinkageSize; 6062 6063 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6064 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6065 6066 SmallVector<SDValue, 8> MemOpChains; 6067 for (unsigned i = 0; i != NumOps; ++i) { 6068 SDValue Arg = OutVals[i]; 6069 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6070 EVT ArgVT = Outs[i].VT; 6071 EVT OrigVT = Outs[i].ArgVT; 6072 6073 // PtrOff will be used to store the current argument to the stack if a 6074 // register cannot be found for it. 6075 SDValue PtrOff; 6076 6077 // We re-align the argument offset for each argument, except when using the 6078 // fast calling convention, when we need to make sure we do that only when 6079 // we'll actually use a stack slot. 6080 auto ComputePtrOff = [&]() { 6081 /* Respect alignment of argument on the stack. */ 6082 auto Alignment = 6083 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6084 ArgOffset = alignTo(ArgOffset, Alignment); 6085 6086 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6087 6088 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6089 }; 6090 6091 if (!IsFastCall) { 6092 ComputePtrOff(); 6093 6094 /* Compute GPR index associated with argument offset. */ 6095 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6096 GPR_idx = std::min(GPR_idx, NumGPRs); 6097 } 6098 6099 // Promote integers to 64-bit values. 6100 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6101 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6102 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6103 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6104 } 6105 6106 // FIXME memcpy is used way more than necessary. Correctness first. 6107 // Note: "by value" is code for passing a structure by value, not 6108 // basic types. 6109 if (Flags.isByVal()) { 6110 // Note: Size includes alignment padding, so 6111 // struct x { short a; char b; } 6112 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6113 // These are the proper values we need for right-justifying the 6114 // aggregate in a parameter register. 6115 unsigned Size = Flags.getByValSize(); 6116 6117 // An empty aggregate parameter takes up no storage and no 6118 // registers. 6119 if (Size == 0) 6120 continue; 6121 6122 if (IsFastCall) 6123 ComputePtrOff(); 6124 6125 // All aggregates smaller than 8 bytes must be passed right-justified. 6126 if (Size==1 || Size==2 || Size==4) { 6127 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6128 if (GPR_idx != NumGPRs) { 6129 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6130 MachinePointerInfo(), VT); 6131 MemOpChains.push_back(Load.getValue(1)); 6132 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6133 6134 ArgOffset += PtrByteSize; 6135 continue; 6136 } 6137 } 6138 6139 if (GPR_idx == NumGPRs && Size < 8) { 6140 SDValue AddPtr = PtrOff; 6141 if (!isLittleEndian) { 6142 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6143 PtrOff.getValueType()); 6144 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6145 } 6146 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6147 CallSeqStart, 6148 Flags, DAG, dl); 6149 ArgOffset += PtrByteSize; 6150 continue; 6151 } 6152 // Copy entire object into memory. There are cases where gcc-generated 6153 // code assumes it is there, even if it could be put entirely into 6154 // registers. (This is not what the doc says.) 6155 6156 // FIXME: The above statement is likely due to a misunderstanding of the 6157 // documents. All arguments must be copied into the parameter area BY 6158 // THE CALLEE in the event that the callee takes the address of any 6159 // formal argument. That has not yet been implemented. However, it is 6160 // reasonable to use the stack area as a staging area for the register 6161 // load. 6162 6163 // Skip this for small aggregates, as we will use the same slot for a 6164 // right-justified copy, below. 6165 if (Size >= 8) 6166 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6167 CallSeqStart, 6168 Flags, DAG, dl); 6169 6170 // When a register is available, pass a small aggregate right-justified. 6171 if (Size < 8 && GPR_idx != NumGPRs) { 6172 // The easiest way to get this right-justified in a register 6173 // is to copy the structure into the rightmost portion of a 6174 // local variable slot, then load the whole slot into the 6175 // register. 6176 // FIXME: The memcpy seems to produce pretty awful code for 6177 // small aggregates, particularly for packed ones. 6178 // FIXME: It would be preferable to use the slot in the 6179 // parameter save area instead of a new local variable. 6180 SDValue AddPtr = PtrOff; 6181 if (!isLittleEndian) { 6182 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6183 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6184 } 6185 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6186 CallSeqStart, 6187 Flags, DAG, dl); 6188 6189 // Load the slot into the register. 6190 SDValue Load = 6191 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6192 MemOpChains.push_back(Load.getValue(1)); 6193 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6194 6195 // Done with this argument. 6196 ArgOffset += PtrByteSize; 6197 continue; 6198 } 6199 6200 // For aggregates larger than PtrByteSize, copy the pieces of the 6201 // object that fit into registers from the parameter save area. 6202 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6203 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6204 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6205 if (GPR_idx != NumGPRs) { 6206 SDValue Load = 6207 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6208 MemOpChains.push_back(Load.getValue(1)); 6209 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6210 ArgOffset += PtrByteSize; 6211 } else { 6212 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6213 break; 6214 } 6215 } 6216 continue; 6217 } 6218 6219 switch (Arg.getSimpleValueType().SimpleTy) { 6220 default: llvm_unreachable("Unexpected ValueType for argument!"); 6221 case MVT::i1: 6222 case MVT::i32: 6223 case MVT::i64: 6224 if (Flags.isNest()) { 6225 // The 'nest' parameter, if any, is passed in R11. 6226 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6227 break; 6228 } 6229 6230 // These can be scalar arguments or elements of an integer array type 6231 // passed directly. Clang may use those instead of "byval" aggregate 6232 // types to avoid forcing arguments to memory unnecessarily. 6233 if (GPR_idx != NumGPRs) { 6234 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6235 } else { 6236 if (IsFastCall) 6237 ComputePtrOff(); 6238 6239 assert(HasParameterArea && 6240 "Parameter area must exist to pass an argument in memory."); 6241 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6242 true, CFlags.IsTailCall, false, MemOpChains, 6243 TailCallArguments, dl); 6244 if (IsFastCall) 6245 ArgOffset += PtrByteSize; 6246 } 6247 if (!IsFastCall) 6248 ArgOffset += PtrByteSize; 6249 break; 6250 case MVT::f32: 6251 case MVT::f64: { 6252 // These can be scalar arguments or elements of a float array type 6253 // passed directly. The latter are used to implement ELFv2 homogenous 6254 // float aggregates. 6255 6256 // Named arguments go into FPRs first, and once they overflow, the 6257 // remaining arguments go into GPRs and then the parameter save area. 6258 // Unnamed arguments for vararg functions always go to GPRs and 6259 // then the parameter save area. For now, put all arguments to vararg 6260 // routines always in both locations (FPR *and* GPR or stack slot). 6261 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6262 bool NeededLoad = false; 6263 6264 // First load the argument into the next available FPR. 6265 if (FPR_idx != NumFPRs) 6266 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6267 6268 // Next, load the argument into GPR or stack slot if needed. 6269 if (!NeedGPROrStack) 6270 ; 6271 else if (GPR_idx != NumGPRs && !IsFastCall) { 6272 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6273 // once we support fp <-> gpr moves. 6274 6275 // In the non-vararg case, this can only ever happen in the 6276 // presence of f32 array types, since otherwise we never run 6277 // out of FPRs before running out of GPRs. 6278 SDValue ArgVal; 6279 6280 // Double values are always passed in a single GPR. 6281 if (Arg.getValueType() != MVT::f32) { 6282 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6283 6284 // Non-array float values are extended and passed in a GPR. 6285 } else if (!Flags.isInConsecutiveRegs()) { 6286 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6287 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6288 6289 // If we have an array of floats, we collect every odd element 6290 // together with its predecessor into one GPR. 6291 } else if (ArgOffset % PtrByteSize != 0) { 6292 SDValue Lo, Hi; 6293 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6294 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6295 if (!isLittleEndian) 6296 std::swap(Lo, Hi); 6297 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6298 6299 // The final element, if even, goes into the first half of a GPR. 6300 } else if (Flags.isInConsecutiveRegsLast()) { 6301 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6302 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6303 if (!isLittleEndian) 6304 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6305 DAG.getConstant(32, dl, MVT::i32)); 6306 6307 // Non-final even elements are skipped; they will be handled 6308 // together the with subsequent argument on the next go-around. 6309 } else 6310 ArgVal = SDValue(); 6311 6312 if (ArgVal.getNode()) 6313 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6314 } else { 6315 if (IsFastCall) 6316 ComputePtrOff(); 6317 6318 // Single-precision floating-point values are mapped to the 6319 // second (rightmost) word of the stack doubleword. 6320 if (Arg.getValueType() == MVT::f32 && 6321 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6322 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6323 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6324 } 6325 6326 assert(HasParameterArea && 6327 "Parameter area must exist to pass an argument in memory."); 6328 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6329 true, CFlags.IsTailCall, false, MemOpChains, 6330 TailCallArguments, dl); 6331 6332 NeededLoad = true; 6333 } 6334 // When passing an array of floats, the array occupies consecutive 6335 // space in the argument area; only round up to the next doubleword 6336 // at the end of the array. Otherwise, each float takes 8 bytes. 6337 if (!IsFastCall || NeededLoad) { 6338 ArgOffset += (Arg.getValueType() == MVT::f32 && 6339 Flags.isInConsecutiveRegs()) ? 4 : 8; 6340 if (Flags.isInConsecutiveRegsLast()) 6341 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6342 } 6343 break; 6344 } 6345 case MVT::v4f32: 6346 case MVT::v4i32: 6347 case MVT::v8i16: 6348 case MVT::v16i8: 6349 case MVT::v2f64: 6350 case MVT::v2i64: 6351 case MVT::v1i128: 6352 case MVT::f128: 6353 if (!Subtarget.hasQPX()) { 6354 // These can be scalar arguments or elements of a vector array type 6355 // passed directly. The latter are used to implement ELFv2 homogenous 6356 // vector aggregates. 6357 6358 // For a varargs call, named arguments go into VRs or on the stack as 6359 // usual; unnamed arguments always go to the stack or the corresponding 6360 // GPRs when within range. For now, we always put the value in both 6361 // locations (or even all three). 6362 if (CFlags.IsVarArg) { 6363 assert(HasParameterArea && 6364 "Parameter area must exist if we have a varargs call."); 6365 // We could elide this store in the case where the object fits 6366 // entirely in R registers. Maybe later. 6367 SDValue Store = 6368 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6369 MemOpChains.push_back(Store); 6370 if (VR_idx != NumVRs) { 6371 SDValue Load = 6372 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6373 MemOpChains.push_back(Load.getValue(1)); 6374 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6375 } 6376 ArgOffset += 16; 6377 for (unsigned i=0; i<16; i+=PtrByteSize) { 6378 if (GPR_idx == NumGPRs) 6379 break; 6380 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6381 DAG.getConstant(i, dl, PtrVT)); 6382 SDValue Load = 6383 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6384 MemOpChains.push_back(Load.getValue(1)); 6385 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6386 } 6387 break; 6388 } 6389 6390 // Non-varargs Altivec params go into VRs or on the stack. 6391 if (VR_idx != NumVRs) { 6392 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6393 } else { 6394 if (IsFastCall) 6395 ComputePtrOff(); 6396 6397 assert(HasParameterArea && 6398 "Parameter area must exist to pass an argument in memory."); 6399 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6400 true, CFlags.IsTailCall, true, MemOpChains, 6401 TailCallArguments, dl); 6402 if (IsFastCall) 6403 ArgOffset += 16; 6404 } 6405 6406 if (!IsFastCall) 6407 ArgOffset += 16; 6408 break; 6409 } // not QPX 6410 6411 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6412 "Invalid QPX parameter type"); 6413 6414 LLVM_FALLTHROUGH; 6415 case MVT::v4f64: 6416 case MVT::v4i1: { 6417 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6418 if (CFlags.IsVarArg) { 6419 assert(HasParameterArea && 6420 "Parameter area must exist if we have a varargs call."); 6421 // We could elide this store in the case where the object fits 6422 // entirely in R registers. Maybe later. 6423 SDValue Store = 6424 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6425 MemOpChains.push_back(Store); 6426 if (QFPR_idx != NumQFPRs) { 6427 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6428 PtrOff, MachinePointerInfo()); 6429 MemOpChains.push_back(Load.getValue(1)); 6430 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6431 } 6432 ArgOffset += (IsF32 ? 16 : 32); 6433 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6434 if (GPR_idx == NumGPRs) 6435 break; 6436 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6437 DAG.getConstant(i, dl, PtrVT)); 6438 SDValue Load = 6439 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6440 MemOpChains.push_back(Load.getValue(1)); 6441 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6442 } 6443 break; 6444 } 6445 6446 // Non-varargs QPX params go into registers or on the stack. 6447 if (QFPR_idx != NumQFPRs) { 6448 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6449 } else { 6450 if (IsFastCall) 6451 ComputePtrOff(); 6452 6453 assert(HasParameterArea && 6454 "Parameter area must exist to pass an argument in memory."); 6455 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6456 true, CFlags.IsTailCall, true, MemOpChains, 6457 TailCallArguments, dl); 6458 if (IsFastCall) 6459 ArgOffset += (IsF32 ? 16 : 32); 6460 } 6461 6462 if (!IsFastCall) 6463 ArgOffset += (IsF32 ? 16 : 32); 6464 break; 6465 } 6466 } 6467 } 6468 6469 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6470 "mismatch in size of parameter area"); 6471 (void)NumBytesActuallyUsed; 6472 6473 if (!MemOpChains.empty()) 6474 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6475 6476 // Check if this is an indirect call (MTCTR/BCTRL). 6477 // See prepareDescriptorIndirectCall and buildCallOperands for more 6478 // information about calls through function pointers in the 64-bit SVR4 ABI. 6479 if (CFlags.IsIndirect) { 6480 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6481 // Load r2 into a virtual register and store it to the TOC save area. 6482 setUsesTOCBasePtr(DAG); 6483 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6484 // TOC save area offset. 6485 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6486 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6487 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6488 Chain = DAG.getStore( 6489 Val.getValue(1), dl, Val, AddPtr, 6490 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6491 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6492 // This does not mean the MTCTR instruction must use R12; it's easier 6493 // to model this as an extra parameter, so do that. 6494 if (isELFv2ABI && !CFlags.IsPatchPoint) 6495 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6496 } 6497 6498 // Build a sequence of copy-to-reg nodes chained together with token chain 6499 // and flag operands which copy the outgoing args into the appropriate regs. 6500 SDValue InFlag; 6501 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6502 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6503 RegsToPass[i].second, InFlag); 6504 InFlag = Chain.getValue(1); 6505 } 6506 6507 if (CFlags.IsTailCall && !IsSibCall) 6508 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6509 TailCallArguments); 6510 6511 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6512 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6513 } 6514 6515 SDValue PPCTargetLowering::LowerCall_Darwin( 6516 SDValue Chain, SDValue Callee, CallFlags CFlags, 6517 const SmallVectorImpl<ISD::OutputArg> &Outs, 6518 const SmallVectorImpl<SDValue> &OutVals, 6519 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6520 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6521 const CallBase *CB) const { 6522 unsigned NumOps = Outs.size(); 6523 6524 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6525 bool isPPC64 = PtrVT == MVT::i64; 6526 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6527 6528 MachineFunction &MF = DAG.getMachineFunction(); 6529 6530 // Mark this function as potentially containing a function that contains a 6531 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6532 // and restoring the callers stack pointer in this functions epilog. This is 6533 // done because by tail calling the called function might overwrite the value 6534 // in this function's (MF) stack pointer stack slot 0(SP). 6535 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6536 CFlags.CallConv == CallingConv::Fast) 6537 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6538 6539 // Count how many bytes are to be pushed on the stack, including the linkage 6540 // area, and parameter passing area. We start with 24/48 bytes, which is 6541 // prereserved space for [SP][CR][LR][3 x unused]. 6542 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6543 unsigned NumBytes = LinkageSize; 6544 6545 // Add up all the space actually used. 6546 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6547 // they all go in registers, but we must reserve stack space for them for 6548 // possible use by the caller. In varargs or 64-bit calls, parameters are 6549 // assigned stack space in order, with padding so Altivec parameters are 6550 // 16-byte aligned. 6551 unsigned nAltivecParamsAtEnd = 0; 6552 for (unsigned i = 0; i != NumOps; ++i) { 6553 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6554 EVT ArgVT = Outs[i].VT; 6555 // Varargs Altivec parameters are padded to a 16 byte boundary. 6556 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6557 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6558 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6559 if (!CFlags.IsVarArg && !isPPC64) { 6560 // Non-varargs Altivec parameters go after all the non-Altivec 6561 // parameters; handle those later so we know how much padding we need. 6562 nAltivecParamsAtEnd++; 6563 continue; 6564 } 6565 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6566 NumBytes = ((NumBytes+15)/16)*16; 6567 } 6568 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6569 } 6570 6571 // Allow for Altivec parameters at the end, if needed. 6572 if (nAltivecParamsAtEnd) { 6573 NumBytes = ((NumBytes+15)/16)*16; 6574 NumBytes += 16*nAltivecParamsAtEnd; 6575 } 6576 6577 // The prolog code of the callee may store up to 8 GPR argument registers to 6578 // the stack, allowing va_start to index over them in memory if its varargs. 6579 // Because we cannot tell if this is needed on the caller side, we have to 6580 // conservatively assume that it is needed. As such, make sure we have at 6581 // least enough stack space for the caller to store the 8 GPRs. 6582 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6583 6584 // Tail call needs the stack to be aligned. 6585 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6586 CFlags.CallConv == CallingConv::Fast) 6587 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6588 6589 // Calculate by how many bytes the stack has to be adjusted in case of tail 6590 // call optimization. 6591 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6592 6593 // To protect arguments on the stack from being clobbered in a tail call, 6594 // force all the loads to happen before doing any other lowering. 6595 if (CFlags.IsTailCall) 6596 Chain = DAG.getStackArgumentTokenFactor(Chain); 6597 6598 // Adjust the stack pointer for the new arguments... 6599 // These operations are automatically eliminated by the prolog/epilog pass 6600 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6601 SDValue CallSeqStart = Chain; 6602 6603 // Load the return address and frame pointer so it can be move somewhere else 6604 // later. 6605 SDValue LROp, FPOp; 6606 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6607 6608 // Set up a copy of the stack pointer for use loading and storing any 6609 // arguments that may not fit in the registers available for argument 6610 // passing. 6611 SDValue StackPtr; 6612 if (isPPC64) 6613 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6614 else 6615 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6616 6617 // Figure out which arguments are going to go in registers, and which in 6618 // memory. Also, if this is a vararg function, floating point operations 6619 // must be stored to our stack, and loaded into integer regs as well, if 6620 // any integer regs are available for argument passing. 6621 unsigned ArgOffset = LinkageSize; 6622 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6623 6624 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6625 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6626 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6627 }; 6628 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6629 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6630 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6631 }; 6632 static const MCPhysReg VR[] = { 6633 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6634 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6635 }; 6636 const unsigned NumGPRs = array_lengthof(GPR_32); 6637 const unsigned NumFPRs = 13; 6638 const unsigned NumVRs = array_lengthof(VR); 6639 6640 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6641 6642 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6643 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6644 6645 SmallVector<SDValue, 8> MemOpChains; 6646 for (unsigned i = 0; i != NumOps; ++i) { 6647 SDValue Arg = OutVals[i]; 6648 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6649 6650 // PtrOff will be used to store the current argument to the stack if a 6651 // register cannot be found for it. 6652 SDValue PtrOff; 6653 6654 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6655 6656 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6657 6658 // On PPC64, promote integers to 64-bit values. 6659 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6660 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6661 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6662 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6663 } 6664 6665 // FIXME memcpy is used way more than necessary. Correctness first. 6666 // Note: "by value" is code for passing a structure by value, not 6667 // basic types. 6668 if (Flags.isByVal()) { 6669 unsigned Size = Flags.getByValSize(); 6670 // Very small objects are passed right-justified. Everything else is 6671 // passed left-justified. 6672 if (Size==1 || Size==2) { 6673 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6674 if (GPR_idx != NumGPRs) { 6675 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6676 MachinePointerInfo(), VT); 6677 MemOpChains.push_back(Load.getValue(1)); 6678 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6679 6680 ArgOffset += PtrByteSize; 6681 } else { 6682 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6683 PtrOff.getValueType()); 6684 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6685 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6686 CallSeqStart, 6687 Flags, DAG, dl); 6688 ArgOffset += PtrByteSize; 6689 } 6690 continue; 6691 } 6692 // Copy entire object into memory. There are cases where gcc-generated 6693 // code assumes it is there, even if it could be put entirely into 6694 // registers. (This is not what the doc says.) 6695 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6696 CallSeqStart, 6697 Flags, DAG, dl); 6698 6699 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6700 // copy the pieces of the object that fit into registers from the 6701 // parameter save area. 6702 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6703 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6704 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6705 if (GPR_idx != NumGPRs) { 6706 SDValue Load = 6707 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6708 MemOpChains.push_back(Load.getValue(1)); 6709 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6710 ArgOffset += PtrByteSize; 6711 } else { 6712 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6713 break; 6714 } 6715 } 6716 continue; 6717 } 6718 6719 switch (Arg.getSimpleValueType().SimpleTy) { 6720 default: llvm_unreachable("Unexpected ValueType for argument!"); 6721 case MVT::i1: 6722 case MVT::i32: 6723 case MVT::i64: 6724 if (GPR_idx != NumGPRs) { 6725 if (Arg.getValueType() == MVT::i1) 6726 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6727 6728 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6729 } else { 6730 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6731 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6732 TailCallArguments, dl); 6733 } 6734 ArgOffset += PtrByteSize; 6735 break; 6736 case MVT::f32: 6737 case MVT::f64: 6738 if (FPR_idx != NumFPRs) { 6739 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6740 6741 if (CFlags.IsVarArg) { 6742 SDValue Store = 6743 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6744 MemOpChains.push_back(Store); 6745 6746 // Float varargs are always shadowed in available integer registers 6747 if (GPR_idx != NumGPRs) { 6748 SDValue Load = 6749 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6750 MemOpChains.push_back(Load.getValue(1)); 6751 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6752 } 6753 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6754 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6755 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6756 SDValue Load = 6757 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6758 MemOpChains.push_back(Load.getValue(1)); 6759 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6760 } 6761 } else { 6762 // If we have any FPRs remaining, we may also have GPRs remaining. 6763 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6764 // GPRs. 6765 if (GPR_idx != NumGPRs) 6766 ++GPR_idx; 6767 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6768 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6769 ++GPR_idx; 6770 } 6771 } else 6772 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6773 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6774 TailCallArguments, dl); 6775 if (isPPC64) 6776 ArgOffset += 8; 6777 else 6778 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6779 break; 6780 case MVT::v4f32: 6781 case MVT::v4i32: 6782 case MVT::v8i16: 6783 case MVT::v16i8: 6784 if (CFlags.IsVarArg) { 6785 // These go aligned on the stack, or in the corresponding R registers 6786 // when within range. The Darwin PPC ABI doc claims they also go in 6787 // V registers; in fact gcc does this only for arguments that are 6788 // prototyped, not for those that match the ... We do it for all 6789 // arguments, seems to work. 6790 while (ArgOffset % 16 !=0) { 6791 ArgOffset += PtrByteSize; 6792 if (GPR_idx != NumGPRs) 6793 GPR_idx++; 6794 } 6795 // We could elide this store in the case where the object fits 6796 // entirely in R registers. Maybe later. 6797 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6798 DAG.getConstant(ArgOffset, dl, PtrVT)); 6799 SDValue Store = 6800 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6801 MemOpChains.push_back(Store); 6802 if (VR_idx != NumVRs) { 6803 SDValue Load = 6804 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6805 MemOpChains.push_back(Load.getValue(1)); 6806 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6807 } 6808 ArgOffset += 16; 6809 for (unsigned i=0; i<16; i+=PtrByteSize) { 6810 if (GPR_idx == NumGPRs) 6811 break; 6812 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6813 DAG.getConstant(i, dl, PtrVT)); 6814 SDValue Load = 6815 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6816 MemOpChains.push_back(Load.getValue(1)); 6817 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6818 } 6819 break; 6820 } 6821 6822 // Non-varargs Altivec params generally go in registers, but have 6823 // stack space allocated at the end. 6824 if (VR_idx != NumVRs) { 6825 // Doesn't have GPR space allocated. 6826 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6827 } else if (nAltivecParamsAtEnd==0) { 6828 // We are emitting Altivec params in order. 6829 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6830 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6831 TailCallArguments, dl); 6832 ArgOffset += 16; 6833 } 6834 break; 6835 } 6836 } 6837 // If all Altivec parameters fit in registers, as they usually do, 6838 // they get stack space following the non-Altivec parameters. We 6839 // don't track this here because nobody below needs it. 6840 // If there are more Altivec parameters than fit in registers emit 6841 // the stores here. 6842 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6843 unsigned j = 0; 6844 // Offset is aligned; skip 1st 12 params which go in V registers. 6845 ArgOffset = ((ArgOffset+15)/16)*16; 6846 ArgOffset += 12*16; 6847 for (unsigned i = 0; i != NumOps; ++i) { 6848 SDValue Arg = OutVals[i]; 6849 EVT ArgType = Outs[i].VT; 6850 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6851 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6852 if (++j > NumVRs) { 6853 SDValue PtrOff; 6854 // We are emitting Altivec params in order. 6855 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6856 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6857 TailCallArguments, dl); 6858 ArgOffset += 16; 6859 } 6860 } 6861 } 6862 } 6863 6864 if (!MemOpChains.empty()) 6865 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6866 6867 // On Darwin, R12 must contain the address of an indirect callee. This does 6868 // not mean the MTCTR instruction must use R12; it's easier to model this as 6869 // an extra parameter, so do that. 6870 if (CFlags.IsIndirect) { 6871 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6872 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6873 PPC::R12), Callee)); 6874 } 6875 6876 // Build a sequence of copy-to-reg nodes chained together with token chain 6877 // and flag operands which copy the outgoing args into the appropriate regs. 6878 SDValue InFlag; 6879 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6880 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6881 RegsToPass[i].second, InFlag); 6882 InFlag = Chain.getValue(1); 6883 } 6884 6885 if (CFlags.IsTailCall) 6886 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6887 TailCallArguments); 6888 6889 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6890 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6891 } 6892 6893 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6894 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6895 CCState &State) { 6896 6897 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6898 State.getMachineFunction().getSubtarget()); 6899 const bool IsPPC64 = Subtarget.isPPC64(); 6900 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6901 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6902 6903 assert((!ValVT.isInteger() || 6904 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 6905 "Integer argument exceeds register size: should have been legalized"); 6906 6907 if (ValVT == MVT::f128) 6908 report_fatal_error("f128 is unimplemented on AIX."); 6909 6910 if (ArgFlags.isNest()) 6911 report_fatal_error("Nest arguments are unimplemented."); 6912 6913 if (ValVT.isVector() || LocVT.isVector()) 6914 report_fatal_error("Vector arguments are unimplemented on AIX."); 6915 6916 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6917 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6918 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6919 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6920 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6921 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6922 6923 if (ArgFlags.isByVal()) { 6924 if (ArgFlags.getNonZeroByValAlign() > PtrByteSize) 6925 report_fatal_error("Pass-by-value arguments with alignment greater than " 6926 "register width are not supported."); 6927 6928 const unsigned ByValSize = ArgFlags.getByValSize(); 6929 6930 // An empty aggregate parameter takes up no storage and no registers, 6931 // but needs a MemLoc for a stack slot for the formal arguments side. 6932 if (ByValSize == 0) { 6933 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6934 State.getNextStackOffset(), RegVT, 6935 LocInfo)); 6936 return false; 6937 } 6938 6939 State.AllocateStack(alignTo(ByValSize, PtrByteSize), PtrByteSize); 6940 6941 for (unsigned I = 0, E = ByValSize; I < E; I += PtrByteSize) { 6942 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6943 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6944 else 6945 report_fatal_error( 6946 "Pass-by-value arguments are only supported in registers."); 6947 } 6948 return false; 6949 } 6950 6951 // Arguments always reserve parameter save area. 6952 switch (ValVT.SimpleTy) { 6953 default: 6954 report_fatal_error("Unhandled value type for argument."); 6955 case MVT::i64: 6956 // i64 arguments should have been split to i32 for PPC32. 6957 assert(IsPPC64 && "PPC32 should have split i64 values."); 6958 LLVM_FALLTHROUGH; 6959 case MVT::i1: 6960 case MVT::i32: { 6961 const unsigned Offset = State.AllocateStack(PtrByteSize, PtrByteSize); 6962 // AIX integer arguments are always passed in register width. 6963 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 6964 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6965 : CCValAssign::LocInfo::ZExt; 6966 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6967 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6968 else 6969 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6970 6971 return false; 6972 } 6973 case MVT::f32: 6974 case MVT::f64: { 6975 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6976 const unsigned StoreSize = LocVT.getStoreSize(); 6977 // Floats are always 4-byte aligned in the PSA on AIX. 6978 // This includes f64 in 64-bit mode for ABI compatibility. 6979 const unsigned Offset = State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4); 6980 unsigned FReg = State.AllocateReg(FPR); 6981 if (FReg) 6982 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6983 6984 // Reserve and initialize GPRs or initialize the PSA as required. 6985 for (unsigned I = 0; I < StoreSize; I += PtrByteSize) { 6986 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6987 assert(FReg && "An FPR should be available when a GPR is reserved."); 6988 if (State.isVarArg()) { 6989 // Successfully reserved GPRs are only initialized for vararg calls. 6990 // Custom handling is required for: 6991 // f64 in PPC32 needs to be split into 2 GPRs. 6992 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6993 State.addLoc( 6994 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6995 } 6996 } else { 6997 // If there are insufficient GPRs, the PSA needs to be initialized. 6998 // Initialization occurs even if an FPR was initialized for 6999 // compatibility with the AIX XL compiler. The full memory for the 7000 // argument will be initialized even if a prior word is saved in GPR. 7001 // A custom memLoc is used when the argument also passes in FPR so 7002 // that the callee handling can skip over it easily. 7003 State.addLoc( 7004 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7005 LocInfo) 7006 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7007 break; 7008 } 7009 } 7010 7011 return false; 7012 } 7013 } 7014 return true; 7015 } 7016 7017 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7018 bool IsPPC64) { 7019 assert((IsPPC64 || SVT != MVT::i64) && 7020 "i64 should have been split for 32-bit codegen."); 7021 7022 switch (SVT) { 7023 default: 7024 report_fatal_error("Unexpected value type for formal argument"); 7025 case MVT::i1: 7026 case MVT::i32: 7027 case MVT::i64: 7028 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7029 case MVT::f32: 7030 return &PPC::F4RCRegClass; 7031 case MVT::f64: 7032 return &PPC::F8RCRegClass; 7033 } 7034 } 7035 7036 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7037 SelectionDAG &DAG, SDValue ArgValue, 7038 MVT LocVT, const SDLoc &dl) { 7039 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7040 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 7041 7042 if (Flags.isSExt()) 7043 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7044 DAG.getValueType(ValVT)); 7045 else if (Flags.isZExt()) 7046 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7047 DAG.getValueType(ValVT)); 7048 7049 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7050 } 7051 7052 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7053 const unsigned LASize = FL->getLinkageSize(); 7054 7055 if (PPC::GPRCRegClass.contains(Reg)) { 7056 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7057 "Reg must be a valid argument register!"); 7058 return LASize + 4 * (Reg - PPC::R3); 7059 } 7060 7061 if (PPC::G8RCRegClass.contains(Reg)) { 7062 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7063 "Reg must be a valid argument register!"); 7064 return LASize + 8 * (Reg - PPC::X3); 7065 } 7066 7067 llvm_unreachable("Only general purpose registers expected."); 7068 } 7069 7070 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7071 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7072 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7073 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7074 7075 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7076 CallConv == CallingConv::Fast) && 7077 "Unexpected calling convention!"); 7078 7079 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7080 report_fatal_error("Tail call support is unimplemented on AIX."); 7081 7082 if (useSoftFloat()) 7083 report_fatal_error("Soft float support is unimplemented on AIX."); 7084 7085 const PPCSubtarget &Subtarget = 7086 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7087 if (Subtarget.hasQPX()) 7088 report_fatal_error("QPX support is not supported on AIX."); 7089 7090 const bool IsPPC64 = Subtarget.isPPC64(); 7091 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7092 7093 // Assign locations to all of the incoming arguments. 7094 SmallVector<CCValAssign, 16> ArgLocs; 7095 MachineFunction &MF = DAG.getMachineFunction(); 7096 MachineFrameInfo &MFI = MF.getFrameInfo(); 7097 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7098 7099 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7100 // Reserve space for the linkage area on the stack. 7101 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7102 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 7103 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7104 7105 SmallVector<SDValue, 8> MemOps; 7106 7107 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7108 CCValAssign &VA = ArgLocs[I++]; 7109 MVT LocVT = VA.getLocVT(); 7110 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7111 7112 // For compatibility with the AIX XL compiler, the float args in the 7113 // parameter save area are initialized even if the argument is available 7114 // in register. The caller is required to initialize both the register 7115 // and memory, however, the callee can choose to expect it in either. 7116 // The memloc is dismissed here because the argument is retrieved from 7117 // the register. 7118 if (VA.isMemLoc() && VA.needsCustom()) 7119 continue; 7120 7121 if (Flags.isByVal() && VA.isMemLoc()) { 7122 if (Flags.getByValSize() != 0) 7123 report_fatal_error( 7124 "ByVal arguments passed on stack not implemented yet"); 7125 7126 const int FI = MF.getFrameInfo().CreateFixedObject( 7127 PtrByteSize, VA.getLocMemOffset(), /* IsImmutable */ false, 7128 /* IsAliased */ true); 7129 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7130 InVals.push_back(FIN); 7131 7132 continue; 7133 } 7134 7135 if (Flags.isByVal()) { 7136 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7137 7138 const MCPhysReg ArgReg = VA.getLocReg(); 7139 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7140 7141 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7142 report_fatal_error("Over aligned byvals not supported yet."); 7143 7144 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7145 const int FI = MF.getFrameInfo().CreateFixedObject( 7146 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7147 /* IsAliased */ true); 7148 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7149 InVals.push_back(FIN); 7150 7151 // Add live ins for all the RegLocs for the same ByVal. 7152 const TargetRegisterClass *RegClass = 7153 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7154 7155 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7156 unsigned Offset) { 7157 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7158 // Since the callers side has left justified the aggregate in the 7159 // register, we can simply store the entire register into the stack 7160 // slot. 7161 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7162 // The store to the fixedstack object is needed becuase accessing a 7163 // field of the ByVal will use a gep and load. Ideally we will optimize 7164 // to extracting the value from the register directly, and elide the 7165 // stores when the arguments address is not taken, but that will need to 7166 // be future work. 7167 SDValue Store = 7168 DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom, 7169 DAG.getObjectPtrOffset(dl, FIN, Offset), 7170 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7171 7172 MemOps.push_back(Store); 7173 }; 7174 7175 unsigned Offset = 0; 7176 HandleRegLoc(VA.getLocReg(), Offset); 7177 Offset += PtrByteSize; 7178 for (; Offset != StackSize; Offset += PtrByteSize) { 7179 assert(I != End && 7180 "Expecting enough RegLocs to copy entire ByVal arg."); 7181 7182 if (!ArgLocs[I].isRegLoc()) 7183 report_fatal_error("Passing ByVals split between registers and stack " 7184 "not yet implemented."); 7185 7186 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7187 "Expecting more RegLocs for ByVal argument."); 7188 7189 const CCValAssign RL = ArgLocs[I++]; 7190 HandleRegLoc(RL.getLocReg(), Offset); 7191 } 7192 continue; 7193 } 7194 7195 EVT ValVT = VA.getValVT(); 7196 if (VA.isRegLoc() && !VA.needsCustom()) { 7197 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7198 unsigned VReg = 7199 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7200 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7201 if (ValVT.isScalarInteger() && 7202 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7203 ArgValue = 7204 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7205 } 7206 InVals.push_back(ArgValue); 7207 continue; 7208 } 7209 if (VA.isMemLoc()) { 7210 const unsigned LocSize = LocVT.getStoreSize(); 7211 const unsigned ValSize = ValVT.getStoreSize(); 7212 assert((ValSize <= LocSize) && 7213 "Object size is larger than size of MemLoc"); 7214 int CurArgOffset = VA.getLocMemOffset(); 7215 // Objects are right-justified because AIX is big-endian. 7216 if (LocSize > ValSize) 7217 CurArgOffset += LocSize - ValSize; 7218 // Potential tail calls could cause overwriting of argument stack slots. 7219 const bool IsImmutable = 7220 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7221 (CallConv == CallingConv::Fast)); 7222 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7223 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7224 SDValue ArgValue = 7225 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7226 InVals.push_back(ArgValue); 7227 continue; 7228 } 7229 } 7230 7231 // On AIX a minimum of 8 words is saved to the parameter save area. 7232 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7233 // Area that is at least reserved in the caller of this function. 7234 unsigned CallerReservedArea = 7235 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7236 7237 // Set the size that is at least reserved in caller of this function. Tail 7238 // call optimized function's reserved stack space needs to be aligned so 7239 // that taking the difference between two stack areas will result in an 7240 // aligned stack. 7241 CallerReservedArea = 7242 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7243 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7244 FuncInfo->setMinReservedArea(CallerReservedArea); 7245 7246 if (isVarArg) { 7247 FuncInfo->setVarArgsFrameIndex( 7248 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7249 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7250 7251 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7252 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7253 7254 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7255 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7256 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7257 7258 // The fixed integer arguments of a variadic function are stored to the 7259 // VarArgsFrameIndex on the stack so that they may be loaded by 7260 // dereferencing the result of va_next. 7261 for (unsigned GPRIndex = 7262 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7263 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7264 7265 const unsigned VReg = 7266 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7267 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7268 7269 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7270 SDValue Store = 7271 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7272 MemOps.push_back(Store); 7273 // Increment the address for the next argument to store. 7274 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7275 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7276 } 7277 } 7278 7279 if (!MemOps.empty()) 7280 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7281 7282 return Chain; 7283 } 7284 7285 SDValue PPCTargetLowering::LowerCall_AIX( 7286 SDValue Chain, SDValue Callee, CallFlags CFlags, 7287 const SmallVectorImpl<ISD::OutputArg> &Outs, 7288 const SmallVectorImpl<SDValue> &OutVals, 7289 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7290 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7291 const CallBase *CB) const { 7292 7293 assert((CFlags.CallConv == CallingConv::C || 7294 CFlags.CallConv == CallingConv::Cold || 7295 CFlags.CallConv == CallingConv::Fast) && 7296 "Unexpected calling convention!"); 7297 7298 if (CFlags.IsPatchPoint) 7299 report_fatal_error("This call type is unimplemented on AIX."); 7300 7301 const PPCSubtarget& Subtarget = 7302 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7303 if (Subtarget.hasQPX()) 7304 report_fatal_error("QPX is not supported on AIX."); 7305 if (Subtarget.hasAltivec()) 7306 report_fatal_error("Altivec support is unimplemented on AIX."); 7307 7308 MachineFunction &MF = DAG.getMachineFunction(); 7309 SmallVector<CCValAssign, 16> ArgLocs; 7310 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7311 *DAG.getContext()); 7312 7313 // Reserve space for the linkage save area (LSA) on the stack. 