1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnablePPCPCRelTLS(
125     "enable-ppc-pcrel-tls",
126     cl::desc("enable the use of PC relative memops in TLS instructions on PPC"),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 // FIXME: Remove this once the bug has been fixed!
139 extern cl::opt<bool> ANDIGlueBug;
140 
141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
142                                      const PPCSubtarget &STI)
143     : TargetLowering(TM), Subtarget(STI) {
144   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
145   // arguments are at least 4/8 bytes aligned.
146   bool isPPC64 = Subtarget.isPPC64();
147   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
148 
149   // Set up the register classes.
150   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
151   if (!useSoftFloat()) {
152     if (hasSPE()) {
153       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
154       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
155     } else {
156       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
157       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
158     }
159   }
160 
161   // Match BITREVERSE to customized fast code sequence in the td file.
162   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
163   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
164 
165   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
166   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
167 
168   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
169   for (MVT VT : MVT::integer_valuetypes()) {
170     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
171     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
172   }
173 
174   if (Subtarget.isISA3_0()) {
175     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
176     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
177     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
178     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
179   } else {
180     // No extending loads from f16 or HW conversions back and forth.
181     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
182     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
183     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
184     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
185     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
186     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
187     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
188     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
189   }
190 
191   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
192 
193   // PowerPC has pre-inc load and store's.
194   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
195   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
196   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
197   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
198   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
199   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
200   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
201   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
202   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
203   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
204   if (!Subtarget.hasSPE()) {
205     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
206     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
207     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
208     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
209   }
210 
211   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
212   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
213   for (MVT VT : ScalarIntVTs) {
214     setOperationAction(ISD::ADDC, VT, Legal);
215     setOperationAction(ISD::ADDE, VT, Legal);
216     setOperationAction(ISD::SUBC, VT, Legal);
217     setOperationAction(ISD::SUBE, VT, Legal);
218   }
219 
220   if (Subtarget.useCRBits()) {
221     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
222 
223     if (isPPC64 || Subtarget.hasFPCVT()) {
224       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
225       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
226                          isPPC64 ? MVT::i64 : MVT::i32);
227       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
228       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
229                         isPPC64 ? MVT::i64 : MVT::i32);
230     } else {
231       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
232       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
233     }
234 
235     // PowerPC does not support direct load/store of condition registers.
236     setOperationAction(ISD::LOAD, MVT::i1, Custom);
237     setOperationAction(ISD::STORE, MVT::i1, Custom);
238 
239     // FIXME: Remove this once the ANDI glue bug is fixed:
240     if (ANDIGlueBug)
241       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
242 
243     for (MVT VT : MVT::integer_valuetypes()) {
244       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
245       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
246       setTruncStoreAction(VT, MVT::i1, Expand);
247     }
248 
249     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
250   }
251 
252   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
253   // PPC (the libcall is not available).
254   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
255   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
256 
257   // We do not currently implement these libm ops for PowerPC.
258   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
259   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
260   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
261   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
262   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
263   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
264 
265   // PowerPC has no SREM/UREM instructions unless we are on P9
266   // On P9 we may use a hardware instruction to compute the remainder.
267   // When the result of both the remainder and the division is required it is
268   // more efficient to compute the remainder from the result of the division
269   // rather than use the remainder instruction. The instructions are legalized
270   // directly because the DivRemPairsPass performs the transformation at the IR
271   // level.
272   if (Subtarget.isISA3_0()) {
273     setOperationAction(ISD::SREM, MVT::i32, Legal);
274     setOperationAction(ISD::UREM, MVT::i32, Legal);
275     setOperationAction(ISD::SREM, MVT::i64, Legal);
276     setOperationAction(ISD::UREM, MVT::i64, Legal);
277   } else {
278     setOperationAction(ISD::SREM, MVT::i32, Expand);
279     setOperationAction(ISD::UREM, MVT::i32, Expand);
280     setOperationAction(ISD::SREM, MVT::i64, Expand);
281     setOperationAction(ISD::UREM, MVT::i64, Expand);
282   }
283 
284   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
285   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
286   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
287   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
288   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
289   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
290   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
291   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
292   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
293 
294   // Handle constrained floating-point operations of scalar.
295   // TODO: Handle SPE specific operation.
296   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
297   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
298   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
299   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
300   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
301   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
302 
303   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
304   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
305   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
306   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
307   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
308   if (Subtarget.hasVSX())
309     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal);
310 
311   if (Subtarget.hasFSQRT()) {
312     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
313     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
314   }
315 
316   if (Subtarget.hasFPRND()) {
317     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
318     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
319     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
320     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
321 
322     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
323     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
324     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
325     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
326   }
327 
328   // We don't support sin/cos/sqrt/fmod/pow
329   setOperationAction(ISD::FSIN , MVT::f64, Expand);
330   setOperationAction(ISD::FCOS , MVT::f64, Expand);
331   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
332   setOperationAction(ISD::FREM , MVT::f64, Expand);
333   setOperationAction(ISD::FPOW , MVT::f64, Expand);
334   setOperationAction(ISD::FSIN , MVT::f32, Expand);
335   setOperationAction(ISD::FCOS , MVT::f32, Expand);
336   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
337   setOperationAction(ISD::FREM , MVT::f32, Expand);
338   setOperationAction(ISD::FPOW , MVT::f32, Expand);
339   if (Subtarget.hasSPE()) {
340     setOperationAction(ISD::FMA  , MVT::f64, Expand);
341     setOperationAction(ISD::FMA  , MVT::f32, Expand);
342   } else {
343     setOperationAction(ISD::FMA  , MVT::f64, Legal);
344     setOperationAction(ISD::FMA  , MVT::f32, Legal);
345   }
346 
347   if (Subtarget.hasSPE())
348     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
349 
350   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
351 
352   // If we're enabling GP optimizations, use hardware square root
353   if (!Subtarget.hasFSQRT() &&
354       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
355         Subtarget.hasFRE()))
356     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
357 
358   if (!Subtarget.hasFSQRT() &&
359       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
360         Subtarget.hasFRES()))
361     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
362 
363   if (Subtarget.hasFCPSGN()) {
364     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
365     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
366   } else {
367     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
368     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
369   }
370 
371   if (Subtarget.hasFPRND()) {
372     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
373     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
374     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
375     setOperationAction(ISD::FROUND, MVT::f64, Legal);
376 
377     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
378     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
379     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
380     setOperationAction(ISD::FROUND, MVT::f32, Legal);
381   }
382 
383   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
384   // to speed up scalar BSWAP64.
385   // CTPOP or CTTZ were introduced in P8/P9 respectively
386   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
387   if (Subtarget.hasP9Vector())
388     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
389   else
390     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
391   if (Subtarget.isISA3_0()) {
392     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
393     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
394   } else {
395     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
396     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
397   }
398 
399   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
400     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
401     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
402   } else {
403     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
404     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
405   }
406 
407   // PowerPC does not have ROTR
408   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
409   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
410 
411   if (!Subtarget.useCRBits()) {
412     // PowerPC does not have Select
413     setOperationAction(ISD::SELECT, MVT::i32, Expand);
414     setOperationAction(ISD::SELECT, MVT::i64, Expand);
415     setOperationAction(ISD::SELECT, MVT::f32, Expand);
416     setOperationAction(ISD::SELECT, MVT::f64, Expand);
417   }
418 
419   // PowerPC wants to turn select_cc of FP into fsel when possible.
420   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
421   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
422 
423   // PowerPC wants to optimize integer setcc a bit
424   if (!Subtarget.useCRBits())
425     setOperationAction(ISD::SETCC, MVT::i32, Custom);
426 
427   if (Subtarget.hasFPU()) {
428     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
429     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
430     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
431 
432     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
433     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
434     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
435   }
436 
437   // PowerPC does not have BRCOND which requires SetCC
438   if (!Subtarget.useCRBits())
439     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
440 
441   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
442 
443   if (Subtarget.hasSPE()) {
444     // SPE has built-in conversions
445     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
446     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
447     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
448     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
449     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
450     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
451   } else {
452     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
453     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
454 
455     // PowerPC does not have [U|S]INT_TO_FP
456     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
457     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
458   }
459 
460   if (Subtarget.hasDirectMove() && isPPC64) {
461     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
462     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
463     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
464     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
465     if (TM.Options.UnsafeFPMath) {
466       setOperationAction(ISD::LRINT, MVT::f64, Legal);
467       setOperationAction(ISD::LRINT, MVT::f32, Legal);
468       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
469       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
470       setOperationAction(ISD::LROUND, MVT::f64, Legal);
471       setOperationAction(ISD::LROUND, MVT::f32, Legal);
472       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
473       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
474     }
475   } else {
476     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
477     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
478     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
479     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
480   }
481 
482   // We cannot sextinreg(i1).  Expand to shifts.
483   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
484 
485   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
486   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
487   // support continuation, user-level threading, and etc.. As a result, no
488   // other SjLj exception interfaces are implemented and please don't build
489   // your own exception handling based on them.
490   // LLVM/Clang supports zero-cost DWARF exception handling.
491   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
492   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
493 
494   // We want to legalize GlobalAddress and ConstantPool nodes into the
495   // appropriate instructions to materialize the address.
496   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
497   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
498   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
499   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
500   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
501   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
502   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
503   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
504   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
505   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
506 
507   // TRAP is legal.
508   setOperationAction(ISD::TRAP, MVT::Other, Legal);
509 
510   // TRAMPOLINE is custom lowered.
511   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
512   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
513 
514   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
515   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
516 
517   if (Subtarget.is64BitELFABI()) {
518     // VAARG always uses double-word chunks, so promote anything smaller.
519     setOperationAction(ISD::VAARG, MVT::i1, Promote);
520     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
521     setOperationAction(ISD::VAARG, MVT::i8, Promote);
522     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
523     setOperationAction(ISD::VAARG, MVT::i16, Promote);
524     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
525     setOperationAction(ISD::VAARG, MVT::i32, Promote);
526     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
527     setOperationAction(ISD::VAARG, MVT::Other, Expand);
528   } else if (Subtarget.is32BitELFABI()) {
529     // VAARG is custom lowered with the 32-bit SVR4 ABI.
530     setOperationAction(ISD::VAARG, MVT::Other, Custom);
531     setOperationAction(ISD::VAARG, MVT::i64, Custom);
532   } else
533     setOperationAction(ISD::VAARG, MVT::Other, Expand);
534 
535   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
536   if (Subtarget.is32BitELFABI())
537     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
538   else
539     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
540 
541   // Use the default implementation.
542   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
543   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
544   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
545   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
546   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
547   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
548   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
549   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
550   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
551 
552   // We want to custom lower some of our intrinsics.
553   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
554 
555   // To handle counter-based loop conditions.
556   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
557 
558   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
559   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
560   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
561   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
562 
563   // Comparisons that require checking two conditions.
564   if (Subtarget.hasSPE()) {
565     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
566     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
567     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
568     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
569   }
570   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
571   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
572   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
573   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
574   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
575   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
576   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
577   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
578   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
579   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
580   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
581   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
582 
583   if (Subtarget.has64BitSupport()) {
584     // They also have instructions for converting between i64 and fp.
585     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
586     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
587     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
588     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
589     // This is just the low 32 bits of a (signed) fp->i64 conversion.
590     // We cannot do this with Promote because i64 is not a legal type.
591     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
592 
593     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
594       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
595   } else {
596     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
597     if (Subtarget.hasSPE()) {
598       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
599       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
600     } else
601       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
602   }
603 
604   // With the instructions enabled under FPCVT, we can do everything.
605   if (Subtarget.hasFPCVT()) {
606     if (Subtarget.has64BitSupport()) {
607       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
608       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
609       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
610       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
611     }
612 
613     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
614     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
615     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
616     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
617   }
618 
619   if (Subtarget.use64BitRegs()) {
620     // 64-bit PowerPC implementations can support i64 types directly
621     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
622     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
623     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
624     // 64-bit PowerPC wants to expand i128 shifts itself.
625     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
626     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
627     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
628   } else {
629     // 32-bit PowerPC wants to expand i64 shifts itself.
630     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
631     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
632     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
633   }
634 
635   // PowerPC has better expansions for funnel shifts than the generic
636   // TargetLowering::expandFunnelShift.
637   if (Subtarget.has64BitSupport()) {
638     setOperationAction(ISD::FSHL, MVT::i64, Custom);
639     setOperationAction(ISD::FSHR, MVT::i64, Custom);
640   }
641   setOperationAction(ISD::FSHL, MVT::i32, Custom);
642   setOperationAction(ISD::FSHR, MVT::i32, Custom);
643 
644   if (Subtarget.hasVSX()) {
645     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
646     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
647     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
648     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
649   }
650 
651   if (Subtarget.hasAltivec()) {
652     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
653       setOperationAction(ISD::SADDSAT, VT, Legal);
654       setOperationAction(ISD::SSUBSAT, VT, Legal);
655       setOperationAction(ISD::UADDSAT, VT, Legal);
656       setOperationAction(ISD::USUBSAT, VT, Legal);
657     }
658     // First set operation action for all vector types to expand. Then we
659     // will selectively turn on ones that can be effectively codegen'd.
660     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
661       // add/sub are legal for all supported vector VT's.
662       setOperationAction(ISD::ADD, VT, Legal);
663       setOperationAction(ISD::SUB, VT, Legal);
664 
665       // For v2i64, these are only valid with P8Vector. This is corrected after
666       // the loop.
667       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
668         setOperationAction(ISD::SMAX, VT, Legal);
669         setOperationAction(ISD::SMIN, VT, Legal);
670         setOperationAction(ISD::UMAX, VT, Legal);
671         setOperationAction(ISD::UMIN, VT, Legal);
672       }
673       else {
674         setOperationAction(ISD::SMAX, VT, Expand);
675         setOperationAction(ISD::SMIN, VT, Expand);
676         setOperationAction(ISD::UMAX, VT, Expand);
677         setOperationAction(ISD::UMIN, VT, Expand);
678       }
679 
680       if (Subtarget.hasVSX()) {
681         setOperationAction(ISD::FMAXNUM, VT, Legal);
682         setOperationAction(ISD::FMINNUM, VT, Legal);
683       }
684 
685       // Vector instructions introduced in P8
686       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
687         setOperationAction(ISD::CTPOP, VT, Legal);
688         setOperationAction(ISD::CTLZ, VT, Legal);
689       }
690       else {
691         setOperationAction(ISD::CTPOP, VT, Expand);
692         setOperationAction(ISD::CTLZ, VT, Expand);
693       }
694 
695       // Vector instructions introduced in P9
696       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
697         setOperationAction(ISD::CTTZ, VT, Legal);
698       else
699         setOperationAction(ISD::CTTZ, VT, Expand);
700 
701       // We promote all shuffles to v16i8.
702       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
703       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
704 
705       // We promote all non-typed operations to v4i32.
706       setOperationAction(ISD::AND   , VT, Promote);
707       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
708       setOperationAction(ISD::OR    , VT, Promote);
709       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
710       setOperationAction(ISD::XOR   , VT, Promote);
711       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
712       setOperationAction(ISD::LOAD  , VT, Promote);
713       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
714       setOperationAction(ISD::SELECT, VT, Promote);
715       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
716       setOperationAction(ISD::VSELECT, VT, Legal);
717       setOperationAction(ISD::SELECT_CC, VT, Promote);
718       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
719       setOperationAction(ISD::STORE, VT, Promote);
720       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
721 
722       // No other operations are legal.
723       setOperationAction(ISD::MUL , VT, Expand);
724       setOperationAction(ISD::SDIV, VT, Expand);
725       setOperationAction(ISD::SREM, VT, Expand);
726       setOperationAction(ISD::UDIV, VT, Expand);
727       setOperationAction(ISD::UREM, VT, Expand);
728       setOperationAction(ISD::FDIV, VT, Expand);
729       setOperationAction(ISD::FREM, VT, Expand);
730       setOperationAction(ISD::FNEG, VT, Expand);
731       setOperationAction(ISD::FSQRT, VT, Expand);
732       setOperationAction(ISD::FLOG, VT, Expand);
733       setOperationAction(ISD::FLOG10, VT, Expand);
734       setOperationAction(ISD::FLOG2, VT, Expand);
735       setOperationAction(ISD::FEXP, VT, Expand);
736       setOperationAction(ISD::FEXP2, VT, Expand);
737       setOperationAction(ISD::FSIN, VT, Expand);
738       setOperationAction(ISD::FCOS, VT, Expand);
739       setOperationAction(ISD::FABS, VT, Expand);
740       setOperationAction(ISD::FFLOOR, VT, Expand);
741       setOperationAction(ISD::FCEIL,  VT, Expand);
742       setOperationAction(ISD::FTRUNC, VT, Expand);
743       setOperationAction(ISD::FRINT,  VT, Expand);
744       setOperationAction(ISD::FNEARBYINT, VT, Expand);
745       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
746       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
747       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
748       setOperationAction(ISD::MULHU, VT, Expand);
749       setOperationAction(ISD::MULHS, VT, Expand);
750       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
751       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
752       setOperationAction(ISD::UDIVREM, VT, Expand);
753       setOperationAction(ISD::SDIVREM, VT, Expand);
754       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
755       setOperationAction(ISD::FPOW, VT, Expand);
756       setOperationAction(ISD::BSWAP, VT, Expand);
757       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
758       setOperationAction(ISD::ROTL, VT, Expand);
759       setOperationAction(ISD::ROTR, VT, Expand);
760 
761       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
762         setTruncStoreAction(VT, InnerVT, Expand);
763         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
764         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
765         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
766       }
767     }
768     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
769     if (!Subtarget.hasP8Vector()) {
770       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
771       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
772       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
773       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
774     }
775 
776     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
777       setOperationAction(ISD::ABS, VT, Custom);
778 
779     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
780     // with merges, splats, etc.
781     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
782 
783     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
784     // are cheap, so handle them before they get expanded to scalar.
785     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
786     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
787     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
788     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
789     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
790 
791     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
792     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
793     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
794     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
795     setOperationAction(ISD::SELECT, MVT::v4i32,
796                        Subtarget.useCRBits() ? Legal : Expand);
797     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
798     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
799     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
800     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
801     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
802     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
803     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
804     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
805     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
806 
807     // Without hasP8Altivec set, v2i64 SMAX isn't available.
808     // But ABS custom lowering requires SMAX support.
809     if (!Subtarget.hasP8Altivec())
810       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
811 
812     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
813     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
814     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
815     if (Subtarget.hasAltivec())
816       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
817         setOperationAction(ISD::ROTL, VT, Legal);
818     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
819     if (Subtarget.hasP8Altivec())
820       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
821 
822     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
823     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
824     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
825     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
826 
827     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
828     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
829 
830     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
831       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
832       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
833     }
834 
835     if (Subtarget.hasP8Altivec())
836       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
837     else
838       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
839 
840     if (Subtarget.isISA3_1()) {
841       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
842       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
843       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
844       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
845       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
846       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
847       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
848       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
849       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
850       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
851       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
852       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
853       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
854     }
855 
856     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
857     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
858 
859     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
860     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
861 
862     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
863     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
864     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
865     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
866 
867     // Altivec does not contain unordered floating-point compare instructions
868     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
869     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
870     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
871     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
872 
873     if (Subtarget.hasVSX()) {
874       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
875       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
876       if (Subtarget.hasP8Vector()) {
877         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
878         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
879       }
880       if (Subtarget.hasDirectMove() && isPPC64) {
881         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
882         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
883         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
884         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
885         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
886         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
887         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
888         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
889       }
890       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
891 
892       // The nearbyint variants are not allowed to raise the inexact exception
893       // so we can only code-gen them with unsafe math.
894       if (TM.Options.UnsafeFPMath) {
895         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
896         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
897       }
898 
899       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
900       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
901       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
902       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
903       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
904       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
905       setOperationAction(ISD::FROUND, MVT::f64, Legal);
906       setOperationAction(ISD::FRINT, MVT::f64, Legal);
907 
908       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
909       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
910       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
911       setOperationAction(ISD::FROUND, MVT::f32, Legal);
912       setOperationAction(ISD::FRINT, MVT::f32, Legal);
913 
914       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
915       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
916 
917       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
918       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
919 
920       // Share the Altivec comparison restrictions.
921       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
922       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
923       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
924       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
925 
926       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
927       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
928 
929       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
930 
931       if (Subtarget.hasP8Vector())
932         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
933 
934       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
935 
936       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
937       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
938       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
939 
940       if (Subtarget.hasP8Altivec()) {
941         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
942         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
943         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
944 
945         // 128 bit shifts can be accomplished via 3 instructions for SHL and
946         // SRL, but not for SRA because of the instructions available:
947         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
948         // doing
949         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
950         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
951         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
952 
953         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
954       }
955       else {
956         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
957         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
958         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
959 
960         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
961 
962         // VSX v2i64 only supports non-arithmetic operations.
963         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
964         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
965       }
966 
967       setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
968 
969       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
970       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
971       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
972       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
973 
974       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
975 
976       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
977       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
978       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
979       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
980 
981       // Custom handling for partial vectors of integers converted to
982       // floating point. We already have optimal handling for v2i32 through
983       // the DAG combine, so those aren't necessary.
984       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
985       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
986       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
987       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
988       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
989       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
990       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
991       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
992 
993       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
994       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
995       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
996       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
997       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
998       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
999 
1000       if (Subtarget.hasDirectMove())
1001         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1002       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1003 
1004       // Handle constrained floating-point operations of vector.
1005       // The predictor is `hasVSX` because altivec instruction has
1006       // no exception but VSX vector instruction has.
1007       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1008       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1009       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1010       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1011       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1012       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1013       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1014       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1015       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
1016       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1017       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1018       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1019       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1020 
1021       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1022       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1023       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1024       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1025       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1026       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1027       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1028       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1029       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
1030       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1031       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1032       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1033       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1034 
1035       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1036     }
1037 
1038     if (Subtarget.hasP8Altivec()) {
1039       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1040       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1041     }
1042 
1043     if (Subtarget.hasP9Vector()) {
1044       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1045       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1046 
1047       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1048       // SRL, but not for SRA because of the instructions available:
1049       // VS{RL} and VS{RL}O.
1050       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1051       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1052       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1053 
1054       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1055       setOperationAction(ISD::FADD, MVT::f128, Legal);
1056       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1057       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1058       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1059       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1060       // No extending loads to f128 on PPC.
1061       for (MVT FPT : MVT::fp_valuetypes())
1062         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1063       setOperationAction(ISD::FMA, MVT::f128, Legal);
1064       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1065       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1066       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1067       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1068       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1069       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1070 
1071       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1072       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1073       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1074       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1075       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1076       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1077 
1078       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1079       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1080       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1081       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1082       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1083       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1084       // No implementation for these ops for PowerPC.
1085       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1086       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1087       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1088       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1089       setOperationAction(ISD::FREM, MVT::f128, Expand);
1090 
1091       // Handle constrained floating-point operations of fp128
1092       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1093       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1094       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1095       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1096       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1097       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1098       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1099       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1100       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1101       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1102       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1103       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1104       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1105       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1106       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1107       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1108       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1109       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1110       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1111       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1112     }
1113 
1114     if (Subtarget.hasP9Altivec()) {
1115       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1116       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1117 
1118       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1119       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1120       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1121       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1122       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1123       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1124       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1125     }
1126   }
1127 
1128   if (Subtarget.has64BitSupport())
1129     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1130 
1131   if (Subtarget.isISA3_1())
1132     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1133 
1134   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1135 
1136   if (!isPPC64) {
1137     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1138     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1139   }
1140 
1141   setBooleanContents(ZeroOrOneBooleanContent);
1142 
1143   if (Subtarget.hasAltivec()) {
1144     // Altivec instructions set fields to all zeros or all ones.
1145     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1146   }
1147 
1148   if (!isPPC64) {
1149     // These libcalls are not available in 32-bit.
1150     setLibcallName(RTLIB::SHL_I128, nullptr);
1151     setLibcallName(RTLIB::SRL_I128, nullptr);
1152     setLibcallName(RTLIB::SRA_I128, nullptr);
1153   }
1154 
1155   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1156 
1157   // We have target-specific dag combine patterns for the following nodes:
1158   setTargetDAGCombine(ISD::ADD);
1159   setTargetDAGCombine(ISD::SHL);
1160   setTargetDAGCombine(ISD::SRA);
1161   setTargetDAGCombine(ISD::SRL);
1162   setTargetDAGCombine(ISD::MUL);
1163   setTargetDAGCombine(ISD::FMA);
1164   setTargetDAGCombine(ISD::SINT_TO_FP);
1165   setTargetDAGCombine(ISD::BUILD_VECTOR);
1166   if (Subtarget.hasFPCVT())
1167     setTargetDAGCombine(ISD::UINT_TO_FP);
1168   setTargetDAGCombine(ISD::LOAD);
1169   setTargetDAGCombine(ISD::STORE);
1170   setTargetDAGCombine(ISD::BR_CC);
1171   if (Subtarget.useCRBits())
1172     setTargetDAGCombine(ISD::BRCOND);
1173   setTargetDAGCombine(ISD::BSWAP);
1174   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1175   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1176   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1177 
1178   setTargetDAGCombine(ISD::SIGN_EXTEND);
1179   setTargetDAGCombine(ISD::ZERO_EXTEND);
1180   setTargetDAGCombine(ISD::ANY_EXTEND);
1181 
1182   setTargetDAGCombine(ISD::TRUNCATE);
1183   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1184 
1185 
1186   if (Subtarget.useCRBits()) {
1187     setTargetDAGCombine(ISD::TRUNCATE);
1188     setTargetDAGCombine(ISD::SETCC);
1189     setTargetDAGCombine(ISD::SELECT_CC);
1190   }
1191 
1192   // Use reciprocal estimates.
1193   if (TM.Options.UnsafeFPMath) {
1194     setTargetDAGCombine(ISD::FDIV);
1195     setTargetDAGCombine(ISD::FSQRT);
1196   }
1197 
1198   if (Subtarget.hasP9Altivec()) {
1199     setTargetDAGCombine(ISD::ABS);
1200     setTargetDAGCombine(ISD::VSELECT);
1201   }
1202 
1203   setLibcallName(RTLIB::LOG_F128, "logf128");
1204   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1205   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1206   setLibcallName(RTLIB::EXP_F128, "expf128");
1207   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1208   setLibcallName(RTLIB::SIN_F128, "sinf128");
1209   setLibcallName(RTLIB::COS_F128, "cosf128");
1210   setLibcallName(RTLIB::POW_F128, "powf128");
1211   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1212   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1213   setLibcallName(RTLIB::POWI_F128, "__powikf2");
1214   setLibcallName(RTLIB::REM_F128, "fmodf128");
1215 
1216   // With 32 condition bits, we don't need to sink (and duplicate) compares
1217   // aggressively in CodeGenPrep.
1218   if (Subtarget.useCRBits()) {
1219     setHasMultipleConditionRegisters();
1220     setJumpIsExpensive();
1221   }
1222 
1223   setMinFunctionAlignment(Align(4));
1224 
1225   switch (Subtarget.getCPUDirective()) {
1226   default: break;
1227   case PPC::DIR_970:
1228   case PPC::DIR_A2:
1229   case PPC::DIR_E500:
1230   case PPC::DIR_E500mc:
1231   case PPC::DIR_E5500:
1232   case PPC::DIR_PWR4:
1233   case PPC::DIR_PWR5:
1234   case PPC::DIR_PWR5X:
1235   case PPC::DIR_PWR6:
1236   case PPC::DIR_PWR6X:
1237   case PPC::DIR_PWR7:
1238   case PPC::DIR_PWR8:
1239   case PPC::DIR_PWR9:
1240   case PPC::DIR_PWR10:
1241   case PPC::DIR_PWR_FUTURE:
1242     setPrefLoopAlignment(Align(16));
1243     setPrefFunctionAlignment(Align(16));
1244     break;
1245   }
1246 
1247   if (Subtarget.enableMachineScheduler())
1248     setSchedulingPreference(Sched::Source);
1249   else
1250     setSchedulingPreference(Sched::Hybrid);
1251 
1252   computeRegisterProperties(STI.getRegisterInfo());
1253 
1254   // The Freescale cores do better with aggressive inlining of memcpy and
1255   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1256   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1257       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1258     MaxStoresPerMemset = 32;
1259     MaxStoresPerMemsetOptSize = 16;
1260     MaxStoresPerMemcpy = 32;
1261     MaxStoresPerMemcpyOptSize = 8;
1262     MaxStoresPerMemmove = 32;
1263     MaxStoresPerMemmoveOptSize = 8;
1264   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1265     // The A2 also benefits from (very) aggressive inlining of memcpy and
1266     // friends. The overhead of a the function call, even when warm, can be
1267     // over one hundred cycles.
1268     MaxStoresPerMemset = 128;
1269     MaxStoresPerMemcpy = 128;
1270     MaxStoresPerMemmove = 128;
1271     MaxLoadsPerMemcmp = 128;
1272   } else {
1273     MaxLoadsPerMemcmp = 8;
1274     MaxLoadsPerMemcmpOptSize = 4;
1275   }
1276 
1277   // Let the subtarget (CPU) decide if a predictable select is more expensive
1278   // than the corresponding branch. This information is used in CGP to decide
1279   // when to convert selects into branches.
1280   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1281 }
1282 
1283 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1284 /// the desired ByVal argument alignment.
1285 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1286   if (MaxAlign == MaxMaxAlign)
1287     return;
1288   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1289     if (MaxMaxAlign >= 32 &&
1290         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1291       MaxAlign = Align(32);
1292     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1293              MaxAlign < 16)
1294       MaxAlign = Align(16);
1295   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1296     Align EltAlign;
1297     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1298     if (EltAlign > MaxAlign)
1299       MaxAlign = EltAlign;
1300   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1301     for (auto *EltTy : STy->elements()) {
1302       Align EltAlign;
1303       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1304       if (EltAlign > MaxAlign)
1305         MaxAlign = EltAlign;
1306       if (MaxAlign == MaxMaxAlign)
1307         break;
1308     }
1309   }
1310 }
1311 
1312 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1313 /// function arguments in the caller parameter area.
1314 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1315                                                   const DataLayout &DL) const {
1316   // 16byte and wider vectors are passed on 16byte boundary.
1317   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1318   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1319   if (Subtarget.hasAltivec())
1320     getMaxByValAlign(Ty, Alignment, Align(16));
1321   return Alignment.value();
1322 }
1323 
1324 bool PPCTargetLowering::useSoftFloat() const {
1325   return Subtarget.useSoftFloat();
1326 }
1327 
1328 bool PPCTargetLowering::hasSPE() const {
1329   return Subtarget.hasSPE();
1330 }
1331 
1332 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1333   return VT.isScalarInteger();
1334 }
1335 
1336 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
1337 /// type is cheaper than a multiply followed by a shift.
1338 /// This is true for words and doublewords on 64-bit PowerPC.
1339 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
1340   if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
1341                               isOperationLegal(ISD::MULHU, Type)))
1342     return true;
1343   return TargetLowering::isMulhCheaperThanMulShift(Type);
1344 }
1345 
1346 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1347   switch ((PPCISD::NodeType)Opcode) {
1348   case PPCISD::FIRST_NUMBER:    break;
1349   case PPCISD::FSEL:            return "PPCISD::FSEL";
1350   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1351   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1352   case PPCISD::FCFID:           return "PPCISD::FCFID";
1353   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1354   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1355   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1356   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1357   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1358   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1359   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1360   case PPCISD::FP_TO_UINT_IN_VSR:
1361                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1362   case PPCISD::FP_TO_SINT_IN_VSR:
1363                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1364   case PPCISD::FRE:             return "PPCISD::FRE";
1365   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1366   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1367   case PPCISD::VPERM:           return "PPCISD::VPERM";
1368   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1369   case PPCISD::XXSPLTI_SP_TO_DP:
1370     return "PPCISD::XXSPLTI_SP_TO_DP";
1371   case PPCISD::XXSPLTI32DX:
1372     return "PPCISD::XXSPLTI32DX";
1373   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1374   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1375   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1376   case PPCISD::CMPB:            return "PPCISD::CMPB";
1377   case PPCISD::Hi:              return "PPCISD::Hi";
1378   case PPCISD::Lo:              return "PPCISD::Lo";
1379   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1380   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1381   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1382   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1383   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1384   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1385   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1386   case PPCISD::SRL:             return "PPCISD::SRL";
1387   case PPCISD::SRA:             return "PPCISD::SRA";
1388   case PPCISD::SHL:             return "PPCISD::SHL";
1389   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1390   case PPCISD::CALL:            return "PPCISD::CALL";
1391   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1392   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1393   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1394   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1395   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1396   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1397   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1398   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1399   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1400   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1401   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1402   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1403   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1404   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1405   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1406   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1407     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1408   case PPCISD::ANDI_rec_1_EQ_BIT:
1409     return "PPCISD::ANDI_rec_1_EQ_BIT";
1410   case PPCISD::ANDI_rec_1_GT_BIT:
1411     return "PPCISD::ANDI_rec_1_GT_BIT";
1412   case PPCISD::VCMP:            return "PPCISD::VCMP";
1413   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1414   case PPCISD::LBRX:            return "PPCISD::LBRX";
1415   case PPCISD::STBRX:           return "PPCISD::STBRX";
1416   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1417   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1418   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1419   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1420   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1421   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1422   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1423   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1424   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1425   case PPCISD::ST_VSR_SCAL_INT:
1426                                 return "PPCISD::ST_VSR_SCAL_INT";
1427   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1428   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1429   case PPCISD::BDZ:             return "PPCISD::BDZ";
1430   case PPCISD::MFFS:            return "PPCISD::MFFS";
1431   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1432   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1433   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1434   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1435   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1436   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1437   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1438   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1439   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1440   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1441   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1442   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1443   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1444   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1445   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1446   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1447   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1448   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1449   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1450   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1451   case PPCISD::SC:              return "PPCISD::SC";
1452   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1453   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1454   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1455   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1456   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1457   case PPCISD::VABSD:           return "PPCISD::VABSD";
1458   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1459   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1460   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1461   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1462   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1463   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1464   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1465   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1466   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1467   }
1468   return nullptr;
1469 }
1470 
1471 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1472                                           EVT VT) const {
1473   if (!VT.isVector())
1474     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1475 
1476   return VT.changeVectorElementTypeToInteger();
1477 }
1478 
1479 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1480   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1481   return true;
1482 }
1483 
1484 //===----------------------------------------------------------------------===//
1485 // Node matching predicates, for use by the tblgen matching code.
1486 //===----------------------------------------------------------------------===//
1487 
1488 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1489 static bool isFloatingPointZero(SDValue Op) {
1490   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1491     return CFP->getValueAPF().isZero();
1492   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1493     // Maybe this has already been legalized into the constant pool?
1494     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1495       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1496         return CFP->getValueAPF().isZero();
1497   }
1498   return false;
1499 }
1500 
1501 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1502 /// true if Op is undef or if it matches the specified value.
1503 static bool isConstantOrUndef(int Op, int Val) {
1504   return Op < 0 || Op == Val;
1505 }
1506 
1507 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1508 /// VPKUHUM instruction.
1509 /// The ShuffleKind distinguishes between big-endian operations with
1510 /// two different inputs (0), either-endian operations with two identical
1511 /// inputs (1), and little-endian operations with two different inputs (2).
1512 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1513 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1514                                SelectionDAG &DAG) {
1515   bool IsLE = DAG.getDataLayout().isLittleEndian();
1516   if (ShuffleKind == 0) {
1517     if (IsLE)
1518       return false;
1519     for (unsigned i = 0; i != 16; ++i)
1520       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1521         return false;
1522   } else if (ShuffleKind == 2) {
1523     if (!IsLE)
1524       return false;
1525     for (unsigned i = 0; i != 16; ++i)
1526       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1527         return false;
1528   } else if (ShuffleKind == 1) {
1529     unsigned j = IsLE ? 0 : 1;
1530     for (unsigned i = 0; i != 8; ++i)
1531       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1532           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1533         return false;
1534   }
1535   return true;
1536 }
1537 
1538 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1539 /// VPKUWUM instruction.
1540 /// The ShuffleKind distinguishes between big-endian operations with
1541 /// two different inputs (0), either-endian operations with two identical
1542 /// inputs (1), and little-endian operations with two different inputs (2).
1543 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1544 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1545                                SelectionDAG &DAG) {
1546   bool IsLE = DAG.getDataLayout().isLittleEndian();
1547   if (ShuffleKind == 0) {
1548     if (IsLE)
1549       return false;
1550     for (unsigned i = 0; i != 16; i += 2)
1551       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1552           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1553         return false;
1554   } else if (ShuffleKind == 2) {
1555     if (!IsLE)
1556       return false;
1557     for (unsigned i = 0; i != 16; i += 2)
1558       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1559           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1560         return false;
1561   } else if (ShuffleKind == 1) {
1562     unsigned j = IsLE ? 0 : 2;
1563     for (unsigned i = 0; i != 8; i += 2)
1564       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1565           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1566           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1567           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1568         return false;
1569   }
1570   return true;
1571 }
1572 
1573 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1574 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1575 /// current subtarget.
1576 ///
1577 /// The ShuffleKind distinguishes between big-endian operations with
1578 /// two different inputs (0), either-endian operations with two identical
1579 /// inputs (1), and little-endian operations with two different inputs (2).
1580 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1581 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1582                                SelectionDAG &DAG) {
1583   const PPCSubtarget& Subtarget =
1584       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1585   if (!Subtarget.hasP8Vector())
1586     return false;
1587 
1588   bool IsLE = DAG.getDataLayout().isLittleEndian();
1589   if (ShuffleKind == 0) {
1590     if (IsLE)
1591       return false;
1592     for (unsigned i = 0; i != 16; i += 4)
1593       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1594           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1595           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1596           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1597         return false;
1598   } else if (ShuffleKind == 2) {
1599     if (!IsLE)
1600       return false;
1601     for (unsigned i = 0; i != 16; i += 4)
1602       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1603           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1604           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1605           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1606         return false;
1607   } else if (ShuffleKind == 1) {
1608     unsigned j = IsLE ? 0 : 4;
1609     for (unsigned i = 0; i != 8; i += 4)
1610       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1611           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1612           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1613           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1614           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1615           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1616           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1617           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1618         return false;
1619   }
1620   return true;
1621 }
1622 
1623 /// isVMerge - Common function, used to match vmrg* shuffles.
1624 ///
1625 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1626                      unsigned LHSStart, unsigned RHSStart) {
1627   if (N->getValueType(0) != MVT::v16i8)
1628     return false;
1629   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1630          "Unsupported merge size!");
1631 
1632   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1633     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1634       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1635                              LHSStart+j+i*UnitSize) ||
1636           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1637                              RHSStart+j+i*UnitSize))
1638         return false;
1639     }
1640   return true;
1641 }
1642 
1643 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1644 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1645 /// The ShuffleKind distinguishes between big-endian merges with two
1646 /// different inputs (0), either-endian merges with two identical inputs (1),
1647 /// and little-endian merges with two different inputs (2).  For the latter,
1648 /// the input operands are swapped (see PPCInstrAltivec.td).
1649 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1650                              unsigned ShuffleKind, SelectionDAG &DAG) {
1651   if (DAG.getDataLayout().isLittleEndian()) {
1652     if (ShuffleKind == 1) // unary
1653       return isVMerge(N, UnitSize, 0, 0);
1654     else if (ShuffleKind == 2) // swapped
1655       return isVMerge(N, UnitSize, 0, 16);
1656     else
1657       return false;
1658   } else {
1659     if (ShuffleKind == 1) // unary
1660       return isVMerge(N, UnitSize, 8, 8);
1661     else if (ShuffleKind == 0) // normal
1662       return isVMerge(N, UnitSize, 8, 24);
1663     else
1664       return false;
1665   }
1666 }
1667 
1668 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1669 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1670 /// The ShuffleKind distinguishes between big-endian merges with two
1671 /// different inputs (0), either-endian merges with two identical inputs (1),
1672 /// and little-endian merges with two different inputs (2).  For the latter,
1673 /// the input operands are swapped (see PPCInstrAltivec.td).
1674 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1675                              unsigned ShuffleKind, SelectionDAG &DAG) {
1676   if (DAG.getDataLayout().isLittleEndian()) {
1677     if (ShuffleKind == 1) // unary
1678       return isVMerge(N, UnitSize, 8, 8);
1679     else if (ShuffleKind == 2) // swapped
1680       return isVMerge(N, UnitSize, 8, 24);
1681     else
1682       return false;
1683   } else {
1684     if (ShuffleKind == 1) // unary
1685       return isVMerge(N, UnitSize, 0, 0);
1686     else if (ShuffleKind == 0) // normal
1687       return isVMerge(N, UnitSize, 0, 16);
1688     else
1689       return false;
1690   }
1691 }
1692 
1693 /**
1694  * Common function used to match vmrgew and vmrgow shuffles
1695  *
1696  * The indexOffset determines whether to look for even or odd words in
1697  * the shuffle mask. This is based on the of the endianness of the target
1698  * machine.
1699  *   - Little Endian:
1700  *     - Use offset of 0 to check for odd elements
1701  *     - Use offset of 4 to check for even elements
1702  *   - Big Endian:
1703  *     - Use offset of 0 to check for even elements
1704  *     - Use offset of 4 to check for odd elements
1705  * A detailed description of the vector element ordering for little endian and
1706  * big endian can be found at
1707  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1708  * Targeting your applications - what little endian and big endian IBM XL C/C++
1709  * compiler differences mean to you
1710  *
1711  * The mask to the shuffle vector instruction specifies the indices of the
1712  * elements from the two input vectors to place in the result. The elements are
1713  * numbered in array-access order, starting with the first vector. These vectors
1714  * are always of type v16i8, thus each vector will contain 16 elements of size
1715  * 8. More info on the shuffle vector can be found in the
1716  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1717  * Language Reference.
1718  *
1719  * The RHSStartValue indicates whether the same input vectors are used (unary)
1720  * or two different input vectors are used, based on the following:
1721  *   - If the instruction uses the same vector for both inputs, the range of the
1722  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1723  *     be 0.
1724  *   - If the instruction has two different vectors then the range of the
1725  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1726  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1727  *     to 31 specify elements in the second vector).
1728  *
1729  * \param[in] N The shuffle vector SD Node to analyze
1730  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1731  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1732  * vector to the shuffle_vector instruction
1733  * \return true iff this shuffle vector represents an even or odd word merge
1734  */
1735 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1736                      unsigned RHSStartValue) {
1737   if (N->getValueType(0) != MVT::v16i8)
1738     return false;
1739 
1740   for (unsigned i = 0; i < 2; ++i)
1741     for (unsigned j = 0; j < 4; ++j)
1742       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1743                              i*RHSStartValue+j+IndexOffset) ||
1744           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1745                              i*RHSStartValue+j+IndexOffset+8))
1746         return false;
1747   return true;
1748 }
1749 
1750 /**
1751  * Determine if the specified shuffle mask is suitable for the vmrgew or
1752  * vmrgow instructions.
1753  *
1754  * \param[in] N The shuffle vector SD Node to analyze
1755  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1756  * \param[in] ShuffleKind Identify the type of merge:
1757  *   - 0 = big-endian merge with two different inputs;
1758  *   - 1 = either-endian merge with two identical inputs;
1759  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1760  *     little-endian merges).
1761  * \param[in] DAG The current SelectionDAG
1762  * \return true iff this shuffle mask
1763  */
1764 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1765                               unsigned ShuffleKind, SelectionDAG &DAG) {
1766   if (DAG.getDataLayout().isLittleEndian()) {
1767     unsigned indexOffset = CheckEven ? 4 : 0;
1768     if (ShuffleKind == 1) // Unary
1769       return isVMerge(N, indexOffset, 0);
1770     else if (ShuffleKind == 2) // swapped
1771       return isVMerge(N, indexOffset, 16);
1772     else
1773       return false;
1774   }
1775   else {
1776     unsigned indexOffset = CheckEven ? 0 : 4;
1777     if (ShuffleKind == 1) // Unary
1778       return isVMerge(N, indexOffset, 0);
1779     else if (ShuffleKind == 0) // Normal
1780       return isVMerge(N, indexOffset, 16);
1781     else
1782       return false;
1783   }
1784   return false;
1785 }
1786 
1787 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1788 /// amount, otherwise return -1.
1789 /// The ShuffleKind distinguishes between big-endian operations with two
1790 /// different inputs (0), either-endian operations with two identical inputs
1791 /// (1), and little-endian operations with two different inputs (2).  For the
1792 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1793 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1794                              SelectionDAG &DAG) {
1795   if (N->getValueType(0) != MVT::v16i8)
1796     return -1;
1797 
1798   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1799 
1800   // Find the first non-undef value in the shuffle mask.
1801   unsigned i;
1802   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1803     /*search*/;
1804 
1805   if (i == 16) return -1;  // all undef.
1806 
1807   // Otherwise, check to see if the rest of the elements are consecutively
1808   // numbered from this value.
1809   unsigned ShiftAmt = SVOp->getMaskElt(i);
1810   if (ShiftAmt < i) return -1;
1811 
1812   ShiftAmt -= i;
1813   bool isLE = DAG.getDataLayout().isLittleEndian();
1814 
1815   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1816     // Check the rest of the elements to see if they are consecutive.
1817     for (++i; i != 16; ++i)
1818       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1819         return -1;
1820   } else if (ShuffleKind == 1) {
1821     // Check the rest of the elements to see if they are consecutive.
1822     for (++i; i != 16; ++i)
1823       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1824         return -1;
1825   } else
1826     return -1;
1827 
1828   if (isLE)
1829     ShiftAmt = 16 - ShiftAmt;
1830 
1831   return ShiftAmt;
1832 }
1833 
1834 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1835 /// specifies a splat of a single element that is suitable for input to
1836 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1837 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1838   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1839          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1840 
1841   // The consecutive indices need to specify an element, not part of two
1842   // different elements.  So abandon ship early if this isn't the case.
1843   if (N->getMaskElt(0) % EltSize != 0)
1844     return false;
1845 
1846   // This is a splat operation if each element of the permute is the same, and
1847   // if the value doesn't reference the second vector.
1848   unsigned ElementBase = N->getMaskElt(0);
1849 
1850   // FIXME: Handle UNDEF elements too!
1851   if (ElementBase >= 16)
1852     return false;
1853 
1854   // Check that the indices are consecutive, in the case of a multi-byte element
1855   // splatted with a v16i8 mask.
1856   for (unsigned i = 1; i != EltSize; ++i)
1857     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1858       return false;
1859 
1860   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1861     if (N->getMaskElt(i) < 0) continue;
1862     for (unsigned j = 0; j != EltSize; ++j)
1863       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1864         return false;
1865   }
1866   return true;
1867 }
1868 
1869 /// Check that the mask is shuffling N byte elements. Within each N byte
1870 /// element of the mask, the indices could be either in increasing or
1871 /// decreasing order as long as they are consecutive.
1872 /// \param[in] N the shuffle vector SD Node to analyze
1873 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1874 /// Word/DoubleWord/QuadWord).
1875 /// \param[in] StepLen the delta indices number among the N byte element, if
1876 /// the mask is in increasing/decreasing order then it is 1/-1.
1877 /// \return true iff the mask is shuffling N byte elements.
1878 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1879                                    int StepLen) {
1880   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1881          "Unexpected element width.");
1882   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1883 
1884   unsigned NumOfElem = 16 / Width;
1885   unsigned MaskVal[16]; //  Width is never greater than 16
1886   for (unsigned i = 0; i < NumOfElem; ++i) {
1887     MaskVal[0] = N->getMaskElt(i * Width);
1888     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1889       return false;
1890     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1891       return false;
1892     }
1893 
1894     for (unsigned int j = 1; j < Width; ++j) {
1895       MaskVal[j] = N->getMaskElt(i * Width + j);
1896       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1897         return false;
1898       }
1899     }
1900   }
1901 
1902   return true;
1903 }
1904 
1905 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1906                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1907   if (!isNByteElemShuffleMask(N, 4, 1))
1908     return false;
1909 
1910   // Now we look at mask elements 0,4,8,12
1911   unsigned M0 = N->getMaskElt(0) / 4;
1912   unsigned M1 = N->getMaskElt(4) / 4;
1913   unsigned M2 = N->getMaskElt(8) / 4;
1914   unsigned M3 = N->getMaskElt(12) / 4;
1915   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1916   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1917 
1918   // Below, let H and L be arbitrary elements of the shuffle mask
1919   // where H is in the range [4,7] and L is in the range [0,3].
1920   // H, 1, 2, 3 or L, 5, 6, 7
1921   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1922       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1923     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1924     InsertAtByte = IsLE ? 12 : 0;
1925     Swap = M0 < 4;
1926     return true;
1927   }
1928   // 0, H, 2, 3 or 4, L, 6, 7
1929   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1930       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1931     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1932     InsertAtByte = IsLE ? 8 : 4;
1933     Swap = M1 < 4;
1934     return true;
1935   }
1936   // 0, 1, H, 3 or 4, 5, L, 7
1937   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1938       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1939     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1940     InsertAtByte = IsLE ? 4 : 8;
1941     Swap = M2 < 4;
1942     return true;
1943   }
1944   // 0, 1, 2, H or 4, 5, 6, L
1945   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1946       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1947     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1948     InsertAtByte = IsLE ? 0 : 12;
1949     Swap = M3 < 4;
1950     return true;
1951   }
1952 
1953   // If both vector operands for the shuffle are the same vector, the mask will
1954   // contain only elements from the first one and the second one will be undef.
1955   if (N->getOperand(1).isUndef()) {
1956     ShiftElts = 0;
1957     Swap = true;
1958     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1959     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1960       InsertAtByte = IsLE ? 12 : 0;
1961       return true;
1962     }
1963     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1964       InsertAtByte = IsLE ? 8 : 4;
1965       return true;
1966     }
1967     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1968       InsertAtByte = IsLE ? 4 : 8;
1969       return true;
1970     }
1971     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1972       InsertAtByte = IsLE ? 0 : 12;
1973       return true;
1974     }
1975   }
1976 
1977   return false;
1978 }
1979 
1980 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1981                                bool &Swap, bool IsLE) {
1982   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1983   // Ensure each byte index of the word is consecutive.
1984   if (!isNByteElemShuffleMask(N, 4, 1))
1985     return false;
1986 
1987   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1988   unsigned M0 = N->getMaskElt(0) / 4;
1989   unsigned M1 = N->getMaskElt(4) / 4;
1990   unsigned M2 = N->getMaskElt(8) / 4;
1991   unsigned M3 = N->getMaskElt(12) / 4;
1992 
1993   // If both vector operands for the shuffle are the same vector, the mask will
1994   // contain only elements from the first one and the second one will be undef.
1995   if (N->getOperand(1).isUndef()) {
1996     assert(M0 < 4 && "Indexing into an undef vector?");
1997     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1998       return false;
1999 
2000     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2001     Swap = false;
2002     return true;
2003   }
2004 
2005   // Ensure each word index of the ShuffleVector Mask is consecutive.
2006   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2007     return false;
2008 
2009   if (IsLE) {
2010     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2011       // Input vectors don't need to be swapped if the leading element
2012       // of the result is one of the 3 left elements of the second vector
2013       // (or if there is no shift to be done at all).
2014       Swap = false;
2015       ShiftElts = (8 - M0) % 8;
2016     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2017       // Input vectors need to be swapped if the leading element
2018       // of the result is one of the 3 left elements of the first vector
2019       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2020       Swap = true;
2021       ShiftElts = (4 - M0) % 4;
2022     }
2023 
2024     return true;
2025   } else {                                          // BE
2026     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2027       // Input vectors don't need to be swapped if the leading element
2028       // of the result is one of the 4 elements of the first vector.
2029       Swap = false;
2030       ShiftElts = M0;
2031     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2032       // Input vectors need to be swapped if the leading element
2033       // of the result is one of the 4 elements of the right vector.
2034       Swap = true;
2035       ShiftElts = M0 - 4;
2036     }
2037 
2038     return true;
2039   }
2040 }
2041 
2042 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2043   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2044 
2045   if (!isNByteElemShuffleMask(N, Width, -1))
2046     return false;
2047 
2048   for (int i = 0; i < 16; i += Width)
2049     if (N->getMaskElt(i) != i + Width - 1)
2050       return false;
2051 
2052   return true;
2053 }
2054 
2055 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2056   return isXXBRShuffleMaskHelper(N, 2);
2057 }
2058 
2059 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2060   return isXXBRShuffleMaskHelper(N, 4);
2061 }
2062 
2063 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2064   return isXXBRShuffleMaskHelper(N, 8);
2065 }
2066 
2067 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2068   return isXXBRShuffleMaskHelper(N, 16);
2069 }
2070 
2071 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2072 /// if the inputs to the instruction should be swapped and set \p DM to the
2073 /// value for the immediate.
2074 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2075 /// AND element 0 of the result comes from the first input (LE) or second input
2076 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2077 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2078 /// mask.
2079 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2080                                bool &Swap, bool IsLE) {
2081   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2082 
2083   // Ensure each byte index of the double word is consecutive.
2084   if (!isNByteElemShuffleMask(N, 8, 1))
2085     return false;
2086 
2087   unsigned M0 = N->getMaskElt(0) / 8;
2088   unsigned M1 = N->getMaskElt(8) / 8;
2089   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2090 
2091   // If both vector operands for the shuffle are the same vector, the mask will
2092   // contain only elements from the first one and the second one will be undef.
2093   if (N->getOperand(1).isUndef()) {
2094     if ((M0 | M1) < 2) {
2095       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2096       Swap = false;
2097       return true;
2098     } else
2099       return false;
2100   }
2101 
2102   if (IsLE) {
2103     if (M0 > 1 && M1 < 2) {
2104       Swap = false;
2105     } else if (M0 < 2 && M1 > 1) {
2106       M0 = (M0 + 2) % 4;
2107       M1 = (M1 + 2) % 4;
2108       Swap = true;
2109     } else
2110       return false;
2111 
2112     // Note: if control flow comes here that means Swap is already set above
2113     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2114     return true;
2115   } else { // BE
2116     if (M0 < 2 && M1 > 1) {
2117       Swap = false;
2118     } else if (M0 > 1 && M1 < 2) {
2119       M0 = (M0 + 2) % 4;
2120       M1 = (M1 + 2) % 4;
2121       Swap = true;
2122     } else
2123       return false;
2124 
2125     // Note: if control flow comes here that means Swap is already set above
2126     DM = (M0 << 1) + (M1 & 1);
2127     return true;
2128   }
2129 }
2130 
2131 
2132 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2133 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2134 /// elements are counted from the left of the vector register).
2135 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2136                                          SelectionDAG &DAG) {
2137   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2138   assert(isSplatShuffleMask(SVOp, EltSize));
2139   if (DAG.getDataLayout().isLittleEndian())
2140     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2141   else
2142     return SVOp->getMaskElt(0) / EltSize;
2143 }
2144 
2145 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2146 /// by using a vspltis[bhw] instruction of the specified element size, return
2147 /// the constant being splatted.  The ByteSize field indicates the number of
2148 /// bytes of each element [124] -> [bhw].
2149 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2150   SDValue OpVal(nullptr, 0);
2151 
2152   // If ByteSize of the splat is bigger than the element size of the
2153   // build_vector, then we have a case where we are checking for a splat where
2154   // multiple elements of the buildvector are folded together into a single
2155   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2156   unsigned EltSize = 16/N->getNumOperands();
2157   if (EltSize < ByteSize) {
2158     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2159     SDValue UniquedVals[4];
2160     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2161 
2162     // See if all of the elements in the buildvector agree across.
2163     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2164       if (N->getOperand(i).isUndef()) continue;
2165       // If the element isn't a constant, bail fully out.
2166       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2167 
2168       if (!UniquedVals[i&(Multiple-1)].getNode())
2169         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2170       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2171         return SDValue();  // no match.
2172     }
2173 
2174     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2175     // either constant or undef values that are identical for each chunk.  See
2176     // if these chunks can form into a larger vspltis*.
2177 
2178     // Check to see if all of the leading entries are either 0 or -1.  If
2179     // neither, then this won't fit into the immediate field.
2180     bool LeadingZero = true;
2181     bool LeadingOnes = true;
2182     for (unsigned i = 0; i != Multiple-1; ++i) {
2183       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2184 
2185       LeadingZero &= isNullConstant(UniquedVals[i]);
2186       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2187     }
2188     // Finally, check the least significant entry.
2189     if (LeadingZero) {
2190       if (!UniquedVals[Multiple-1].getNode())
2191         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2192       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2193       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2194         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2195     }
2196     if (LeadingOnes) {
2197       if (!UniquedVals[Multiple-1].getNode())
2198         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2199       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2200       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2201         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2202     }
2203 
2204     return SDValue();
2205   }
2206 
2207   // Check to see if this buildvec has a single non-undef value in its elements.
2208   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2209     if (N->getOperand(i).isUndef()) continue;
2210     if (!OpVal.getNode())
2211       OpVal = N->getOperand(i);
2212     else if (OpVal != N->getOperand(i))
2213       return SDValue();
2214   }
2215 
2216   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2217 
2218   unsigned ValSizeInBytes = EltSize;
2219   uint64_t Value = 0;
2220   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2221     Value = CN->getZExtValue();
2222   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2223     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2224     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2225   }
2226 
2227   // If the splat value is larger than the element value, then we can never do
2228   // this splat.  The only case that we could fit the replicated bits into our
2229   // immediate field for would be zero, and we prefer to use vxor for it.
2230   if (ValSizeInBytes < ByteSize) return SDValue();
2231 
2232   // If the element value is larger than the splat value, check if it consists
2233   // of a repeated bit pattern of size ByteSize.
2234   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2235     return SDValue();
2236 
2237   // Properly sign extend the value.
2238   int MaskVal = SignExtend32(Value, ByteSize * 8);
2239 
2240   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2241   if (MaskVal == 0) return SDValue();
2242 
2243   // Finally, if this value fits in a 5 bit sext field, return it
2244   if (SignExtend32<5>(MaskVal) == MaskVal)
2245     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2246   return SDValue();
2247 }
2248 
2249 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2250 /// amount, otherwise return -1.
2251 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2252   EVT VT = N->getValueType(0);
2253   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2254     return -1;
2255 
2256   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2257 
2258   // Find the first non-undef value in the shuffle mask.
2259   unsigned i;
2260   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2261     /*search*/;
2262 
2263   if (i == 4) return -1;  // all undef.
2264 
2265   // Otherwise, check to see if the rest of the elements are consecutively
2266   // numbered from this value.
2267   unsigned ShiftAmt = SVOp->getMaskElt(i);
2268   if (ShiftAmt < i) return -1;
2269   ShiftAmt -= i;
2270 
2271   // Check the rest of the elements to see if they are consecutive.
2272   for (++i; i != 4; ++i)
2273     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2274       return -1;
2275 
2276   return ShiftAmt;
2277 }
2278 
2279 //===----------------------------------------------------------------------===//
2280 //  Addressing Mode Selection
2281 //===----------------------------------------------------------------------===//
2282 
2283 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2284 /// or 64-bit immediate, and if the value can be accurately represented as a
2285 /// sign extension from a 16-bit value.  If so, this returns true and the
2286 /// immediate.
2287 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2288   if (!isa<ConstantSDNode>(N))
2289     return false;
2290 
2291   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2292   if (N->getValueType(0) == MVT::i32)
2293     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2294   else
2295     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2296 }
2297 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2298   return isIntS16Immediate(Op.getNode(), Imm);
2299 }
2300 
2301 
2302 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2303 /// be represented as an indexed [r+r] operation.
2304 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2305                                                SDValue &Index,
2306                                                SelectionDAG &DAG) const {
2307   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2308       UI != E; ++UI) {
2309     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2310       if (Memop->getMemoryVT() == MVT::f64) {
2311           Base = N.getOperand(0);
2312           Index = N.getOperand(1);
2313           return true;
2314       }
2315     }
2316   }
2317   return false;
2318 }
2319 
2320 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2321 /// can be represented as an indexed [r+r] operation.  Returns false if it
2322 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2323 /// non-zero and N can be represented by a base register plus a signed 16-bit
2324 /// displacement, make a more precise judgement by checking (displacement % \p
2325 /// EncodingAlignment).
2326 bool PPCTargetLowering::SelectAddressRegReg(
2327     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2328     MaybeAlign EncodingAlignment) const {
2329   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2330   // a [pc+imm].
2331   if (SelectAddressPCRel(N, Base))
2332     return false;
2333 
2334   int16_t Imm = 0;
2335   if (N.getOpcode() == ISD::ADD) {
2336     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2337     // SPE load/store can only handle 8-bit offsets.
2338     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2339         return true;
2340     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2341         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2342       return false; // r+i
2343     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2344       return false;    // r+i
2345 
2346     Base = N.getOperand(0);
2347     Index = N.getOperand(1);
2348     return true;
2349   } else if (N.getOpcode() == ISD::OR) {
2350     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2351         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2352       return false; // r+i can fold it if we can.
2353 
2354     // If this is an or of disjoint bitfields, we can codegen this as an add
2355     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2356     // disjoint.
2357     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2358 
2359     if (LHSKnown.Zero.getBoolValue()) {
2360       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2361       // If all of the bits are known zero on the LHS or RHS, the add won't
2362       // carry.
2363       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2364         Base = N.getOperand(0);
2365         Index = N.getOperand(1);
2366         return true;
2367       }
2368     }
2369   }
2370 
2371   return false;
2372 }
2373 
2374 // If we happen to be doing an i64 load or store into a stack slot that has
2375 // less than a 4-byte alignment, then the frame-index elimination may need to
2376 // use an indexed load or store instruction (because the offset may not be a
2377 // multiple of 4). The extra register needed to hold the offset comes from the
2378 // register scavenger, and it is possible that the scavenger will need to use
2379 // an emergency spill slot. As a result, we need to make sure that a spill slot
2380 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2381 // stack slot.
2382 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2383   // FIXME: This does not handle the LWA case.
2384   if (VT != MVT::i64)
2385     return;
2386 
2387   // NOTE: We'll exclude negative FIs here, which come from argument
2388   // lowering, because there are no known test cases triggering this problem
2389   // using packed structures (or similar). We can remove this exclusion if
2390   // we find such a test case. The reason why this is so test-case driven is
2391   // because this entire 'fixup' is only to prevent crashes (from the
2392   // register scavenger) on not-really-valid inputs. For example, if we have:
2393   //   %a = alloca i1
2394   //   %b = bitcast i1* %a to i64*
2395   //   store i64* a, i64 b
2396   // then the store should really be marked as 'align 1', but is not. If it
2397   // were marked as 'align 1' then the indexed form would have been
2398   // instruction-selected initially, and the problem this 'fixup' is preventing
2399   // won't happen regardless.
2400   if (FrameIdx < 0)
2401     return;
2402 
2403   MachineFunction &MF = DAG.getMachineFunction();
2404   MachineFrameInfo &MFI = MF.getFrameInfo();
2405 
2406   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2407     return;
2408 
2409   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2410   FuncInfo->setHasNonRISpills();
2411 }
2412 
2413 /// Returns true if the address N can be represented by a base register plus
2414 /// a signed 16-bit displacement [r+imm], and if it is not better
2415 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2416 /// displacements that are multiples of that value.
2417 bool PPCTargetLowering::SelectAddressRegImm(
2418     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2419     MaybeAlign EncodingAlignment) const {
2420   // FIXME dl should come from parent load or store, not from address
2421   SDLoc dl(N);
2422 
2423   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2424   // a [pc+imm].
2425   if (SelectAddressPCRel(N, Base))
2426     return false;
2427 
2428   // If this can be more profitably realized as r+r, fail.
2429   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2430     return false;
2431 
2432   if (N.getOpcode() == ISD::ADD) {
2433     int16_t imm = 0;
2434     if (isIntS16Immediate(N.getOperand(1), imm) &&
2435         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2436       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2437       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2438         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2439         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2440       } else {
2441         Base = N.getOperand(0);
2442       }
2443       return true; // [r+i]
2444     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2445       // Match LOAD (ADD (X, Lo(G))).
2446       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2447              && "Cannot handle constant offsets yet!");
2448       Disp = N.getOperand(1).getOperand(0);  // The global address.
2449       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2450              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2451              Disp.getOpcode() == ISD::TargetConstantPool ||
2452              Disp.getOpcode() == ISD::TargetJumpTable);
2453       Base = N.getOperand(0);
2454       return true;  // [&g+r]
2455     }
2456   } else if (N.getOpcode() == ISD::OR) {
2457     int16_t imm = 0;
2458     if (isIntS16Immediate(N.getOperand(1), imm) &&
2459         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2460       // If this is an or of disjoint bitfields, we can codegen this as an add
2461       // (for better address arithmetic) if the LHS and RHS of the OR are
2462       // provably disjoint.
2463       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2464 
2465       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2466         // If all of the bits are known zero on the LHS or RHS, the add won't
2467         // carry.
2468         if (FrameIndexSDNode *FI =
2469               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2470           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2471           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2472         } else {
2473           Base = N.getOperand(0);
2474         }
2475         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2476         return true;
2477       }
2478     }
2479   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2480     // Loading from a constant address.
2481 
2482     // If this address fits entirely in a 16-bit sext immediate field, codegen
2483     // this as "d, 0"
2484     int16_t Imm;
2485     if (isIntS16Immediate(CN, Imm) &&
2486         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2487       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2488       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2489                              CN->getValueType(0));
2490       return true;
2491     }
2492 
2493     // Handle 32-bit sext immediates with LIS + addr mode.
2494     if ((CN->getValueType(0) == MVT::i32 ||
2495          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2496         (!EncodingAlignment ||
2497          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2498       int Addr = (int)CN->getZExtValue();
2499 
2500       // Otherwise, break this down into an LIS + disp.
2501       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2502 
2503       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2504                                    MVT::i32);
2505       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2506       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2507       return true;
2508     }
2509   }
2510 
2511   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2512   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2513     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2514     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2515   } else
2516     Base = N;
2517   return true;      // [r+0]
2518 }
2519 
2520 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2521 /// represented as an indexed [r+r] operation.
2522 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2523                                                 SDValue &Index,
2524                                                 SelectionDAG &DAG) const {
2525   // Check to see if we can easily represent this as an [r+r] address.  This
2526   // will fail if it thinks that the address is more profitably represented as
2527   // reg+imm, e.g. where imm = 0.
2528   if (SelectAddressRegReg(N, Base, Index, DAG))
2529     return true;
2530 
2531   // If the address is the result of an add, we will utilize the fact that the
2532   // address calculation includes an implicit add.  However, we can reduce
2533   // register pressure if we do not materialize a constant just for use as the
2534   // index register.  We only get rid of the add if it is not an add of a
2535   // value and a 16-bit signed constant and both have a single use.
2536   int16_t imm = 0;
2537   if (N.getOpcode() == ISD::ADD &&
2538       (!isIntS16Immediate(N.getOperand(1), imm) ||
2539        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2540     Base = N.getOperand(0);
2541     Index = N.getOperand(1);
2542     return true;
2543   }
2544 
2545   // Otherwise, do it the hard way, using R0 as the base register.
2546   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2547                          N.getValueType());
2548   Index = N;
2549   return true;
2550 }
2551 
2552 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2553   Ty *PCRelCand = dyn_cast<Ty>(N);
2554   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2555 }
2556 
2557 /// Returns true if this address is a PC Relative address.
2558 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2559 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2560 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2561   // This is a materialize PC Relative node. Always select this as PC Relative.
2562   Base = N;
2563   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2564     return true;
2565   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2566       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2567       isValidPCRelNode<JumpTableSDNode>(N) ||
2568       isValidPCRelNode<BlockAddressSDNode>(N))
2569     return true;
2570   return false;
2571 }
2572 
2573 /// Returns true if we should use a direct load into vector instruction
2574 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2575 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2576 
2577   // If there are any other uses other than scalar to vector, then we should
2578   // keep it as a scalar load -> direct move pattern to prevent multiple
2579   // loads.
2580   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2581   if (!LD)
2582     return false;
2583 
2584   EVT MemVT = LD->getMemoryVT();
2585   if (!MemVT.isSimple())
2586     return false;
2587   switch(MemVT.getSimpleVT().SimpleTy) {
2588   case MVT::i64:
2589     break;
2590   case MVT::i32:
2591     if (!ST.hasP8Vector())
2592       return false;
2593     break;
2594   case MVT::i16:
2595   case MVT::i8:
2596     if (!ST.hasP9Vector())
2597       return false;
2598     break;
2599   default:
2600     return false;
2601   }
2602 
2603   SDValue LoadedVal(N, 0);
2604   if (!LoadedVal.hasOneUse())
2605     return false;
2606 
2607   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2608        UI != UE; ++UI)
2609     if (UI.getUse().get().getResNo() == 0 &&
2610         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2611         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2612       return false;
2613 
2614   return true;
2615 }
2616 
2617 /// getPreIndexedAddressParts - returns true by value, base pointer and
2618 /// offset pointer and addressing mode by reference if the node's address
2619 /// can be legally represented as pre-indexed load / store address.
2620 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2621                                                   SDValue &Offset,
2622                                                   ISD::MemIndexedMode &AM,
2623                                                   SelectionDAG &DAG) const {
2624   if (DisablePPCPreinc) return false;
2625 
2626   bool isLoad = true;
2627   SDValue Ptr;
2628   EVT VT;
2629   unsigned Alignment;
2630   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2631     Ptr = LD->getBasePtr();
2632     VT = LD->getMemoryVT();
2633     Alignment = LD->getAlignment();
2634   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2635     Ptr = ST->getBasePtr();
2636     VT  = ST->getMemoryVT();
2637     Alignment = ST->getAlignment();
2638     isLoad = false;
2639   } else
2640     return false;
2641 
2642   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2643   // instructions because we can fold these into a more efficient instruction
2644   // instead, (such as LXSD).
2645   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2646     return false;
2647   }
2648 
2649   // PowerPC doesn't have preinc load/store instructions for vectors
2650   if (VT.isVector())
2651     return false;
2652 
2653   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2654     // Common code will reject creating a pre-inc form if the base pointer
2655     // is a frame index, or if N is a store and the base pointer is either
2656     // the same as or a predecessor of the value being stored.  Check for
2657     // those situations here, and try with swapped Base/Offset instead.
2658     bool Swap = false;
2659 
2660     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2661       Swap = true;
2662     else if (!isLoad) {
2663       SDValue Val = cast<StoreSDNode>(N)->getValue();
2664       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2665         Swap = true;
2666     }
2667 
2668     if (Swap)
2669       std::swap(Base, Offset);
2670 
2671     AM = ISD::PRE_INC;
2672     return true;
2673   }
2674 
2675   // LDU/STU can only handle immediates that are a multiple of 4.
2676   if (VT != MVT::i64) {
2677     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2678       return false;
2679   } else {
2680     // LDU/STU need an address with at least 4-byte alignment.
2681     if (Alignment < 4)
2682       return false;
2683 
2684     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2685       return false;
2686   }
2687 
2688   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2689     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2690     // sext i32 to i64 when addr mode is r+i.
2691     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2692         LD->getExtensionType() == ISD::SEXTLOAD &&
2693         isa<ConstantSDNode>(Offset))
2694       return false;
2695   }
2696 
2697   AM = ISD::PRE_INC;
2698   return true;
2699 }
2700 
2701 //===----------------------------------------------------------------------===//
2702 //  LowerOperation implementation
2703 //===----------------------------------------------------------------------===//
2704 
2705 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2706 /// and LoOpFlags to the target MO flags.
2707 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2708                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2709                                const GlobalValue *GV = nullptr) {
2710   HiOpFlags = PPCII::MO_HA;
2711   LoOpFlags = PPCII::MO_LO;
2712 
2713   // Don't use the pic base if not in PIC relocation model.
2714   if (IsPIC) {
2715     HiOpFlags |= PPCII::MO_PIC_FLAG;
2716     LoOpFlags |= PPCII::MO_PIC_FLAG;
2717   }
2718 }
2719 
2720 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2721                              SelectionDAG &DAG) {
2722   SDLoc DL(HiPart);
2723   EVT PtrVT = HiPart.getValueType();
2724   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2725 
2726   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2727   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2728 
2729   // With PIC, the first instruction is actually "GR+hi(&G)".
2730   if (isPIC)
2731     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2732                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2733 
2734   // Generate non-pic code that has direct accesses to the constant pool.
2735   // The address of the global is just (hi(&g)+lo(&g)).
2736   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2737 }
2738 
2739 static void setUsesTOCBasePtr(MachineFunction &MF) {
2740   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2741   FuncInfo->setUsesTOCBasePtr();
2742 }
2743 
2744 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2745   setUsesTOCBasePtr(DAG.getMachineFunction());
2746 }
2747 
2748 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2749                                        SDValue GA) const {
2750   const bool Is64Bit = Subtarget.isPPC64();
2751   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2752   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2753                         : Subtarget.isAIXABI()
2754                               ? DAG.getRegister(PPC::R2, VT)
2755                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2756   SDValue Ops[] = { GA, Reg };
2757   return DAG.getMemIntrinsicNode(
2758       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2759       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2760       MachineMemOperand::MOLoad);
2761 }
2762 
2763 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2764                                              SelectionDAG &DAG) const {
2765   EVT PtrVT = Op.getValueType();
2766   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2767   const Constant *C = CP->getConstVal();
2768 
2769   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2770   // The actual address of the GlobalValue is stored in the TOC.
2771   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2772     if (Subtarget.isUsingPCRelativeCalls()) {
2773       SDLoc DL(CP);
2774       EVT Ty = getPointerTy(DAG.getDataLayout());
2775       SDValue ConstPool = DAG.getTargetConstantPool(
2776           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2777       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2778     }
2779     setUsesTOCBasePtr(DAG);
2780     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2781     return getTOCEntry(DAG, SDLoc(CP), GA);
2782   }
2783 
2784   unsigned MOHiFlag, MOLoFlag;
2785   bool IsPIC = isPositionIndependent();
2786   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2787 
2788   if (IsPIC && Subtarget.isSVR4ABI()) {
2789     SDValue GA =
2790         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2791     return getTOCEntry(DAG, SDLoc(CP), GA);
2792   }
2793 
2794   SDValue CPIHi =
2795       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2796   SDValue CPILo =
2797       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2798   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2799 }
2800 
2801 // For 64-bit PowerPC, prefer the more compact relative encodings.
2802 // This trades 32 bits per jump table entry for one or two instructions
2803 // on the jump site.
2804 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2805   if (isJumpTableRelative())
2806     return MachineJumpTableInfo::EK_LabelDifference32;
2807 
2808   return TargetLowering::getJumpTableEncoding();
2809 }
2810 
2811 bool PPCTargetLowering::isJumpTableRelative() const {
2812   if (UseAbsoluteJumpTables)
2813     return false;
2814   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2815     return true;
2816   return TargetLowering::isJumpTableRelative();
2817 }
2818 
2819 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2820                                                     SelectionDAG &DAG) const {
2821   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2822     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2823 
2824   switch (getTargetMachine().getCodeModel()) {
2825   case CodeModel::Small:
2826   case CodeModel::Medium:
2827     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2828   default:
2829     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2830                        getPointerTy(DAG.getDataLayout()));
2831   }
2832 }
2833 
2834 const MCExpr *
2835 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2836                                                 unsigned JTI,
2837                                                 MCContext &Ctx) const {
2838   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2839     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2840 
2841   switch (getTargetMachine().getCodeModel()) {
2842   case CodeModel::Small:
2843   case CodeModel::Medium:
2844     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2845   default:
2846     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2847   }
2848 }
2849 
2850 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2851   EVT PtrVT = Op.getValueType();
2852   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2853 
2854   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2855   if (Subtarget.isUsingPCRelativeCalls()) {
2856     SDLoc DL(JT);
2857     EVT Ty = getPointerTy(DAG.getDataLayout());
2858     SDValue GA =
2859         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2860     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2861     return MatAddr;
2862   }
2863 
2864   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2865   // The actual address of the GlobalValue is stored in the TOC.
2866   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2867     setUsesTOCBasePtr(DAG);
2868     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2869     return getTOCEntry(DAG, SDLoc(JT), GA);
2870   }
2871 
2872   unsigned MOHiFlag, MOLoFlag;
2873   bool IsPIC = isPositionIndependent();
2874   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2875 
2876   if (IsPIC && Subtarget.isSVR4ABI()) {
2877     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2878                                         PPCII::MO_PIC_FLAG);
2879     return getTOCEntry(DAG, SDLoc(GA), GA);
2880   }
2881 
2882   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2883   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2884   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2885 }
2886 
2887 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2888                                              SelectionDAG &DAG) const {
2889   EVT PtrVT = Op.getValueType();
2890   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2891   const BlockAddress *BA = BASDN->getBlockAddress();
2892 
2893   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2894   if (Subtarget.isUsingPCRelativeCalls()) {
2895     SDLoc DL(BASDN);
2896     EVT Ty = getPointerTy(DAG.getDataLayout());
2897     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
2898                                            PPCII::MO_PCREL_FLAG);
2899     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2900     return MatAddr;
2901   }
2902 
2903   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2904   // The actual BlockAddress is stored in the TOC.
2905   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2906     setUsesTOCBasePtr(DAG);
2907     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2908     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2909   }
2910 
2911   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2912   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2913     return getTOCEntry(
2914         DAG, SDLoc(BASDN),
2915         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2916 
2917   unsigned MOHiFlag, MOLoFlag;
2918   bool IsPIC = isPositionIndependent();
2919   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2920   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2921   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2922   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2923 }
2924 
2925 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2926                                               SelectionDAG &DAG) const {
2927   // FIXME: TLS addresses currently use medium model code sequences,
2928   // which is the most useful form.  Eventually support for small and
2929   // large models could be added if users need it, at the cost of
2930   // additional complexity.
2931   if (Subtarget.isUsingPCRelativeCalls() && !EnablePPCPCRelTLS)
2932     report_fatal_error("Thread local storage is not supported with pc-relative"
2933                        " addressing - please compile with -mno-pcrel");
2934   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2935   if (DAG.getTarget().useEmulatedTLS())
2936     return LowerToTLSEmulatedModel(GA, DAG);
2937 
2938   SDLoc dl(GA);
2939   const GlobalValue *GV = GA->getGlobal();
2940   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2941   bool is64bit = Subtarget.isPPC64();
2942   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2943   PICLevel::Level picLevel = M->getPICLevel();
2944 
2945   const TargetMachine &TM = getTargetMachine();
2946   TLSModel::Model Model = TM.getTLSModel(GV);
2947 
2948   if (Model == TLSModel::LocalExec) {
2949     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2950                                                PPCII::MO_TPREL_HA);
2951     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2952                                                PPCII::MO_TPREL_LO);
2953     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2954                              : DAG.getRegister(PPC::R2, MVT::i32);
2955 
2956     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2957     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2958   }
2959 
2960   if (Model == TLSModel::InitialExec) {
2961     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2962     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2963                                                 PPCII::MO_TLS);
2964     SDValue GOTPtr;
2965     if (is64bit) {
2966       setUsesTOCBasePtr(DAG);
2967       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2968       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2969                            PtrVT, GOTReg, TGA);
2970     } else {
2971       if (!TM.isPositionIndependent())
2972         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2973       else if (picLevel == PICLevel::SmallPIC)
2974         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2975       else
2976         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2977     }
2978     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2979                                    PtrVT, TGA, GOTPtr);
2980     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2981   }
2982 
2983   if (Model == TLSModel::GeneralDynamic) {
2984     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2985     SDValue GOTPtr;
2986     if (is64bit) {
2987       setUsesTOCBasePtr(DAG);
2988       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2989       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2990                                    GOTReg, TGA);
2991     } else {
2992       if (picLevel == PICLevel::SmallPIC)
2993         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2994       else
2995         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2996     }
2997     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2998                        GOTPtr, TGA, TGA);
2999   }
3000 
3001   if (Model == TLSModel::LocalDynamic) {
3002     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3003     SDValue GOTPtr;
3004     if (is64bit) {
3005       setUsesTOCBasePtr(DAG);
3006       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3007       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3008                            GOTReg, TGA);
3009     } else {
3010       if (picLevel == PICLevel::SmallPIC)
3011         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3012       else
3013         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3014     }
3015     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3016                                   PtrVT, GOTPtr, TGA, TGA);
3017     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3018                                       PtrVT, TLSAddr, TGA);
3019     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3020   }
3021 
3022   llvm_unreachable("Unknown TLS model!");
3023 }
3024 
3025 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3026                                               SelectionDAG &DAG) const {
3027   EVT PtrVT = Op.getValueType();
3028   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3029   SDLoc DL(GSDN);
3030   const GlobalValue *GV = GSDN->getGlobal();
3031 
3032   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3033   // The actual address of the GlobalValue is stored in the TOC.
3034   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3035     if (Subtarget.isUsingPCRelativeCalls()) {
3036       EVT Ty = getPointerTy(DAG.getDataLayout());
3037       if (isAccessedAsGotIndirect(Op)) {
3038         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3039                                                 PPCII::MO_PCREL_FLAG |
3040                                                     PPCII::MO_GOT_FLAG);
3041         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3042         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3043                                    MachinePointerInfo());
3044         return Load;
3045       } else {
3046         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3047                                                 PPCII::MO_PCREL_FLAG);
3048         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3049       }
3050     }
3051     setUsesTOCBasePtr(DAG);
3052     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3053     return getTOCEntry(DAG, DL, GA);
3054   }
3055 
3056   unsigned MOHiFlag, MOLoFlag;
3057   bool IsPIC = isPositionIndependent();
3058   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3059 
3060   if (IsPIC && Subtarget.isSVR4ABI()) {
3061     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3062                                             GSDN->getOffset(),
3063                                             PPCII::MO_PIC_FLAG);
3064     return getTOCEntry(DAG, DL, GA);
3065   }
3066 
3067   SDValue GAHi =
3068     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3069   SDValue GALo =
3070     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3071 
3072   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3073 }
3074 
3075 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3076   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3077   SDLoc dl(Op);
3078 
3079   if (Op.getValueType() == MVT::v2i64) {
3080     // When the operands themselves are v2i64 values, we need to do something
3081     // special because VSX has no underlying comparison operations for these.
3082     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3083       // Equality can be handled by casting to the legal type for Altivec
3084       // comparisons, everything else needs to be expanded.
3085       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3086         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3087                  DAG.getSetCC(dl, MVT::v4i32,
3088                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3089                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3090                    CC));
3091       }
3092 
3093       return SDValue();
3094     }
3095 
3096     // We handle most of these in the usual way.
3097     return Op;
3098   }
3099 
3100   // If we're comparing for equality to zero, expose the fact that this is
3101   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3102   // fold the new nodes.
3103   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3104     return V;
3105 
3106   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3107     // Leave comparisons against 0 and -1 alone for now, since they're usually
3108     // optimized.  FIXME: revisit this when we can custom lower all setcc
3109     // optimizations.
3110     if (C->isAllOnesValue() || C->isNullValue())
3111       return SDValue();
3112   }
3113 
3114   // If we have an integer seteq/setne, turn it into a compare against zero
3115   // by xor'ing the rhs with the lhs, which is faster than setting a
3116   // condition register, reading it back out, and masking the correct bit.  The
3117   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3118   // the result to other bit-twiddling opportunities.
3119   EVT LHSVT = Op.getOperand(0).getValueType();
3120   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3121     EVT VT = Op.getValueType();
3122     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3123                                 Op.getOperand(1));
3124     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3125   }
3126   return SDValue();
3127 }
3128 
3129 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3130   SDNode *Node = Op.getNode();
3131   EVT VT = Node->getValueType(0);
3132   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3133   SDValue InChain = Node->getOperand(0);
3134   SDValue VAListPtr = Node->getOperand(1);
3135   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3136   SDLoc dl(Node);
3137 
3138   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3139 
3140   // gpr_index
3141   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3142                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3143   InChain = GprIndex.getValue(1);
3144 
3145   if (VT == MVT::i64) {
3146     // Check if GprIndex is even
3147     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3148                                  DAG.getConstant(1, dl, MVT::i32));
3149     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3150                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3151     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3152                                           DAG.getConstant(1, dl, MVT::i32));
3153     // Align GprIndex to be even if it isn't
3154     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3155                            GprIndex);
3156   }
3157 
3158   // fpr index is 1 byte after gpr
3159   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3160                                DAG.getConstant(1, dl, MVT::i32));
3161 
3162   // fpr
3163   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3164                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3165   InChain = FprIndex.getValue(1);
3166 
3167   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3168                                        DAG.getConstant(8, dl, MVT::i32));
3169 
3170   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3171                                         DAG.getConstant(4, dl, MVT::i32));
3172 
3173   // areas
3174   SDValue OverflowArea =
3175       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3176   InChain = OverflowArea.getValue(1);
3177 
3178   SDValue RegSaveArea =
3179       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3180   InChain = RegSaveArea.getValue(1);
3181 
3182   // select overflow_area if index > 8
3183   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3184                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3185 
3186   // adjustment constant gpr_index * 4/8
3187   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3188                                     VT.isInteger() ? GprIndex : FprIndex,
3189                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3190                                                     MVT::i32));
3191 
3192   // OurReg = RegSaveArea + RegConstant
3193   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3194                                RegConstant);
3195 
3196   // Floating types are 32 bytes into RegSaveArea
3197   if (VT.isFloatingPoint())
3198     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3199                          DAG.getConstant(32, dl, MVT::i32));
3200 
3201   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3202   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3203                                    VT.isInteger() ? GprIndex : FprIndex,
3204                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3205                                                    MVT::i32));
3206 
3207   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3208                               VT.isInteger() ? VAListPtr : FprPtr,
3209                               MachinePointerInfo(SV), MVT::i8);
3210 
3211   // determine if we should load from reg_save_area or overflow_area
3212   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3213 
3214   // increase overflow_area by 4/8 if gpr/fpr > 8
3215   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3216                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3217                                           dl, MVT::i32));
3218 
3219   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3220                              OverflowAreaPlusN);
3221 
3222   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3223                               MachinePointerInfo(), MVT::i32);
3224 
3225   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3226 }
3227 
3228 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3229   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3230 
3231   // We have to copy the entire va_list struct:
3232   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3233   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3234                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3235                        false, true, false, MachinePointerInfo(),
3236                        MachinePointerInfo());
3237 }
3238 
3239 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3240                                                   SelectionDAG &DAG) const {
3241   if (Subtarget.isAIXABI())
3242     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3243 
3244   return Op.getOperand(0);
3245 }
3246 
3247 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3248                                                 SelectionDAG &DAG) const {
3249   if (Subtarget.isAIXABI())
3250     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3251 
3252   SDValue Chain = Op.getOperand(0);
3253   SDValue Trmp = Op.getOperand(1); // trampoline
3254   SDValue FPtr = Op.getOperand(2); // nested function
3255   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3256   SDLoc dl(Op);
3257 
3258   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3259   bool isPPC64 = (PtrVT == MVT::i64);
3260   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3261 
3262   TargetLowering::ArgListTy Args;
3263   TargetLowering::ArgListEntry Entry;
3264 
3265   Entry.Ty = IntPtrTy;
3266   Entry.Node = Trmp; Args.push_back(Entry);
3267 
3268   // TrampSize == (isPPC64 ? 48 : 40);
3269   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3270                                isPPC64 ? MVT::i64 : MVT::i32);
3271   Args.push_back(Entry);
3272 
3273   Entry.Node = FPtr; Args.push_back(Entry);
3274   Entry.Node = Nest; Args.push_back(Entry);
3275 
3276   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3277   TargetLowering::CallLoweringInfo CLI(DAG);
3278   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3279       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3280       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3281 
3282   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3283   return CallResult.second;
3284 }
3285 
3286 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3287   MachineFunction &MF = DAG.getMachineFunction();
3288   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3289   EVT PtrVT = getPointerTy(MF.getDataLayout());
3290 
3291   SDLoc dl(Op);
3292 
3293   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3294     // vastart just stores the address of the VarArgsFrameIndex slot into the
3295     // memory location argument.
3296     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3297     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3298     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3299                         MachinePointerInfo(SV));
3300   }
3301 
3302   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3303   // We suppose the given va_list is already allocated.
3304   //
3305   // typedef struct {
3306   //  char gpr;     /* index into the array of 8 GPRs
3307   //                 * stored in the register save area
3308   //                 * gpr=0 corresponds to r3,
3309   //                 * gpr=1 to r4, etc.
3310   //                 */
3311   //  char fpr;     /* index into the array of 8 FPRs
3312   //                 * stored in the register save area
3313   //                 * fpr=0 corresponds to f1,
3314   //                 * fpr=1 to f2, etc.
3315   //                 */
3316   //  char *overflow_arg_area;
3317   //                /* location on stack that holds
3318   //                 * the next overflow argument
3319   //                 */
3320   //  char *reg_save_area;
3321   //               /* where r3:r10 and f1:f8 (if saved)
3322   //                * are stored
3323   //                */
3324   // } va_list[1];
3325 
3326   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3327   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3328   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3329                                             PtrVT);
3330   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3331                                  PtrVT);
3332 
3333   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3334   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3335 
3336   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3337   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3338 
3339   uint64_t FPROffset = 1;
3340   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3341 
3342   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3343 
3344   // Store first byte : number of int regs
3345   SDValue firstStore =
3346       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3347                         MachinePointerInfo(SV), MVT::i8);
3348   uint64_t nextOffset = FPROffset;
3349   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3350                                   ConstFPROffset);
3351 
3352   // Store second byte : number of float regs
3353   SDValue secondStore =
3354       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3355                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3356   nextOffset += StackOffset;
3357   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3358 
3359   // Store second word : arguments given on stack
3360   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3361                                     MachinePointerInfo(SV, nextOffset));
3362   nextOffset += FrameOffset;
3363   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3364 
3365   // Store third word : arguments given in registers
3366   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3367                       MachinePointerInfo(SV, nextOffset));
3368 }
3369 
3370 /// FPR - The set of FP registers that should be allocated for arguments
3371 /// on Darwin and AIX.
3372 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3373                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3374                                 PPC::F11, PPC::F12, PPC::F13};
3375 
3376 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3377 /// the stack.
3378 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3379                                        unsigned PtrByteSize) {
3380   unsigned ArgSize = ArgVT.getStoreSize();
3381   if (Flags.isByVal())
3382     ArgSize = Flags.getByValSize();
3383 
3384   // Round up to multiples of the pointer size, except for array members,
3385   // which are always packed.
3386   if (!Flags.isInConsecutiveRegs())
3387     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3388 
3389   return ArgSize;
3390 }
3391 
3392 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3393 /// on the stack.
3394 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3395                                          ISD::ArgFlagsTy Flags,
3396                                          unsigned PtrByteSize) {
3397   Align Alignment(PtrByteSize);
3398 
3399   // Altivec parameters are padded to a 16 byte boundary.
3400   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3401       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3402       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3403       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3404     Alignment = Align(16);
3405 
3406   // ByVal parameters are aligned as requested.
3407   if (Flags.isByVal()) {
3408     auto BVAlign = Flags.getNonZeroByValAlign();
3409     if (BVAlign > PtrByteSize) {
3410       if (BVAlign.value() % PtrByteSize != 0)
3411         llvm_unreachable(
3412             "ByVal alignment is not a multiple of the pointer size");
3413 
3414       Alignment = BVAlign;
3415     }
3416   }
3417 
3418   // Array members are always packed to their original alignment.
3419   if (Flags.isInConsecutiveRegs()) {
3420     // If the array member was split into multiple registers, the first
3421     // needs to be aligned to the size of the full type.  (Except for
3422     // ppcf128, which is only aligned as its f64 components.)
3423     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3424       Alignment = Align(OrigVT.getStoreSize());
3425     else
3426       Alignment = Align(ArgVT.getStoreSize());
3427   }
3428 
3429   return Alignment;
3430 }
3431 
3432 /// CalculateStackSlotUsed - Return whether this argument will use its
3433 /// stack slot (instead of being passed in registers).  ArgOffset,
3434 /// AvailableFPRs, and AvailableVRs must hold the current argument
3435 /// position, and will be updated to account for this argument.
3436 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3437                                    unsigned PtrByteSize, unsigned LinkageSize,
3438                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3439                                    unsigned &AvailableFPRs,
3440                                    unsigned &AvailableVRs) {
3441   bool UseMemory = false;
3442 
3443   // Respect alignment of argument on the stack.
3444   Align Alignment =
3445       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3446   ArgOffset = alignTo(ArgOffset, Alignment);
3447   // If there's no space left in the argument save area, we must
3448   // use memory (this check also catches zero-sized arguments).
3449   if (ArgOffset >= LinkageSize + ParamAreaSize)
3450     UseMemory = true;
3451 
3452   // Allocate argument on the stack.
3453   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3454   if (Flags.isInConsecutiveRegsLast())
3455     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3456   // If we overran the argument save area, we must use memory
3457   // (this check catches arguments passed partially in memory)
3458   if (ArgOffset > LinkageSize + ParamAreaSize)
3459     UseMemory = true;
3460 
3461   // However, if the argument is actually passed in an FPR or a VR,
3462   // we don't use memory after all.
3463   if (!Flags.isByVal()) {
3464     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3465       if (AvailableFPRs > 0) {
3466         --AvailableFPRs;
3467         return false;
3468       }
3469     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3470         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3471         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3472         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3473       if (AvailableVRs > 0) {
3474         --AvailableVRs;
3475         return false;
3476       }
3477   }
3478 
3479   return UseMemory;
3480 }
3481 
3482 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3483 /// ensure minimum alignment required for target.
3484 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3485                                      unsigned NumBytes) {
3486   return alignTo(NumBytes, Lowering->getStackAlign());
3487 }
3488 
3489 SDValue PPCTargetLowering::LowerFormalArguments(
3490     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3491     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3492     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3493   if (Subtarget.isAIXABI())
3494     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3495                                     InVals);
3496   if (Subtarget.is64BitELFABI())
3497     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3498                                        InVals);
3499   if (Subtarget.is32BitELFABI())
3500     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3501                                        InVals);
3502 
3503   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3504                                      InVals);
3505 }
3506 
3507 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3508     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3509     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3510     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3511 
3512   // 32-bit SVR4 ABI Stack Frame Layout:
3513   //              +-----------------------------------+
3514   //        +-->  |            Back chain             |
3515   //        |     +-----------------------------------+
3516   //        |     | Floating-point register save area |
3517   //        |     +-----------------------------------+
3518   //        |     |    General register save area     |
3519   //        |     +-----------------------------------+
3520   //        |     |          CR save word             |
3521   //        |     +-----------------------------------+
3522   //        |     |         VRSAVE save word          |
3523   //        |     +-----------------------------------+
3524   //        |     |         Alignment padding         |
3525   //        |     +-----------------------------------+
3526   //        |     |     Vector register save area     |
3527   //        |     +-----------------------------------+
3528   //        |     |       Local variable space        |
3529   //        |     +-----------------------------------+
3530   //        |     |        Parameter list area        |
3531   //        |     +-----------------------------------+
3532   //        |     |           LR save word            |
3533   //        |     +-----------------------------------+
3534   // SP-->  +---  |            Back chain             |
3535   //              +-----------------------------------+
3536   //
3537   // Specifications:
3538   //   System V Application Binary Interface PowerPC Processor Supplement
3539   //   AltiVec Technology Programming Interface Manual
3540 
3541   MachineFunction &MF = DAG.getMachineFunction();
3542   MachineFrameInfo &MFI = MF.getFrameInfo();
3543   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3544 
3545   EVT PtrVT = getPointerTy(MF.getDataLayout());
3546   // Potential tail calls could cause overwriting of argument stack slots.
3547   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3548                        (CallConv == CallingConv::Fast));
3549   const Align PtrAlign(4);
3550 
3551   // Assign locations to all of the incoming arguments.
3552   SmallVector<CCValAssign, 16> ArgLocs;
3553   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3554                  *DAG.getContext());
3555 
3556   // Reserve space for the linkage area on the stack.
3557   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3558   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3559   if (useSoftFloat())
3560     CCInfo.PreAnalyzeFormalArguments(Ins);
3561 
3562   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3563   CCInfo.clearWasPPCF128();
3564 
3565   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3566     CCValAssign &VA = ArgLocs[i];
3567 
3568     // Arguments stored in registers.
3569     if (VA.isRegLoc()) {
3570       const TargetRegisterClass *RC;
3571       EVT ValVT = VA.getValVT();
3572 
3573       switch (ValVT.getSimpleVT().SimpleTy) {
3574         default:
3575           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3576         case MVT::i1:
3577         case MVT::i32:
3578           RC = &PPC::GPRCRegClass;
3579           break;
3580         case MVT::f32:
3581           if (Subtarget.hasP8Vector())
3582             RC = &PPC::VSSRCRegClass;
3583           else if (Subtarget.hasSPE())
3584             RC = &PPC::GPRCRegClass;
3585           else
3586             RC = &PPC::F4RCRegClass;
3587           break;
3588         case MVT::f64:
3589           if (Subtarget.hasVSX())
3590             RC = &PPC::VSFRCRegClass;
3591           else if (Subtarget.hasSPE())
3592             // SPE passes doubles in GPR pairs.
3593             RC = &PPC::GPRCRegClass;
3594           else
3595             RC = &PPC::F8RCRegClass;
3596           break;
3597         case MVT::v16i8:
3598         case MVT::v8i16:
3599         case MVT::v4i32:
3600           RC = &PPC::VRRCRegClass;
3601           break;
3602         case MVT::v4f32:
3603           RC = &PPC::VRRCRegClass;
3604           break;
3605         case MVT::v2f64:
3606         case MVT::v2i64:
3607           RC = &PPC::VRRCRegClass;
3608           break;
3609       }
3610 
3611       SDValue ArgValue;
3612       // Transform the arguments stored in physical registers into
3613       // virtual ones.