7314 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7315 // [SP][CR][LR][2 x reserved][TOC]. 7316 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7317 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7318 const bool IsPPC64 = Subtarget.isPPC64(); 7319 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7320 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7321 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 7322 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7323 7324 // The prolog code of the callee may store up to 8 GPR argument registers to 7325 // the stack, allowing va_start to index over them in memory if the callee 7326 // is variadic. 7327 // Because we cannot tell if this is needed on the caller side, we have to 7328 // conservatively assume that it is needed. As such, make sure we have at 7329 // least enough stack space for the caller to store the 8 GPRs. 7330 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7331 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7332 CCInfo.getNextStackOffset()); 7333 7334 // Adjust the stack pointer for the new arguments... 7335 // These operations are automatically eliminated by the prolog/epilog pass. 7336 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7337 SDValue CallSeqStart = Chain; 7338 7339 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7340 SmallVector<SDValue, 8> MemOpChains; 7341 7342 // Set up a copy of the stack pointer for loading and storing any 7343 // arguments that may not fit in the registers available for argument 7344 // passing. 7345 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7346 : DAG.getRegister(PPC::R1, MVT::i32); 7347 7348 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7349 const unsigned ValNo = ArgLocs[I].getValNo(); 7350 SDValue Arg = OutVals[ValNo]; 7351 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7352 7353 if (Flags.isByVal()) { 7354 const unsigned ByValSize = Flags.getByValSize(); 7355 7356 // Nothing to do for zero-sized ByVals on the caller side. 7357 if (!ByValSize) { 7358 ++I; 7359 continue; 7360 } 7361 7362 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7363 return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, 7364 (LoadOffset != 0) 7365 ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7366 : Arg, 7367 MachinePointerInfo(), VT); 7368 }; 7369 7370 unsigned LoadOffset = 0; 7371 7372 // Initialize registers, which are fully occupied by the by-val argument. 7373 while (I != E && LoadOffset + PtrByteSize <= ByValSize) { 7374 SDValue Load = GetLoad(PtrVT, LoadOffset); 7375 MemOpChains.push_back(Load.getValue(1)); 7376 LoadOffset += PtrByteSize; 7377 const CCValAssign &ByValVA = ArgLocs[I++]; 7378 assert(ByValVA.isRegLoc() && ByValVA.getValNo() == ValNo && 7379 "Unexpected location for pass-by-value argument."); 7380 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7381 } 7382 7383 if (LoadOffset == ByValSize) 7384 continue; 7385 7386 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7387 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7388 "Unexpected register residue for by-value argument."); 7389 7390 // Initialize the final register residue. 7391 // Any residue that occupies the final by-val arg register must be 7392 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7393 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7394 // 2 and 1 byte loads. 7395 SDValue ResidueVal; 7396 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7397 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7398 const MVT VT = 7399 N == 1 ? MVT::i8 7400 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7401 SDValue Load = GetLoad(VT, LoadOffset); 7402 MemOpChains.push_back(Load.getValue(1)); 7403 LoadOffset += N; 7404 Bytes += N; 7405 7406 // By-val arguments are passed left-justfied in register. 7407 // Every load here needs to be shifted, otherwise a full register load 7408 // should have been used. 7409 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7410 "Unexpected load emitted during handling of pass-by-value " 7411 "argument."); 7412 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7413 EVT ShiftAmountTy = 7414 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7415 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7416 SDValue ShiftedLoad = 7417 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7418 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7419 ShiftedLoad) 7420 : ShiftedLoad; 7421 } 7422 7423 const CCValAssign &ByValVA = ArgLocs[I++]; 7424 assert(ByValVA.isRegLoc() && ByValVA.getValNo() == ValNo && 7425 "Additional register location expected for by-value argument."); 7426 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7427 continue; 7428 } 7429 7430 CCValAssign &VA = ArgLocs[I++]; 7431 const MVT LocVT = VA.getLocVT(); 7432 const MVT ValVT = VA.getValVT(); 7433 7434 switch (VA.getLocInfo()) { 7435 default: 7436 report_fatal_error("Unexpected argument extension type."); 7437 case CCValAssign::Full: 7438 break; 7439 case CCValAssign::ZExt: 7440 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7441 break; 7442 case CCValAssign::SExt: 7443 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7444 break; 7445 } 7446 7447 if (VA.isRegLoc() && !VA.needsCustom()) { 7448 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7449 continue; 7450 } 7451 7452 if (VA.isMemLoc()) { 7453 SDValue PtrOff = 7454 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7455 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7456 MemOpChains.push_back( 7457 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7458 7459 continue; 7460 } 7461 7462 // Custom handling is used for GPR initializations for vararg float 7463 // arguments. 7464 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7465 ValVT.isFloatingPoint() && LocVT.isInteger() && 7466 "Unexpected register handling for calling convention."); 7467 7468 SDValue ArgAsInt = 7469 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7470 7471 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7472 // f32 in 32-bit GPR 7473 // f64 in 64-bit GPR 7474 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7475 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7476 // f32 in 64-bit GPR. 7477 RegsToPass.push_back(std::make_pair( 7478 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7479 else { 7480 // f64 in two 32-bit GPRs 7481 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7482 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7483 "Unexpected custom register for argument!"); 7484 CCValAssign &GPR1 = VA; 7485 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7486 DAG.getConstant(32, dl, MVT::i8)); 7487 RegsToPass.push_back(std::make_pair( 7488 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7489 7490 if (I != E) { 7491 // If only 1 GPR was available, there will only be one custom GPR and 7492 // the argument will also pass in memory. 7493 CCValAssign &PeekArg = ArgLocs[I]; 7494 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7495 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7496 CCValAssign &GPR2 = ArgLocs[I++]; 7497 RegsToPass.push_back(std::make_pair( 7498 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7499 } 7500 } 7501 } 7502 } 7503 7504 if (!MemOpChains.empty()) 7505 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7506 7507 // For indirect calls, we need to save the TOC base to the stack for 7508 // restoration after the call. 7509 if (CFlags.IsIndirect) { 7510 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7511 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7512 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7513 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7514 const unsigned TOCSaveOffset = 7515 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7516 7517 setUsesTOCBasePtr(DAG); 7518 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7519 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7520 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7521 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7522 Chain = DAG.getStore( 7523 Val.getValue(1), dl, Val, AddPtr, 7524 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7525 } 7526 7527 // Build a sequence of copy-to-reg nodes chained together with token chain 7528 // and flag operands which copy the outgoing args into the appropriate regs. 7529 SDValue InFlag; 7530 for (auto Reg : RegsToPass) { 7531 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7532 InFlag = Chain.getValue(1); 7533 } 7534 7535 const int SPDiff = 0; 7536 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7537 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7538 } 7539 7540 bool 7541 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7542 MachineFunction &MF, bool isVarArg, 7543 const SmallVectorImpl<ISD::OutputArg> &Outs, 7544 LLVMContext &Context) const { 7545 SmallVector<CCValAssign, 16> RVLocs; 7546 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7547 return CCInfo.CheckReturn( 7548 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7549 ? RetCC_PPC_Cold 7550 : RetCC_PPC); 7551 } 7552 7553 SDValue 7554 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7555 bool isVarArg, 7556 const SmallVectorImpl<ISD::OutputArg> &Outs, 7557 const SmallVectorImpl<SDValue> &OutVals, 7558 const SDLoc &dl, SelectionDAG &DAG) const { 7559 SmallVector<CCValAssign, 16> RVLocs; 7560 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7561 *DAG.getContext()); 7562 CCInfo.AnalyzeReturn(Outs, 7563 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7564 ? RetCC_PPC_Cold 7565 : RetCC_PPC); 7566 7567 SDValue Flag; 7568 SmallVector<SDValue, 4> RetOps(1, Chain); 7569 7570 // Copy the result values into the output registers. 7571 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7572 CCValAssign &VA = RVLocs[i]; 7573 assert(VA.isRegLoc() && "Can only return in registers!"); 7574 7575 SDValue Arg = OutVals[RealResIdx]; 7576 7577 switch (VA.getLocInfo()) { 7578 default: llvm_unreachable("Unknown loc info!"); 7579 case CCValAssign::Full: break; 7580 case CCValAssign::AExt: 7581 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7582 break; 7583 case CCValAssign::ZExt: 7584 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7585 break; 7586 case CCValAssign::SExt: 7587 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7588 break; 7589 } 7590 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7591 bool isLittleEndian = Subtarget.isLittleEndian(); 7592 // Legalize ret f64 -> ret 2 x i32. 7593 SDValue SVal = 7594 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7595 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7596 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7597 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7598 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7599 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7600 Flag = Chain.getValue(1); 7601 VA = RVLocs[++i]; // skip ahead to next loc 7602 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7603 } else 7604 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7605 Flag = Chain.getValue(1); 7606 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7607 } 7608 7609 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7610 const MCPhysReg *I = 7611 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 7612 if (I) { 7613 for (; *I; ++I) { 7614 7615 if (PPC::G8RCRegClass.contains(*I)) 7616 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 7617 else if (PPC::F8RCRegClass.contains(*I)) 7618 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 7619 else if (PPC::CRRCRegClass.contains(*I)) 7620 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 7621 else if (PPC::VRRCRegClass.contains(*I)) 7622 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 7623 else 7624 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 7625 } 7626 } 7627 7628 RetOps[0] = Chain; // Update chain. 7629 7630 // Add the flag if we have it. 7631 if (Flag.getNode()) 7632 RetOps.push_back(Flag); 7633 7634 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7635 } 7636 7637 SDValue 7638 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7639 SelectionDAG &DAG) const { 7640 SDLoc dl(Op); 7641 7642 // Get the correct type for integers. 7643 EVT IntVT = Op.getValueType(); 7644 7645 // Get the inputs. 7646 SDValue Chain = Op.getOperand(0); 7647 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7648 // Build a DYNAREAOFFSET node. 7649 SDValue Ops[2] = {Chain, FPSIdx}; 7650 SDVTList VTs = DAG.getVTList(IntVT); 7651 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7652 } 7653 7654 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7655 SelectionDAG &DAG) const { 7656 // When we pop the dynamic allocation we need to restore the SP link. 7657 SDLoc dl(Op); 7658 7659 // Get the correct type for pointers. 7660 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7661 7662 // Construct the stack pointer operand. 7663 bool isPPC64 = Subtarget.isPPC64(); 7664 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7665 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7666 7667 // Get the operands for the STACKRESTORE. 7668 SDValue Chain = Op.getOperand(0); 7669 SDValue SaveSP = Op.getOperand(1); 7670 7671 // Load the old link SP. 7672 SDValue LoadLinkSP = 7673 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7674 7675 // Restore the stack pointer. 7676 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7677 7678 // Store the old link SP. 7679 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7680 } 7681 7682 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7683 MachineFunction &MF = DAG.getMachineFunction(); 7684 bool isPPC64 = Subtarget.isPPC64(); 7685 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7686 7687 // Get current frame pointer save index. The users of this index will be 7688 // primarily DYNALLOC instructions. 7689 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7690 int RASI = FI->getReturnAddrSaveIndex(); 7691 7692 // If the frame pointer save index hasn't been defined yet. 7693 if (!RASI) { 7694 // Find out what the fix offset of the frame pointer save area. 7695 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7696 // Allocate the frame index for frame pointer save area. 7697 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7698 // Save the result. 7699 FI->setReturnAddrSaveIndex(RASI); 7700 } 7701 return DAG.getFrameIndex(RASI, PtrVT); 7702 } 7703 7704 SDValue 7705 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7706 MachineFunction &MF = DAG.getMachineFunction(); 7707 bool isPPC64 = Subtarget.isPPC64(); 7708 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7709 7710 // Get current frame pointer save index. The users of this index will be 7711 // primarily DYNALLOC instructions. 7712 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7713 int FPSI = FI->getFramePointerSaveIndex(); 7714 7715 // If the frame pointer save index hasn't been defined yet. 7716 if (!FPSI) { 7717 // Find out what the fix offset of the frame pointer save area. 7718 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7719 // Allocate the frame index for frame pointer save area. 7720 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7721 // Save the result. 7722 FI->setFramePointerSaveIndex(FPSI); 7723 } 7724 return DAG.getFrameIndex(FPSI, PtrVT); 7725 } 7726 7727 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7728 SelectionDAG &DAG) const { 7729 // Get the inputs. 7730 SDValue Chain = Op.getOperand(0); 7731 SDValue Size = Op.getOperand(1); 7732 SDLoc dl(Op); 7733 7734 // Get the correct type for pointers. 7735 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7736 // Negate the size. 7737 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7738 DAG.getConstant(0, dl, PtrVT), Size); 7739 // Construct a node for the frame pointer save index. 7740 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7741 // Build a DYNALLOC node. 7742 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7743 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7744 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7745 } 7746 7747 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7748 SelectionDAG &DAG) const { 7749 MachineFunction &MF = DAG.getMachineFunction(); 7750 7751 bool isPPC64 = Subtarget.isPPC64(); 7752 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7753 7754 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7755 return DAG.getFrameIndex(FI, PtrVT); 7756 } 7757 7758 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7759 SelectionDAG &DAG) const { 7760 SDLoc DL(Op); 7761 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7762 DAG.getVTList(MVT::i32, MVT::Other), 7763 Op.getOperand(0), Op.getOperand(1)); 7764 } 7765 7766 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7767 SelectionDAG &DAG) const { 7768 SDLoc DL(Op); 7769 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7770 Op.getOperand(0), Op.getOperand(1)); 7771 } 7772 7773 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7774 if (Op.getValueType().isVector()) 7775 return LowerVectorLoad(Op, DAG); 7776 7777 assert(Op.getValueType() == MVT::i1 && 7778 "Custom lowering only for i1 loads"); 7779 7780 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7781 7782 SDLoc dl(Op); 7783 LoadSDNode *LD = cast<LoadSDNode>(Op); 7784 7785 SDValue Chain = LD->getChain(); 7786 SDValue BasePtr = LD->getBasePtr(); 7787 MachineMemOperand *MMO = LD->getMemOperand(); 7788 7789 SDValue NewLD = 7790 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7791 BasePtr, MVT::i8, MMO); 7792 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7793 7794 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7795 return DAG.getMergeValues(Ops, dl); 7796 } 7797 7798 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7799 if (Op.getOperand(1).getValueType().isVector()) 7800 return LowerVectorStore(Op, DAG); 7801 7802 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7803 "Custom lowering only for i1 stores"); 7804 7805 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7806 7807 SDLoc dl(Op); 7808 StoreSDNode *ST = cast<StoreSDNode>(Op); 7809 7810 SDValue Chain = ST->getChain(); 7811 SDValue BasePtr = ST->getBasePtr(); 7812 SDValue Value = ST->getValue(); 7813 MachineMemOperand *MMO = ST->getMemOperand(); 7814 7815 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7816 Value); 7817 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7818 } 7819 7820 // FIXME: Remove this once the ANDI glue bug is fixed: 7821 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7822 assert(Op.getValueType() == MVT::i1 && 7823 "Custom lowering only for i1 results"); 7824 7825 SDLoc DL(Op); 7826 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7827 } 7828 7829 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7830 SelectionDAG &DAG) const { 7831 7832 // Implements a vector truncate that fits in a vector register as a shuffle. 7833 // We want to legalize vector truncates down to where the source fits in 7834 // a vector register (and target is therefore smaller than vector register 7835 // size). At that point legalization will try to custom lower the sub-legal 7836 // result and get here - where we can contain the truncate as a single target 7837 // operation. 7838 7839 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7840 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7841 // 7842 // We will implement it for big-endian ordering as this (where x denotes 7843 // undefined): 7844 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7845 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7846 // 7847 // The same operation in little-endian ordering will be: 7848 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7849 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7850 7851 assert(Op.getValueType().isVector() && "Vector type expected."); 7852 7853 SDLoc DL(Op); 7854 SDValue N1 = Op.getOperand(0); 7855 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7856 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7857 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7858 7859 EVT TrgVT = Op.getValueType(); 7860 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7861 EVT EltVT = TrgVT.getVectorElementType(); 7862 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7863 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7864 7865 // First list the elements we want to keep. 7866 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7867 SmallVector<int, 16> ShuffV; 7868 if (Subtarget.isLittleEndian()) 7869 for (unsigned i = 0; i < TrgNumElts; ++i) 7870 ShuffV.push_back(i * SizeMult); 7871 else 7872 for (unsigned i = 1; i <= TrgNumElts; ++i) 7873 ShuffV.push_back(i * SizeMult - 1); 7874 7875 // Populate the remaining elements with undefs. 7876 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7877 // ShuffV.push_back(i + WideNumElts); 7878 ShuffV.push_back(WideNumElts + 1); 7879 7880 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7881 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7882 } 7883 7884 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7885 /// possible. 7886 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7887 // Not FP? Not a fsel. 7888 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7889 !Op.getOperand(2).getValueType().isFloatingPoint()) 7890 return Op; 7891 7892 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7893 7894 EVT ResVT = Op.getValueType(); 7895 EVT CmpVT = Op.getOperand(0).getValueType(); 7896 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7897 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7898 SDLoc dl(Op); 7899 7900 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7901 // presence of infinities. 7902 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7903 switch (CC) { 7904 default: 7905 break; 7906 case ISD::SETOGT: 7907 case ISD::SETGT: 7908 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7909 case ISD::SETOLT: 7910 case ISD::SETLT: 7911 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7912 } 7913 } 7914 7915 // We might be able to do better than this under some circumstances, but in 7916 // general, fsel-based lowering of select is a finite-math-only optimization. 7917 // For more information, see section F.3 of the 2.06 ISA specification. 7918 // With ISA 3.0 7919 if (!DAG.getTarget().Options.NoInfsFPMath || 7920 !DAG.getTarget().Options.NoNaNsFPMath) 7921 return Op; 7922 7923 // TODO: Propagate flags from the select rather than global settings. 7924 SDNodeFlags Flags; 7925 Flags.setNoInfs(true); 7926 Flags.setNoNaNs(true); 7927 7928 // If the RHS of the comparison is a 0.0, we don't need to do the 7929 // subtraction at all. 7930 SDValue Sel1; 7931 if (isFloatingPointZero(RHS)) 7932 switch (CC) { 7933 default: break; // SETUO etc aren't handled by fsel. 7934 case ISD::SETNE: 7935 std::swap(TV, FV); 7936 LLVM_FALLTHROUGH; 7937 case ISD::SETEQ: 7938 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7939 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7940 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7941 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7942 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7943 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7944 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7945 case ISD::SETULT: 7946 case ISD::SETLT: 7947 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7948 LLVM_FALLTHROUGH; 7949 case ISD::SETOGE: 7950 case ISD::SETGE: 7951 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7952 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7953 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7954 case ISD::SETUGT: 7955 case ISD::SETGT: 7956 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7957 LLVM_FALLTHROUGH; 7958 case ISD::SETOLE: 7959 case ISD::SETLE: 7960 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7961 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7962 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7963 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7964 } 7965 7966 SDValue Cmp; 7967 switch (CC) { 7968 default: break; // SETUO etc aren't handled by fsel. 7969 case ISD::SETNE: 7970 std::swap(TV, FV); 7971 LLVM_FALLTHROUGH; 7972 case ISD::SETEQ: 7973 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7974 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7975 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7976 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7977 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7978 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7979 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7980 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7981 case ISD::SETULT: 7982 case ISD::SETLT: 7983 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7984 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7985 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7986 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7987 case ISD::SETOGE: 7988 case ISD::SETGE: 7989 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7990 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7991 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7992 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7993 case ISD::SETUGT: 7994 case ISD::SETGT: 7995 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7996 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7997 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7998 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7999 case ISD::SETOLE: 8000 case ISD::SETLE: 8001 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8002 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8003 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8004 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8005 } 8006 return Op; 8007 } 8008 8009 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8010 SelectionDAG &DAG, 8011 const SDLoc &dl) const { 8012 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8013 SDValue Src = Op.getOperand(0); 8014 if (Src.getValueType() == MVT::f32) 8015 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8016 8017 SDValue Tmp; 8018 switch (Op.getSimpleValueType().SimpleTy) { 8019 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8020 case MVT::i32: 8021 Tmp = DAG.getNode( 8022 Op.getOpcode() == ISD::FP_TO_SINT 8023 ? PPCISD::FCTIWZ 8024 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8025 dl, MVT::f64, Src); 8026 break; 8027 case MVT::i64: 8028 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8029 "i64 FP_TO_UINT is supported only with FPCVT"); 8030 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8031 PPCISD::FCTIDUZ, 8032 dl, MVT::f64, Src); 8033 break; 8034 } 8035 8036 // Convert the FP value to an int value through memory. 8037 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8038 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 8039 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8040 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8041 MachinePointerInfo MPI = 8042 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8043 8044 // Emit a store to the stack slot. 8045 SDValue Chain; 8046 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8047 if (i32Stack) { 8048 MachineFunction &MF = DAG.getMachineFunction(); 8049 Alignment = Align(4); 8050 MachineMemOperand *MMO = 8051 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8052 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 8053 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8054 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8055 } else 8056 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment); 8057 8058 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8059 // add in a bias on big endian. 8060 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8061 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8062 DAG.getConstant(4, dl, FIPtr.getValueType())); 8063 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8064 } 8065 8066 RLI.Chain = Chain; 8067 RLI.Ptr = FIPtr; 8068 RLI.MPI = MPI; 8069 RLI.Alignment = Alignment; 8070 } 8071 8072 /// Custom lowers floating point to integer conversions to use 8073 /// the direct move instructions available in ISA 2.07 to avoid the 8074 /// need for load/store combinations. 8075 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8076 SelectionDAG &DAG, 8077 const SDLoc &dl) const { 8078 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8079 SDValue Src = Op.getOperand(0); 8080 8081 if (Src.getValueType() == MVT::f32) 8082 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8083 8084 SDValue Tmp; 8085 switch (Op.getSimpleValueType().SimpleTy) { 8086 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8087 case MVT::i32: 8088 Tmp = DAG.getNode( 8089 Op.getOpcode() == ISD::FP_TO_SINT 8090 ? PPCISD::FCTIWZ 8091 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8092 dl, MVT::f64, Src); 8093 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 8094 break; 8095 case MVT::i64: 8096 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8097 "i64 FP_TO_UINT is supported only with FPCVT"); 8098 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8099 PPCISD::FCTIDUZ, 8100 dl, MVT::f64, Src); 8101 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 8102 break; 8103 } 8104 return Tmp; 8105 } 8106 8107 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8108 const SDLoc &dl) const { 8109 8110 // FP to INT conversions are legal for f128. 8111 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 8112 return Op; 8113 8114 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8115 // PPC (the libcall is not available). 8116 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 8117 if (Op.getValueType() == MVT::i32) { 8118 if (Op.getOpcode() == ISD::FP_TO_SINT) { 8119 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8120 MVT::f64, Op.getOperand(0), 8121 DAG.getIntPtrConstant(0, dl)); 8122 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8123 MVT::f64, Op.getOperand(0), 8124 DAG.getIntPtrConstant(1, dl)); 8125 8126 // Add the two halves of the long double in round-to-zero mode. 8127 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8128 8129 // Now use a smaller FP_TO_SINT. 8130 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8131 } 8132 if (Op.getOpcode() == ISD::FP_TO_UINT) { 8133 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8134 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8135 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 8136 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8137 // FIXME: generated code sucks. 8138 // TODO: Are there fast-math-flags to propagate to this FSUB? 8139 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 8140 Op.getOperand(0), Tmp); 8141 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8142 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 8143 DAG.getConstant(0x80000000, dl, MVT::i32)); 8144 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 8145 Op.getOperand(0)); 8146 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 8147 ISD::SETGE); 8148 } 8149 } 8150 8151 return SDValue(); 8152 } 8153 8154 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8155 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8156 8157 ReuseLoadInfo RLI; 8158 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8159 8160 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8161 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8162 } 8163 8164 // We're trying to insert a regular store, S, and then a load, L. If the 8165 // incoming value, O, is a load, we might just be able to have our load use the 8166 // address used by O. However, we don't know if anything else will store to 8167 // that address before we can load from it. To prevent this situation, we need 8168 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8169 // the same chain operand as O, we create a token factor from the chain results 8170 // of O and L, and we replace all uses of O's chain result with that token 8171 // factor (see spliceIntoChain below for this last part). 8172 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8173 ReuseLoadInfo &RLI, 8174 SelectionDAG &DAG, 8175 ISD::LoadExtType ET) const { 8176 SDLoc dl(Op); 8177 if (ET == ISD::NON_EXTLOAD && 8178 (Op.getOpcode() == ISD::FP_TO_UINT || 8179 Op.getOpcode() == ISD::FP_TO_SINT) && 8180 isOperationLegalOrCustom(Op.getOpcode(), 8181 Op.getOperand(0).getValueType())) { 8182 8183 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8184 return true; 8185 } 8186 8187 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8188 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8189 LD->isNonTemporal()) 8190 return false; 8191 if (LD->getMemoryVT() != MemVT) 8192 return false; 8193 8194 RLI.Ptr = LD->getBasePtr(); 8195 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8196 assert(LD->getAddressingMode() == ISD::PRE_INC && 8197 "Non-pre-inc AM on PPC?"); 8198 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8199 LD->getOffset()); 8200 } 8201 8202 RLI.Chain = LD->getChain(); 8203 RLI.MPI = LD->getPointerInfo(); 8204 RLI.IsDereferenceable = LD->isDereferenceable(); 8205 RLI.IsInvariant = LD->isInvariant(); 8206 RLI.Alignment = LD->getAlign(); 8207 RLI.AAInfo = LD->getAAInfo(); 8208 RLI.Ranges = LD->getRanges(); 8209 8210 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8211 return true; 8212 } 8213 8214 // Given the head of the old chain, ResChain, insert a token factor containing 8215 // it and NewResChain, and make users of ResChain now be users of that token 8216 // factor. 8217 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8218 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8219 SDValue NewResChain, 8220 SelectionDAG &DAG) const { 8221 if (!ResChain) 8222 return; 8223 8224 SDLoc dl(NewResChain); 8225 8226 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8227 NewResChain, DAG.getUNDEF(MVT::Other)); 8228 assert(TF.getNode() != NewResChain.getNode() && 8229 "A new TF really is required here"); 8230 8231 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8232 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8233 } 8234 8235 /// Analyze profitability of direct move 8236 /// prefer float load to int load plus direct move 8237 /// when there is no integer use of int load 8238 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8239 SDNode *Origin = Op.getOperand(0).getNode(); 8240 if (Origin->getOpcode() != ISD::LOAD) 8241 return true; 8242 8243 // If there is no LXSIBZX/LXSIHZX, like Power8, 8244 // prefer direct move if the memory size is 1 or 2 bytes. 8245 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8246 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8247 return true; 8248 8249 for (SDNode::use_iterator UI = Origin->use_begin(), 8250 UE = Origin->use_end(); 8251 UI != UE; ++UI) { 8252 8253 // Only look at the users of the loaded value. 8254 if (UI.getUse().get().getResNo() != 0) 8255 continue; 8256 8257 if (UI->getOpcode() != ISD::SINT_TO_FP && 8258 UI->getOpcode() != ISD::UINT_TO_FP) 8259 return true; 8260 } 8261 8262 return false; 8263 } 8264 8265 /// Custom lowers integer to floating point conversions to use 8266 /// the direct move instructions available in ISA 2.07 to avoid the 8267 /// need for load/store combinations. 8268 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8269 SelectionDAG &DAG, 8270 const SDLoc &dl) const { 8271 assert((Op.getValueType() == MVT::f32 || 8272 Op.getValueType() == MVT::f64) && 8273 "Invalid floating point type as target of conversion"); 8274 assert(Subtarget.hasFPCVT() && 8275 "Int to FP conversions with direct moves require FPCVT"); 8276 SDValue FP; 8277 SDValue Src = Op.getOperand(0); 8278 bool SinglePrec = Op.getValueType() == MVT::f32; 8279 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8280 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8281 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 8282 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 8283 8284 if (WordInt) { 8285 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 8286 dl, MVT::f64, Src); 8287 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8288 } 8289 else { 8290 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 8291 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8292 } 8293 8294 return FP; 8295 } 8296 8297 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8298 8299 EVT VecVT = Vec.getValueType(); 8300 assert(VecVT.isVector() && "Expected a vector type."); 8301 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8302 8303 EVT EltVT = VecVT.getVectorElementType(); 8304 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8305 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8306 8307 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8308 SmallVector<SDValue, 16> Ops(NumConcat); 8309 Ops[0] = Vec; 8310 SDValue UndefVec = DAG.getUNDEF(VecVT); 8311 for (unsigned i = 1; i < NumConcat; ++i) 8312 Ops[i] = UndefVec; 8313 8314 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8315 } 8316 8317 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8318 const SDLoc &dl) const { 8319 8320 unsigned Opc = Op.getOpcode(); 8321 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8322 "Unexpected conversion type"); 8323 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8324 "Supports conversions to v2f64/v4f32 only."); 8325 8326 bool SignedConv = Opc == ISD::SINT_TO_FP; 8327 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8328 8329 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8330 EVT WideVT = Wide.getValueType(); 8331 unsigned WideNumElts = WideVT.getVectorNumElements(); 8332 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8333 8334 SmallVector<int, 16> ShuffV; 8335 for (unsigned i = 0; i < WideNumElts; ++i) 8336 ShuffV.push_back(i + WideNumElts); 8337 8338 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8339 int SaveElts = FourEltRes ? 4 : 2; 8340 if (Subtarget.isLittleEndian()) 8341 for (int i = 0; i < SaveElts; i++) 8342 ShuffV[i * Stride] = i; 8343 else 8344 for (int i = 1; i <= SaveElts; i++) 8345 ShuffV[i * Stride - 1] = i - 1; 8346 8347 SDValue ShuffleSrc2 = 8348 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8349 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8350 8351 SDValue Extend; 8352 if (SignedConv) { 8353 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8354 EVT ExtVT = Op.getOperand(0).getValueType(); 8355 if (Subtarget.hasP9Altivec()) 8356 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8357 IntermediateVT.getVectorNumElements()); 8358 8359 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8360 DAG.getValueType(ExtVT)); 8361 } else 8362 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8363 8364 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8365 } 8366 8367 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8368 SelectionDAG &DAG) const { 8369 SDLoc dl(Op); 8370 8371 EVT InVT = Op.getOperand(0).getValueType(); 8372 EVT OutVT = Op.getValueType(); 8373 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8374 isOperationCustom(Op.getOpcode(), InVT)) 8375 return LowerINT_TO_FPVector(Op, DAG, dl); 8376 8377 // Conversions to f128 are legal. 8378 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 8379 return Op; 8380 8381 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 8382 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 8383 return SDValue(); 8384 8385 SDValue Value = Op.getOperand(0); 8386 // The values are now known to be -1 (false) or 1 (true). To convert this 8387 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8388 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8389 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8390 8391 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8392 8393 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8394 8395 if (Op.getValueType() != MVT::v4f64) 8396 Value = DAG.getNode(ISD::FP_ROUND, dl, 8397 Op.getValueType(), Value, 8398 DAG.getIntPtrConstant(1, dl)); 8399 return Value; 8400 } 8401 8402 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8403 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8404 return SDValue(); 8405 8406 if (Op.getOperand(0).getValueType() == MVT::i1) 8407 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 8408 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8409 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8410 8411 // If we have direct moves, we can do all the conversion, skip the store/load 8412 // however, without FPCVT we can't do most conversions. 8413 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8414 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8415 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8416 8417 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8418 "UINT_TO_FP is supported only with FPCVT"); 8419 8420 // If we have FCFIDS, then use it when converting to single-precision. 8421 // Otherwise, convert to double-precision and then round. 8422 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8423 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8424 : PPCISD::FCFIDS) 8425 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8426 : PPCISD::FCFID); 8427 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8428 ? MVT::f32 8429 : MVT::f64; 8430 8431 if (Op.getOperand(0).getValueType() == MVT::i64) { 8432 SDValue SINT = Op.getOperand(0); 8433 // When converting to single-precision, we actually need to convert 8434 // to double-precision first and then round to single-precision. 8435 // To avoid double-rounding effects during that operation, we have 8436 // to prepare the input operand. Bits that might be truncated when 8437 // converting to double-precision are replaced by a bit that won't 8438 // be lost at this stage, but is below the single-precision rounding 8439 // position. 8440 // 8441 // However, if -enable-unsafe-fp-math is in effect, accept double 8442 // rounding to avoid the extra overhead. 8443 if (Op.getValueType() == MVT::f32 && 8444 !Subtarget.hasFPCVT() && 8445 !DAG.getTarget().Options.UnsafeFPMath) { 8446 8447 // Twiddle input to make sure the low 11 bits are zero. (If this 8448 // is the case, we are guaranteed the value will fit into the 53 bit 8449 // mantissa of an IEEE double-precision value without rounding.) 8450 // If any of those low 11 bits were not zero originally, make sure 8451 // bit 12 (value 2048) is set instead, so that the final rounding 8452 // to single-precision gets the correct result. 8453 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8454 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8455 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8456 Round, DAG.getConstant(2047, dl, MVT::i64)); 8457 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8458 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8459 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8460 8461 // However, we cannot use that value unconditionally: if the magnitude 8462 // of the input value is small, the bit-twiddling we did above might 8463 // end up visibly changing the output. Fortunately, in that case, we 8464 // don't need to twiddle bits since the original input will convert 8465 // exactly to double-precision floating-point already. Therefore, 8466 // construct a conditional to use the original value if the top 11 8467 // bits are all sign-bit copies, and use the rounded value computed 8468 // above otherwise. 8469 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8470 SINT, DAG.getConstant(53, dl, MVT::i32)); 8471 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8472 Cond, DAG.getConstant(1, dl, MVT::i64)); 8473 Cond = DAG.getSetCC( 8474 dl, 8475 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8476 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8477 8478 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8479 } 8480 8481 ReuseLoadInfo RLI; 8482 SDValue Bits; 8483 8484 MachineFunction &MF = DAG.getMachineFunction(); 8485 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8486 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8487 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8488 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8489 } else if (Subtarget.hasLFIWAX() && 8490 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8491 MachineMemOperand *MMO = 8492 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8493 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8494 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8495 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8496 DAG.getVTList(MVT::f64, MVT::Other), 8497 Ops, MVT::i32, MMO); 8498 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8499 } else if (Subtarget.hasFPCVT() && 8500 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8501 MachineMemOperand *MMO = 8502 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8503 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8504 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8505 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8506 DAG.getVTList(MVT::f64, MVT::Other), 8507 Ops, MVT::i32, MMO); 8508 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8509 } else if (((Subtarget.hasLFIWAX() && 8510 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8511 (Subtarget.hasFPCVT() && 8512 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8513 SINT.getOperand(0).getValueType() == MVT::i32) { 8514 MachineFrameInfo &MFI = MF.getFrameInfo(); 8515 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8516 8517 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8518 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8519 8520 SDValue Store = 8521 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8522 MachinePointerInfo::getFixedStack( 8523 DAG.getMachineFunction(), FrameIdx)); 8524 8525 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8526 "Expected an i32 store"); 8527 8528 RLI.Ptr = FIdx; 8529 RLI.Chain = Store; 8530 RLI.MPI = 8531 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8532 RLI.Alignment = Align(4); 8533 8534 MachineMemOperand *MMO = 8535 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8536 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8537 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8538 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8539 PPCISD::LFIWZX : PPCISD::LFIWAX, 8540 dl, DAG.getVTList(MVT::f64, MVT::Other), 8541 Ops, MVT::i32, MMO); 8542 } else 8543 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8544 8545 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8546 8547 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8548 FP = DAG.getNode(ISD::FP_ROUND, dl, 8549 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8550 return FP; 8551 } 8552 8553 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8554 "Unhandled INT_TO_FP type in custom expander!"); 8555 // Since we only generate this in 64-bit mode, we can take advantage of 8556 // 64-bit registers. In particular, sign extend the input value into the 8557 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8558 // then lfd it and fcfid it. 8559 MachineFunction &MF = DAG.getMachineFunction(); 8560 MachineFrameInfo &MFI = MF.getFrameInfo(); 8561 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8562 8563 SDValue Ld; 8564 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8565 ReuseLoadInfo RLI; 8566 bool ReusingLoad; 8567 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8568 DAG))) { 8569 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8570 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8571 8572 SDValue Store = 8573 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8574 MachinePointerInfo::getFixedStack( 8575 DAG.getMachineFunction(), FrameIdx)); 8576 8577 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8578 "Expected an i32 store"); 8579 8580 RLI.Ptr = FIdx; 8581 RLI.Chain = Store; 8582 RLI.MPI = 8583 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8584 RLI.Alignment = Align(4); 8585 } 8586 8587 MachineMemOperand *MMO = 8588 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8589 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8590 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8591 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8592 PPCISD::LFIWZX : PPCISD::LFIWAX, 8593 dl, DAG.getVTList(MVT::f64, MVT::Other), 8594 Ops, MVT::i32, MMO); 8595 if (ReusingLoad) 8596 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8597 } else { 8598 assert(Subtarget.isPPC64() && 8599 "i32->FP without LFIWAX supported only on PPC64"); 8600 8601 int FrameIdx = MFI.CreateStackObject(8, 8, false); 8602 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8603 8604 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8605 Op.getOperand(0)); 8606 8607 // STD the extended value into the stack slot. 8608 SDValue Store = DAG.getStore( 8609 DAG.getEntryNode(), dl, Ext64, FIdx, 8610 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8611 8612 // Load the value as a double. 