3614       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3615         assert(i + 1 < e && "No second half of double precision argument");
3616         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3617         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3618         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3619         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3620         if (!Subtarget.isLittleEndian())
3621           std::swap (ArgValueLo, ArgValueHi);
3622         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3623                                ArgValueHi);
3624       } else {
3625         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3626         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3627                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3628         if (ValVT == MVT::i1)
3629           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3630       }
3631 
3632       InVals.push_back(ArgValue);
3633     } else {
3634       // Argument stored in memory.
3635       assert(VA.isMemLoc());
3636 
3637       // Get the extended size of the argument type in stack
3638       unsigned ArgSize = VA.getLocVT().getStoreSize();
3639       // Get the actual size of the argument type
3640       unsigned ObjSize = VA.getValVT().getStoreSize();
3641       unsigned ArgOffset = VA.getLocMemOffset();
3642       // Stack objects in PPC32 are right justified.
3643       ArgOffset += ArgSize - ObjSize;
3644       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3645 
3646       // Create load nodes to retrieve arguments from the stack.
3647       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3648       InVals.push_back(
3649           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3650     }
3651   }
3652 
3653   // Assign locations to all of the incoming aggregate by value arguments.
3654   // Aggregates passed by value are stored in the local variable space of the
3655   // caller's stack frame, right above the parameter list area.
3656   SmallVector<CCValAssign, 16> ByValArgLocs;
3657   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3658                       ByValArgLocs, *DAG.getContext());
3659 
3660   // Reserve stack space for the allocations in CCInfo.
3661   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3662 
3663   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3664 
3665   // Area that is at least reserved in the caller of this function.
3666   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3667   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3668 
3669   // Set the size that is at least reserved in caller of this function.  Tail
3670   // call optimized function's reserved stack space needs to be aligned so that
3671   // taking the difference between two stack areas will result in an aligned
3672   // stack.
3673   MinReservedArea =
3674       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3675   FuncInfo->setMinReservedArea(MinReservedArea);
3676 
3677   SmallVector<SDValue, 8> MemOps;
3678 
3679   // If the function takes variable number of arguments, make a frame index for
3680   // the start of the first vararg value... for expansion of llvm.va_start.
3681   if (isVarArg) {
3682     static const MCPhysReg GPArgRegs[] = {
3683       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3684       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3685     };
3686     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3687 
3688     static const MCPhysReg FPArgRegs[] = {
3689       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3690       PPC::F8
3691     };
3692     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3693 
3694     if (useSoftFloat() || hasSPE())
3695        NumFPArgRegs = 0;
3696 
3697     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3698     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3699 
3700     // Make room for NumGPArgRegs and NumFPArgRegs.
3701     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3702                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3703 
3704     FuncInfo->setVarArgsStackOffset(
3705       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3706                             CCInfo.getNextStackOffset(), true));
3707 
3708     FuncInfo->setVarArgsFrameIndex(
3709         MFI.CreateStackObject(Depth, Align(8), false));
3710     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3711 
3712     // The fixed integer arguments of a variadic function are stored to the
3713     // VarArgsFrameIndex on the stack so that they may be loaded by
3714     // dereferencing the result of va_next.
3715     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3716       // Get an existing live-in vreg, or add a new one.
3717       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3718       if (!VReg)
3719         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3720 
3721       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3722       SDValue Store =
3723           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3724       MemOps.push_back(Store);
3725       // Increment the address by four for the next argument to store
3726       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3727       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3728     }
3729 
3730     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3731     // is set.
3732     // The double arguments are stored to the VarArgsFrameIndex
3733     // on the stack.
3734     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3735       // Get an existing live-in vreg, or add a new one.
3736       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3737       if (!VReg)
3738         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3739 
3740       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3741       SDValue Store =
3742           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3743       MemOps.push_back(Store);
3744       // Increment the address by eight for the next argument to store
3745       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3746                                          PtrVT);
3747       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3748     }
3749   }
3750 
3751   if (!MemOps.empty())
3752     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3753 
3754   return Chain;
3755 }
3756 
3757 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3758 // value to MVT::i64 and then truncate to the correct register size.
3759 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3760                                              EVT ObjectVT, SelectionDAG &DAG,
3761                                              SDValue ArgVal,
3762                                              const SDLoc &dl) const {
3763   if (Flags.isSExt())
3764     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3765                          DAG.getValueType(ObjectVT));
3766   else if (Flags.isZExt())
3767     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3768                          DAG.getValueType(ObjectVT));
3769 
3770   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3771 }
3772 
3773 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3774     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3775     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3776     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3777   // TODO: add description of PPC stack frame format, or at least some docs.
3778   //
3779   bool isELFv2ABI = Subtarget.isELFv2ABI();
3780   bool isLittleEndian = Subtarget.isLittleEndian();
3781   MachineFunction &MF = DAG.getMachineFunction();
3782   MachineFrameInfo &MFI = MF.getFrameInfo();
3783   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3784 
3785   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3786          "fastcc not supported on varargs functions");
3787 
3788   EVT PtrVT = getPointerTy(MF.getDataLayout());
3789   // Potential tail calls could cause overwriting of argument stack slots.
3790   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3791                        (CallConv == CallingConv::Fast));
3792   unsigned PtrByteSize = 8;
3793   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3794 
3795   static const MCPhysReg GPR[] = {
3796     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3797     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3798   };
3799   static const MCPhysReg VR[] = {
3800     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3801     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3802   };
3803 
3804   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3805   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3806   const unsigned Num_VR_Regs  = array_lengthof(VR);
3807 
3808   // Do a first pass over the arguments to determine whether the ABI
3809   // guarantees that our caller has allocated the parameter save area
3810   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3811   // in the ELFv2 ABI, it is true if this is a vararg function or if
3812   // any parameter is located in a stack slot.
3813 
3814   bool HasParameterArea = !isELFv2ABI || isVarArg;
3815   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3816   unsigned NumBytes = LinkageSize;
3817   unsigned AvailableFPRs = Num_FPR_Regs;
3818   unsigned AvailableVRs = Num_VR_Regs;
3819   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3820     if (Ins[i].Flags.isNest())
3821       continue;
3822 
3823     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3824                                PtrByteSize, LinkageSize, ParamAreaSize,
3825                                NumBytes, AvailableFPRs, AvailableVRs))
3826       HasParameterArea = true;
3827   }
3828 
3829   // Add DAG nodes to load the arguments or copy them out of registers.  On
3830   // entry to a function on PPC, the arguments start after the linkage area,
3831   // although the first ones are often in registers.
3832 
3833   unsigned ArgOffset = LinkageSize;
3834   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3835   SmallVector<SDValue, 8> MemOps;
3836   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3837   unsigned CurArgIdx = 0;
3838   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3839     SDValue ArgVal;
3840     bool needsLoad = false;
3841     EVT ObjectVT = Ins[ArgNo].VT;
3842     EVT OrigVT = Ins[ArgNo].ArgVT;
3843     unsigned ObjSize = ObjectVT.getStoreSize();
3844     unsigned ArgSize = ObjSize;
3845     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3846     if (Ins[ArgNo].isOrigArg()) {
3847       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3848       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3849     }
3850     // We re-align the argument offset for each argument, except when using the
3851     // fast calling convention, when we need to make sure we do that only when
3852     // we'll actually use a stack slot.
3853     unsigned CurArgOffset;
3854     Align Alignment;
3855     auto ComputeArgOffset = [&]() {
3856       /* Respect alignment of argument on the stack.  */
3857       Alignment =
3858           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3859       ArgOffset = alignTo(ArgOffset, Alignment);
3860       CurArgOffset = ArgOffset;
3861     };
3862 
3863     if (CallConv != CallingConv::Fast) {
3864       ComputeArgOffset();
3865 
3866       /* Compute GPR index associated with argument offset.  */
3867       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3868       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3869     }
3870 
3871     // FIXME the codegen can be much improved in some cases.
3872     // We do not have to keep everything in memory.
3873     if (Flags.isByVal()) {
3874       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3875 
3876       if (CallConv == CallingConv::Fast)
3877         ComputeArgOffset();
3878 
3879       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3880       ObjSize = Flags.getByValSize();
3881       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3882       // Empty aggregate parameters do not take up registers.  Examples:
3883       //   struct { } a;
3884       //   union  { } b;
3885       //   int c[0];
3886       // etc.  However, we have to provide a place-holder in InVals, so
3887       // pretend we have an 8-byte item at the current address for that
3888       // purpose.
3889       if (!ObjSize) {
3890         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3891         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3892         InVals.push_back(FIN);
3893         continue;
3894       }
3895 
3896       // Create a stack object covering all stack doublewords occupied
3897       // by the argument.  If the argument is (fully or partially) on
3898       // the stack, or if the argument is fully in registers but the
3899       // caller has allocated the parameter save anyway, we can refer
3900       // directly to the caller's stack frame.  Otherwise, create a
3901       // local copy in our own frame.
3902       int FI;
3903       if (HasParameterArea ||
3904           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3905         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3906       else
3907         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
3908       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3909 
3910       // Handle aggregates smaller than 8 bytes.
3911       if (ObjSize < PtrByteSize) {
3912         // The value of the object is its address, which differs from the
3913         // address of the enclosing doubleword on big-endian systems.
3914         SDValue Arg = FIN;
3915         if (!isLittleEndian) {
3916           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3917           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3918         }
3919         InVals.push_back(Arg);
3920 
3921         if (GPR_idx != Num_GPR_Regs) {
3922           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3923           FuncInfo->addLiveInAttr(VReg, Flags);
3924           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3925           SDValue Store;
3926 
3927           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3928             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3929                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3930             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3931                                       MachinePointerInfo(&*FuncArg), ObjType);
3932           } else {
3933             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3934             // store the whole register as-is to the parameter save area
3935             // slot.
3936             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3937                                  MachinePointerInfo(&*FuncArg));
3938           }
3939 
3940           MemOps.push_back(Store);
3941         }
3942         // Whether we copied from a register or not, advance the offset
3943         // into the parameter save area by a full doubleword.
3944         ArgOffset += PtrByteSize;
3945         continue;
3946       }
3947 
3948       // The value of the object is its address, which is the address of
3949       // its first stack doubleword.
3950       InVals.push_back(FIN);
3951 
3952       // Store whatever pieces of the object are in registers to memory.
3953       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3954         if (GPR_idx == Num_GPR_Regs)
3955           break;
3956 
3957         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3958         FuncInfo->addLiveInAttr(VReg, Flags);
3959         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3960         SDValue Addr = FIN;
3961         if (j) {
3962           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3963           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3964         }
3965         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3966                                      MachinePointerInfo(&*FuncArg, j));
3967         MemOps.push_back(Store);
3968         ++GPR_idx;
3969       }
3970       ArgOffset += ArgSize;
3971       continue;
3972     }
3973 
3974     switch (ObjectVT.getSimpleVT().SimpleTy) {
3975     default: llvm_unreachable("Unhandled argument type!");
3976     case MVT::i1:
3977     case MVT::i32:
3978     case MVT::i64:
3979       if (Flags.isNest()) {
3980         // The 'nest' parameter, if any, is passed in R11.
3981         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3982         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3983 
3984         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3985           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3986 
3987         break;
3988       }
3989 
3990       // These can be scalar arguments or elements of an integer array type
3991       // passed directly.  Clang may use those instead of "byval" aggregate
3992       // types to avoid forcing arguments to memory unnecessarily.
3993       if (GPR_idx != Num_GPR_Regs) {
3994         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3995         FuncInfo->addLiveInAttr(VReg, Flags);
3996         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3997 
3998         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3999           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4000           // value to MVT::i64 and then truncate to the correct register size.
4001           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4002       } else {
4003         if (CallConv == CallingConv::Fast)
4004           ComputeArgOffset();
4005 
4006         needsLoad = true;
4007         ArgSize = PtrByteSize;
4008       }
4009       if (CallConv != CallingConv::Fast || needsLoad)
4010         ArgOffset += 8;
4011       break;
4012 
4013     case MVT::f32:
4014     case MVT::f64:
4015       // These can be scalar arguments or elements of a float array type
4016       // passed directly.  The latter are used to implement ELFv2 homogenous
4017       // float aggregates.
4018       if (FPR_idx != Num_FPR_Regs) {
4019         unsigned VReg;
4020 
4021         if (ObjectVT == MVT::f32)
4022           VReg = MF.addLiveIn(FPR[FPR_idx],
4023                               Subtarget.hasP8Vector()
4024                                   ? &PPC::VSSRCRegClass
4025                                   : &PPC::F4RCRegClass);
4026         else
4027           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4028                                                 ? &PPC::VSFRCRegClass
4029                                                 : &PPC::F8RCRegClass);
4030 
4031         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4032         ++FPR_idx;
4033       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4034         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4035         // once we support fp <-> gpr moves.
4036 
4037         // This can only ever happen in the presence of f32 array types,
4038         // since otherwise we never run out of FPRs before running out
4039         // of GPRs.
4040         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4041         FuncInfo->addLiveInAttr(VReg, Flags);
4042         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4043 
4044         if (ObjectVT == MVT::f32) {
4045           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4046             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4047                                  DAG.getConstant(32, dl, MVT::i32));
4048           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4049         }
4050 
4051         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4052       } else {
4053         if (CallConv == CallingConv::Fast)
4054           ComputeArgOffset();
4055 
4056         needsLoad = true;
4057       }
4058 
4059       // When passing an array of floats, the array occupies consecutive
4060       // space in the argument area; only round up to the next doubleword
4061       // at the end of the array.  Otherwise, each float takes 8 bytes.
4062       if (CallConv != CallingConv::Fast || needsLoad) {
4063         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4064         ArgOffset += ArgSize;
4065         if (Flags.isInConsecutiveRegsLast())
4066           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4067       }
4068       break;
4069     case MVT::v4f32:
4070     case MVT::v4i32:
4071     case MVT::v8i16:
4072     case MVT::v16i8:
4073     case MVT::v2f64:
4074     case MVT::v2i64:
4075     case MVT::v1i128:
4076     case MVT::f128:
4077       // These can be scalar arguments or elements of a vector array type
4078       // passed directly.  The latter are used to implement ELFv2 homogenous
4079       // vector aggregates.
4080       if (VR_idx != Num_VR_Regs) {
4081         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4082         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4083         ++VR_idx;
4084       } else {
4085         if (CallConv == CallingConv::Fast)
4086           ComputeArgOffset();
4087         needsLoad = true;
4088       }
4089       if (CallConv != CallingConv::Fast || needsLoad)
4090         ArgOffset += 16;
4091       break;
4092     }
4093 
4094     // We need to load the argument to a virtual register if we determined
4095     // above that we ran out of physical registers of the appropriate type.
4096     if (needsLoad) {
4097       if (ObjSize < ArgSize && !isLittleEndian)
4098         CurArgOffset += ArgSize - ObjSize;
4099       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4100       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4101       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4102     }
4103 
4104     InVals.push_back(ArgVal);
4105   }
4106 
4107   // Area that is at least reserved in the caller of this function.
4108   unsigned MinReservedArea;
4109   if (HasParameterArea)
4110     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4111   else
4112     MinReservedArea = LinkageSize;
4113 
4114   // Set the size that is at least reserved in caller of this function.  Tail
4115   // call optimized functions' reserved stack space needs to be aligned so that
4116   // taking the difference between two stack areas will result in an aligned
4117   // stack.
4118   MinReservedArea =
4119       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4120   FuncInfo->setMinReservedArea(MinReservedArea);
4121 
4122   // If the function takes variable number of arguments, make a frame index for
4123   // the start of the first vararg value... for expansion of llvm.va_start.
4124   // On ELFv2ABI spec, it writes:
4125   // C programs that are intended to be *portable* across different compilers
4126   // and architectures must use the header file <stdarg.h> to deal with variable
4127   // argument lists.
4128   if (isVarArg && MFI.hasVAStart()) {
4129     int Depth = ArgOffset;
4130 
4131     FuncInfo->setVarArgsFrameIndex(
4132       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4133     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4134 
4135     // If this function is vararg, store any remaining integer argument regs
4136     // to their spots on the stack so that they may be loaded by dereferencing
4137     // the result of va_next.
4138     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4139          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4140       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4141       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4142       SDValue Store =
4143           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4144       MemOps.push_back(Store);
4145       // Increment the address by four for the next argument to store
4146       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4147       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4148     }
4149   }
4150 
4151   if (!MemOps.empty())
4152     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4153 
4154   return Chain;
4155 }
4156 
4157 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4158     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4159     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4160     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4161   // TODO: add description of PPC stack frame format, or at least some docs.
4162   //
4163   MachineFunction &MF = DAG.getMachineFunction();
4164   MachineFrameInfo &MFI = MF.getFrameInfo();
4165   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4166 
4167   EVT PtrVT = getPointerTy(MF.getDataLayout());
4168   bool isPPC64 = PtrVT == MVT::i64;
4169   // Potential tail calls could cause overwriting of argument stack slots.
4170   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4171                        (CallConv == CallingConv::Fast));
4172   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4173   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4174   unsigned ArgOffset = LinkageSize;
4175   // Area that is at least reserved in caller of this function.
4176   unsigned MinReservedArea = ArgOffset;
4177 
4178   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4179     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4180     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4181   };
4182   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4183     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4184     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4185   };
4186   static const MCPhysReg VR[] = {
4187     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4188     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4189   };
4190 
4191   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4192   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4193   const unsigned Num_VR_Regs  = array_lengthof( VR);
4194 
4195   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4196 
4197   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4198 
4199   // In 32-bit non-varargs functions, the stack space for vectors is after the
4200   // stack space for non-vectors.  We do not use this space unless we have
4201   // too many vectors to fit in registers, something that only occurs in
4202   // constructed examples:), but we have to walk the arglist to figure
4203   // that out...for the pathological case, compute VecArgOffset as the
4204   // start of the vector parameter area.  Computing VecArgOffset is the
4205   // entire point of the following loop.
4206   unsigned VecArgOffset = ArgOffset;
4207   if (!isVarArg && !isPPC64) {
4208     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4209          ++ArgNo) {
4210       EVT ObjectVT = Ins[ArgNo].VT;
4211       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4212 
4213       if (Flags.isByVal()) {
4214         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4215         unsigned ObjSize = Flags.getByValSize();
4216         unsigned ArgSize =
4217                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4218         VecArgOffset += ArgSize;
4219         continue;
4220       }
4221 
4222       switch(ObjectVT.getSimpleVT().SimpleTy) {
4223       default: llvm_unreachable("Unhandled argument type!");
4224       case MVT::i1:
4225       case MVT::i32:
4226       case MVT::f32:
4227         VecArgOffset += 4;
4228         break;
4229       case MVT::i64:  // PPC64
4230       case MVT::f64:
4231         // FIXME: We are guaranteed to be !isPPC64 at this point.
4232         // Does MVT::i64 apply?
4233         VecArgOffset += 8;
4234         break;
4235       case MVT::v4f32:
4236       case MVT::v4i32:
4237       case MVT::v8i16:
4238       case MVT::v16i8:
4239         // Nothing to do, we're only looking at Nonvector args here.
4240         break;
4241       }
4242     }
4243   }
4244   // We've found where the vector parameter area in memory is.  Skip the
4245   // first 12 parameters; these don't use that memory.
4246   VecArgOffset = ((VecArgOffset+15)/16)*16;
4247   VecArgOffset += 12*16;
4248 
4249   // Add DAG nodes to load the arguments or copy them out of registers.  On
4250   // entry to a function on PPC, the arguments start after the linkage area,
4251   // although the first ones are often in registers.
4252 
4253   SmallVector<SDValue, 8> MemOps;
4254   unsigned nAltivecParamsAtEnd = 0;
4255   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4256   unsigned CurArgIdx = 0;
4257   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4258     SDValue ArgVal;
4259     bool needsLoad = false;
4260     EVT ObjectVT = Ins[ArgNo].VT;
4261     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4262     unsigned ArgSize = ObjSize;
4263     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4264     if (Ins[ArgNo].isOrigArg()) {
4265       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4266       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4267     }
4268     unsigned CurArgOffset = ArgOffset;
4269 
4270     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4271     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4272         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4273       if (isVarArg || isPPC64) {
4274         MinReservedArea = ((MinReservedArea+15)/16)*16;
4275         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4276                                                   Flags,
4277                                                   PtrByteSize);
4278       } else  nAltivecParamsAtEnd++;
4279     } else
4280       // Calculate min reserved area.
4281       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4282                                                 Flags,
4283                                                 PtrByteSize);
4284 
4285     // FIXME the codegen can be much improved in some cases.
4286     // We do not have to keep everything in memory.
4287     if (Flags.isByVal()) {
4288       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4289 
4290       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4291       ObjSize = Flags.getByValSize();
4292       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4293       // Objects of size 1 and 2 are right justified, everything else is
4294       // left justified.  This means the memory address is adjusted forwards.
4295       if (ObjSize==1 || ObjSize==2) {
4296         CurArgOffset = CurArgOffset + (4 - ObjSize);
4297       }
4298       // The value of the object is its address.
4299       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4300       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4301       InVals.push_back(FIN);
4302       if (ObjSize==1 || ObjSize==2) {
4303         if (GPR_idx != Num_GPR_Regs) {
4304           unsigned VReg;
4305           if (isPPC64)
4306             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4307           else
4308             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4309           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4310           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4311           SDValue Store =
4312               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4313                                 MachinePointerInfo(&*FuncArg), ObjType);
4314           MemOps.push_back(Store);
4315           ++GPR_idx;
4316         }
4317 
4318         ArgOffset += PtrByteSize;
4319 
4320         continue;
4321       }
4322       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4323         // Store whatever pieces of the object are in registers
4324         // to memory.  ArgOffset will be the address of the beginning
4325         // of the object.
4326         if (GPR_idx != Num_GPR_Regs) {
4327           unsigned VReg;
4328           if (isPPC64)
4329             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4330           else
4331             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4332           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4333           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4334           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4335           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4336                                        MachinePointerInfo(&*FuncArg, j));
4337           MemOps.push_back(Store);
4338           ++GPR_idx;
4339           ArgOffset += PtrByteSize;
4340         } else {
4341           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4342           break;
4343         }
4344       }
4345       continue;
4346     }
4347 
4348     switch (ObjectVT.getSimpleVT().SimpleTy) {
4349     default: llvm_unreachable("Unhandled argument type!");
4350     case MVT::i1:
4351     case MVT::i32:
4352       if (!isPPC64) {
4353         if (GPR_idx != Num_GPR_Regs) {
4354           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4355           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4356 
4357           if (ObjectVT == MVT::i1)
4358             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4359 
4360           ++GPR_idx;
4361         } else {
4362           needsLoad = true;
4363           ArgSize = PtrByteSize;
4364         }
4365         // All int arguments reserve stack space in the Darwin ABI.
4366         ArgOffset += PtrByteSize;
4367         break;
4368       }
4369       LLVM_FALLTHROUGH;
4370     case MVT::i64:  // PPC64
4371       if (GPR_idx != Num_GPR_Regs) {
4372         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4373         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4374 
4375         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4376           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4377           // value to MVT::i64 and then truncate to the correct register size.
4378           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4379 
4380         ++GPR_idx;
4381       } else {
4382         needsLoad = true;
4383         ArgSize = PtrByteSize;
4384       }
4385       // All int arguments reserve stack space in the Darwin ABI.
4386       ArgOffset += 8;
4387       break;
4388 
4389     case MVT::f32:
4390     case MVT::f64:
4391       // Every 4 bytes of argument space consumes one of the GPRs available for
4392       // argument passing.
4393       if (GPR_idx != Num_GPR_Regs) {
4394         ++GPR_idx;
4395         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4396           ++GPR_idx;
4397       }
4398       if (FPR_idx != Num_FPR_Regs) {
4399         unsigned VReg;
4400 
4401         if (ObjectVT == MVT::f32)
4402           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4403         else
4404           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4405 
4406         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4407         ++FPR_idx;
4408       } else {
4409         needsLoad = true;
4410       }
4411 
4412       // All FP arguments reserve stack space in the Darwin ABI.
4413       ArgOffset += isPPC64 ? 8 : ObjSize;
4414       break;
4415     case MVT::v4f32:
4416     case MVT::v4i32:
4417     case MVT::v8i16:
4418     case MVT::v16i8:
4419       // Note that vector arguments in registers don't reserve stack space,
4420       // except in varargs functions.
4421       if (VR_idx != Num_VR_Regs) {
4422         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4423         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4424         if (isVarArg) {
4425           while ((ArgOffset % 16) != 0) {
4426             ArgOffset += PtrByteSize;
4427             if (GPR_idx != Num_GPR_Regs)
4428               GPR_idx++;
4429           }
4430           ArgOffset += 16;
4431           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4432         }
4433         ++VR_idx;
4434       } else {
4435         if (!isVarArg && !isPPC64) {
4436           // Vectors go after all the nonvectors.
4437           CurArgOffset = VecArgOffset;
4438           VecArgOffset += 16;
4439         } else {
4440           // Vectors are aligned.
4441           ArgOffset = ((ArgOffset+15)/16)*16;
4442           CurArgOffset = ArgOffset;
4443           ArgOffset += 16;
4444         }
4445         needsLoad = true;
4446       }
4447       break;
4448     }
4449 
4450     // We need to load the argument to a virtual register if we determined above
4451     // that we ran out of physical registers of the appropriate type.
4452     if (needsLoad) {
4453       int FI = MFI.CreateFixedObject(ObjSize,
4454                                      CurArgOffset + (ArgSize - ObjSize),
4455                                      isImmutable);
4456       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4457       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4458     }
4459 
4460     InVals.push_back(ArgVal);
4461   }
4462 
4463   // Allow for Altivec parameters at the end, if needed.
4464   if (nAltivecParamsAtEnd) {
4465     MinReservedArea = ((MinReservedArea+15)/16)*16;
4466     MinReservedArea += 16*nAltivecParamsAtEnd;
4467   }
4468 
4469   // Area that is at least reserved in the caller of this function.
4470   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4471 
4472   // Set the size that is at least reserved in caller of this function.  Tail
4473   // call optimized functions' reserved stack space needs to be aligned so that
4474   // taking the difference between two stack areas will result in an aligned
4475   // stack.
4476   MinReservedArea =
4477       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4478   FuncInfo->setMinReservedArea(MinReservedArea);
4479 
4480   // If the function takes variable number of arguments, make a frame index for
4481   // the start of the first vararg value... for expansion of llvm.va_start.
4482   if (isVarArg) {
4483     int Depth = ArgOffset;
4484 
4485     FuncInfo->setVarArgsFrameIndex(
4486       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4487                             Depth, true));
4488     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4489 
4490     // If this function is vararg, store any remaining integer argument regs
4491     // to their spots on the stack so that they may be loaded by dereferencing
4492     // the result of va_next.
4493     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4494       unsigned VReg;
4495 
4496       if (isPPC64)
4497         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4498       else
4499         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4500 
4501       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4502       SDValue Store =
4503           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4504       MemOps.push_back(Store);
4505       // Increment the address by four for the next argument to store
4506       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4507       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4508     }
4509   }
4510 
4511   if (!MemOps.empty())
4512     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4513 
4514   return Chain;
4515 }
4516 
4517 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4518 /// adjusted to accommodate the arguments for the tailcall.
4519 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4520                                    unsigned ParamSize) {
4521 
4522   if (!isTailCall) return 0;
4523 
4524   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4525   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4526   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4527   // Remember only if the new adjustment is bigger.
4528   if (SPDiff < FI->getTailCallSPDelta())
4529     FI->setTailCallSPDelta(SPDiff);
4530 
4531   return SPDiff;
4532 }
4533 
4534 static bool isFunctionGlobalAddress(SDValue Callee);
4535 
4536 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4537                               const TargetMachine &TM) {
4538   // It does not make sense to call callsShareTOCBase() with a caller that
4539   // is PC Relative since PC Relative callers do not have a TOC.
4540 #ifndef NDEBUG
4541   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4542   assert(!STICaller->isUsingPCRelativeCalls() &&
4543          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4544 #endif
4545 
4546   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4547   // don't have enough information to determine if the caller and callee share
4548   // the same  TOC base, so we have to pessimistically assume they don't for
4549   // correctness.
4550   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4551   if (!G)
4552     return false;
4553 
4554   const GlobalValue *GV = G->getGlobal();
4555 
4556   // If the callee is preemptable, then the static linker will use a plt-stub
4557   // which saves the toc to the stack, and needs a nop after the call
4558   // instruction to convert to a toc-restore.
4559   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4560     return false;
4561 
4562   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4563   // We may need a TOC restore in the situation where the caller requires a
4564   // valid TOC but the callee is PC Relative and does not.
4565   const Function *F = dyn_cast<Function>(GV);
4566   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4567 
4568   // If we have an Alias we can try to get the function from there.
4569   if (Alias) {
4570     const GlobalObject *GlobalObj = Alias->getBaseObject();
4571     F = dyn_cast<Function>(GlobalObj);
4572   }
4573 
4574   // If we still have no valid function pointer we do not have enough
4575   // information to determine if the callee uses PC Relative calls so we must
4576   // assume that it does.
4577   if (!F)
4578     return false;
4579 
4580   // If the callee uses PC Relative we cannot guarantee that the callee won't
4581   // clobber the TOC of the caller and so we must assume that the two
4582   // functions do not share a TOC base.
4583   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4584   if (STICallee->isUsingPCRelativeCalls())
4585     return false;
4586 
4587   // The medium and large code models are expected to provide a sufficiently
4588   // large TOC to provide all data addressing needs of a module with a
4589   // single TOC.
4590   if (CodeModel::Medium == TM.getCodeModel() ||
4591       CodeModel::Large == TM.getCodeModel())
4592     return true;
4593 
4594   // Otherwise we need to ensure callee and caller are in the same section,
4595   // since the linker may allocate multiple TOCs, and we don't know which
4596   // sections will belong to the same TOC base.
4597   if (!GV->isStrongDefinitionForLinker())
4598     return false;
4599 
4600   // Any explicitly-specified sections and section prefixes must also match.
4601   // Also, if we're using -ffunction-sections, then each function is always in
4602   // a different section (the same is true for COMDAT functions).
4603   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4604       GV->getSection() != Caller->getSection())
4605     return false;
4606   if (const auto *F = dyn_cast<Function>(GV)) {
4607     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4608       return false;
4609   }
4610 
4611   return true;
4612 }
4613 
4614 static bool
4615 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4616                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4617   assert(Subtarget.is64BitELFABI());
4618 
4619   const unsigned PtrByteSize = 8;
4620   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4621 
4622   static const MCPhysReg GPR[] = {
4623     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4624     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4625   };
4626   static const MCPhysReg VR[] = {
4627     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4628     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4629   };
4630 
4631   const unsigned NumGPRs = array_lengthof(GPR);
4632   const unsigned NumFPRs = 13;
4633   const unsigned NumVRs = array_lengthof(VR);
4634   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4635 
4636   unsigned NumBytes = LinkageSize;
4637   unsigned AvailableFPRs = NumFPRs;
4638   unsigned AvailableVRs = NumVRs;
4639 
4640   for (const ISD::OutputArg& Param : Outs) {
4641     if (Param.Flags.isNest()) continue;
4642 
4643     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4644                                LinkageSize, ParamAreaSize, NumBytes,
4645                                AvailableFPRs, AvailableVRs))
4646       return true;
4647   }
4648   return false;
4649 }
4650 
4651 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4652   if (CB.arg_size() != CallerFn->arg_size())
4653     return false;
4654 
4655   auto CalleeArgIter = CB.arg_begin();
4656   auto CalleeArgEnd = CB.arg_end();
4657   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4658 
4659   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4660     const Value* CalleeArg = *CalleeArgIter;
4661     const Value* CallerArg = &(*CallerArgIter);
4662     if (CalleeArg == CallerArg)
4663       continue;
4664 
4665     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4666     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4667     //      }
4668     // 1st argument of callee is undef and has the same type as caller.
4669     if (CalleeArg->getType() == CallerArg->getType() &&
4670         isa<UndefValue>(CalleeArg))
4671       continue;
4672 
4673     return false;
4674   }
4675 
4676   return true;
4677 }
4678 
4679 // Returns true if TCO is possible between the callers and callees
4680 // calling conventions.
4681 static bool
4682 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4683                                     CallingConv::ID CalleeCC) {
4684   // Tail calls are possible with fastcc and ccc.
4685   auto isTailCallableCC  = [] (CallingConv::ID CC){
4686       return  CC == CallingConv::C || CC == CallingConv::Fast;
4687   };
4688   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4689     return false;
4690 
4691   // We can safely tail call both fastcc and ccc callees from a c calling
4692   // convention caller. If the caller is fastcc, we may have less stack space
4693   // than a non-fastcc caller with the same signature so disable tail-calls in
4694   // that case.
4695   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4696 }
4697 
4698 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4699     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4700     const SmallVectorImpl<ISD::OutputArg> &Outs,
4701     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4702   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4703 
4704   if (DisableSCO && !TailCallOpt) return false;
4705 
4706   // Variadic argument functions are not supported.
4707   if (isVarArg) return false;
4708 
4709   auto &Caller = DAG.getMachineFunction().getFunction();
4710   // Check that the calling conventions are compatible for tco.
4711   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4712     return false;
4713 
4714   // Caller contains any byval parameter is not supported.
4715   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4716     return false;
4717 
4718   // Callee contains any byval parameter is not supported, too.
4719   // Note: This is a quick work around, because in some cases, e.g.
4720   // caller's stack size > callee's stack size, we are still able to apply
4721   // sibling call optimization. For example, gcc is able to do SCO for caller1
4722   // in the following example, but not for caller2.
4723   //   struct test {
4724   //     long int a;
4725   //     char ary[56];
4726   //   } gTest;
4727   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4728   //     b->a = v.a;
4729   //     return 0;
4730   //   }
4731   //   void caller1(struct test a, struct test c, struct test *b) {
4732   //     callee(gTest, b); }
4733   //   void caller2(struct test *b) { callee(gTest, b); }
4734   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4735     return false;
4736 
4737   // If callee and caller use different calling conventions, we cannot pass
4738   // parameters on stack since offsets for the parameter area may be different.
4739   if (Caller.getCallingConv() != CalleeCC &&
4740       needStackSlotPassParameters(Subtarget, Outs))
4741     return false;
4742 
4743   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4744   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4745   // callee potentially have different TOC bases then we cannot tail call since
4746   // we need to restore the TOC pointer after the call.
4747   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4748   // We cannot guarantee this for indirect calls or calls to external functions.
4749   // When PC-Relative addressing is used, the concept of the TOC is no longer
4750   // applicable so this check is not required.
4751   // Check first for indirect calls.
4752   if (!Subtarget.isUsingPCRelativeCalls() &&
4753       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4754     return false;
4755 
4756   // Check if we share the TOC base.
4757   if (!Subtarget.isUsingPCRelativeCalls() &&
4758       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4759     return false;
4760 
4761   // TCO allows altering callee ABI, so we don't have to check further.
4762   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4763     return true;
4764 
4765   if (DisableSCO) return false;
4766 
4767   // If callee use the same argument list that caller is using, then we can
4768   // apply SCO on this case. If it is not, then we need to check if callee needs
4769   // stack for passing arguments.
4770   // PC Relative tail calls may not have a CallBase.
4771   // If there is no CallBase we cannot verify if we have the same argument
4772   // list so assume that we don't have the same argument list.
4773   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4774       needStackSlotPassParameters(Subtarget, Outs))
4775     return false;
4776   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4777     return false;
4778 
4779   return true;
4780 }
4781 
4782 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4783 /// for tail call optimization. Targets which want to do tail call
4784 /// optimization should implement this function.
4785 bool
4786 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4787                                                      CallingConv::ID CalleeCC,
4788                                                      bool isVarArg,
4789                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4790                                                      SelectionDAG& DAG) const {
4791   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4792     return false;
4793 
4794   // Variable argument functions are not supported.
4795   if (isVarArg)
4796     return false;
4797 
4798   MachineFunction &MF = DAG.getMachineFunction();
4799   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4800   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4801     // Functions containing by val parameters are not supported.
4802     for (unsigned i = 0; i != Ins.size(); i++) {
4803        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4804        if (Flags.isByVal()) return false;
4805     }
4806 
4807     // Non-PIC/GOT tail calls are supported.
4808     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4809       return true;
4810 
4811     // At the moment we can only do local tail calls (in same module, hidden
4812     // or protected) if we are generating PIC.
4813     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4814       return G->getGlobal()->hasHiddenVisibility()
4815           || G->getGlobal()->hasProtectedVisibility();
4816   }
4817 
4818   return false;
4819 }
4820 
4821 /// isCallCompatibleAddress - Return the immediate to use if the specified
4822 /// 32-bit value is representable in the immediate field of a BxA instruction.
4823 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4824   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4825   if (!C) return nullptr;
4826 
4827   int Addr = C->getZExtValue();
4828   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4829       SignExtend32<26>(Addr) != Addr)
4830     return nullptr;  // Top 6 bits have to be sext of immediate.
4831 
4832   return DAG
4833       .getConstant(
4834           (int)C->getZExtValue() >> 2, SDLoc(Op),
4835           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4836       .getNode();
4837 }
4838 
4839 namespace {
4840 
4841 struct TailCallArgumentInfo {
4842   SDValue Arg;
4843   SDValue FrameIdxOp;
4844   int FrameIdx = 0;
4845 
4846   TailCallArgumentInfo() = default;
4847 };
4848 
4849 } // end anonymous namespace
4850 
4851 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4852 static void StoreTailCallArgumentsToStackSlot(
4853     SelectionDAG &DAG, SDValue Chain,
4854     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4855     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4856   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4857     SDValue Arg = TailCallArgs[i].Arg;
4858     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4859     int FI = TailCallArgs[i].FrameIdx;
4860     // Store relative to framepointer.
4861     MemOpChains.push_back(DAG.getStore(
4862         Chain, dl, Arg, FIN,
4863         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4864   }
4865 }
4866 
4867 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4868 /// the appropriate stack slot for the tail call optimized function call.
4869 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4870                                              SDValue OldRetAddr, SDValue OldFP,
4871                                              int SPDiff, const SDLoc &dl) {
4872   if (SPDiff) {
4873     // Calculate the new stack slot for the return address.
4874     MachineFunction &MF = DAG.getMachineFunction();
4875     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4876     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4877     bool isPPC64 = Subtarget.isPPC64();
4878     int SlotSize = isPPC64 ? 8 : 4;
4879     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4880     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4881                                                          NewRetAddrLoc, true);
4882     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4883     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4884     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4885                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4886   }
4887   return Chain;
4888 }
4889 
4890 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4891 /// the position of the argument.
4892 static void
4893 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4894                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4895                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4896   int Offset = ArgOffset + SPDiff;
4897   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4898   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4899   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4900   SDValue FIN = DAG.getFrameIndex(FI, VT);
4901   TailCallArgumentInfo Info;
4902   Info.Arg = Arg;
4903   Info.FrameIdxOp = FIN;
4904   Info.FrameIdx = FI;
4905   TailCallArguments.push_back(Info);
4906 }
4907 
4908 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4909 /// stack slot. Returns the chain as result and the loaded frame pointers in
4910 /// LROpOut/FPOpout. Used when tail calling.
4911 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4912     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4913     SDValue &FPOpOut, const SDLoc &dl) const {
4914   if (SPDiff) {
4915     // Load the LR and FP stack slot for later adjusting.
4916     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4917     LROpOut = getReturnAddrFrameIndex(DAG);
4918     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4919     Chain = SDValue(LROpOut.getNode(), 1);
4920   }
4921   return Chain;
4922 }
4923 
4924 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4925 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4926 /// specified by the specific parameter attribute. The copy will be passed as
4927 /// a byval function parameter.
4928 /// Sometimes what we are copying is the end of a larger object, the part that
4929 /// does not fit in registers.
4930 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4931                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4932                                          SelectionDAG &DAG, const SDLoc &dl) {
4933   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4934   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
4935                        Flags.getNonZeroByValAlign(), false, false, false,
4936                        MachinePointerInfo(), MachinePointerInfo());
4937 }
4938 
4939 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4940 /// tail calls.
4941 static void LowerMemOpCallTo(
4942     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4943     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4944     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4945     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4946   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4947   if (!isTailCall) {
4948     if (isVector) {
4949       SDValue StackPtr;
4950       if (isPPC64)
4951         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4952       else
4953         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4954       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4955                            DAG.getConstant(ArgOffset, dl, PtrVT));
4956     }
4957     MemOpChains.push_back(
4958         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4959     // Calculate and remember argument location.
4960   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4961                                   TailCallArguments);
4962 }
4963 
4964 static void
4965 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4966                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4967                 SDValue FPOp,
4968                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4969   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4970   // might overwrite each other in case of tail call optimization.
4971   SmallVector<SDValue, 8> MemOpChains2;
4972   // Do not flag preceding copytoreg stuff together with the following stuff.
4973   InFlag = SDValue();
4974   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4975                                     MemOpChains2, dl);
4976   if (!MemOpChains2.empty())
4977     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4978 
4979   // Store the return address to the appropriate stack slot.
4980   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4981 
4982   // Emit callseq_end just before tailcall node.
4983   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4984                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4985   InFlag = Chain.getValue(1);
4986 }
4987 
4988 // Is this global address that of a function that can be called by name? (as
4989 // opposed to something that must hold a descriptor for an indirect call).
4990 static bool isFunctionGlobalAddress(SDValue Callee) {
4991   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4992     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4993         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4994       return false;
4995 
4996     return G->getGlobal()->getValueType()->isFunctionTy();
4997   }
4998 
4999   return false;
5000 }
5001 
5002 SDValue PPCTargetLowering::LowerCallResult(
5003     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5004     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5005     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5006   SmallVector<CCValAssign, 16> RVLocs;
5007   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5008                     *DAG.getContext());
5009 
5010   CCRetInfo.AnalyzeCallResult(
5011       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5012                ? RetCC_PPC_Cold
5013                : RetCC_PPC);
5014 
5015   // Copy all of the result registers out of their specified physreg.
5016   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5017     CCValAssign &VA = RVLocs[i];
5018     assert(VA.isRegLoc() && "Can only return in registers!");
5019 
5020     SDValue Val;
5021 
5022     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5023       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5024                                       InFlag);
5025       Chain = Lo.getValue(1);
5026       InFlag = Lo.getValue(2);
5027       VA = RVLocs[++i]; // skip ahead to next loc
5028       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5029                                       InFlag);
5030       Chain = Hi.getValue(1);
5031       InFlag = Hi.getValue(2);
5032       if (!Subtarget.isLittleEndian())
5033         std::swap (Lo, Hi);
5034       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5035     } else {
5036       Val = DAG.getCopyFromReg(Chain, dl,
5037                                VA.getLocReg(), VA.getLocVT(), InFlag);
5038       Chain = Val.getValue(1);
5039       InFlag = Val.getValue(2);
5040     }
5041 
5042     switch (VA.getLocInfo()) {
5043     default: llvm_unreachable("Unknown loc info!");
5044     case CCValAssign::Full: break;
5045     case CCValAssign::AExt:
5046       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5047       break;
5048     case CCValAssign::ZExt:
5049       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5050                         DAG.getValueType(VA.getValVT()));
5051       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5052       break;
5053     case CCValAssign::SExt:
5054       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5055                         DAG.getValueType(VA.getValVT()));
5056       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5057       break;
5058     }
5059 
5060     InVals.push_back(Val);
5061   }
5062 
5063   return Chain;
5064 }
5065 
5066 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5067                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5068   // PatchPoint calls are not indirect.
5069   if (isPatchPoint)
5070     return false;
5071 
5072   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5073     return false;
5074 
5075   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5076   // becuase the immediate function pointer points to a descriptor instead of
5077   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5078   // pointer immediate points to the global entry point, while the BLA would
5079   // need to jump to the local entry point (see rL211174).
5080   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5081       isBLACompatibleAddress(Callee, DAG))
5082     return false;
5083 
5084   return true;
5085 }
5086 
5087 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5088 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5089   return Subtarget.isAIXABI() ||
5090          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5091 }
5092 
5093 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5094                               const Function &Caller,
5095                               const SDValue &Callee,
5096                               const PPCSubtarget &Subtarget,
5097                               const TargetMachine &TM) {
5098   if (CFlags.IsTailCall)
5099     return PPCISD::TC_RETURN;
5100 
5101   // This is a call through a function pointer.
5102   if (CFlags.IsIndirect) {
5103     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5104     // indirect calls. The save of the caller's TOC pointer to the stack will be
5105     // inserted into the DAG as part of call lowering. The restore of the TOC
5106     // pointer is modeled by using a pseudo instruction for the call opcode that
5107     // represents the 2 instruction sequence of an indirect branch and link,
5108     // immediately followed by a load of the TOC pointer from the the stack save
5109     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5110     // as it is not saved or used.
5111     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5112                                                : PPCISD::BCTRL;
5113   }
5114 
5115   if (Subtarget.isUsingPCRelativeCalls()) {
5116     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5117     return PPCISD::CALL_NOTOC;
5118   }
5119 
5120   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5121   // immediately following the call instruction if the caller and callee may
5122   // have different TOC bases. At link time if the linker determines the calls
5123   // may not share a TOC base, the call is redirected to a trampoline inserted
5124   // by the linker. The trampoline will (among other things) save the callers
5125   // TOC pointer at an ABI designated offset in the linkage area and the linker
5126   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5127   // into gpr2.
5128   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5129     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5130                                                   : PPCISD::CALL_NOP;
5131 
5132   return PPCISD::CALL;
5133 }
5134 
5135 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5136                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5137   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5138     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5139       return SDValue(Dest, 0);
5140 
5141   // Returns true if the callee is local, and false otherwise.
5142   auto isLocalCallee = [&]() {
5143     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5144     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5145     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5146 
5147     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5148            !dyn_cast_or_null<GlobalIFunc>(GV);
5149   };
5150 
5151   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5152   // a static relocation model causes some versions of GNU LD (2.17.50, at
5153   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5154   // built with secure-PLT.
5155   bool UsePlt =
5156       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5157       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5158 
5159   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5160     const TargetMachine &TM = Subtarget.getTargetMachine();
5161     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5162     MCSymbolXCOFF *S =
5163         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5164 
5165     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5166     return DAG.getMCSymbol(S, PtrVT);
5167   };
5168 
5169   if (isFunctionGlobalAddress(Callee)) {
5170     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5171 
5172     if (Subtarget.isAIXABI()) {
5173       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5174       return getAIXFuncEntryPointSymbolSDNode(GV);
5175     }
5176     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5177                                       UsePlt ? PPCII::MO_PLT : 0);
5178   }
5179 
5180   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5181     const char *SymName = S->getSymbol();
5182     if (Subtarget.isAIXABI()) {
5183       // If there exists a user-declared function whose name is the same as the
5184       // ExternalSymbol's, then we pick up the user-declared version.
5185       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5186       if (const Function *F =
5187               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5188         return getAIXFuncEntryPointSymbolSDNode(F);
5189 
5190       // On AIX, direct function calls reference the symbol for the function's
5191       // entry point, which is named by prepending a "." before the function's
5192       // C-linkage name. A Qualname is returned here because an external
5193       // function entry point is a csect with XTY_ER property.
5194       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5195         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5196         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5197             (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER,
5198             SectionKind::getMetadata());
5199         return Sec->getQualNameSymbol();
5200       };
5201 
5202       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5203     }
5204     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5205                                        UsePlt ? PPCII::MO_PLT : 0);
5206   }
5207 
5208   // No transformation needed.
5209   assert(Callee.getNode() && "What no callee?");
5210   return Callee;
5211 }
5212 
5213 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5214   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5215          "Expected a CALLSEQ_STARTSDNode.");
5216 
5217   // The last operand is the chain, except when the node has glue. If the node
5218   // has glue, then the last operand is the glue, and the chain is the second
5219   // last operand.
5220   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5221   if (LastValue.getValueType() != MVT::Glue)
5222     return LastValue;
5223 
5224   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5225 }
5226 
5227 // Creates the node that moves a functions address into the count register
5228 // to prepare for an indirect call instruction.
5229 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5230                                 SDValue &Glue, SDValue &Chain,
5231                                 const SDLoc &dl) {
5232   SDValue MTCTROps[] = {Chain, Callee, Glue};
5233   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5234   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5235                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5236   // The glue is the second value produced.
5237   Glue = Chain.getValue(1);
5238 }
5239 
5240 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5241                                           SDValue &Glue, SDValue &Chain,
5242                                           SDValue CallSeqStart,
5243                                           const CallBase *CB, const SDLoc &dl,
5244                                           bool hasNest,
5245                                           const PPCSubtarget &Subtarget) {
5246   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5247   // entry point, but to the function descriptor (the function entry point
5248   // address is part of the function descriptor though).
5249   // The function descriptor is a three doubleword structure with the
5250   // following fields: function entry point, TOC base address and
5251   // environment pointer.
5252   // Thus for a call through a function pointer, the following actions need
5253   // to be performed:
5254   //   1. Save the TOC of the caller in the TOC save area of its stack
5255   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5256   //   2. Load the address of the function entry point from the function
5257   //      descriptor.
5258   //   3. Load the TOC of the callee from the function descriptor into r2.
5259   //   4. Load the environment pointer from the function descriptor into
5260   //      r11.
5261   //   5. Branch to the function entry point address.
5262   //   6. On return of the callee, the TOC of the caller needs to be
5263   //      restored (this is done in FinishCall()).
5264   //
5265   // The loads are scheduled at the beginning of the call sequence, and the
5266   // register copies are flagged together to ensure that no other
5267   // operations can be scheduled in between. E.g. without flagging the
5268   // copies together, a TOC access in the caller could be scheduled between
5269   // the assignment of the callee TOC and the branch to the callee, which leads
5270   // to incorrect code.
5271 
5272   // Start by loading the function address from the descriptor.
5273   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5274   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5275                       ? (MachineMemOperand::MODereferenceable |
5276                          MachineMemOperand::MOInvariant)
5277                       : MachineMemOperand::MONone;
5278 
5279   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5280 
5281   // Registers used in building the DAG.
5282   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5283   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5284 
5285   // Offsets of descriptor members.
5286   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5287   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5288 
5289   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5290   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5291 
5292   // One load for the functions entry point address.
5293   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5294                                     Alignment, MMOFlags);
5295 
5296   // One for loading the TOC anchor for the module that contains the called
5297   // function.
5298   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5299   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5300   SDValue TOCPtr =
5301       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5302                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5303 
5304   // One for loading the environment pointer.
5305   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5306   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5307   SDValue LoadEnvPtr =
5308       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5309                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5310 
5311 
5312   // Then copy the newly loaded TOC anchor to the TOC pointer.
5313   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5314   Chain = TOCVal.getValue(0);
5315   Glue = TOCVal.getValue(1);
5316 
5317   // If the function call has an explicit 'nest' parameter, it takes the
5318   // place of the environment pointer.
5319   assert((!hasNest || !Subtarget.isAIXABI()) &&
5320          "Nest parameter is not supported on AIX.");
5321   if (!hasNest) {
5322     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5323     Chain = EnvVal.getValue(0);
5324     Glue = EnvVal.getValue(1);
5325   }
5326 
5327   // The rest of the indirect call sequence is the same as the non-descriptor
5328   // DAG.
5329   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5330 }
5331 
5332 static void
5333 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5334                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5335                   SelectionDAG &DAG,
5336                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5337                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5338                   const PPCSubtarget &Subtarget) {
5339   const bool IsPPC64 = Subtarget.isPPC64();
5340   // MVT for a general purpose register.
5341   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5342 
5343   // First operand is always the chain.
5344   Ops.push_back(Chain);
5345 
5346   // If it's a direct call pass the callee as the second operand.
5347   if (!CFlags.IsIndirect)
5348     Ops.push_back(Callee);
5349   else {
5350     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5351 
5352     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5353     // on the stack (this would have been done in `LowerCall_64SVR4` or
5354     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5355     // represents both the indirect branch and a load that restores the TOC
5356     // pointer from the linkage area. The operand for the TOC restore is an add
5357     // of the TOC save offset to the stack pointer. This must be the second
5358     // operand: after the chain input but before any other variadic arguments.
5359     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5360     // saved or used.
5361     if (isTOCSaveRestoreRequired(Subtarget)) {
5362       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5363 
5364       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5365       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5366       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5367       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5368       Ops.push_back(AddTOC);
5369     }
5370 
5371     // Add the register used for the environment pointer.
5372     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5373       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5374                                     RegVT));
5375 
5376 
5377     // Add CTR register as callee so a bctr can be emitted later.
5378     if (CFlags.IsTailCall)
5379       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5380   }
5381 
5382   // If this is a tail call add stack pointer delta.
5383   if (CFlags.IsTailCall)
5384     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5385 
5386   // Add argument registers to the end of the list so that they are known live
5387   // into the call.
5388   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5389     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5390                                   RegsToPass[i].second.getValueType()));
5391 
5392   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5393   // no way to mark dependencies as implicit here.
5394   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5395   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5396        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5397     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5398 
5399   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5400   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5401     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5402 
5403   // Add a register mask operand representing the call-preserved registers.
5404   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5405   const uint32_t *Mask =
5406       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5407   assert(Mask && "Missing call preserved mask for calling convention");
5408   Ops.push_back(DAG.getRegisterMask(Mask));
5409 
5410   // If the glue is valid, it is the last operand.
5411   if (Glue.getNode())
5412     Ops.push_back(Glue);
5413 }
5414 
5415 SDValue PPCTargetLowering::FinishCall(
5416     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5417     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5418     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5419     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5420     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5421 
5422   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5423       Subtarget.isAIXABI())
5424     setUsesTOCBasePtr(DAG);
5425 
5426   unsigned CallOpc =
5427       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5428                     Subtarget, DAG.getTarget());
5429 
5430   if (!CFlags.IsIndirect)
5431     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5432   else if (Subtarget.usesFunctionDescriptors())
5433     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5434                                   dl, CFlags.HasNest, Subtarget);
5435   else
5436     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5437 
5438   // Build the operand list for the call instruction.
5439   SmallVector<SDValue, 8> Ops;
5440   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5441                     SPDiff, Subtarget);
5442 
5443   // Emit tail call.
5444   if (CFlags.IsTailCall) {
5445     // Indirect tail call when using PC Relative calls do not have the same
5446     // constraints.
5447     assert(((Callee.getOpcode() == ISD::Register &&
5448              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5449             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5450             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5451             isa<ConstantSDNode>(Callee) ||
5452             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5453            "Expecting a global address, external symbol, absolute value, "
5454            "register or an indirect tail call when PC Relative calls are "
5455            "used.");
5456     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5457     assert(CallOpc == PPCISD::TC_RETURN &&
5458            "Unexpected call opcode for a tail call.");
5459     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5460     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5461   }
5462 
5463   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5464   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5465   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5466   Glue = Chain.getValue(1);
5467 
5468   // When performing tail call optimization the callee pops its arguments off
5469   // the stack. Account for this here so these bytes can be pushed back on in
5470   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5471   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5472                          getTargetMachine().Options.GuaranteedTailCallOpt)
5473                             ? NumBytes
5474                             : 0;
5475 
5476   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5477                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5478                              Glue, dl);
5479   Glue = Chain.getValue(1);
5480 
5481   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5482                          DAG, InVals);
5483 }
5484 
5485 SDValue
5486 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5487                              SmallVectorImpl<SDValue> &InVals) const {
5488   SelectionDAG &DAG                     = CLI.DAG;
5489   SDLoc &dl                             = CLI.DL;
5490   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5491   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5492   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5493   SDValue Chain                         = CLI.Chain;
5494   SDValue Callee                        = CLI.Callee;
5495   bool &isTailCall                      = CLI.IsTailCall;
5496   CallingConv::ID CallConv              = CLI.CallConv;
5497   bool isVarArg                         = CLI.IsVarArg;
5498   bool isPatchPoint                     = CLI.IsPatchPoint;
5499   const CallBase *CB                    = CLI.CB;
5500 
5501   if (isTailCall) {
5502     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5503       isTailCall = false;
5504     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5505       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5506           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5507     else
5508       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5509                                                      Ins, DAG);
5510     if (isTailCall) {
5511       ++NumTailCalls;
5512       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5513         ++NumSiblingCalls;
5514 
5515       // PC Relative calls no longer guarantee that the callee is a Global
5516       // Address Node. The callee could be an indirect tail call in which
5517       // case the SDValue for the callee could be a load (to load the address
5518       // of a function pointer) or it may be a register copy (to move the
5519       // address of the callee from a function parameter into a virtual
5520       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5521       assert((Subtarget.isUsingPCRelativeCalls() ||
5522               isa<GlobalAddressSDNode>(Callee)) &&
5523              "Callee should be an llvm::Function object.");
5524 
5525       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5526                         << "\nTCO callee: ");
5527       LLVM_DEBUG(Callee.dump());
5528     }
5529   }
5530 
5531   if (!isTailCall && CB && CB->isMustTailCall())
5532     report_fatal_error("failed to perform tail call elimination on a call "
5533                        "site marked musttail");
5534 
5535   // When long calls (i.e. indirect calls) are always used, calls are always
5536   // made via function pointer. If we have a function name, first translate it
5537   // into a pointer.
5538   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5539       !isTailCall)
5540     Callee = LowerGlobalAddress(Callee, DAG);
5541 
5542   CallFlags CFlags(
5543       CallConv, isTailCall, isVarArg, isPatchPoint,
5544       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5545       // hasNest
5546       Subtarget.is64BitELFABI() &&
5547           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5548       CLI.NoMerge);
5549 
5550   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5551     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5552                             InVals, CB);
5553 
5554   if (Subtarget.isSVR4ABI())
5555     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5556                             InVals, CB);
5557 
5558   if (Subtarget.isAIXABI())
5559     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5560                          InVals, CB);
5561 
5562   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5563                           InVals, CB);
5564 }
5565 
5566 SDValue PPCTargetLowering::LowerCall_32SVR4(
5567     SDValue Chain, SDValue Callee, CallFlags CFlags,
5568     const SmallVectorImpl<ISD::OutputArg> &Outs,
5569     const SmallVectorImpl<SDValue> &OutVals,
5570     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5571     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5572     const CallBase *CB) const {
5573   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5574   // of the 32-bit SVR4 ABI stack frame layout.
5575 
5576   const CallingConv::ID CallConv = CFlags.CallConv;
5577   const bool IsVarArg = CFlags.IsVarArg;
5578   const bool IsTailCall = CFlags.IsTailCall;
5579 
5580   assert((CallConv == CallingConv::C ||
5581           CallConv == CallingConv::Cold ||
5582           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5583 
5584   const Align PtrAlign(4);
5585 
5586   MachineFunction &MF = DAG.getMachineFunction();
5587 
5588   // Mark this function as potentially containing a function that contains a
5589   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5590   // and restoring the callers stack pointer in this functions epilog. This is
5591   // done because by tail calling the called function might overwrite the value
5592   // in this function's (MF) stack pointer stack slot 0(SP).
5593   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5594       CallConv == CallingConv::Fast)
5595     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5596 
5597   // Count how many bytes are to be pushed on the stack, including the linkage
5598   // area, parameter list area and the part of the local variable space which
5599   // contains copies of aggregates which are passed by value.
5600 
5601   // Assign locations to all of the outgoing arguments.
5602   SmallVector<CCValAssign, 16> ArgLocs;
5603   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5604 
5605   // Reserve space for the linkage area on the stack.
5606   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5607                        PtrAlign);
5608   if (useSoftFloat())
5609     CCInfo.PreAnalyzeCallOperands(Outs);
5610 
5611   if (IsVarArg) {
5612     // Handle fixed and variable vector arguments differently.
5613     // Fixed vector arguments go into registers as long as registers are
5614     // available. Variable vector arguments always go into memory.
5615     unsigned NumArgs = Outs.size();
5616 
5617     for (unsigned i = 0; i != NumArgs; ++i) {
5618       MVT ArgVT = Outs[i].VT;
5619       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5620       bool Result;
5621 
5622       if (Outs[i].IsFixed) {
5623         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5624                                CCInfo);
5625       } else {
5626         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5627                                       ArgFlags, CCInfo);
5628       }
5629 
5630       if (Result) {
5631 #ifndef NDEBUG
5632         errs() << "Call operand #" << i << " has unhandled type "
5633              << EVT(ArgVT).getEVTString() << "\n";
5634 #endif
5635         llvm_unreachable(nullptr);
5636       }
5637     }
5638   } else {
5639     // All arguments are treated the same.
5640     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5641   }
5642   CCInfo.clearWasPPCF128();
5643 
5644   // Assign locations to all of the outgoing aggregate by value arguments.
5645   SmallVector<CCValAssign, 16> ByValArgLocs;
5646   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5647 
5648   // Reserve stack space for the allocations in CCInfo.
5649   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5650 
5651   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5652 
5653   // Size of the linkage area, parameter list area and the part of the local
5654   // space variable where copies of aggregates which are passed by value are
5655   // stored.
5656   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5657 
5658   // Calculate by how many bytes the stack has to be adjusted in case of tail
5659   // call optimization.
5660   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5661 
5662   // Adjust the stack pointer for the new arguments...
5663   // These operations are automatically eliminated by the prolog/epilog pass
5664   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5665   SDValue CallSeqStart = Chain;
5666 
5667   // Load the return address and frame pointer so it can be moved somewhere else
5668   // later.
5669   SDValue LROp, FPOp;
5670   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5671 
5672   // Set up a copy of the stack pointer for use loading and storing any
5673   // arguments that may not fit in the registers available for argument
5674   // passing.
5675   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5676 
5677   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5678   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5679   SmallVector<SDValue, 8> MemOpChains;
5680 
5681   bool seenFloatArg = false;
5682   // Walk the register/memloc assignments, inserting copies/loads.
5683   // i - Tracks the index into the list of registers allocated for the call
5684   // RealArgIdx - Tracks the index into the list of actual function arguments
5685   // j - Tracks the index into the list of byval arguments
5686   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5687        i != e;
5688        ++i, ++RealArgIdx) {
5689     CCValAssign &VA = ArgLocs[i];
5690     SDValue Arg = OutVals[RealArgIdx];
5691     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5692 
5693     if (Flags.isByVal()) {
5694       // Argument is an aggregate which is passed by value, thus we need to
5695       // create a copy of it in the local variable space of the current stack
5696       // frame (which is the stack frame of the caller) and pass the address of
5697       // this copy to the callee.
5698       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5699       CCValAssign &ByValVA = ByValArgLocs[j++];
5700       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5701 
5702       // Memory reserved in the local variable space of the callers stack frame.
5703       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5704 
5705       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5706       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5707                            StackPtr, PtrOff);
5708 
5709       // Create a copy of the argument in the local area of the current
5710       // stack frame.
5711       SDValue MemcpyCall =
5712         CreateCopyOfByValArgument(Arg, PtrOff,
5713                                   CallSeqStart.getNode()->getOperand(0),
5714                                   Flags, DAG, dl);
5715 
5716       // This must go outside the CALLSEQ_START..END.
5717       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5718                                                      SDLoc(MemcpyCall));
5719       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5720                              NewCallSeqStart.getNode());
5721       Chain = CallSeqStart = NewCallSeqStart;
5722 
5723       // Pass the address of the aggregate copy on the stack either in a
5724       // physical register or in the parameter list area of the current stack
5725       // frame to the callee.
5726       Arg = PtrOff;
5727     }
5728 
5729     // When useCRBits() is true, there can be i1 arguments.
5730     // It is because getRegisterType(MVT::i1) => MVT::i1,
5731     // and for other integer types getRegisterType() => MVT::i32.
5732     // Extend i1 and ensure callee will get i32.
5733     if (Arg.getValueType() == MVT::i1)
5734       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5735                         dl, MVT::i32, Arg);
5736 
5737     if (VA.isRegLoc()) {
5738       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5739       // Put argument in a physical register.
5740       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5741         bool IsLE = Subtarget.isLittleEndian();
5742         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5743                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5744         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5745         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5746                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5747         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5748                              SVal.getValue(0)));
5749       } else
5750         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5751     } else {
5752       // Put argument in the parameter list area of the current stack frame.
5753       assert(VA.isMemLoc());
5754       unsigned LocMemOffset = VA.getLocMemOffset();
5755 
5756       if (!IsTailCall) {
5757         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5758         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5759                              StackPtr, PtrOff);
5760 
5761         MemOpChains.push_back(
5762             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5763       } else {
5764         // Calculate and remember argument location.
5765         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5766                                  TailCallArguments);
5767       }
5768     }
5769   }
5770 
5771   if (!MemOpChains.empty())
5772     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5773 
5774   // Build a sequence of copy-to-reg nodes chained together with token chain
5775   // and flag operands which copy the outgoing args into the appropriate regs.
5776   SDValue InFlag;
5777   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5778     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5779                              RegsToPass[i].second, InFlag);
5780     InFlag = Chain.getValue(1);
5781   }
5782 
5783   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5784   // registers.
5785   if (IsVarArg) {
5786     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5787     SDValue Ops[] = { Chain, InFlag };
5788 
5789     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5790                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5791 
5792     InFlag = Chain.getValue(1);
5793   }
5794 
5795   if (IsTailCall)
5796     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5797                     TailCallArguments);
5798 
5799   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5800                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5801 }
5802 
5803 // Copy an argument into memory, being careful to do this outside the
5804 // call sequence for the call to which the argument belongs.
5805 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5806     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5807     SelectionDAG &DAG, const SDLoc &dl) const {
5808   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5809                         CallSeqStart.getNode()->getOperand(0),
5810                         Flags, DAG, dl);
5811   // The MEMCPY must go outside the CALLSEQ_START..END.
5812   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5813   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5814                                                  SDLoc(MemcpyCall));
5815   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5816                          NewCallSeqStart.getNode());
5817   return NewCallSeqStart;
5818 }
5819 
5820 SDValue PPCTargetLowering::LowerCall_64SVR4(
5821     SDValue Chain, SDValue Callee, CallFlags CFlags,
5822     const SmallVectorImpl<ISD::OutputArg> &Outs,
5823     const SmallVectorImpl<SDValue> &OutVals,
5824     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5825     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5826     const CallBase *CB) const {
5827   bool isELFv2ABI = Subtarget.isELFv2ABI();
5828   bool isLittleEndian = Subtarget.isLittleEndian();
5829   unsigned NumOps = Outs.size();
5830   bool IsSibCall = false;
5831   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5832 
5833   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5834   unsigned PtrByteSize = 8;
5835 
5836   MachineFunction &MF = DAG.getMachineFunction();
5837 
5838   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5839     IsSibCall = true;
5840 
5841   // Mark this function as potentially containing a function that contains a
5842   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5843   // and restoring the callers stack pointer in this functions epilog. This is
5844   // done because by tail calling the called function might overwrite the value
5845   // in this function's (MF) stack pointer stack slot 0(SP).
5846   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5847     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5848 
5849   assert(!(IsFastCall && CFlags.IsVarArg) &&
5850          "fastcc not supported on varargs functions");
5851 
5852   // Count how many bytes are to be pushed on the stack, including the linkage
5853   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5854   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5855   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5856   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5857   unsigned NumBytes = LinkageSize;
5858   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5859 
5860   static const MCPhysReg GPR[] = {
5861     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5862     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5863   };
5864   static const MCPhysReg VR[] = {
5865     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5866     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5867   };
5868 
5869   const unsigned NumGPRs = array_lengthof(GPR);
5870   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5871   const unsigned NumVRs  = array_lengthof(VR);
5872 
5873   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5874   // can be passed to the callee in registers.
5875   // For the fast calling convention, there is another check below.
5876   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5877   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5878   if (!HasParameterArea) {
5879     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5880     unsigned AvailableFPRs = NumFPRs;
5881     unsigned AvailableVRs = NumVRs;
5882     unsigned NumBytesTmp = NumBytes;
5883     for (unsigned i = 0; i != NumOps; ++i) {
5884       if (Outs[i].Flags.isNest()) continue;
5885       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5886                                  PtrByteSize, LinkageSize, ParamAreaSize,
5887                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5888         HasParameterArea = true;
5889     }
5890   }
5891 
5892   // When using the fast calling convention, we don't provide backing for
5893   // arguments that will be in registers.
5894   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5895 
5896   // Avoid allocating parameter area for fastcc functions if all the arguments
5897   // can be passed in the registers.
5898   if (IsFastCall)
5899     HasParameterArea = false;
5900 
5901   // Add up all the space actually used.
5902   for (unsigned i = 0; i != NumOps; ++i) {
5903     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5904     EVT ArgVT = Outs[i].VT;
5905     EVT OrigVT = Outs[i].ArgVT;
5906 
5907     if (Flags.isNest())
5908       continue;
5909 
5910     if (IsFastCall) {
5911       if (Flags.isByVal()) {
5912         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5913         if (NumGPRsUsed > NumGPRs)
5914           HasParameterArea = true;
5915       } else {
5916         switch (ArgVT.getSimpleVT().SimpleTy) {
5917         default: llvm_unreachable("Unexpected ValueType for argument!");
5918         case MVT::i1:
5919         case MVT::i32:
5920         case MVT::i64:
5921           if (++NumGPRsUsed <= NumGPRs)
5922             continue;
5923           break;
5924         case MVT::v4i32:
5925         case MVT::v8i16:
5926         case MVT::v16i8:
5927         case MVT::v2f64:
5928         case MVT::v2i64:
5929         case MVT::v1i128:
5930         case MVT::f128:
5931           if (++NumVRsUsed <= NumVRs)
5932             continue;
5933           break;
5934         case MVT::v4f32:
5935           if (++NumVRsUsed <= NumVRs)
5936             continue;
5937           break;
5938         case MVT::f32:
5939         case MVT::f64:
5940           if (++NumFPRsUsed <= NumFPRs)
5941             continue;
5942           break;
5943         }
5944         HasParameterArea = true;
5945       }
5946     }
5947 
5948     /* Respect alignment of argument on the stack.  */
5949     auto Alignement =
5950         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5951     NumBytes = alignTo(NumBytes, Alignement);
5952 
5953     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5954     if (Flags.isInConsecutiveRegsLast())
5955       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5956   }
5957 
5958   unsigned NumBytesActuallyUsed = NumBytes;
5959 
5960   // In the old ELFv1 ABI,
5961   // the prolog code of the callee may store up to 8 GPR argument registers to
5962   // the stack, allowing va_start to index over them in memory if its varargs.
5963   // Because we cannot tell if this is needed on the caller side, we have to
5964   // conservatively assume that it is needed.  As such, make sure we have at
5965   // least enough stack space for the caller to store the 8 GPRs.
5966   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5967   // really requires memory operands, e.g. a vararg function.
5968   if (HasParameterArea)
5969     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5970   else
5971     NumBytes = LinkageSize;
5972 
5973   // Tail call needs the stack to be aligned.
5974   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5975     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5976 
5977   int SPDiff = 0;
5978 
5979   // Calculate by how many bytes the stack has to be adjusted in case of tail
5980   // call optimization.
5981   if (!IsSibCall)
5982     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
5983 
5984   // To protect arguments on the stack from being clobbered in a tail call,
5985   // force all the loads to happen before doing any other lowering.
5986   if (CFlags.IsTailCall)
5987     Chain = DAG.getStackArgumentTokenFactor(Chain);
5988 
5989   // Adjust the stack pointer for the new arguments...
5990   // These operations are automatically eliminated by the prolog/epilog pass
5991   if (!IsSibCall)
5992     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5993   SDValue CallSeqStart = Chain;
5994 
5995   // Load the return address and frame pointer so it can be move somewhere else
5996   // later.
5997   SDValue LROp, FPOp;
5998   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5999 
6000   // Set up a copy of the stack pointer for use loading and storing any
6001   // arguments that may not fit in the registers available for argument
6002   // passing.
6003   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6004 
6005   // Figure out which arguments are going to go in registers, and which in
6006   // memory.  Also, if this is a vararg function, floating point operations
6007   // must be stored to our stack, and loaded into integer regs as well, if
6008   // any integer regs are available for argument passing.
6009   unsigned ArgOffset = LinkageSize;
6010 
6011   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6012   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6013 
6014   SmallVector<SDValue, 8> MemOpChains;
6015   for (unsigned i = 0; i != NumOps; ++i) {
6016     SDValue Arg = OutVals[i];
6017     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6018     EVT ArgVT = Outs[i].VT;
6019     EVT OrigVT = Outs[i].ArgVT;
6020 
6021     // PtrOff will be used to store the current argument to the stack if a
6022     // register cannot be found for it.
6023     SDValue PtrOff;
6024 
6025     // We re-align the argument offset for each argument, except when using the
6026     // fast calling convention, when we need to make sure we do that only when
6027     // we'll actually use a stack slot.
6028     auto ComputePtrOff = [&]() {
6029       /* Respect alignment of argument on the stack.  */
6030       auto Alignment =
6031           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6032       ArgOffset = alignTo(ArgOffset, Alignment);
6033 
6034       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6035 
6036       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6037     };
6038 
6039     if (!IsFastCall) {
6040       ComputePtrOff();
6041 
6042       /* Compute GPR index associated with argument offset.  */
6043       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6044       GPR_idx = std::min(GPR_idx, NumGPRs);
6045     }
6046 
6047     // Promote integers to 64-bit values.
6048     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6049       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6050       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6051       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6052     }
6053 
6054     // FIXME memcpy is used way more than necessary.  Correctness first.
6055     // Note: "by value" is code for passing a structure by value, not
6056     // basic types.
6057     if (Flags.isByVal()) {
6058       // Note: Size includes alignment padding, so
6059       //   struct x { short a; char b; }
6060       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6061       // These are the proper values we need for right-justifying the
6062       // aggregate in a parameter register.
6063       unsigned Size = Flags.getByValSize();
6064 
6065       // An empty aggregate parameter takes up no storage and no
6066       // registers.
6067       if (Size == 0)
6068         continue;
6069 
6070       if (IsFastCall)
6071         ComputePtrOff();
6072 
6073       // All aggregates smaller than 8 bytes must be passed right-justified.
6074       if (Size==1 || Size==2 || Size==4) {
6075         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6076         if (GPR_idx != NumGPRs) {
6077           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6078                                         MachinePointerInfo(), VT);
6079           MemOpChains.push_back(Load.getValue(1));
6080           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6081 
6082           ArgOffset += PtrByteSize;
6083           continue;
6084         }
6085       }
6086 
6087       if (GPR_idx == NumGPRs && Size < 8) {
6088         SDValue AddPtr = PtrOff;
6089         if (!isLittleEndian) {
6090           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6091                                           PtrOff.getValueType());
6092           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6093         }
6094         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6095                                                           CallSeqStart,
6096                                                           Flags, DAG, dl);
6097         ArgOffset += PtrByteSize;
6098         continue;
6099       }
6100       // Copy entire object into memory.  There are cases where gcc-generated
6101       // code assumes it is there, even if it could be put entirely into
6102       // registers.  (This is not what the doc says.)
6103 
6104       // FIXME: The above statement is likely due to a misunderstanding of the
6105       // documents.  All arguments must be copied into the parameter area BY
6106       // THE CALLEE in the event that the callee takes the address of any
6107       // formal argument.  That has not yet been implemented.  However, it is
6108       // reasonable to use the stack area as a staging area for the register
6109       // load.
6110 
6111       // Skip this for small aggregates, as we will use the same slot for a
6112       // right-justified copy, below.
6113       if (Size >= 8)
6114         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6115                                                           CallSeqStart,
6116                                                           Flags, DAG, dl);
6117 
6118       // When a register is available, pass a small aggregate right-justified.
6119       if (Size < 8 && GPR_idx != NumGPRs) {
6120         // The easiest way to get this right-justified in a register
6121         // is to copy the structure into the rightmost portion of a
6122         // local variable slot, then load the whole slot into the
6123         // register.
6124         // FIXME: The memcpy seems to produce pretty awful code for
6125         // small aggregates, particularly for packed ones.
6126         // FIXME: It would be preferable to use the slot in the
6127         // parameter save area instead of a new local variable.
6128         SDValue AddPtr = PtrOff;
6129         if (!isLittleEndian) {
6130           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6131           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6132         }
6133         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6134                                                           CallSeqStart,
6135                                                           Flags, DAG, dl);
6136 
6137         // Load the slot into the register.
6138         SDValue Load =
6139             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6140         MemOpChains.push_back(Load.getValue(1));
6141         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6142 
6143         // Done with this argument.
6144         ArgOffset += PtrByteSize;
6145         continue;
6146       }
6147 
6148       // For aggregates larger than PtrByteSize, copy the pieces of the
6149       // object that fit into registers from the parameter save area.
6150       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6151         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6152         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6153         if (GPR_idx != NumGPRs) {
6154           SDValue Load =
6155               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6156           MemOpChains.push_back(Load.getValue(1));
6157           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6158           ArgOffset += PtrByteSize;
6159         } else {
6160           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6161           break;
6162         }
6163       }
6164       continue;
6165     }
6166 
6167     switch (Arg.getSimpleValueType().SimpleTy) {
6168     default: llvm_unreachable("Unexpected ValueType for argument!");
6169     case MVT::i1:
6170     case MVT::i32:
6171     case MVT::i64:
6172       if (Flags.isNest()) {
6173         // The 'nest' parameter, if any, is passed in R11.
6174         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6175         break;
6176       }
6177 
6178       // These can be scalar arguments or elements of an integer array type
6179       // passed directly.  Clang may use those instead of "byval" aggregate
6180       // types to avoid forcing arguments to memory unnecessarily.
6181       if (GPR_idx != NumGPRs) {
6182         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6183       } else {
6184         if (IsFastCall)
6185           ComputePtrOff();
6186 
6187         assert(HasParameterArea &&
6188                "Parameter area must exist to pass an argument in memory.");
6189         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6190                          true, CFlags.IsTailCall, false, MemOpChains,
6191                          TailCallArguments, dl);
6192         if (IsFastCall)
6193           ArgOffset += PtrByteSize;
6194       }
6195       if (!IsFastCall)
6196         ArgOffset += PtrByteSize;
6197       break;
6198     case MVT::f32:
6199     case MVT::f64: {
6200       // These can be scalar arguments or elements of a float array type
6201       // passed directly.  The latter are used to implement ELFv2 homogenous
6202       // float aggregates.
6203 
6204       // Named arguments go into FPRs first, and once they overflow, the
6205       // remaining arguments go into GPRs and then the parameter save area.
6206       // Unnamed arguments for vararg functions always go to GPRs and
6207       // then the parameter save area.  For now, put all arguments to vararg
6208       // routines always in both locations (FPR *and* GPR or stack slot).
6209       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6210       bool NeededLoad = false;
6211 
6212       // First load the argument into the next available FPR.
6213       if (FPR_idx != NumFPRs)
6214         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6215 
6216       // Next, load the argument into GPR or stack slot if needed.
6217       if (!NeedGPROrStack)
6218         ;
6219       else if (GPR_idx != NumGPRs && !IsFastCall) {
6220         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6221         // once we support fp <-> gpr moves.
6222 
6223         // In the non-vararg case, this can only ever happen in the
6224         // presence of f32 array types, since otherwise we never run
6225         // out of FPRs before running out of GPRs.
6226         SDValue ArgVal;
6227 
6228         // Double values are always passed in a single GPR.
6229         if (Arg.getValueType() != MVT::f32) {
6230           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6231 
6232         // Non-array float values are extended and passed in a GPR.
6233         } else if (!Flags.isInConsecutiveRegs()) {
6234           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6235           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6236 
6237         // If we have an array of floats, we collect every odd element
6238         // together with its predecessor into one GPR.
6239         } else if (ArgOffset % PtrByteSize != 0) {
6240           SDValue Lo, Hi;
6241           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6242           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6243           if (!isLittleEndian)
6244             std::swap(Lo, Hi);
6245           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6246 
6247         // The final element, if even, goes into the first half of a GPR.
6248         } else if (Flags.isInConsecutiveRegsLast()) {
6249           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6250           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6251           if (!isLittleEndian)
6252             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6253                                  DAG.getConstant(32, dl, MVT::i32));
6254 
6255         // Non-final even elements are skipped; they will be handled
6256         // together the with subsequent argument on the next go-around.
6257         } else
6258           ArgVal = SDValue();
6259 
6260         if (ArgVal.getNode())
6261           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6262       } else {
6263         if (IsFastCall)
6264           ComputePtrOff();
6265 
6266         // Single-precision floating-point values are mapped to the
6267         // second (rightmost) word of the stack doubleword.
6268         if (Arg.getValueType() == MVT::f32 &&
6269             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6270           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6271           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6272         }
6273 
6274         assert(HasParameterArea &&
6275                "Parameter area must exist to pass an argument in memory.");
6276         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6277                          true, CFlags.IsTailCall, false, MemOpChains,
6278                          TailCallArguments, dl);
6279 
6280         NeededLoad = true;
6281       }
6282       // When passing an array of floats, the array occupies consecutive
6283       // space in the argument area; only round up to the next doubleword
6284       // at the end of the array.  Otherwise, each float takes 8 bytes.
6285       if (!IsFastCall || NeededLoad) {
6286         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6287                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6288         if (Flags.isInConsecutiveRegsLast())
6289           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6290       }
6291       break;
6292     }
6293     case MVT::v4f32:
6294     case MVT::v4i32:
6295     case MVT::v8i16:
6296     case MVT::v16i8:
6297     case MVT::v2f64:
6298     case MVT::v2i64:
6299     case MVT::v1i128:
6300     case MVT::f128:
6301       // These can be scalar arguments or elements of a vector array type
6302       // passed directly.  The latter are used to implement ELFv2 homogenous
6303       // vector aggregates.
6304 
6305       // For a varargs call, named arguments go into VRs or on the stack as
6306       // usual; unnamed arguments always go to the stack or the corresponding
6307       // GPRs when within range.  For now, we always put the value in both
6308       // locations (or even all three).
6309       if (CFlags.IsVarArg) {
6310         assert(HasParameterArea &&
6311                "Parameter area must exist if we have a varargs call.");
6312         // We could elide this store in the case where the object fits
6313         // entirely in R registers.  Maybe later.
6314         SDValue Store =
6315             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6316         MemOpChains.push_back(Store);
6317         if (VR_idx != NumVRs) {
6318           SDValue Load =
6319               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6320           MemOpChains.push_back(Load.getValue(1));
6321           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6322         }
6323         ArgOffset += 16;
6324         for (unsigned i=0; i<16; i+=PtrByteSize) {
6325           if (GPR_idx == NumGPRs)
6326             break;
6327           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6328                                    DAG.getConstant(i, dl, PtrVT));
6329           SDValue Load =
6330               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6331           MemOpChains.push_back(Load.getValue(1));
6332           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6333         }
6334         break;
6335       }
6336 
6337       // Non-varargs Altivec params go into VRs or on the stack.
6338       if (VR_idx != NumVRs) {
6339         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6340       } else {
6341         if (IsFastCall)
6342           ComputePtrOff();
6343 
6344         assert(HasParameterArea &&
6345                "Parameter area must exist to pass an argument in memory.");
6346         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6347                          true, CFlags.IsTailCall, true, MemOpChains,
6348                          TailCallArguments, dl);
6349         if (IsFastCall)
6350           ArgOffset += 16;
6351       }
6352 
6353       if (!IsFastCall)
6354         ArgOffset += 16;
6355       break;
6356     }
6357   }
6358 
6359   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6360          "mismatch in size of parameter area");
6361   (void)NumBytesActuallyUsed;
6362 
6363   if (!MemOpChains.empty())
6364     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6365 
6366   // Check if this is an indirect call (MTCTR/BCTRL).
6367   // See prepareDescriptorIndirectCall and buildCallOperands for more
6368   // information about calls through function pointers in the 64-bit SVR4 ABI.
6369   if (CFlags.IsIndirect) {
6370     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6371     // caller in the TOC save area.
6372     if (isTOCSaveRestoreRequired(Subtarget)) {
6373       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6374       // Load r2 into a virtual register and store it to the TOC save area.
6375       setUsesTOCBasePtr(DAG);
6376       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6377       // TOC save area offset.
6378       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6379       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6380       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6381       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6382                            MachinePointerInfo::getStack(
6383                                DAG.getMachineFunction(), TOCSaveOffset));
6384     }
6385     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6386     // This does not mean the MTCTR instruction must use R12; it's easier
6387     // to model this as an extra parameter, so do that.
6388     if (isELFv2ABI && !CFlags.IsPatchPoint)
6389       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6390   }
6391 
6392   // Build a sequence of copy-to-reg nodes chained together with token chain
6393   // and flag operands which copy the outgoing args into the appropriate regs.
6394   SDValue InFlag;
6395   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6396     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6397                              RegsToPass[i].second, InFlag);
6398     InFlag = Chain.getValue(1);
6399   }
6400 
6401   if (CFlags.IsTailCall && !IsSibCall)
6402     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6403                     TailCallArguments);
6404 
6405   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6406                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6407 }
6408 
6409 SDValue PPCTargetLowering::LowerCall_Darwin(
6410     SDValue Chain, SDValue Callee, CallFlags CFlags,
6411     const SmallVectorImpl<ISD::OutputArg> &Outs,
6412     const SmallVectorImpl<SDValue> &OutVals,
6413     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6414     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6415     const CallBase *CB) const {
6416   unsigned NumOps = Outs.size();
6417 
6418   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6419   bool isPPC64 = PtrVT == MVT::i64;
6420   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6421 
6422   MachineFunction &MF = DAG.getMachineFunction();
6423 
6424   // Mark this function as potentially containing a function that contains a
6425   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6426   // and restoring the callers stack pointer in this functions epilog. This is
6427   // done because by tail calling the called function might overwrite the value
6428   // in this function's (MF) stack pointer stack slot 0(SP).
6429   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6430       CFlags.CallConv == CallingConv::Fast)
6431     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6432 
6433   // Count how many bytes are to be pushed on the stack, including the linkage
6434   // area, and parameter passing area.  We start with 24/48 bytes, which is
6435   // prereserved space for [SP][CR][LR][3 x unused].
6436   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6437   unsigned NumBytes = LinkageSize;
6438 
6439   // Add up all the space actually used.
6440   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6441   // they all go in registers, but we must reserve stack space for them for
6442   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6443   // assigned stack space in order, with padding so Altivec parameters are
6444   // 16-byte aligned.
6445   unsigned nAltivecParamsAtEnd = 0;
6446   for (unsigned i = 0; i != NumOps; ++i) {
6447     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6448     EVT ArgVT = Outs[i].VT;
6449     // Varargs Altivec parameters are padded to a 16 byte boundary.
6450     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6451         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6452         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6453       if (!CFlags.IsVarArg && !isPPC64) {
6454         // Non-varargs Altivec parameters go after all the non-Altivec
6455         // parameters; handle those later so we know how much padding we need.
6456         nAltivecParamsAtEnd++;
6457         continue;
6458       }
6459       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6460       NumBytes = ((NumBytes+15)/16)*16;
6461     }
6462     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6463   }
6464 
6465   // Allow for Altivec parameters at the end, if needed.
6466   if (nAltivecParamsAtEnd) {
6467     NumBytes = ((NumBytes+15)/16)*16;
6468     NumBytes += 16*nAltivecParamsAtEnd;
6469   }
6470 
6471   // The prolog code of the callee may store up to 8 GPR argument registers to
6472   // the stack, allowing va_start to index over them in memory if its varargs.
6473   // Because we cannot tell if this is needed on the caller side, we have to
6474   // conservatively assume that it is needed.  As such, make sure we have at
6475   // least enough stack space for the caller to store the 8 GPRs.
6476   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6477 
6478   // Tail call needs the stack to be aligned.
6479   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6480       CFlags.CallConv == CallingConv::Fast)
6481     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6482 
6483   // Calculate by how many bytes the stack has to be adjusted in case of tail
6484   // call optimization.
6485   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6486 
6487   // To protect arguments on the stack from being clobbered in a tail call,
6488   // force all the loads to happen before doing any other lowering.
6489   if (CFlags.IsTailCall)
6490     Chain = DAG.getStackArgumentTokenFactor(Chain);
6491 
6492   // Adjust the stack pointer for the new arguments...
6493   // These operations are automatically eliminated by the prolog/epilog pass
6494   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6495   SDValue CallSeqStart = Chain;
6496 
6497   // Load the return address and frame pointer so it can be move somewhere else
6498   // later.
6499   SDValue LROp, FPOp;
6500   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6501 
6502   // Set up a copy of the stack pointer for use loading and storing any
6503   // arguments that may not fit in the registers available for argument
6504   // passing.
6505   SDValue StackPtr;
6506   if (isPPC64)
6507     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6508   else
6509     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6510 
6511   // Figure out which arguments are going to go in registers, and which in
6512   // memory.  Also, if this is a vararg function, floating point operations
6513   // must be stored to our stack, and loaded into integer regs as well, if
6514   // any integer regs are available for argument passing.
6515   unsigned ArgOffset = LinkageSize;
6516   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6517 
6518   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6519     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6520     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6521   };
6522   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6523     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6524     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6525   };
6526   static const MCPhysReg VR[] = {
6527     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6528     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6529   };
6530   const unsigned NumGPRs = array_lengthof(GPR_32);
6531   const unsigned NumFPRs = 13;
6532   const unsigned NumVRs  = array_lengthof(VR);
6533 
6534   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6535 
6536   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6537   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6538 
6539   SmallVector<SDValue, 8> MemOpChains;
6540   for (unsigned i = 0; i != NumOps; ++i) {
6541     SDValue Arg = OutVals[i];
6542     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6543 
6544     // PtrOff will be used to store the current argument to the stack if a
6545     // register cannot be found for it.
6546     SDValue PtrOff;
6547 
6548     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6549 
6550     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6551 
6552     // On PPC64, promote integers to 64-bit values.
6553     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6554       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6555       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6556       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6557     }
6558 
6559     // FIXME memcpy is used way more than necessary.  Correctness first.
6560     // Note: "by value" is code for passing a structure by value, not
6561     // basic types.
6562     if (Flags.isByVal()) {
6563       unsigned Size = Flags.getByValSize();
6564       // Very small objects are passed right-justified.  Everything else is
6565       // passed left-justified.
6566       if (Size==1 || Size==2) {
6567         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6568         if (GPR_idx != NumGPRs) {
6569           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6570                                         MachinePointerInfo(), VT);
6571           MemOpChains.push_back(Load.getValue(1));
6572           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6573 
6574           ArgOffset += PtrByteSize;
6575         } else {
6576           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6577                                           PtrOff.getValueType());
6578           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6579           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6580                                                             CallSeqStart,
6581                                                             Flags, DAG, dl);
6582           ArgOffset += PtrByteSize;
6583         }
6584         continue;
6585       }
6586       // Copy entire object into memory.  There are cases where gcc-generated
6587       // code assumes it is there, even if it could be put entirely into
6588       // registers.  (This is not what the doc says.)
6589       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6590                                                         CallSeqStart,
6591                                                         Flags, DAG, dl);
6592 
6593       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6594       // copy the pieces of the object that fit into registers from the
6595       // parameter save area.
6596       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6597         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6598         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6599         if (GPR_idx != NumGPRs) {
6600           SDValue Load =
6601               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6602           MemOpChains.push_back(Load.getValue(1));
6603           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6604           ArgOffset += PtrByteSize;
6605         } else {
6606           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6607           break;
6608         }
6609       }
6610       continue;
6611     }
6612 
6613     switch (Arg.getSimpleValueType().SimpleTy) {
6614     default: llvm_unreachable("Unexpected ValueType for argument!");
6615     case MVT::i1:
6616     case MVT::i32:
6617     case MVT::i64:
6618       if (GPR_idx != NumGPRs) {
6619         if (Arg.getValueType() == MVT::i1)
6620           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6621 
6622         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6623       } else {
6624         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6625                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6626                          TailCallArguments, dl);
6627       }
6628       ArgOffset += PtrByteSize;
6629       break;
6630     case MVT::f32:
6631     case MVT::f64:
6632       if (FPR_idx != NumFPRs) {
6633         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6634 
6635         if (CFlags.IsVarArg) {
6636           SDValue Store =
6637               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6638           MemOpChains.push_back(Store);
6639 
6640           // Float varargs are always shadowed in available integer registers
6641           if (GPR_idx != NumGPRs) {
6642             SDValue Load =
6643                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6644             MemOpChains.push_back(Load.getValue(1));
6645             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6646           }
6647           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6648             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6649             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6650             SDValue Load =
6651                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6652             MemOpChains.push_back(Load.getValue(1));
6653             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6654           }
6655         } else {
6656           // If we have any FPRs remaining, we may also have GPRs remaining.
6657           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6658           // GPRs.
6659           if (GPR_idx != NumGPRs)
6660             ++GPR_idx;
6661           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6662               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6663             ++GPR_idx;
6664         }
6665       } else
6666         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6667                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6668                          TailCallArguments, dl);
6669       if (isPPC64)
6670         ArgOffset += 8;
6671       else
6672         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6673       break;
6674     case MVT::v4f32:
6675     case MVT::v4i32:
6676     case MVT::v8i16:
6677     case MVT::v16i8:
6678       if (CFlags.IsVarArg) {
6679         // These go aligned on the stack, or in the corresponding R registers
6680         // when within range.  The Darwin PPC ABI doc claims they also go in
6681         // V registers; in fact gcc does this only for arguments that are
6682         // prototyped, not for those that match the ...  We do it for all
6683         // arguments, seems to work.
6684         while (ArgOffset % 16 !=0) {
6685           ArgOffset += PtrByteSize;
6686           if (GPR_idx != NumGPRs)
6687             GPR_idx++;
6688         }
6689         // We could elide this store in the case where the object fits
6690         // entirely in R registers.  Maybe later.
6691         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6692                              DAG.getConstant(ArgOffset, dl, PtrVT));
6693         SDValue Store =
6694             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6695         MemOpChains.push_back(Store);
6696         if (VR_idx != NumVRs) {
6697           SDValue Load =
6698               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6699           MemOpChains.push_back(Load.getValue(1));
6700           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6701         }
6702         ArgOffset += 16;
6703         for (unsigned i=0; i<16; i+=PtrByteSize) {
6704           if (GPR_idx == NumGPRs)
6705             break;
6706           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6707                                    DAG.getConstant(i, dl, PtrVT));
6708           SDValue Load =
6709               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6710           MemOpChains.push_back(Load.getValue(1));
6711           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6712         }
6713         break;
6714       }
6715 
6716       // Non-varargs Altivec params generally go in registers, but have
6717       // stack space allocated at the end.
6718       if (VR_idx != NumVRs) {
6719         // Doesn't have GPR space allocated.
6720         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6721       } else if (nAltivecParamsAtEnd==0) {
6722         // We are emitting Altivec params in order.
6723         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6724                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6725                          TailCallArguments, dl);
6726         ArgOffset += 16;
6727       }
6728       break;
6729     }
6730   }
6731   // If all Altivec parameters fit in registers, as they usually do,
6732   // they get stack space following the non-Altivec parameters.  We
6733   // don't track this here because nobody below needs it.
6734   // If there are more Altivec parameters than fit in registers emit
6735   // the stores here.
6736   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6737     unsigned j = 0;
6738     // Offset is aligned; skip 1st 12 params which go in V registers.
6739     ArgOffset = ((ArgOffset+15)/16)*16;
6740     ArgOffset += 12*16;
6741     for (unsigned i = 0; i != NumOps; ++i) {
6742       SDValue Arg = OutVals[i];
6743       EVT ArgType = Outs[i].VT;
6744       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6745           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6746         if (++j > NumVRs) {
6747           SDValue PtrOff;
6748           // We are emitting Altivec params in order.
6749           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6750                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6751                            TailCallArguments, dl);
6752           ArgOffset += 16;
6753         }
6754       }
6755     }
6756   }
6757 
6758   if (!MemOpChains.empty())
6759     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6760 
6761   // On Darwin, R12 must contain the address of an indirect callee.  This does
6762   // not mean the MTCTR instruction must use R12; it's easier to model this as
6763   // an extra parameter, so do that.
6764   if (CFlags.IsIndirect) {
6765     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6766     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6767                                                    PPC::R12), Callee));
6768   }
6769 
6770   // Build a sequence of copy-to-reg nodes chained together with token chain
6771   // and flag operands which copy the outgoing args into the appropriate regs.
6772   SDValue InFlag;
6773   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6774     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6775                              RegsToPass[i].second, InFlag);
6776     InFlag = Chain.getValue(1);
6777   }
6778 
6779   if (CFlags.IsTailCall)
6780     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6781                     TailCallArguments);
6782 
6783   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6784                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6785 }
6786 
6787 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6788                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6789                    CCState &State) {
6790 
6791   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6792       State.getMachineFunction().getSubtarget());
6793   const bool IsPPC64 = Subtarget.isPPC64();
6794   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6795   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6796 
6797   assert((!ValVT.isInteger() ||
6798           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
6799          "Integer argument exceeds register size: should have been legalized");
6800 
6801   if (ValVT == MVT::f128)
6802     report_fatal_error("f128 is unimplemented on AIX.");
6803 
6804   if (ArgFlags.isNest())
6805     report_fatal_error("Nest arguments are unimplemented.");
6806 
6807   if (ValVT.isVector() || LocVT.isVector())
6808     report_fatal_error("Vector arguments are unimplemented on AIX.");
6809 
6810   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6811                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6812                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6813   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6814                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6815                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6816 
6817   if (ArgFlags.isByVal()) {
6818     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6819       report_fatal_error("Pass-by-value arguments with alignment greater than "
6820                          "register width are not supported.");
6821 
6822     const unsigned ByValSize = ArgFlags.getByValSize();
6823 
6824     // An empty aggregate parameter takes up no storage and no registers,
6825     // but needs a MemLoc for a stack slot for the formal arguments side.
6826     if (ByValSize == 0) {
6827       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6828                                        State.getNextStackOffset(), RegVT,
6829                                        LocInfo));
6830       return false;
6831     }
6832 
6833     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6834     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6835     for (const unsigned E = Offset + StackSize; Offset < E;
6836          Offset += PtrAlign.value()) {
6837       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6838         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6839       else {
6840         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6841                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6842                                          LocInfo));
6843         break;
6844       }
6845     }
6846     return false;
6847   }
6848 
6849   // Arguments always reserve parameter save area.