8613 Ld = DAG.getLoad( 8614 MVT::f64, dl, Store, FIdx, 8615 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8616 } 8617 8618 // FCFID it and return it. 8619 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8620 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8621 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8622 DAG.getIntPtrConstant(0, dl)); 8623 return FP; 8624 } 8625 8626 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8627 SelectionDAG &DAG) const { 8628 SDLoc dl(Op); 8629 /* 8630 The rounding mode is in bits 30:31 of FPSR, and has the following 8631 settings: 8632 00 Round to nearest 8633 01 Round to 0 8634 10 Round to +inf 8635 11 Round to -inf 8636 8637 FLT_ROUNDS, on the other hand, expects the following: 8638 -1 Undefined 8639 0 Round to 0 8640 1 Round to nearest 8641 2 Round to +inf 8642 3 Round to -inf 8643 8644 To perform the conversion, we do: 8645 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8646 */ 8647 8648 MachineFunction &MF = DAG.getMachineFunction(); 8649 EVT VT = Op.getValueType(); 8650 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8651 8652 // Save FP Control Word to register 8653 SDValue Chain = Op.getOperand(0); 8654 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8655 Chain = MFFS.getValue(1); 8656 8657 // Save FP register to stack slot 8658 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 8659 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8660 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8661 8662 // Load FP Control Word from low 32 bits of stack slot. 8663 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8664 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8665 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8666 Chain = CWD.getValue(1); 8667 8668 // Transform as necessary 8669 SDValue CWD1 = 8670 DAG.getNode(ISD::AND, dl, MVT::i32, 8671 CWD, DAG.getConstant(3, dl, MVT::i32)); 8672 SDValue CWD2 = 8673 DAG.getNode(ISD::SRL, dl, MVT::i32, 8674 DAG.getNode(ISD::AND, dl, MVT::i32, 8675 DAG.getNode(ISD::XOR, dl, MVT::i32, 8676 CWD, DAG.getConstant(3, dl, MVT::i32)), 8677 DAG.getConstant(3, dl, MVT::i32)), 8678 DAG.getConstant(1, dl, MVT::i32)); 8679 8680 SDValue RetVal = 8681 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8682 8683 RetVal = 8684 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8685 dl, VT, RetVal); 8686 8687 return DAG.getMergeValues({RetVal, Chain}, dl); 8688 } 8689 8690 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8691 EVT VT = Op.getValueType(); 8692 unsigned BitWidth = VT.getSizeInBits(); 8693 SDLoc dl(Op); 8694 assert(Op.getNumOperands() == 3 && 8695 VT == Op.getOperand(1).getValueType() && 8696 "Unexpected SHL!"); 8697 8698 // Expand into a bunch of logical ops. Note that these ops 8699 // depend on the PPC behavior for oversized shift amounts. 8700 SDValue Lo = Op.getOperand(0); 8701 SDValue Hi = Op.getOperand(1); 8702 SDValue Amt = Op.getOperand(2); 8703 EVT AmtVT = Amt.getValueType(); 8704 8705 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8706 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8707 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8708 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8709 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8710 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8711 DAG.getConstant(-BitWidth, dl, AmtVT)); 8712 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8713 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8714 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8715 SDValue OutOps[] = { OutLo, OutHi }; 8716 return DAG.getMergeValues(OutOps, dl); 8717 } 8718 8719 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8720 EVT VT = Op.getValueType(); 8721 SDLoc dl(Op); 8722 unsigned BitWidth = VT.getSizeInBits(); 8723 assert(Op.getNumOperands() == 3 && 8724 VT == Op.getOperand(1).getValueType() && 8725 "Unexpected SRL!"); 8726 8727 // Expand into a bunch of logical ops. Note that these ops 8728 // depend on the PPC behavior for oversized shift amounts. 8729 SDValue Lo = Op.getOperand(0); 8730 SDValue Hi = Op.getOperand(1); 8731 SDValue Amt = Op.getOperand(2); 8732 EVT AmtVT = Amt.getValueType(); 8733 8734 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8735 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8736 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8737 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8738 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8739 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8740 DAG.getConstant(-BitWidth, dl, AmtVT)); 8741 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8742 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8743 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8744 SDValue OutOps[] = { OutLo, OutHi }; 8745 return DAG.getMergeValues(OutOps, dl); 8746 } 8747 8748 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8749 SDLoc dl(Op); 8750 EVT VT = Op.getValueType(); 8751 unsigned BitWidth = VT.getSizeInBits(); 8752 assert(Op.getNumOperands() == 3 && 8753 VT == Op.getOperand(1).getValueType() && 8754 "Unexpected SRA!"); 8755 8756 // Expand into a bunch of logical ops, followed by a select_cc. 8757 SDValue Lo = Op.getOperand(0); 8758 SDValue Hi = Op.getOperand(1); 8759 SDValue Amt = Op.getOperand(2); 8760 EVT AmtVT = Amt.getValueType(); 8761 8762 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8763 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8764 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8765 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8766 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8767 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8768 DAG.getConstant(-BitWidth, dl, AmtVT)); 8769 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8770 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8771 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8772 Tmp4, Tmp6, ISD::SETLE); 8773 SDValue OutOps[] = { OutLo, OutHi }; 8774 return DAG.getMergeValues(OutOps, dl); 8775 } 8776 8777 //===----------------------------------------------------------------------===// 8778 // Vector related lowering. 8779 // 8780 8781 /// BuildSplatI - Build a canonical splati of Val with an element size of 8782 /// SplatSize. Cast the result to VT. 8783 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8784 SelectionDAG &DAG, const SDLoc &dl) { 8785 static const MVT VTys[] = { // canonical VT to use for each size. 8786 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8787 }; 8788 8789 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8790 8791 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8792 if (Val == -1) 8793 SplatSize = 1; 8794 8795 EVT CanonicalVT = VTys[SplatSize-1]; 8796 8797 // Build a canonical splat for this value. 8798 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8799 } 8800 8801 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8802 /// specified intrinsic ID. 8803 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8804 const SDLoc &dl, EVT DestVT = MVT::Other) { 8805 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8806 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8807 DAG.getConstant(IID, dl, MVT::i32), Op); 8808 } 8809 8810 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8811 /// specified intrinsic ID. 8812 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8813 SelectionDAG &DAG, const SDLoc &dl, 8814 EVT DestVT = MVT::Other) { 8815 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8816 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8817 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8818 } 8819 8820 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8821 /// specified intrinsic ID. 8822 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8823 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8824 EVT DestVT = MVT::Other) { 8825 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8826 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8827 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8828 } 8829 8830 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8831 /// amount. The result has the specified value type. 8832 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8833 SelectionDAG &DAG, const SDLoc &dl) { 8834 // Force LHS/RHS to be the right type. 8835 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8836 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8837 8838 int Ops[16]; 8839 for (unsigned i = 0; i != 16; ++i) 8840 Ops[i] = i + Amt; 8841 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8842 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8843 } 8844 8845 /// Do we have an efficient pattern in a .td file for this node? 8846 /// 8847 /// \param V - pointer to the BuildVectorSDNode being matched 8848 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8849 /// 8850 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8851 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8852 /// the opposite is true (expansion is beneficial) are: 8853 /// - The node builds a vector out of integers that are not 32 or 64-bits 8854 /// - The node builds a vector out of constants 8855 /// - The node is a "load-and-splat" 8856 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8857 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8858 bool HasDirectMove, 8859 bool HasP8Vector) { 8860 EVT VecVT = V->getValueType(0); 8861 bool RightType = VecVT == MVT::v2f64 || 8862 (HasP8Vector && VecVT == MVT::v4f32) || 8863 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8864 if (!RightType) 8865 return false; 8866 8867 bool IsSplat = true; 8868 bool IsLoad = false; 8869 SDValue Op0 = V->getOperand(0); 8870 8871 // This function is called in a block that confirms the node is not a constant 8872 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8873 // different constants. 8874 if (V->isConstant()) 8875 return false; 8876 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8877 if (V->getOperand(i).isUndef()) 8878 return false; 8879 // We want to expand nodes that represent load-and-splat even if the 8880 // loaded value is a floating point truncation or conversion to int. 8881 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8882 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8883 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8884 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8885 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8886 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8887 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8888 IsLoad = true; 8889 // If the operands are different or the input is not a load and has more 8890 // uses than just this BV node, then it isn't a splat. 8891 if (V->getOperand(i) != Op0 || 8892 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8893 IsSplat = false; 8894 } 8895 return !(IsSplat && IsLoad); 8896 } 8897 8898 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8899 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8900 8901 SDLoc dl(Op); 8902 SDValue Op0 = Op->getOperand(0); 8903 8904 if (!EnableQuadPrecision || 8905 (Op.getValueType() != MVT::f128 ) || 8906 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8907 (Op0.getOperand(0).getValueType() != MVT::i64) || 8908 (Op0.getOperand(1).getValueType() != MVT::i64)) 8909 return SDValue(); 8910 8911 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8912 Op0.getOperand(1)); 8913 } 8914 8915 static const SDValue *getNormalLoadInput(const SDValue &Op) { 8916 const SDValue *InputLoad = &Op; 8917 if (InputLoad->getOpcode() == ISD::BITCAST) 8918 InputLoad = &InputLoad->getOperand(0); 8919 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR) 8920 InputLoad = &InputLoad->getOperand(0); 8921 if (InputLoad->getOpcode() != ISD::LOAD) 8922 return nullptr; 8923 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8924 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8925 } 8926 8927 // If this is a case we can't handle, return null and let the default 8928 // expansion code take care of it. If we CAN select this case, and if it 8929 // selects to a single instruction, return Op. Otherwise, if we can codegen 8930 // this case more efficiently than a constant pool load, lower it to the 8931 // sequence of ops that should be used. 8932 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8933 SelectionDAG &DAG) const { 8934 SDLoc dl(Op); 8935 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8936 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8937 8938 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8939 // We first build an i32 vector, load it into a QPX register, 8940 // then convert it to a floating-point vector and compare it 8941 // to a zero vector to get the boolean result. 8942 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8943 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8944 MachinePointerInfo PtrInfo = 8945 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8946 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8947 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8948 8949 assert(BVN->getNumOperands() == 4 && 8950 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8951 8952 bool IsConst = true; 8953 for (unsigned i = 0; i < 4; ++i) { 8954 if (BVN->getOperand(i).isUndef()) continue; 8955 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8956 IsConst = false; 8957 break; 8958 } 8959 } 8960 8961 if (IsConst) { 8962 Constant *One = 8963 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8964 Constant *NegOne = 8965 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8966 8967 Constant *CV[4]; 8968 for (unsigned i = 0; i < 4; ++i) { 8969 if (BVN->getOperand(i).isUndef()) 8970 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8971 else if (isNullConstant(BVN->getOperand(i))) 8972 CV[i] = NegOne; 8973 else 8974 CV[i] = One; 8975 } 8976 8977 Constant *CP = ConstantVector::get(CV); 8978 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8979 16 /* alignment */); 8980 8981 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8982 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8983 return DAG.getMemIntrinsicNode( 8984 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8985 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8986 } 8987 8988 SmallVector<SDValue, 4> Stores; 8989 for (unsigned i = 0; i < 4; ++i) { 8990 if (BVN->getOperand(i).isUndef()) continue; 8991 8992 unsigned Offset = 4*i; 8993 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8994 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8995 8996 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8997 if (StoreSize > 4) { 8998 Stores.push_back( 8999 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 9000 PtrInfo.getWithOffset(Offset), MVT::i32)); 9001 } else { 9002 SDValue StoreValue = BVN->getOperand(i); 9003 if (StoreSize < 4) 9004 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 9005 9006 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 9007 PtrInfo.getWithOffset(Offset))); 9008 } 9009 } 9010 9011 SDValue StoreChain; 9012 if (!Stores.empty()) 9013 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9014 else 9015 StoreChain = DAG.getEntryNode(); 9016 9017 // Now load from v4i32 into the QPX register; this will extend it to 9018 // v4i64 but not yet convert it to a floating point. Nevertheless, this 9019 // is typed as v4f64 because the QPX register integer states are not 9020 // explicitly represented. 9021 9022 SDValue Ops[] = {StoreChain, 9023 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 9024 FIdx}; 9025 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 9026 9027 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 9028 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9029 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9030 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 9031 LoadedVect); 9032 9033 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 9034 9035 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 9036 } 9037 9038 // All other QPX vectors are handled by generic code. 9039 if (Subtarget.hasQPX()) 9040 return SDValue(); 9041 9042 // Check if this is a splat of a constant value. 9043 APInt APSplatBits, APSplatUndef; 9044 unsigned SplatBitSize; 9045 bool HasAnyUndefs; 9046 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9047 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9048 SplatBitSize > 32) { 9049 9050 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 9051 // Handle load-and-splat patterns as we have instructions that will do this 9052 // in one go. 9053 if (InputLoad && DAG.isSplatValue(Op, true)) { 9054 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9055 9056 // We have handling for 4 and 8 byte elements. 9057 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9058 9059 // Checking for a single use of this load, we have to check for vector 9060 // width (128 bits) / ElementSize uses (since each operand of the 9061 // BUILD_VECTOR is a separate use of the value. 9062 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 9063 ((Subtarget.hasVSX() && ElementSize == 64) || 9064 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9065 SDValue Ops[] = { 9066 LD->getChain(), // Chain 9067 LD->getBasePtr(), // Ptr 9068 DAG.getValueType(Op.getValueType()) // VT 9069 }; 9070 return 9071 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 9072 DAG.getVTList(Op.getValueType(), MVT::Other), 9073 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9074 } 9075 } 9076 9077 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9078 // lowered to VSX instructions under certain conditions. 9079 // Without VSX, there is no pattern more efficient than expanding the node. 9080 if (Subtarget.hasVSX() && 9081 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9082 Subtarget.hasP8Vector())) 9083 return Op; 9084 return SDValue(); 9085 } 9086 9087 unsigned SplatBits = APSplatBits.getZExtValue(); 9088 unsigned SplatUndef = APSplatUndef.getZExtValue(); 9089 unsigned SplatSize = SplatBitSize / 8; 9090 9091 // First, handle single instruction cases. 9092 9093 // All zeros? 9094 if (SplatBits == 0) { 9095 // Canonicalize all zero vectors to be v4i32. 9096 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9097 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9098 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9099 } 9100 return Op; 9101 } 9102 9103 // We have XXSPLTIB for constant splats one byte wide 9104 // FIXME: SplatBits is an unsigned int being cast to an int while passing it 9105 // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here. 9106 if (Subtarget.hasP9Vector() && SplatSize == 1) 9107 return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl); 9108 9109 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9110 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9111 (32-SplatBitSize)); 9112 if (SextVal >= -16 && SextVal <= 15) 9113 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 9114 9115 // Two instruction sequences. 9116 9117 // If this value is in the range [-32,30] and is even, use: 9118 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9119 // If this value is in the range [17,31] and is odd, use: 9120 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9121 // If this value is in the range [-31,-17] and is odd, use: 9122 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9123 // Note the last two are three-instruction sequences. 9124 if (SextVal >= -32 && SextVal <= 31) { 9125 // To avoid having these optimizations undone by constant folding, 9126 // we convert to a pseudo that will be expanded later into one of 9127 // the above forms. 9128 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9129 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9130 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9131 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9132 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9133 if (VT == Op.getValueType()) 9134 return RetVal; 9135 else 9136 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9137 } 9138 9139 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9140 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9141 // for fneg/fabs. 9142 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9143 // Make -1 and vspltisw -1: 9144 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 9145 9146 // Make the VSLW intrinsic, computing 0x8000_0000. 9147 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9148 OnesV, DAG, dl); 9149 9150 // xor by OnesV to invert it. 9151 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9152 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9153 } 9154 9155 // Check to see if this is a wide variety of vsplti*, binop self cases. 9156 static const signed char SplatCsts[] = { 9157 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9158 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9159 }; 9160 9161 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9162 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9163 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9164 int i = SplatCsts[idx]; 9165 9166 // Figure out what shift amount will be used by altivec if shifted by i in 9167 // this splat size. 9168 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9169 9170 // vsplti + shl self. 9171 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9172 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9173 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9174 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9175 Intrinsic::ppc_altivec_vslw 9176 }; 9177 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9178 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9179 } 9180 9181 // vsplti + srl self. 9182 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9183 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9184 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9185 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9186 Intrinsic::ppc_altivec_vsrw 9187 }; 9188 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9189 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9190 } 9191 9192 // vsplti + sra self. 9193 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9194 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9195 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9196 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9197 Intrinsic::ppc_altivec_vsraw 9198 }; 9199 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9200 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9201 } 9202 9203 // vsplti + rol self. 9204 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9205 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9206 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9207 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9208 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9209 Intrinsic::ppc_altivec_vrlw 9210 }; 9211 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9212 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9213 } 9214 9215 // t = vsplti c, result = vsldoi t, t, 1 9216 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9217 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9218 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9219 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9220 } 9221 // t = vsplti c, result = vsldoi t, t, 2 9222 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9223 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9224 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9225 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9226 } 9227 // t = vsplti c, result = vsldoi t, t, 3 9228 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9229 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9230 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9231 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9232 } 9233 } 9234 9235 return SDValue(); 9236 } 9237 9238 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9239 /// the specified operations to build the shuffle. 9240 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9241 SDValue RHS, SelectionDAG &DAG, 9242 const SDLoc &dl) { 9243 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9244 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9245 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9246 9247 enum { 9248 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9249 OP_VMRGHW, 9250 OP_VMRGLW, 9251 OP_VSPLTISW0, 9252 OP_VSPLTISW1, 9253 OP_VSPLTISW2, 9254 OP_VSPLTISW3, 9255 OP_VSLDOI4, 9256 OP_VSLDOI8, 9257 OP_VSLDOI12 9258 }; 9259 9260 if (OpNum == OP_COPY) { 9261 if (LHSID == (1*9+2)*9+3) return LHS; 9262 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9263 return RHS; 9264 } 9265 9266 SDValue OpLHS, OpRHS; 9267 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9268 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9269 9270 int ShufIdxs[16]; 9271 switch (OpNum) { 9272 default: llvm_unreachable("Unknown i32 permute!"); 9273 case OP_VMRGHW: 9274 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9275 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9276 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9277 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9278 break; 9279 case OP_VMRGLW: 9280 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9281 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9282 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9283 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9284 break; 9285 case OP_VSPLTISW0: 9286 for (unsigned i = 0; i != 16; ++i) 9287 ShufIdxs[i] = (i&3)+0; 9288 break; 9289 case OP_VSPLTISW1: 9290 for (unsigned i = 0; i != 16; ++i) 9291 ShufIdxs[i] = (i&3)+4; 9292 break; 9293 case OP_VSPLTISW2: 9294 for (unsigned i = 0; i != 16; ++i) 9295 ShufIdxs[i] = (i&3)+8; 9296 break; 9297 case OP_VSPLTISW3: 9298 for (unsigned i = 0; i != 16; ++i) 9299 ShufIdxs[i] = (i&3)+12; 9300 break; 9301 case OP_VSLDOI4: 9302 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9303 case OP_VSLDOI8: 9304 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9305 case OP_VSLDOI12: 9306 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9307 } 9308 EVT VT = OpLHS.getValueType(); 9309 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9310 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9311 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9312 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9313 } 9314 9315 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9316 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9317 /// SDValue. 9318 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9319 SelectionDAG &DAG) const { 9320 const unsigned BytesInVector = 16; 9321 bool IsLE = Subtarget.isLittleEndian(); 9322 SDLoc dl(N); 9323 SDValue V1 = N->getOperand(0); 9324 SDValue V2 = N->getOperand(1); 9325 unsigned ShiftElts = 0, InsertAtByte = 0; 9326 bool Swap = false; 9327 9328 // Shifts required to get the byte we want at element 7. 9329 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9330 0, 15, 14, 13, 12, 11, 10, 9}; 9331 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9332 1, 2, 3, 4, 5, 6, 7, 8}; 9333 9334 ArrayRef<int> Mask = N->getMask(); 9335 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9336 9337 // For each mask element, find out if we're just inserting something 9338 // from V2 into V1 or vice versa. 9339 // Possible permutations inserting an element from V2 into V1: 9340 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9341 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9342 // ... 9343 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9344 // Inserting from V1 into V2 will be similar, except mask range will be 9345 // [16,31]. 9346 9347 bool FoundCandidate = false; 9348 // If both vector operands for the shuffle are the same vector, the mask 9349 // will contain only elements from the first one and the second one will be 9350 // undef. 9351 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9352 // Go through the mask of half-words to find an element that's being moved 9353 // from one vector to the other. 9354 for (unsigned i = 0; i < BytesInVector; ++i) { 9355 unsigned CurrentElement = Mask[i]; 9356 // If 2nd operand is undefined, we should only look for element 7 in the 9357 // Mask. 9358 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9359 continue; 9360 9361 bool OtherElementsInOrder = true; 9362 // Examine the other elements in the Mask to see if they're in original 9363 // order. 9364 for (unsigned j = 0; j < BytesInVector; ++j) { 9365 if (j == i) 9366 continue; 9367 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9368 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9369 // in which we always assume we're always picking from the 1st operand. 9370 int MaskOffset = 9371 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9372 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9373 OtherElementsInOrder = false; 9374 break; 9375 } 9376 } 9377 // If other elements are in original order, we record the number of shifts 9378 // we need to get the element we want into element 7. Also record which byte 9379 // in the vector we should insert into. 9380 if (OtherElementsInOrder) { 9381 // If 2nd operand is undefined, we assume no shifts and no swapping. 9382 if (V2.isUndef()) { 9383 ShiftElts = 0; 9384 Swap = false; 9385 } else { 9386 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9387 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9388 : BigEndianShifts[CurrentElement & 0xF]; 9389 Swap = CurrentElement < BytesInVector; 9390 } 9391 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9392 FoundCandidate = true; 9393 break; 9394 } 9395 } 9396 9397 if (!FoundCandidate) 9398 return SDValue(); 9399 9400 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9401 // optionally with VECSHL if shift is required. 9402 if (Swap) 9403 std::swap(V1, V2); 9404 if (V2.isUndef()) 9405 V2 = V1; 9406 if (ShiftElts) { 9407 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9408 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9409 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9410 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9411 } 9412 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9413 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9414 } 9415 9416 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9417 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9418 /// SDValue. 9419 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9420 SelectionDAG &DAG) const { 9421 const unsigned NumHalfWords = 8; 9422 const unsigned BytesInVector = NumHalfWords * 2; 9423 // Check that the shuffle is on half-words. 9424 if (!isNByteElemShuffleMask(N, 2, 1)) 9425 return SDValue(); 9426 9427 bool IsLE = Subtarget.isLittleEndian(); 9428 SDLoc dl(N); 9429 SDValue V1 = N->getOperand(0); 9430 SDValue V2 = N->getOperand(1); 9431 unsigned ShiftElts = 0, InsertAtByte = 0; 9432 bool Swap = false; 9433 9434 // Shifts required to get the half-word we want at element 3. 9435 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9436 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9437 9438 uint32_t Mask = 0; 9439 uint32_t OriginalOrderLow = 0x1234567; 9440 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9441 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9442 // 32-bit space, only need 4-bit nibbles per element. 9443 for (unsigned i = 0; i < NumHalfWords; ++i) { 9444 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9445 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9446 } 9447 9448 // For each mask element, find out if we're just inserting something 9449 // from V2 into V1 or vice versa. Possible permutations inserting an element 9450 // from V2 into V1: 9451 // X, 1, 2, 3, 4, 5, 6, 7 9452 // 0, X, 2, 3, 4, 5, 6, 7 9453 // 0, 1, X, 3, 4, 5, 6, 7 9454 // 0, 1, 2, X, 4, 5, 6, 7 9455 // 0, 1, 2, 3, X, 5, 6, 7 9456 // 0, 1, 2, 3, 4, X, 6, 7 9457 // 0, 1, 2, 3, 4, 5, X, 7 9458 // 0, 1, 2, 3, 4, 5, 6, X 9459 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9460 9461 bool FoundCandidate = false; 9462 // Go through the mask of half-words to find an element that's being moved 9463 // from one vector to the other. 9464 for (unsigned i = 0; i < NumHalfWords; ++i) { 9465 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9466 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9467 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9468 uint32_t TargetOrder = 0x0; 9469 9470 // If both vector operands for the shuffle are the same vector, the mask 9471 // will contain only elements from the first one and the second one will be 9472 // undef. 9473 if (V2.isUndef()) { 9474 ShiftElts = 0; 9475 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9476 TargetOrder = OriginalOrderLow; 9477 Swap = false; 9478 // Skip if not the correct element or mask of other elements don't equal 9479 // to our expected order. 9480 if (MaskOneElt == VINSERTHSrcElem && 9481 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9482 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9483 FoundCandidate = true; 9484 break; 9485 } 9486 } else { // If both operands are defined. 9487 // Target order is [8,15] if the current mask is between [0,7]. 9488 TargetOrder = 9489 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9490 // Skip if mask of other elements don't equal our expected order. 9491 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9492 // We only need the last 3 bits for the number of shifts. 9493 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9494 : BigEndianShifts[MaskOneElt & 0x7]; 9495 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9496 Swap = MaskOneElt < NumHalfWords; 9497 FoundCandidate = true; 9498 break; 9499 } 9500 } 9501 } 9502 9503 if (!FoundCandidate) 9504 return SDValue(); 9505 9506 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9507 // optionally with VECSHL if shift is required. 9508 if (Swap) 9509 std::swap(V1, V2); 9510 if (V2.isUndef()) 9511 V2 = V1; 9512 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9513 if (ShiftElts) { 9514 // Double ShiftElts because we're left shifting on v16i8 type. 9515 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9516 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9517 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9518 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9519 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9520 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9521 } 9522 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9523 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9524 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9525 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9526 } 9527 9528 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9529 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9530 /// return the code it can be lowered into. Worst case, it can always be 9531 /// lowered into a vperm. 9532 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9533 SelectionDAG &DAG) const { 9534 SDLoc dl(Op); 9535 SDValue V1 = Op.getOperand(0); 9536 SDValue V2 = Op.getOperand(1); 9537 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9538 EVT VT = Op.getValueType(); 9539 bool isLittleEndian = Subtarget.isLittleEndian(); 9540 9541 unsigned ShiftElts, InsertAtByte; 9542 bool Swap = false; 9543 9544 // If this is a load-and-splat, we can do that with a single instruction 9545 // in some cases. However if the load has multiple uses, we don't want to 9546 // combine it because that will just produce multiple loads. 9547 const SDValue *InputLoad = getNormalLoadInput(V1); 9548 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9549 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9550 InputLoad->hasOneUse()) { 9551 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9552 int SplatIdx = 9553 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9554 9555 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9556 // For 4-byte load-and-splat, we need Power9. 9557 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9558 uint64_t Offset = 0; 9559 if (IsFourByte) 9560 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9561 else 9562 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9563 SDValue BasePtr = LD->getBasePtr(); 9564 if (Offset != 0) 9565 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9566 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9567 SDValue Ops[] = { 9568 LD->getChain(), // Chain 9569 BasePtr, // BasePtr 9570 DAG.getValueType(Op.getValueType()) // VT 9571 }; 9572 SDVTList VTL = 9573 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9574 SDValue LdSplt = 9575 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9576 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9577 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9578 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9579 return LdSplt; 9580 } 9581 } 9582 if (Subtarget.hasP9Vector() && 9583 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9584 isLittleEndian)) { 9585 if (Swap) 9586 std::swap(V1, V2); 9587 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9588 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9589 if (ShiftElts) { 9590 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9591 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9592 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9593 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9594 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9595 } 9596 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9597 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9598 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9599 } 9600 9601 if (Subtarget.hasP9Altivec()) { 9602 SDValue NewISDNode; 9603 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9604 return NewISDNode; 9605 9606 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9607 return NewISDNode; 9608 } 9609 9610 if (Subtarget.hasVSX() && 9611 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9612 if (Swap) 9613 std::swap(V1, V2); 9614 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9615 SDValue Conv2 = 9616 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9617 9618 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9619 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9620 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9621 } 9622 9623 if (Subtarget.hasVSX() && 9624 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9625 if (Swap) 9626 std::swap(V1, V2); 9627 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9628 SDValue Conv2 = 9629 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9630 9631 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9632 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9633 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9634 } 9635 9636 if (Subtarget.hasP9Vector()) { 9637 if (PPC::isXXBRHShuffleMask(SVOp)) { 9638 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9639 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9640 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9641 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9642 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9643 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9644 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9645 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9646 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9647 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9648 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9649 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9650 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9651 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9652 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9653 } 9654 } 9655 9656 if (Subtarget.hasVSX()) { 9657 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9658 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9659 9660 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9661 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9662 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9663 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9664 } 9665 9666 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9667 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9668 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9669 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9670 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9671 } 9672 } 9673 9674 if (Subtarget.hasQPX()) { 9675 if (VT.getVectorNumElements() != 4) 9676 return SDValue(); 9677 9678 if (V2.isUndef()) V2 = V1; 9679 9680 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 9681 if (AlignIdx != -1) { 9682 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 9683 DAG.getConstant(AlignIdx, dl, MVT::i32)); 9684 } else if (SVOp->isSplat()) { 9685 int SplatIdx = SVOp->getSplatIndex(); 9686 if (SplatIdx >= 4) { 9687 std::swap(V1, V2); 9688 SplatIdx -= 4; 9689 } 9690 9691 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 9692 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9693 } 9694 9695 // Lower this into a qvgpci/qvfperm pair. 9696 9697 // Compute the qvgpci literal 9698 unsigned idx = 0; 9699 for (unsigned i = 0; i < 4; ++i) { 9700 int m = SVOp->getMaskElt(i); 9701 unsigned mm = m >= 0 ? (unsigned) m : i; 9702 idx |= mm << (3-i)*3; 9703 } 9704 9705 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9706 DAG.getConstant(idx, dl, MVT::i32)); 9707 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9708 } 9709 9710 // Cases that are handled by instructions that take permute immediates 9711 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9712 // selected by the instruction selector. 9713 if (V2.isUndef()) { 9714 if (PPC::isSplatShuffleMask(SVOp, 1) || 9715 PPC::isSplatShuffleMask(SVOp, 2) || 9716 PPC::isSplatShuffleMask(SVOp, 4) || 9717 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9718 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9719 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9720 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9721 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9722 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9723 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9724 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9725 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9726 (Subtarget.hasP8Altivec() && ( 9727 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9728 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9729 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9730 return Op; 9731 } 9732 } 9733 9734 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9735 // and produce a fixed permutation. If any of these match, do not lower to 9736 // VPERM. 9737 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9738 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9739 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9740 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9741 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9742 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9743 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9744 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9745 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9746 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9747 (Subtarget.hasP8Altivec() && ( 9748 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9749 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9750 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9751 return Op; 9752 9753 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9754 // perfect shuffle table to emit an optimal matching sequence. 9755 ArrayRef<int> PermMask = SVOp->getMask(); 9756 9757 unsigned PFIndexes[4]; 9758 bool isFourElementShuffle = true; 9759 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9760 unsigned EltNo = 8; // Start out undef. 9761 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9762 if (PermMask[i*4+j] < 0) 9763 continue; // Undef, ignore it. 9764 9765 unsigned ByteSource = PermMask[i*4+j]; 9766 if ((ByteSource & 3) != j) { 9767 isFourElementShuffle = false; 9768 break; 9769 } 9770 9771 if (EltNo == 8) { 9772 EltNo = ByteSource/4; 9773 } else if (EltNo != ByteSource/4) { 9774 isFourElementShuffle = false; 9775 break; 9776 } 9777 } 9778 PFIndexes[i] = EltNo; 9779 } 9780 9781 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9782 // perfect shuffle vector to determine if it is cost effective to do this as 9783 // discrete instructions, or whether we should use a vperm. 9784 // For now, we skip this for little endian until such time as we have a 9785 // little-endian perfect shuffle table. 9786 if (isFourElementShuffle && !isLittleEndian) { 9787 // Compute the index in the perfect shuffle table. 9788 unsigned PFTableIndex = 9789 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9790 9791 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9792 unsigned Cost = (PFEntry >> 30); 9793 9794 // Determining when to avoid vperm is tricky. Many things affect the cost 9795 // of vperm, particularly how many times the perm mask needs to be computed. 9796 // For example, if the perm mask can be hoisted out of a loop or is already 9797 // used (perhaps because there are multiple permutes with the same shuffle 9798 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9799 // the loop requires an extra register. 9800 // 9801 // As a compromise, we only emit discrete instructions if the shuffle can be 9802 // generated in 3 or fewer operations. When we have loop information 9803 // available, if this block is within a loop, we should avoid using vperm 9804 // for 3-operation perms and use a constant pool load instead. 9805 if (Cost < 3) 9806 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9807 } 9808 9809 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9810 // vector that will get spilled to the constant pool. 9811 if (V2.isUndef()) V2 = V1; 9812 9813 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9814 // that it is in input element units, not in bytes. Convert now. 9815 9816 // For little endian, the order of the input vectors is reversed, and 9817 // the permutation mask is complemented with respect to 31. This is 9818 // necessary to produce proper semantics with the big-endian-biased vperm 9819 // instruction. 9820 EVT EltVT = V1.getValueType().getVectorElementType(); 9821 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9822 9823 SmallVector<SDValue, 16> ResultMask; 9824 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9825 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9826 9827 for (unsigned j = 0; j != BytesPerElement; ++j) 9828 if (isLittleEndian) 9829 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9830 dl, MVT::i32)); 9831 else 9832 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9833 MVT::i32)); 9834 } 9835 9836 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9837 if (isLittleEndian) 9838 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9839 V2, V1, VPermMask); 9840 else 9841 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9842 V1, V2, VPermMask); 9843 } 9844 9845 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9846 /// vector comparison. If it is, return true and fill in Opc/isDot with 9847 /// information about the intrinsic. 9848 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9849 bool &isDot, const PPCSubtarget &Subtarget) { 9850 unsigned IntrinsicID = 9851 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9852 CompareOpc = -1; 9853 isDot = false; 9854 switch (IntrinsicID) { 9855 default: 9856 return false; 9857 // Comparison predicates. 9858 case Intrinsic::ppc_altivec_vcmpbfp_p: 9859 CompareOpc = 966; 9860 isDot = true; 9861 break; 9862 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9863 CompareOpc = 198; 9864 isDot = true; 9865 break; 9866 case Intrinsic::ppc_altivec_vcmpequb_p: 9867 CompareOpc = 6; 9868 isDot = true; 9869 break; 9870 case Intrinsic::ppc_altivec_vcmpequh_p: 9871 CompareOpc = 70; 9872 isDot = true; 9873 break; 9874 case Intrinsic::ppc_altivec_vcmpequw_p: 9875 CompareOpc = 134; 9876 isDot = true; 9877 break; 9878 case Intrinsic::ppc_altivec_vcmpequd_p: 9879 if (Subtarget.hasP8Altivec()) { 9880 CompareOpc = 199; 9881 isDot = true; 9882 } else 9883 return false; 9884 break; 9885 case Intrinsic::ppc_altivec_vcmpneb_p: 9886 case Intrinsic::ppc_altivec_vcmpneh_p: 9887 case Intrinsic::ppc_altivec_vcmpnew_p: 9888 case Intrinsic::ppc_altivec_vcmpnezb_p: 9889 case Intrinsic::ppc_altivec_vcmpnezh_p: 9890 case Intrinsic::ppc_altivec_vcmpnezw_p: 9891 if (Subtarget.hasP9Altivec()) { 9892 switch (IntrinsicID) { 9893 default: 9894 llvm_unreachable("Unknown comparison intrinsic."); 9895 case Intrinsic::ppc_altivec_vcmpneb_p: 9896 CompareOpc = 7; 9897 break; 9898 case Intrinsic::ppc_altivec_vcmpneh_p: 9899 CompareOpc = 71; 9900 break; 9901 case Intrinsic::ppc_altivec_vcmpnew_p: 9902 CompareOpc = 135; 9903 break; 9904 case Intrinsic::ppc_altivec_vcmpnezb_p: 9905 CompareOpc = 263; 9906 break; 9907 case Intrinsic::ppc_altivec_vcmpnezh_p: 9908 CompareOpc = 327; 9909 break; 9910 case Intrinsic::ppc_altivec_vcmpnezw_p: 9911 CompareOpc = 391; 9912 break; 9913 } 9914 isDot = true; 9915 } else 9916 return false; 9917 break; 9918 case Intrinsic::ppc_altivec_vcmpgefp_p: 9919 CompareOpc = 454; 9920 isDot = true; 9921 break; 9922 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9923 CompareOpc = 710; 9924 isDot = true; 9925 break; 9926 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9927 CompareOpc = 774; 9928 isDot = true; 9929 break; 9930 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9931 CompareOpc = 838; 9932 isDot = true; 9933 break; 9934 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9935 CompareOpc = 902; 9936 isDot = true; 9937 break; 9938 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9939 if (Subtarget.hasP8Altivec()) { 9940 CompareOpc = 967; 9941 isDot = true; 9942 } else 9943 return false; 9944 break; 9945 case Intrinsic::ppc_altivec_vcmpgtub_p: 9946 CompareOpc = 518; 9947 isDot = true; 9948 break; 9949 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9950 CompareOpc = 582; 9951 isDot = true; 9952 break; 9953 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9954 CompareOpc = 646; 9955 isDot = true; 9956 break; 9957 case Intrinsic::ppc_altivec_vcmpgtud_p: 9958 if (Subtarget.hasP8Altivec()) { 9959 CompareOpc = 711; 9960 isDot = true; 9961 } else 9962 return false; 9963 break; 9964 9965 // VSX predicate comparisons use the same infrastructure 9966 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9967 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9968 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9969 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9970 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9971 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9972 if (Subtarget.hasVSX()) { 9973 switch (IntrinsicID) { 9974 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9975 CompareOpc = 99; 9976 break; 9977 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9978 CompareOpc = 115; 9979 break; 9980 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9981 CompareOpc = 107; 9982 break; 9983 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9984 CompareOpc = 67; 9985 break; 9986 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9987 CompareOpc = 83; 9988 break; 9989 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9990 CompareOpc = 75; 9991 break; 9992 } 9993 isDot = true; 9994 } else 9995 return false; 9996 break; 9997 9998 // Normal Comparisons. 9999 case Intrinsic::ppc_altivec_vcmpbfp: 10000 CompareOpc = 966; 10001 break; 10002 case Intrinsic::ppc_altivec_vcmpeqfp: 10003 CompareOpc = 198; 10004 break; 10005 case Intrinsic::ppc_altivec_vcmpequb: 10006 CompareOpc = 6; 10007 break; 10008 case Intrinsic::ppc_altivec_vcmpequh: 10009 CompareOpc = 70; 10010 break; 10011 case Intrinsic::ppc_altivec_vcmpequw: 10012 CompareOpc = 134; 10013 break; 10014 case Intrinsic::ppc_altivec_vcmpequd: 10015 if (Subtarget.hasP8Altivec()) 10016 CompareOpc = 199; 10017 else 10018 return false; 10019 break; 10020 case Intrinsic::ppc_altivec_vcmpneb: 10021 case Intrinsic::ppc_altivec_vcmpneh: 10022 case Intrinsic::ppc_altivec_vcmpnew: 10023 case Intrinsic::ppc_altivec_vcmpnezb: 10024 case Intrinsic::ppc_altivec_vcmpnezh: 10025 case Intrinsic::ppc_altivec_vcmpnezw: 10026 if (Subtarget.hasP9Altivec()) 10027 switch (IntrinsicID) { 10028 default: 10029 llvm_unreachable("Unknown comparison intrinsic."); 10030 case Intrinsic::ppc_altivec_vcmpneb: 10031 CompareOpc = 7; 10032 break; 10033 case Intrinsic::ppc_altivec_vcmpneh: 10034 CompareOpc = 71; 10035 break; 10036 case Intrinsic::ppc_altivec_vcmpnew: 10037 CompareOpc = 135; 10038 break; 10039 case Intrinsic::ppc_altivec_vcmpnezb: 10040 CompareOpc = 263; 10041 break; 10042 case Intrinsic::ppc_altivec_vcmpnezh: 10043 CompareOpc = 327; 10044 break; 10045 case Intrinsic::ppc_altivec_vcmpnezw: 10046 CompareOpc = 391; 10047 break; 10048 } 10049 else 10050 return false; 10051 break; 10052 case Intrinsic::ppc_altivec_vcmpgefp: 10053 CompareOpc = 454; 10054 break; 10055 case Intrinsic::ppc_altivec_vcmpgtfp: 10056 CompareOpc = 710; 10057 break; 10058 case Intrinsic::ppc_altivec_vcmpgtsb: 10059 CompareOpc = 774; 10060 break; 10061 case Intrinsic::ppc_altivec_vcmpgtsh: 10062 CompareOpc = 838; 10063 break; 10064 case Intrinsic::ppc_altivec_vcmpgtsw: 10065 CompareOpc = 902; 10066 break; 10067 case Intrinsic::ppc_altivec_vcmpgtsd: 10068 if (Subtarget.hasP8Altivec()) 10069 CompareOpc = 967; 10070 else 10071 return false; 10072 break; 10073 case Intrinsic::ppc_altivec_vcmpgtub: 10074 CompareOpc = 518; 10075 break; 10076 case Intrinsic::ppc_altivec_vcmpgtuh: 10077 CompareOpc = 582; 10078 break; 10079 case Intrinsic::ppc_altivec_vcmpgtuw: 10080 CompareOpc = 646; 10081 break; 10082 case Intrinsic::ppc_altivec_vcmpgtud: 10083 if (Subtarget.hasP8Altivec()) 10084 CompareOpc = 711; 10085 else 10086 return false; 10087 break; 10088 } 10089 return true; 10090 } 10091 10092 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10093 /// lower, do it, otherwise return null. 10094 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10095 SelectionDAG &DAG) const { 10096 unsigned IntrinsicID = 10097 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10098 10099 SDLoc dl(Op); 10100 10101 if (IntrinsicID == Intrinsic::thread_pointer) { 10102 // Reads the thread pointer register, used for __builtin_thread_pointer. 10103 if (Subtarget.isPPC64()) 10104 return DAG.getRegister(PPC::X13, MVT::i64); 10105 return DAG.getRegister(PPC::R2, MVT::i32); 10106 } 10107 10108 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10109 // opcode number of the comparison. 10110 int CompareOpc; 10111 bool isDot; 10112 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10113 return SDValue(); // Don't custom lower most intrinsics. 10114 10115 // If this is a non-dot comparison, make the VCMP node and we are done. 10116 if (!isDot) { 10117 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10118 Op.getOperand(1), Op.getOperand(2), 10119 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10120 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10121 } 10122 10123 // Create the PPCISD altivec 'dot' comparison node. 10124 SDValue Ops[] = { 10125 Op.getOperand(2), // LHS 10126 Op.getOperand(3), // RHS 10127 DAG.getConstant(CompareOpc, dl, MVT::i32) 10128 }; 10129 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10130 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10131 10132 // Now that we have the comparison, emit a copy from the CR to a GPR. 10133 // This is flagged to the above dot comparison. 10134 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10135 DAG.getRegister(PPC::CR6, MVT::i32), 10136 CompNode.getValue(1)); 10137 10138 // Unpack the result based on how the target uses it. 10139 unsigned BitNo; // Bit # of CR6. 10140 bool InvertBit; // Invert result? 10141 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10142 default: // Can't happen, don't crash on invalid number though. 10143 case 0: // Return the value of the EQ bit of CR6. 10144 BitNo = 0; InvertBit = false; 10145 break; 10146 case 1: // Return the inverted value of the EQ bit of CR6. 10147 BitNo = 0; InvertBit = true; 10148 break; 10149 case 2: // Return the value of the LT bit of CR6. 10150 BitNo = 2; InvertBit = false; 10151 break; 10152 case 3: // Return the inverted value of the LT bit of CR6. 10153 BitNo = 2; InvertBit = true; 10154 break; 10155 } 10156 10157 // Shift the bit into the low position. 10158 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10159 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10160 // Isolate the bit. 10161 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10162 DAG.getConstant(1, dl, MVT::i32)); 10163 10164 // If we are supposed to, toggle the bit. 10165 if (InvertBit) 10166 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10167 DAG.getConstant(1, dl, MVT::i32)); 10168 return Flags; 10169 } 10170 10171 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10172 SelectionDAG &DAG) const { 10173 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10174 // the beginning of the argument list. 10175 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10176 SDLoc DL(Op); 10177 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10178 case Intrinsic::ppc_cfence: { 10179 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10180 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10181 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10182 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10183 Op.getOperand(ArgStart + 1)), 10184 Op.getOperand(0)), 10185 0); 10186 } 10187 default: 10188 break; 10189 } 10190 return SDValue(); 10191 } 10192 10193 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 10194 // Check for a DIV with the same operands as this REM. 10195 for (auto UI : Op.getOperand(1)->uses()) { 10196 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 10197 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 10198 if (UI->getOperand(0) == Op.getOperand(0) && 10199 UI->getOperand(1) == Op.getOperand(1)) 10200 return SDValue(); 10201 } 10202 return Op; 10203 } 10204 10205 // Lower scalar BSWAP64 to xxbrd. 10206 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10207 SDLoc dl(Op); 10208 // MTVSRDD 10209 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10210 Op.getOperand(0)); 10211 // XXBRD 10212 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10213 // MFVSRD 10214 int VectorIndex = 0; 10215 if (Subtarget.isLittleEndian()) 10216 VectorIndex = 1; 10217 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10218 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10219 return Op; 10220 } 10221 10222 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10223 // compared to a value that is atomically loaded (atomic loads zero-extend). 10224 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10225 SelectionDAG &DAG) const { 10226 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10227 "Expecting an atomic compare-and-swap here."); 10228 SDLoc dl(Op); 10229 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10230 EVT MemVT = AtomicNode->getMemoryVT(); 10231 if (MemVT.getSizeInBits() >= 32) 10232 return Op; 10233 10234 SDValue CmpOp = Op.getOperand(2); 10235 // If this is already correctly zero-extended, leave it alone. 10236 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10237 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10238 return Op; 10239 10240 // Clear the high bits of the compare operand. 10241 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10242 SDValue NewCmpOp = 10243 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10244 DAG.getConstant(MaskVal, dl, MVT::i32)); 10245 10246 // Replace the existing compare operand with the properly zero-extended one. 10247 SmallVector<SDValue, 4> Ops; 10248 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10249 Ops.push_back(AtomicNode->getOperand(i)); 10250 Ops[2] = NewCmpOp; 10251 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10252 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10253 auto NodeTy = 10254 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10255 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10256 } 10257 10258 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10259 SelectionDAG &DAG) const { 10260 SDLoc dl(Op); 10261 // Create a stack slot that is 16-byte aligned. 10262 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10263 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10264 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10265 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10266 10267 // Store the input value into Value#0 of the stack slot. 10268 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10269 MachinePointerInfo()); 10270 // Load it out. 10271 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10272 } 10273 10274 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10275 SelectionDAG &DAG) const { 10276 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10277 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10278 10279 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10280 // We have legal lowering for constant indices but not for variable ones. 10281 if (!C) 10282 return SDValue(); 10283 10284 EVT VT = Op.getValueType(); 10285 SDLoc dl(Op); 10286 SDValue V1 = Op.getOperand(0); 10287 SDValue V2 = Op.getOperand(1); 10288 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10289 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10290 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10291 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10292 unsigned InsertAtElement = C->getZExtValue(); 10293 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10294 if (Subtarget.isLittleEndian()) { 10295 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10296 } 10297 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10298 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10299 } 10300 return Op; 10301 } 10302 10303 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 10304 SelectionDAG &DAG) const { 10305 SDLoc dl(Op); 10306 SDNode *N = Op.getNode(); 10307 10308 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 10309 "Unknown extract_vector_elt type"); 10310 10311 SDValue Value = N->getOperand(0); 10312 10313 // The first part of this is like the store lowering except that we don't 10314 // need to track the chain. 10315 10316 // The values are now known to be -1 (false) or 1 (true). To convert this 10317 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10318 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10319 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10320 10321 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10322 // understand how to form the extending load. 10323 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10324 10325 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10326 10327 // Now convert to an integer and store. 10328 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10329 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10330 Value); 10331 10332 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10333 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10334 MachinePointerInfo PtrInfo = 10335 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10336 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10337 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10338 10339 SDValue StoreChain = DAG.getEntryNode(); 10340 SDValue Ops[] = {StoreChain, 10341 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10342 Value, FIdx}; 10343 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10344 10345 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10346 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10347 10348 // Extract the value requested. 10349 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10350 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10351 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10352 10353 SDValue IntVal = 10354 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 10355 10356 if (!Subtarget.useCRBits()) 10357 return IntVal; 10358 10359 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 10360 } 10361 10362 /// Lowering for QPX v4i1 loads 10363 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10364 SelectionDAG &DAG) const { 10365 SDLoc dl(Op); 10366 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10367 SDValue LoadChain = LN->getChain(); 10368 SDValue BasePtr = LN->getBasePtr(); 10369 10370 if (Op.getValueType() == MVT::v4f64 || 10371 Op.getValueType() == MVT::v4f32) { 10372 EVT MemVT = LN->getMemoryVT(); 10373 unsigned Alignment = LN->getAlignment(); 10374 10375 // If this load is properly aligned, then it is legal. 10376 if (Alignment >= MemVT.getStoreSize()) 10377 return Op; 10378 10379 EVT ScalarVT = Op.getValueType().getScalarType(), 10380 ScalarMemVT = MemVT.getScalarType(); 10381 unsigned Stride = ScalarMemVT.getStoreSize(); 10382 10383 SDValue Vals[4], LoadChains[4]; 10384 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10385 SDValue Load; 10386 if (ScalarVT != ScalarMemVT) 10387 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 10388 BasePtr, 10389 LN->getPointerInfo().getWithOffset(Idx * Stride), 10390 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10391 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10392 else 10393 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 10394 LN->getPointerInfo().getWithOffset(Idx * Stride), 10395 MinAlign(Alignment, Idx * Stride), 10396 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10397 10398 if (Idx == 0 && LN->isIndexed()) { 10399 assert(LN->getAddressingMode() == ISD::PRE_INC && 10400 "Unknown addressing mode on vector load"); 10401 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 10402 LN->getAddressingMode()); 10403 } 10404 10405 Vals[Idx] = Load; 10406 LoadChains[Idx] = Load.getValue(1); 10407 10408 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10409 DAG.getConstant(Stride, dl, 10410 BasePtr.getValueType())); 10411 } 10412 10413 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10414 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 10415 10416 if (LN->isIndexed()) { 10417 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 10418 return DAG.getMergeValues(RetOps, dl); 10419 } 10420 10421 SDValue RetOps[] = { Value, TF }; 10422 return DAG.getMergeValues(RetOps, dl); 10423 } 10424 10425 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 10426 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 10427 10428 // To lower v4i1 from a byte array, we load the byte elements of the 10429 // vector and then reuse the BUILD_VECTOR logic. 10430 10431 SDValue VectElmts[4], VectElmtChains[4]; 10432 for (unsigned i = 0; i < 4; ++i) { 10433 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10434 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10435 10436 VectElmts[i] = DAG.getExtLoad( 10437 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10438 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10439 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10440 VectElmtChains[i] = VectElmts[i].getValue(1); 10441 } 10442 10443 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10444 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10445 10446 SDValue RVals[] = { Value, LoadChain }; 10447 return DAG.getMergeValues(RVals, dl); 10448 } 10449 10450 /// Lowering for QPX v4i1 stores 10451 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10452 SelectionDAG &DAG) const { 10453 SDLoc dl(Op); 10454 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10455 SDValue StoreChain = SN->getChain(); 10456 SDValue BasePtr = SN->getBasePtr(); 10457 SDValue Value = SN->getValue(); 10458 10459 if (Value.getValueType() == MVT::v4f64 || 10460 Value.getValueType() == MVT::v4f32) { 10461 EVT MemVT = SN->getMemoryVT(); 10462 unsigned Alignment = SN->getAlignment(); 10463 10464 // If this store is properly aligned, then it is legal. 10465 if (Alignment >= MemVT.getStoreSize()) 10466 return Op; 10467 10468 EVT ScalarVT = Value.getValueType().getScalarType(), 10469 ScalarMemVT = MemVT.getScalarType(); 10470 unsigned Stride = ScalarMemVT.getStoreSize(); 10471 10472 SDValue Stores[4]; 10473 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10474 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10475 DAG.getVectorIdxConstant(Idx, dl)); 10476 SDValue Store; 10477 if (ScalarVT != ScalarMemVT) 10478 Store = 10479 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10480 SN->getPointerInfo().getWithOffset(Idx * Stride), 10481 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10482 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10483 else 10484 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10485 SN->getPointerInfo().getWithOffset(Idx * Stride), 10486 MinAlign(Alignment, Idx * Stride), 10487 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10488 10489 if (Idx == 0 && SN->isIndexed()) { 10490 assert(SN->getAddressingMode() == ISD::PRE_INC && 10491 "Unknown addressing mode on vector store"); 10492 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10493 SN->getAddressingMode()); 10494 } 10495 10496 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10497 DAG.getConstant(Stride, dl, 10498 BasePtr.getValueType())); 10499 Stores[Idx] = Store; 10500 } 10501 10502 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10503 10504 if (SN->isIndexed()) { 10505 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10506 return DAG.getMergeValues(RetOps, dl); 10507 } 10508 10509 return TF; 10510 } 10511 10512 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10513 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10514 10515 // The values are now known to be -1 (false) or 1 (true). To convert this 10516 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10517 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10518 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10519 10520 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10521 // understand how to form the extending load. 10522 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10523 10524 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10525 10526 // Now convert to an integer and store. 10527 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10528 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10529 Value); 10530 10531 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10532 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10533 MachinePointerInfo PtrInfo = 10534 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10535 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10536 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10537 10538 SDValue Ops[] = {StoreChain, 10539 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10540 Value, FIdx}; 10541 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10542 10543 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10544 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10545 10546 // Move data into the byte array. 10547 SDValue Loads[4], LoadChains[4]; 10548 for (unsigned i = 0; i < 4; ++i) { 10549 unsigned Offset = 4*i; 10550 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10551 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10552 10553 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10554 PtrInfo.getWithOffset(Offset)); 10555 LoadChains[i] = Loads[i].getValue(1); 10556 } 10557 10558 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10559 10560 SDValue Stores[4]; 10561 for (unsigned i = 0; i < 4; ++i) { 10562 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10563 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10564 10565 Stores[i] = DAG.getTruncStore( 10566 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10567 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10568 SN->getAAInfo()); 10569 } 10570 10571 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10572 10573 return StoreChain; 10574 } 10575 10576 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10577 SDLoc dl(Op); 10578 if (Op.getValueType() == MVT::v4i32) { 10579 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10580 10581 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 10582 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 10583 10584 SDValue RHSSwap = // = vrlw RHS, 16 10585 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10586 10587 // Shrinkify inputs to v8i16. 10588 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10589 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10590 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10591 10592 // Low parts multiplied together, generating 32-bit results (we ignore the 10593 // top parts). 10594 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10595 LHS, RHS, DAG, dl, MVT::v4i32); 10596 10597 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10598 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10599 // Shift the high parts up 16 bits. 10600 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10601 Neg16, DAG, dl); 10602 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10603 } else if (Op.getValueType() == MVT::v16i8) { 10604 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10605 bool isLittleEndian = Subtarget.isLittleEndian(); 10606 10607 // Multiply the even 8-bit parts, producing 16-bit sums. 10608 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10609 LHS, RHS, DAG, dl, MVT::v8i16); 10610 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10611 10612 // Multiply the odd 8-bit parts, producing 16-bit sums. 10613 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10614 LHS, RHS, DAG, dl, MVT::v8i16); 10615 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10616 10617 // Merge the results together. Because vmuleub and vmuloub are 10618 // instructions with a big-endian bias, we must reverse the 10619 // element numbering and reverse the meaning of "odd" and "even" 10620 // when generating little endian code. 10621 int Ops[16]; 10622 for (unsigned i = 0; i != 8; ++i) { 10623 if (isLittleEndian) { 10624 Ops[i*2 ] = 2*i; 10625 Ops[i*2+1] = 2*i+16; 10626 } else { 10627 Ops[i*2 ] = 2*i+1; 10628 Ops[i*2+1] = 2*i+1+16; 10629 } 10630 } 10631 if (isLittleEndian) 10632 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10633 else 10634 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10635 } else { 10636 llvm_unreachable("Unknown mul to lower!"); 10637 } 10638 } 10639 10640 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10641 10642 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10643 10644 EVT VT = Op.getValueType(); 10645 assert(VT.isVector() && 10646 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10647 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10648 VT == MVT::v16i8) && 10649 "Unexpected vector element type!"); 10650 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10651 "Current subtarget doesn't support smax v2i64!"); 10652 10653 // For vector abs, it can be lowered to: 10654 // abs x 10655 // ==> 10656 // y = -x 10657 // smax(x, y) 10658 10659 SDLoc dl(Op); 10660 SDValue X = Op.getOperand(0); 10661 SDValue Zero = DAG.getConstant(0, dl, VT); 10662 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10663 10664 // SMAX patch https://reviews.llvm.org/D47332 10665 // hasn't landed yet, so use intrinsic first here. 10666 // TODO: Should use SMAX directly once SMAX patch landed 10667 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10668 if (VT == MVT::v2i64) 10669 BifID = Intrinsic::ppc_altivec_vmaxsd; 10670 else if (VT == MVT::v8i16) 10671 BifID = Intrinsic::ppc_altivec_vmaxsh; 10672 else if (VT == MVT::v16i8) 10673 BifID = Intrinsic::ppc_altivec_vmaxsb; 10674 10675 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10676 } 10677 10678 // Custom lowering for fpext vf32 to v2f64 10679 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10680 10681 assert(Op.getOpcode() == ISD::FP_EXTEND && 10682 "Should only be called for ISD::FP_EXTEND"); 10683 10684 // We only want to custom lower an extend from v2f32 to v2f64. 10685 if (Op.getValueType() != MVT::v2f64 || 10686 Op.getOperand(0).getValueType() != MVT::v2f32) 10687 return SDValue(); 10688 10689 SDLoc dl(Op); 10690 SDValue Op0 = Op.getOperand(0); 10691 10692 switch (Op0.getOpcode()) { 10693 default: 10694 return SDValue(); 10695 case ISD::EXTRACT_SUBVECTOR: { 10696 assert(Op0.getNumOperands() == 2 && 10697 isa<ConstantSDNode>(Op0->getOperand(1)) && 10698 "Node should have 2 operands with second one being a constant!"); 10699 10700 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10701 return SDValue(); 10702 10703 // Custom lower is only done for high or low doubleword. 10704 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10705 if (Idx % 2 != 0) 10706 return SDValue(); 10707 10708 // Since input is v4f32, at this point Idx is either 0 or 2. 10709 // Shift to get the doubleword position we want. 10710 int DWord = Idx >> 1; 10711 10712 // High and low word positions are different on little endian. 10713 if (Subtarget.isLittleEndian()) 10714 DWord ^= 0x1; 10715 10716 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10717 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10718 } 10719 case ISD::FADD: 10720 case ISD::FMUL: 10721 case ISD::FSUB: { 10722 SDValue NewLoad[2]; 10723 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10724 // Ensure both input are loads. 10725 SDValue LdOp = Op0.getOperand(i); 10726 if (LdOp.getOpcode() != ISD::LOAD) 10727 return SDValue(); 10728 // Generate new load node. 10729 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10730 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10731 NewLoad[i] = DAG.getMemIntrinsicNode( 10732 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10733 LD->getMemoryVT(), LD->getMemOperand()); 10734 } 10735 SDValue NewOp = 10736 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10737 NewLoad[1], Op0.getNode()->getFlags()); 10738 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10739 DAG.getConstant(0, dl, MVT::i32)); 10740 } 10741 case ISD::LOAD: { 10742 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10743 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10744 SDValue NewLd = DAG.getMemIntrinsicNode( 10745 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10746 LD->getMemoryVT(), LD->getMemOperand()); 10747 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10748 DAG.getConstant(0, dl, MVT::i32)); 10749 } 10750 } 10751 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10752 } 10753 10754 /// LowerOperation - Provide custom lowering hooks for some operations. 10755 /// 10756 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10757 switch (Op.getOpcode()) { 10758 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10759 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10760 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10761 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10762 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10763 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10764 case ISD::SETCC: return LowerSETCC(Op, DAG); 10765 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10766 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10767 10768 // Variable argument lowering. 10769 case ISD::VASTART: return LowerVASTART(Op, DAG); 10770 case ISD::VAARG: return LowerVAARG(Op, DAG); 10771 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10772 10773 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10774 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10775 case ISD::GET_DYNAMIC_AREA_OFFSET: 10776 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10777 10778 // Exception handling lowering. 10779 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10780 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10781 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10782 10783 case ISD::LOAD: return LowerLOAD(Op, DAG); 10784 case ISD::STORE: return LowerSTORE(Op, DAG); 10785 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10786 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10787 case ISD::FP_TO_UINT: 10788 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10789 case ISD::UINT_TO_FP: 10790 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10791 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10792 10793 // Lower 64-bit shifts. 10794 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10795 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10796 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10797 10798 // Vector-related lowering. 10799 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10800 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10801 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10802 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10803 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10804 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10805 case ISD::MUL: return LowerMUL(Op, DAG); 10806 case ISD::ABS: return LowerABS(Op, DAG); 10807 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10808 10809 // For counter-based loop handling. 10810 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10811 10812 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10813 10814 // Frame & Return address. 10815 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10816 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10817 10818 case ISD::INTRINSIC_VOID: 10819 return LowerINTRINSIC_VOID(Op, DAG); 10820 case ISD::SREM: 10821 case ISD::UREM: 10822 return LowerREM(Op, DAG); 10823 case ISD::BSWAP: 10824 return LowerBSWAP(Op, DAG); 10825 case ISD::ATOMIC_CMP_SWAP: 10826 return LowerATOMIC_CMP_SWAP(Op, DAG); 10827 } 10828 } 10829 10830 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10831 SmallVectorImpl<SDValue>&Results, 10832 SelectionDAG &DAG) const { 10833 SDLoc dl(N); 10834 switch (N->getOpcode()) { 10835 default: 10836 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10837 case ISD::READCYCLECOUNTER: { 10838 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10839 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10840 10841 Results.push_back( 10842 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10843 Results.push_back(RTB.getValue(2)); 10844 break; 10845 } 10846 case ISD::INTRINSIC_W_CHAIN: { 10847 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10848 Intrinsic::loop_decrement) 10849 break; 10850 10851 assert(N->getValueType(0) == MVT::i1 && 10852 "Unexpected result type for CTR decrement intrinsic"); 10853 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10854 N->getValueType(0)); 10855 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10856 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10857 N->getOperand(1)); 10858 10859 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10860 Results.push_back(NewInt.getValue(1)); 10861 break; 10862 } 10863 case ISD::VAARG: { 10864 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10865 return; 10866 10867 EVT VT = N->getValueType(0); 10868 10869 if (VT == MVT::i64) { 10870 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10871 10872 Results.push_back(NewNode); 10873 Results.push_back(NewNode.getValue(1)); 10874 } 10875 return; 10876 } 10877 case ISD::FP_TO_SINT: 10878 case ISD::FP_TO_UINT: 10879 // LowerFP_TO_INT() can only handle f32 and f64. 10880 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10881 return; 10882 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10883 return; 10884 case ISD::TRUNCATE: { 10885 EVT TrgVT = N->getValueType(0); 10886 EVT OpVT = N->getOperand(0).getValueType(); 10887 if (TrgVT.isVector() && 10888 isOperationCustom(N->getOpcode(), TrgVT) && 10889 OpVT.getSizeInBits() <= 128 && 10890 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10891 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10892 return; 10893 } 10894 case ISD::BITCAST: 10895 // Don't handle bitcast here. 10896 return; 10897 } 10898 } 10899 10900 //===----------------------------------------------------------------------===// 10901 // Other Lowering Code 10902 //===----------------------------------------------------------------------===// 10903 10904 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10905 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10906 Function *Func = Intrinsic::getDeclaration(M, Id); 10907 return Builder.CreateCall(Func, {}); 10908 } 10909 10910 // The mappings for emitLeading/TrailingFence is taken from 10911 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10912 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10913 Instruction *Inst, 10914 AtomicOrdering Ord) const { 10915 if (Ord == AtomicOrdering::SequentiallyConsistent) 10916 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10917 if (isReleaseOrStronger(Ord)) 10918 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10919 return nullptr; 10920 } 10921 10922 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10923 Instruction *Inst, 10924 AtomicOrdering Ord) const { 10925 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10926 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10927 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10928 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10929 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10930 return Builder.CreateCall( 10931 Intrinsic::getDeclaration( 10932 Builder.GetInsertBlock()->getParent()->getParent(), 10933 Intrinsic::ppc_cfence, {Inst->getType()}), 10934 {Inst}); 10935 // FIXME: Can use isync for rmw operation. 10936 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10937 } 10938 return nullptr; 10939 } 10940 10941 MachineBasicBlock * 10942 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10943 unsigned AtomicSize, 10944 unsigned BinOpcode, 10945 unsigned CmpOpcode, 10946 unsigned CmpPred) const { 10947 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10948 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10949 10950 auto LoadMnemonic = PPC::LDARX; 10951 auto StoreMnemonic = PPC::STDCX; 10952 switch (AtomicSize) { 10953 default: 10954 llvm_unreachable("Unexpected size of atomic entity"); 10955 case 1: 10956 LoadMnemonic = PPC::LBARX; 10957 StoreMnemonic = PPC::STBCX; 10958 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10959 break; 10960 case 2: 10961 LoadMnemonic = PPC::LHARX; 10962 StoreMnemonic = PPC::STHCX; 10963 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10964 break; 10965 case 4: 10966 LoadMnemonic = PPC::LWARX; 10967 StoreMnemonic = PPC::STWCX; 10968 break; 10969 case 8: 10970 LoadMnemonic = PPC::LDARX; 10971 StoreMnemonic = PPC::STDCX; 10972 break; 10973 } 10974 10975 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10976 MachineFunction *F = BB->getParent(); 10977 MachineFunction::iterator It = ++BB->getIterator(); 10978 10979 Register dest = MI.getOperand(0).getReg(); 10980 Register ptrA = MI.getOperand(1).getReg(); 10981 Register ptrB = MI.getOperand(2).getReg(); 10982 Register incr = MI.getOperand(3).getReg(); 10983 DebugLoc dl = MI.getDebugLoc(); 10984 10985 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10986 MachineBasicBlock *loop2MBB = 10987 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10988 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10989 F->insert(It, loopMBB); 10990 if (CmpOpcode) 10991 F->insert(It, loop2MBB); 10992 F->insert(It, exitMBB); 10993 exitMBB->splice(exitMBB->begin(), BB, 10994 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10995 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10996 10997 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10998 Register TmpReg = (!BinOpcode) ? incr : 10999 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11000 : &PPC::GPRCRegClass); 11001 11002 // thisMBB: 11003 // ... 11004 // fallthrough --> loopMBB 11005 BB->addSuccessor(loopMBB); 11006 11007 // loopMBB: 11008 // l[wd]arx dest, ptr 11009 // add r0, dest, incr 11010 // st[wd]cx. r0, ptr 11011 // bne- loopMBB 11012 // fallthrough --> exitMBB 11013 11014 // For max/min... 11015 // loopMBB: 11016 // l[wd]arx dest, ptr 11017 // cmpl?[wd] incr, dest 11018 // bgt exitMBB 11019 // loop2MBB: 11020 // st[wd]cx. dest, ptr 11021 // bne- loopMBB 11022 // fallthrough --> exitMBB 11023 11024 BB = loopMBB; 11025 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11026 .addReg(ptrA).addReg(ptrB); 11027 if (BinOpcode) 11028 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11029 if (CmpOpcode) { 11030 // Signed comparisons of byte or halfword values must be sign-extended. 11031 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11032 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11033 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11034 ExtReg).addReg(dest); 11035 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11036 .addReg(incr).addReg(ExtReg); 11037 } else 11038 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11039 .addReg(incr).addReg(dest); 11040 11041 BuildMI(BB, dl, TII->get(PPC::BCC)) 11042 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11043 BB->addSuccessor(loop2MBB); 11044 BB->addSuccessor(exitMBB); 11045 BB = loop2MBB; 11046 } 11047 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11048 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11049 BuildMI(BB, dl, TII->get(PPC::BCC)) 11050 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11051 BB->addSuccessor(loopMBB); 11052 BB->addSuccessor(exitMBB); 11053 11054 // exitMBB: 11055 // ... 11056 BB = exitMBB; 11057 return BB; 11058 } 11059 11060 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11061 MachineInstr &MI, MachineBasicBlock *BB, 11062 bool is8bit, // operation 11063 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11064 // If we support part-word atomic mnemonics, just use them 11065 if (Subtarget.hasPartwordAtomics()) 11066 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11067 CmpPred); 11068 11069 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11070 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11071 // In 64 bit mode we have to use 64 bits for addresses, even though the 11072 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11073 // registers without caring whether they're 32 or 64, but here we're 11074 // doing actual arithmetic on the addresses. 11075 bool is64bit = Subtarget.isPPC64(); 11076 bool isLittleEndian = Subtarget.isLittleEndian(); 11077 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11078 11079 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11080 MachineFunction *F = BB->getParent(); 11081 MachineFunction::iterator It = ++BB->getIterator(); 11082 11083 Register dest = MI.getOperand(0).getReg(); 11084 Register ptrA = MI.getOperand(1).getReg(); 11085 Register ptrB = MI.getOperand(2).getReg(); 11086 Register incr = MI.getOperand(3).getReg(); 11087 DebugLoc dl = MI.getDebugLoc(); 11088 11089 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11090 MachineBasicBlock *loop2MBB = 11091 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11092 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11093 F->insert(It, loopMBB); 11094 if (CmpOpcode) 11095 F->insert(It, loop2MBB); 11096 F->insert(It, exitMBB); 11097 exitMBB->splice(exitMBB->begin(), BB, 11098 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11099 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11100 11101 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11102 const TargetRegisterClass *RC = 11103 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11104 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11105 11106 Register PtrReg = RegInfo.createVirtualRegister(RC); 11107 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11108 Register ShiftReg = 11109 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11110 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11111 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11112 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11113 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11114 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11115 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11116 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11117 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11118 Register Ptr1Reg; 11119 Register TmpReg = 11120 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11121 11122 // thisMBB: 11123 // ... 