6850   switch (ValVT.SimpleTy) {
6851   default:
6852     report_fatal_error("Unhandled value type for argument.");
6853   case MVT::i64:
6854     // i64 arguments should have been split to i32 for PPC32.
6855     assert(IsPPC64 && "PPC32 should have split i64 values.");
6856     LLVM_FALLTHROUGH;
6857   case MVT::i1:
6858   case MVT::i32: {
6859     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6860     // AIX integer arguments are always passed in register width.
6861     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6862       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6863                                   : CCValAssign::LocInfo::ZExt;
6864     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6865       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6866     else
6867       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6868 
6869     return false;
6870   }
6871   case MVT::f32:
6872   case MVT::f64: {
6873     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6874     const unsigned StoreSize = LocVT.getStoreSize();
6875     // Floats are always 4-byte aligned in the PSA on AIX.
6876     // This includes f64 in 64-bit mode for ABI compatibility.
6877     const unsigned Offset =
6878         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6879     unsigned FReg = State.AllocateReg(FPR);
6880     if (FReg)
6881       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6882 
6883     // Reserve and initialize GPRs or initialize the PSA as required.
6884     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6885       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6886         assert(FReg && "An FPR should be available when a GPR is reserved.");
6887         if (State.isVarArg()) {
6888           // Successfully reserved GPRs are only initialized for vararg calls.
6889           // Custom handling is required for:
6890           //   f64 in PPC32 needs to be split into 2 GPRs.
6891           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6892           State.addLoc(
6893               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6894         }
6895       } else {
6896         // If there are insufficient GPRs, the PSA needs to be initialized.
6897         // Initialization occurs even if an FPR was initialized for
6898         // compatibility with the AIX XL compiler. The full memory for the
6899         // argument will be initialized even if a prior word is saved in GPR.
6900         // A custom memLoc is used when the argument also passes in FPR so
6901         // that the callee handling can skip over it easily.
6902         State.addLoc(
6903             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6904                                              LocInfo)
6905                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6906         break;
6907       }
6908     }
6909 
6910     return false;
6911   }
6912   }
6913   return true;
6914 }
6915 
6916 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6917                                                     bool IsPPC64) {
6918   assert((IsPPC64 || SVT != MVT::i64) &&
6919          "i64 should have been split for 32-bit codegen.");
6920 
6921   switch (SVT) {
6922   default:
6923     report_fatal_error("Unexpected value type for formal argument");
6924   case MVT::i1:
6925   case MVT::i32:
6926   case MVT::i64:
6927     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6928   case MVT::f32:
6929     return &PPC::F4RCRegClass;
6930   case MVT::f64:
6931     return &PPC::F8RCRegClass;
6932   }
6933 }
6934 
6935 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6936                                         SelectionDAG &DAG, SDValue ArgValue,
6937                                         MVT LocVT, const SDLoc &dl) {
6938   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6939   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
6940 
6941   if (Flags.isSExt())
6942     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6943                            DAG.getValueType(ValVT));
6944   else if (Flags.isZExt())
6945     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6946                            DAG.getValueType(ValVT));
6947 
6948   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6949 }
6950 
6951 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6952   const unsigned LASize = FL->getLinkageSize();
6953 
6954   if (PPC::GPRCRegClass.contains(Reg)) {
6955     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6956            "Reg must be a valid argument register!");
6957     return LASize + 4 * (Reg - PPC::R3);
6958   }
6959 
6960   if (PPC::G8RCRegClass.contains(Reg)) {
6961     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6962            "Reg must be a valid argument register!");
6963     return LASize + 8 * (Reg - PPC::X3);
6964   }
6965 
6966   llvm_unreachable("Only general purpose registers expected.");
6967 }
6968 
6969 //   AIX ABI Stack Frame Layout:
6970 //
6971 //   Low Memory +--------------------------------------------+
6972 //   SP   +---> | Back chain                                 | ---+
6973 //        |     +--------------------------------------------+    |
6974 //        |     | Saved Condition Register                   |    |
6975 //        |     +--------------------------------------------+    |
6976 //        |     | Saved Linkage Register                     |    |
6977 //        |     +--------------------------------------------+    | Linkage Area
6978 //        |     | Reserved for compilers                     |    |
6979 //        |     +--------------------------------------------+    |
6980 //        |     | Reserved for binders                       |    |
6981 //        |     +--------------------------------------------+    |
6982 //        |     | Saved TOC pointer                          | ---+
6983 //        |     +--------------------------------------------+
6984 //        |     | Parameter save area                        |
6985 //        |     +--------------------------------------------+
6986 //        |     | Alloca space                               |
6987 //        |     +--------------------------------------------+
6988 //        |     | Local variable space                       |
6989 //        |     +--------------------------------------------+
6990 //        |     | Float/int conversion temporary             |
6991 //        |     +--------------------------------------------+
6992 //        |     | Save area for AltiVec registers            |
6993 //        |     +--------------------------------------------+
6994 //        |     | AltiVec alignment padding                  |
6995 //        |     +--------------------------------------------+
6996 //        |     | Save area for VRSAVE register              |
6997 //        |     +--------------------------------------------+
6998 //        |     | Save area for General Purpose registers    |
6999 //        |     +--------------------------------------------+
7000 //        |     | Save area for Floating Point registers     |
7001 //        |     +--------------------------------------------+
7002 //        +---- | Back chain                                 |
7003 // High Memory  +--------------------------------------------+
7004 //
7005 //  Specifications:
7006 //  AIX 7.2 Assembler Language Reference
7007 //  Subroutine linkage convention
7008 
7009 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7010     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7011     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7012     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7013 
7014   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7015           CallConv == CallingConv::Fast) &&
7016          "Unexpected calling convention!");
7017 
7018   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7019     report_fatal_error("Tail call support is unimplemented on AIX.");
7020 
7021   if (useSoftFloat())
7022     report_fatal_error("Soft float support is unimplemented on AIX.");
7023 
7024   const PPCSubtarget &Subtarget =
7025       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7026 
7027   const bool IsPPC64 = Subtarget.isPPC64();
7028   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7029 
7030   // Assign locations to all of the incoming arguments.
7031   SmallVector<CCValAssign, 16> ArgLocs;
7032   MachineFunction &MF = DAG.getMachineFunction();
7033   MachineFrameInfo &MFI = MF.getFrameInfo();
7034   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7035 
7036   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7037   // Reserve space for the linkage area on the stack.
7038   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7039   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7040   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7041 
7042   SmallVector<SDValue, 8> MemOps;
7043 
7044   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7045     CCValAssign &VA = ArgLocs[I++];
7046     MVT LocVT = VA.getLocVT();
7047     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7048 
7049     // For compatibility with the AIX XL compiler, the float args in the
7050     // parameter save area are initialized even if the argument is available
7051     // in register.  The caller is required to initialize both the register
7052     // and memory, however, the callee can choose to expect it in either.
7053     // The memloc is dismissed here because the argument is retrieved from
7054     // the register.
7055     if (VA.isMemLoc() && VA.needsCustom())
7056       continue;
7057 
7058     if (Flags.isByVal() && VA.isMemLoc()) {
7059       const unsigned Size =
7060           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7061                   PtrByteSize);
7062       const int FI = MF.getFrameInfo().CreateFixedObject(
7063           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7064           /* IsAliased */ true);
7065       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7066       InVals.push_back(FIN);
7067 
7068       continue;
7069     }
7070 
7071     if (Flags.isByVal()) {
7072       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7073 
7074       const MCPhysReg ArgReg = VA.getLocReg();
7075       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7076 
7077       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7078         report_fatal_error("Over aligned byvals not supported yet.");
7079 
7080       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7081       const int FI = MF.getFrameInfo().CreateFixedObject(
7082           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7083           /* IsAliased */ true);
7084       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7085       InVals.push_back(FIN);
7086 
7087       // Add live ins for all the RegLocs for the same ByVal.
7088       const TargetRegisterClass *RegClass =
7089           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7090 
7091       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7092                                                unsigned Offset) {
7093         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7094         // Since the callers side has left justified the aggregate in the
7095         // register, we can simply store the entire register into the stack
7096         // slot.
7097         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7098         // The store to the fixedstack object is needed becuase accessing a
7099         // field of the ByVal will use a gep and load. Ideally we will optimize
7100         // to extracting the value from the register directly, and elide the
7101         // stores when the arguments address is not taken, but that will need to
7102         // be future work.
7103         SDValue Store = DAG.getStore(
7104             CopyFrom.getValue(1), dl, CopyFrom,
7105             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7106             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7107 
7108         MemOps.push_back(Store);
7109       };
7110 
7111       unsigned Offset = 0;
7112       HandleRegLoc(VA.getLocReg(), Offset);
7113       Offset += PtrByteSize;
7114       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7115            Offset += PtrByteSize) {
7116         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7117                "RegLocs should be for ByVal argument.");
7118 
7119         const CCValAssign RL = ArgLocs[I++];
7120         HandleRegLoc(RL.getLocReg(), Offset);
7121       }
7122 
7123       if (Offset != StackSize) {
7124         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7125                "Expected MemLoc for remaining bytes.");
7126         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7127         // Consume the MemLoc.The InVal has already been emitted, so nothing
7128         // more needs to be done.
7129         ++I;
7130       }
7131 
7132       continue;
7133     }
7134 
7135     EVT ValVT = VA.getValVT();
7136     if (VA.isRegLoc() && !VA.needsCustom()) {
7137       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7138       unsigned VReg =
7139           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7140       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7141       if (ValVT.isScalarInteger() &&
7142           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7143         ArgValue =
7144             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7145       }
7146       InVals.push_back(ArgValue);
7147       continue;
7148     }
7149     if (VA.isMemLoc()) {
7150       const unsigned LocSize = LocVT.getStoreSize();
7151       const unsigned ValSize = ValVT.getStoreSize();
7152       assert((ValSize <= LocSize) &&
7153              "Object size is larger than size of MemLoc");
7154       int CurArgOffset = VA.getLocMemOffset();
7155       // Objects are right-justified because AIX is big-endian.
7156       if (LocSize > ValSize)
7157         CurArgOffset += LocSize - ValSize;
7158       // Potential tail calls could cause overwriting of argument stack slots.
7159       const bool IsImmutable =
7160           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7161             (CallConv == CallingConv::Fast));
7162       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7163       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7164       SDValue ArgValue =
7165           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7166       InVals.push_back(ArgValue);
7167       continue;
7168     }
7169   }
7170 
7171   // On AIX a minimum of 8 words is saved to the parameter save area.
7172   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7173   // Area that is at least reserved in the caller of this function.
7174   unsigned CallerReservedArea =
7175       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7176 
7177   // Set the size that is at least reserved in caller of this function. Tail
7178   // call optimized function's reserved stack space needs to be aligned so
7179   // that taking the difference between two stack areas will result in an
7180   // aligned stack.
7181   CallerReservedArea =
7182       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7183   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7184   FuncInfo->setMinReservedArea(CallerReservedArea);
7185 
7186   if (isVarArg) {
7187     FuncInfo->setVarArgsFrameIndex(
7188         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7189     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7190 
7191     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7192                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7193 
7194     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7195                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7196     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7197 
7198     // The fixed integer arguments of a variadic function are stored to the
7199     // VarArgsFrameIndex on the stack so that they may be loaded by
7200     // dereferencing the result of va_next.
7201     for (unsigned GPRIndex =
7202              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7203          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7204 
7205       const unsigned VReg =
7206           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7207                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7208 
7209       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7210       SDValue Store =
7211           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7212       MemOps.push_back(Store);
7213       // Increment the address for the next argument to store.
7214       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7215       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7216     }
7217   }
7218 
7219   if (!MemOps.empty())
7220     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7221 
7222   return Chain;
7223 }
7224 
7225 SDValue PPCTargetLowering::LowerCall_AIX(
7226     SDValue Chain, SDValue Callee, CallFlags CFlags,
7227     const SmallVectorImpl<ISD::OutputArg> &Outs,
7228     const SmallVectorImpl<SDValue> &OutVals,
7229     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7230     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7231     const CallBase *CB) const {
7232   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7233   // AIX ABI stack frame layout.
7234 
7235   assert((CFlags.CallConv == CallingConv::C ||
7236           CFlags.CallConv == CallingConv::Cold ||
7237           CFlags.CallConv == CallingConv::Fast) &&
7238          "Unexpected calling convention!");
7239 
7240   if (CFlags.IsPatchPoint)
7241     report_fatal_error("This call type is unimplemented on AIX.");
7242 
7243   const PPCSubtarget& Subtarget =
7244       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7245   if (Subtarget.hasAltivec())
7246     report_fatal_error("Altivec support is unimplemented on AIX.");
7247 
7248   MachineFunction &MF = DAG.getMachineFunction();
7249   SmallVector<CCValAssign, 16> ArgLocs;
7250   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7251                  *DAG.getContext());
7252 
7253   // Reserve space for the linkage save area (LSA) on the stack.
7254   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7255   //   [SP][CR][LR][2 x reserved][TOC].
7256   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7257   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7258   const bool IsPPC64 = Subtarget.isPPC64();
7259   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7260   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7261   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7262   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7263 
7264   // The prolog code of the callee may store up to 8 GPR argument registers to
7265   // the stack, allowing va_start to index over them in memory if the callee
7266   // is variadic.
7267   // Because we cannot tell if this is needed on the caller side, we have to
7268   // conservatively assume that it is needed.  As such, make sure we have at
7269   // least enough stack space for the caller to store the 8 GPRs.
7270   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7271   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7272                                      CCInfo.getNextStackOffset());
7273 
7274   // Adjust the stack pointer for the new arguments...
7275   // These operations are automatically eliminated by the prolog/epilog pass.
7276   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7277   SDValue CallSeqStart = Chain;
7278 
7279   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7280   SmallVector<SDValue, 8> MemOpChains;
7281 
7282   // Set up a copy of the stack pointer for loading and storing any
7283   // arguments that may not fit in the registers available for argument
7284   // passing.
7285   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7286                                    : DAG.getRegister(PPC::R1, MVT::i32);
7287 
7288   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7289     const unsigned ValNo = ArgLocs[I].getValNo();
7290     SDValue Arg = OutVals[ValNo];
7291     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7292 
7293     if (Flags.isByVal()) {
7294       const unsigned ByValSize = Flags.getByValSize();
7295 
7296       // Nothing to do for zero-sized ByVals on the caller side.
7297       if (!ByValSize) {
7298         ++I;
7299         continue;
7300       }
7301 
7302       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7303         return DAG.getExtLoad(
7304             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7305             (LoadOffset != 0)
7306                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7307                 : Arg,
7308             MachinePointerInfo(), VT);
7309       };
7310 
7311       unsigned LoadOffset = 0;
7312 
7313       // Initialize registers, which are fully occupied by the by-val argument.
7314       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7315         SDValue Load = GetLoad(PtrVT, LoadOffset);
7316         MemOpChains.push_back(Load.getValue(1));
7317         LoadOffset += PtrByteSize;
7318         const CCValAssign &ByValVA = ArgLocs[I++];
7319         assert(ByValVA.getValNo() == ValNo &&
7320                "Unexpected location for pass-by-value argument.");
7321         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7322       }
7323 
7324       if (LoadOffset == ByValSize)
7325         continue;
7326 
7327       // There must be one more loc to handle the remainder.
7328       assert(ArgLocs[I].getValNo() == ValNo &&
7329              "Expected additional location for by-value argument.");
7330 
7331       if (ArgLocs[I].isMemLoc()) {
7332         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7333         const CCValAssign &ByValVA = ArgLocs[I++];
7334         ISD::ArgFlagsTy MemcpyFlags = Flags;
7335         // Only memcpy the bytes that don't pass in register.
7336         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7337         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7338             (LoadOffset != 0)
7339                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7340                 : Arg,
7341             DAG.getObjectPtrOffset(dl, StackPtr,
7342                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7343             CallSeqStart, MemcpyFlags, DAG, dl);
7344         continue;
7345       }
7346 
7347       // Initialize the final register residue.
7348       // Any residue that occupies the final by-val arg register must be
7349       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7350       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7351       // 2 and 1 byte loads.
7352       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7353       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7354              "Unexpected register residue for by-value argument.");
7355       SDValue ResidueVal;
7356       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7357         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7358         const MVT VT =
7359             N == 1 ? MVT::i8
7360                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7361         SDValue Load = GetLoad(VT, LoadOffset);
7362         MemOpChains.push_back(Load.getValue(1));
7363         LoadOffset += N;
7364         Bytes += N;
7365 
7366         // By-val arguments are passed left-justfied in register.
7367         // Every load here needs to be shifted, otherwise a full register load
7368         // should have been used.
7369         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7370                "Unexpected load emitted during handling of pass-by-value "
7371                "argument.");
7372         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7373         EVT ShiftAmountTy =
7374             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7375         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7376         SDValue ShiftedLoad =
7377             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7378         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7379                                               ShiftedLoad)
7380                                 : ShiftedLoad;
7381       }
7382 
7383       const CCValAssign &ByValVA = ArgLocs[I++];
7384       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7385       continue;
7386     }
7387 
7388     CCValAssign &VA = ArgLocs[I++];
7389     const MVT LocVT = VA.getLocVT();
7390     const MVT ValVT = VA.getValVT();
7391 
7392     switch (VA.getLocInfo()) {
7393     default:
7394       report_fatal_error("Unexpected argument extension type.");
7395     case CCValAssign::Full:
7396       break;
7397     case CCValAssign::ZExt:
7398       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7399       break;
7400     case CCValAssign::SExt:
7401       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7402       break;
7403     }
7404 
7405     if (VA.isRegLoc() && !VA.needsCustom()) {
7406       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7407       continue;
7408     }
7409 
7410     if (VA.isMemLoc()) {
7411       SDValue PtrOff =
7412           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7413       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7414       MemOpChains.push_back(
7415           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7416 
7417       continue;
7418     }
7419 
7420     // Custom handling is used for GPR initializations for vararg float
7421     // arguments.
7422     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7423            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7424            "Unexpected register handling for calling convention.");
7425 
7426     SDValue ArgAsInt =
7427         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7428 
7429     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7430       // f32 in 32-bit GPR
7431       // f64 in 64-bit GPR
7432       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7433     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7434       // f32 in 64-bit GPR.
7435       RegsToPass.push_back(std::make_pair(
7436           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7437     else {
7438       // f64 in two 32-bit GPRs
7439       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7440       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7441              "Unexpected custom register for argument!");
7442       CCValAssign &GPR1 = VA;
7443       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7444                                      DAG.getConstant(32, dl, MVT::i8));
7445       RegsToPass.push_back(std::make_pair(
7446           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7447 
7448       if (I != E) {
7449         // If only 1 GPR was available, there will only be one custom GPR and
7450         // the argument will also pass in memory.
7451         CCValAssign &PeekArg = ArgLocs[I];
7452         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7453           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7454           CCValAssign &GPR2 = ArgLocs[I++];
7455           RegsToPass.push_back(std::make_pair(
7456               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7457         }
7458       }
7459     }
7460   }
7461 
7462   if (!MemOpChains.empty())
7463     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7464 
7465   // For indirect calls, we need to save the TOC base to the stack for
7466   // restoration after the call.
7467   if (CFlags.IsIndirect) {
7468     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7469     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7470     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7471     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7472     const unsigned TOCSaveOffset =
7473         Subtarget.getFrameLowering()->getTOCSaveOffset();
7474 
7475     setUsesTOCBasePtr(DAG);
7476     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7477     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7478     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7479     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7480     Chain = DAG.getStore(
7481         Val.getValue(1), dl, Val, AddPtr,
7482         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7483   }
7484 
7485   // Build a sequence of copy-to-reg nodes chained together with token chain
7486   // and flag operands which copy the outgoing args into the appropriate regs.
7487   SDValue InFlag;
7488   for (auto Reg : RegsToPass) {
7489     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7490     InFlag = Chain.getValue(1);
7491   }
7492 
7493   const int SPDiff = 0;
7494   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7495                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7496 }
7497 
7498 bool
7499 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7500                                   MachineFunction &MF, bool isVarArg,
7501                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7502                                   LLVMContext &Context) const {
7503   SmallVector<CCValAssign, 16> RVLocs;
7504   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7505   return CCInfo.CheckReturn(
7506       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7507                 ? RetCC_PPC_Cold
7508                 : RetCC_PPC);
7509 }
7510 
7511 SDValue
7512 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7513                                bool isVarArg,
7514                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7515                                const SmallVectorImpl<SDValue> &OutVals,
7516                                const SDLoc &dl, SelectionDAG &DAG) const {
7517   SmallVector<CCValAssign, 16> RVLocs;
7518   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7519                  *DAG.getContext());
7520   CCInfo.AnalyzeReturn(Outs,
7521                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7522                            ? RetCC_PPC_Cold
7523                            : RetCC_PPC);
7524 
7525   SDValue Flag;
7526   SmallVector<SDValue, 4> RetOps(1, Chain);
7527 
7528   // Copy the result values into the output registers.
7529   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7530     CCValAssign &VA = RVLocs[i];
7531     assert(VA.isRegLoc() && "Can only return in registers!");
7532 
7533     SDValue Arg = OutVals[RealResIdx];
7534 
7535     switch (VA.getLocInfo()) {
7536     default: llvm_unreachable("Unknown loc info!");
7537     case CCValAssign::Full: break;
7538     case CCValAssign::AExt:
7539       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7540       break;
7541     case CCValAssign::ZExt:
7542       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7543       break;
7544     case CCValAssign::SExt:
7545       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7546       break;
7547     }
7548     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7549       bool isLittleEndian = Subtarget.isLittleEndian();
7550       // Legalize ret f64 -> ret 2 x i32.
7551       SDValue SVal =
7552           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7553                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7554       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7555       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7556       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7557                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7558       Flag = Chain.getValue(1);
7559       VA = RVLocs[++i]; // skip ahead to next loc
7560       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7561     } else
7562       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7563     Flag = Chain.getValue(1);
7564     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7565   }
7566 
7567   RetOps[0] = Chain;  // Update chain.
7568 
7569   // Add the flag if we have it.
7570   if (Flag.getNode())
7571     RetOps.push_back(Flag);
7572 
7573   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7574 }
7575 
7576 SDValue
7577 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7578                                                 SelectionDAG &DAG) const {
7579   SDLoc dl(Op);
7580 
7581   // Get the correct type for integers.
7582   EVT IntVT = Op.getValueType();
7583 
7584   // Get the inputs.
7585   SDValue Chain = Op.getOperand(0);
7586   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7587   // Build a DYNAREAOFFSET node.
7588   SDValue Ops[2] = {Chain, FPSIdx};
7589   SDVTList VTs = DAG.getVTList(IntVT);
7590   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7591 }
7592 
7593 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7594                                              SelectionDAG &DAG) const {
7595   // When we pop the dynamic allocation we need to restore the SP link.
7596   SDLoc dl(Op);
7597 
7598   // Get the correct type for pointers.
7599   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7600 
7601   // Construct the stack pointer operand.
7602   bool isPPC64 = Subtarget.isPPC64();
7603   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7604   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7605 
7606   // Get the operands for the STACKRESTORE.
7607   SDValue Chain = Op.getOperand(0);
7608   SDValue SaveSP = Op.getOperand(1);
7609 
7610   // Load the old link SP.
7611   SDValue LoadLinkSP =
7612       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7613 
7614   // Restore the stack pointer.
7615   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7616 
7617   // Store the old link SP.
7618   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7619 }
7620 
7621 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7622   MachineFunction &MF = DAG.getMachineFunction();
7623   bool isPPC64 = Subtarget.isPPC64();
7624   EVT PtrVT = getPointerTy(MF.getDataLayout());
7625 
7626   // Get current frame pointer save index.  The users of this index will be
7627   // primarily DYNALLOC instructions.
7628   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7629   int RASI = FI->getReturnAddrSaveIndex();
7630 
7631   // If the frame pointer save index hasn't been defined yet.
7632   if (!RASI) {
7633     // Find out what the fix offset of the frame pointer save area.
7634     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7635     // Allocate the frame index for frame pointer save area.
7636     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7637     // Save the result.
7638     FI->setReturnAddrSaveIndex(RASI);
7639   }
7640   return DAG.getFrameIndex(RASI, PtrVT);
7641 }
7642 
7643 SDValue
7644 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7645   MachineFunction &MF = DAG.getMachineFunction();
7646   bool isPPC64 = Subtarget.isPPC64();
7647   EVT PtrVT = getPointerTy(MF.getDataLayout());
7648 
7649   // Get current frame pointer save index.  The users of this index will be
7650   // primarily DYNALLOC instructions.
7651   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7652   int FPSI = FI->getFramePointerSaveIndex();
7653 
7654   // If the frame pointer save index hasn't been defined yet.
7655   if (!FPSI) {
7656     // Find out what the fix offset of the frame pointer save area.
7657     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7658     // Allocate the frame index for frame pointer save area.
7659     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7660     // Save the result.
7661     FI->setFramePointerSaveIndex(FPSI);
7662   }
7663   return DAG.getFrameIndex(FPSI, PtrVT);
7664 }
7665 
7666 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7667                                                    SelectionDAG &DAG) const {
7668   MachineFunction &MF = DAG.getMachineFunction();
7669   // Get the inputs.
7670   SDValue Chain = Op.getOperand(0);
7671   SDValue Size  = Op.getOperand(1);
7672   SDLoc dl(Op);
7673 
7674   // Get the correct type for pointers.
7675   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7676   // Negate the size.
7677   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7678                                 DAG.getConstant(0, dl, PtrVT), Size);
7679   // Construct a node for the frame pointer save index.
7680   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7681   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7682   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7683   if (hasInlineStackProbe(MF))
7684     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7685   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7686 }
7687 
7688 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7689                                                      SelectionDAG &DAG) const {
7690   MachineFunction &MF = DAG.getMachineFunction();
7691 
7692   bool isPPC64 = Subtarget.isPPC64();
7693   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7694 
7695   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7696   return DAG.getFrameIndex(FI, PtrVT);
7697 }
7698 
7699 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7700                                                SelectionDAG &DAG) const {
7701   SDLoc DL(Op);
7702   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7703                      DAG.getVTList(MVT::i32, MVT::Other),
7704                      Op.getOperand(0), Op.getOperand(1));
7705 }
7706 
7707 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7708                                                 SelectionDAG &DAG) const {
7709   SDLoc DL(Op);
7710   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7711                      Op.getOperand(0), Op.getOperand(1));
7712 }
7713 
7714 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7715 
7716   assert(Op.getValueType() == MVT::i1 &&
7717          "Custom lowering only for i1 loads");
7718 
7719   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7720 
7721   SDLoc dl(Op);
7722   LoadSDNode *LD = cast<LoadSDNode>(Op);
7723 
7724   SDValue Chain = LD->getChain();
7725   SDValue BasePtr = LD->getBasePtr();
7726   MachineMemOperand *MMO = LD->getMemOperand();
7727 
7728   SDValue NewLD =
7729       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7730                      BasePtr, MVT::i8, MMO);
7731   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7732 
7733   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7734   return DAG.getMergeValues(Ops, dl);
7735 }
7736 
7737 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7738   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7739          "Custom lowering only for i1 stores");
7740 
7741   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7742 
7743   SDLoc dl(Op);
7744   StoreSDNode *ST = cast<StoreSDNode>(Op);
7745 
7746   SDValue Chain = ST->getChain();
7747   SDValue BasePtr = ST->getBasePtr();
7748   SDValue Value = ST->getValue();
7749   MachineMemOperand *MMO = ST->getMemOperand();
7750 
7751   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7752                       Value);
7753   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7754 }
7755 
7756 // FIXME: Remove this once the ANDI glue bug is fixed:
7757 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7758   assert(Op.getValueType() == MVT::i1 &&
7759          "Custom lowering only for i1 results");
7760 
7761   SDLoc DL(Op);
7762   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7763 }
7764 
7765 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7766                                                SelectionDAG &DAG) const {
7767 
7768   // Implements a vector truncate that fits in a vector register as a shuffle.
7769   // We want to legalize vector truncates down to where the source fits in
7770   // a vector register (and target is therefore smaller than vector register
7771   // size).  At that point legalization will try to custom lower the sub-legal
7772   // result and get here - where we can contain the truncate as a single target
7773   // operation.
7774 
7775   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7776   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7777   //
7778   // We will implement it for big-endian ordering as this (where x denotes
7779   // undefined):
7780   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7781   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7782   //
7783   // The same operation in little-endian ordering will be:
7784   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7785   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7786 
7787   assert(Op.getValueType().isVector() && "Vector type expected.");
7788 
7789   SDLoc DL(Op);
7790   SDValue N1 = Op.getOperand(0);
7791   unsigned SrcSize = N1.getValueType().getSizeInBits();
7792   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7793   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7794 
7795   EVT TrgVT = Op.getValueType();
7796   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7797   EVT EltVT = TrgVT.getVectorElementType();
7798   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7799   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7800 
7801   // First list the elements we want to keep.
7802   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7803   SmallVector<int, 16> ShuffV;
7804   if (Subtarget.isLittleEndian())
7805     for (unsigned i = 0; i < TrgNumElts; ++i)
7806       ShuffV.push_back(i * SizeMult);
7807   else
7808     for (unsigned i = 1; i <= TrgNumElts; ++i)
7809       ShuffV.push_back(i * SizeMult - 1);
7810 
7811   // Populate the remaining elements with undefs.
7812   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7813     // ShuffV.push_back(i + WideNumElts);
7814     ShuffV.push_back(WideNumElts + 1);
7815 
7816   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7817   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7818 }
7819 
7820 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7821 /// possible.
7822 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7823   // Not FP, or using SPE? Not a fsel.
7824   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7825       !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE())
7826     return Op;
7827 
7828   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7829 
7830   EVT ResVT = Op.getValueType();
7831   EVT CmpVT = Op.getOperand(0).getValueType();
7832   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7833   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7834   SDLoc dl(Op);
7835   SDNodeFlags Flags = Op.getNode()->getFlags();
7836 
7837   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7838   // presence of infinities.
7839   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7840     switch (CC) {
7841     default:
7842       break;
7843     case ISD::SETOGT:
7844     case ISD::SETGT:
7845       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7846     case ISD::SETOLT:
7847     case ISD::SETLT:
7848       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7849     }
7850   }
7851 
7852   // We might be able to do better than this under some circumstances, but in
7853   // general, fsel-based lowering of select is a finite-math-only optimization.
7854   // For more information, see section F.3 of the 2.06 ISA specification.
7855   // With ISA 3.0
7856   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7857       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7858     return Op;
7859 
7860   // If the RHS of the comparison is a 0.0, we don't need to do the
7861   // subtraction at all.
7862   SDValue Sel1;
7863   if (isFloatingPointZero(RHS))
7864     switch (CC) {
7865     default: break;       // SETUO etc aren't handled by fsel.
7866     case ISD::SETNE:
7867       std::swap(TV, FV);
7868       LLVM_FALLTHROUGH;
7869     case ISD::SETEQ:
7870       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7871         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7872       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7873       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7874         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7875       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7876                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7877     case ISD::SETULT:
7878     case ISD::SETLT:
7879       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7880       LLVM_FALLTHROUGH;
7881     case ISD::SETOGE:
7882     case ISD::SETGE:
7883       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7884         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7885       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7886     case ISD::SETUGT:
7887     case ISD::SETGT:
7888       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7889       LLVM_FALLTHROUGH;
7890     case ISD::SETOLE:
7891     case ISD::SETLE:
7892       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7893         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7894       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7895                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7896     }
7897 
7898   SDValue Cmp;
7899   switch (CC) {
7900   default: break;       // SETUO etc aren't handled by fsel.
7901   case ISD::SETNE:
7902     std::swap(TV, FV);
7903     LLVM_FALLTHROUGH;
7904   case ISD::SETEQ:
7905     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7906     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7907       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7908     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7909     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7910       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7911     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7912                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7913   case ISD::SETULT:
7914   case ISD::SETLT:
7915     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7916     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7917       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7918     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7919   case ISD::SETOGE:
7920   case ISD::SETGE:
7921     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7922     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7923       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7924     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7925   case ISD::SETUGT:
7926   case ISD::SETGT:
7927     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7928     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7929       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7930     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7931   case ISD::SETOLE:
7932   case ISD::SETLE:
7933     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7934     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7935       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7936     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7937   }
7938   return Op;
7939 }
7940 
7941 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
7942                               const PPCSubtarget &Subtarget) {
7943   SDLoc dl(Op);
7944   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT;
7945   SDValue Src = Op.getOperand(0);
7946   assert(Src.getValueType().isFloatingPoint());
7947   if (Src.getValueType() == MVT::f32)
7948     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7949   SDValue Conv;
7950   switch (Op.getSimpleValueType().SimpleTy) {
7951   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7952   case MVT::i32:
7953     Conv = DAG.getNode(
7954         IsSigned ? PPCISD::FCTIWZ
7955                  : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7956         dl, MVT::f64, Src);
7957     break;
7958   case MVT::i64:
7959     assert((IsSigned || Subtarget.hasFPCVT()) &&
7960            "i64 FP_TO_UINT is supported only with FPCVT");
7961     Conv = DAG.getNode(IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ, dl,
7962                        MVT::f64, Src);
7963   }
7964   return Conv;
7965 }
7966 
7967 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7968                                                SelectionDAG &DAG,
7969                                                const SDLoc &dl) const {
7970   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
7971   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT;
7972 
7973   // Convert the FP value to an int value through memory.
7974   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7975                   (IsSigned || Subtarget.hasFPCVT());
7976   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7977   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7978   MachinePointerInfo MPI =
7979       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7980 
7981   // Emit a store to the stack slot.
7982   SDValue Chain;
7983   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
7984   if (i32Stack) {
7985     MachineFunction &MF = DAG.getMachineFunction();
7986     Alignment = Align(4);
7987     MachineMemOperand *MMO =
7988         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
7989     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7990     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7991               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7992   } else
7993     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment);
7994 
7995   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7996   // add in a bias on big endian.
7997   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7998     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7999                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8000     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8001   }
8002 
8003   RLI.Chain = Chain;
8004   RLI.Ptr = FIPtr;
8005   RLI.MPI = MPI;
8006   RLI.Alignment = Alignment;
8007 }
8008 
8009 /// Custom lowers floating point to integer conversions to use
8010 /// the direct move instructions available in ISA 2.07 to avoid the
8011 /// need for load/store combinations.
8012 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8013                                                     SelectionDAG &DAG,
8014                                                     const SDLoc &dl) const {
8015   assert(Op.getOperand(0).getValueType().isFloatingPoint());
8016   return DAG.getNode(PPCISD::MFVSR, dl, Op.getSimpleValueType().SimpleTy,
8017                      convertFPToInt(Op, DAG, Subtarget));
8018 }
8019 
8020 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8021                                           const SDLoc &dl) const {
8022   SDValue Src = Op.getOperand(0);
8023   // FP to INT conversions are legal for f128.
8024   if (Src.getValueType() == MVT::f128)
8025     return Op;
8026 
8027   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8028   // PPC (the libcall is not available).
8029   if (Src.getValueType() == MVT::ppcf128) {
8030     if (Op.getValueType() == MVT::i32) {
8031       if (Op.getOpcode() == ISD::FP_TO_SINT) {
8032         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8033                                  DAG.getIntPtrConstant(0, dl));
8034         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8035                                  DAG.getIntPtrConstant(1, dl));
8036 
8037         // Add the two halves of the long double in round-to-zero mode.
8038         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8039 
8040         // Now use a smaller FP_TO_SINT.
8041         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8042       }
8043       if (Op.getOpcode() == ISD::FP_TO_UINT) {
8044         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8045         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8046         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
8047         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8048         // FIXME: generated code sucks.
8049         // TODO: Are there fast-math-flags to propagate to this FSUB?
8050         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Tmp);
8051         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8052         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
8053                            DAG.getConstant(0x80000000, dl, MVT::i32));
8054         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8055         return DAG.getSelectCC(dl, Src, Tmp, True, False, ISD::SETGE);
8056       }
8057     }
8058 
8059     return SDValue();
8060   }
8061 
8062   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8063     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8064 
8065   ReuseLoadInfo RLI;
8066   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8067 
8068   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8069                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8070 }
8071 
8072 // We're trying to insert a regular store, S, and then a load, L. If the
8073 // incoming value, O, is a load, we might just be able to have our load use the
8074 // address used by O. However, we don't know if anything else will store to
8075 // that address before we can load from it. To prevent this situation, we need
8076 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8077 // the same chain operand as O, we create a token factor from the chain results
8078 // of O and L, and we replace all uses of O's chain result with that token
8079 // factor (see spliceIntoChain below for this last part).
8080 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8081                                             ReuseLoadInfo &RLI,
8082                                             SelectionDAG &DAG,
8083                                             ISD::LoadExtType ET) const {
8084   SDLoc dl(Op);
8085   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8086                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8087   if (ET == ISD::NON_EXTLOAD &&
8088       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8089       isOperationLegalOrCustom(Op.getOpcode(),
8090                                Op.getOperand(0).getValueType())) {
8091 
8092     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8093     return true;
8094   }
8095 
8096   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8097   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8098       LD->isNonTemporal())
8099     return false;
8100   if (LD->getMemoryVT() != MemVT)
8101     return false;
8102 
8103   RLI.Ptr = LD->getBasePtr();
8104   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8105     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8106            "Non-pre-inc AM on PPC?");
8107     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8108                           LD->getOffset());
8109   }
8110 
8111   RLI.Chain = LD->getChain();
8112   RLI.MPI = LD->getPointerInfo();
8113   RLI.IsDereferenceable = LD->isDereferenceable();
8114   RLI.IsInvariant = LD->isInvariant();
8115   RLI.Alignment = LD->getAlign();
8116   RLI.AAInfo = LD->getAAInfo();
8117   RLI.Ranges = LD->getRanges();
8118 
8119   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8120   return true;
8121 }
8122 
8123 // Given the head of the old chain, ResChain, insert a token factor containing
8124 // it and NewResChain, and make users of ResChain now be users of that token
8125 // factor.
8126 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8127 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8128                                         SDValue NewResChain,
8129                                         SelectionDAG &DAG) const {
8130   if (!ResChain)
8131     return;
8132 
8133   SDLoc dl(NewResChain);
8134 
8135   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8136                            NewResChain, DAG.getUNDEF(MVT::Other));
8137   assert(TF.getNode() != NewResChain.getNode() &&
8138          "A new TF really is required here");
8139 
8140   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8141   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8142 }
8143 
8144 /// Analyze profitability of direct move
8145 /// prefer float load to int load plus direct move
8146 /// when there is no integer use of int load
8147 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8148   SDNode *Origin = Op.getOperand(0).getNode();
8149   if (Origin->getOpcode() != ISD::LOAD)
8150     return true;
8151 
8152   // If there is no LXSIBZX/LXSIHZX, like Power8,
8153   // prefer direct move if the memory size is 1 or 2 bytes.
8154   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8155   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8156     return true;
8157 
8158   for (SDNode::use_iterator UI = Origin->use_begin(),
8159                             UE = Origin->use_end();
8160        UI != UE; ++UI) {
8161 
8162     // Only look at the users of the loaded value.
8163     if (UI.getUse().get().getResNo() != 0)
8164       continue;
8165 
8166     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8167         UI->getOpcode() != ISD::UINT_TO_FP)
8168       return true;
8169   }
8170 
8171   return false;
8172 }
8173 
8174 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8175                               const PPCSubtarget &Subtarget) {
8176   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP;
8177   SDLoc dl(Op);
8178   // If we have FCFIDS, then use it when converting to single-precision.
8179   // Otherwise, convert to double-precision and then round.
8180   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8181   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8182                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8183   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8184   return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8185 }
8186 
8187 /// Custom lowers integer to floating point conversions to use
8188 /// the direct move instructions available in ISA 2.07 to avoid the
8189 /// need for load/store combinations.
8190 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8191                                                     SelectionDAG &DAG,
8192                                                     const SDLoc &dl) const {
8193   assert((Op.getValueType() == MVT::f32 ||
8194           Op.getValueType() == MVT::f64) &&
8195          "Invalid floating point type as target of conversion");
8196   assert(Subtarget.hasFPCVT() &&
8197          "Int to FP conversions with direct moves require FPCVT");
8198   SDValue Src = Op.getOperand(0);
8199   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8200   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
8201   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8202   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8203   return convertIntToFP(Op, Mov, DAG, Subtarget);
8204 }
8205 
8206 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8207 
8208   EVT VecVT = Vec.getValueType();
8209   assert(VecVT.isVector() && "Expected a vector type.");
8210   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8211 
8212   EVT EltVT = VecVT.getVectorElementType();
8213   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8214   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8215 
8216   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8217   SmallVector<SDValue, 16> Ops(NumConcat);
8218   Ops[0] = Vec;
8219   SDValue UndefVec = DAG.getUNDEF(VecVT);
8220   for (unsigned i = 1; i < NumConcat; ++i)
8221     Ops[i] = UndefVec;
8222 
8223   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8224 }
8225 
8226 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8227                                                 const SDLoc &dl) const {
8228 
8229   unsigned Opc = Op.getOpcode();
8230   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
8231          "Unexpected conversion type");
8232   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8233          "Supports conversions to v2f64/v4f32 only.");
8234 
8235   bool SignedConv = Opc == ISD::SINT_TO_FP;
8236   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8237 
8238   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8239   EVT WideVT = Wide.getValueType();
8240   unsigned WideNumElts = WideVT.getVectorNumElements();
8241   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8242 
8243   SmallVector<int, 16> ShuffV;
8244   for (unsigned i = 0; i < WideNumElts; ++i)
8245     ShuffV.push_back(i + WideNumElts);
8246 
8247   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8248   int SaveElts = FourEltRes ? 4 : 2;
8249   if (Subtarget.isLittleEndian())
8250     for (int i = 0; i < SaveElts; i++)
8251       ShuffV[i * Stride] = i;
8252   else
8253     for (int i = 1; i <= SaveElts; i++)
8254       ShuffV[i * Stride - 1] = i - 1;
8255 
8256   SDValue ShuffleSrc2 =
8257       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8258   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8259 
8260   SDValue Extend;
8261   if (SignedConv) {
8262     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8263     EVT ExtVT = Op.getOperand(0).getValueType();
8264     if (Subtarget.hasP9Altivec())
8265       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8266                                IntermediateVT.getVectorNumElements());
8267 
8268     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8269                          DAG.getValueType(ExtVT));
8270   } else
8271     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8272 
8273   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8274 }
8275 
8276 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8277                                           SelectionDAG &DAG) const {
8278   SDLoc dl(Op);
8279   SDValue Src = Op.getOperand(0);
8280   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP;
8281 
8282   EVT InVT = Src.getValueType();
8283   EVT OutVT = Op.getValueType();
8284   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8285       isOperationCustom(Op.getOpcode(), InVT))
8286     return LowerINT_TO_FPVector(Op, DAG, dl);
8287 
8288   // Conversions to f128 are legal.
8289   if (Op.getValueType() == MVT::f128)
8290     return Op;
8291 
8292   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8293   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8294     return SDValue();
8295 
8296   if (Src.getValueType() == MVT::i1)
8297     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8298                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8299                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8300 
8301   // If we have direct moves, we can do all the conversion, skip the store/load
8302   // however, without FPCVT we can't do most conversions.
8303   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8304       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8305     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8306 
8307   assert((IsSigned || Subtarget.hasFPCVT()) &&
8308          "UINT_TO_FP is supported only with FPCVT");
8309 
8310   if (Src.getValueType() == MVT::i64) {
8311     SDValue SINT = Src;
8312     // When converting to single-precision, we actually need to convert
8313     // to double-precision first and then round to single-precision.
8314     // To avoid double-rounding effects during that operation, we have
8315     // to prepare the input operand.  Bits that might be truncated when
8316     // converting to double-precision are replaced by a bit that won't
8317     // be lost at this stage, but is below the single-precision rounding
8318     // position.
8319     //
8320     // However, if -enable-unsafe-fp-math is in effect, accept double
8321     // rounding to avoid the extra overhead.
8322     if (Op.getValueType() == MVT::f32 &&
8323         !Subtarget.hasFPCVT() &&
8324         !DAG.getTarget().Options.UnsafeFPMath) {
8325 
8326       // Twiddle input to make sure the low 11 bits are zero.  (If this
8327       // is the case, we are guaranteed the value will fit into the 53 bit
8328       // mantissa of an IEEE double-precision value without rounding.)
8329       // If any of those low 11 bits were not zero originally, make sure
8330       // bit 12 (value 2048) is set instead, so that the final rounding
8331       // to single-precision gets the correct result.
8332       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8333                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8334       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8335                           Round, DAG.getConstant(2047, dl, MVT::i64));
8336       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8337       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8338                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8339 
8340       // However, we cannot use that value unconditionally: if the magnitude
8341       // of the input value is small, the bit-twiddling we did above might
8342       // end up visibly changing the output.  Fortunately, in that case, we
8343       // don't need to twiddle bits since the original input will convert
8344       // exactly to double-precision floating-point already.  Therefore,
8345       // construct a conditional to use the original value if the top 11
8346       // bits are all sign-bit copies, and use the rounded value computed
8347       // above otherwise.
8348       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8349                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8350       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8351                          Cond, DAG.getConstant(1, dl, MVT::i64));
8352       Cond = DAG.getSetCC(
8353           dl,
8354           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8355           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8356 
8357       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8358     }
8359 
8360     ReuseLoadInfo RLI;
8361     SDValue Bits;
8362 
8363     MachineFunction &MF = DAG.getMachineFunction();
8364     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8365       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8366                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8367       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8368     } else if (Subtarget.hasLFIWAX() &&
8369                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8370       MachineMemOperand *MMO =
8371         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8372                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8373       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8374       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8375                                      DAG.getVTList(MVT::f64, MVT::Other),
8376                                      Ops, MVT::i32, MMO);
8377       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8378     } else if (Subtarget.hasFPCVT() &&
8379                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8380       MachineMemOperand *MMO =
8381         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8382                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8383       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8384       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8385                                      DAG.getVTList(MVT::f64, MVT::Other),
8386                                      Ops, MVT::i32, MMO);
8387       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8388     } else if (((Subtarget.hasLFIWAX() &&
8389                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8390                 (Subtarget.hasFPCVT() &&
8391                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8392                SINT.getOperand(0).getValueType() == MVT::i32) {
8393       MachineFrameInfo &MFI = MF.getFrameInfo();
8394       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8395 
8396       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8397       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8398 
8399       SDValue Store =
8400           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8401                        MachinePointerInfo::getFixedStack(
8402                            DAG.getMachineFunction(), FrameIdx));
8403 
8404       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8405              "Expected an i32 store");
8406 
8407       RLI.Ptr = FIdx;
8408       RLI.Chain = Store;
8409       RLI.MPI =
8410           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8411       RLI.Alignment = Align(4);
8412 
8413       MachineMemOperand *MMO =
8414         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8415                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8416       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8417       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8418                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8419                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8420                                      Ops, MVT::i32, MMO);
8421     } else
8422       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8423 
8424     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget);
8425 
8426     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8427       FP = DAG.getNode(ISD::FP_ROUND, dl,
8428                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8429     return FP;
8430   }
8431 
8432   assert(Src.getValueType() == MVT::i32 &&
8433          "Unhandled INT_TO_FP type in custom expander!");
8434   // Since we only generate this in 64-bit mode, we can take advantage of
8435   // 64-bit registers.  In particular, sign extend the input value into the
8436   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8437   // then lfd it and fcfid it.
8438   MachineFunction &MF = DAG.getMachineFunction();
8439   MachineFrameInfo &MFI = MF.getFrameInfo();
8440   EVT PtrVT = getPointerTy(MF.getDataLayout());
8441 
8442   SDValue Ld;
8443   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8444     ReuseLoadInfo RLI;
8445     bool ReusingLoad;
8446     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8447       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8448       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8449 
8450       SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Src, FIdx,
8451                                    MachinePointerInfo::getFixedStack(
8452                                        DAG.getMachineFunction(), FrameIdx));
8453 
8454       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8455              "Expected an i32 store");
8456 
8457       RLI.Ptr = FIdx;
8458       RLI.Chain = Store;
8459       RLI.MPI =
8460           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8461       RLI.Alignment = Align(4);
8462     }
8463 
8464     MachineMemOperand *MMO =
8465       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8466                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8467     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8468     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8469                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8470                                  MVT::i32, MMO);
8471     if (ReusingLoad)
8472       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8473   } else {
8474     assert(Subtarget.isPPC64() &&
8475            "i32->FP without LFIWAX supported only on PPC64");
8476 
8477     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8478     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8479 
8480     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8481 
8482     // STD the extended value into the stack slot.
8483     SDValue Store = DAG.getStore(
8484         DAG.getEntryNode(), dl, Ext64, FIdx,
8485         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8486 
8487     // Load the value as a double.