11124 // fallthrough --> loopMBB 11125 BB->addSuccessor(loopMBB); 11126 11127 // The 4-byte load must be aligned, while a char or short may be 11128 // anywhere in the word. Hence all this nasty bookkeeping code. 11129 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11130 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11131 // xori shift, shift1, 24 [16] 11132 // rlwinm ptr, ptr1, 0, 0, 29 11133 // slw incr2, incr, shift 11134 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11135 // slw mask, mask2, shift 11136 // loopMBB: 11137 // lwarx tmpDest, ptr 11138 // add tmp, tmpDest, incr2 11139 // andc tmp2, tmpDest, mask 11140 // and tmp3, tmp, mask 11141 // or tmp4, tmp3, tmp2 11142 // stwcx. tmp4, ptr 11143 // bne- loopMBB 11144 // fallthrough --> exitMBB 11145 // srw dest, tmpDest, shift 11146 if (ptrA != ZeroReg) { 11147 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11148 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11149 .addReg(ptrA) 11150 .addReg(ptrB); 11151 } else { 11152 Ptr1Reg = ptrB; 11153 } 11154 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11155 // mode. 11156 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11157 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11158 .addImm(3) 11159 .addImm(27) 11160 .addImm(is8bit ? 28 : 27); 11161 if (!isLittleEndian) 11162 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11163 .addReg(Shift1Reg) 11164 .addImm(is8bit ? 24 : 16); 11165 if (is64bit) 11166 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11167 .addReg(Ptr1Reg) 11168 .addImm(0) 11169 .addImm(61); 11170 else 11171 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11172 .addReg(Ptr1Reg) 11173 .addImm(0) 11174 .addImm(0) 11175 .addImm(29); 11176 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11177 if (is8bit) 11178 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11179 else { 11180 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11181 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11182 .addReg(Mask3Reg) 11183 .addImm(65535); 11184 } 11185 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11186 .addReg(Mask2Reg) 11187 .addReg(ShiftReg); 11188 11189 BB = loopMBB; 11190 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11191 .addReg(ZeroReg) 11192 .addReg(PtrReg); 11193 if (BinOpcode) 11194 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11195 .addReg(Incr2Reg) 11196 .addReg(TmpDestReg); 11197 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11198 .addReg(TmpDestReg) 11199 .addReg(MaskReg); 11200 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11201 if (CmpOpcode) { 11202 // For unsigned comparisons, we can directly compare the shifted values. 11203 // For signed comparisons we shift and sign extend. 11204 Register SReg = RegInfo.createVirtualRegister(GPRC); 11205 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11206 .addReg(TmpDestReg) 11207 .addReg(MaskReg); 11208 unsigned ValueReg = SReg; 11209 unsigned CmpReg = Incr2Reg; 11210 if (CmpOpcode == PPC::CMPW) { 11211 ValueReg = RegInfo.createVirtualRegister(GPRC); 11212 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11213 .addReg(SReg) 11214 .addReg(ShiftReg); 11215 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11216 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11217 .addReg(ValueReg); 11218 ValueReg = ValueSReg; 11219 CmpReg = incr; 11220 } 11221 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11222 .addReg(CmpReg) 11223 .addReg(ValueReg); 11224 BuildMI(BB, dl, TII->get(PPC::BCC)) 11225 .addImm(CmpPred) 11226 .addReg(PPC::CR0) 11227 .addMBB(exitMBB); 11228 BB->addSuccessor(loop2MBB); 11229 BB->addSuccessor(exitMBB); 11230 BB = loop2MBB; 11231 } 11232 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11233 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11234 .addReg(Tmp4Reg) 11235 .addReg(ZeroReg) 11236 .addReg(PtrReg); 11237 BuildMI(BB, dl, TII->get(PPC::BCC)) 11238 .addImm(PPC::PRED_NE) 11239 .addReg(PPC::CR0) 11240 .addMBB(loopMBB); 11241 BB->addSuccessor(loopMBB); 11242 BB->addSuccessor(exitMBB); 11243 11244 // exitMBB: 11245 // ... 11246 BB = exitMBB; 11247 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11248 .addReg(TmpDestReg) 11249 .addReg(ShiftReg); 11250 return BB; 11251 } 11252 11253 llvm::MachineBasicBlock * 11254 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11255 MachineBasicBlock *MBB) const { 11256 DebugLoc DL = MI.getDebugLoc(); 11257 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11258 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11259 11260 MachineFunction *MF = MBB->getParent(); 11261 MachineRegisterInfo &MRI = MF->getRegInfo(); 11262 11263 const BasicBlock *BB = MBB->getBasicBlock(); 11264 MachineFunction::iterator I = ++MBB->getIterator(); 11265 11266 Register DstReg = MI.getOperand(0).getReg(); 11267 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11268 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11269 Register mainDstReg = MRI.createVirtualRegister(RC); 11270 Register restoreDstReg = MRI.createVirtualRegister(RC); 11271 11272 MVT PVT = getPointerTy(MF->getDataLayout()); 11273 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11274 "Invalid Pointer Size!"); 11275 // For v = setjmp(buf), we generate 11276 // 11277 // thisMBB: 11278 // SjLjSetup mainMBB 11279 // bl mainMBB 11280 // v_restore = 1 11281 // b sinkMBB 11282 // 11283 // mainMBB: 11284 // buf[LabelOffset] = LR 11285 // v_main = 0 11286 // 11287 // sinkMBB: 11288 // v = phi(main, restore) 11289 // 11290 11291 MachineBasicBlock *thisMBB = MBB; 11292 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11293 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11294 MF->insert(I, mainMBB); 11295 MF->insert(I, sinkMBB); 11296 11297 MachineInstrBuilder MIB; 11298 11299 // Transfer the remainder of BB and its successor edges to sinkMBB. 11300 sinkMBB->splice(sinkMBB->begin(), MBB, 11301 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11302 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11303 11304 // Note that the structure of the jmp_buf used here is not compatible 11305 // with that used by libc, and is not designed to be. Specifically, it 11306 // stores only those 'reserved' registers that LLVM does not otherwise 11307 // understand how to spill. Also, by convention, by the time this 11308 // intrinsic is called, Clang has already stored the frame address in the 11309 // first slot of the buffer and stack address in the third. Following the 11310 // X86 target code, we'll store the jump address in the second slot. We also 11311 // need to save the TOC pointer (R2) to handle jumps between shared 11312 // libraries, and that will be stored in the fourth slot. The thread 11313 // identifier (R13) is not affected. 11314 11315 // thisMBB: 11316 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11317 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11318 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11319 11320 // Prepare IP either in reg. 11321 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11322 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11323 Register BufReg = MI.getOperand(1).getReg(); 11324 11325 if (Subtarget.is64BitELFABI()) { 11326 setUsesTOCBasePtr(*MBB->getParent()); 11327 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11328 .addReg(PPC::X2) 11329 .addImm(TOCOffset) 11330 .addReg(BufReg) 11331 .cloneMemRefs(MI); 11332 } 11333 11334 // Naked functions never have a base pointer, and so we use r1. For all 11335 // other functions, this decision must be delayed until during PEI. 11336 unsigned BaseReg; 11337 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11338 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11339 else 11340 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11341 11342 MIB = BuildMI(*thisMBB, MI, DL, 11343 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11344 .addReg(BaseReg) 11345 .addImm(BPOffset) 11346 .addReg(BufReg) 11347 .cloneMemRefs(MI); 11348 11349 // Setup 11350 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11351 MIB.addRegMask(TRI->getNoPreservedMask()); 11352 11353 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11354 11355 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11356 .addMBB(mainMBB); 11357 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11358 11359 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11360 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11361 11362 // mainMBB: 11363 // mainDstReg = 0 11364 MIB = 11365 BuildMI(mainMBB, DL, 11366 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11367 11368 // Store IP 11369 if (Subtarget.isPPC64()) { 11370 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11371 .addReg(LabelReg) 11372 .addImm(LabelOffset) 11373 .addReg(BufReg); 11374 } else { 11375 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11376 .addReg(LabelReg) 11377 .addImm(LabelOffset) 11378 .addReg(BufReg); 11379 } 11380 MIB.cloneMemRefs(MI); 11381 11382 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11383 mainMBB->addSuccessor(sinkMBB); 11384 11385 // sinkMBB: 11386 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11387 TII->get(PPC::PHI), DstReg) 11388 .addReg(mainDstReg).addMBB(mainMBB) 11389 .addReg(restoreDstReg).addMBB(thisMBB); 11390 11391 MI.eraseFromParent(); 11392 return sinkMBB; 11393 } 11394 11395 MachineBasicBlock * 11396 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11397 MachineBasicBlock *MBB) const { 11398 DebugLoc DL = MI.getDebugLoc(); 11399 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11400 11401 MachineFunction *MF = MBB->getParent(); 11402 MachineRegisterInfo &MRI = MF->getRegInfo(); 11403 11404 MVT PVT = getPointerTy(MF->getDataLayout()); 11405 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11406 "Invalid Pointer Size!"); 11407 11408 const TargetRegisterClass *RC = 11409 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11410 Register Tmp = MRI.createVirtualRegister(RC); 11411 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11412 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11413 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11414 unsigned BP = 11415 (PVT == MVT::i64) 11416 ? PPC::X30 11417 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11418 : PPC::R30); 11419 11420 MachineInstrBuilder MIB; 11421 11422 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11423 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11424 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11425 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11426 11427 Register BufReg = MI.getOperand(0).getReg(); 11428 11429 // Reload FP (the jumped-to function may not have had a 11430 // frame pointer, and if so, then its r31 will be restored 11431 // as necessary). 11432 if (PVT == MVT::i64) { 11433 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11434 .addImm(0) 11435 .addReg(BufReg); 11436 } else { 11437 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11438 .addImm(0) 11439 .addReg(BufReg); 11440 } 11441 MIB.cloneMemRefs(MI); 11442 11443 // Reload IP 11444 if (PVT == MVT::i64) { 11445 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11446 .addImm(LabelOffset) 11447 .addReg(BufReg); 11448 } else { 11449 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11450 .addImm(LabelOffset) 11451 .addReg(BufReg); 11452 } 11453 MIB.cloneMemRefs(MI); 11454 11455 // Reload SP 11456 if (PVT == MVT::i64) { 11457 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11458 .addImm(SPOffset) 11459 .addReg(BufReg); 11460 } else { 11461 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11462 .addImm(SPOffset) 11463 .addReg(BufReg); 11464 } 11465 MIB.cloneMemRefs(MI); 11466 11467 // Reload BP 11468 if (PVT == MVT::i64) { 11469 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11470 .addImm(BPOffset) 11471 .addReg(BufReg); 11472 } else { 11473 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11474 .addImm(BPOffset) 11475 .addReg(BufReg); 11476 } 11477 MIB.cloneMemRefs(MI); 11478 11479 // Reload TOC 11480 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11481 setUsesTOCBasePtr(*MBB->getParent()); 11482 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11483 .addImm(TOCOffset) 11484 .addReg(BufReg) 11485 .cloneMemRefs(MI); 11486 } 11487 11488 // Jump 11489 BuildMI(*MBB, MI, DL, 11490 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11491 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11492 11493 MI.eraseFromParent(); 11494 return MBB; 11495 } 11496 11497 MachineBasicBlock * 11498 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11499 MachineBasicBlock *BB) const { 11500 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11501 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11502 if (Subtarget.is64BitELFABI() && 11503 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11504 !Subtarget.isUsingPCRelativeCalls()) { 11505 // Call lowering should have added an r2 operand to indicate a dependence 11506 // on the TOC base pointer value. It can't however, because there is no 11507 // way to mark the dependence as implicit there, and so the stackmap code 11508 // will confuse it with a regular operand. Instead, add the dependence 11509 // here. 11510 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11511 } 11512 11513 return emitPatchPoint(MI, BB); 11514 } 11515 11516 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11517 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11518 return emitEHSjLjSetJmp(MI, BB); 11519 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11520 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11521 return emitEHSjLjLongJmp(MI, BB); 11522 } 11523 11524 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11525 11526 // To "insert" these instructions we actually have to insert their 11527 // control-flow patterns. 11528 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11529 MachineFunction::iterator It = ++BB->getIterator(); 11530 11531 MachineFunction *F = BB->getParent(); 11532 11533 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11534 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11535 MI.getOpcode() == PPC::SELECT_I8) { 11536 SmallVector<MachineOperand, 2> Cond; 11537 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11538 MI.getOpcode() == PPC::SELECT_CC_I8) 11539 Cond.push_back(MI.getOperand(4)); 11540 else 11541 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11542 Cond.push_back(MI.getOperand(1)); 11543 11544 DebugLoc dl = MI.getDebugLoc(); 11545 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11546 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11547 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11548 MI.getOpcode() == PPC::SELECT_CC_F8 || 11549 MI.getOpcode() == PPC::SELECT_CC_F16 || 11550 MI.getOpcode() == PPC::SELECT_CC_QFRC || 11551 MI.getOpcode() == PPC::SELECT_CC_QSRC || 11552 MI.getOpcode() == PPC::SELECT_CC_QBRC || 11553 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11554 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11555 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11556 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11557 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11558 MI.getOpcode() == PPC::SELECT_CC_SPE || 11559 MI.getOpcode() == PPC::SELECT_F4 || 11560 MI.getOpcode() == PPC::SELECT_F8 || 11561 MI.getOpcode() == PPC::SELECT_F16 || 11562 MI.getOpcode() == PPC::SELECT_QFRC || 11563 MI.getOpcode() == PPC::SELECT_QSRC || 11564 MI.getOpcode() == PPC::SELECT_QBRC || 11565 MI.getOpcode() == PPC::SELECT_SPE || 11566 MI.getOpcode() == PPC::SELECT_SPE4 || 11567 MI.getOpcode() == PPC::SELECT_VRRC || 11568 MI.getOpcode() == PPC::SELECT_VSFRC || 11569 MI.getOpcode() == PPC::SELECT_VSSRC || 11570 MI.getOpcode() == PPC::SELECT_VSRC) { 11571 // The incoming instruction knows the destination vreg to set, the 11572 // condition code register to branch on, the true/false values to 11573 // select between, and a branch opcode to use. 11574 11575 // thisMBB: 11576 // ... 11577 // TrueVal = ... 11578 // cmpTY ccX, r1, r2 11579 // bCC copy1MBB 11580 // fallthrough --> copy0MBB 11581 MachineBasicBlock *thisMBB = BB; 11582 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11583 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11584 DebugLoc dl = MI.getDebugLoc(); 11585 F->insert(It, copy0MBB); 11586 F->insert(It, sinkMBB); 11587 11588 // Transfer the remainder of BB and its successor edges to sinkMBB. 11589 sinkMBB->splice(sinkMBB->begin(), BB, 11590 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11591 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11592 11593 // Next, add the true and fallthrough blocks as its successors. 11594 BB->addSuccessor(copy0MBB); 11595 BB->addSuccessor(sinkMBB); 11596 11597 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11598 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11599 MI.getOpcode() == PPC::SELECT_F16 || 11600 MI.getOpcode() == PPC::SELECT_SPE4 || 11601 MI.getOpcode() == PPC::SELECT_SPE || 11602 MI.getOpcode() == PPC::SELECT_QFRC || 11603 MI.getOpcode() == PPC::SELECT_QSRC || 11604 MI.getOpcode() == PPC::SELECT_QBRC || 11605 MI.getOpcode() == PPC::SELECT_VRRC || 11606 MI.getOpcode() == PPC::SELECT_VSFRC || 11607 MI.getOpcode() == PPC::SELECT_VSSRC || 11608 MI.getOpcode() == PPC::SELECT_VSRC) { 11609 BuildMI(BB, dl, TII->get(PPC::BC)) 11610 .addReg(MI.getOperand(1).getReg()) 11611 .addMBB(sinkMBB); 11612 } else { 11613 unsigned SelectPred = MI.getOperand(4).getImm(); 11614 BuildMI(BB, dl, TII->get(PPC::BCC)) 11615 .addImm(SelectPred) 11616 .addReg(MI.getOperand(1).getReg()) 11617 .addMBB(sinkMBB); 11618 } 11619 11620 // copy0MBB: 11621 // %FalseValue = ... 11622 // # fallthrough to sinkMBB 11623 BB = copy0MBB; 11624 11625 // Update machine-CFG edges 11626 BB->addSuccessor(sinkMBB); 11627 11628 // sinkMBB: 11629 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11630 // ... 11631 BB = sinkMBB; 11632 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11633 .addReg(MI.getOperand(3).getReg()) 11634 .addMBB(copy0MBB) 11635 .addReg(MI.getOperand(2).getReg()) 11636 .addMBB(thisMBB); 11637 } else if (MI.getOpcode() == PPC::ReadTB) { 11638 // To read the 64-bit time-base register on a 32-bit target, we read the 11639 // two halves. Should the counter have wrapped while it was being read, we 11640 // need to try again. 11641 // ... 11642 // readLoop: 11643 // mfspr Rx,TBU # load from TBU 11644 // mfspr Ry,TB # load from TB 11645 // mfspr Rz,TBU # load from TBU 11646 // cmpw crX,Rx,Rz # check if 'old'='new' 11647 // bne readLoop # branch if they're not equal 11648 // ... 11649 11650 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11651 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11652 DebugLoc dl = MI.getDebugLoc(); 11653 F->insert(It, readMBB); 11654 F->insert(It, sinkMBB); 11655 11656 // Transfer the remainder of BB and its successor edges to sinkMBB. 11657 sinkMBB->splice(sinkMBB->begin(), BB, 11658 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11659 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11660 11661 BB->addSuccessor(readMBB); 11662 BB = readMBB; 11663 11664 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11665 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11666 Register LoReg = MI.getOperand(0).getReg(); 11667 Register HiReg = MI.getOperand(1).getReg(); 11668 11669 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11670 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11671 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11672 11673 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11674 11675 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11676 .addReg(HiReg) 11677 .addReg(ReadAgainReg); 11678 BuildMI(BB, dl, TII->get(PPC::BCC)) 11679 .addImm(PPC::PRED_NE) 11680 .addReg(CmpReg) 11681 .addMBB(readMBB); 11682 11683 BB->addSuccessor(readMBB); 11684 BB->addSuccessor(sinkMBB); 11685 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11686 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11687 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11688 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11689 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11690 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11691 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11692 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11693 11694 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11695 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11696 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11697 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11698 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11699 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11700 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11701 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11702 11703 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11704 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11705 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11706 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11707 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11708 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11709 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11710 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11711 11712 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11713 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11714 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11715 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11716 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11717 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11718 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11719 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11720 11721 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11722 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11723 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11724 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11725 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11726 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11727 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11728 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11729 11730 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11731 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11732 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11733 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11734 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11735 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11736 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11737 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11738 11739 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11740 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11741 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11742 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11743 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11744 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11745 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11746 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11747 11748 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11749 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11750 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11751 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11752 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11753 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11754 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11755 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11756 11757 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11758 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11759 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11760 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11761 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11762 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11763 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11764 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11765 11766 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11767 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11768 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11769 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11770 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11771 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11772 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11773 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11774 11775 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11776 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11777 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11778 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11779 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11780 BB = EmitAtomicBinary(MI, BB, 4, 0); 11781 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11782 BB = EmitAtomicBinary(MI, BB, 8, 0); 11783 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11784 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11785 (Subtarget.hasPartwordAtomics() && 11786 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11787 (Subtarget.hasPartwordAtomics() && 11788 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11789 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11790 11791 auto LoadMnemonic = PPC::LDARX; 11792 auto StoreMnemonic = PPC::STDCX; 11793 switch (MI.getOpcode()) { 11794 default: 11795 llvm_unreachable("Compare and swap of unknown size"); 11796 case PPC::ATOMIC_CMP_SWAP_I8: 11797 LoadMnemonic = PPC::LBARX; 11798 StoreMnemonic = PPC::STBCX; 11799 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11800 break; 11801 case PPC::ATOMIC_CMP_SWAP_I16: 11802 LoadMnemonic = PPC::LHARX; 11803 StoreMnemonic = PPC::STHCX; 11804 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11805 break; 11806 case PPC::ATOMIC_CMP_SWAP_I32: 11807 LoadMnemonic = PPC::LWARX; 11808 StoreMnemonic = PPC::STWCX; 11809 break; 11810 case PPC::ATOMIC_CMP_SWAP_I64: 11811 LoadMnemonic = PPC::LDARX; 11812 StoreMnemonic = PPC::STDCX; 11813 break; 11814 } 11815 Register dest = MI.getOperand(0).getReg(); 11816 Register ptrA = MI.getOperand(1).getReg(); 11817 Register ptrB = MI.getOperand(2).getReg(); 11818 Register oldval = MI.getOperand(3).getReg(); 11819 Register newval = MI.getOperand(4).getReg(); 11820 DebugLoc dl = MI.getDebugLoc(); 11821 11822 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11823 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11824 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11825 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11826 F->insert(It, loop1MBB); 11827 F->insert(It, loop2MBB); 11828 F->insert(It, midMBB); 11829 F->insert(It, exitMBB); 11830 exitMBB->splice(exitMBB->begin(), BB, 11831 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11832 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11833 11834 // thisMBB: 11835 // ... 11836 // fallthrough --> loopMBB 11837 BB->addSuccessor(loop1MBB); 11838 11839 // loop1MBB: 11840 // l[bhwd]arx dest, ptr 11841 // cmp[wd] dest, oldval 11842 // bne- midMBB 11843 // loop2MBB: 11844 // st[bhwd]cx. newval, ptr 11845 // bne- loopMBB 11846 // b exitBB 11847 // midMBB: 11848 // st[bhwd]cx. dest, ptr 11849 // exitBB: 11850 BB = loop1MBB; 11851 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11852 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11853 .addReg(oldval) 11854 .addReg(dest); 11855 BuildMI(BB, dl, TII->get(PPC::BCC)) 11856 .addImm(PPC::PRED_NE) 11857 .addReg(PPC::CR0) 11858 .addMBB(midMBB); 11859 BB->addSuccessor(loop2MBB); 11860 BB->addSuccessor(midMBB); 11861 11862 BB = loop2MBB; 11863 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11864 .addReg(newval) 11865 .addReg(ptrA) 11866 .addReg(ptrB); 11867 BuildMI(BB, dl, TII->get(PPC::BCC)) 11868 .addImm(PPC::PRED_NE) 11869 .addReg(PPC::CR0) 11870 .addMBB(loop1MBB); 11871 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11872 BB->addSuccessor(loop1MBB); 11873 BB->addSuccessor(exitMBB); 11874 11875 BB = midMBB; 11876 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11877 .addReg(dest) 11878 .addReg(ptrA) 11879 .addReg(ptrB); 11880 BB->addSuccessor(exitMBB); 11881 11882 // exitMBB: 11883 // ... 11884 BB = exitMBB; 11885 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11886 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11887 // We must use 64-bit registers for addresses when targeting 64-bit, 11888 // since we're actually doing arithmetic on them. Other registers 11889 // can be 32-bit. 11890 bool is64bit = Subtarget.isPPC64(); 11891 bool isLittleEndian = Subtarget.isLittleEndian(); 11892 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11893 11894 Register dest = MI.getOperand(0).getReg(); 11895 Register ptrA = MI.getOperand(1).getReg(); 11896 Register ptrB = MI.getOperand(2).getReg(); 11897 Register oldval = MI.getOperand(3).getReg(); 11898 Register newval = MI.getOperand(4).getReg(); 11899 DebugLoc dl = MI.getDebugLoc(); 11900 11901 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11902 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11903 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11904 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11905 F->insert(It, loop1MBB); 11906 F->insert(It, loop2MBB); 11907 F->insert(It, midMBB); 11908 F->insert(It, exitMBB); 11909 exitMBB->splice(exitMBB->begin(), BB, 11910 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11911 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11912 11913 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11914 const TargetRegisterClass *RC = 11915 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11916 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11917 11918 Register PtrReg = RegInfo.createVirtualRegister(RC); 11919 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11920 Register ShiftReg = 11921 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11922 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11923 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11924 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11925 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11926 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11927 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11928 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11929 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11930 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11931 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11932 Register Ptr1Reg; 11933 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11934 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11935 // thisMBB: 11936 // ... 11937 // fallthrough --> loopMBB 11938 BB->addSuccessor(loop1MBB); 11939 11940 // The 4-byte load must be aligned, while a char or short may be 11941 // anywhere in the word. Hence all this nasty bookkeeping code. 11942 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11943 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11944 // xori shift, shift1, 24 [16] 11945 // rlwinm ptr, ptr1, 0, 0, 29 11946 // slw newval2, newval, shift 11947 // slw oldval2, oldval,shift 11948 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11949 // slw mask, mask2, shift 11950 // and newval3, newval2, mask 11951 // and oldval3, oldval2, mask 11952 // loop1MBB: 11953 // lwarx tmpDest, ptr 11954 // and tmp, tmpDest, mask 11955 // cmpw tmp, oldval3 11956 // bne- midMBB 11957 // loop2MBB: 11958 // andc tmp2, tmpDest, mask 11959 // or tmp4, tmp2, newval3 11960 // stwcx. tmp4, ptr 11961 // bne- loop1MBB 11962 // b exitBB 11963 // midMBB: 11964 // stwcx. tmpDest, ptr 11965 // exitBB: 11966 // srw dest, tmpDest, shift 11967 if (ptrA != ZeroReg) { 11968 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11969 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11970 .addReg(ptrA) 11971 .addReg(ptrB); 11972 } else { 11973 Ptr1Reg = ptrB; 11974 } 11975 11976 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11977 // mode. 11978 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11979 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11980 .addImm(3) 11981 .addImm(27) 11982 .addImm(is8bit ? 28 : 27); 11983 if (!isLittleEndian) 11984 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11985 .addReg(Shift1Reg) 11986 .addImm(is8bit ? 24 : 16); 11987 if (is64bit) 11988 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11989 .addReg(Ptr1Reg) 11990 .addImm(0) 11991 .addImm(61); 11992 else 11993 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11994 .addReg(Ptr1Reg) 11995 .addImm(0) 11996 .addImm(0) 11997 .addImm(29); 11998 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11999 .addReg(newval) 12000 .addReg(ShiftReg); 12001 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12002 .addReg(oldval) 12003 .addReg(ShiftReg); 12004 if (is8bit) 12005 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12006 else { 12007 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12008 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12009 .addReg(Mask3Reg) 12010 .addImm(65535); 12011 } 12012 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12013 .addReg(Mask2Reg) 12014 .addReg(ShiftReg); 12015 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12016 .addReg(NewVal2Reg) 12017 .addReg(MaskReg); 12018 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12019 .addReg(OldVal2Reg) 12020 .addReg(MaskReg); 12021 12022 BB = loop1MBB; 12023 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12024 .addReg(ZeroReg) 12025 .addReg(PtrReg); 12026 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12027 .addReg(TmpDestReg) 12028 .addReg(MaskReg); 12029 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12030 .addReg(TmpReg) 12031 .addReg(OldVal3Reg); 12032 BuildMI(BB, dl, TII->get(PPC::BCC)) 12033 .addImm(PPC::PRED_NE) 12034 .addReg(PPC::CR0) 12035 .addMBB(midMBB); 12036 BB->addSuccessor(loop2MBB); 12037 BB->addSuccessor(midMBB); 12038 12039 BB = loop2MBB; 12040 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12041 .addReg(TmpDestReg) 12042 .addReg(MaskReg); 12043 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12044 .addReg(Tmp2Reg) 12045 .addReg(NewVal3Reg); 12046 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12047 .addReg(Tmp4Reg) 12048 .addReg(ZeroReg) 12049 .addReg(PtrReg); 12050 BuildMI(BB, dl, TII->get(PPC::BCC)) 12051 .addImm(PPC::PRED_NE) 12052 .addReg(PPC::CR0) 12053 .addMBB(loop1MBB); 12054 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12055 BB->addSuccessor(loop1MBB); 12056 BB->addSuccessor(exitMBB); 12057 12058 BB = midMBB; 12059 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12060 .addReg(TmpDestReg) 12061 .addReg(ZeroReg) 12062 .addReg(PtrReg); 12063 BB->addSuccessor(exitMBB); 12064 12065 // exitMBB: 12066 // ... 12067 BB = exitMBB; 12068 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12069 .addReg(TmpReg) 12070 .addReg(ShiftReg); 12071 } else if (MI.getOpcode() == PPC::FADDrtz) { 12072 // This pseudo performs an FADD with rounding mode temporarily forced 12073 // to round-to-zero. We emit this via custom inserter since the FPSCR 12074 // is not modeled at the SelectionDAG level. 12075 Register Dest = MI.getOperand(0).getReg(); 12076 Register Src1 = MI.getOperand(1).getReg(); 12077 Register Src2 = MI.getOperand(2).getReg(); 12078 DebugLoc dl = MI.getDebugLoc(); 12079 12080 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12081 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12082 12083 // Save FPSCR value. 12084 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12085 12086 // Set rounding mode to round-to-zero. 12087 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 12088 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 12089 12090 // Perform addition. 12091 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 12092 12093 // Restore FPSCR value. 12094 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12095 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12096 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12097 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12098 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12099 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12100 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12101 ? PPC::ANDI8_rec 12102 : PPC::ANDI_rec; 12103 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12104 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12105 12106 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12107 Register Dest = RegInfo.createVirtualRegister( 12108 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12109 12110 DebugLoc Dl = MI.getDebugLoc(); 12111 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12112 .addReg(MI.getOperand(1).getReg()) 12113 .addImm(1); 12114 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12115 MI.getOperand(0).getReg()) 12116 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12117 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12118 DebugLoc Dl = MI.getDebugLoc(); 12119 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12120 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12121 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12122 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12123 MI.getOperand(0).getReg()) 12124 .addReg(CRReg); 12125 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12126 DebugLoc Dl = MI.getDebugLoc(); 12127 unsigned Imm = MI.getOperand(1).getImm(); 12128 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12129 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12130 MI.getOperand(0).getReg()) 12131 .addReg(PPC::CR0EQ); 12132 } else if (MI.getOpcode() == PPC::SETRNDi) { 12133 DebugLoc dl = MI.getDebugLoc(); 12134 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12135 12136 // Save FPSCR value. 12137 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12138 12139 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12140 // the following settings: 12141 // 00 Round to nearest 12142 // 01 Round to 0 12143 // 10 Round to +inf 12144 // 11 Round to -inf 12145 12146 // When the operand is immediate, using the two least significant bits of 12147 // the immediate to set the bits 62:63 of FPSCR. 12148 unsigned Mode = MI.getOperand(1).getImm(); 12149 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12150 .addImm(31); 12151 12152 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12153 .addImm(30); 12154 } else if (MI.getOpcode() == PPC::SETRND) { 12155 DebugLoc dl = MI.getDebugLoc(); 12156 12157 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12158 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12159 // If the target doesn't have DirectMove, we should use stack to do the 12160 // conversion, because the target doesn't have the instructions like mtvsrd 12161 // or mfvsrd to do this conversion directly. 12162 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12163 if (Subtarget.hasDirectMove()) { 12164 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12165 .addReg(SrcReg); 12166 } else { 12167 // Use stack to do the register copy. 12168 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12169 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12170 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12171 if (RC == &PPC::F8RCRegClass) { 12172 // Copy register from F8RCRegClass to G8RCRegclass. 12173 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12174 "Unsupported RegClass."); 12175 12176 StoreOp = PPC::STFD; 12177 LoadOp = PPC::LD; 12178 } else { 12179 // Copy register from G8RCRegClass to F8RCRegclass. 12180 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12181 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12182 "Unsupported RegClass."); 12183 } 12184 12185 MachineFrameInfo &MFI = F->getFrameInfo(); 12186 int FrameIdx = MFI.CreateStackObject(8, 8, false); 12187 12188 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12189 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12190 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12191 MFI.getObjectAlign(FrameIdx)); 12192 12193 // Store the SrcReg into the stack. 12194 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12195 .addReg(SrcReg) 12196 .addImm(0) 12197 .addFrameIndex(FrameIdx) 12198 .addMemOperand(MMOStore); 12199 12200 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12201 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12202 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12203 MFI.getObjectAlign(FrameIdx)); 12204 12205 // Load from the stack where SrcReg is stored, and save to DestReg, 12206 // so we have done the RegClass conversion from RegClass::SrcReg to 12207 // RegClass::DestReg. 12208 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12209 .addImm(0) 12210 .addFrameIndex(FrameIdx) 12211 .addMemOperand(MMOLoad); 12212 } 12213 }; 12214 12215 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12216 12217 // Save FPSCR value. 12218 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12219 12220 // When the operand is gprc register, use two least significant bits of the 12221 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12222 // 12223 // copy OldFPSCRTmpReg, OldFPSCRReg 12224 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12225 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12226 // copy NewFPSCRReg, NewFPSCRTmpReg 12227 // mtfsf 255, NewFPSCRReg 12228 MachineOperand SrcOp = MI.getOperand(1); 12229 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12230 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12231 12232 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12233 12234 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12235 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12236 12237 // The first operand of INSERT_SUBREG should be a register which has 12238 // subregisters, we only care about its RegClass, so we should use an 12239 // IMPLICIT_DEF register. 12240 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12241 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12242 .addReg(ImDefReg) 12243 .add(SrcOp) 12244 .addImm(1); 12245 12246 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12247 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12248 .addReg(OldFPSCRTmpReg) 12249 .addReg(ExtSrcReg) 12250 .addImm(0) 12251 .addImm(62); 12252 12253 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12254 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12255 12256 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12257 // bits of FPSCR. 12258 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12259 .addImm(255) 12260 .addReg(NewFPSCRReg) 12261 .addImm(0) 12262 .addImm(0); 12263 } else { 12264 llvm_unreachable("Unexpected instr type to insert"); 12265 } 12266 12267 MI.eraseFromParent(); // The pseudo instruction is gone now. 12268 return BB; 12269 } 12270 12271 //===----------------------------------------------------------------------===// 12272 // Target Optimization Hooks 12273 //===----------------------------------------------------------------------===// 12274 12275 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12276 // For the estimates, convergence is quadratic, so we essentially double the 12277 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12278 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12279 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12280 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12281 if (VT.getScalarType() == MVT::f64) 12282 RefinementSteps++; 12283 return RefinementSteps; 12284 } 12285 12286 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12287 int Enabled, int &RefinementSteps, 12288 bool &UseOneConstNR, 12289 bool Reciprocal) const { 12290 EVT VT = Operand.getValueType(); 12291 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12292 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12293 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12294 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12295 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12296 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12297 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12298 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12299 12300 // The Newton-Raphson computation with a single constant does not provide 12301 // enough accuracy on some CPUs. 12302 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12303 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12304 } 12305 return SDValue(); 12306 } 12307 12308 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12309 int Enabled, 12310 int &RefinementSteps) const { 12311 EVT VT = Operand.getValueType(); 12312 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12313 (VT == MVT::f64 && Subtarget.hasFRE()) || 12314 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12315 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12316 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12317 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12318 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12319 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12320 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12321 } 12322 return SDValue(); 12323 } 12324 12325 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12326 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12327 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12328 // enabled for division), this functionality is redundant with the default 12329 // combiner logic (once the division -> reciprocal/multiply transformation 12330 // has taken place). As a result, this matters more for older cores than for 12331 // newer ones. 12332 12333 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12334 // reciprocal if there are two or more FDIVs (for embedded cores with only 12335 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12336 switch (Subtarget.getCPUDirective()) { 12337 default: 12338 return 3; 12339 case PPC::DIR_440: 12340 case PPC::DIR_A2: 12341 case PPC::DIR_E500: 12342 case PPC::DIR_E500mc: 12343 case PPC::DIR_E5500: 12344 return 2; 12345 } 12346 } 12347 12348 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12349 // collapsed, and so we need to look through chains of them. 12350 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12351 int64_t& Offset, SelectionDAG &DAG) { 12352 if (DAG.isBaseWithConstantOffset(Loc)) { 12353 Base = Loc.getOperand(0); 12354 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12355 12356 // The base might itself be a base plus an offset, and if so, accumulate 12357 // that as well. 12358 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12359 } 12360 } 12361 12362 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12363 unsigned Bytes, int Dist, 12364 SelectionDAG &DAG) { 12365 if (VT.getSizeInBits() / 8 != Bytes) 12366 return false; 12367 12368 SDValue BaseLoc = Base->getBasePtr(); 12369 if (Loc.getOpcode() == ISD::FrameIndex) { 12370 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12371 return false; 12372 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12373 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12374 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12375 int FS = MFI.getObjectSize(FI); 12376 int BFS = MFI.getObjectSize(BFI); 12377 if (FS != BFS || FS != (int)Bytes) return false; 12378 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12379 } 12380 12381 SDValue Base1 = Loc, Base2 = BaseLoc; 12382 int64_t Offset1 = 0, Offset2 = 0; 12383 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12384 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12385 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12386 return true; 12387 12388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12389 const GlobalValue *GV1 = nullptr; 12390 const GlobalValue *GV2 = nullptr; 12391 Offset1 = 0; 12392 Offset2 = 0; 12393 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12394 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12395 if (isGA1 && isGA2 && GV1 == GV2) 12396 return Offset1 == (Offset2 + Dist*Bytes); 12397 return false; 12398 } 12399 12400 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12401 // not enforce equality of the chain operands. 