8488     Ld = DAG.getLoad(
8489         MVT::f64, dl, Store, FIdx,
8490         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8491   }
8492 
8493   // FCFID it and return it.
8494   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget);
8495   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8496     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8497                      DAG.getIntPtrConstant(0, dl));
8498   return FP;
8499 }
8500 
8501 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8502                                             SelectionDAG &DAG) const {
8503   SDLoc dl(Op);
8504   /*
8505    The rounding mode is in bits 30:31 of FPSR, and has the following
8506    settings:
8507      00 Round to nearest
8508      01 Round to 0
8509      10 Round to +inf
8510      11 Round to -inf
8511 
8512   FLT_ROUNDS, on the other hand, expects the following:
8513     -1 Undefined
8514      0 Round to 0
8515      1 Round to nearest
8516      2 Round to +inf
8517      3 Round to -inf
8518 
8519   To perform the conversion, we do:
8520     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8521   */
8522 
8523   MachineFunction &MF = DAG.getMachineFunction();
8524   EVT VT = Op.getValueType();
8525   EVT PtrVT = getPointerTy(MF.getDataLayout());
8526 
8527   // Save FP Control Word to register
8528   SDValue Chain = Op.getOperand(0);
8529   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8530   Chain = MFFS.getValue(1);
8531 
8532   // Save FP register to stack slot
8533   int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8534   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8535   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8536 
8537   // Load FP Control Word from low 32 bits of stack slot.
8538   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8539   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8540   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8541   Chain = CWD.getValue(1);
8542 
8543   // Transform as necessary
8544   SDValue CWD1 =
8545     DAG.getNode(ISD::AND, dl, MVT::i32,
8546                 CWD, DAG.getConstant(3, dl, MVT::i32));
8547   SDValue CWD2 =
8548     DAG.getNode(ISD::SRL, dl, MVT::i32,
8549                 DAG.getNode(ISD::AND, dl, MVT::i32,
8550                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8551                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8552                             DAG.getConstant(3, dl, MVT::i32)),
8553                 DAG.getConstant(1, dl, MVT::i32));
8554 
8555   SDValue RetVal =
8556     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8557 
8558   RetVal =
8559       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8560                   dl, VT, RetVal);
8561 
8562   return DAG.getMergeValues({RetVal, Chain}, dl);
8563 }
8564 
8565 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8566   EVT VT = Op.getValueType();
8567   unsigned BitWidth = VT.getSizeInBits();
8568   SDLoc dl(Op);
8569   assert(Op.getNumOperands() == 3 &&
8570          VT == Op.getOperand(1).getValueType() &&
8571          "Unexpected SHL!");
8572 
8573   // Expand into a bunch of logical ops.  Note that these ops
8574   // depend on the PPC behavior for oversized shift amounts.
8575   SDValue Lo = Op.getOperand(0);
8576   SDValue Hi = Op.getOperand(1);
8577   SDValue Amt = Op.getOperand(2);
8578   EVT AmtVT = Amt.getValueType();
8579 
8580   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8581                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8582   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8583   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8584   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8585   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8586                              DAG.getConstant(-BitWidth, dl, AmtVT));
8587   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8588   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8589   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8590   SDValue OutOps[] = { OutLo, OutHi };
8591   return DAG.getMergeValues(OutOps, dl);
8592 }
8593 
8594 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8595   EVT VT = Op.getValueType();
8596   SDLoc dl(Op);
8597   unsigned BitWidth = VT.getSizeInBits();
8598   assert(Op.getNumOperands() == 3 &&
8599          VT == Op.getOperand(1).getValueType() &&
8600          "Unexpected SRL!");
8601 
8602   // Expand into a bunch of logical ops.  Note that these ops
8603   // depend on the PPC behavior for oversized shift amounts.
8604   SDValue Lo = Op.getOperand(0);
8605   SDValue Hi = Op.getOperand(1);
8606   SDValue Amt = Op.getOperand(2);
8607   EVT AmtVT = Amt.getValueType();
8608 
8609   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8610                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8611   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8612   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8613   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8614   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8615                              DAG.getConstant(-BitWidth, dl, AmtVT));
8616   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8617   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8618   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8619   SDValue OutOps[] = { OutLo, OutHi };
8620   return DAG.getMergeValues(OutOps, dl);
8621 }
8622 
8623 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8624   SDLoc dl(Op);
8625   EVT VT = Op.getValueType();
8626   unsigned BitWidth = VT.getSizeInBits();
8627   assert(Op.getNumOperands() == 3 &&
8628          VT == Op.getOperand(1).getValueType() &&
8629          "Unexpected SRA!");
8630 
8631   // Expand into a bunch of logical ops, followed by a select_cc.
8632   SDValue Lo = Op.getOperand(0);
8633   SDValue Hi = Op.getOperand(1);
8634   SDValue Amt = Op.getOperand(2);
8635   EVT AmtVT = Amt.getValueType();
8636 
8637   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8638                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8639   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8640   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8641   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8642   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8643                              DAG.getConstant(-BitWidth, dl, AmtVT));
8644   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8645   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8646   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8647                                   Tmp4, Tmp6, ISD::SETLE);
8648   SDValue OutOps[] = { OutLo, OutHi };
8649   return DAG.getMergeValues(OutOps, dl);
8650 }
8651 
8652 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8653                                             SelectionDAG &DAG) const {
8654   SDLoc dl(Op);
8655   EVT VT = Op.getValueType();
8656   unsigned BitWidth = VT.getSizeInBits();
8657 
8658   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8659   SDValue X = Op.getOperand(0);
8660   SDValue Y = Op.getOperand(1);
8661   SDValue Z = Op.getOperand(2);
8662   EVT AmtVT = Z.getValueType();
8663 
8664   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8665   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8666   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8667   // on PowerPC shift by BW being well defined.
8668   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8669                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8670   SDValue SubZ =
8671       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8672   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8673   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8674   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8675 }
8676 
8677 //===----------------------------------------------------------------------===//
8678 // Vector related lowering.
8679 //
8680 
8681 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8682 /// element size of SplatSize. Cast the result to VT.
8683 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8684                                       SelectionDAG &DAG, const SDLoc &dl) {
8685   static const MVT VTys[] = { // canonical VT to use for each size.
8686     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8687   };
8688 
8689   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8690 
8691   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8692   if (Val == ((1LU << (SplatSize * 8)) - 1)) {
8693     SplatSize = 1;
8694     Val = 0xFF;
8695   }
8696 
8697   EVT CanonicalVT = VTys[SplatSize-1];
8698 
8699   // Build a canonical splat for this value.
8700   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8701 }
8702 
8703 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8704 /// specified intrinsic ID.
8705 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8706                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8707   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8708   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8709                      DAG.getConstant(IID, dl, MVT::i32), Op);
8710 }
8711 
8712 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8713 /// specified intrinsic ID.
8714 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8715                                 SelectionDAG &DAG, const SDLoc &dl,
8716                                 EVT DestVT = MVT::Other) {
8717   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8718   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8719                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8720 }
8721 
8722 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8723 /// specified intrinsic ID.
8724 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8725                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8726                                 EVT DestVT = MVT::Other) {
8727   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8728   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8729                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8730 }
8731 
8732 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8733 /// amount.  The result has the specified value type.
8734 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8735                            SelectionDAG &DAG, const SDLoc &dl) {
8736   // Force LHS/RHS to be the right type.
8737   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8738   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8739 
8740   int Ops[16];
8741   for (unsigned i = 0; i != 16; ++i)
8742     Ops[i] = i + Amt;
8743   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8744   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8745 }
8746 
8747 /// Do we have an efficient pattern in a .td file for this node?
8748 ///
8749 /// \param V - pointer to the BuildVectorSDNode being matched
8750 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8751 ///
8752 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8753 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8754 /// the opposite is true (expansion is beneficial) are:
8755 /// - The node builds a vector out of integers that are not 32 or 64-bits
8756 /// - The node builds a vector out of constants
8757 /// - The node is a "load-and-splat"
8758 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8759 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8760                                             bool HasDirectMove,
8761                                             bool HasP8Vector) {
8762   EVT VecVT = V->getValueType(0);
8763   bool RightType = VecVT == MVT::v2f64 ||
8764     (HasP8Vector && VecVT == MVT::v4f32) ||
8765     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8766   if (!RightType)
8767     return false;
8768 
8769   bool IsSplat = true;
8770   bool IsLoad = false;
8771   SDValue Op0 = V->getOperand(0);
8772 
8773   // This function is called in a block that confirms the node is not a constant
8774   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8775   // different constants.
8776   if (V->isConstant())
8777     return false;
8778   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8779     if (V->getOperand(i).isUndef())
8780       return false;
8781     // We want to expand nodes that represent load-and-splat even if the
8782     // loaded value is a floating point truncation or conversion to int.
8783     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8784         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8785          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8786         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8787          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8788         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8789          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8790       IsLoad = true;
8791     // If the operands are different or the input is not a load and has more
8792     // uses than just this BV node, then it isn't a splat.
8793     if (V->getOperand(i) != Op0 ||
8794         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8795       IsSplat = false;
8796   }
8797   return !(IsSplat && IsLoad);
8798 }
8799 
8800 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8801 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8802 
8803   SDLoc dl(Op);
8804   SDValue Op0 = Op->getOperand(0);
8805 
8806   if ((Op.getValueType() != MVT::f128) ||
8807       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8808       (Op0.getOperand(0).getValueType() != MVT::i64) ||
8809       (Op0.getOperand(1).getValueType() != MVT::i64))
8810     return SDValue();
8811 
8812   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8813                      Op0.getOperand(1));
8814 }
8815 
8816 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
8817   const SDValue *InputLoad = &Op;
8818   if (InputLoad->getOpcode() == ISD::BITCAST)
8819     InputLoad = &InputLoad->getOperand(0);
8820   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
8821       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
8822     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
8823     InputLoad = &InputLoad->getOperand(0);
8824   }
8825   if (InputLoad->getOpcode() != ISD::LOAD)
8826     return nullptr;
8827   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8828   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8829 }
8830 
8831 // Convert the argument APFloat to a single precision APFloat if there is no
8832 // loss in information during the conversion to single precision APFloat and the
8833 // resulting number is not a denormal number. Return true if successful.
8834 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
8835   APFloat APFloatToConvert = ArgAPFloat;
8836   bool LosesInfo = true;
8837   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
8838                            &LosesInfo);
8839   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
8840   if (Success)
8841     ArgAPFloat = APFloatToConvert;
8842   return Success;
8843 }
8844 
8845 // Bitcast the argument APInt to a double and convert it to a single precision
8846 // APFloat, bitcast the APFloat to an APInt and assign it to the original
8847 // argument if there is no loss in information during the conversion from
8848 // double to single precision APFloat and the resulting number is not a denormal
8849 // number. Return true if successful.
8850 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
8851   double DpValue = ArgAPInt.bitsToDouble();
8852   APFloat APFloatDp(DpValue);
8853   bool Success = convertToNonDenormSingle(APFloatDp);
8854   if (Success)
8855     ArgAPInt = APFloatDp.bitcastToAPInt();
8856   return Success;
8857 }
8858 
8859 // If this is a case we can't handle, return null and let the default
8860 // expansion code take care of it.  If we CAN select this case, and if it
8861 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8862 // this case more efficiently than a constant pool load, lower it to the
8863 // sequence of ops that should be used.
8864 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8865                                              SelectionDAG &DAG) const {
8866   SDLoc dl(Op);
8867   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8868   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8869 
8870   // Check if this is a splat of a constant value.
8871   APInt APSplatBits, APSplatUndef;
8872   unsigned SplatBitSize;
8873   bool HasAnyUndefs;
8874   bool BVNIsConstantSplat =
8875       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8876                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
8877 
8878   // If it is a splat of a double, check if we can shrink it to a 32 bit
8879   // non-denormal float which when converted back to double gives us the same
8880   // double. This is to exploit the XXSPLTIDP instruction.
8881   if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() &&
8882       (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) &&
8883       convertToNonDenormSingle(APSplatBits)) {
8884     SDValue SplatNode = DAG.getNode(
8885         PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
8886         DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
8887     return DAG.getBitcast(Op.getValueType(), SplatNode);
8888   }
8889 
8890   if (!BVNIsConstantSplat || SplatBitSize > 32) {
8891 
8892     bool IsPermutedLoad = false;
8893     const SDValue *InputLoad =
8894         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
8895     // Handle load-and-splat patterns as we have instructions that will do this
8896     // in one go.
8897     if (InputLoad && DAG.isSplatValue(Op, true)) {
8898       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8899 
8900       // We have handling for 4 and 8 byte elements.
8901       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8902 
8903       // Checking for a single use of this load, we have to check for vector
8904       // width (128 bits) / ElementSize uses (since each operand of the
8905       // BUILD_VECTOR is a separate use of the value.
8906       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
8907           ((Subtarget.hasVSX() && ElementSize == 64) ||
8908            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8909         SDValue Ops[] = {
8910           LD->getChain(),    // Chain
8911           LD->getBasePtr(),  // Ptr
8912           DAG.getValueType(Op.getValueType()) // VT
8913         };
8914         return
8915           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
8916                                   DAG.getVTList(Op.getValueType(), MVT::Other),
8917                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
8918       }
8919     }
8920 
8921     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8922     // lowered to VSX instructions under certain conditions.
8923     // Without VSX, there is no pattern more efficient than expanding the node.
8924     if (Subtarget.hasVSX() &&
8925         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8926                                         Subtarget.hasP8Vector()))
8927       return Op;
8928     return SDValue();
8929   }
8930 
8931   uint64_t SplatBits = APSplatBits.getZExtValue();
8932   uint64_t SplatUndef = APSplatUndef.getZExtValue();
8933   unsigned SplatSize = SplatBitSize / 8;
8934 
8935   // First, handle single instruction cases.
8936 
8937   // All zeros?
8938   if (SplatBits == 0) {
8939     // Canonicalize all zero vectors to be v4i32.
8940     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8941       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8942       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8943     }
8944     return Op;
8945   }
8946 
8947   // We have XXSPLTIW for constant splats four bytes wide.
8948   // Given vector length is a multiple of 4, 2-byte splats can be replaced
8949   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
8950   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
8951   // turned into a 4-byte splat of 0xABABABAB.
8952   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
8953     return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2,
8954                                   Op.getValueType(), DAG, dl);
8955 
8956   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
8957     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
8958                                   dl);
8959 
8960   // We have XXSPLTIB for constant splats one byte wide.
8961   if (Subtarget.hasP9Vector() && SplatSize == 1)
8962     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
8963                                   dl);
8964 
8965   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8966   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8967                     (32-SplatBitSize));
8968   if (SextVal >= -16 && SextVal <= 15)
8969     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
8970                                   dl);
8971 
8972   // Two instruction sequences.
8973 
8974   // If this value is in the range [-32,30] and is even, use:
8975   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8976   // If this value is in the range [17,31] and is odd, use:
8977   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8978   // If this value is in the range [-31,-17] and is odd, use:
8979   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8980   // Note the last two are three-instruction sequences.
8981   if (SextVal >= -32 && SextVal <= 31) {
8982     // To avoid having these optimizations undone by constant folding,
8983     // we convert to a pseudo that will be expanded later into one of
8984     // the above forms.
8985     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8986     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8987               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8988     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8989     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8990     if (VT == Op.getValueType())
8991       return RetVal;
8992     else
8993       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8994   }
8995 
8996   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8997   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8998   // for fneg/fabs.
8999   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9000     // Make -1 and vspltisw -1:
9001     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9002 
9003     // Make the VSLW intrinsic, computing 0x8000_0000.
9004     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9005                                    OnesV, DAG, dl);
9006 
9007     // xor by OnesV to invert it.
9008     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9009     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9010   }
9011 
9012   // Check to see if this is a wide variety of vsplti*, binop self cases.
9013   static const signed char SplatCsts[] = {
9014     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9015     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9016   };
9017 
9018   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9019     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9020     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9021     int i = SplatCsts[idx];
9022 
9023     // Figure out what shift amount will be used by altivec if shifted by i in
9024     // this splat size.
9025     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9026 
9027     // vsplti + shl self.
9028     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9029       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9030       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9031         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9032         Intrinsic::ppc_altivec_vslw
9033       };
9034       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9035       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9036     }
9037 
9038     // vsplti + srl self.
9039     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9040       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9041       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9042         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9043         Intrinsic::ppc_altivec_vsrw
9044       };
9045       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9046       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9047     }
9048 
9049     // vsplti + sra self.
9050     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9051       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9052       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9053         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9054         Intrinsic::ppc_altivec_vsraw
9055       };
9056       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9057       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9058     }
9059 
9060     // vsplti + rol self.
9061     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9062                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9063       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9064       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9065         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9066         Intrinsic::ppc_altivec_vrlw
9067       };
9068       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9069       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9070     }
9071 
9072     // t = vsplti c, result = vsldoi t, t, 1
9073     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9074       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9075       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9076       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9077     }
9078     // t = vsplti c, result = vsldoi t, t, 2
9079     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9080       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9081       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9082       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9083     }
9084     // t = vsplti c, result = vsldoi t, t, 3
9085     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9086       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9087       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9088       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9089     }
9090   }
9091 
9092   return SDValue();
9093 }
9094 
9095 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9096 /// the specified operations to build the shuffle.
9097 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9098                                       SDValue RHS, SelectionDAG &DAG,
9099                                       const SDLoc &dl) {
9100   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9101   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9102   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9103 
9104   enum {
9105     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9106     OP_VMRGHW,
9107     OP_VMRGLW,
9108     OP_VSPLTISW0,
9109     OP_VSPLTISW1,
9110     OP_VSPLTISW2,
9111     OP_VSPLTISW3,
9112     OP_VSLDOI4,
9113     OP_VSLDOI8,
9114     OP_VSLDOI12
9115   };
9116 
9117   if (OpNum == OP_COPY) {
9118     if (LHSID == (1*9+2)*9+3) return LHS;
9119     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9120     return RHS;
9121   }
9122 
9123   SDValue OpLHS, OpRHS;
9124   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9125   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9126 
9127   int ShufIdxs[16];
9128   switch (OpNum) {
9129   default: llvm_unreachable("Unknown i32 permute!");
9130   case OP_VMRGHW:
9131     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9132     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9133     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9134     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9135     break;
9136   case OP_VMRGLW:
9137     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9138     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9139     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9140     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9141     break;
9142   case OP_VSPLTISW0:
9143     for (unsigned i = 0; i != 16; ++i)
9144       ShufIdxs[i] = (i&3)+0;
9145     break;
9146   case OP_VSPLTISW1:
9147     for (unsigned i = 0; i != 16; ++i)
9148       ShufIdxs[i] = (i&3)+4;
9149     break;
9150   case OP_VSPLTISW2:
9151     for (unsigned i = 0; i != 16; ++i)
9152       ShufIdxs[i] = (i&3)+8;
9153     break;
9154   case OP_VSPLTISW3:
9155     for (unsigned i = 0; i != 16; ++i)
9156       ShufIdxs[i] = (i&3)+12;
9157     break;
9158   case OP_VSLDOI4:
9159     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9160   case OP_VSLDOI8:
9161     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9162   case OP_VSLDOI12:
9163     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9164   }
9165   EVT VT = OpLHS.getValueType();
9166   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9167   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9168   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9169   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9170 }
9171 
9172 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9173 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9174 /// SDValue.
9175 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9176                                            SelectionDAG &DAG) const {
9177   const unsigned BytesInVector = 16;
9178   bool IsLE = Subtarget.isLittleEndian();
9179   SDLoc dl(N);
9180   SDValue V1 = N->getOperand(0);
9181   SDValue V2 = N->getOperand(1);
9182   unsigned ShiftElts = 0, InsertAtByte = 0;
9183   bool Swap = false;
9184 
9185   // Shifts required to get the byte we want at element 7.
9186   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9187                                    0, 15, 14, 13, 12, 11, 10, 9};
9188   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9189                                 1, 2,  3,  4,  5,  6,  7,  8};
9190 
9191   ArrayRef<int> Mask = N->getMask();
9192   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9193 
9194   // For each mask element, find out if we're just inserting something
9195   // from V2 into V1 or vice versa.
9196   // Possible permutations inserting an element from V2 into V1:
9197   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9198   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9199   //   ...
9200   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9201   // Inserting from V1 into V2 will be similar, except mask range will be
9202   // [16,31].
9203 
9204   bool FoundCandidate = false;
9205   // If both vector operands for the shuffle are the same vector, the mask
9206   // will contain only elements from the first one and the second one will be
9207   // undef.
9208   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9209   // Go through the mask of half-words to find an element that's being moved
9210   // from one vector to the other.
9211   for (unsigned i = 0; i < BytesInVector; ++i) {
9212     unsigned CurrentElement = Mask[i];
9213     // If 2nd operand is undefined, we should only look for element 7 in the
9214     // Mask.
9215     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9216       continue;
9217 
9218     bool OtherElementsInOrder = true;
9219     // Examine the other elements in the Mask to see if they're in original
9220     // order.
9221     for (unsigned j = 0; j < BytesInVector; ++j) {
9222       if (j == i)
9223         continue;
9224       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9225       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9226       // in which we always assume we're always picking from the 1st operand.
9227       int MaskOffset =
9228           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9229       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9230         OtherElementsInOrder = false;
9231         break;
9232       }
9233     }
9234     // If other elements are in original order, we record the number of shifts
9235     // we need to get the element we want into element 7. Also record which byte
9236     // in the vector we should insert into.
9237     if (OtherElementsInOrder) {
9238       // If 2nd operand is undefined, we assume no shifts and no swapping.
9239       if (V2.isUndef()) {
9240         ShiftElts = 0;
9241         Swap = false;
9242       } else {
9243         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9244         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9245                          : BigEndianShifts[CurrentElement & 0xF];
9246         Swap = CurrentElement < BytesInVector;
9247       }
9248       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9249       FoundCandidate = true;
9250       break;
9251     }
9252   }
9253 
9254   if (!FoundCandidate)
9255     return SDValue();
9256 
9257   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9258   // optionally with VECSHL if shift is required.
9259   if (Swap)
9260     std::swap(V1, V2);
9261   if (V2.isUndef())
9262     V2 = V1;
9263   if (ShiftElts) {
9264     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9265                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9266     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9267                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9268   }
9269   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9270                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9271 }
9272 
9273 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9274 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9275 /// SDValue.
9276 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9277                                            SelectionDAG &DAG) const {
9278   const unsigned NumHalfWords = 8;
9279   const unsigned BytesInVector = NumHalfWords * 2;
9280   // Check that the shuffle is on half-words.
9281   if (!isNByteElemShuffleMask(N, 2, 1))
9282     return SDValue();
9283 
9284   bool IsLE = Subtarget.isLittleEndian();
9285   SDLoc dl(N);
9286   SDValue V1 = N->getOperand(0);
9287   SDValue V2 = N->getOperand(1);
9288   unsigned ShiftElts = 0, InsertAtByte = 0;
9289   bool Swap = false;
9290 
9291   // Shifts required to get the half-word we want at element 3.
9292   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9293   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9294 
9295   uint32_t Mask = 0;
9296   uint32_t OriginalOrderLow = 0x1234567;
9297   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9298   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9299   // 32-bit space, only need 4-bit nibbles per element.
9300   for (unsigned i = 0; i < NumHalfWords; ++i) {
9301     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9302     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9303   }
9304 
9305   // For each mask element, find out if we're just inserting something
9306   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9307   // from V2 into V1:
9308   //   X, 1, 2, 3, 4, 5, 6, 7
9309   //   0, X, 2, 3, 4, 5, 6, 7
9310   //   0, 1, X, 3, 4, 5, 6, 7
9311   //   0, 1, 2, X, 4, 5, 6, 7
9312   //   0, 1, 2, 3, X, 5, 6, 7
9313   //   0, 1, 2, 3, 4, X, 6, 7
9314   //   0, 1, 2, 3, 4, 5, X, 7
9315   //   0, 1, 2, 3, 4, 5, 6, X
9316   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9317 
9318   bool FoundCandidate = false;
9319   // Go through the mask of half-words to find an element that's being moved
9320   // from one vector to the other.
9321   for (unsigned i = 0; i < NumHalfWords; ++i) {
9322     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9323     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9324     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9325     uint32_t TargetOrder = 0x0;
9326 
9327     // If both vector operands for the shuffle are the same vector, the mask
9328     // will contain only elements from the first one and the second one will be
9329     // undef.
9330     if (V2.isUndef()) {
9331       ShiftElts = 0;
9332       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9333       TargetOrder = OriginalOrderLow;
9334       Swap = false;
9335       // Skip if not the correct element or mask of other elements don't equal
9336       // to our expected order.
9337       if (MaskOneElt == VINSERTHSrcElem &&
9338           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9339         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9340         FoundCandidate = true;
9341         break;
9342       }
9343     } else { // If both operands are defined.
9344       // Target order is [8,15] if the current mask is between [0,7].
9345       TargetOrder =
9346           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9347       // Skip if mask of other elements don't equal our expected order.
9348       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9349         // We only need the last 3 bits for the number of shifts.
9350         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9351                          : BigEndianShifts[MaskOneElt & 0x7];
9352         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9353         Swap = MaskOneElt < NumHalfWords;
9354         FoundCandidate = true;
9355         break;
9356       }
9357     }
9358   }
9359 
9360   if (!FoundCandidate)
9361     return SDValue();
9362 
9363   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9364   // optionally with VECSHL if shift is required.
9365   if (Swap)
9366     std::swap(V1, V2);
9367   if (V2.isUndef())
9368     V2 = V1;
9369   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9370   if (ShiftElts) {
9371     // Double ShiftElts because we're left shifting on v16i8 type.
9372     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9373                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9374     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9375     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9376                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9377     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9378   }
9379   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9380   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9381                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9382   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9383 }
9384 
9385 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9386 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9387 /// return the default SDValue.
9388 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9389                                               SelectionDAG &DAG) const {
9390   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9391   // to v16i8. Peek through the bitcasts to get the actual operands.
9392   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9393   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9394 
9395   auto ShuffleMask = SVN->getMask();
9396   SDValue VecShuffle(SVN, 0);
9397   SDLoc DL(SVN);
9398 
9399   // Check that we have a four byte shuffle.
9400   if (!isNByteElemShuffleMask(SVN, 4, 1))
9401     return SDValue();
9402 
9403   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9404   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9405     std::swap(LHS, RHS);
9406     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9407     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9408   }
9409 
9410   // Ensure that the RHS is a vector of constants.
9411   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9412   if (!BVN)
9413     return SDValue();
9414 
9415   // Check if RHS is a splat of 4-bytes (or smaller).
9416   APInt APSplatValue, APSplatUndef;
9417   unsigned SplatBitSize;
9418   bool HasAnyUndefs;
9419   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9420                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9421       SplatBitSize > 32)
9422     return SDValue();
9423 
9424   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9425   // The instruction splats a constant C into two words of the source vector
9426   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9427   // Thus we check that the shuffle mask is the equivalent  of
9428   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9429   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9430   // within each word are consecutive, so we only need to check the first byte.
9431   SDValue Index;
9432   bool IsLE = Subtarget.isLittleEndian();
9433   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9434       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9435        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9436     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9437   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9438            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9439             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9440     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9441   else
9442     return SDValue();
9443 
9444   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9445   // for XXSPLTI32DX.
9446   unsigned SplatVal = APSplatValue.getZExtValue();
9447   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9448     SplatVal |= (SplatVal << SplatBitSize);
9449 
9450   SDValue SplatNode = DAG.getNode(
9451       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9452       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9453   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9454 }
9455 
9456 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9457 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9458 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9459 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9460 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9461   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9462   assert(Op.getValueType() == MVT::v1i128 &&
9463          "Only set v1i128 as custom, other type shouldn't reach here!");
9464   SDLoc dl(Op);
9465   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9466   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9467   unsigned SHLAmt = N1.getConstantOperandVal(0);
9468   if (SHLAmt % 8 == 0) {
9469     SmallVector<int, 16> Mask(16, 0);
9470     std::iota(Mask.begin(), Mask.end(), 0);
9471     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9472     if (SDValue Shuffle =
9473             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9474                                  DAG.getUNDEF(MVT::v16i8), Mask))
9475       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9476   }
9477   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9478   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9479                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9480   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9481                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9482   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9483   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9484 }
9485 
9486 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9487 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9488 /// return the code it can be lowered into.  Worst case, it can always be
9489 /// lowered into a vperm.
9490 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9491                                                SelectionDAG &DAG) const {
9492   SDLoc dl(Op);
9493   SDValue V1 = Op.getOperand(0);
9494   SDValue V2 = Op.getOperand(1);
9495   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9496 
9497   // Any nodes that were combined in the target-independent combiner prior
9498   // to vector legalization will not be sent to the target combine. Try to
9499   // combine it here.
9500   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9501     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9502       return NewShuffle;
9503     Op = NewShuffle;
9504     SVOp = cast<ShuffleVectorSDNode>(Op);
9505     V1 = Op.getOperand(0);
9506     V2 = Op.getOperand(1);
9507   }
9508   EVT VT = Op.getValueType();
9509   bool isLittleEndian = Subtarget.isLittleEndian();
9510 
9511   unsigned ShiftElts, InsertAtByte;
9512   bool Swap = false;
9513 
9514   // If this is a load-and-splat, we can do that with a single instruction
9515   // in some cases. However if the load has multiple uses, we don't want to
9516   // combine it because that will just produce multiple loads.
9517   bool IsPermutedLoad = false;
9518   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9519   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9520       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9521       InputLoad->hasOneUse()) {
9522     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9523     int SplatIdx =
9524       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9525 
9526     // The splat index for permuted loads will be in the left half of the vector
9527     // which is strictly wider than the loaded value by 8 bytes. So we need to
9528     // adjust the splat index to point to the correct address in memory.
9529     if (IsPermutedLoad) {
9530       assert(isLittleEndian && "Unexpected permuted load on big endian target");
9531       SplatIdx += IsFourByte ? 2 : 1;
9532       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9533              "Splat of a value outside of the loaded memory");
9534     }
9535 
9536     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9537     // For 4-byte load-and-splat, we need Power9.
9538     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9539       uint64_t Offset = 0;
9540       if (IsFourByte)
9541         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9542       else
9543         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9544 
9545       SDValue BasePtr = LD->getBasePtr();
9546       if (Offset != 0)
9547         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9548                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9549       SDValue Ops[] = {
9550         LD->getChain(),    // Chain
9551         BasePtr,           // BasePtr
9552         DAG.getValueType(Op.getValueType()) // VT
9553       };
9554       SDVTList VTL =
9555         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9556       SDValue LdSplt =
9557         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9558                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9559       if (LdSplt.getValueType() != SVOp->getValueType(0))
9560         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9561       return LdSplt;
9562     }
9563   }
9564   if (Subtarget.hasP9Vector() &&
9565       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9566                            isLittleEndian)) {
9567     if (Swap)
9568       std::swap(V1, V2);
9569     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9570     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9571     if (ShiftElts) {
9572       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9573                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9574       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9575                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9576       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9577     }
9578     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9579                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9580     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9581   }
9582 
9583   if (Subtarget.hasPrefixInstrs()) {
9584     SDValue SplatInsertNode;
9585     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9586       return SplatInsertNode;
9587   }
9588 
9589   if (Subtarget.hasP9Altivec()) {
9590     SDValue NewISDNode;
9591     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9592       return NewISDNode;
9593 
9594     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9595       return NewISDNode;
9596   }
9597 
9598   if (Subtarget.hasVSX() &&
9599       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9600     if (Swap)
9601       std::swap(V1, V2);
9602     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9603     SDValue Conv2 =
9604         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9605 
9606     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9607                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9608     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9609   }
9610 
9611   if (Subtarget.hasVSX() &&
9612     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9613     if (Swap)
9614       std::swap(V1, V2);
9615     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9616     SDValue Conv2 =
9617         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9618 
9619     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9620                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9621     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9622   }
9623 
9624   if (Subtarget.hasP9Vector()) {
9625      if (PPC::isXXBRHShuffleMask(SVOp)) {
9626       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9627       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9628       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9629     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9630       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9631       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9632       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9633     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9634       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9635       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9636       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9637     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9638       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9639       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9640       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9641     }
9642   }
9643 
9644   if (Subtarget.hasVSX()) {
9645     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9646       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9647 
9648       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9649       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9650                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9651       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9652     }
9653 
9654     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9655     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9656       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9657       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9658       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9659     }
9660   }
9661 
9662   // Cases that are handled by instructions that take permute immediates
9663   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9664   // selected by the instruction selector.
9665   if (V2.isUndef()) {
9666     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9667         PPC::isSplatShuffleMask(SVOp, 2) ||
9668         PPC::isSplatShuffleMask(SVOp, 4) ||
9669         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9670         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9671         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9672         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9673         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9674         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9675         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9676         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9677         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9678         (Subtarget.hasP8Altivec() && (
9679          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9680          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9681          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9682       return Op;
9683     }
9684   }
9685 
9686   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9687   // and produce a fixed permutation.  If any of these match, do not lower to
9688   // VPERM.
9689   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9690   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9691       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9692       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9693       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9694       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9695       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9696       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9697       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9698       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9699       (Subtarget.hasP8Altivec() && (
9700        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9701        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9702        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9703     return Op;
9704 
9705   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9706   // perfect shuffle table to emit an optimal matching sequence.
9707   ArrayRef<int> PermMask = SVOp->getMask();
9708 
9709   unsigned PFIndexes[4];
9710   bool isFourElementShuffle = true;
9711   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9712     unsigned EltNo = 8;   // Start out undef.
9713     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9714       if (PermMask[i*4+j] < 0)
9715         continue;   // Undef, ignore it.
9716 
9717       unsigned ByteSource = PermMask[i*4+j];
9718       if ((ByteSource & 3) != j) {
9719         isFourElementShuffle = false;
9720         break;
9721       }
9722 
9723       if (EltNo == 8) {
9724         EltNo = ByteSource/4;
9725       } else if (EltNo != ByteSource/4) {
9726         isFourElementShuffle = false;
9727         break;
9728       }
9729     }
9730     PFIndexes[i] = EltNo;
9731   }
9732 
9733   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9734   // perfect shuffle vector to determine if it is cost effective to do this as
9735   // discrete instructions, or whether we should use a vperm.
9736   // For now, we skip this for little endian until such time as we have a
9737   // little-endian perfect shuffle table.
9738   if (isFourElementShuffle && !isLittleEndian) {
9739     // Compute the index in the perfect shuffle table.
9740     unsigned PFTableIndex =
9741       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9742 
9743     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9744     unsigned Cost  = (PFEntry >> 30);
9745 
9746     // Determining when to avoid vperm is tricky.  Many things affect the cost
9747     // of vperm, particularly how many times the perm mask needs to be computed.
9748     // For example, if the perm mask can be hoisted out of a loop or is already
9749     // used (perhaps because there are multiple permutes with the same shuffle
9750     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9751     // the loop requires an extra register.
9752     //
9753     // As a compromise, we only emit discrete instructions if the shuffle can be
9754     // generated in 3 or fewer operations.  When we have loop information
9755     // available, if this block is within a loop, we should avoid using vperm
9756     // for 3-operation perms and use a constant pool load instead.
9757     if (Cost < 3)
9758       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9759   }
9760 
9761   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9762   // vector that will get spilled to the constant pool.
9763   if (V2.isUndef()) V2 = V1;
9764 
9765   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9766   // that it is in input element units, not in bytes.  Convert now.
9767 
9768   // For little endian, the order of the input vectors is reversed, and
9769   // the permutation mask is complemented with respect to 31.  This is
9770   // necessary to produce proper semantics with the big-endian-biased vperm
9771   // instruction.
9772   EVT EltVT = V1.getValueType().getVectorElementType();
9773   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9774 
9775   SmallVector<SDValue, 16> ResultMask;
9776   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9777     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9778 
9779     for (unsigned j = 0; j != BytesPerElement; ++j)
9780       if (isLittleEndian)
9781         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9782                                              dl, MVT::i32));
9783       else
9784         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9785                                              MVT::i32));
9786   }
9787 
9788   ShufflesHandledWithVPERM++;
9789   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9790   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
9791   LLVM_DEBUG(SVOp->dump());
9792   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
9793   LLVM_DEBUG(VPermMask.dump());
9794 
9795   if (isLittleEndian)
9796     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9797                        V2, V1, VPermMask);
9798   else
9799     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9800                        V1, V2, VPermMask);
9801 }
9802 
9803 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9804 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9805 /// information about the intrinsic.
9806 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9807                                  bool &isDot, const PPCSubtarget &Subtarget) {
9808   unsigned IntrinsicID =
9809       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9810   CompareOpc = -1;
9811   isDot = false;
9812   switch (IntrinsicID) {
9813   default:
9814     return false;
9815   // Comparison predicates.
9816   case Intrinsic::ppc_altivec_vcmpbfp_p:
9817     CompareOpc = 966;
9818     isDot = true;
9819     break;
9820   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9821     CompareOpc = 198;
9822     isDot = true;
9823     break;
9824   case Intrinsic::ppc_altivec_vcmpequb_p:
9825     CompareOpc = 6;
9826     isDot = true;
9827     break;
9828   case Intrinsic::ppc_altivec_vcmpequh_p:
9829     CompareOpc = 70;
9830     isDot = true;
9831     break;
9832   case Intrinsic::ppc_altivec_vcmpequw_p:
9833     CompareOpc = 134;
9834     isDot = true;
9835     break;
9836   case Intrinsic::ppc_altivec_vcmpequd_p:
9837     if (Subtarget.hasP8Altivec()) {
9838       CompareOpc = 199;
9839       isDot = true;
9840     } else
9841       return false;
9842     break;
9843   case Intrinsic::ppc_altivec_vcmpneb_p:
9844   case Intrinsic::ppc_altivec_vcmpneh_p:
9845   case Intrinsic::ppc_altivec_vcmpnew_p:
9846   case Intrinsic::ppc_altivec_vcmpnezb_p:
9847   case Intrinsic::ppc_altivec_vcmpnezh_p:
9848   case Intrinsic::ppc_altivec_vcmpnezw_p:
9849     if (Subtarget.hasP9Altivec()) {
9850       switch (IntrinsicID) {
9851       default:
9852         llvm_unreachable("Unknown comparison intrinsic.");
9853       case Intrinsic::ppc_altivec_vcmpneb_p:
9854         CompareOpc = 7;
9855         break;
9856       case Intrinsic::ppc_altivec_vcmpneh_p:
9857         CompareOpc = 71;
9858         break;
9859       case Intrinsic::ppc_altivec_vcmpnew_p:
9860         CompareOpc = 135;
9861         break;
9862       case Intrinsic::ppc_altivec_vcmpnezb_p:
9863         CompareOpc = 263;
9864         break;
9865       case Intrinsic::ppc_altivec_vcmpnezh_p:
9866         CompareOpc = 327;
9867         break;
9868       case Intrinsic::ppc_altivec_vcmpnezw_p:
9869         CompareOpc = 391;
9870         break;
9871       }
9872       isDot = true;
9873     } else
9874       return false;
9875     break;
9876   case Intrinsic::ppc_altivec_vcmpgefp_p:
9877     CompareOpc = 454;
9878     isDot = true;
9879     break;
9880   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9881     CompareOpc = 710;
9882     isDot = true;
9883     break;
9884   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9885     CompareOpc = 774;
9886     isDot = true;
9887     break;
9888   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9889     CompareOpc = 838;
9890     isDot = true;
9891     break;
9892   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9893     CompareOpc = 902;
9894     isDot = true;
9895     break;
9896   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9897     if (Subtarget.hasP8Altivec()) {
9898       CompareOpc = 967;
9899       isDot = true;
9900     } else
9901       return false;
9902     break;
9903   case Intrinsic::ppc_altivec_vcmpgtub_p:
9904     CompareOpc = 518;
9905     isDot = true;
9906     break;
9907   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9908     CompareOpc = 582;
9909     isDot = true;
9910     break;
9911   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9912     CompareOpc = 646;
9913     isDot = true;
9914     break;
9915   case Intrinsic::ppc_altivec_vcmpgtud_p:
9916     if (Subtarget.hasP8Altivec()) {
9917       CompareOpc = 711;
9918       isDot = true;
9919     } else
9920       return false;
9921     break;
9922 
9923   // VSX predicate comparisons use the same infrastructure
9924   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9925   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9926   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9927   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9928   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9929   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9930     if (Subtarget.hasVSX()) {
9931       switch (IntrinsicID) {
9932       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9933         CompareOpc = 99;
9934         break;
9935       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9936         CompareOpc = 115;
9937         break;
9938       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9939         CompareOpc = 107;
9940         break;
9941       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9942         CompareOpc = 67;
9943         break;
9944       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9945         CompareOpc = 83;
9946         break;
9947       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9948         CompareOpc = 75;
9949         break;
9950       }
9951       isDot = true;
9952     } else
9953       return false;
9954     break;
9955 
9956   // Normal Comparisons.
9957   case Intrinsic::ppc_altivec_vcmpbfp:
9958     CompareOpc = 966;
9959     break;
9960   case Intrinsic::ppc_altivec_vcmpeqfp:
9961     CompareOpc = 198;
9962     break;
9963   case Intrinsic::ppc_altivec_vcmpequb:
9964     CompareOpc = 6;
9965     break;
9966   case Intrinsic::ppc_altivec_vcmpequh:
9967     CompareOpc = 70;
9968     break;
9969   case Intrinsic::ppc_altivec_vcmpequw:
9970     CompareOpc = 134;
9971     break;
9972   case Intrinsic::ppc_altivec_vcmpequd:
9973     if (Subtarget.hasP8Altivec())
9974       CompareOpc = 199;
9975     else
9976       return false;
9977     break;
9978   case Intrinsic::ppc_altivec_vcmpneb:
9979   case Intrinsic::ppc_altivec_vcmpneh:
9980   case Intrinsic::ppc_altivec_vcmpnew:
9981   case Intrinsic::ppc_altivec_vcmpnezb:
9982   case Intrinsic::ppc_altivec_vcmpnezh:
9983   case Intrinsic::ppc_altivec_vcmpnezw:
9984     if (Subtarget.hasP9Altivec())
9985       switch (IntrinsicID) {
9986       default:
9987         llvm_unreachable("Unknown comparison intrinsic.");
9988       case Intrinsic::ppc_altivec_vcmpneb:
9989         CompareOpc = 7;
9990         break;
9991       case Intrinsic::ppc_altivec_vcmpneh:
9992         CompareOpc = 71;
9993         break;
9994       case Intrinsic::ppc_altivec_vcmpnew:
9995         CompareOpc = 135;
9996         break;
9997       case Intrinsic::ppc_altivec_vcmpnezb:
9998         CompareOpc = 263;
9999         break;
10000       case Intrinsic::ppc_altivec_vcmpnezh:
10001         CompareOpc = 327;
10002         break;
10003       case Intrinsic::ppc_altivec_vcmpnezw:
10004         CompareOpc = 391;
10005         break;
10006       }
10007     else
10008       return false;
10009     break;
10010   case Intrinsic::ppc_altivec_vcmpgefp:
10011     CompareOpc = 454;
10012     break;
10013   case Intrinsic::ppc_altivec_vcmpgtfp:
10014     CompareOpc = 710;
10015     break;
10016   case Intrinsic::ppc_altivec_vcmpgtsb:
10017     CompareOpc = 774;
10018     break;
10019   case Intrinsic::ppc_altivec_vcmpgtsh:
10020     CompareOpc = 838;
10021     break;
10022   case Intrinsic::ppc_altivec_vcmpgtsw:
10023     CompareOpc = 902;
10024     break;
10025   case Intrinsic::ppc_altivec_vcmpgtsd:
10026     if (Subtarget.hasP8Altivec())
10027       CompareOpc = 967;
10028     else
10029       return false;
10030     break;
10031   case Intrinsic::ppc_altivec_vcmpgtub:
10032     CompareOpc = 518;
10033     break;
10034   case Intrinsic::ppc_altivec_vcmpgtuh:
10035     CompareOpc = 582;
10036     break;
10037   case Intrinsic::ppc_altivec_vcmpgtuw:
10038     CompareOpc = 646;
10039     break;
10040   case Intrinsic::ppc_altivec_vcmpgtud:
10041     if (Subtarget.hasP8Altivec())
10042       CompareOpc = 711;
10043     else
10044       return false;
10045     break;
10046   }
10047   return true;
10048 }
10049 
10050 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10051 /// lower, do it, otherwise return null.
10052 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10053                                                    SelectionDAG &DAG) const {
10054   unsigned IntrinsicID =
10055     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10056 
10057   SDLoc dl(Op);
10058 
10059   if (IntrinsicID == Intrinsic::thread_pointer) {
10060     // Reads the thread pointer register, used for __builtin_thread_pointer.
10061     if (Subtarget.isPPC64())
10062       return DAG.getRegister(PPC::X13, MVT::i64);
10063     return DAG.getRegister(PPC::R2, MVT::i32);
10064   }
10065 
10066   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10067   // opcode number of the comparison.
10068   int CompareOpc;
10069   bool isDot;
10070   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10071     return SDValue();    // Don't custom lower most intrinsics.
10072 
10073   // If this is a non-dot comparison, make the VCMP node and we are done.
10074   if (!isDot) {
10075     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10076                               Op.getOperand(1), Op.getOperand(2),
10077                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10078     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10079   }
10080 
10081   // Create the PPCISD altivec 'dot' comparison node.
10082   SDValue Ops[] = {
10083     Op.getOperand(2),  // LHS
10084     Op.getOperand(3),  // RHS
10085     DAG.getConstant(CompareOpc, dl, MVT::i32)
10086   };
10087   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10088   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10089 
10090   // Now that we have the comparison, emit a copy from the CR to a GPR.
10091   // This is flagged to the above dot comparison.
10092   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10093                                 DAG.getRegister(PPC::CR6, MVT::i32),
10094                                 CompNode.getValue(1));
10095 
10096   // Unpack the result based on how the target uses it.
10097   unsigned BitNo;   // Bit # of CR6.
10098   bool InvertBit;   // Invert result?
10099   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10100   default:  // Can't happen, don't crash on invalid number though.
10101   case 0:   // Return the value of the EQ bit of CR6.
10102     BitNo = 0; InvertBit = false;
10103     break;
10104   case 1:   // Return the inverted value of the EQ bit of CR6.
10105     BitNo = 0; InvertBit = true;
10106     break;
10107   case 2:   // Return the value of the LT bit of CR6.
10108     BitNo = 2; InvertBit = false;
10109     break;
10110   case 3:   // Return the inverted value of the LT bit of CR6.
10111     BitNo = 2; InvertBit = true;
10112     break;
10113   }
10114 
10115   // Shift the bit into the low position.
10116   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10117                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10118   // Isolate the bit.
10119   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10120                       DAG.getConstant(1, dl, MVT::i32));
10121 
10122   // If we are supposed to, toggle the bit.
10123   if (InvertBit)
10124     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10125                         DAG.getConstant(1, dl, MVT::i32));
10126   return Flags;
10127 }
10128 
10129 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10130                                                SelectionDAG &DAG) const {
10131   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10132   // the beginning of the argument list.
10133   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10134   SDLoc DL(Op);
10135   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10136   case Intrinsic::ppc_cfence: {
10137     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10138     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10139     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10140                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10141                                                   Op.getOperand(ArgStart + 1)),
10142                                       Op.getOperand(0)),
10143                    0);
10144   }
10145   default:
10146     break;
10147   }
10148   return SDValue();
10149 }
10150 
10151 // Lower scalar BSWAP64 to xxbrd.
10152 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10153   SDLoc dl(Op);
10154   // MTVSRDD
10155   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10156                    Op.getOperand(0));
10157   // XXBRD
10158   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10159   // MFVSRD
10160   int VectorIndex = 0;
10161   if (Subtarget.isLittleEndian())
10162     VectorIndex = 1;
10163   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10164                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10165   return Op;
10166 }
10167 
10168 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10169 // compared to a value that is atomically loaded (atomic loads zero-extend).
10170 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10171                                                 SelectionDAG &DAG) const {
10172   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10173          "Expecting an atomic compare-and-swap here.");
10174   SDLoc dl(Op);
10175   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10176   EVT MemVT = AtomicNode->getMemoryVT();
10177   if (MemVT.getSizeInBits() >= 32)
10178     return Op;
10179 
10180   SDValue CmpOp = Op.getOperand(2);
10181   // If this is already correctly zero-extended, leave it alone.
10182   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10183   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10184     return Op;
10185 
10186   // Clear the high bits of the compare operand.
10187   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10188   SDValue NewCmpOp =
10189     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10190                 DAG.getConstant(MaskVal, dl, MVT::i32));
10191 
10192   // Replace the existing compare operand with the properly zero-extended one.
10193   SmallVector<SDValue, 4> Ops;
10194   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10195     Ops.push_back(AtomicNode->getOperand(i));
10196   Ops[2] = NewCmpOp;
10197   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10198   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10199   auto NodeTy =
10200     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10201   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10202 }
10203 
10204 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10205                                                  SelectionDAG &DAG) const {
10206   SDLoc dl(Op);
10207   // Create a stack slot that is 16-byte aligned.
10208   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10209   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10210   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10211   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10212 
10213   // Store the input value into Value#0 of the stack slot.
10214   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10215                                MachinePointerInfo());
10216   // Load it out.
10217   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10218 }
10219 
10220 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10221                                                   SelectionDAG &DAG) const {
10222   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10223          "Should only be called for ISD::INSERT_VECTOR_ELT");
10224 
10225   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10226   // We have legal lowering for constant indices but not for variable ones.
10227   if (!C)
10228     return SDValue();
10229 
10230   EVT VT = Op.getValueType();
10231   SDLoc dl(Op);
10232   SDValue V1 = Op.getOperand(0);
10233   SDValue V2 = Op.getOperand(1);
10234   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10235   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10236     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10237     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10238     unsigned InsertAtElement = C->getZExtValue();
10239     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10240     if (Subtarget.isLittleEndian()) {
10241       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10242     }
10243     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10244                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10245   }
10246   return Op;
10247 }
10248 
10249 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10250   SDLoc dl(Op);
10251   if (Op.getValueType() == MVT::v4i32) {
10252     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10253 
10254     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10255     // +16 as shift amt.
10256     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10257     SDValue RHSSwap =   // = vrlw RHS, 16
10258       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10259 
10260     // Shrinkify inputs to v8i16.
10261     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10262     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10263     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10264 
10265     // Low parts multiplied together, generating 32-bit results (we ignore the
10266     // top parts).
10267     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10268                                         LHS, RHS, DAG, dl, MVT::v4i32);
10269 
10270     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10271                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10272     // Shift the high parts up 16 bits.
10273     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10274                               Neg16, DAG, dl);
10275     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10276   } else if (Op.getValueType() == MVT::v16i8) {
10277     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10278     bool isLittleEndian = Subtarget.isLittleEndian();
10279 
10280     // Multiply the even 8-bit parts, producing 16-bit sums.
10281     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10282                                            LHS, RHS, DAG, dl, MVT::v8i16);
10283     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10284 
10285     // Multiply the odd 8-bit parts, producing 16-bit sums.
10286     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10287                                           LHS, RHS, DAG, dl, MVT::v8i16);
10288     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10289 
10290     // Merge the results together.  Because vmuleub and vmuloub are
10291     // instructions with a big-endian bias, we must reverse the
10292     // element numbering and reverse the meaning of "odd" and "even"
10293     // when generating little endian code.
10294     int Ops[16];
10295     for (unsigned i = 0; i != 8; ++i) {
10296       if (isLittleEndian) {
10297         Ops[i*2  ] = 2*i;
10298         Ops[i*2+1] = 2*i+16;
10299       } else {
10300         Ops[i*2  ] = 2*i+1;
10301         Ops[i*2+1] = 2*i+1+16;
10302       }
10303     }
10304     if (isLittleEndian)
10305       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10306     else
10307       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10308   } else {
10309     llvm_unreachable("Unknown mul to lower!");
10310   }
10311 }
10312 
10313 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10314 
10315   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10316 
10317   EVT VT = Op.getValueType();
10318   assert(VT.isVector() &&
10319          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10320   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10321           VT == MVT::v16i8) &&
10322          "Unexpected vector element type!");
10323   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10324          "Current subtarget doesn't support smax v2i64!");
10325 
10326   // For vector abs, it can be lowered to:
10327   // abs x
10328   // ==>
10329   // y = -x
10330   // smax(x, y)
10331 
10332   SDLoc dl(Op);
10333   SDValue X = Op.getOperand(0);
10334   SDValue Zero = DAG.getConstant(0, dl, VT);
10335   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10336 
10337   // SMAX patch https://reviews.llvm.org/D47332
10338   // hasn't landed yet, so use intrinsic first here.
10339   // TODO: Should use SMAX directly once SMAX patch landed
10340   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10341   if (VT == MVT::v2i64)
10342     BifID = Intrinsic::ppc_altivec_vmaxsd;
10343   else if (VT == MVT::v8i16)
10344     BifID = Intrinsic::ppc_altivec_vmaxsh;
10345   else if (VT == MVT::v16i8)
10346     BifID = Intrinsic::ppc_altivec_vmaxsb;
10347 
10348   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10349 }
10350 
10351 // Custom lowering for fpext vf32 to v2f64
10352 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10353 
10354   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10355          "Should only be called for ISD::FP_EXTEND");
10356 
10357   // FIXME: handle extends from half precision float vectors on P9.
10358   // We only want to custom lower an extend from v2f32 to v2f64.
10359   if (Op.getValueType() != MVT::v2f64 ||
10360       Op.getOperand(0).getValueType() != MVT::v2f32)
10361     return SDValue();
10362 
10363   SDLoc dl(Op);
10364   SDValue Op0 = Op.getOperand(0);
10365 
10366   switch (Op0.getOpcode()) {
10367   default:
10368     return SDValue();
10369   case ISD::EXTRACT_SUBVECTOR: {
10370     assert(Op0.getNumOperands() == 2 &&
10371            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10372            "Node should have 2 operands with second one being a constant!");
10373 
10374     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10375       return SDValue();
10376 
10377     // Custom lower is only done for high or low doubleword.
10378     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10379     if (Idx % 2 != 0)
10380       return SDValue();
10381 
10382     // Since input is v4f32, at this point Idx is either 0 or 2.
10383     // Shift to get the doubleword position we want.
10384     int DWord = Idx >> 1;
10385 
10386     // High and low word positions are different on little endian.
10387     if (Subtarget.isLittleEndian())
10388       DWord ^= 0x1;
10389 
10390     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10391                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10392   }
10393   case ISD::FADD:
10394   case ISD::FMUL:
10395   case ISD::FSUB: {
10396     SDValue NewLoad[2];
10397     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10398       // Ensure both input are loads.
10399       SDValue LdOp = Op0.getOperand(i);
10400       if (LdOp.getOpcode() != ISD::LOAD)
10401         return SDValue();
10402       // Generate new load node.
10403       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10404       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10405       NewLoad[i] = DAG.getMemIntrinsicNode(
10406           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10407           LD->getMemoryVT(), LD->getMemOperand());
10408     }
10409     SDValue NewOp =
10410         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10411                     NewLoad[1], Op0.getNode()->getFlags());
10412     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10413                        DAG.getConstant(0, dl, MVT::i32));
10414   }
10415   case ISD::LOAD: {
10416     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10417     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10418     SDValue NewLd = DAG.getMemIntrinsicNode(
10419         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10420         LD->getMemoryVT(), LD->getMemOperand());
10421     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10422                        DAG.getConstant(0, dl, MVT::i32));
10423   }
10424   }
10425   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10426 }
10427 
10428 /// LowerOperation - Provide custom lowering hooks for some operations.
10429 ///
10430 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10431   switch (Op.getOpcode()) {
10432   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10433   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10434   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10435   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10436   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10437   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10438   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10439   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10440   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10441 
10442   // Variable argument lowering.
10443   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10444   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10445   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10446 
10447   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10448   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10449   case ISD::GET_DYNAMIC_AREA_OFFSET:
10450     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10451 
10452   // Exception handling lowering.
10453   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10454   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10455   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10456 
10457   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10458   case ISD::STORE:              return LowerSTORE(Op, DAG);
10459   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10460   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10461   case ISD::FP_TO_UINT:
10462   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10463   case ISD::UINT_TO_FP:
10464   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10465   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10466 
10467   // Lower 64-bit shifts.
10468   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10469   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10470   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10471 
10472   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10473   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10474 
10475   // Vector-related lowering.
10476   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10477   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10478   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10479   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10480   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10481   case ISD::MUL:                return LowerMUL(Op, DAG);
10482   case ISD::ABS:                return LowerABS(Op, DAG);
10483   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10484   case ISD::ROTL:               return LowerROTL(Op, DAG);
10485 
10486   // For counter-based loop handling.
10487   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10488 
10489   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10490 
10491   // Frame & Return address.
10492   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10493   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10494 
10495   case ISD::INTRINSIC_VOID:
10496     return LowerINTRINSIC_VOID(Op, DAG);
10497   case ISD::BSWAP:
10498     return LowerBSWAP(Op, DAG);
10499   case ISD::ATOMIC_CMP_SWAP:
10500     return LowerATOMIC_CMP_SWAP(Op, DAG);
10501   }
10502 }
10503 
10504 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10505                                            SmallVectorImpl<SDValue>&Results,
10506                                            SelectionDAG &DAG) const {
10507   SDLoc dl(N);
10508   switch (N->getOpcode()) {
10509   default:
10510     llvm_unreachable("Do not know how to custom type legalize this operation!");
10511   case ISD::READCYCLECOUNTER: {
10512     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10513     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10514 
10515     Results.push_back(
10516         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10517     Results.push_back(RTB.getValue(2));
10518     break;
10519   }
10520   case ISD::INTRINSIC_W_CHAIN: {
10521     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10522         Intrinsic::loop_decrement)
10523       break;
10524 
10525     assert(N->getValueType(0) == MVT::i1 &&
10526            "Unexpected result type for CTR decrement intrinsic");
10527     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10528                                  N->getValueType(0));
10529     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10530     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10531                                  N->getOperand(1));
10532 
10533     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10534     Results.push_back(NewInt.getValue(1));
10535     break;
10536   }
10537   case ISD::VAARG: {
10538     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10539       return;
10540 
10541     EVT VT = N->getValueType(0);
10542 
10543     if (VT == MVT::i64) {
10544       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10545 
10546       Results.push_back(NewNode);
10547       Results.push_back(NewNode.getValue(1));
10548     }
10549     return;
10550   }
10551   case ISD::FP_TO_SINT:
10552   case ISD::FP_TO_UINT:
10553     // LowerFP_TO_INT() can only handle f32 and f64.
10554     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10555       return;
10556     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10557     return;
10558   case ISD::TRUNCATE: {
10559     EVT TrgVT = N->getValueType(0);
10560     EVT OpVT = N->getOperand(0).getValueType();
10561     if (TrgVT.isVector() &&
10562         isOperationCustom(N->getOpcode(), TrgVT) &&
10563         OpVT.getSizeInBits() <= 128 &&
10564         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10565       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10566     return;
10567   }
10568   case ISD::BITCAST:
10569     // Don't handle bitcast here.
10570     return;
10571   case ISD::FP_EXTEND:
10572     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10573     if (Lowered)
10574       Results.push_back(Lowered);
10575     return;
10576   }
10577 }
10578 
10579 //===----------------------------------------------------------------------===//
10580 //  Other Lowering Code
10581 //===----------------------------------------------------------------------===//
10582 
10583 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10584   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10585   Function *Func = Intrinsic::getDeclaration(M, Id);
10586   return Builder.CreateCall(Func, {});
10587 }
10588 
10589 // The mappings for emitLeading/TrailingFence is taken from
10590 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10591 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10592                                                  Instruction *Inst,
10593                                                  AtomicOrdering Ord) const {
10594   if (Ord == AtomicOrdering::SequentiallyConsistent)
10595     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10596   if (isReleaseOrStronger(Ord))
10597     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10598   return nullptr;
10599 }
10600 
10601 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10602                                                   Instruction *Inst,
10603                                                   AtomicOrdering Ord) const {
10604   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10605     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10606     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10607     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10608     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10609       return Builder.CreateCall(
10610           Intrinsic::getDeclaration(
10611               Builder.GetInsertBlock()->getParent()->getParent(),
10612               Intrinsic::ppc_cfence, {Inst->getType()}),
10613           {Inst});
10614     // FIXME: Can use isync for rmw operation.
10615     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10616   }
10617   return nullptr;
10618 }
10619 
10620 MachineBasicBlock *
10621 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10622                                     unsigned AtomicSize,
10623                                     unsigned BinOpcode,
10624                                     unsigned CmpOpcode,
10625                                     unsigned CmpPred) const {
10626   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10627   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10628 
10629   auto LoadMnemonic = PPC::LDARX;
10630   auto StoreMnemonic = PPC::STDCX;
10631   switch (AtomicSize) {
10632   default:
10633     llvm_unreachable("Unexpected size of atomic entity");
10634   case 1:
10635     LoadMnemonic = PPC::LBARX;
10636     StoreMnemonic = PPC::STBCX;
10637     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10638     break;
10639   case 2:
10640     LoadMnemonic = PPC::LHARX;
10641     StoreMnemonic = PPC::STHCX;
10642     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10643     break;
10644   case 4:
10645     LoadMnemonic = PPC::LWARX;
10646     StoreMnemonic = PPC::STWCX;
10647     break;
10648   case 8:
10649     LoadMnemonic = PPC::LDARX;
10650     StoreMnemonic = PPC::STDCX;
10651     break;
10652   }
10653 
10654   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10655   MachineFunction *F = BB->getParent();
10656   MachineFunction::iterator It = ++BB->getIterator();
10657 
10658   Register dest = MI.getOperand(0).getReg();
10659   Register ptrA = MI.getOperand(1).getReg();
10660   Register ptrB = MI.getOperand(2).getReg();
10661   Register incr = MI.getOperand(3).getReg();
10662   DebugLoc dl = MI.getDebugLoc();
10663 
10664   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10665   MachineBasicBlock *loop2MBB =
10666     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10667   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10668   F->insert(It, loopMBB);
10669   if (CmpOpcode)
10670     F->insert(It, loop2MBB);
10671   F->insert(It, exitMBB);
10672   exitMBB->splice(exitMBB->begin(), BB,
10673                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10674   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10675 
10676   MachineRegisterInfo &RegInfo = F->getRegInfo();
10677   Register TmpReg = (!BinOpcode) ? incr :
10678     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10679                                            : &PPC::GPRCRegClass);
10680 
10681   //  thisMBB:
10682   //   ...
10683   //   fallthrough --> loopMBB
10684   BB->addSuccessor(loopMBB);
10685 
10686   //  loopMBB:
10687   //   l[wd]arx dest, ptr
10688   //   add r0, dest, incr
10689   //   st[wd]cx. r0, ptr
10690   //   bne- loopMBB
10691   //   fallthrough --> exitMBB
10692 
10693   // For max/min...
10694   //  loopMBB:
10695   //   l[wd]arx dest, ptr
10696   //   cmpl?[wd] incr, dest
10697   //   bgt exitMBB
10698   //  loop2MBB:
10699   //   st[wd]cx. dest, ptr
10700   //   bne- loopMBB
10701   //   fallthrough --> exitMBB
10702 
10703   BB = loopMBB;
10704   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10705     .addReg(ptrA).addReg(ptrB);
10706   if (BinOpcode)
10707     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10708   if (CmpOpcode) {
10709     // Signed comparisons of byte or halfword values must be sign-extended.
10710     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10711       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10712       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10713               ExtReg).addReg(dest);
10714       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10715         .addReg(incr).addReg(ExtReg);
10716     } else
10717       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10718         .addReg(incr).addReg(dest);
10719 
10720     BuildMI(BB, dl, TII->get(PPC::BCC))
10721       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10722     BB->addSuccessor(loop2MBB);
10723     BB->addSuccessor(exitMBB);
10724     BB = loop2MBB;
10725   }
10726   BuildMI(BB, dl, TII->get(StoreMnemonic))
10727     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10728   BuildMI(BB, dl, TII->get(PPC::BCC))
10729     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10730   BB->addSuccessor(loopMBB);
10731   BB->addSuccessor(exitMBB);
10732 
10733   //  exitMBB:
10734   //   ...
10735   BB = exitMBB;
10736   return BB;
10737 }
10738 
10739 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10740     MachineInstr &MI, MachineBasicBlock *BB,
10741     bool is8bit, // operation
10742     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10743   // If we support part-word atomic mnemonics, just use them
10744   if (Subtarget.hasPartwordAtomics())
10745     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10746                             CmpPred);
10747 
10748   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10749   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10750   // In 64 bit mode we have to use 64 bits for addresses, even though the
10751   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10752   // registers without caring whether they're 32 or 64, but here we're
10753   // doing actual arithmetic on the addresses.
10754   bool is64bit = Subtarget.isPPC64();
10755   bool isLittleEndian = Subtarget.isLittleEndian();
10756   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10757 
10758   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10759   MachineFunction *F = BB->getParent();
10760   MachineFunction::iterator It = ++BB->getIterator();
10761 
10762   Register dest = MI.getOperand(0).getReg();
10763   Register ptrA = MI.getOperand(1).getReg();
10764   Register ptrB = MI.getOperand(2).getReg();
10765   Register incr = MI.getOperand(3).getReg();
10766   DebugLoc dl = MI.getDebugLoc();
10767 
10768   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10769   MachineBasicBlock *loop2MBB =
10770       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10771   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10772   F->insert(It, loopMBB);
10773   if (CmpOpcode)
10774     F->insert(It, loop2MBB);
10775   F->insert(It, exitMBB);
10776   exitMBB->splice(exitMBB->begin(), BB,
10777                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10778   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10779 
10780   MachineRegisterInfo &RegInfo = F->getRegInfo();
10781   const TargetRegisterClass *RC =
10782       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10783   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10784 
10785   Register PtrReg = RegInfo.createVirtualRegister(RC);
10786   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10787   Register ShiftReg =
10788       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10789   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10790   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10791   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10792   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10793   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10794   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10795   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10796   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10797   Register Ptr1Reg;
10798   Register TmpReg =
10799       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10800 
10801   //  thisMBB:
10802   //   ...
10803   //   fallthrough --> loopMBB
10804   BB->addSuccessor(loopMBB);
10805 
10806   // The 4-byte load must be aligned, while a char or short may be
10807   // anywhere in the word.  Hence all this nasty bookkeeping code.
10808   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10809   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10810   //   xori shift, shift1, 24 [16]
10811   //   rlwinm ptr, ptr1, 0, 0, 29
10812   //   slw incr2, incr, shift
10813   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10814   //   slw mask, mask2, shift
10815   //  loopMBB:
10816   //   lwarx tmpDest, ptr
10817   //   add tmp, tmpDest, incr2
10818   //   andc tmp2, tmpDest, mask
10819   //   and tmp3, tmp, mask
10820   //   or tmp4, tmp3, tmp2
10821   //   stwcx. tmp4, ptr
10822   //   bne- loopMBB
10823   //   fallthrough --> exitMBB
10824   //   srw dest, tmpDest, shift
10825   if (ptrA != ZeroReg) {
10826     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10827     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10828         .addReg(ptrA)
10829         .addReg(ptrB);
10830   } else {
10831     Ptr1Reg = ptrB;
10832   }
10833   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10834   // mode.
10835   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10836       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10837       .addImm(3)
10838       .addImm(27)
10839       .addImm(is8bit ? 28 : 27);
10840   if (!isLittleEndian)
10841     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10842         .addReg(Shift1Reg)
10843         .addImm(is8bit ? 24 : 16);
10844   if (is64bit)
10845     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10846         .addReg(Ptr1Reg)
10847         .addImm(0)
10848         .addImm(61);
10849   else
10850     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10851         .addReg(Ptr1Reg)
10852         .addImm(0)
10853         .addImm(0)
10854         .addImm(29);
10855   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10856   if (is8bit)
10857     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10858   else {
10859     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10860     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10861         .addReg(Mask3Reg)
10862         .addImm(65535);
10863   }
10864   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10865       .addReg(Mask2Reg)
10866       .addReg(ShiftReg);
10867 
10868   BB = loopMBB;
10869   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10870       .addReg(ZeroReg)
10871       .addReg(PtrReg);
10872   if (BinOpcode)
10873     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10874         .addReg(Incr2Reg)
10875         .addReg(TmpDestReg);
10876   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10877       .addReg(TmpDestReg)
10878       .addReg(MaskReg);
10879   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10880   if (CmpOpcode) {
10881     // For unsigned comparisons, we can directly compare the shifted values.
10882     // For signed comparisons we shift and sign extend.
10883     Register SReg = RegInfo.createVirtualRegister(GPRC);
10884     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10885         .addReg(TmpDestReg)
10886         .addReg(MaskReg);
10887     unsigned ValueReg = SReg;
10888     unsigned CmpReg = Incr2Reg;
10889     if (CmpOpcode == PPC::CMPW) {
10890       ValueReg = RegInfo.createVirtualRegister(GPRC);
10891       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10892           .addReg(SReg)
10893           .addReg(ShiftReg);
10894       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10895       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10896           .addReg(ValueReg);
10897       ValueReg = ValueSReg;
10898       CmpReg = incr;
10899     }
10900     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10901         .addReg(CmpReg)
10902         .addReg(ValueReg);
10903     BuildMI(BB, dl, TII->get(PPC::BCC))
10904         .addImm(CmpPred)
10905         .addReg(PPC::CR0)
10906         .addMBB(exitMBB);
10907     BB->addSuccessor(loop2MBB);
10908     BB->addSuccessor(exitMBB);
10909     BB = loop2MBB;
10910   }
10911   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10912   BuildMI(BB, dl, TII->get(PPC::STWCX))
10913       .addReg(Tmp4Reg)
10914       .addReg(ZeroReg)
10915       .addReg(PtrReg);
10916   BuildMI(BB, dl, TII->get(PPC::BCC))
10917       .addImm(PPC::PRED_NE)
10918       .addReg(PPC::CR0)
10919       .addMBB(loopMBB);
10920   BB->addSuccessor(loopMBB);
10921   BB->addSuccessor(exitMBB);
10922 
10923   //  exitMBB:
10924   //   ...
10925   BB = exitMBB;
10926   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10927       .addReg(TmpDestReg)
10928       .addReg(ShiftReg);
10929   return BB;
10930 }
10931 
10932 llvm::MachineBasicBlock *
10933 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10934                                     MachineBasicBlock *MBB) const {
10935   DebugLoc DL = MI.getDebugLoc();
10936   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10937   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10938 
10939   MachineFunction *MF = MBB->getParent();
10940   MachineRegisterInfo &MRI = MF->getRegInfo();
10941 
10942   const BasicBlock *BB = MBB->getBasicBlock();
10943   MachineFunction::iterator I = ++MBB->getIterator();
10944 
10945   Register DstReg = MI.getOperand(0).getReg();
10946   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10947   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10948   Register mainDstReg = MRI.createVirtualRegister(RC);
10949   Register restoreDstReg = MRI.createVirtualRegister(RC);
10950 
10951   MVT PVT = getPointerTy(MF->getDataLayout());
10952   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10953          "Invalid Pointer Size!");
10954   // For v = setjmp(buf), we generate
10955   //
10956   // thisMBB:
10957   //  SjLjSetup mainMBB
10958   //  bl mainMBB
10959   //  v_restore = 1
10960   //  b sinkMBB
10961   //
10962   // mainMBB:
10963   //  buf[LabelOffset] = LR
10964   //  v_main = 0
10965   //
10966   // sinkMBB:
10967   //  v = phi(main, restore)
10968   //
10969 
10970   MachineBasicBlock *thisMBB = MBB;
10971   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10972   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10973   MF->insert(I, mainMBB);
10974   MF->insert(I, sinkMBB);
10975 
10976   MachineInstrBuilder MIB;
10977 
10978   // Transfer the remainder of BB and its successor edges to sinkMBB.
10979   sinkMBB->splice(sinkMBB->begin(), MBB,
10980                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10981   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10982 
10983   // Note that the structure of the jmp_buf used here is not compatible
10984   // with that used by libc, and is not designed to be. Specifically, it
10985   // stores only those 'reserved' registers that LLVM does not otherwise
10986   // understand how to spill. Also, by convention, by the time this
10987   // intrinsic is called, Clang has already stored the frame address in the
10988   // first slot of the buffer and stack address in the third. Following the
10989   // X86 target code, we'll store the jump address in the second slot. We also
10990   // need to save the TOC pointer (R2) to handle jumps between shared
10991   // libraries, and that will be stored in the fourth slot. The thread
10992   // identifier (R13) is not affected.
10993 
10994   // thisMBB:
10995   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10996   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10997   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10998 
10999   // Prepare IP either in reg.
11000   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11001   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11002   Register BufReg = MI.getOperand(1).getReg();
11003 
11004   if (Subtarget.is64BitELFABI()) {
11005     setUsesTOCBasePtr(*MBB->getParent());
11006     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11007               .addReg(PPC::X2)
11008               .addImm(TOCOffset)
11009               .addReg(BufReg)
11010               .cloneMemRefs(MI);
11011   }
11012 
11013   // Naked functions never have a base pointer, and so we use r1. For all
11014   // other functions, this decision must be delayed until during PEI.
11015   unsigned BaseReg;
11016   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11017     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11018   else
11019     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11020 
11021   MIB = BuildMI(*thisMBB, MI, DL,
11022                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11023             .addReg(BaseReg)
11024             .addImm(BPOffset)
11025             .addReg(BufReg)
11026             .cloneMemRefs(MI);
11027 
11028   // Setup
11029   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11030   MIB.addRegMask(TRI->getNoPreservedMask());
11031 
11032   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11033 
11034   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11035           .addMBB(mainMBB);
11036   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11037 
11038   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11039   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11040 
11041   // mainMBB:
11042   //  mainDstReg = 0
11043   MIB =
11044       BuildMI(mainMBB, DL,
11045               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11046 
11047   // Store IP
11048   if (Subtarget.isPPC64()) {
11049     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11050             .addReg(LabelReg)
11051             .addImm(LabelOffset)
11052             .addReg(BufReg);
11053   } else {
11054     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11055             .addReg(LabelReg)
11056             .addImm(LabelOffset)
11057             .addReg(BufReg);
11058   }
11059   MIB.cloneMemRefs(MI);
11060 
11061   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11062   mainMBB->addSuccessor(sinkMBB);
11063 
11064   // sinkMBB:
11065   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11066           TII->get(PPC::PHI), DstReg)
11067     .addReg(mainDstReg).addMBB(mainMBB)
11068     .addReg(restoreDstReg).addMBB(thisMBB);
11069 
11070   MI.eraseFromParent();
11071   return sinkMBB;
11072 }
11073 
11074 MachineBasicBlock *
11075 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11076                                      MachineBasicBlock *MBB) const {
11077   DebugLoc DL = MI.getDebugLoc();
11078   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11079 
11080   MachineFunction *MF = MBB->getParent();
11081   MachineRegisterInfo &MRI = MF->getRegInfo();
11082 
11083   MVT PVT = getPointerTy(MF->getDataLayout());
11084   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11085          "Invalid Pointer Size!");
11086 
11087   const TargetRegisterClass *RC =
11088     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11089   Register Tmp = MRI.createVirtualRegister(RC);
11090   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11091   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11092   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11093   unsigned BP =
11094       (PVT == MVT::i64)
11095           ? PPC::X30
11096           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11097                                                               : PPC::R30);
11098 
11099   MachineInstrBuilder MIB;
11100 
11101   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11102   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11103   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11104   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11105 
11106   Register BufReg = MI.getOperand(0).getReg();
11107 
11108   // Reload FP (the jumped-to function may not have had a
11109   // frame pointer, and if so, then its r31 will be restored
11110   // as necessary).
11111   if (PVT == MVT::i64) {
11112     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11113             .addImm(0)
11114             .addReg(BufReg);
11115   } else {
11116     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11117             .addImm(0)
11118             .addReg(BufReg);
11119   }
11120   MIB.cloneMemRefs(MI);
11121 
11122   // Reload IP
11123   if (PVT == MVT::i64) {
11124     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11125             .addImm(LabelOffset)
11126             .addReg(BufReg);
11127   } else {
11128     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11129             .addImm(LabelOffset)
11130             .addReg(BufReg);
11131   }
11132   MIB.cloneMemRefs(MI);
11133 
11134   // Reload SP
11135   if (PVT == MVT::i64) {
11136     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11137             .addImm(SPOffset)
11138             .addReg(BufReg);
11139   } else {
11140     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11141             .addImm(SPOffset)
11142             .addReg(BufReg);
11143   }
11144   MIB.cloneMemRefs(MI);
11145 
11146   // Reload BP
11147   if (PVT == MVT::i64) {
11148     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11149             .addImm(BPOffset)
11150             .addReg(BufReg);
11151   } else {
11152     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11153             .addImm(BPOffset)
11154             .addReg(BufReg);
11155   }
11156   MIB.cloneMemRefs(MI);
11157 
11158   // Reload TOC
11159   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11160     setUsesTOCBasePtr(*MBB->getParent());
11161     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11162               .addImm(TOCOffset)
11163               .addReg(BufReg)
11164               .cloneMemRefs(MI);
11165   }
11166 
11167   // Jump
11168   BuildMI(*MBB, MI, DL,
11169           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11170   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11171 
11172   MI.eraseFromParent();
11173   return MBB;
11174 }
11175 
11176 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11177   // If the function specifically requests inline stack probes, emit them.
11178   if (MF.getFunction().hasFnAttribute("probe-stack"))
11179     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11180            "inline-asm";
11181   return false;
11182 }
11183 
11184 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11185   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11186   unsigned StackAlign = TFI->getStackAlignment();
11187   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11188          "Unexpected stack alignment");
11189   // The default stack probe size is 4096 if the function has no
11190   // stack-probe-size attribute.
11191   unsigned StackProbeSize = 4096;
11192   const Function &Fn = MF.getFunction();
11193   if (Fn.hasFnAttribute("stack-probe-size"))
11194     Fn.getFnAttribute("stack-probe-size")
11195         .getValueAsString()
11196         .getAsInteger(0, StackProbeSize);
11197   // Round down to the stack alignment.
11198   StackProbeSize &= ~(StackAlign - 1);
11199   return StackProbeSize ? StackProbeSize : StackAlign;
11200 }
11201 
11202 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11203 // into three phases. In the first phase, it uses pseudo instruction
11204 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11205 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11206 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11207 // MaxCallFrameSize so that it can calculate correct data area pointer.
11208 MachineBasicBlock *
11209 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11210                                     MachineBasicBlock *MBB) const {
11211   const bool isPPC64 = Subtarget.isPPC64();
11212   MachineFunction *MF = MBB->getParent();
11213   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11214   DebugLoc DL = MI.getDebugLoc();
11215   const unsigned ProbeSize = getStackProbeSize(*MF);
11216   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11217   MachineRegisterInfo &MRI = MF->getRegInfo();
11218   // The CFG of probing stack looks as
11219   //         +-----+
11220   //         | MBB |
11221   //         +--+--+
11222   //            |
11223   //       +----v----+
11224   //  +--->+ TestMBB +---+
11225   //  |    +----+----+   |
11226   //  |         |        |
11227   //  |   +-----v----+   |
11228   //  +---+ BlockMBB |   |
11229   //      +----------+   |
11230   //                     |
11231   //       +---------+   |
11232   //       | TailMBB +<--+
11233   //       +---------+
11234   // In MBB, calculate previous frame pointer and final stack pointer.
11235   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11236   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11237   // TailMBB is spliced via \p MI.
11238   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11239   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11240   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11241 
11242   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11243   MF->insert(MBBIter, TestMBB);
11244   MF->insert(MBBIter, BlockMBB);
11245   MF->insert(MBBIter, TailMBB);
11246 
11247   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11248   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11249 
11250   Register DstReg = MI.getOperand(0).getReg();
11251   Register NegSizeReg = MI.getOperand(1).getReg();
11252   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11253   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11254   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11255   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11256 
11257   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11258   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11259   // NegSize.
11260   unsigned ProbeOpc;
11261   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11262     ProbeOpc =
11263         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11264   else
11265     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11266     // and NegSizeReg will be allocated in the same phyreg to avoid
11267     // redundant copy when NegSizeReg has only one use which is current MI and
11268     // will be replaced by PREPARE_PROBED_ALLOCA then.
11269     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11270                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11271   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11272       .addDef(ActualNegSizeReg)
11273       .addReg(NegSizeReg)
11274       .add(MI.getOperand(2))
11275       .add(MI.getOperand(3));
11276 
11277   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11278   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11279           FinalStackPtr)
11280       .addReg(SPReg)
11281       .addReg(ActualNegSizeReg);
11282 
11283   // Materialize a scratch register for update.
11284   int64_t NegProbeSize = -(int64_t)ProbeSize;
11285   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11286   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11287   if (!isInt<16>(NegProbeSize)) {
11288     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11289     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11290         .addImm(NegProbeSize >> 16);
11291     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11292             ScratchReg)
11293         .addReg(TempReg)
11294         .addImm(NegProbeSize & 0xFFFF);
11295   } else
11296     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11297         .addImm(NegProbeSize);
11298 
11299   {
11300     // Probing leading residual part.
11301     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11302     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11303         .addReg(ActualNegSizeReg)
11304         .addReg(ScratchReg);
11305     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11306     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11307         .addReg(Div)
11308         .addReg(ScratchReg);
11309     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11310     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11311         .addReg(Mul)
11312         .addReg(ActualNegSizeReg);
11313     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11314         .addReg(FramePointer)
11315         .addReg(SPReg)
11316         .addReg(NegMod);
11317   }
11318 
11319   {
11320     // Remaining part should be multiple of ProbeSize.
11321     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11322     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11323         .addReg(SPReg)
11324         .addReg(FinalStackPtr);
11325     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11326         .addImm(PPC::PRED_EQ)
11327         .addReg(CmpResult)
11328         .addMBB(TailMBB);
11329     TestMBB->addSuccessor(BlockMBB);
11330     TestMBB->addSuccessor(TailMBB);
11331   }
11332 
11333   {
11334     // Touch the block.
11335     // |P...|P...|P...
11336     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11337         .addReg(FramePointer)
11338         .addReg(SPReg)
11339         .addReg(ScratchReg);
11340     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11341     BlockMBB->addSuccessor(TestMBB);
11342   }
11343 
11344   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11345   // DYNAREAOFFSET pseudo instruction to get the future result.
11346   Register MaxCallFrameSizeReg =
11347       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11348   BuildMI(TailMBB, DL,
11349           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11350           MaxCallFrameSizeReg)
11351       .add(MI.getOperand(2))
11352       .add(MI.getOperand(3));
11353   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11354       .addReg(SPReg)
11355       .addReg(MaxCallFrameSizeReg);
11356 
11357   // Splice instructions after MI to TailMBB.
11358   TailMBB->splice(TailMBB->end(), MBB,
11359                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11360   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11361   MBB->addSuccessor(TestMBB);
11362 
11363   // Delete the pseudo instruction.
11364   MI.eraseFromParent();
11365 
11366   ++NumDynamicAllocaProbed;
11367   return TailMBB;
11368 }
11369 
11370 MachineBasicBlock *
11371 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11372                                                MachineBasicBlock *BB) const {
11373   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11374       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11375     if (Subtarget.is64BitELFABI() &&
11376         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11377         !Subtarget.isUsingPCRelativeCalls()) {
11378       // Call lowering should have added an r2 operand to indicate a dependence
11379       // on the TOC base pointer value. It can't however, because there is no
11380       // way to mark the dependence as implicit there, and so the stackmap code
11381       // will confuse it with a regular operand. Instead, add the dependence
11382       // here.
11383       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11384     }
11385 
11386     return emitPatchPoint(MI, BB);
11387   }
11388 
11389   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11390       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11391     return emitEHSjLjSetJmp(MI, BB);
11392   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11393              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11394     return emitEHSjLjLongJmp(MI, BB);
11395   }
11396 
11397   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11398 
11399   // To "insert" these instructions we actually have to insert their
11400   // control-flow patterns.
11401   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11402   MachineFunction::iterator It = ++BB->getIterator();
11403 
11404   MachineFunction *F = BB->getParent();
11405 
11406   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11407       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11408       MI.getOpcode() == PPC::SELECT_I8) {
11409     SmallVector<MachineOperand, 2> Cond;
11410     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11411         MI.getOpcode() == PPC::SELECT_CC_I8)
11412       Cond.push_back(MI.getOperand(4));
11413     else
11414       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11415     Cond.push_back(MI.getOperand(1));
11416 
11417     DebugLoc dl = MI.getDebugLoc();
11418     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11419                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11420   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11421              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11422              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11423              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11424              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11425              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11426              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11427              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11428              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11429              MI.getOpcode() == PPC::SELECT_F4 ||
11430              MI.getOpcode() == PPC::SELECT_F8 ||
11431              MI.getOpcode() == PPC::SELECT_F16 ||
11432              MI.getOpcode() == PPC::SELECT_SPE ||
11433              MI.getOpcode() == PPC::SELECT_SPE4 ||
11434              MI.getOpcode() == PPC::SELECT_VRRC ||
11435              MI.getOpcode() == PPC::SELECT_VSFRC ||
11436              MI.getOpcode() == PPC::SELECT_VSSRC ||
11437              MI.getOpcode() == PPC::SELECT_VSRC) {
11438     // The incoming instruction knows the destination vreg to set, the
11439     // condition code register to branch on, the true/false values to
11440     // select between, and a branch opcode to use.
11441 
11442     //  thisMBB:
11443     //  ...
11444     //   TrueVal = ...
11445     //   cmpTY ccX, r1, r2
11446     //   bCC copy1MBB
11447     //   fallthrough --> copy0MBB
11448     MachineBasicBlock *thisMBB = BB;
11449     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11450     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11451     DebugLoc dl = MI.getDebugLoc();
11452     F->insert(It, copy0MBB);
11453     F->insert(It, sinkMBB);
11454 
11455     // Transfer the remainder of BB and its successor edges to sinkMBB.
11456     sinkMBB->splice(sinkMBB->begin(), BB,
11457                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11458     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11459 
11460     // Next, add the true and fallthrough blocks as its successors.
11461     BB->addSuccessor(copy0MBB);
11462     BB->addSuccessor(sinkMBB);
11463 
11464     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11465         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11466         MI.getOpcode() == PPC::SELECT_F16 ||
11467         MI.getOpcode() == PPC::SELECT_SPE4 ||
11468         MI.getOpcode() == PPC::SELECT_SPE ||
11469         MI.getOpcode() == PPC::SELECT_VRRC ||
11470         MI.getOpcode() == PPC::SELECT_VSFRC ||
11471         MI.getOpcode() == PPC::SELECT_VSSRC ||
11472         MI.getOpcode() == PPC::SELECT_VSRC) {
11473       BuildMI(BB, dl, TII->get(PPC::BC))
11474           .addReg(MI.getOperand(1).getReg())
11475           .addMBB(sinkMBB);
11476     } else {
11477       unsigned SelectPred = MI.getOperand(4).getImm();
11478       BuildMI(BB, dl, TII->get(PPC::BCC))
11479           .addImm(SelectPred)
11480           .addReg(MI.getOperand(1).getReg())
11481           .addMBB(sinkMBB);
11482     }
11483 
11484     //  copy0MBB:
11485     //   %FalseValue = ...
11486     //   # fallthrough to sinkMBB
11487     BB = copy0MBB;
11488 
11489     // Update machine-CFG edges
11490     BB->addSuccessor(sinkMBB);
11491 
11492     //  sinkMBB:
11493     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11494     //  ...
11495     BB = sinkMBB;
11496     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11497         .addReg(MI.getOperand(3).getReg())
11498         .addMBB(copy0MBB)
11499         .addReg(MI.getOperand(2).getReg())
11500         .addMBB(thisMBB);
11501   } else if (MI.getOpcode() == PPC::ReadTB) {
11502     // To read the 64-bit time-base register on a 32-bit target, we read the
11503     // two halves. Should the counter have wrapped while it was being read, we
11504     // need to try again.
11505     // ...
11506     // readLoop:
11507     // mfspr Rx,TBU # load from TBU
11508     // mfspr Ry,TB  # load from TB
11509     // mfspr Rz,TBU # load from TBU
11510     // cmpw crX,Rx,Rz # check if 'old'='new'
11511     // bne readLoop   # branch if they're not equal
11512     // ...
11513 
11514     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11515     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11516     DebugLoc dl = MI.getDebugLoc();
11517     F->insert(It, readMBB);
11518     F->insert(It, sinkMBB);
11519 
11520     // Transfer the remainder of BB and its successor edges to sinkMBB.
11521     sinkMBB->splice(sinkMBB->begin(), BB,
11522                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11523     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11524 
11525     BB->addSuccessor(readMBB);
11526     BB = readMBB;
11527 
11528     MachineRegisterInfo &RegInfo = F->getRegInfo();
11529     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11530     Register LoReg = MI.getOperand(0).getReg();
11531     Register HiReg = MI.getOperand(1).getReg();
11532 
11533     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11534     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11535     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11536 
11537     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11538 
11539     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11540         .addReg(HiReg)
11541         .addReg(ReadAgainReg);
11542     BuildMI(BB, dl, TII->get(PPC::BCC))
11543         .addImm(PPC::PRED_NE)
11544         .addReg(CmpReg)
11545         .addMBB(readMBB);
11546 
11547     BB->addSuccessor(readMBB);
11548     BB->addSuccessor(sinkMBB);
11549   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11550     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11551   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11552     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11553   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11554     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11555   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11556     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11557 
11558   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11559     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11560   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11561     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11562   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11563     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11564   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11565     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11566 
11567   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11568     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11569   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11570     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11571   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11572     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11573   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11574     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11575 
11576   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11577     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11578   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11579     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11580   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11581     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11582   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11583     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11584 
11585   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11586     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11587   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11588     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11589   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11590     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11591   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11592     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11593 
11594   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11595     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11596   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11597     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11598   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11599     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11600   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11601     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11602 
11603   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11604     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11605   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11606     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11607   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11608     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11609   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11610     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11611 
11612   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11613     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11614   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11615     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11616   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11617     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11618   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11619     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11620 
11621   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11622     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11623   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11624     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11625   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11626     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11627   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11628     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11629 
11630   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11631     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11632   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11633     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11634   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11635     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11636   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11637     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11638 
11639   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11640     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11641   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11642     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11643   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11644     BB = EmitAtomicBinary(MI, BB, 4, 0);
11645   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11646     BB = EmitAtomicBinary(MI, BB, 8, 0);
11647   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11648            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11649            (Subtarget.hasPartwordAtomics() &&
11650             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11651            (Subtarget.hasPartwordAtomics() &&
11652             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11653     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11654 
11655     auto LoadMnemonic = PPC::LDARX;
11656     auto StoreMnemonic = PPC::STDCX;
11657     switch (MI.getOpcode()) {
11658     default:
11659       llvm_unreachable("Compare and swap of unknown size");
11660     case PPC::ATOMIC_CMP_SWAP_I8:
11661       LoadMnemonic = PPC::LBARX;
11662       StoreMnemonic = PPC::STBCX;
11663       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11664       break;
11665     case PPC::ATOMIC_CMP_SWAP_I16:
11666       LoadMnemonic = PPC::LHARX;
11667       StoreMnemonic = PPC::STHCX;
11668       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11669       break;
11670     case PPC::ATOMIC_CMP_SWAP_I32:
11671       LoadMnemonic = PPC::LWARX;
11672       StoreMnemonic = PPC::STWCX;
11673       break;
11674     case PPC::ATOMIC_CMP_SWAP_I64:
11675       LoadMnemonic = PPC::LDARX;
11676       StoreMnemonic = PPC::STDCX;
11677       break;
11678     }
11679     Register dest = MI.getOperand(0).getReg();
11680     Register ptrA = MI.getOperand(1).getReg();
11681     Register ptrB = MI.getOperand(2).getReg();
11682     Register oldval = MI.getOperand(3).getReg();
11683     Register newval = MI.getOperand(4).getReg();
11684     DebugLoc dl = MI.getDebugLoc();
11685 
11686     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11687     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11688     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11689     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11690     F->insert(It, loop1MBB);
11691     F->insert(It, loop2MBB);
11692     F->insert(It, midMBB);
11693     F->insert(It, exitMBB);
11694     exitMBB->splice(exitMBB->begin(), BB,
11695                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11696     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11697 
11698     //  thisMBB:
11699     //   ...
11700     //   fallthrough --> loopMBB
11701     BB->addSuccessor(loop1MBB);
11702 
11703     // loop1MBB:
11704     //   l[bhwd]arx dest, ptr
11705     //   cmp[wd] dest, oldval
11706     //   bne- midMBB
11707     // loop2MBB:
11708     //   st[bhwd]cx. newval, ptr
11709     //   bne- loopMBB
11710     //   b exitBB
11711     // midMBB:
11712     //   st[bhwd]cx. dest, ptr
11713     // exitBB:
11714     BB = loop1MBB;
11715     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11716     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11717         .addReg(oldval)
11718         .addReg(dest);
11719     BuildMI(BB, dl, TII->get(PPC::BCC))
11720         .addImm(PPC::PRED_NE)
11721         .addReg(PPC::CR0)
11722         .addMBB(midMBB);
11723     BB->addSuccessor(loop2MBB);
11724     BB->addSuccessor(midMBB);
11725 
11726     BB = loop2MBB;
11727     BuildMI(BB, dl, TII->get(StoreMnemonic))
11728         .addReg(newval)
11729         .addReg(ptrA)
11730         .addReg(ptrB);
11731     BuildMI(BB, dl, TII->get(PPC::BCC))
11732         .addImm(PPC::PRED_NE)
11733         .addReg(PPC::CR0)
11734         .addMBB(loop1MBB);
11735     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11736     BB->addSuccessor(loop1MBB);
11737     BB->addSuccessor(exitMBB);
11738 
11739     BB = midMBB;
11740     BuildMI(BB, dl, TII->get(StoreMnemonic))
11741         .addReg(dest)
11742         .addReg(ptrA)
11743         .addReg(ptrB);
11744     BB->addSuccessor(exitMBB);
11745 
11746     //  exitMBB:
11747     //   ...
11748     BB = exitMBB;
11749   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11750              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11751     // We must use 64-bit registers for addresses when targeting 64-bit,
11752     // since we're actually doing arithmetic on them.  Other registers
11753     // can be 32-bit.
11754     bool is64bit = Subtarget.isPPC64();
11755     bool isLittleEndian = Subtarget.isLittleEndian();
11756     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11757 
11758     Register dest = MI.getOperand(0).getReg();
11759     Register ptrA = MI.getOperand(1).getReg();
11760     Register ptrB = MI.getOperand(2).getReg();
11761     Register oldval = MI.getOperand(3).getReg();
11762     Register newval = MI.getOperand(4).getReg();
11763     DebugLoc dl = MI.getDebugLoc();
11764 
11765     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11766     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11767     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11768     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11769     F->insert(It, loop1MBB);
11770     F->insert(It, loop2MBB);
11771     F->insert(It, midMBB);
11772     F->insert(It, exitMBB);
11773     exitMBB->splice(exitMBB->begin(), BB,
11774                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11775     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11776 
11777     MachineRegisterInfo &RegInfo = F->getRegInfo();
11778     const TargetRegisterClass *RC =
11779         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11780     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11781 
11782     Register PtrReg = RegInfo.createVirtualRegister(RC);
11783     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11784     Register ShiftReg =
11785         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11786     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11787     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11788     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11789     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11790     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11791     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11792     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11793     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11794     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11795     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11796     Register Ptr1Reg;
11797     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11798     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11799     //  thisMBB:
11800     //   ...
11801     //   fallthrough --> loopMBB
11802     BB->addSuccessor(loop1MBB);
11803 
11804     // The 4-byte load must be aligned, while a char or short may be
11805     // anywhere in the word.  Hence all this nasty bookkeeping code.
11806     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11807     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11808     //   xori shift, shift1, 24 [16]
11809     //   rlwinm ptr, ptr1, 0, 0, 29
11810     //   slw newval2, newval, shift
11811     //   slw oldval2, oldval,shift
11812     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11813     //   slw mask, mask2, shift
11814     //   and newval3, newval2, mask
11815     //   and oldval3, oldval2, mask
11816     // loop1MBB:
11817     //   lwarx tmpDest, ptr
11818     //   and tmp, tmpDest, mask
11819     //   cmpw tmp, oldval3
11820     //   bne- midMBB
11821     // loop2MBB:
11822     //   andc tmp2, tmpDest, mask
11823     //   or tmp4, tmp2, newval3
11824     //   stwcx. tmp4, ptr
11825     //   bne- loop1MBB
11826     //   b exitBB
11827     // midMBB:
11828     //   stwcx. tmpDest, ptr
11829     // exitBB:
11830     //   srw dest, tmpDest, shift
11831     if (ptrA != ZeroReg) {
11832       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11833       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11834           .addReg(ptrA)
11835           .addReg(ptrB);
11836     } else {
11837       Ptr1Reg = ptrB;
11838     }
11839 
11840     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11841     // mode.