12402 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12403 unsigned Bytes, int Dist, 12404 SelectionDAG &DAG) { 12405 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12406 EVT VT = LS->getMemoryVT(); 12407 SDValue Loc = LS->getBasePtr(); 12408 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12409 } 12410 12411 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12412 EVT VT; 12413 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12414 default: return false; 12415 case Intrinsic::ppc_qpx_qvlfd: 12416 case Intrinsic::ppc_qpx_qvlfda: 12417 VT = MVT::v4f64; 12418 break; 12419 case Intrinsic::ppc_qpx_qvlfs: 12420 case Intrinsic::ppc_qpx_qvlfsa: 12421 VT = MVT::v4f32; 12422 break; 12423 case Intrinsic::ppc_qpx_qvlfcd: 12424 case Intrinsic::ppc_qpx_qvlfcda: 12425 VT = MVT::v2f64; 12426 break; 12427 case Intrinsic::ppc_qpx_qvlfcs: 12428 case Intrinsic::ppc_qpx_qvlfcsa: 12429 VT = MVT::v2f32; 12430 break; 12431 case Intrinsic::ppc_qpx_qvlfiwa: 12432 case Intrinsic::ppc_qpx_qvlfiwz: 12433 case Intrinsic::ppc_altivec_lvx: 12434 case Intrinsic::ppc_altivec_lvxl: 12435 case Intrinsic::ppc_vsx_lxvw4x: 12436 case Intrinsic::ppc_vsx_lxvw4x_be: 12437 VT = MVT::v4i32; 12438 break; 12439 case Intrinsic::ppc_vsx_lxvd2x: 12440 case Intrinsic::ppc_vsx_lxvd2x_be: 12441 VT = MVT::v2f64; 12442 break; 12443 case Intrinsic::ppc_altivec_lvebx: 12444 VT = MVT::i8; 12445 break; 12446 case Intrinsic::ppc_altivec_lvehx: 12447 VT = MVT::i16; 12448 break; 12449 case Intrinsic::ppc_altivec_lvewx: 12450 VT = MVT::i32; 12451 break; 12452 } 12453 12454 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12455 } 12456 12457 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12458 EVT VT; 12459 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12460 default: return false; 12461 case Intrinsic::ppc_qpx_qvstfd: 12462 case Intrinsic::ppc_qpx_qvstfda: 12463 VT = MVT::v4f64; 12464 break; 12465 case Intrinsic::ppc_qpx_qvstfs: 12466 case Intrinsic::ppc_qpx_qvstfsa: 12467 VT = MVT::v4f32; 12468 break; 12469 case Intrinsic::ppc_qpx_qvstfcd: 12470 case Intrinsic::ppc_qpx_qvstfcda: 12471 VT = MVT::v2f64; 12472 break; 12473 case Intrinsic::ppc_qpx_qvstfcs: 12474 case Intrinsic::ppc_qpx_qvstfcsa: 12475 VT = MVT::v2f32; 12476 break; 12477 case Intrinsic::ppc_qpx_qvstfiw: 12478 case Intrinsic::ppc_qpx_qvstfiwa: 12479 case Intrinsic::ppc_altivec_stvx: 12480 case Intrinsic::ppc_altivec_stvxl: 12481 case Intrinsic::ppc_vsx_stxvw4x: 12482 VT = MVT::v4i32; 12483 break; 12484 case Intrinsic::ppc_vsx_stxvd2x: 12485 VT = MVT::v2f64; 12486 break; 12487 case Intrinsic::ppc_vsx_stxvw4x_be: 12488 VT = MVT::v4i32; 12489 break; 12490 case Intrinsic::ppc_vsx_stxvd2x_be: 12491 VT = MVT::v2f64; 12492 break; 12493 case Intrinsic::ppc_altivec_stvebx: 12494 VT = MVT::i8; 12495 break; 12496 case Intrinsic::ppc_altivec_stvehx: 12497 VT = MVT::i16; 12498 break; 12499 case Intrinsic::ppc_altivec_stvewx: 12500 VT = MVT::i32; 12501 break; 12502 } 12503 12504 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12505 } 12506 12507 return false; 12508 } 12509 12510 // Return true is there is a nearyby consecutive load to the one provided 12511 // (regardless of alignment). We search up and down the chain, looking though 12512 // token factors and other loads (but nothing else). As a result, a true result 12513 // indicates that it is safe to create a new consecutive load adjacent to the 12514 // load provided. 12515 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12516 SDValue Chain = LD->getChain(); 12517 EVT VT = LD->getMemoryVT(); 12518 12519 SmallSet<SDNode *, 16> LoadRoots; 12520 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12521 SmallSet<SDNode *, 16> Visited; 12522 12523 // First, search up the chain, branching to follow all token-factor operands. 12524 // If we find a consecutive load, then we're done, otherwise, record all 12525 // nodes just above the top-level loads and token factors. 12526 while (!Queue.empty()) { 12527 SDNode *ChainNext = Queue.pop_back_val(); 12528 if (!Visited.insert(ChainNext).second) 12529 continue; 12530 12531 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12532 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12533 return true; 12534 12535 if (!Visited.count(ChainLD->getChain().getNode())) 12536 Queue.push_back(ChainLD->getChain().getNode()); 12537 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12538 for (const SDUse &O : ChainNext->ops()) 12539 if (!Visited.count(O.getNode())) 12540 Queue.push_back(O.getNode()); 12541 } else 12542 LoadRoots.insert(ChainNext); 12543 } 12544 12545 // Second, search down the chain, starting from the top-level nodes recorded 12546 // in the first phase. These top-level nodes are the nodes just above all 12547 // loads and token factors. Starting with their uses, recursively look though 12548 // all loads (just the chain uses) and token factors to find a consecutive 12549 // load. 12550 Visited.clear(); 12551 Queue.clear(); 12552 12553 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12554 IE = LoadRoots.end(); I != IE; ++I) { 12555 Queue.push_back(*I); 12556 12557 while (!Queue.empty()) { 12558 SDNode *LoadRoot = Queue.pop_back_val(); 12559 if (!Visited.insert(LoadRoot).second) 12560 continue; 12561 12562 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12563 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12564 return true; 12565 12566 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12567 UE = LoadRoot->use_end(); UI != UE; ++UI) 12568 if (((isa<MemSDNode>(*UI) && 12569 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12570 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12571 Queue.push_back(*UI); 12572 } 12573 } 12574 12575 return false; 12576 } 12577 12578 /// This function is called when we have proved that a SETCC node can be replaced 12579 /// by subtraction (and other supporting instructions) so that the result of 12580 /// comparison is kept in a GPR instead of CR. This function is purely for 12581 /// codegen purposes and has some flags to guide the codegen process. 12582 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12583 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12584 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12585 12586 // Zero extend the operands to the largest legal integer. Originally, they 12587 // must be of a strictly smaller size. 12588 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12589 DAG.getConstant(Size, DL, MVT::i32)); 12590 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12591 DAG.getConstant(Size, DL, MVT::i32)); 12592 12593 // Swap if needed. Depends on the condition code. 12594 if (Swap) 12595 std::swap(Op0, Op1); 12596 12597 // Subtract extended integers. 12598 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12599 12600 // Move the sign bit to the least significant position and zero out the rest. 12601 // Now the least significant bit carries the result of original comparison. 12602 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12603 DAG.getConstant(Size - 1, DL, MVT::i32)); 12604 auto Final = Shifted; 12605 12606 // Complement the result if needed. Based on the condition code. 12607 if (Complement) 12608 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12609 DAG.getConstant(1, DL, MVT::i64)); 12610 12611 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12612 } 12613 12614 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12615 DAGCombinerInfo &DCI) const { 12616 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12617 12618 SelectionDAG &DAG = DCI.DAG; 12619 SDLoc DL(N); 12620 12621 // Size of integers being compared has a critical role in the following 12622 // analysis, so we prefer to do this when all types are legal. 12623 if (!DCI.isAfterLegalizeDAG()) 12624 return SDValue(); 12625 12626 // If all users of SETCC extend its value to a legal integer type 12627 // then we replace SETCC with a subtraction 12628 for (SDNode::use_iterator UI = N->use_begin(), 12629 UE = N->use_end(); UI != UE; ++UI) { 12630 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12631 return SDValue(); 12632 } 12633 12634 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12635 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12636 12637 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12638 12639 if (OpSize < Size) { 12640 switch (CC) { 12641 default: break; 12642 case ISD::SETULT: 12643 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12644 case ISD::SETULE: 12645 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12646 case ISD::SETUGT: 12647 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12648 case ISD::SETUGE: 12649 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12650 } 12651 } 12652 12653 return SDValue(); 12654 } 12655 12656 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12657 DAGCombinerInfo &DCI) const { 12658 SelectionDAG &DAG = DCI.DAG; 12659 SDLoc dl(N); 12660 12661 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12662 // If we're tracking CR bits, we need to be careful that we don't have: 12663 // trunc(binary-ops(zext(x), zext(y))) 12664 // or 12665 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12666 // such that we're unnecessarily moving things into GPRs when it would be 12667 // better to keep them in CR bits. 12668 12669 // Note that trunc here can be an actual i1 trunc, or can be the effective 12670 // truncation that comes from a setcc or select_cc. 12671 if (N->getOpcode() == ISD::TRUNCATE && 12672 N->getValueType(0) != MVT::i1) 12673 return SDValue(); 12674 12675 if (N->getOperand(0).getValueType() != MVT::i32 && 12676 N->getOperand(0).getValueType() != MVT::i64) 12677 return SDValue(); 12678 12679 if (N->getOpcode() == ISD::SETCC || 12680 N->getOpcode() == ISD::SELECT_CC) { 12681 // If we're looking at a comparison, then we need to make sure that the 12682 // high bits (all except for the first) don't matter the result. 12683 ISD::CondCode CC = 12684 cast<CondCodeSDNode>(N->getOperand( 12685 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12686 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12687 12688 if (ISD::isSignedIntSetCC(CC)) { 12689 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12690 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12691 return SDValue(); 12692 } else if (ISD::isUnsignedIntSetCC(CC)) { 12693 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12694 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12695 !DAG.MaskedValueIsZero(N->getOperand(1), 12696 APInt::getHighBitsSet(OpBits, OpBits-1))) 12697 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12698 : SDValue()); 12699 } else { 12700 // This is neither a signed nor an unsigned comparison, just make sure 12701 // that the high bits are equal. 12702 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12703 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12704 12705 // We don't really care about what is known about the first bit (if 12706 // anything), so clear it in all masks prior to comparing them. 12707 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12708 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12709 12710 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12711 return SDValue(); 12712 } 12713 } 12714 12715 // We now know that the higher-order bits are irrelevant, we just need to 12716 // make sure that all of the intermediate operations are bit operations, and 12717 // all inputs are extensions. 12718 if (N->getOperand(0).getOpcode() != ISD::AND && 12719 N->getOperand(0).getOpcode() != ISD::OR && 12720 N->getOperand(0).getOpcode() != ISD::XOR && 12721 N->getOperand(0).getOpcode() != ISD::SELECT && 12722 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12723 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12724 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12725 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12726 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12727 return SDValue(); 12728 12729 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12730 N->getOperand(1).getOpcode() != ISD::AND && 12731 N->getOperand(1).getOpcode() != ISD::OR && 12732 N->getOperand(1).getOpcode() != ISD::XOR && 12733 N->getOperand(1).getOpcode() != ISD::SELECT && 12734 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12735 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12736 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12737 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12738 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12739 return SDValue(); 12740 12741 SmallVector<SDValue, 4> Inputs; 12742 SmallVector<SDValue, 8> BinOps, PromOps; 12743 SmallPtrSet<SDNode *, 16> Visited; 12744 12745 for (unsigned i = 0; i < 2; ++i) { 12746 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12747 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12748 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12749 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12750 isa<ConstantSDNode>(N->getOperand(i))) 12751 Inputs.push_back(N->getOperand(i)); 12752 else 12753 BinOps.push_back(N->getOperand(i)); 12754 12755 if (N->getOpcode() == ISD::TRUNCATE) 12756 break; 12757 } 12758 12759 // Visit all inputs, collect all binary operations (and, or, xor and 12760 // select) that are all fed by extensions. 12761 while (!BinOps.empty()) { 12762 SDValue BinOp = BinOps.back(); 12763 BinOps.pop_back(); 12764 12765 if (!Visited.insert(BinOp.getNode()).second) 12766 continue; 12767 12768 PromOps.push_back(BinOp); 12769 12770 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12771 // The condition of the select is not promoted. 12772 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12773 continue; 12774 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12775 continue; 12776 12777 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12778 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12779 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12780 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12781 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12782 Inputs.push_back(BinOp.getOperand(i)); 12783 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12784 BinOp.getOperand(i).getOpcode() == ISD::OR || 12785 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12786 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12787 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12788 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12789 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12790 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12791 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12792 BinOps.push_back(BinOp.getOperand(i)); 12793 } else { 12794 // We have an input that is not an extension or another binary 12795 // operation; we'll abort this transformation. 12796 return SDValue(); 12797 } 12798 } 12799 } 12800 12801 // Make sure that this is a self-contained cluster of operations (which 12802 // is not quite the same thing as saying that everything has only one 12803 // use). 12804 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12805 if (isa<ConstantSDNode>(Inputs[i])) 12806 continue; 12807 12808 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12809 UE = Inputs[i].getNode()->use_end(); 12810 UI != UE; ++UI) { 12811 SDNode *User = *UI; 12812 if (User != N && !Visited.count(User)) 12813 return SDValue(); 12814 12815 // Make sure that we're not going to promote the non-output-value 12816 // operand(s) or SELECT or SELECT_CC. 12817 // FIXME: Although we could sometimes handle this, and it does occur in 12818 // practice that one of the condition inputs to the select is also one of 12819 // the outputs, we currently can't deal with this. 12820 if (User->getOpcode() == ISD::SELECT) { 12821 if (User->getOperand(0) == Inputs[i]) 12822 return SDValue(); 12823 } else if (User->getOpcode() == ISD::SELECT_CC) { 12824 if (User->getOperand(0) == Inputs[i] || 12825 User->getOperand(1) == Inputs[i]) 12826 return SDValue(); 12827 } 12828 } 12829 } 12830 12831 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12832 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12833 UE = PromOps[i].getNode()->use_end(); 12834 UI != UE; ++UI) { 12835 SDNode *User = *UI; 12836 if (User != N && !Visited.count(User)) 12837 return SDValue(); 12838 12839 // Make sure that we're not going to promote the non-output-value 12840 // operand(s) or SELECT or SELECT_CC. 12841 // FIXME: Although we could sometimes handle this, and it does occur in 12842 // practice that one of the condition inputs to the select is also one of 12843 // the outputs, we currently can't deal with this. 12844 if (User->getOpcode() == ISD::SELECT) { 12845 if (User->getOperand(0) == PromOps[i]) 12846 return SDValue(); 12847 } else if (User->getOpcode() == ISD::SELECT_CC) { 12848 if (User->getOperand(0) == PromOps[i] || 12849 User->getOperand(1) == PromOps[i]) 12850 return SDValue(); 12851 } 12852 } 12853 } 12854 12855 // Replace all inputs with the extension operand. 12856 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12857 // Constants may have users outside the cluster of to-be-promoted nodes, 12858 // and so we need to replace those as we do the promotions. 12859 if (isa<ConstantSDNode>(Inputs[i])) 12860 continue; 12861 else 12862 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12863 } 12864 12865 std::list<HandleSDNode> PromOpHandles; 12866 for (auto &PromOp : PromOps) 12867 PromOpHandles.emplace_back(PromOp); 12868 12869 // Replace all operations (these are all the same, but have a different 12870 // (i1) return type). DAG.getNode will validate that the types of 12871 // a binary operator match, so go through the list in reverse so that 12872 // we've likely promoted both operands first. Any intermediate truncations or 12873 // extensions disappear. 12874 while (!PromOpHandles.empty()) { 12875 SDValue PromOp = PromOpHandles.back().getValue(); 12876 PromOpHandles.pop_back(); 12877 12878 if (PromOp.getOpcode() == ISD::TRUNCATE || 12879 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12880 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12881 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12882 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12883 PromOp.getOperand(0).getValueType() != MVT::i1) { 12884 // The operand is not yet ready (see comment below). 12885 PromOpHandles.emplace_front(PromOp); 12886 continue; 12887 } 12888 12889 SDValue RepValue = PromOp.getOperand(0); 12890 if (isa<ConstantSDNode>(RepValue)) 12891 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12892 12893 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12894 continue; 12895 } 12896 12897 unsigned C; 12898 switch (PromOp.getOpcode()) { 12899 default: C = 0; break; 12900 case ISD::SELECT: C = 1; break; 12901 case ISD::SELECT_CC: C = 2; break; 12902 } 12903 12904 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12905 PromOp.getOperand(C).getValueType() != MVT::i1) || 12906 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12907 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12908 // The to-be-promoted operands of this node have not yet been 12909 // promoted (this should be rare because we're going through the 12910 // list backward, but if one of the operands has several users in 12911 // this cluster of to-be-promoted nodes, it is possible). 12912 PromOpHandles.emplace_front(PromOp); 12913 continue; 12914 } 12915 12916 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12917 PromOp.getNode()->op_end()); 12918 12919 // If there are any constant inputs, make sure they're replaced now. 12920 for (unsigned i = 0; i < 2; ++i) 12921 if (isa<ConstantSDNode>(Ops[C+i])) 12922 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12923 12924 DAG.ReplaceAllUsesOfValueWith(PromOp, 12925 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12926 } 12927 12928 // Now we're left with the initial truncation itself. 12929 if (N->getOpcode() == ISD::TRUNCATE) 12930 return N->getOperand(0); 12931 12932 // Otherwise, this is a comparison. The operands to be compared have just 12933 // changed type (to i1), but everything else is the same. 12934 return SDValue(N, 0); 12935 } 12936 12937 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12938 DAGCombinerInfo &DCI) const { 12939 SelectionDAG &DAG = DCI.DAG; 12940 SDLoc dl(N); 12941 12942 // If we're tracking CR bits, we need to be careful that we don't have: 12943 // zext(binary-ops(trunc(x), trunc(y))) 12944 // or 12945 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12946 // such that we're unnecessarily moving things into CR bits that can more 12947 // efficiently stay in GPRs. Note that if we're not certain that the high 12948 // bits are set as required by the final extension, we still may need to do 12949 // some masking to get the proper behavior. 12950 12951 // This same functionality is important on PPC64 when dealing with 12952 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12953 // the return values of functions. Because it is so similar, it is handled 12954 // here as well. 12955 12956 if (N->getValueType(0) != MVT::i32 && 12957 N->getValueType(0) != MVT::i64) 12958 return SDValue(); 12959 12960 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12961 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12962 return SDValue(); 12963 12964 if (N->getOperand(0).getOpcode() != ISD::AND && 12965 N->getOperand(0).getOpcode() != ISD::OR && 12966 N->getOperand(0).getOpcode() != ISD::XOR && 12967 N->getOperand(0).getOpcode() != ISD::SELECT && 12968 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12969 return SDValue(); 12970 12971 SmallVector<SDValue, 4> Inputs; 12972 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12973 SmallPtrSet<SDNode *, 16> Visited; 12974 12975 // Visit all inputs, collect all binary operations (and, or, xor and 12976 // select) that are all fed by truncations. 12977 while (!BinOps.empty()) { 12978 SDValue BinOp = BinOps.back(); 12979 BinOps.pop_back(); 12980 12981 if (!Visited.insert(BinOp.getNode()).second) 12982 continue; 12983 12984 PromOps.push_back(BinOp); 12985 12986 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12987 // The condition of the select is not promoted. 12988 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12989 continue; 12990 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12991 continue; 12992 12993 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12994 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12995 Inputs.push_back(BinOp.getOperand(i)); 12996 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12997 BinOp.getOperand(i).getOpcode() == ISD::OR || 12998 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12999 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13000 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13001 BinOps.push_back(BinOp.getOperand(i)); 13002 } else { 13003 // We have an input that is not a truncation or another binary 13004 // operation; we'll abort this transformation. 13005 return SDValue(); 13006 } 13007 } 13008 } 13009 13010 // The operands of a select that must be truncated when the select is 13011 // promoted because the operand is actually part of the to-be-promoted set. 13012 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13013 13014 // Make sure that this is a self-contained cluster of operations (which 13015 // is not quite the same thing as saying that everything has only one 13016 // use). 13017 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13018 if (isa<ConstantSDNode>(Inputs[i])) 13019 continue; 13020 13021 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13022 UE = Inputs[i].getNode()->use_end(); 13023 UI != UE; ++UI) { 13024 SDNode *User = *UI; 13025 if (User != N && !Visited.count(User)) 13026 return SDValue(); 13027 13028 // If we're going to promote the non-output-value operand(s) or SELECT or 13029 // SELECT_CC, record them for truncation. 13030 if (User->getOpcode() == ISD::SELECT) { 13031 if (User->getOperand(0) == Inputs[i]) 13032 SelectTruncOp[0].insert(std::make_pair(User, 13033 User->getOperand(0).getValueType())); 13034 } else if (User->getOpcode() == ISD::SELECT_CC) { 13035 if (User->getOperand(0) == Inputs[i]) 13036 SelectTruncOp[0].insert(std::make_pair(User, 13037 User->getOperand(0).getValueType())); 13038 if (User->getOperand(1) == Inputs[i]) 13039 SelectTruncOp[1].insert(std::make_pair(User, 13040 User->getOperand(1).getValueType())); 13041 } 13042 } 13043 } 13044 13045 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13046 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13047 UE = PromOps[i].getNode()->use_end(); 13048 UI != UE; ++UI) { 13049 SDNode *User = *UI; 13050 if (User != N && !Visited.count(User)) 13051 return SDValue(); 13052 13053 // If we're going to promote the non-output-value operand(s) or SELECT or 13054 // SELECT_CC, record them for truncation. 13055 if (User->getOpcode() == ISD::SELECT) { 13056 if (User->getOperand(0) == PromOps[i]) 13057 SelectTruncOp[0].insert(std::make_pair(User, 13058 User->getOperand(0).getValueType())); 13059 } else if (User->getOpcode() == ISD::SELECT_CC) { 13060 if (User->getOperand(0) == PromOps[i]) 13061 SelectTruncOp[0].insert(std::make_pair(User, 13062 User->getOperand(0).getValueType())); 13063 if (User->getOperand(1) == PromOps[i]) 13064 SelectTruncOp[1].insert(std::make_pair(User, 13065 User->getOperand(1).getValueType())); 13066 } 13067 } 13068 } 13069 13070 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13071 bool ReallyNeedsExt = false; 13072 if (N->getOpcode() != ISD::ANY_EXTEND) { 13073 // If all of the inputs are not already sign/zero extended, then 13074 // we'll still need to do that at the end. 13075 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13076 if (isa<ConstantSDNode>(Inputs[i])) 13077 continue; 13078 13079 unsigned OpBits = 13080 Inputs[i].getOperand(0).getValueSizeInBits(); 13081 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13082 13083 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13084 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13085 APInt::getHighBitsSet(OpBits, 13086 OpBits-PromBits))) || 13087 (N->getOpcode() == ISD::SIGN_EXTEND && 13088 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13089 (OpBits-(PromBits-1)))) { 13090 ReallyNeedsExt = true; 13091 break; 13092 } 13093 } 13094 } 13095 13096 // Replace all inputs, either with the truncation operand, or a 13097 // truncation or extension to the final output type. 13098 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13099 // Constant inputs need to be replaced with the to-be-promoted nodes that 13100 // use them because they might have users outside of the cluster of 13101 // promoted nodes. 13102 if (isa<ConstantSDNode>(Inputs[i])) 13103 continue; 13104 13105 SDValue InSrc = Inputs[i].getOperand(0); 13106 if (Inputs[i].getValueType() == N->getValueType(0)) 13107 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13108 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13109 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13110 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13111 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13112 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13113 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13114 else 13115 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13116 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13117 } 13118 13119 std::list<HandleSDNode> PromOpHandles; 13120 for (auto &PromOp : PromOps) 13121 PromOpHandles.emplace_back(PromOp); 13122 13123 // Replace all operations (these are all the same, but have a different 13124 // (promoted) return type). DAG.getNode will validate that the types of 13125 // a binary operator match, so go through the list in reverse so that 13126 // we've likely promoted both operands first. 13127 while (!PromOpHandles.empty()) { 13128 SDValue PromOp = PromOpHandles.back().getValue(); 13129 PromOpHandles.pop_back(); 13130 13131 unsigned C; 13132 switch (PromOp.getOpcode()) { 13133 default: C = 0; break; 13134 case ISD::SELECT: C = 1; break; 13135 case ISD::SELECT_CC: C = 2; break; 13136 } 13137 13138 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13139 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13140 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13141 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13142 // The to-be-promoted operands of this node have not yet been 13143 // promoted (this should be rare because we're going through the 13144 // list backward, but if one of the operands has several users in 13145 // this cluster of to-be-promoted nodes, it is possible). 13146 PromOpHandles.emplace_front(PromOp); 13147 continue; 13148 } 13149 13150 // For SELECT and SELECT_CC nodes, we do a similar check for any 13151 // to-be-promoted comparison inputs. 13152 if (PromOp.getOpcode() == ISD::SELECT || 13153 PromOp.getOpcode() == ISD::SELECT_CC) { 13154 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13155 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13156 (SelectTruncOp[1].count(PromOp.getNode()) && 13157 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13158 PromOpHandles.emplace_front(PromOp); 13159 continue; 13160 } 13161 } 13162 13163 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13164 PromOp.getNode()->op_end()); 13165 13166 // If this node has constant inputs, then they'll need to be promoted here. 13167 for (unsigned i = 0; i < 2; ++i) { 13168 if (!isa<ConstantSDNode>(Ops[C+i])) 13169 continue; 13170 if (Ops[C+i].getValueType() == N->getValueType(0)) 13171 continue; 13172 13173 if (N->getOpcode() == ISD::SIGN_EXTEND) 13174 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13175 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13176 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13177 else 13178 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13179 } 13180 13181 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13182 // truncate them again to the original value type. 13183 if (PromOp.getOpcode() == ISD::SELECT || 13184 PromOp.getOpcode() == ISD::SELECT_CC) { 13185 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13186 if (SI0 != SelectTruncOp[0].end()) 13187 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13188 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13189 if (SI1 != SelectTruncOp[1].end()) 13190 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13191 } 13192 13193 DAG.ReplaceAllUsesOfValueWith(PromOp, 13194 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13195 } 13196 13197 // Now we're left with the initial extension itself. 13198 if (!ReallyNeedsExt) 13199 return N->getOperand(0); 13200 13201 // To zero extend, just mask off everything except for the first bit (in the 13202 // i1 case). 13203 if (N->getOpcode() == ISD::ZERO_EXTEND) 13204 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13205 DAG.getConstant(APInt::getLowBitsSet( 13206 N->getValueSizeInBits(0), PromBits), 13207 dl, N->getValueType(0))); 13208 13209 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13210 "Invalid extension type"); 13211 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13212 SDValue ShiftCst = 13213 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13214 return DAG.getNode( 13215 ISD::SRA, dl, N->getValueType(0), 13216 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13217 ShiftCst); 13218 } 13219 13220 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13221 DAGCombinerInfo &DCI) const { 13222 assert(N->getOpcode() == ISD::SETCC && 13223 "Should be called with a SETCC node"); 13224 13225 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13226 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13227 SDValue LHS = N->getOperand(0); 13228 SDValue RHS = N->getOperand(1); 13229 13230 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13231 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13232 LHS.hasOneUse()) 13233 std::swap(LHS, RHS); 13234 13235 // x == 0-y --> x+y == 0 13236 // x != 0-y --> x+y != 0 13237 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13238 RHS.hasOneUse()) { 13239 SDLoc DL(N); 13240 SelectionDAG &DAG = DCI.DAG; 13241 EVT VT = N->getValueType(0); 13242 EVT OpVT = LHS.getValueType(); 13243 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13244 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13245 } 13246 } 13247 13248 return DAGCombineTruncBoolExt(N, DCI); 13249 } 13250 13251 // Is this an extending load from an f32 to an f64? 13252 static bool isFPExtLoad(SDValue Op) { 13253 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13254 return LD->getExtensionType() == ISD::EXTLOAD && 13255 Op.getValueType() == MVT::f64; 13256 return false; 13257 } 13258 13259 /// Reduces the number of fp-to-int conversion when building a vector. 13260 /// 13261 /// If this vector is built out of floating to integer conversions, 13262 /// transform it to a vector built out of floating point values followed by a 13263 /// single floating to integer conversion of the vector. 13264 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13265 /// becomes (fptosi (build_vector ($A, $B, ...))) 13266 SDValue PPCTargetLowering:: 13267 combineElementTruncationToVectorTruncation(SDNode *N, 13268 DAGCombinerInfo &DCI) const { 13269 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13270 "Should be called with a BUILD_VECTOR node"); 13271 13272 SelectionDAG &DAG = DCI.DAG; 13273 SDLoc dl(N); 13274 13275 SDValue FirstInput = N->getOperand(0); 13276 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13277 "The input operand must be an fp-to-int conversion."); 13278 13279 // This combine happens after legalization so the fp_to_[su]i nodes are 13280 // already converted to PPCSISD nodes. 13281 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13282 if (FirstConversion == PPCISD::FCTIDZ || 13283 FirstConversion == PPCISD::FCTIDUZ || 13284 FirstConversion == PPCISD::FCTIWZ || 13285 FirstConversion == PPCISD::FCTIWUZ) { 13286 bool IsSplat = true; 13287 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13288 FirstConversion == PPCISD::FCTIWUZ; 13289 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13290 SmallVector<SDValue, 4> Ops; 13291 EVT TargetVT = N->getValueType(0); 13292 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13293 SDValue NextOp = N->getOperand(i); 13294 if (NextOp.getOpcode() != PPCISD::MFVSR) 13295 return SDValue(); 13296 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13297 if (NextConversion != FirstConversion) 13298 return SDValue(); 13299 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13300 // This is not valid if the input was originally double precision. It is 13301 // also not profitable to do unless this is an extending load in which 13302 // case doing this combine will allow us to combine consecutive loads. 13303 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13304 return SDValue(); 13305 if (N->getOperand(i) != FirstInput) 13306 IsSplat = false; 13307 } 13308 13309 // If this is a splat, we leave it as-is since there will be only a single 13310 // fp-to-int conversion followed by a splat of the integer. This is better 13311 // for 32-bit and smaller ints and neutral for 64-bit ints. 13312 if (IsSplat) 13313 return SDValue(); 13314 13315 // Now that we know we have the right type of node, get its operands 13316 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13317 SDValue In = N->getOperand(i).getOperand(0); 13318 if (Is32Bit) { 13319 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13320 // here, we know that all inputs are extending loads so this is safe). 13321 if (In.isUndef()) 13322 Ops.push_back(DAG.getUNDEF(SrcVT)); 13323 else { 13324 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13325 MVT::f32, In.getOperand(0), 13326 DAG.getIntPtrConstant(1, dl)); 13327 Ops.push_back(Trunc); 13328 } 13329 } else 13330 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13331 } 13332 13333 unsigned Opcode; 13334 if (FirstConversion == PPCISD::FCTIDZ || 13335 FirstConversion == PPCISD::FCTIWZ) 13336 Opcode = ISD::FP_TO_SINT; 13337 else 13338 Opcode = ISD::FP_TO_UINT; 13339 13340 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13341 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13342 return DAG.getNode(Opcode, dl, TargetVT, BV); 13343 } 13344 return SDValue(); 13345 } 13346 13347 /// Reduce the number of loads when building a vector. 13348 /// 13349 /// Building a vector out of multiple loads can be converted to a load 13350 /// of the vector type if the loads are consecutive. If the loads are 13351 /// consecutive but in descending order, a shuffle is added at the end 13352 /// to reorder the vector. 13353 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13354 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13355 "Should be called with a BUILD_VECTOR node"); 13356 13357 SDLoc dl(N); 13358 13359 // Return early for non byte-sized type, as they can't be consecutive. 13360 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13361 return SDValue(); 13362 13363 bool InputsAreConsecutiveLoads = true; 13364 bool InputsAreReverseConsecutive = true; 13365 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13366 SDValue FirstInput = N->getOperand(0); 13367 bool IsRoundOfExtLoad = false; 13368 13369 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13370 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13371 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13372 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13373 } 13374 // Not a build vector of (possibly fp_rounded) loads. 13375 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13376 N->getNumOperands() == 1) 13377 return SDValue(); 13378 13379 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13380 // If any inputs are fp_round(extload), they all must be. 13381 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13382 return SDValue(); 13383 13384 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13385 N->getOperand(i); 13386 if (NextInput.getOpcode() != ISD::LOAD) 13387 return SDValue(); 13388 13389 SDValue PreviousInput = 13390 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13391 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13392 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13393 13394 // If any inputs are fp_round(extload), they all must be. 13395 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13396 return SDValue(); 13397 13398 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13399 InputsAreConsecutiveLoads = false; 13400 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13401 InputsAreReverseConsecutive = false; 13402 13403 // Exit early if the loads are neither consecutive nor reverse consecutive. 13404 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13405 return SDValue(); 13406 } 13407 13408 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13409 "The loads cannot be both consecutive and reverse consecutive."); 13410 13411 SDValue FirstLoadOp = 13412 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13413 SDValue LastLoadOp = 13414 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13415 N->getOperand(N->getNumOperands()-1); 13416 13417 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13418 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13419 if (InputsAreConsecutiveLoads) { 13420 assert(LD1 && "Input needs to be a LoadSDNode."); 13421 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13422 LD1->getBasePtr(), LD1->getPointerInfo(), 13423 LD1->getAlignment()); 13424 } 13425 if (InputsAreReverseConsecutive) { 13426 assert(LDL && "Input needs to be a LoadSDNode."); 13427 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13428 LDL->getBasePtr(), LDL->getPointerInfo(), 13429 LDL->getAlignment()); 13430 SmallVector<int, 16> Ops; 13431 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13432 Ops.push_back(i); 13433 13434 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13435 DAG.getUNDEF(N->getValueType(0)), Ops); 13436 } 13437 return SDValue(); 13438 } 13439 13440 // This function adds the required vector_shuffle needed to get 13441 // the elements of the vector extract in the correct position 13442 // as specified by the CorrectElems encoding. 13443 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13444 SDValue Input, uint64_t Elems, 13445 uint64_t CorrectElems) { 13446 SDLoc dl(N); 13447 13448 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13449 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13450 13451 // Knowing the element indices being extracted from the original 13452 // vector and the order in which they're being inserted, just put 13453 // them at element indices required for the instruction. 13454 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13455 if (DAG.getDataLayout().isLittleEndian()) 13456 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13457 else 13458 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13459 CorrectElems = CorrectElems >> 8; 13460 Elems = Elems >> 8; 13461 } 13462 13463 SDValue Shuffle = 13464 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13465 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13466 13467 EVT VT = N->getValueType(0); 13468 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13469 13470 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13471 Input.getValueType().getVectorElementType(), 13472 VT.getVectorNumElements()); 13473 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13474 DAG.getValueType(ExtVT)); 13475 } 13476 13477 // Look for build vector patterns where input operands come from sign 13478 // extended vector_extract elements of specific indices. If the correct indices 13479 // aren't used, add a vector shuffle to fix up the indices and create 13480 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13481 // during instruction selection. 13482 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13483 // This array encodes the indices that the vector sign extend instructions 13484 // extract from when extending from one type to another for both BE and LE. 13485 // The right nibble of each byte corresponds to the LE incides. 13486 // and the left nibble of each byte corresponds to the BE incides. 13487 // For example: 0x3074B8FC byte->word 13488 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13489 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13490 // For example: 0x000070F8 byte->double word 13491 // For LE: the allowed indices are: 0x0,0x8 13492 // For BE: the allowed indices are: 0x7,0xF 13493 uint64_t TargetElems[] = { 13494 0x3074B8FC, // b->w 13495 0x000070F8, // b->d 13496 0x10325476, // h->w 13497 0x00003074, // h->d 13498 0x00001032, // w->d 13499 }; 13500 13501 uint64_t Elems = 0; 13502 int Index; 13503 SDValue Input; 13504 13505 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13506 if (!Op) 13507 return false; 13508 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13509 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13510 return false; 13511 13512 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13513 // of the right width. 13514 SDValue Extract = Op.getOperand(0); 13515 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13516 Extract = Extract.getOperand(0); 13517 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13518 return false; 13519 13520 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13521 if (!ExtOp) 13522 return false; 13523 13524 Index = ExtOp->getZExtValue(); 13525 if (Input && Input != Extract.getOperand(0)) 13526 return false; 13527 13528 if (!Input) 13529 Input = Extract.getOperand(0); 13530 13531 Elems = Elems << 8; 13532 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13533 Elems |= Index; 13534 13535 return true; 13536 }; 13537 13538 // If the build vector operands aren't sign extended vector extracts, 13539 // of the same input vector, then return. 13540 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13541 if (!isSExtOfVecExtract(N->getOperand(i))) { 13542 return SDValue(); 13543 } 13544 } 13545 13546 // If the vector extract indicies are not correct, add the appropriate 13547 // vector_shuffle. 13548 int TgtElemArrayIdx; 13549 int InputSize = Input.getValueType().getScalarSizeInBits(); 13550 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13551 if (InputSize + OutputSize == 40) 13552 TgtElemArrayIdx = 0; 13553 else if (InputSize + OutputSize == 72) 13554 TgtElemArrayIdx = 1; 13555 else if (InputSize + OutputSize == 48) 13556 TgtElemArrayIdx = 2; 13557 else if (InputSize + OutputSize == 80) 13558 TgtElemArrayIdx = 3; 13559 else if (InputSize + OutputSize == 96) 13560 TgtElemArrayIdx = 4; 13561 else 13562 return SDValue(); 13563 13564 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13565 CorrectElems = DAG.getDataLayout().isLittleEndian() 13566 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13567 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13568 if (Elems != CorrectElems) { 13569 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13570 } 13571 13572 // Regular lowering will catch cases where a shuffle is not needed. 13573 return SDValue(); 13574 } 13575 13576 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13577 DAGCombinerInfo &DCI) const { 13578 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13579 "Should be called with a BUILD_VECTOR node"); 13580 13581 SelectionDAG &DAG = DCI.DAG; 13582 SDLoc dl(N); 13583 13584 if (!Subtarget.hasVSX()) 13585 return SDValue(); 13586 13587 // The target independent DAG combiner will leave a build_vector of 13588 // float-to-int conversions intact. We can generate MUCH better code for 13589 // a float-to-int conversion of a vector of floats. 13590 SDValue FirstInput = N->getOperand(0); 13591 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13592 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13593 if (Reduced) 13594 return Reduced; 13595 } 13596 13597 // If we're building a vector out of consecutive loads, just load that 13598 // vector type. 13599 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13600 if (Reduced) 13601 return Reduced; 13602 13603 // If we're building a vector out of extended elements from another vector 13604 // we have P9 vector integer extend instructions. The code assumes legal 13605 // input types (i.e. it can't handle things like v4i16) so do not run before 13606 // legalization. 13607 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13608 Reduced = combineBVOfVecSExt(N, DAG); 13609 if (Reduced) 13610 return Reduced; 13611 } 13612 13613 13614 if (N->getValueType(0) != MVT::v2f64) 13615 return SDValue(); 13616 13617 // Looking for: 13618 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13619 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13620 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13621 return SDValue(); 13622 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13623 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13624 return SDValue(); 13625 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13626 return SDValue(); 13627 13628 SDValue Ext1 = FirstInput.getOperand(0); 13629 SDValue Ext2 = N->getOperand(1).getOperand(0); 13630 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13631 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13632 return SDValue(); 13633 13634 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13635 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13636 if (!Ext1Op || !Ext2Op) 13637 return SDValue(); 13638 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13639 Ext1.getOperand(0) != Ext2.getOperand(0)) 13640 return SDValue(); 13641 13642 int FirstElem = Ext1Op->getZExtValue(); 13643 int SecondElem = Ext2Op->getZExtValue(); 13644 int SubvecIdx; 13645 if (FirstElem == 0 && SecondElem == 1) 13646 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13647 else if (FirstElem == 2 && SecondElem == 3) 13648 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13649 else 13650 return SDValue(); 13651 13652 SDValue SrcVec = Ext1.getOperand(0); 13653 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13654 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13655 return DAG.getNode(NodeType, dl, MVT::v2f64, 13656 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13657 } 13658 13659 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13660 DAGCombinerInfo &DCI) const { 13661 assert((N->getOpcode() == ISD::SINT_TO_FP || 13662 N->getOpcode() == ISD::UINT_TO_FP) && 13663 "Need an int -> FP conversion node here"); 13664 13665 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13666 return SDValue(); 13667 13668 SelectionDAG &DAG = DCI.DAG; 13669 SDLoc dl(N); 13670 SDValue Op(N, 0); 13671 13672 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13673 // from the hardware. 13674 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13675 return SDValue(); 13676 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13677 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13678 return SDValue(); 13679 13680 SDValue FirstOperand(Op.getOperand(0)); 13681 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13682 (FirstOperand.getValueType() == MVT::i8 || 13683 FirstOperand.getValueType() == MVT::i16); 13684 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13685 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13686 bool DstDouble = Op.getValueType() == MVT::f64; 13687 unsigned ConvOp = Signed ? 13688 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13689 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13690 SDValue WidthConst = 13691 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13692 dl, false); 13693 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13694 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13695 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13696 DAG.getVTList(MVT::f64, MVT::Other), 13697 Ops, MVT::i8, LDN->getMemOperand()); 13698 13699 // For signed conversion, we need to sign-extend the value in the VSR 13700 if (Signed) { 13701 SDValue ExtOps[] = { Ld, WidthConst }; 13702 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13703 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13704 } else 13705 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13706 } 13707 13708 13709 // For i32 intermediate values, unfortunately, the conversion functions 13710 // leave the upper 32 bits of the value are undefined. Within the set of 13711 // scalar instructions, we have no method for zero- or sign-extending the 13712 // value. Thus, we cannot handle i32 intermediate values here. 13713 if (Op.getOperand(0).getValueType() == MVT::i32) 13714 return SDValue(); 13715 13716 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13717 "UINT_TO_FP is supported only with FPCVT"); 13718 13719 // If we have FCFIDS, then use it when converting to single-precision. 13720 // Otherwise, convert to double-precision and then round. 13721 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13722 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13723 : PPCISD::FCFIDS) 13724 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13725 : PPCISD::FCFID); 13726 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13727 ? MVT::f32 13728 : MVT::f64; 13729 13730 // If we're converting from a float, to an int, and back to a float again, 13731 // then we don't need the store/load pair at all. 13732 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13733 Subtarget.hasFPCVT()) || 13734 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13735 SDValue Src = Op.getOperand(0).getOperand(0); 13736 if (Src.getValueType() == MVT::f32) { 13737 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13738 DCI.AddToWorklist(Src.getNode()); 13739 } else if (Src.getValueType() != MVT::f64) { 13740 // Make sure that we don't pick up a ppc_fp128 source value. 13741 return SDValue(); 13742 } 13743 13744 unsigned FCTOp = 13745 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13746 PPCISD::FCTIDUZ; 13747 13748 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13749 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13750 13751 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13752 FP = DAG.getNode(ISD::FP_ROUND, dl, 13753 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13754 DCI.AddToWorklist(FP.getNode()); 13755 } 13756 13757 return FP; 13758 } 13759 13760 return SDValue(); 13761 } 13762 13763 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13764 // builtins) into loads with swaps. 13765 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13766 DAGCombinerInfo &DCI) const { 13767 SelectionDAG &DAG = DCI.DAG; 13768 SDLoc dl(N); 13769 SDValue Chain; 13770 SDValue Base; 13771 MachineMemOperand *MMO; 13772 13773 switch (N->getOpcode()) { 13774 default: 13775 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13776 case ISD::LOAD: { 13777 LoadSDNode *LD = cast<LoadSDNode>(N); 13778 Chain = LD->getChain(); 13779 Base = LD->getBasePtr(); 13780 MMO = LD->getMemOperand(); 13781 // If the MMO suggests this isn't a load of a full vector, leave 13782 // things alone. For a built-in, we have to make the change for 13783 // correctness, so if there is a size problem that will be a bug. 13784 if (MMO->getSize() < 16) 13785 return SDValue(); 13786 break; 13787 } 13788 case ISD::INTRINSIC_W_CHAIN: { 13789 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13790 Chain = Intrin->getChain(); 13791 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13792 // us what we want. Get operand 2 instead. 13793 Base = Intrin->getOperand(2); 13794 MMO = Intrin->getMemOperand(); 13795 break; 13796 } 13797 } 13798 13799 MVT VecTy = N->getValueType(0).getSimpleVT(); 13800 13801 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13802 // aligned and the type is a vector with elements up to 4 bytes 13803 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13804 VecTy.getScalarSizeInBits() <= 32) { 13805 return SDValue(); 13806 } 13807 13808 SDValue LoadOps[] = { Chain, Base }; 13809 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13810 DAG.getVTList(MVT::v2f64, MVT::Other), 13811 LoadOps, MVT::v2f64, MMO); 13812 13813 DCI.AddToWorklist(Load.getNode()); 13814 Chain = Load.getValue(1); 13815 SDValue Swap = DAG.getNode( 13816 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13817 DCI.AddToWorklist(Swap.getNode()); 13818 13819 // Add a bitcast if the resulting load type doesn't match v2f64. 13820 if (VecTy != MVT::v2f64) { 13821 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13822 DCI.AddToWorklist(N.getNode()); 13823 // Package {bitcast value, swap's chain} to match Load's shape. 13824 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13825 N, Swap.getValue(1)); 13826 } 13827 13828 return Swap; 13829 } 13830 13831 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13832 // builtins) into stores with swaps. 13833 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13834 DAGCombinerInfo &DCI) const { 13835 SelectionDAG &DAG = DCI.DAG; 13836 SDLoc dl(N); 13837 SDValue Chain; 13838 SDValue Base; 13839 unsigned SrcOpnd; 13840 MachineMemOperand *MMO; 13841 13842 switch (N->getOpcode()) { 13843 default: 13844 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13845 case ISD::STORE: { 13846 StoreSDNode *ST = cast<StoreSDNode>(N); 13847 Chain = ST->getChain(); 13848 Base = ST->getBasePtr(); 13849 MMO = ST->getMemOperand(); 13850 SrcOpnd = 1; 13851 // If the MMO suggests this isn't a store of a full vector, leave 13852 // things alone. For a built-in, we have to make the change for 13853 // correctness, so if there is a size problem that will be a bug. 13854 if (MMO->getSize() < 16) 13855 return SDValue(); 13856 break; 13857 } 13858 case ISD::INTRINSIC_VOID: { 13859 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13860 Chain = Intrin->getChain(); 13861 // Intrin->getBasePtr() oddly does not get what we want. 13862 Base = Intrin->getOperand(3); 13863 MMO = Intrin->getMemOperand(); 13864 SrcOpnd = 2; 13865 break; 13866 } 13867 } 13868 13869 SDValue Src = N->getOperand(SrcOpnd); 13870 MVT VecTy = Src.getValueType().getSimpleVT(); 13871 13872 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13873 // aligned and the type is a vector with elements up to 4 bytes 13874 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13875 VecTy.getScalarSizeInBits() <= 32) { 13876 return SDValue(); 13877 } 13878 13879 // All stores are done as v2f64 and possible bit cast. 13880 if (VecTy != MVT::v2f64) { 13881 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13882 DCI.AddToWorklist(Src.getNode()); 13883 } 13884 13885 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13886 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13887 DCI.AddToWorklist(Swap.getNode()); 13888 Chain = Swap.getValue(1); 13889 SDValue StoreOps[] = { Chain, Swap, Base }; 13890 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13891 DAG.getVTList(MVT::Other), 13892 StoreOps, VecTy, MMO); 13893 DCI.AddToWorklist(Store.getNode()); 13894 return Store; 13895 } 13896 13897 // Handle DAG combine for STORE (FP_TO_INT F). 13898 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13899 DAGCombinerInfo &DCI) const { 13900 13901 SelectionDAG &DAG = DCI.DAG; 13902 SDLoc dl(N); 13903 unsigned Opcode = N->getOperand(1).getOpcode(); 13904 13905 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13906 && "Not a FP_TO_INT Instruction!"); 13907 13908 SDValue Val = N->getOperand(1).getOperand(0); 13909 EVT Op1VT = N->getOperand(1).getValueType(); 13910 EVT ResVT = Val.getValueType(); 13911 13912 // Floating point types smaller than 32 bits are not legal on Power. 13913 if (ResVT.getScalarSizeInBits() < 32) 13914 return SDValue(); 13915 13916 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13917 bool ValidTypeForStoreFltAsInt = 13918 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13919 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13920 13921 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 13922 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13923 return SDValue(); 13924 13925 // Extend f32 values to f64 13926 if (ResVT.getScalarSizeInBits() == 32) { 13927 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13928 DCI.AddToWorklist(Val.getNode()); 13929 } 13930 13931 // Set signed or unsigned conversion opcode. 13932 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13933 PPCISD::FP_TO_SINT_IN_VSR : 13934 PPCISD::FP_TO_UINT_IN_VSR; 13935 13936 Val = DAG.getNode(ConvOpcode, 13937 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13938 DCI.AddToWorklist(Val.getNode()); 13939 13940 // Set number of bytes being converted. 13941 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13942 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13943 DAG.getIntPtrConstant(ByteSize, dl, false), 13944 DAG.getValueType(Op1VT) }; 13945 13946 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13947 DAG.getVTList(MVT::Other), Ops, 13948 cast<StoreSDNode>(N)->getMemoryVT(), 13949 cast<StoreSDNode>(N)->getMemOperand()); 13950 13951 DCI.AddToWorklist(Val.getNode()); 13952 return Val; 13953 } 13954 13955 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13956 LSBaseSDNode *LSBase, 13957 DAGCombinerInfo &DCI) const { 13958 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13959 "Not a reverse memop pattern!"); 13960 13961 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 13962 auto Mask = SVN->getMask(); 13963 int i = 0; 13964 auto I = Mask.rbegin(); 13965 auto E = Mask.rend(); 13966 13967 for (; I != E; ++I) { 13968 if (*I != i) 13969 return false; 13970 i++; 13971 } 13972 return true; 13973 }; 13974 13975 SelectionDAG &DAG = DCI.DAG; 13976 EVT VT = SVN->getValueType(0); 13977 13978 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13979 return SDValue(); 13980 13981 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 13982 // See comment in PPCVSXSwapRemoval.cpp. 13983 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 13984 if (!Subtarget.hasP9Vector()) 13985 return SDValue(); 13986 13987 if(!IsElementReverse(SVN)) 13988 return SDValue(); 13989 13990 if (LSBase->getOpcode() == ISD::LOAD) { 13991 SDLoc dl(SVN); 13992 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 13993 return DAG.getMemIntrinsicNode( 13994 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 13995 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13996 } 13997 13998 if (LSBase->getOpcode() == ISD::STORE) { 13999 SDLoc dl(LSBase); 14000 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14001 LSBase->getBasePtr()}; 14002 return DAG.getMemIntrinsicNode( 14003 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14004 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14005 } 14006 14007 llvm_unreachable("Expected a load or store node here"); 14008 } 14009 14010 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14011 DAGCombinerInfo &DCI) const { 14012 SelectionDAG &DAG = DCI.DAG; 14013 SDLoc dl(N); 14014 switch (N->getOpcode()) { 14015 default: break; 14016 case ISD::ADD: 14017 return combineADD(N, DCI); 14018 case ISD::SHL: 14019 return combineSHL(N, DCI); 14020 case ISD::SRA: 14021 return combineSRA(N, DCI); 14022 case ISD::SRL: 14023 return combineSRL(N, DCI); 14024 case ISD::MUL: 14025 return combineMUL(N, DCI); 14026 case PPCISD::SHL: 14027 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14028 return N->getOperand(0); 14029 break; 14030 case PPCISD::SRL: 14031 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14032 return N->getOperand(0); 14033 break; 14034 case PPCISD::SRA: 14035 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14036 if (C->isNullValue() || // 0 >>s V -> 0. 14037 C->isAllOnesValue()) // -1 >>s V -> -1. 14038 return N->getOperand(0); 14039 } 14040 break; 14041 case ISD::SIGN_EXTEND: 14042 case ISD::ZERO_EXTEND: 14043 case ISD::ANY_EXTEND: 14044 return DAGCombineExtBoolTrunc(N, DCI); 14045 case ISD::TRUNCATE: 14046 return combineTRUNCATE(N, DCI); 14047 case ISD::SETCC: 14048 if (SDValue CSCC = combineSetCC(N, DCI)) 14049 return CSCC; 14050 LLVM_FALLTHROUGH; 14051 case ISD::SELECT_CC: 14052 return DAGCombineTruncBoolExt(N, DCI); 14053 case ISD::SINT_TO_FP: 14054 case ISD::UINT_TO_FP: 14055 return combineFPToIntToFP(N, DCI); 14056 case ISD::VECTOR_SHUFFLE: 14057 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14058 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14059 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14060 } 14061 break; 14062 case ISD::STORE: { 14063 14064 EVT Op1VT = N->getOperand(1).getValueType(); 14065 unsigned Opcode = N->getOperand(1).getOpcode(); 14066 14067 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14068 SDValue Val= combineStoreFPToInt(N, DCI); 14069 if (Val) 14070 return Val; 14071 } 14072 14073 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14074 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14075 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14076 if (Val) 14077 return Val; 14078 } 14079 14080 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14081 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14082 N->getOperand(1).getNode()->hasOneUse() && 14083 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14084 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14085 14086 // STBRX can only handle simple types and it makes no sense to store less 14087 // two bytes in byte-reversed order. 14088 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14089 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14090 break; 14091 14092 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14093 // Do an any-extend to 32-bits if this is a half-word input. 14094 if (BSwapOp.getValueType() == MVT::i16) 14095 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14096 14097 // If the type of BSWAP operand is wider than stored memory width 14098 // it need to be shifted to the right side before STBRX. 14099 if (Op1VT.bitsGT(mVT)) { 14100 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14101 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14102 DAG.getConstant(Shift, dl, MVT::i32)); 14103 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14104 if (Op1VT == MVT::i64) 14105 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14106 } 14107 14108 SDValue Ops[] = { 14109 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14110 }; 14111 return 14112 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14113 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14114 cast<StoreSDNode>(N)->getMemOperand()); 14115 } 14116 14117 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14118 // So it can increase the chance of CSE constant construction. 14119 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14120 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14121 // Need to sign-extended to 64-bits to handle negative values. 14122 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14123 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14124 MemVT.getSizeInBits()); 14125 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14126 14127 // DAG.getTruncStore() can't be used here because it doesn't accept 14128 // the general (base + offset) addressing mode. 14129 // So we use UpdateNodeOperands and setTruncatingStore instead. 14130 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14131 N->getOperand(3)); 14132 cast<StoreSDNode>(N)->setTruncatingStore(true); 14133 return SDValue(N, 0); 14134 } 14135 14136 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14137 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14138 if (Op1VT.isSimple()) { 14139 MVT StoreVT = Op1VT.getSimpleVT(); 14140 if (Subtarget.needsSwapsForVSXMemOps() && 14141 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14142 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14143 return expandVSXStoreForLE(N, DCI); 14144 } 14145 break; 14146 } 14147 case ISD::LOAD: { 14148 LoadSDNode *LD = cast<LoadSDNode>(N); 14149 EVT VT = LD->getValueType(0); 14150 14151 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14152 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14153 if (VT.isSimple()) { 14154 MVT LoadVT = VT.getSimpleVT(); 14155 if (Subtarget.needsSwapsForVSXMemOps() && 14156 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14157 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14158 return expandVSXLoadForLE(N, DCI); 14159 } 14160 14161 // We sometimes end up with a 64-bit integer load, from which we extract 14162 // two single-precision floating-point numbers. This happens with 14163 // std::complex<float>, and other similar structures, because of the way we 14164 // canonicalize structure copies. However, if we lack direct moves, 14165 // then the final bitcasts from the extracted integer values to the 14166 // floating-point numbers turn into store/load pairs. Even with direct moves, 14167 // just loading the two floating-point numbers is likely better. 14168 auto ReplaceTwoFloatLoad = [&]() { 14169 if (VT != MVT::i64) 14170 return false; 14171 14172 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14173 LD->isVolatile()) 14174 return false; 14175 14176 // We're looking for a sequence like this: 14177 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14178 // t16: i64 = srl t13, Constant:i32<32> 14179 // t17: i32 = truncate t16 14180 // t18: f32 = bitcast t17 14181 // t19: i32 = truncate t13 14182 // t20: f32 = bitcast t19 14183 14184 if (!LD->hasNUsesOfValue(2, 0)) 14185 return false; 14186 14187 auto UI = LD->use_begin(); 14188 while (UI.getUse().getResNo() != 0) ++UI; 14189 SDNode *Trunc = *UI++; 14190 while (UI.getUse().getResNo() != 0) ++UI; 14191 SDNode *RightShift = *UI; 14192 if (Trunc->getOpcode() != ISD::TRUNCATE) 14193 std::swap(Trunc, RightShift); 14194 14195 if (Trunc->getOpcode() != ISD::TRUNCATE || 14196 Trunc->getValueType(0) != MVT::i32 || 14197 !Trunc->hasOneUse()) 14198 return false; 14199 if (RightShift->getOpcode() != ISD::SRL || 14200 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14201 RightShift->getConstantOperandVal(1) != 32 || 14202 !RightShift->hasOneUse()) 14203 return false; 14204 14205 SDNode *Trunc2 = *RightShift->use_begin(); 14206 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14207 Trunc2->getValueType(0) != MVT::i32 || 14208 !Trunc2->hasOneUse()) 14209 return false; 14210 14211 SDNode *Bitcast = *Trunc->use_begin(); 14212 SDNode *Bitcast2 = *Trunc2->use_begin(); 14213 14214 if (Bitcast->getOpcode() != ISD::BITCAST || 14215 Bitcast->getValueType(0) != MVT::f32) 14216 return false; 14217 if (Bitcast2->getOpcode() != ISD::BITCAST || 14218 Bitcast2->getValueType(0) != MVT::f32) 14219 return false; 14220 14221 if (Subtarget.isLittleEndian()) 14222 std::swap(Bitcast, Bitcast2); 14223 14224 // Bitcast has the second float (in memory-layout order) and Bitcast2 14225 // has the first one. 14226 14227 SDValue BasePtr = LD->getBasePtr(); 14228 if (LD->isIndexed()) { 14229 assert(LD->getAddressingMode() == ISD::PRE_INC && 14230 "Non-pre-inc AM on PPC?"); 14231 BasePtr = 14232 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14233 LD->getOffset()); 14234 } 14235 14236 auto MMOFlags = 14237 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14238 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14239 LD->getPointerInfo(), LD->getAlignment(), 14240 MMOFlags, LD->getAAInfo()); 14241 SDValue AddPtr = 14242 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14243 BasePtr, DAG.getIntPtrConstant(4, dl)); 14244 SDValue FloatLoad2 = DAG.getLoad( 14245 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14246 LD->getPointerInfo().getWithOffset(4), 14247 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14248 14249 if (LD->isIndexed()) { 14250 // Note that DAGCombine should re-form any pre-increment load(s) from 14251 // what is produced here if that makes sense. 14252 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14253 } 14254 14255 DCI.CombineTo(Bitcast2, FloatLoad); 14256 DCI.CombineTo(Bitcast, FloatLoad2); 14257 14258 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14259 SDValue(FloatLoad2.getNode(), 1)); 14260 return true; 14261 }; 14262 14263 if (ReplaceTwoFloatLoad()) 14264 return SDValue(N, 0); 14265 14266 EVT MemVT = LD->getMemoryVT(); 14267 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14268 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 14269 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 14270 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 14271 if (LD->isUnindexed() && VT.isVector() && 14272 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14273 // P8 and later hardware should just use LOAD. 14274 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 14275 VT == MVT::v4i32 || VT == MVT::v4f32)) || 14276 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 14277 LD->getAlignment() >= ScalarABIAlignment)) && 14278 LD->getAlignment() < ABIAlignment) { 14279 // This is a type-legal unaligned Altivec or QPX load. 14280 SDValue Chain = LD->getChain(); 14281 SDValue Ptr = LD->getBasePtr(); 14282 bool isLittleEndian = Subtarget.isLittleEndian(); 14283 14284 // This implements the loading of unaligned vectors as described in 14285 // the venerable Apple Velocity Engine overview. Specifically: 14286 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14287 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14288 // 14289 // The general idea is to expand a sequence of one or more unaligned 14290 // loads into an alignment-based permutation-control instruction (lvsl 14291 // or lvsr), a series of regular vector loads (which always truncate 14292 // their input address to an aligned address), and a series of 14293 // permutations. The results of these permutations are the requested 14294 // loaded values. The trick is that the last "extra" load is not taken 14295 // from the address you might suspect (sizeof(vector) bytes after the 14296 // last requested load), but rather sizeof(vector) - 1 bytes after the 14297 // last requested vector. The point of this is to avoid a page fault if 14298 // the base address happened to be aligned. This works because if the 14299 // base address is aligned, then adding less than a full vector length 14300 // will cause the last vector in the sequence to be (re)loaded. 14301 // Otherwise, the next vector will be fetched as you might suspect was 14302 // necessary. 14303 14304 // We might be able to reuse the permutation generation from 14305 // a different base address offset from this one by an aligned amount. 14306 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14307 // optimization later. 14308 Intrinsic::ID Intr, IntrLD, IntrPerm; 14309 MVT PermCntlTy, PermTy, LDTy; 14310 if (Subtarget.hasAltivec()) { 14311 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 14312 Intrinsic::ppc_altivec_lvsl; 14313 IntrLD = Intrinsic::ppc_altivec_lvx; 14314 IntrPerm = Intrinsic::ppc_altivec_vperm; 14315 PermCntlTy = MVT::v16i8; 14316 PermTy = MVT::v4i32; 14317 LDTy = MVT::v4i32; 14318 } else { 14319 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 14320 Intrinsic::ppc_qpx_qvlpcls; 14321 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 14322 Intrinsic::ppc_qpx_qvlfs; 14323 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 14324 PermCntlTy = MVT::v4f64; 14325 PermTy = MVT::v4f64; 14326 LDTy = MemVT.getSimpleVT(); 14327 } 14328 14329 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14330 14331 // Create the new MMO for the new base load. It is like the original MMO, 14332 // but represents an area in memory almost twice the vector size centered 14333 // on the original address. If the address is unaligned, we might start 14334 // reading up to (sizeof(vector)-1) bytes below the address of the 14335 // original unaligned load. 14336 MachineFunction &MF = DAG.getMachineFunction(); 14337 MachineMemOperand *BaseMMO = 14338 MF.getMachineMemOperand(LD->getMemOperand(), 14339 -(long)MemVT.getStoreSize()+1, 14340 2*MemVT.getStoreSize()-1); 14341 14342 // Create the new base load. 14343 SDValue LDXIntID = 14344 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14345 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14346 SDValue BaseLoad = 14347 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14348 DAG.getVTList(PermTy, MVT::Other), 14349 BaseLoadOps, LDTy, BaseMMO); 14350 14351 // Note that the value of IncOffset (which is provided to the next 14352 // load's pointer info offset value, and thus used to calculate the 14353 // alignment), and the value of IncValue (which is actually used to 14354 // increment the pointer value) are different! This is because we 14355 // require the next load to appear to be aligned, even though it 14356 // is actually offset from the base pointer by a lesser amount. 14357 int IncOffset = VT.getSizeInBits() / 8; 14358 int IncValue = IncOffset; 14359 14360 // Walk (both up and down) the chain looking for another load at the real 14361 // (aligned) offset (the alignment of the other load does not matter in 14362 // this case). If found, then do not use the offset reduction trick, as 14363 // that will prevent the loads from being later combined (as they would 14364 // otherwise be duplicates). 14365 if (!findConsecutiveLoad(LD, DAG)) 14366 --IncValue; 14367 14368 SDValue Increment = 14369 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14370 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14371 14372 MachineMemOperand *ExtraMMO = 14373 MF.getMachineMemOperand(LD->getMemOperand(), 14374 1, 2*MemVT.getStoreSize()-1); 14375 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14376 SDValue ExtraLoad = 14377 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14378 DAG.getVTList(PermTy, MVT::Other), 14379 ExtraLoadOps, LDTy, ExtraMMO); 14380 14381 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14382 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14383 14384 // Because vperm has a big-endian bias, we must reverse the order 14385 // of the input vectors and complement the permute control vector 14386 // when generating little endian code. We have already handled the 14387 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14388 // and ExtraLoad here. 14389 SDValue Perm; 14390 if (isLittleEndian) 14391 Perm = BuildIntrinsicOp(IntrPerm, 14392 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14393 else 14394 Perm = BuildIntrinsicOp(IntrPerm, 14395 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14396 14397 if (VT != PermTy) 14398 Perm = Subtarget.hasAltivec() ? 14399 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 14400 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 14401 DAG.getTargetConstant(1, dl, MVT::i64)); 14402 // second argument is 1 because this rounding 14403 // is always exact. 14404 14405 // The output of the permutation is our loaded result, the TokenFactor is 14406 // our new chain. 14407 DCI.CombineTo(N, Perm, TF); 14408 return SDValue(N, 0); 14409 } 14410 } 14411 break; 14412 case ISD::INTRINSIC_WO_CHAIN: { 14413 bool isLittleEndian = Subtarget.isLittleEndian(); 14414 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14415 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14416 : Intrinsic::ppc_altivec_lvsl); 14417 if ((IID == Intr || 14418 IID == Intrinsic::ppc_qpx_qvlpcld || 14419 IID == Intrinsic::ppc_qpx_qvlpcls) && 14420 N->getOperand(1)->getOpcode() == ISD::ADD) { 14421 SDValue Add = N->getOperand(1); 14422 14423 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 14424 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 14425 14426 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14427 APInt::getAllOnesValue(Bits /* alignment */) 14428 .zext(Add.getScalarValueSizeInBits()))) { 14429 SDNode *BasePtr = Add->getOperand(0).getNode(); 14430 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14431 UE = BasePtr->use_end(); 14432 UI != UE; ++UI) { 14433 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14434 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 14435 // We've found another LVSL/LVSR, and this address is an aligned 14436 // multiple of that one. The results will be the same, so use the 14437 // one we've just found instead. 14438 14439 return SDValue(*UI, 0); 14440 } 14441 } 14442 } 14443 14444 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14445 SDNode *BasePtr = Add->getOperand(0).getNode(); 14446 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14447 UE = BasePtr->use_end(); UI != UE; ++UI) { 14448 if (UI->getOpcode() == ISD::ADD && 14449 isa<ConstantSDNode>(UI->getOperand(1)) && 14450 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14451 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14452 (1ULL << Bits) == 0) { 14453 SDNode *OtherAdd = *UI; 14454 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14455 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14456 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14457 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14458 return SDValue(*VI, 0); 14459 } 14460 } 14461 } 14462 } 14463 } 14464 } 14465 14466 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14467 // Expose the vabsduw/h/b opportunity for down stream 14468 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14469 (IID == Intrinsic::ppc_altivec_vmaxsw || 14470 IID == Intrinsic::ppc_altivec_vmaxsh || 14471 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14472 SDValue V1 = N->getOperand(1); 14473 SDValue V2 = N->getOperand(2); 14474 if ((V1.getSimpleValueType() == MVT::v4i32 || 14475 V1.getSimpleValueType() == MVT::v8i16 || 14476 V1.getSimpleValueType() == MVT::v16i8) && 14477 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14478 // (0-a, a) 14479 if (V1.getOpcode() == ISD::SUB && 14480 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14481 V1.getOperand(1) == V2) { 14482 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14483 } 14484 // (a, 0-a) 14485 if (V2.getOpcode() == ISD::SUB && 14486 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14487 V2.getOperand(1) == V1) { 14488 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14489 } 14490 // (x-y, y-x) 14491 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14492 V1.getOperand(0) == V2.getOperand(1) && 14493 V1.getOperand(1) == V2.getOperand(0)) { 14494 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14495 } 14496 } 14497 } 14498 } 14499 14500 break; 14501 case ISD::INTRINSIC_W_CHAIN: 14502 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14503 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14504 if (Subtarget.needsSwapsForVSXMemOps()) { 14505 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14506 default: 14507 break; 14508 case Intrinsic::ppc_vsx_lxvw4x: 14509 case Intrinsic::ppc_vsx_lxvd2x: 14510 return expandVSXLoadForLE(N, DCI); 14511 } 14512 } 14513 break; 14514 case ISD::INTRINSIC_VOID: 14515 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14516 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14517 if (Subtarget.needsSwapsForVSXMemOps()) { 14518 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14519 default: 14520 break; 14521 case Intrinsic::ppc_vsx_stxvw4x: 14522 case Intrinsic::ppc_vsx_stxvd2x: 14523 return expandVSXStoreForLE(N, DCI); 14524 } 14525 } 14526 break; 14527 case ISD::BSWAP: 14528 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14529 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14530 N->getOperand(0).hasOneUse() && 14531 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14532 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14533 N->getValueType(0) == MVT::i64))) { 14534 SDValue Load = N->getOperand(0); 14535 LoadSDNode *LD = cast<LoadSDNode>(Load); 14536 // Create the byte-swapping load. 14537 SDValue Ops[] = { 14538 LD->getChain(), // Chain 14539 LD->getBasePtr(), // Ptr 14540 DAG.getValueType(N->getValueType(0)) // VT 14541 }; 14542 SDValue BSLoad = 14543 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14544 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14545 MVT::i64 : MVT::i32, MVT::Other), 14546 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14547 14548 // If this is an i16 load, insert the truncate. 14549 SDValue ResVal = BSLoad; 14550 if (N->getValueType(0) == MVT::i16) 14551 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14552 14553 // First, combine the bswap away. This makes the value produced by the 14554 // load dead. 14555 DCI.CombineTo(N, ResVal); 14556 14557 // Next, combine the load away, we give it a bogus result value but a real 14558 // chain result. The result value is dead because the bswap is dead. 14559 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14560 14561 // Return N so it doesn't get rechecked! 14562 return SDValue(N, 0); 14563 } 14564 break; 14565 case PPCISD::VCMP: 14566 // If a VCMPo node already exists with exactly the same operands as this 14567 // node, use its result instead of this node (VCMPo computes both a CR6 and 14568 // a normal output). 14569 // 14570 if (!N->getOperand(0).hasOneUse() && 14571 !N->getOperand(1).hasOneUse() && 14572 !N->getOperand(2).hasOneUse()) { 14573 14574 // Scan all of the users of the LHS, looking for VCMPo's that match. 14575 SDNode *VCMPoNode = nullptr; 14576 14577 SDNode *LHSN = N->getOperand(0).getNode(); 14578 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14579 UI != E; ++UI) 14580 if (UI->getOpcode() == PPCISD::VCMPo && 14581 UI->getOperand(1) == N->getOperand(1) && 14582 UI->getOperand(2) == N->getOperand(2) && 14583 UI->getOperand(0) == N->getOperand(0)) { 14584 VCMPoNode = *UI; 14585 break; 14586 } 14587 14588 // If there is no VCMPo node, or if the flag value has a single use, don't 14589 // transform this. 14590 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14591 break; 14592 14593 // Look at the (necessarily single) use of the flag value. If it has a 14594 // chain, this transformation is more complex. Note that multiple things 14595 // could use the value result, which we should ignore. 14596 SDNode *FlagUser = nullptr; 14597 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14598 FlagUser == nullptr; ++UI) { 14599 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14600 SDNode *User = *UI; 14601 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14602 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14603 FlagUser = User; 14604 break; 14605 } 14606 } 14607 } 14608 14609 // If the user is a MFOCRF instruction, we know this is safe. 14610 // Otherwise we give up for right now. 14611 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14612 return SDValue(VCMPoNode, 0); 14613 } 14614 break; 14615 case ISD::BRCOND: { 14616 SDValue Cond = N->getOperand(1); 14617 SDValue Target = N->getOperand(2); 14618 14619 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14620 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14621 Intrinsic::loop_decrement) { 14622 14623 // We now need to make the intrinsic dead (it cannot be instruction 14624 // selected). 14625 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14626 assert(Cond.getNode()->hasOneUse() && 14627 "Counter decrement has more than one use"); 14628 14629 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14630 N->getOperand(0), Target); 14631 } 14632 } 14633 break; 14634 case ISD::BR_CC: { 14635 // If this is a branch on an altivec predicate comparison, lower this so 14636 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14637 // lowering is done pre-legalize, because the legalizer lowers the predicate 14638 // compare down to code that is difficult to reassemble. 14639 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14640 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14641 14642 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14643 // value. If so, pass-through the AND to get to the intrinsic. 14644 if (LHS.getOpcode() == ISD::AND && 14645 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14646 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14647 Intrinsic::loop_decrement && 14648 isa<ConstantSDNode>(LHS.getOperand(1)) && 14649 !isNullConstant(LHS.getOperand(1))) 14650 LHS = LHS.getOperand(0); 14651 14652 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14653 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14654 Intrinsic::loop_decrement && 14655 isa<ConstantSDNode>(RHS)) { 14656 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14657 "Counter decrement comparison is not EQ or NE"); 14658 14659 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14660 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14661 (CC == ISD::SETNE && !Val); 14662 14663 // We now need to make the intrinsic dead (it cannot be instruction 14664 // selected). 14665 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14666 assert(LHS.getNode()->hasOneUse() && 14667 "Counter decrement has more than one use"); 14668 14669 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14670 N->getOperand(0), N->getOperand(4)); 14671 } 14672 14673 int CompareOpc; 14674 bool isDot; 14675 14676 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14677 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14678 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14679 assert(isDot && "Can't compare against a vector result!"); 14680 14681 // If this is a comparison against something other than 0/1, then we know 14682 // that the condition is never/always true. 14683 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14684 if (Val != 0 && Val != 1) { 14685 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14686 return N->getOperand(0); 14687 // Always !=, turn it into an unconditional branch. 14688 return DAG.getNode(ISD::BR, dl, MVT::Other, 14689 N->getOperand(0), N->getOperand(4)); 14690 } 14691 14692 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14693 14694 // Create the PPCISD altivec 'dot' comparison node. 14695 SDValue Ops[] = { 14696 LHS.getOperand(2), // LHS of compare 14697 LHS.getOperand(3), // RHS of compare 14698 DAG.getConstant(CompareOpc, dl, MVT::i32) 14699 }; 14700 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14701 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14702 14703 // Unpack the result based on how the target uses it. 14704 PPC::Predicate CompOpc; 14705 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14706 default: // Can't happen, don't crash on invalid number though. 14707 case 0: // Branch on the value of the EQ bit of CR6. 14708 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14709 break; 14710 case 1: // Branch on the inverted value of the EQ bit of CR6. 14711 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14712 break; 14713 case 2: // Branch on the value of the LT bit of CR6. 14714 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14715 break; 14716 case 3: // Branch on the inverted value of the LT bit of CR6. 14717 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14718 break; 14719 } 14720 14721 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14722 DAG.getConstant(CompOpc, dl, MVT::i32), 14723 DAG.getRegister(PPC::CR6, MVT::i32), 14724 N->getOperand(4), CompNode.getValue(1)); 14725 } 14726 break; 14727 } 14728 case ISD::BUILD_VECTOR: 14729 return DAGCombineBuildVector(N, DCI); 14730 case ISD::ABS: 14731 return combineABS(N, DCI); 14732 case ISD::VSELECT: 14733 return combineVSelect(N, DCI); 14734 } 14735 14736 return SDValue(); 14737 } 14738 14739 SDValue 14740 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14741 SelectionDAG &DAG, 14742 SmallVectorImpl<SDNode *> &Created) const { 14743 // fold (sdiv X, pow2) 14744 EVT VT = N->getValueType(0); 14745 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14746 return SDValue(); 14747 if ((VT != MVT::i32 && VT != MVT::i64) || 14748 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14749 return SDValue(); 14750 14751 SDLoc DL(N); 14752 SDValue N0 = N->getOperand(0); 14753 14754 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14755 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14756 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14757 14758 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14759 Created.push_back(Op.getNode()); 14760 14761 if (IsNegPow2) { 14762 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14763 Created.push_back(Op.getNode()); 14764 } 14765 14766 return Op; 14767 } 14768 14769 //===----------------------------------------------------------------------===// 14770 // Inline Assembly Support 14771 //===----------------------------------------------------------------------===// 14772 14773 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14774 KnownBits &Known, 14775 const APInt &DemandedElts, 14776 const SelectionDAG &DAG, 14777 unsigned Depth) const { 14778 Known.resetAll(); 14779 switch (Op.getOpcode()) { 14780 default: break; 14781 case PPCISD::LBRX: { 14782 // lhbrx is known to have the top bits cleared out. 14783 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14784 Known.Zero = 0xFFFF0000; 14785 break; 14786 } 14787 case ISD::INTRINSIC_WO_CHAIN: { 14788 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14789 default: break; 14790 case Intrinsic::ppc_altivec_vcmpbfp_p: 14791 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14792 case Intrinsic::ppc_altivec_vcmpequb_p: 14793 case Intrinsic::ppc_altivec_vcmpequh_p: 14794 case Intrinsic::ppc_altivec_vcmpequw_p: 14795 case Intrinsic::ppc_altivec_vcmpequd_p: 14796 case Intrinsic::ppc_altivec_vcmpgefp_p: 14797 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14798 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14799 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14800 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14801 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14802 case Intrinsic::ppc_altivec_vcmpgtub_p: 14803 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14804 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14805 case Intrinsic::ppc_altivec_vcmpgtud_p: 14806 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14807 break; 14808 } 14809 } 14810 } 14811 } 14812 14813 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14814 switch (Subtarget.getCPUDirective()) { 14815 default: break; 14816 case PPC::DIR_970: 14817 case PPC::DIR_PWR4: 14818 case PPC::DIR_PWR5: 14819 case PPC::DIR_PWR5X: 14820 case PPC::DIR_PWR6: 14821 case PPC::DIR_PWR6X: 14822 case PPC::DIR_PWR7: 14823 case PPC::DIR_PWR8: 14824 case PPC::DIR_PWR9: 14825 case PPC::DIR_PWR_FUTURE: { 14826 if (!ML) 14827 break; 14828 14829 if (!DisableInnermostLoopAlign32) { 14830 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14831 // so that we can decrease cache misses and branch-prediction misses. 14832 // Actual alignment of the loop will depend on the hotness check and other 14833 // logic in alignBlocks. 14834 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14835 return Align(32); 14836 } 14837 14838 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14839 14840 // For small loops (between 5 and 8 instructions), align to a 32-byte 14841 // boundary so that the entire loop fits in one instruction-cache line. 14842 uint64_t LoopSize = 0; 14843 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14844 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14845 LoopSize += TII->getInstSizeInBytes(*J); 14846 if (LoopSize > 32) 14847 break; 14848 } 14849 14850 if (LoopSize > 16 && LoopSize <= 32) 14851 return Align(32); 14852 14853 break; 14854 } 14855 } 14856 14857 return TargetLowering::getPrefLoopAlignment(ML); 14858 } 14859 14860 /// getConstraintType - Given a constraint, return the type of 14861 /// constraint it is for this target. 14862 PPCTargetLowering::ConstraintType 14863 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14864 if (Constraint.size() == 1) { 14865 switch (Constraint[0]) { 14866 default: break; 14867 case 'b': 14868 case 'r': 14869 case 'f': 14870 case 'd': 14871 case 'v': 14872 case 'y': 14873 return C_RegisterClass; 14874 case 'Z': 14875 // FIXME: While Z does indicate a memory constraint, it specifically 14876 // indicates an r+r address (used in conjunction with the 'y' modifier 14877 // in the replacement string). Currently, we're forcing the base 14878 // register to be r0 in the asm printer (which is interpreted as zero) 14879 // and forming the complete address in the second register. This is 14880 // suboptimal. 14881 return C_Memory; 14882 } 14883 } else if (Constraint == "wc") { // individual CR bits. 14884 return C_RegisterClass; 14885 } else if (Constraint == "wa" || Constraint == "wd" || 14886 Constraint == "wf" || Constraint == "ws" || 14887 Constraint == "wi" || Constraint == "ww") { 14888 return C_RegisterClass; // VSX registers. 14889 } 14890 return TargetLowering::getConstraintType(Constraint); 14891 } 14892 14893 /// Examine constraint type and operand type and determine a weight value. 14894 /// This object must already have been set up with the operand type 14895 /// and the current alternative constraint selected. 14896 TargetLowering::ConstraintWeight 14897 PPCTargetLowering::getSingleConstraintMatchWeight( 14898 AsmOperandInfo &info, const char *constraint) const { 14899 ConstraintWeight weight = CW_Invalid; 14900 Value *CallOperandVal = info.CallOperandVal; 14901 // If we don't have a value, we can't do a match, 14902 // but allow it at the lowest weight. 14903 if (!CallOperandVal) 14904 return CW_Default; 14905 Type *type = CallOperandVal->getType(); 14906 14907 // Look at the constraint type. 14908 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14909 return CW_Register; // an individual CR bit. 14910 else if ((StringRef(constraint) == "wa" || 14911 StringRef(constraint) == "wd" || 14912 StringRef(constraint) == "wf") && 14913 type->isVectorTy()) 14914 return CW_Register; 14915 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14916 return CW_Register; // just hold 64-bit integers data. 14917 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14918 return CW_Register; 14919 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14920 return CW_Register; 14921 14922 switch (*constraint) { 14923 default: 14924 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14925 break; 14926 case 'b': 14927 if (type->isIntegerTy()) 14928 weight = CW_Register; 14929 break; 14930 case 'f': 14931 if (type->isFloatTy()) 14932 weight = CW_Register; 14933 break; 14934 case 'd': 14935 if (type->isDoubleTy()) 14936 weight = CW_Register; 14937 break; 14938 case 'v': 14939 if (type->isVectorTy()) 14940 weight = CW_Register; 14941 break; 14942 case 'y': 14943 weight = CW_Register; 14944 break; 14945 case 'Z': 14946 weight = CW_Memory; 14947 break; 14948 } 14949 return weight; 14950 } 14951 14952 std::pair<unsigned, const TargetRegisterClass *> 14953 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14954 StringRef Constraint, 14955 MVT VT) const { 14956 if (Constraint.size() == 1) { 14957 // GCC RS6000 Constraint Letters 14958 switch (Constraint[0]) { 14959 case 'b': // R1-R31 14960 if (VT == MVT::i64 && Subtarget.isPPC64()) 14961 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14962 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14963 case 'r': // R0-R31 14964 if (VT == MVT::i64 && Subtarget.isPPC64()) 14965 return std::make_pair(0U, &PPC::G8RCRegClass); 14966 return std::make_pair(0U, &PPC::GPRCRegClass); 14967 // 'd' and 'f' constraints are both defined to be "the floating point 14968 // registers", where one is for 32-bit and the other for 64-bit. We don't 14969 // really care overly much here so just give them all the same reg classes. 14970 case 'd': 14971 case 'f': 14972 if (Subtarget.hasSPE()) { 14973 if (VT == MVT::f32 || VT == MVT::i32) 14974 return std::make_pair(0U, &PPC::GPRCRegClass); 14975 if (VT == MVT::f64 || VT == MVT::i64) 14976 return std::make_pair(0U, &PPC::SPERCRegClass); 14977 } else { 14978 if (VT == MVT::f32 || VT == MVT::i32) 14979 return std::make_pair(0U, &PPC::F4RCRegClass); 14980 if (VT == MVT::f64 || VT == MVT::i64) 14981 return std::make_pair(0U, &PPC::F8RCRegClass); 14982 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14983 return std::make_pair(0U, &PPC::QFRCRegClass); 14984 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14985 return std::make_pair(0U, &PPC::QSRCRegClass); 14986 } 14987 break; 14988 case 'v': 14989 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14990 return std::make_pair(0U, &PPC::QFRCRegClass); 14991 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14992 return std::make_pair(0U, &PPC::QSRCRegClass); 14993 if (Subtarget.hasAltivec()) 14994 return std::make_pair(0U, &PPC::VRRCRegClass); 14995 break; 14996 case 'y': // crrc 14997 return std::make_pair(0U, &PPC::CRRCRegClass); 14998 } 14999 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15000 // An individual CR bit. 15001 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15002 } else if ((Constraint == "wa" || Constraint == "wd" || 15003 Constraint == "wf" || Constraint == "wi") && 15004 Subtarget.hasVSX()) { 15005 return std::make_pair(0U, &PPC::VSRCRegClass); 15006 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15007 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15008 return std::make_pair(0U, &PPC::VSSRCRegClass); 15009 else 15010 return std::make_pair(0U, &PPC::VSFRCRegClass); 15011 } 15012 15013 // If we name a VSX register, we can't defer to the base class because it 15014 // will not recognize the correct register (their names will be VSL{0-31} 15015 // and V{0-31} so they won't match). So we match them here. 15016 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15017 int VSNum = atoi(Constraint.data() + 3); 15018 assert(VSNum >= 0 && VSNum <= 63 && 15019 "Attempted to access a vsr out of range"); 15020 if (VSNum < 32) 15021 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15022 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15023 } 15024 std::pair<unsigned, const TargetRegisterClass *> R = 15025 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15026 15027 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15028 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15029 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15030 // register. 15031 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15032 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15033 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15034 PPC::GPRCRegClass.contains(R.first)) 15035 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15036 PPC::sub_32, &PPC::G8RCRegClass), 15037 &PPC::G8RCRegClass); 15038 15039 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15040 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15041 R.first = PPC::CR0; 15042 R.second = &PPC::CRRCRegClass; 15043 } 15044 15045 return R; 15046 } 15047 15048 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15049 /// vector. If it is invalid, don't add anything to Ops. 15050 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15051 std::string &Constraint, 15052 std::vector<SDValue>&Ops, 15053 SelectionDAG &DAG) const { 15054 SDValue Result; 15055 15056 // Only support length 1 constraints. 15057 if (Constraint.length() > 1) return; 15058 15059 char Letter = Constraint[0]; 15060 switch (Letter) { 15061 default: break; 15062 case 'I': 15063 case 'J': 15064 case 'K': 15065 case 'L': 15066 case 'M': 15067 case 'N': 15068 case 'O': 15069 case 'P': { 15070 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15071 if (!CST) return; // Must be an immediate to match. 15072 SDLoc dl(Op); 15073 int64_t Value = CST->getSExtValue(); 15074 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15075 // numbers are printed as such. 15076 switch (Letter) { 15077 default: llvm_unreachable("Unknown constraint letter!"); 15078 case 'I': // "I" is a signed 16-bit constant. 15079 if (isInt<16>(Value)) 15080 Result = DAG.getTargetConstant(Value, dl, TCVT); 15081 break; 15082 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15083 if (isShiftedUInt<16, 16>(Value)) 15084 Result = DAG.getTargetConstant(Value, dl, TCVT); 15085 break; 15086 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15087 if (isShiftedInt<16, 16>(Value)) 15088 Result = DAG.getTargetConstant(Value, dl, TCVT); 15089 break; 15090 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15091 if (isUInt<16>(Value)) 15092 Result = DAG.getTargetConstant(Value, dl, TCVT); 15093 break; 15094 case 'M': // "M" is a constant that is greater than 31. 15095 if (Value > 31) 15096 Result = DAG.getTargetConstant(Value, dl, TCVT); 15097 break; 15098 case 'N': // "N" is a positive constant that is an exact power of two. 15099 if (Value > 0 && isPowerOf2_64(Value)) 15100 Result = DAG.getTargetConstant(Value, dl, TCVT); 15101 break; 15102 case 'O': // "O" is the constant zero. 15103 if (Value == 0) 15104 Result = DAG.getTargetConstant(Value, dl, TCVT); 15105 break; 15106 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15107 if (isInt<16>(-Value)) 15108 Result = DAG.getTargetConstant(Value, dl, TCVT); 15109 break; 15110 } 15111 break; 15112 } 15113 } 15114 15115 if (Result.getNode()) { 15116 Ops.push_back(Result); 15117 return; 15118 } 15119 15120 // Handle standard constraint letters. 15121 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15122 } 15123 15124 // isLegalAddressingMode - Return true if the addressing mode represented 15125 // by AM is legal for this target, for a load/store of the specified type. 15126 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15127 const AddrMode &AM, Type *Ty, 15128 unsigned AS, Instruction *I) const { 15129 // PPC does not allow r+i addressing modes for vectors! 15130 if (Ty->isVectorTy() && AM.BaseOffs != 0) 15131 return false; 15132 15133 // PPC allows a sign-extended 16-bit immediate field. 15134 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15135 return false; 15136 15137 // No global is ever allowed as a base. 15138 if (AM.BaseGV) 15139 return false; 15140 15141 // PPC only support r+r, 15142 switch (AM.Scale) { 15143 case 0: // "r+i" or just "i", depending on HasBaseReg. 15144 break; 15145 case 1: 15146 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15147 return false; 15148 // Otherwise we have r+r or r+i. 15149 break; 15150 case 2: 15151 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15152 return false; 15153 // Allow 2*r as r+r. 15154 break; 15155 default: 15156 // No other scales are supported. 15157 return false; 15158 } 15159 15160 return true; 15161 } 15162 15163 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15164 SelectionDAG &DAG) const { 15165 MachineFunction &MF = DAG.getMachineFunction(); 15166 MachineFrameInfo &MFI = MF.getFrameInfo(); 15167 MFI.setReturnAddressIsTaken(true); 15168 15169 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15170 return SDValue(); 15171 15172 SDLoc dl(Op); 15173 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15174 15175 // Make sure the function does not optimize away the store of the RA to 15176 // the stack. 15177 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15178 FuncInfo->setLRStoreRequired(); 15179 bool isPPC64 = Subtarget.isPPC64(); 15180 auto PtrVT = getPointerTy(MF.getDataLayout()); 15181 15182 if (Depth > 0) { 15183 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15184 SDValue Offset = 15185 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15186 isPPC64 ? MVT::i64 : MVT::i32); 15187 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15188 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15189 MachinePointerInfo()); 15190 } 15191 15192 // Just load the return address off the stack. 15193 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15194 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15195 MachinePointerInfo()); 15196 } 15197 15198 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15199 SelectionDAG &DAG) const { 15200 SDLoc dl(Op); 15201 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15202 15203 MachineFunction &MF = DAG.getMachineFunction(); 15204 MachineFrameInfo &MFI = MF.getFrameInfo(); 15205 MFI.setFrameAddressIsTaken(true); 15206 15207 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15208 bool isPPC64 = PtrVT == MVT::i64; 15209 15210 // Naked functions never have a frame pointer, and so we use r1. For all 15211 // other functions, this decision must be delayed until during PEI. 15212 unsigned FrameReg; 15213 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15214 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15215 else 15216 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15217 15218 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15219 PtrVT); 15220 while (Depth--) 15221 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15222 FrameAddr, MachinePointerInfo()); 15223 return FrameAddr; 15224 } 15225 15226 // FIXME? Maybe this could be a TableGen attribute on some registers and 15227 // this table could be generated automatically from RegInfo. 15228 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15229 const MachineFunction &MF) const { 15230 bool isPPC64 = Subtarget.isPPC64(); 15231 15232 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15233 if (!is64Bit && VT != LLT::scalar(32)) 15234 report_fatal_error("Invalid register global variable type"); 15235 15236 Register Reg = StringSwitch<Register>(RegName) 15237 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15238 .Case("r2", isPPC64 ? Register() : PPC::R2) 15239 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15240 .Default(Register()); 15241 15242 if (Reg) 15243 return Reg; 15244 report_fatal_error("Invalid register name global variable"); 15245 } 15246 15247 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15248 // 32-bit SVR4 ABI access everything as got-indirect. 15249 if (Subtarget.is32BitELFABI()) 15250 return true; 15251 15252 // AIX accesses everything indirectly through the TOC, which is similar to 15253 // the GOT. 15254 if (Subtarget.isAIXABI()) 15255 return true; 15256 15257 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15258 // If it is small or large code model, module locals are accessed 15259 // indirectly by loading their address from .toc/.got. 15260 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15261 return true; 15262 15263 // JumpTable and BlockAddress are accessed as got-indirect. 15264 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15265 return true; 15266 15267 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15268 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15269 15270 return false; 15271 } 15272 15273 bool 15274 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15275 // The PowerPC target isn't yet aware of offsets. 15276 return false; 15277 } 15278 15279 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15280 const CallInst &I, 15281 MachineFunction &MF, 15282 unsigned Intrinsic) const { 15283 switch (Intrinsic) { 15284 case Intrinsic::ppc_qpx_qvlfd: 15285 case Intrinsic::ppc_qpx_qvlfs: 15286 case Intrinsic::ppc_qpx_qvlfcd: 15287 case Intrinsic::ppc_qpx_qvlfcs: 15288 case Intrinsic::ppc_qpx_qvlfiwa: 15289 case Intrinsic::ppc_qpx_qvlfiwz: 15290 case Intrinsic::ppc_altivec_lvx: 15291 case Intrinsic::ppc_altivec_lvxl: 15292 case Intrinsic::ppc_altivec_lvebx: 15293 case Intrinsic::ppc_altivec_lvehx: 15294 case Intrinsic::ppc_altivec_lvewx: 15295 case Intrinsic::ppc_vsx_lxvd2x: 15296 case Intrinsic::ppc_vsx_lxvw4x: { 15297 EVT VT; 15298 switch (Intrinsic) { 15299 case Intrinsic::ppc_altivec_lvebx: 15300 VT = MVT::i8; 15301 break; 15302 case Intrinsic::ppc_altivec_lvehx: 15303 VT = MVT::i16; 15304 break; 15305 case Intrinsic::ppc_altivec_lvewx: 15306 VT = MVT::i32; 15307 break; 15308 case Intrinsic::ppc_vsx_lxvd2x: 15309 VT = MVT::v2f64; 15310 break; 15311 case Intrinsic::ppc_qpx_qvlfd: 15312 VT = MVT::v4f64; 15313 break; 15314 case Intrinsic::ppc_qpx_qvlfs: 15315 VT = MVT::v4f32; 15316 break; 15317 case Intrinsic::ppc_qpx_qvlfcd: 15318 VT = MVT::v2f64; 15319 break; 15320 case Intrinsic::ppc_qpx_qvlfcs: 15321 VT = MVT::v2f32; 15322 break; 15323 default: 15324 VT = MVT::v4i32; 15325 break; 15326 } 15327 15328 Info.opc = ISD::INTRINSIC_W_CHAIN; 15329 Info.memVT = VT; 15330 Info.ptrVal = I.getArgOperand(0); 15331 Info.offset = -VT.getStoreSize()+1; 15332 Info.size = 2*VT.getStoreSize()-1; 15333 Info.align = Align(1); 15334 Info.flags = MachineMemOperand::MOLoad; 15335 return true; 15336 } 15337 case Intrinsic::ppc_qpx_qvlfda: 15338 case Intrinsic::ppc_qpx_qvlfsa: 15339 case Intrinsic::ppc_qpx_qvlfcda: 15340 case Intrinsic::ppc_qpx_qvlfcsa: 15341 case Intrinsic::ppc_qpx_qvlfiwaa: 15342 case Intrinsic::ppc_qpx_qvlfiwza: { 15343 EVT VT; 15344 switch (Intrinsic) { 15345 case Intrinsic::ppc_qpx_qvlfda: 15346 VT = MVT::v4f64; 15347 break; 15348 case Intrinsic::ppc_qpx_qvlfsa: 15349 VT = MVT::v4f32; 15350 break; 15351 case Intrinsic::ppc_qpx_qvlfcda: 15352 VT = MVT::v2f64; 15353 break; 15354 case Intrinsic::ppc_qpx_qvlfcsa: 15355 VT = MVT::v2f32; 15356 break; 15357 default: 15358 VT = MVT::v4i32; 15359 break; 15360 } 15361 15362 Info.opc = ISD::INTRINSIC_W_CHAIN; 15363 Info.memVT = VT; 15364 Info.ptrVal = I.getArgOperand(0); 15365 Info.offset = 0; 15366 Info.size = VT.getStoreSize(); 15367 Info.align = Align(1); 15368 Info.flags = MachineMemOperand::MOLoad; 15369 return true; 15370 } 15371 case Intrinsic::ppc_qpx_qvstfd: 15372 case Intrinsic::ppc_qpx_qvstfs: 15373 case Intrinsic::ppc_qpx_qvstfcd: 15374 case Intrinsic::ppc_qpx_qvstfcs: 15375 case Intrinsic::ppc_qpx_qvstfiw: 15376 case Intrinsic::ppc_altivec_stvx: 15377 case Intrinsic::ppc_altivec_stvxl: 15378 case Intrinsic::ppc_altivec_stvebx: 15379 case Intrinsic::ppc_altivec_stvehx: 15380 case Intrinsic::ppc_altivec_stvewx: 15381 case Intrinsic::ppc_vsx_stxvd2x: 15382 case Intrinsic::ppc_vsx_stxvw4x: { 15383 EVT VT; 15384 switch (Intrinsic) { 15385 case Intrinsic::ppc_altivec_stvebx: 15386 VT = MVT::i8; 15387 break; 15388 case Intrinsic::ppc_altivec_stvehx: 15389 VT = MVT::i16; 15390 break; 15391 case Intrinsic::ppc_altivec_stvewx: 15392 VT = MVT::i32; 15393 break; 15394 case Intrinsic::ppc_vsx_stxvd2x: 15395 VT = MVT::v2f64; 15396 break; 15397 case Intrinsic::ppc_qpx_qvstfd: 15398 VT = MVT::v4f64; 15399 break; 15400 case Intrinsic::ppc_qpx_qvstfs: 15401 VT = MVT::v4f32; 15402 break; 15403 case Intrinsic::ppc_qpx_qvstfcd: 15404 VT = MVT::v2f64; 15405 break; 15406 case Intrinsic::ppc_qpx_qvstfcs: 15407 VT = MVT::v2f32; 15408 break; 15409 default: 15410 VT = MVT::v4i32; 15411 break; 15412 } 15413 15414 Info.opc = ISD::INTRINSIC_VOID; 15415 Info.memVT = VT; 15416 Info.ptrVal = I.getArgOperand(1); 15417 Info.offset = -VT.getStoreSize()+1; 15418 Info.size = 2*VT.getStoreSize()-1; 15419 Info.align = Align(1); 15420 Info.flags = MachineMemOperand::MOStore; 15421 return true; 15422 } 15423 case Intrinsic::ppc_qpx_qvstfda: 15424 case Intrinsic::ppc_qpx_qvstfsa: 15425 case Intrinsic::ppc_qpx_qvstfcda: 15426 case Intrinsic::ppc_qpx_qvstfcsa: 15427 case Intrinsic::ppc_qpx_qvstfiwa: { 15428 EVT VT; 15429 switch (Intrinsic) { 15430 case Intrinsic::ppc_qpx_qvstfda: 15431 VT = MVT::v4f64; 15432 break; 15433 case Intrinsic::ppc_qpx_qvstfsa: 15434 VT = MVT::v4f32; 15435 break; 15436 case Intrinsic::ppc_qpx_qvstfcda: 15437 VT = MVT::v2f64; 15438 break; 15439 case Intrinsic::ppc_qpx_qvstfcsa: 15440 VT = MVT::v2f32; 15441 break; 15442 default: 15443 VT = MVT::v4i32; 15444 break; 15445 } 15446 15447 Info.opc = ISD::INTRINSIC_VOID; 15448 Info.memVT = VT; 15449 Info.ptrVal = I.getArgOperand(1); 15450 Info.offset = 0; 15451 Info.size = VT.getStoreSize(); 15452 Info.align = Align(1); 15453 Info.flags = MachineMemOperand::MOStore; 15454 return true; 15455 } 15456 default: 15457 break; 15458 } 15459 15460 return false; 15461 } 15462 15463 /// It returns EVT::Other if the type should be determined using generic 15464 /// target-independent logic. 15465 EVT PPCTargetLowering::getOptimalMemOpType( 15466 const MemOp &Op, const AttributeList &FuncAttributes) const { 15467 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15468 // When expanding a memset, require at least two QPX instructions to cover 15469 // the cost of loading the value to be stored from the constant pool. 15470 if (Subtarget.hasQPX() && Op.size() >= 32 && 15471 (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) && 15472 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 15473 return MVT::v4f64; 15474 } 15475 15476 // We should use Altivec/VSX loads and stores when available. For unaligned 15477 // addresses, unaligned VSX loads are only fast starting with the P8. 15478 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15479 (Op.isAligned(Align(16)) || 15480 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15481 return MVT::v4i32; 15482 } 15483 15484 if (Subtarget.isPPC64()) { 15485 return MVT::i64; 15486 } 15487 15488 return MVT::i32; 15489 } 15490 15491 /// Returns true if it is beneficial to convert a load of a constant 15492 /// to just the constant itself. 15493 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15494 Type *Ty) const { 15495 assert(Ty->isIntegerTy()); 15496 15497 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15498 return !(BitSize == 0 || BitSize > 64); 15499 } 15500 15501 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15502 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15503 return false; 15504 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15505 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15506 return NumBits1 == 64 && NumBits2 == 32; 15507 } 15508 15509 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15510 if (!VT1.isInteger() || !VT2.isInteger()) 15511 return false; 15512 unsigned NumBits1 = VT1.getSizeInBits(); 15513 unsigned NumBits2 = VT2.getSizeInBits(); 15514 return NumBits1 == 64 && NumBits2 == 32; 15515 } 15516 15517 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15518 // Generally speaking, zexts are not free, but they are free when they can be 15519 // folded with other operations. 15520 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15521 EVT MemVT = LD->getMemoryVT(); 15522 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15523 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15524 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15525 LD->getExtensionType() == ISD::ZEXTLOAD)) 15526 return true; 15527 } 15528 15529 // FIXME: Add other cases... 15530 // - 32-bit shifts with a zext to i64 15531 // - zext after ctlz, bswap, etc. 15532 // - zext after and by a constant mask 15533 15534 return TargetLowering::isZExtFree(Val, VT2); 15535 } 15536 15537 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15538 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15539 "invalid fpext types"); 15540 // Extending to float128 is not free. 15541 if (DestVT == MVT::f128) 15542 return false; 15543 return true; 15544 } 15545 15546 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15547 return isInt<16>(Imm) || isUInt<16>(Imm); 15548 } 15549 15550 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15551 return isInt<16>(Imm) || isUInt<16>(Imm); 15552 } 15553 15554 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15555 unsigned, 15556 unsigned, 15557 MachineMemOperand::Flags, 15558 bool *Fast) const { 15559 if (DisablePPCUnaligned) 15560 return false; 15561 15562 // PowerPC supports unaligned memory access for simple non-vector types. 15563 // Although accessing unaligned addresses is not as efficient as accessing 15564 // aligned addresses, it is generally more efficient than manual expansion, 15565 // and generally only traps for software emulation when crossing page 15566 // boundaries. 15567 15568 if (!VT.isSimple()) 15569 return false; 15570 15571 if (VT.isFloatingPoint() && !Subtarget.allowsUnalignedFPAccess()) 15572 return false; 15573 15574 if (VT.getSimpleVT().isVector()) { 15575 if (Subtarget.hasVSX()) { 15576 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15577 VT != MVT::v4f32 && VT != MVT::v4i32) 15578 return false; 15579 } else { 15580 return false; 15581 } 15582 } 15583 15584 if (VT == MVT::ppcf128) 15585 return false; 15586 15587 if (Fast) 15588 *Fast = true; 15589 15590 return true; 15591 } 15592 15593 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15594 EVT VT) const { 15595 return isFMAFasterThanFMulAndFAdd( 15596 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15597 } 15598 15599 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15600 Type *Ty) const { 15601 switch (Ty->getScalarType()->getTypeID()) { 15602 case Type::FloatTyID: 15603 case Type::DoubleTyID: 15604 return true; 15605 case Type::FP128TyID: 15606 return EnableQuadPrecision && Subtarget.hasP9Vector(); 15607 default: 15608 return false; 15609 } 15610 } 15611 15612 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist. 15613 // FIXME: add more patterns which are profitable to hoist. 15614 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15615 if (I->getOpcode() != Instruction::FMul) 15616 return true; 15617 15618 if (!I->hasOneUse()) 15619 return true; 15620 15621 Instruction *User = I->user_back(); 15622 assert(User && "A single use instruction with no uses."); 15623 15624 if (User->getOpcode() != Instruction::FSub && 15625 User->getOpcode() != Instruction::FAdd) 15626 return true; 15627 15628 const TargetOptions &Options = getTargetMachine().Options; 15629 const Function *F = I->getFunction(); 15630 const DataLayout &DL = F->getParent()->getDataLayout(); 15631 Type *Ty = User->getOperand(0)->getType(); 15632 15633 return !( 15634 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15635 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15636 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15637 } 15638 15639 const MCPhysReg * 15640 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15641 // LR is a callee-save register, but we must treat it as clobbered by any call 15642 // site. Hence we include LR in the scratch registers, which are in turn added 15643 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15644 // to CTR, which is used by any indirect call. 15645 static const MCPhysReg ScratchRegs[] = { 15646 PPC::X12, PPC::LR8, PPC::CTR8, 0 15647 }; 15648 15649 return ScratchRegs; 15650 } 15651 15652 Register PPCTargetLowering::getExceptionPointerRegister( 15653 const Constant *PersonalityFn) const { 15654 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15655 } 15656 15657 Register PPCTargetLowering::getExceptionSelectorRegister( 15658 const Constant *PersonalityFn) const { 15659 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15660 } 15661 15662 bool 15663 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15664 EVT VT , unsigned DefinedValues) const { 15665 if (VT == MVT::v2i64) 15666 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15667 15668 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 15669 return true; 15670 15671 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15672 } 15673 15674 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15675 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15676 return TargetLowering::getSchedulingPreference(N); 15677 15678 return Sched::ILP; 15679 } 15680 15681 // Create a fast isel object. 15682 FastISel * 15683 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15684 const TargetLibraryInfo *LibInfo) const { 15685 return PPC::createFastISel(FuncInfo, LibInfo); 15686 } 15687 15688 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 15689 if (!Subtarget.isPPC64()) return; 15690 15691 // Update IsSplitCSR in PPCFunctionInfo 15692 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 15693 PFI->setIsSplitCSR(true); 15694 } 15695 15696 void PPCTargetLowering::insertCopiesSplitCSR( 15697 MachineBasicBlock *Entry, 15698 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 15699 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 15700 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 15701 if (!IStart) 15702 return; 15703 15704 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 15705 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 15706 MachineBasicBlock::iterator MBBI = Entry->begin(); 15707 for (const MCPhysReg *I = IStart; *I; ++I) { 15708 const TargetRegisterClass *RC = nullptr; 15709 if (PPC::G8RCRegClass.contains(*I)) 15710 RC = &PPC::G8RCRegClass; 15711 else if (PPC::F8RCRegClass.contains(*I)) 15712 RC = &PPC::F8RCRegClass; 15713 else if (PPC::CRRCRegClass.contains(*I)) 15714 RC = &PPC::CRRCRegClass; 15715 else if (PPC::VRRCRegClass.contains(*I)) 15716 RC = &PPC::VRRCRegClass; 15717 else 15718 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 15719 15720 Register NewVR = MRI->createVirtualRegister(RC); 15721 // Create copy from CSR to a virtual register. 15722 // FIXME: this currently does not emit CFI pseudo-instructions, it works 15723 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 15724 // nounwind. If we want to generalize this later, we may need to emit 15725 // CFI pseudo-instructions. 15726 assert(Entry->getParent()->getFunction().hasFnAttribute( 15727 Attribute::NoUnwind) && 15728 "Function should be nounwind in insertCopiesSplitCSR!"); 15729 Entry->addLiveIn(*I); 15730 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 15731 .addReg(*I); 15732 15733 // Insert the copy-back instructions right before the terminator. 15734 for (auto *Exit : Exits) 15735 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 15736 TII->get(TargetOpcode::COPY), *I) 15737 .addReg(NewVR); 15738 } 15739 } 15740 15741 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15742 bool PPCTargetLowering::useLoadStackGuardNode() const { 15743 if (!Subtarget.isTargetLinux()) 15744 return TargetLowering::useLoadStackGuardNode(); 15745 return true; 15746 } 15747 15748 // Override to disable global variable loading on Linux. 15749 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15750 if (!Subtarget.isTargetLinux()) 15751 return TargetLowering::insertSSPDeclarations(M); 15752 } 15753 15754 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15755 bool ForCodeSize) const { 15756 if (!VT.isSimple() || !Subtarget.hasVSX()) 15757 return false; 15758 15759 switch(VT.getSimpleVT().SimpleTy) { 15760 default: 15761 // For FP types that are currently not supported by PPC backend, return 15762 // false. Examples: f16, f80. 15763 return false; 15764 case MVT::f32: 15765 case MVT::f64: 15766 case MVT::ppcf128: 15767 return Imm.isPosZero(); 15768 } 15769 } 15770 15771 // For vector shift operation op, fold 15772 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15773 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15774 SelectionDAG &DAG) { 15775 SDValue N0 = N->getOperand(0); 15776 SDValue N1 = N->getOperand(1); 15777 EVT VT = N0.getValueType(); 15778 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15779 unsigned Opcode = N->getOpcode(); 15780 unsigned TargetOpcode; 15781 15782 switch (Opcode) { 15783 default: 15784 llvm_unreachable("Unexpected shift operation"); 15785 case ISD::SHL: 15786 TargetOpcode = PPCISD::SHL; 15787 break; 15788 case ISD::SRL: 15789 TargetOpcode = PPCISD::SRL; 15790 break; 15791 case ISD::SRA: 15792 TargetOpcode = PPCISD::SRA; 15793 break; 15794 } 15795 15796 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15797 N1->getOpcode() == ISD::AND) 15798 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15799 if (Mask->getZExtValue() == OpSizeInBits - 1) 15800 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15801 15802 return SDValue(); 15803 } 15804 15805 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15806 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15807 return Value; 15808 15809 SDValue N0 = N->getOperand(0); 15810 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15811 if (!Subtarget.isISA3_0() || 15812 N0.getOpcode() != ISD::SIGN_EXTEND || 15813 N0.getOperand(0).getValueType() != MVT::i32 || 15814 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15815 return SDValue(); 15816 15817 // We can't save an operation here if the value is already extended, and 15818 // the existing shift is easier to combine. 15819 SDValue ExtsSrc = N0.getOperand(0); 15820 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15821 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15822 return SDValue(); 15823 15824 SDLoc DL(N0); 15825 SDValue ShiftBy = SDValue(CN1, 0); 15826 // We want the shift amount to be i32 on the extswli, but the shift could 15827 // have an i64. 15828 if (ShiftBy.getValueType() == MVT::i64) 15829 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15830 15831 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15832 ShiftBy); 15833 } 15834 15835 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15836 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15837 return Value; 15838 15839 return SDValue(); 15840 } 15841 15842 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15843 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15844 return Value; 15845 15846 return SDValue(); 15847 } 15848 15849 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15850 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15851 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15852 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15853 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15854 const PPCSubtarget &Subtarget) { 15855 if (!Subtarget.isPPC64()) 15856 return SDValue(); 15857 15858 SDValue LHS = N->getOperand(0); 15859 SDValue RHS = N->getOperand(1); 15860 15861 auto isZextOfCompareWithConstant = [](SDValue Op) { 15862 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15863 Op.getValueType() != MVT::i64) 15864 return false; 15865 15866 SDValue Cmp = Op.getOperand(0); 15867 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15868 Cmp.getOperand(0).getValueType() != MVT::i64) 15869 return false; 15870 15871 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15872 int64_t NegConstant = 0 - Constant->getSExtValue(); 15873 // Due to the limitations of the addi instruction, 15874 // -C is required to be [-32768, 32767]. 15875 return isInt<16>(NegConstant); 15876 } 15877 15878 return false; 15879 }; 15880 15881 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15882 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15883 15884 // If there is a pattern, canonicalize a zext operand to the RHS. 15885 if (LHSHasPattern && !RHSHasPattern) 15886 std::swap(LHS, RHS); 15887 else if (!LHSHasPattern && !RHSHasPattern) 15888 return SDValue(); 15889 15890 SDLoc DL(N); 15891 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15892 SDValue Cmp = RHS.getOperand(0); 15893 SDValue Z = Cmp.getOperand(0); 15894 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15895 15896 assert(Constant && "Constant Should not be a null pointer."); 15897 int64_t NegConstant = 0 - Constant->getSExtValue(); 15898 15899 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15900 default: break; 15901 case ISD::SETNE: { 15902 // when C == 0 15903 // --> addze X, (addic Z, -1).carry 15904 // / 15905 // add X, (zext(setne Z, C))-- 15906 // \ when -32768 <= -C <= 32767 && C != 0 15907 // --> addze X, (addic (addi Z, -C), -1).carry 15908 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15909 DAG.getConstant(NegConstant, DL, MVT::i64)); 15910 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15911 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15912 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15913 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15914 SDValue(Addc.getNode(), 1)); 15915 } 15916 case ISD::SETEQ: { 15917 // when C == 0 15918 // --> addze X, (subfic Z, 0).carry 15919 // / 15920 // add X, (zext(sete Z, C))-- 15921 // \ when -32768 <= -C <= 32767 && C != 0 15922 // --> addze X, (subfic (addi Z, -C), 0).carry 15923 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15924 DAG.getConstant(NegConstant, DL, MVT::i64)); 15925 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15926 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15927 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15928 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15929 SDValue(Subc.getNode(), 1)); 15930 } 15931 } 15932 15933 return SDValue(); 15934 } 15935 15936 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15937 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15938 return Value; 15939 15940 return SDValue(); 15941 } 15942 15943 // Detect TRUNCATE operations on bitcasts of float128 values. 15944 // What we are looking for here is the situtation where we extract a subset 15945 // of bits from a 128 bit float. 15946 // This can be of two forms: 15947 // 1) BITCAST of f128 feeding TRUNCATE 15948 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15949 // The reason this is required is because we do not have a legal i128 type 15950 // and so we want to prevent having to store the f128 and then reload part 15951 // of it. 15952 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15953 DAGCombinerInfo &DCI) const { 15954 // If we are using CRBits then try that first. 15955 if (Subtarget.useCRBits()) { 15956 // Check if CRBits did anything and return that if it did. 15957 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15958 return CRTruncValue; 15959 } 15960 15961 SDLoc dl(N); 15962 SDValue Op0 = N->getOperand(0); 15963 15964 // Looking for a truncate of i128 to i64. 15965 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15966 return SDValue(); 15967 15968 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15969 15970 // SRL feeding TRUNCATE. 15971 if (Op0.getOpcode() == ISD::SRL) { 15972 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15973 // The right shift has to be by 64 bits. 15974 if (!ConstNode || ConstNode->getZExtValue() != 64) 15975 return SDValue(); 15976 15977 // Switch the element number to extract. 15978 EltToExtract = EltToExtract ? 0 : 1; 15979 // Update Op0 past the SRL. 15980 Op0 = Op0.getOperand(0); 15981 } 15982 15983 // BITCAST feeding a TRUNCATE possibly via SRL. 15984 if (Op0.getOpcode() == ISD::BITCAST && 15985 Op0.getValueType() == MVT::i128 && 15986 Op0.getOperand(0).getValueType() == MVT::f128) { 15987 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15988 return DCI.DAG.getNode( 15989 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15990 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15991 } 15992 return SDValue(); 15993 } 15994 15995 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15996 SelectionDAG &DAG = DCI.DAG; 15997 15998 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15999 if (!ConstOpOrElement) 16000 return SDValue(); 16001 16002 // An imul is usually smaller than the alternative sequence for legal type. 16003 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16004 isOperationLegal(ISD::MUL, N->getValueType(0))) 16005 return SDValue(); 16006 16007 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16008 switch (this->Subtarget.getCPUDirective()) { 16009 default: 16010 // TODO: enhance the condition for subtarget before pwr8 16011 return false; 16012 case PPC::DIR_PWR8: 16013 // type mul add shl 16014 // scalar 4 1 1 16015 // vector 7 2 2 16016 return true; 16017 case PPC::DIR_PWR9: 16018 case PPC::DIR_PWR_FUTURE: 16019 // type mul add shl 16020 // scalar 5 2 2 16021 // vector 7 2 2 16022 16023 // The cycle RATIO of related operations are showed as a table above. 16024 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16025 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16026 // are 4, it is always profitable; but for 3 instrs patterns 16027 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16028 // So we should only do it for vector type. 16029 return IsAddOne && IsNeg ? VT.isVector() : true; 16030 } 16031 }; 16032 16033 EVT VT = N->getValueType(0); 16034 SDLoc DL(N); 16035 16036 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16037 bool IsNeg = MulAmt.isNegative(); 16038 APInt MulAmtAbs = MulAmt.abs(); 16039 16040 if ((MulAmtAbs - 1).isPowerOf2()) { 16041 // (mul x, 2^N + 1) => (add (shl x, N), x) 16042 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16043 16044 if (!IsProfitable(IsNeg, true, VT)) 16045 return SDValue(); 16046 16047 SDValue Op0 = N->getOperand(0); 16048 SDValue Op1 = 16049 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16050 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16051 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16052 16053 if (!IsNeg) 16054 return Res; 16055 16056 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16057 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16058 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16059 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16060 16061 if (!IsProfitable(IsNeg, false, VT)) 16062 return SDValue(); 16063 16064 SDValue Op0 = N->getOperand(0); 16065 SDValue Op1 = 16066 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16067 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16068 16069 if (!IsNeg) 16070 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16071 else 16072 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16073 16074 } else { 16075 return SDValue(); 16076 } 16077 } 16078 16079 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16080 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16081 if (!Subtarget.is64BitELFABI()) 16082 return false; 16083 16084 // If not a tail call then no need to proceed. 16085 if (!CI->isTailCall()) 16086 return false; 16087 16088 // If sibling calls have been disabled and tail-calls aren't guaranteed 16089 // there is no reason to duplicate. 16090 auto &TM = getTargetMachine(); 16091 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16092 return false; 16093 16094 // Can't tail call a function called indirectly, or if it has variadic args. 16095 const Function *Callee = CI->getCalledFunction(); 16096 if (!Callee || Callee->isVarArg()) 16097 return false; 16098 16099 // Make sure the callee and caller calling conventions are eligible for tco. 16100 const Function *Caller = CI->getParent()->getParent(); 16101 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16102 CI->getCallingConv())) 16103 return false; 16104 16105 // If the function is local then we have a good chance at tail-calling it 16106 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16107 } 16108 16109 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16110 if (!Subtarget.hasVSX()) 16111 return false; 16112 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16113 return true; 16114 return VT == MVT::f32 || VT == MVT::f64 || 16115 VT == MVT::v4f32 || VT == MVT::v2f64; 16116 } 16117 16118 bool PPCTargetLowering:: 16119 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16120 const Value *Mask = AndI.getOperand(1); 16121 // If the mask is suitable for andi. or andis. we should sink the and. 16122 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16123 // Can't handle constants wider than 64-bits. 16124 if (CI->getBitWidth() > 64) 16125 return false; 16126 int64_t ConstVal = CI->getZExtValue(); 16127 return isUInt<16>(ConstVal) || 16128 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16129 } 16130 16131 // For non-constant masks, we can always use the record-form and. 16132 return true; 16133 } 16134 16135 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16136 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16137 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16138 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16139 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16140 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16141 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16142 assert(Subtarget.hasP9Altivec() && 16143 "Only combine this when P9 altivec supported!"); 16144 EVT VT = N->getValueType(0); 16145 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16146 return SDValue(); 16147 16148 SelectionDAG &DAG = DCI.DAG; 16149 SDLoc dl(N); 16150 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16151 // Even for signed integers, if it's known to be positive (as signed 16152 // integer) due to zero-extended inputs. 16153 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16154 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16155 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16156 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16157 (SubOpcd1 == ISD::ZERO_EXTEND || 16158 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16159 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16160 N->getOperand(0)->getOperand(0), 16161 N->getOperand(0)->getOperand(1), 16162 DAG.getTargetConstant(0, dl, MVT::i32)); 16163 } 16164 16165 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16166 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16167 N->getOperand(0).hasOneUse()) { 16168 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16169 N->getOperand(0)->getOperand(0), 16170 N->getOperand(0)->getOperand(1), 16171 DAG.getTargetConstant(1, dl, MVT::i32)); 16172 } 16173 } 16174 16175 return SDValue(); 16176 } 16177 16178 // For type v4i32/v8ii16/v16i8, transform 16179 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16180 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16181 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16182 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16183 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16184 DAGCombinerInfo &DCI) const { 16185 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16186 assert(Subtarget.hasP9Altivec() && 16187 "Only combine this when P9 altivec supported!"); 16188 16189 SelectionDAG &DAG = DCI.DAG; 16190 SDLoc dl(N); 16191 SDValue Cond = N->getOperand(0); 16192 SDValue TrueOpnd = N->getOperand(1); 16193 SDValue FalseOpnd = N->getOperand(2); 16194 EVT VT = N->getOperand(1).getValueType(); 16195 16196 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16197 FalseOpnd.getOpcode() != ISD::SUB) 16198 return SDValue(); 16199 16200 // ABSD only available for type v4i32/v8i16/v16i8 16201 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16202 return SDValue(); 16203 16204 // At least to save one more dependent computation 16205 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16206 return SDValue(); 16207 16208 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16209 16210 // Can only handle unsigned comparison here 16211 switch (CC) { 16212 default: 16213 return SDValue(); 16214 case ISD::SETUGT: 16215 case ISD::SETUGE: 16216 break; 16217 case ISD::SETULT: 16218 case ISD::SETULE: 16219 std::swap(TrueOpnd, FalseOpnd); 16220 break; 16221 } 16222 16223 SDValue CmpOpnd1 = Cond.getOperand(0); 16224 SDValue CmpOpnd2 = Cond.getOperand(1); 16225 16226 // SETCC CmpOpnd1 CmpOpnd2 cond 16227 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16228 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16229 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16230 TrueOpnd.getOperand(1) == CmpOpnd2 && 16231 FalseOpnd.getOperand(0) == CmpOpnd2 && 16232 FalseOpnd.getOperand(1) == CmpOpnd1) { 16233 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16234 CmpOpnd1, CmpOpnd2, 16235 DAG.getTargetConstant(0, dl, MVT::i32)); 16236 } 16237 16238 return SDValue(); 16239 } 16240