11842     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11843         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11844         .addImm(3)
11845         .addImm(27)
11846         .addImm(is8bit ? 28 : 27);
11847     if (!isLittleEndian)
11848       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11849           .addReg(Shift1Reg)
11850           .addImm(is8bit ? 24 : 16);
11851     if (is64bit)
11852       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11853           .addReg(Ptr1Reg)
11854           .addImm(0)
11855           .addImm(61);
11856     else
11857       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11858           .addReg(Ptr1Reg)
11859           .addImm(0)
11860           .addImm(0)
11861           .addImm(29);
11862     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11863         .addReg(newval)
11864         .addReg(ShiftReg);
11865     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11866         .addReg(oldval)
11867         .addReg(ShiftReg);
11868     if (is8bit)
11869       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11870     else {
11871       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11872       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11873           .addReg(Mask3Reg)
11874           .addImm(65535);
11875     }
11876     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11877         .addReg(Mask2Reg)
11878         .addReg(ShiftReg);
11879     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11880         .addReg(NewVal2Reg)
11881         .addReg(MaskReg);
11882     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11883         .addReg(OldVal2Reg)
11884         .addReg(MaskReg);
11885 
11886     BB = loop1MBB;
11887     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11888         .addReg(ZeroReg)
11889         .addReg(PtrReg);
11890     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11891         .addReg(TmpDestReg)
11892         .addReg(MaskReg);
11893     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11894         .addReg(TmpReg)
11895         .addReg(OldVal3Reg);
11896     BuildMI(BB, dl, TII->get(PPC::BCC))
11897         .addImm(PPC::PRED_NE)
11898         .addReg(PPC::CR0)
11899         .addMBB(midMBB);
11900     BB->addSuccessor(loop2MBB);
11901     BB->addSuccessor(midMBB);
11902 
11903     BB = loop2MBB;
11904     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11905         .addReg(TmpDestReg)
11906         .addReg(MaskReg);
11907     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11908         .addReg(Tmp2Reg)
11909         .addReg(NewVal3Reg);
11910     BuildMI(BB, dl, TII->get(PPC::STWCX))
11911         .addReg(Tmp4Reg)
11912         .addReg(ZeroReg)
11913         .addReg(PtrReg);
11914     BuildMI(BB, dl, TII->get(PPC::BCC))
11915         .addImm(PPC::PRED_NE)
11916         .addReg(PPC::CR0)
11917         .addMBB(loop1MBB);
11918     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11919     BB->addSuccessor(loop1MBB);
11920     BB->addSuccessor(exitMBB);
11921 
11922     BB = midMBB;
11923     BuildMI(BB, dl, TII->get(PPC::STWCX))
11924         .addReg(TmpDestReg)
11925         .addReg(ZeroReg)
11926         .addReg(PtrReg);
11927     BB->addSuccessor(exitMBB);
11928 
11929     //  exitMBB:
11930     //   ...
11931     BB = exitMBB;
11932     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11933         .addReg(TmpReg)
11934         .addReg(ShiftReg);
11935   } else if (MI.getOpcode() == PPC::FADDrtz) {
11936     // This pseudo performs an FADD with rounding mode temporarily forced
11937     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11938     // is not modeled at the SelectionDAG level.
11939     Register Dest = MI.getOperand(0).getReg();
11940     Register Src1 = MI.getOperand(1).getReg();
11941     Register Src2 = MI.getOperand(2).getReg();
11942     DebugLoc dl = MI.getDebugLoc();
11943 
11944     MachineRegisterInfo &RegInfo = F->getRegInfo();
11945     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11946 
11947     // Save FPSCR value.
11948     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11949 
11950     // Set rounding mode to round-to-zero.
11951     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
11952         .addImm(31)
11953         .addReg(PPC::RM, RegState::ImplicitDefine);
11954 
11955     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
11956         .addImm(30)
11957         .addReg(PPC::RM, RegState::ImplicitDefine);
11958 
11959     // Perform addition.
11960     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11961 
11962     // Restore FPSCR value.
11963     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11964   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11965              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
11966              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11967              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
11968     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11969                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
11970                           ? PPC::ANDI8_rec
11971                           : PPC::ANDI_rec;
11972     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11973                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
11974 
11975     MachineRegisterInfo &RegInfo = F->getRegInfo();
11976     Register Dest = RegInfo.createVirtualRegister(
11977         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11978 
11979     DebugLoc Dl = MI.getDebugLoc();
11980     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
11981         .addReg(MI.getOperand(1).getReg())
11982         .addImm(1);
11983     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11984             MI.getOperand(0).getReg())
11985         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
11986   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11987     DebugLoc Dl = MI.getDebugLoc();
11988     MachineRegisterInfo &RegInfo = F->getRegInfo();
11989     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11990     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11991     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11992             MI.getOperand(0).getReg())
11993         .addReg(CRReg);
11994   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11995     DebugLoc Dl = MI.getDebugLoc();
11996     unsigned Imm = MI.getOperand(1).getImm();
11997     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11998     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11999             MI.getOperand(0).getReg())
12000         .addReg(PPC::CR0EQ);
12001   } else if (MI.getOpcode() == PPC::SETRNDi) {
12002     DebugLoc dl = MI.getDebugLoc();
12003     Register OldFPSCRReg = MI.getOperand(0).getReg();
12004 
12005     // Save FPSCR value.
12006     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12007 
12008     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12009     // the following settings:
12010     //   00 Round to nearest
12011     //   01 Round to 0
12012     //   10 Round to +inf
12013     //   11 Round to -inf
12014 
12015     // When the operand is immediate, using the two least significant bits of
12016     // the immediate to set the bits 62:63 of FPSCR.
12017     unsigned Mode = MI.getOperand(1).getImm();
12018     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12019         .addImm(31)
12020         .addReg(PPC::RM, RegState::ImplicitDefine);
12021 
12022     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12023         .addImm(30)
12024         .addReg(PPC::RM, RegState::ImplicitDefine);
12025   } else if (MI.getOpcode() == PPC::SETRND) {
12026     DebugLoc dl = MI.getDebugLoc();
12027 
12028     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12029     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12030     // If the target doesn't have DirectMove, we should use stack to do the
12031     // conversion, because the target doesn't have the instructions like mtvsrd
12032     // or mfvsrd to do this conversion directly.
12033     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12034       if (Subtarget.hasDirectMove()) {
12035         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12036           .addReg(SrcReg);
12037       } else {
12038         // Use stack to do the register copy.
12039         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12040         MachineRegisterInfo &RegInfo = F->getRegInfo();
12041         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12042         if (RC == &PPC::F8RCRegClass) {
12043           // Copy register from F8RCRegClass to G8RCRegclass.
12044           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12045                  "Unsupported RegClass.");
12046 
12047           StoreOp = PPC::STFD;
12048           LoadOp = PPC::LD;
12049         } else {
12050           // Copy register from G8RCRegClass to F8RCRegclass.
12051           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12052                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12053                  "Unsupported RegClass.");
12054         }
12055 
12056         MachineFrameInfo &MFI = F->getFrameInfo();
12057         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12058 
12059         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12060             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12061             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12062             MFI.getObjectAlign(FrameIdx));
12063 
12064         // Store the SrcReg into the stack.
12065         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12066           .addReg(SrcReg)
12067           .addImm(0)
12068           .addFrameIndex(FrameIdx)
12069           .addMemOperand(MMOStore);
12070 
12071         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12072             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12073             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12074             MFI.getObjectAlign(FrameIdx));
12075 
12076         // Load from the stack where SrcReg is stored, and save to DestReg,
12077         // so we have done the RegClass conversion from RegClass::SrcReg to
12078         // RegClass::DestReg.
12079         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12080           .addImm(0)
12081           .addFrameIndex(FrameIdx)
12082           .addMemOperand(MMOLoad);
12083       }
12084     };
12085 
12086     Register OldFPSCRReg = MI.getOperand(0).getReg();
12087 
12088     // Save FPSCR value.
12089     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12090 
12091     // When the operand is gprc register, use two least significant bits of the
12092     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12093     //
12094     // copy OldFPSCRTmpReg, OldFPSCRReg
12095     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12096     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12097     // copy NewFPSCRReg, NewFPSCRTmpReg
12098     // mtfsf 255, NewFPSCRReg
12099     MachineOperand SrcOp = MI.getOperand(1);
12100     MachineRegisterInfo &RegInfo = F->getRegInfo();
12101     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12102 
12103     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12104 
12105     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12106     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12107 
12108     // The first operand of INSERT_SUBREG should be a register which has
12109     // subregisters, we only care about its RegClass, so we should use an
12110     // IMPLICIT_DEF register.
12111     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12112     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12113       .addReg(ImDefReg)
12114       .add(SrcOp)
12115       .addImm(1);
12116 
12117     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12118     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12119       .addReg(OldFPSCRTmpReg)
12120       .addReg(ExtSrcReg)
12121       .addImm(0)
12122       .addImm(62);
12123 
12124     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12125     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12126 
12127     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12128     // bits of FPSCR.
12129     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12130       .addImm(255)
12131       .addReg(NewFPSCRReg)
12132       .addImm(0)
12133       .addImm(0);
12134   } else if (MI.getOpcode() == PPC::SETFLM) {
12135     DebugLoc Dl = MI.getDebugLoc();
12136 
12137     // Result of setflm is previous FPSCR content, so we need to save it first.
12138     Register OldFPSCRReg = MI.getOperand(0).getReg();
12139     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12140 
12141     // Put bits in 32:63 to FPSCR.
12142     Register NewFPSCRReg = MI.getOperand(1).getReg();
12143     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12144         .addImm(255)
12145         .addReg(NewFPSCRReg)
12146         .addImm(0)
12147         .addImm(0);
12148   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12149              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12150     return emitProbedAlloca(MI, BB);
12151   } else {
12152     llvm_unreachable("Unexpected instr type to insert");
12153   }
12154 
12155   MI.eraseFromParent(); // The pseudo instruction is gone now.
12156   return BB;
12157 }
12158 
12159 //===----------------------------------------------------------------------===//
12160 // Target Optimization Hooks
12161 //===----------------------------------------------------------------------===//
12162 
12163 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12164   // For the estimates, convergence is quadratic, so we essentially double the
12165   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12166   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12167   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12168   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12169   if (VT.getScalarType() == MVT::f64)
12170     RefinementSteps++;
12171   return RefinementSteps;
12172 }
12173 
12174 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12175                                            int Enabled, int &RefinementSteps,
12176                                            bool &UseOneConstNR,
12177                                            bool Reciprocal) const {
12178   EVT VT = Operand.getValueType();
12179   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12180       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12181       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12182       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12183     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12184       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12185 
12186     // The Newton-Raphson computation with a single constant does not provide
12187     // enough accuracy on some CPUs.
12188     UseOneConstNR = !Subtarget.needsTwoConstNR();
12189     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12190   }
12191   return SDValue();
12192 }
12193 
12194 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12195                                             int Enabled,
12196                                             int &RefinementSteps) const {
12197   EVT VT = Operand.getValueType();
12198   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12199       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12200       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12201       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12202     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12203       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12204     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12205   }
12206   return SDValue();
12207 }
12208 
12209 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12210   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12211   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12212   // enabled for division), this functionality is redundant with the default
12213   // combiner logic (once the division -> reciprocal/multiply transformation
12214   // has taken place). As a result, this matters more for older cores than for
12215   // newer ones.
12216 
12217   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12218   // reciprocal if there are two or more FDIVs (for embedded cores with only
12219   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12220   switch (Subtarget.getCPUDirective()) {
12221   default:
12222     return 3;
12223   case PPC::DIR_440:
12224   case PPC::DIR_A2:
12225   case PPC::DIR_E500:
12226   case PPC::DIR_E500mc:
12227   case PPC::DIR_E5500:
12228     return 2;
12229   }
12230 }
12231 
12232 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12233 // collapsed, and so we need to look through chains of them.
12234 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12235                                      int64_t& Offset, SelectionDAG &DAG) {
12236   if (DAG.isBaseWithConstantOffset(Loc)) {
12237     Base = Loc.getOperand(0);
12238     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12239 
12240     // The base might itself be a base plus an offset, and if so, accumulate
12241     // that as well.
12242     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12243   }
12244 }
12245 
12246 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12247                             unsigned Bytes, int Dist,
12248                             SelectionDAG &DAG) {
12249   if (VT.getSizeInBits() / 8 != Bytes)
12250     return false;
12251 
12252   SDValue BaseLoc = Base->getBasePtr();
12253   if (Loc.getOpcode() == ISD::FrameIndex) {
12254     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12255       return false;
12256     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12257     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12258     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12259     int FS  = MFI.getObjectSize(FI);
12260     int BFS = MFI.getObjectSize(BFI);
12261     if (FS != BFS || FS != (int)Bytes) return false;
12262     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12263   }
12264 
12265   SDValue Base1 = Loc, Base2 = BaseLoc;
12266   int64_t Offset1 = 0, Offset2 = 0;
12267   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12268   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12269   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12270     return true;
12271 
12272   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12273   const GlobalValue *GV1 = nullptr;
12274   const GlobalValue *GV2 = nullptr;
12275   Offset1 = 0;
12276   Offset2 = 0;
12277   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12278   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12279   if (isGA1 && isGA2 && GV1 == GV2)
12280     return Offset1 == (Offset2 + Dist*Bytes);
12281   return false;
12282 }
12283 
12284 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12285 // not enforce equality of the chain operands.
12286 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12287                             unsigned Bytes, int Dist,
12288                             SelectionDAG &DAG) {
12289   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12290     EVT VT = LS->getMemoryVT();
12291     SDValue Loc = LS->getBasePtr();
12292     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12293   }
12294 
12295   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12296     EVT VT;
12297     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12298     default: return false;
12299     case Intrinsic::ppc_altivec_lvx:
12300     case Intrinsic::ppc_altivec_lvxl:
12301     case Intrinsic::ppc_vsx_lxvw4x:
12302     case Intrinsic::ppc_vsx_lxvw4x_be:
12303       VT = MVT::v4i32;
12304       break;
12305     case Intrinsic::ppc_vsx_lxvd2x:
12306     case Intrinsic::ppc_vsx_lxvd2x_be:
12307       VT = MVT::v2f64;
12308       break;
12309     case Intrinsic::ppc_altivec_lvebx:
12310       VT = MVT::i8;
12311       break;
12312     case Intrinsic::ppc_altivec_lvehx:
12313       VT = MVT::i16;
12314       break;
12315     case Intrinsic::ppc_altivec_lvewx:
12316       VT = MVT::i32;
12317       break;
12318     }
12319 
12320     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12321   }
12322 
12323   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12324     EVT VT;
12325     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12326     default: return false;
12327     case Intrinsic::ppc_altivec_stvx:
12328     case Intrinsic::ppc_altivec_stvxl:
12329     case Intrinsic::ppc_vsx_stxvw4x:
12330       VT = MVT::v4i32;
12331       break;
12332     case Intrinsic::ppc_vsx_stxvd2x:
12333       VT = MVT::v2f64;
12334       break;
12335     case Intrinsic::ppc_vsx_stxvw4x_be:
12336       VT = MVT::v4i32;
12337       break;
12338     case Intrinsic::ppc_vsx_stxvd2x_be:
12339       VT = MVT::v2f64;
12340       break;
12341     case Intrinsic::ppc_altivec_stvebx:
12342       VT = MVT::i8;
12343       break;
12344     case Intrinsic::ppc_altivec_stvehx:
12345       VT = MVT::i16;
12346       break;
12347     case Intrinsic::ppc_altivec_stvewx:
12348       VT = MVT::i32;
12349       break;
12350     }
12351 
12352     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12353   }
12354 
12355   return false;
12356 }
12357 
12358 // Return true is there is a nearyby consecutive load to the one provided
12359 // (regardless of alignment). We search up and down the chain, looking though
12360 // token factors and other loads (but nothing else). As a result, a true result
12361 // indicates that it is safe to create a new consecutive load adjacent to the
12362 // load provided.
12363 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12364   SDValue Chain = LD->getChain();
12365   EVT VT = LD->getMemoryVT();
12366 
12367   SmallSet<SDNode *, 16> LoadRoots;
12368   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12369   SmallSet<SDNode *, 16> Visited;
12370 
12371   // First, search up the chain, branching to follow all token-factor operands.
12372   // If we find a consecutive load, then we're done, otherwise, record all
12373   // nodes just above the top-level loads and token factors.
12374   while (!Queue.empty()) {
12375     SDNode *ChainNext = Queue.pop_back_val();
12376     if (!Visited.insert(ChainNext).second)
12377       continue;
12378 
12379     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12380       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12381         return true;
12382 
12383       if (!Visited.count(ChainLD->getChain().getNode()))
12384         Queue.push_back(ChainLD->getChain().getNode());
12385     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12386       for (const SDUse &O : ChainNext->ops())
12387         if (!Visited.count(O.getNode()))
12388           Queue.push_back(O.getNode());
12389     } else
12390       LoadRoots.insert(ChainNext);
12391   }
12392 
12393   // Second, search down the chain, starting from the top-level nodes recorded
12394   // in the first phase. These top-level nodes are the nodes just above all
12395   // loads and token factors. Starting with their uses, recursively look though
12396   // all loads (just the chain uses) and token factors to find a consecutive
12397   // load.
12398   Visited.clear();
12399   Queue.clear();
12400 
12401   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12402        IE = LoadRoots.end(); I != IE; ++I) {
12403     Queue.push_back(*I);
12404 
12405     while (!Queue.empty()) {
12406       SDNode *LoadRoot = Queue.pop_back_val();
12407       if (!Visited.insert(LoadRoot).second)
12408         continue;
12409 
12410       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12411         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12412           return true;
12413 
12414       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12415            UE = LoadRoot->use_end(); UI != UE; ++UI)
12416         if (((isa<MemSDNode>(*UI) &&
12417             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12418             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12419           Queue.push_back(*UI);
12420     }
12421   }
12422 
12423   return false;
12424 }
12425 
12426 /// This function is called when we have proved that a SETCC node can be replaced
12427 /// by subtraction (and other supporting instructions) so that the result of
12428 /// comparison is kept in a GPR instead of CR. This function is purely for
12429 /// codegen purposes and has some flags to guide the codegen process.
12430 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12431                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12432   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12433 
12434   // Zero extend the operands to the largest legal integer. Originally, they
12435   // must be of a strictly smaller size.
12436   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12437                          DAG.getConstant(Size, DL, MVT::i32));
12438   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12439                          DAG.getConstant(Size, DL, MVT::i32));
12440 
12441   // Swap if needed. Depends on the condition code.
12442   if (Swap)
12443     std::swap(Op0, Op1);
12444 
12445   // Subtract extended integers.
12446   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12447 
12448   // Move the sign bit to the least significant position and zero out the rest.
12449   // Now the least significant bit carries the result of original comparison.
12450   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12451                              DAG.getConstant(Size - 1, DL, MVT::i32));
12452   auto Final = Shifted;
12453 
12454   // Complement the result if needed. Based on the condition code.
12455   if (Complement)
12456     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12457                         DAG.getConstant(1, DL, MVT::i64));
12458 
12459   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12460 }
12461 
12462 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12463                                                   DAGCombinerInfo &DCI) const {
12464   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12465 
12466   SelectionDAG &DAG = DCI.DAG;
12467   SDLoc DL(N);
12468 
12469   // Size of integers being compared has a critical role in the following
12470   // analysis, so we prefer to do this when all types are legal.
12471   if (!DCI.isAfterLegalizeDAG())
12472     return SDValue();
12473 
12474   // If all users of SETCC extend its value to a legal integer type
12475   // then we replace SETCC with a subtraction
12476   for (SDNode::use_iterator UI = N->use_begin(),
12477        UE = N->use_end(); UI != UE; ++UI) {
12478     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12479       return SDValue();
12480   }
12481 
12482   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12483   auto OpSize = N->getOperand(0).getValueSizeInBits();
12484 
12485   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12486 
12487   if (OpSize < Size) {
12488     switch (CC) {
12489     default: break;
12490     case ISD::SETULT:
12491       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12492     case ISD::SETULE:
12493       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12494     case ISD::SETUGT:
12495       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12496     case ISD::SETUGE:
12497       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12498     }
12499   }
12500 
12501   return SDValue();
12502 }
12503 
12504 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12505                                                   DAGCombinerInfo &DCI) const {
12506   SelectionDAG &DAG = DCI.DAG;
12507   SDLoc dl(N);
12508 
12509   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12510   // If we're tracking CR bits, we need to be careful that we don't have:
12511   //   trunc(binary-ops(zext(x), zext(y)))
12512   // or
12513   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12514   // such that we're unnecessarily moving things into GPRs when it would be
12515   // better to keep them in CR bits.
12516 
12517   // Note that trunc here can be an actual i1 trunc, or can be the effective
12518   // truncation that comes from a setcc or select_cc.
12519   if (N->getOpcode() == ISD::TRUNCATE &&
12520       N->getValueType(0) != MVT::i1)
12521     return SDValue();
12522 
12523   if (N->getOperand(0).getValueType() != MVT::i32 &&
12524       N->getOperand(0).getValueType() != MVT::i64)
12525     return SDValue();
12526 
12527   if (N->getOpcode() == ISD::SETCC ||
12528       N->getOpcode() == ISD::SELECT_CC) {
12529     // If we're looking at a comparison, then we need to make sure that the
12530     // high bits (all except for the first) don't matter the result.
12531     ISD::CondCode CC =
12532       cast<CondCodeSDNode>(N->getOperand(
12533         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12534     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12535 
12536     if (ISD::isSignedIntSetCC(CC)) {
12537       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12538           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12539         return SDValue();
12540     } else if (ISD::isUnsignedIntSetCC(CC)) {
12541       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12542                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12543           !DAG.MaskedValueIsZero(N->getOperand(1),
12544                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12545         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12546                                              : SDValue());
12547     } else {
12548       // This is neither a signed nor an unsigned comparison, just make sure
12549       // that the high bits are equal.
12550       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12551       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12552 
12553       // We don't really care about what is known about the first bit (if
12554       // anything), so clear it in all masks prior to comparing them.
12555       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12556       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12557 
12558       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12559         return SDValue();
12560     }
12561   }
12562 
12563   // We now know that the higher-order bits are irrelevant, we just need to
12564   // make sure that all of the intermediate operations are bit operations, and
12565   // all inputs are extensions.
12566   if (N->getOperand(0).getOpcode() != ISD::AND &&
12567       N->getOperand(0).getOpcode() != ISD::OR  &&
12568       N->getOperand(0).getOpcode() != ISD::XOR &&
12569       N->getOperand(0).getOpcode() != ISD::SELECT &&
12570       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12571       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12572       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12573       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12574       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12575     return SDValue();
12576 
12577   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12578       N->getOperand(1).getOpcode() != ISD::AND &&
12579       N->getOperand(1).getOpcode() != ISD::OR  &&
12580       N->getOperand(1).getOpcode() != ISD::XOR &&
12581       N->getOperand(1).getOpcode() != ISD::SELECT &&
12582       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12583       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12584       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12585       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12586       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12587     return SDValue();
12588 
12589   SmallVector<SDValue, 4> Inputs;
12590   SmallVector<SDValue, 8> BinOps, PromOps;
12591   SmallPtrSet<SDNode *, 16> Visited;
12592 
12593   for (unsigned i = 0; i < 2; ++i) {
12594     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12595           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12596           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12597           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12598         isa<ConstantSDNode>(N->getOperand(i)))
12599       Inputs.push_back(N->getOperand(i));
12600     else
12601       BinOps.push_back(N->getOperand(i));
12602 
12603     if (N->getOpcode() == ISD::TRUNCATE)
12604       break;
12605   }
12606 
12607   // Visit all inputs, collect all binary operations (and, or, xor and
12608   // select) that are all fed by extensions.
12609   while (!BinOps.empty()) {
12610     SDValue BinOp = BinOps.back();
12611     BinOps.pop_back();
12612 
12613     if (!Visited.insert(BinOp.getNode()).second)
12614       continue;
12615 
12616     PromOps.push_back(BinOp);
12617 
12618     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12619       // The condition of the select is not promoted.
12620       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12621         continue;
12622       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12623         continue;
12624 
12625       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12626             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12627             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12628            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12629           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12630         Inputs.push_back(BinOp.getOperand(i));
12631       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12632                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12633                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12634                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12635                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12636                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12637                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12638                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12639                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12640         BinOps.push_back(BinOp.getOperand(i));
12641       } else {
12642         // We have an input that is not an extension or another binary
12643         // operation; we'll abort this transformation.
12644         return SDValue();
12645       }
12646     }
12647   }
12648 
12649   // Make sure that this is a self-contained cluster of operations (which
12650   // is not quite the same thing as saying that everything has only one
12651   // use).
12652   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12653     if (isa<ConstantSDNode>(Inputs[i]))
12654       continue;
12655 
12656     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12657                               UE = Inputs[i].getNode()->use_end();
12658          UI != UE; ++UI) {
12659       SDNode *User = *UI;
12660       if (User != N && !Visited.count(User))
12661         return SDValue();
12662 
12663       // Make sure that we're not going to promote the non-output-value
12664       // operand(s) or SELECT or SELECT_CC.
12665       // FIXME: Although we could sometimes handle this, and it does occur in
12666       // practice that one of the condition inputs to the select is also one of
12667       // the outputs, we currently can't deal with this.
12668       if (User->getOpcode() == ISD::SELECT) {
12669         if (User->getOperand(0) == Inputs[i])
12670           return SDValue();
12671       } else if (User->getOpcode() == ISD::SELECT_CC) {
12672         if (User->getOperand(0) == Inputs[i] ||
12673             User->getOperand(1) == Inputs[i])
12674           return SDValue();
12675       }
12676     }
12677   }
12678 
12679   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12680     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12681                               UE = PromOps[i].getNode()->use_end();
12682          UI != UE; ++UI) {
12683       SDNode *User = *UI;
12684       if (User != N && !Visited.count(User))
12685         return SDValue();
12686 
12687       // Make sure that we're not going to promote the non-output-value
12688       // operand(s) or SELECT or SELECT_CC.
12689       // FIXME: Although we could sometimes handle this, and it does occur in
12690       // practice that one of the condition inputs to the select is also one of
12691       // the outputs, we currently can't deal with this.
12692       if (User->getOpcode() == ISD::SELECT) {
12693         if (User->getOperand(0) == PromOps[i])
12694           return SDValue();
12695       } else if (User->getOpcode() == ISD::SELECT_CC) {
12696         if (User->getOperand(0) == PromOps[i] ||
12697             User->getOperand(1) == PromOps[i])
12698           return SDValue();
12699       }
12700     }
12701   }
12702 
12703   // Replace all inputs with the extension operand.
12704   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12705     // Constants may have users outside the cluster of to-be-promoted nodes,
12706     // and so we need to replace those as we do the promotions.
12707     if (isa<ConstantSDNode>(Inputs[i]))
12708       continue;
12709     else
12710       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12711   }
12712 
12713   std::list<HandleSDNode> PromOpHandles;
12714   for (auto &PromOp : PromOps)
12715     PromOpHandles.emplace_back(PromOp);
12716 
12717   // Replace all operations (these are all the same, but have a different
12718   // (i1) return type). DAG.getNode will validate that the types of
12719   // a binary operator match, so go through the list in reverse so that
12720   // we've likely promoted both operands first. Any intermediate truncations or
12721   // extensions disappear.
12722   while (!PromOpHandles.empty()) {
12723     SDValue PromOp = PromOpHandles.back().getValue();
12724     PromOpHandles.pop_back();
12725 
12726     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12727         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12728         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12729         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12730       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12731           PromOp.getOperand(0).getValueType() != MVT::i1) {
12732         // The operand is not yet ready (see comment below).
12733         PromOpHandles.emplace_front(PromOp);
12734         continue;
12735       }
12736 
12737       SDValue RepValue = PromOp.getOperand(0);
12738       if (isa<ConstantSDNode>(RepValue))
12739         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12740 
12741       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12742       continue;
12743     }
12744 
12745     unsigned C;
12746     switch (PromOp.getOpcode()) {
12747     default:             C = 0; break;
12748     case ISD::SELECT:    C = 1; break;
12749     case ISD::SELECT_CC: C = 2; break;
12750     }
12751 
12752     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12753          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12754         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12755          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12756       // The to-be-promoted operands of this node have not yet been
12757       // promoted (this should be rare because we're going through the
12758       // list backward, but if one of the operands has several users in
12759       // this cluster of to-be-promoted nodes, it is possible).
12760       PromOpHandles.emplace_front(PromOp);
12761       continue;
12762     }
12763 
12764     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12765                                 PromOp.getNode()->op_end());
12766 
12767     // If there are any constant inputs, make sure they're replaced now.
12768     for (unsigned i = 0; i < 2; ++i)
12769       if (isa<ConstantSDNode>(Ops[C+i]))
12770         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12771 
12772     DAG.ReplaceAllUsesOfValueWith(PromOp,
12773       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12774   }
12775 
12776   // Now we're left with the initial truncation itself.
12777   if (N->getOpcode() == ISD::TRUNCATE)
12778     return N->getOperand(0);
12779 
12780   // Otherwise, this is a comparison. The operands to be compared have just
12781   // changed type (to i1), but everything else is the same.
12782   return SDValue(N, 0);
12783 }
12784 
12785 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12786                                                   DAGCombinerInfo &DCI) const {
12787   SelectionDAG &DAG = DCI.DAG;
12788   SDLoc dl(N);
12789 
12790   // If we're tracking CR bits, we need to be careful that we don't have:
12791   //   zext(binary-ops(trunc(x), trunc(y)))
12792   // or
12793   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12794   // such that we're unnecessarily moving things into CR bits that can more
12795   // efficiently stay in GPRs. Note that if we're not certain that the high
12796   // bits are set as required by the final extension, we still may need to do
12797   // some masking to get the proper behavior.
12798 
12799   // This same functionality is important on PPC64 when dealing with
12800   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12801   // the return values of functions. Because it is so similar, it is handled
12802   // here as well.
12803 
12804   if (N->getValueType(0) != MVT::i32 &&
12805       N->getValueType(0) != MVT::i64)
12806     return SDValue();
12807 
12808   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12809         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12810     return SDValue();
12811 
12812   if (N->getOperand(0).getOpcode() != ISD::AND &&
12813       N->getOperand(0).getOpcode() != ISD::OR  &&
12814       N->getOperand(0).getOpcode() != ISD::XOR &&
12815       N->getOperand(0).getOpcode() != ISD::SELECT &&
12816       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12817     return SDValue();
12818 
12819   SmallVector<SDValue, 4> Inputs;
12820   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12821   SmallPtrSet<SDNode *, 16> Visited;
12822 
12823   // Visit all inputs, collect all binary operations (and, or, xor and
12824   // select) that are all fed by truncations.
12825   while (!BinOps.empty()) {
12826     SDValue BinOp = BinOps.back();
12827     BinOps.pop_back();
12828 
12829     if (!Visited.insert(BinOp.getNode()).second)
12830       continue;
12831 
12832     PromOps.push_back(BinOp);
12833 
12834     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12835       // The condition of the select is not promoted.
12836       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12837         continue;
12838       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12839         continue;
12840 
12841       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12842           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12843         Inputs.push_back(BinOp.getOperand(i));
12844       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12845                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12846                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12847                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12848                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12849         BinOps.push_back(BinOp.getOperand(i));
12850       } else {
12851         // We have an input that is not a truncation or another binary
12852         // operation; we'll abort this transformation.
12853         return SDValue();
12854       }
12855     }
12856   }
12857 
12858   // The operands of a select that must be truncated when the select is
12859   // promoted because the operand is actually part of the to-be-promoted set.
12860   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12861 
12862   // Make sure that this is a self-contained cluster of operations (which
12863   // is not quite the same thing as saying that everything has only one
12864   // use).
12865   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12866     if (isa<ConstantSDNode>(Inputs[i]))
12867       continue;
12868 
12869     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12870                               UE = Inputs[i].getNode()->use_end();
12871          UI != UE; ++UI) {
12872       SDNode *User = *UI;
12873       if (User != N && !Visited.count(User))
12874         return SDValue();
12875 
12876       // If we're going to promote the non-output-value operand(s) or SELECT or
12877       // SELECT_CC, record them for truncation.
12878       if (User->getOpcode() == ISD::SELECT) {
12879         if (User->getOperand(0) == Inputs[i])
12880           SelectTruncOp[0].insert(std::make_pair(User,
12881                                     User->getOperand(0).getValueType()));
12882       } else if (User->getOpcode() == ISD::SELECT_CC) {
12883         if (User->getOperand(0) == Inputs[i])
12884           SelectTruncOp[0].insert(std::make_pair(User,
12885                                     User->getOperand(0).getValueType()));
12886         if (User->getOperand(1) == Inputs[i])
12887           SelectTruncOp[1].insert(std::make_pair(User,
12888                                     User->getOperand(1).getValueType()));
12889       }
12890     }
12891   }
12892 
12893   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12894     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12895                               UE = PromOps[i].getNode()->use_end();
12896          UI != UE; ++UI) {
12897       SDNode *User = *UI;
12898       if (User != N && !Visited.count(User))
12899         return SDValue();
12900 
12901       // If we're going to promote the non-output-value operand(s) or SELECT or
12902       // SELECT_CC, record them for truncation.
12903       if (User->getOpcode() == ISD::SELECT) {
12904         if (User->getOperand(0) == PromOps[i])
12905           SelectTruncOp[0].insert(std::make_pair(User,
12906                                     User->getOperand(0).getValueType()));
12907       } else if (User->getOpcode() == ISD::SELECT_CC) {
12908         if (User->getOperand(0) == PromOps[i])
12909           SelectTruncOp[0].insert(std::make_pair(User,
12910                                     User->getOperand(0).getValueType()));
12911         if (User->getOperand(1) == PromOps[i])
12912           SelectTruncOp[1].insert(std::make_pair(User,
12913                                     User->getOperand(1).getValueType()));
12914       }
12915     }
12916   }
12917 
12918   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12919   bool ReallyNeedsExt = false;
12920   if (N->getOpcode() != ISD::ANY_EXTEND) {
12921     // If all of the inputs are not already sign/zero extended, then
12922     // we'll still need to do that at the end.
12923     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12924       if (isa<ConstantSDNode>(Inputs[i]))
12925         continue;
12926 
12927       unsigned OpBits =
12928         Inputs[i].getOperand(0).getValueSizeInBits();
12929       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12930 
12931       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12932            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12933                                   APInt::getHighBitsSet(OpBits,
12934                                                         OpBits-PromBits))) ||
12935           (N->getOpcode() == ISD::SIGN_EXTEND &&
12936            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12937              (OpBits-(PromBits-1)))) {
12938         ReallyNeedsExt = true;
12939         break;
12940       }
12941     }
12942   }
12943 
12944   // Replace all inputs, either with the truncation operand, or a
12945   // truncation or extension to the final output type.
12946   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12947     // Constant inputs need to be replaced with the to-be-promoted nodes that
12948     // use them because they might have users outside of the cluster of
12949     // promoted nodes.
12950     if (isa<ConstantSDNode>(Inputs[i]))
12951       continue;
12952 
12953     SDValue InSrc = Inputs[i].getOperand(0);
12954     if (Inputs[i].getValueType() == N->getValueType(0))
12955       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12956     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12957       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12958         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12959     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12960       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12961         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12962     else
12963       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12964         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12965   }
12966 
12967   std::list<HandleSDNode> PromOpHandles;
12968   for (auto &PromOp : PromOps)
12969     PromOpHandles.emplace_back(PromOp);
12970 
12971   // Replace all operations (these are all the same, but have a different
12972   // (promoted) return type). DAG.getNode will validate that the types of
12973   // a binary operator match, so go through the list in reverse so that
12974   // we've likely promoted both operands first.
12975   while (!PromOpHandles.empty()) {
12976     SDValue PromOp = PromOpHandles.back().getValue();
12977     PromOpHandles.pop_back();
12978 
12979     unsigned C;
12980     switch (PromOp.getOpcode()) {
12981     default:             C = 0; break;
12982     case ISD::SELECT:    C = 1; break;
12983     case ISD::SELECT_CC: C = 2; break;
12984     }
12985 
12986     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12987          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12988         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12989          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12990       // The to-be-promoted operands of this node have not yet been
12991       // promoted (this should be rare because we're going through the
12992       // list backward, but if one of the operands has several users in
12993       // this cluster of to-be-promoted nodes, it is possible).
12994       PromOpHandles.emplace_front(PromOp);
12995       continue;
12996     }
12997 
12998     // For SELECT and SELECT_CC nodes, we do a similar check for any
12999     // to-be-promoted comparison inputs.
13000     if (PromOp.getOpcode() == ISD::SELECT ||
13001         PromOp.getOpcode() == ISD::SELECT_CC) {
13002       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13003            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13004           (SelectTruncOp[1].count(PromOp.getNode()) &&
13005            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13006         PromOpHandles.emplace_front(PromOp);
13007         continue;
13008       }
13009     }
13010 
13011     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13012                                 PromOp.getNode()->op_end());
13013 
13014     // If this node has constant inputs, then they'll need to be promoted here.
13015     for (unsigned i = 0; i < 2; ++i) {
13016       if (!isa<ConstantSDNode>(Ops[C+i]))
13017         continue;
13018       if (Ops[C+i].getValueType() == N->getValueType(0))
13019         continue;
13020 
13021       if (N->getOpcode() == ISD::SIGN_EXTEND)
13022         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13023       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13024         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13025       else
13026         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13027     }
13028 
13029     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13030     // truncate them again to the original value type.
13031     if (PromOp.getOpcode() == ISD::SELECT ||
13032         PromOp.getOpcode() == ISD::SELECT_CC) {
13033       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13034       if (SI0 != SelectTruncOp[0].end())
13035         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13036       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13037       if (SI1 != SelectTruncOp[1].end())
13038         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13039     }
13040 
13041     DAG.ReplaceAllUsesOfValueWith(PromOp,
13042       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13043   }
13044 
13045   // Now we're left with the initial extension itself.
13046   if (!ReallyNeedsExt)
13047     return N->getOperand(0);
13048 
13049   // To zero extend, just mask off everything except for the first bit (in the
13050   // i1 case).
13051   if (N->getOpcode() == ISD::ZERO_EXTEND)
13052     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13053                        DAG.getConstant(APInt::getLowBitsSet(
13054                                          N->getValueSizeInBits(0), PromBits),
13055                                        dl, N->getValueType(0)));
13056 
13057   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13058          "Invalid extension type");
13059   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13060   SDValue ShiftCst =
13061       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13062   return DAG.getNode(
13063       ISD::SRA, dl, N->getValueType(0),
13064       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13065       ShiftCst);
13066 }
13067 
13068 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13069                                         DAGCombinerInfo &DCI) const {
13070   assert(N->getOpcode() == ISD::SETCC &&
13071          "Should be called with a SETCC node");
13072 
13073   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13074   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13075     SDValue LHS = N->getOperand(0);
13076     SDValue RHS = N->getOperand(1);
13077 
13078     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13079     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13080         LHS.hasOneUse())
13081       std::swap(LHS, RHS);
13082 
13083     // x == 0-y --> x+y == 0
13084     // x != 0-y --> x+y != 0
13085     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13086         RHS.hasOneUse()) {
13087       SDLoc DL(N);
13088       SelectionDAG &DAG = DCI.DAG;
13089       EVT VT = N->getValueType(0);
13090       EVT OpVT = LHS.getValueType();
13091       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13092       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13093     }
13094   }
13095 
13096   return DAGCombineTruncBoolExt(N, DCI);
13097 }
13098 
13099 // Is this an extending load from an f32 to an f64?
13100 static bool isFPExtLoad(SDValue Op) {
13101   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13102     return LD->getExtensionType() == ISD::EXTLOAD &&
13103       Op.getValueType() == MVT::f64;
13104   return false;
13105 }
13106 
13107 /// Reduces the number of fp-to-int conversion when building a vector.
13108 ///
13109 /// If this vector is built out of floating to integer conversions,
13110 /// transform it to a vector built out of floating point values followed by a
13111 /// single floating to integer conversion of the vector.
13112 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13113 /// becomes (fptosi (build_vector ($A, $B, ...)))
13114 SDValue PPCTargetLowering::
13115 combineElementTruncationToVectorTruncation(SDNode *N,
13116                                            DAGCombinerInfo &DCI) const {
13117   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13118          "Should be called with a BUILD_VECTOR node");
13119 
13120   SelectionDAG &DAG = DCI.DAG;
13121   SDLoc dl(N);
13122 
13123   SDValue FirstInput = N->getOperand(0);
13124   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13125          "The input operand must be an fp-to-int conversion.");
13126 
13127   // This combine happens after legalization so the fp_to_[su]i nodes are
13128   // already converted to PPCSISD nodes.
13129   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13130   if (FirstConversion == PPCISD::FCTIDZ ||
13131       FirstConversion == PPCISD::FCTIDUZ ||
13132       FirstConversion == PPCISD::FCTIWZ ||
13133       FirstConversion == PPCISD::FCTIWUZ) {
13134     bool IsSplat = true;
13135     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13136       FirstConversion == PPCISD::FCTIWUZ;
13137     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13138     SmallVector<SDValue, 4> Ops;
13139     EVT TargetVT = N->getValueType(0);
13140     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13141       SDValue NextOp = N->getOperand(i);
13142       if (NextOp.getOpcode() != PPCISD::MFVSR)
13143         return SDValue();
13144       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13145       if (NextConversion != FirstConversion)
13146         return SDValue();
13147       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13148       // This is not valid if the input was originally double precision. It is
13149       // also not profitable to do unless this is an extending load in which
13150       // case doing this combine will allow us to combine consecutive loads.
13151       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13152         return SDValue();
13153       if (N->getOperand(i) != FirstInput)
13154         IsSplat = false;
13155     }
13156 
13157     // If this is a splat, we leave it as-is since there will be only a single
13158     // fp-to-int conversion followed by a splat of the integer. This is better
13159     // for 32-bit and smaller ints and neutral for 64-bit ints.
13160     if (IsSplat)
13161       return SDValue();
13162 
13163     // Now that we know we have the right type of node, get its operands
13164     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13165       SDValue In = N->getOperand(i).getOperand(0);
13166       if (Is32Bit) {
13167         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13168         // here, we know that all inputs are extending loads so this is safe).
13169         if (In.isUndef())
13170           Ops.push_back(DAG.getUNDEF(SrcVT));
13171         else {
13172           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13173                                       MVT::f32, In.getOperand(0),
13174                                       DAG.getIntPtrConstant(1, dl));
13175           Ops.push_back(Trunc);
13176         }
13177       } else
13178         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13179     }
13180 
13181     unsigned Opcode;
13182     if (FirstConversion == PPCISD::FCTIDZ ||
13183         FirstConversion == PPCISD::FCTIWZ)
13184       Opcode = ISD::FP_TO_SINT;
13185     else
13186       Opcode = ISD::FP_TO_UINT;
13187 
13188     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13189     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13190     return DAG.getNode(Opcode, dl, TargetVT, BV);
13191   }
13192   return SDValue();
13193 }
13194 
13195 /// Reduce the number of loads when building a vector.
13196 ///
13197 /// Building a vector out of multiple loads can be converted to a load
13198 /// of the vector type if the loads are consecutive. If the loads are
13199 /// consecutive but in descending order, a shuffle is added at the end
13200 /// to reorder the vector.
13201 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13202   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13203          "Should be called with a BUILD_VECTOR node");
13204 
13205   SDLoc dl(N);
13206 
13207   // Return early for non byte-sized type, as they can't be consecutive.
13208   if (!N->getValueType(0).getVectorElementType().isByteSized())
13209     return SDValue();
13210 
13211   bool InputsAreConsecutiveLoads = true;
13212   bool InputsAreReverseConsecutive = true;
13213   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13214   SDValue FirstInput = N->getOperand(0);
13215   bool IsRoundOfExtLoad = false;
13216 
13217   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13218       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13219     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13220     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13221   }
13222   // Not a build vector of (possibly fp_rounded) loads.
13223   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13224       N->getNumOperands() == 1)
13225     return SDValue();
13226 
13227   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13228     // If any inputs are fp_round(extload), they all must be.
13229     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13230       return SDValue();
13231 
13232     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13233       N->getOperand(i);
13234     if (NextInput.getOpcode() != ISD::LOAD)
13235       return SDValue();
13236 
13237     SDValue PreviousInput =
13238       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13239     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13240     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13241 
13242     // If any inputs are fp_round(extload), they all must be.
13243     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13244       return SDValue();
13245 
13246     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13247       InputsAreConsecutiveLoads = false;
13248     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13249       InputsAreReverseConsecutive = false;
13250 
13251     // Exit early if the loads are neither consecutive nor reverse consecutive.
13252     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13253       return SDValue();
13254   }
13255 
13256   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13257          "The loads cannot be both consecutive and reverse consecutive.");
13258 
13259   SDValue FirstLoadOp =
13260     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13261   SDValue LastLoadOp =
13262     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13263                        N->getOperand(N->getNumOperands()-1);
13264 
13265   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13266   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13267   if (InputsAreConsecutiveLoads) {
13268     assert(LD1 && "Input needs to be a LoadSDNode.");
13269     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13270                        LD1->getBasePtr(), LD1->getPointerInfo(),
13271                        LD1->getAlignment());
13272   }
13273   if (InputsAreReverseConsecutive) {
13274     assert(LDL && "Input needs to be a LoadSDNode.");
13275     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13276                                LDL->getBasePtr(), LDL->getPointerInfo(),
13277                                LDL->getAlignment());
13278     SmallVector<int, 16> Ops;
13279     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13280       Ops.push_back(i);
13281 
13282     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13283                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13284   }
13285   return SDValue();
13286 }
13287 
13288 // This function adds the required vector_shuffle needed to get
13289 // the elements of the vector extract in the correct position
13290 // as specified by the CorrectElems encoding.
13291 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13292                                       SDValue Input, uint64_t Elems,
13293                                       uint64_t CorrectElems) {
13294   SDLoc dl(N);
13295 
13296   unsigned NumElems = Input.getValueType().getVectorNumElements();
13297   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13298 
13299   // Knowing the element indices being extracted from the original
13300   // vector and the order in which they're being inserted, just put
13301   // them at element indices required for the instruction.
13302   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13303     if (DAG.getDataLayout().isLittleEndian())
13304       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13305     else
13306       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13307     CorrectElems = CorrectElems >> 8;
13308     Elems = Elems >> 8;
13309   }
13310 
13311   SDValue Shuffle =
13312       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13313                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13314 
13315   EVT VT = N->getValueType(0);
13316   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13317 
13318   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13319                                Input.getValueType().getVectorElementType(),
13320                                VT.getVectorNumElements());
13321   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13322                      DAG.getValueType(ExtVT));
13323 }
13324 
13325 // Look for build vector patterns where input operands come from sign
13326 // extended vector_extract elements of specific indices. If the correct indices
13327 // aren't used, add a vector shuffle to fix up the indices and create
13328 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13329 // during instruction selection.
13330 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13331   // This array encodes the indices that the vector sign extend instructions
13332   // extract from when extending from one type to another for both BE and LE.
13333   // The right nibble of each byte corresponds to the LE incides.
13334   // and the left nibble of each byte corresponds to the BE incides.
13335   // For example: 0x3074B8FC  byte->word
13336   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13337   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13338   // For example: 0x000070F8  byte->double word
13339   // For LE: the allowed indices are: 0x0,0x8
13340   // For BE: the allowed indices are: 0x7,0xF
13341   uint64_t TargetElems[] = {
13342       0x3074B8FC, // b->w
13343       0x000070F8, // b->d
13344       0x10325476, // h->w
13345       0x00003074, // h->d
13346       0x00001032, // w->d
13347   };
13348 
13349   uint64_t Elems = 0;
13350   int Index;
13351   SDValue Input;
13352 
13353   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13354     if (!Op)
13355       return false;
13356     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13357         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13358       return false;
13359 
13360     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13361     // of the right width.
13362     SDValue Extract = Op.getOperand(0);
13363     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13364       Extract = Extract.getOperand(0);
13365     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13366       return false;
13367 
13368     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13369     if (!ExtOp)
13370       return false;
13371 
13372     Index = ExtOp->getZExtValue();
13373     if (Input && Input != Extract.getOperand(0))
13374       return false;
13375 
13376     if (!Input)
13377       Input = Extract.getOperand(0);
13378 
13379     Elems = Elems << 8;
13380     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13381     Elems |= Index;
13382 
13383     return true;
13384   };
13385 
13386   // If the build vector operands aren't sign extended vector extracts,
13387   // of the same input vector, then return.
13388   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13389     if (!isSExtOfVecExtract(N->getOperand(i))) {
13390       return SDValue();
13391     }
13392   }
13393 
13394   // If the vector extract indicies are not correct, add the appropriate
13395   // vector_shuffle.
13396   int TgtElemArrayIdx;
13397   int InputSize = Input.getValueType().getScalarSizeInBits();
13398   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13399   if (InputSize + OutputSize == 40)
13400     TgtElemArrayIdx = 0;
13401   else if (InputSize + OutputSize == 72)
13402     TgtElemArrayIdx = 1;
13403   else if (InputSize + OutputSize == 48)
13404     TgtElemArrayIdx = 2;
13405   else if (InputSize + OutputSize == 80)
13406     TgtElemArrayIdx = 3;
13407   else if (InputSize + OutputSize == 96)
13408     TgtElemArrayIdx = 4;
13409   else
13410     return SDValue();
13411 
13412   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13413   CorrectElems = DAG.getDataLayout().isLittleEndian()
13414                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13415                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13416   if (Elems != CorrectElems) {
13417     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13418   }
13419 
13420   // Regular lowering will catch cases where a shuffle is not needed.
13421   return SDValue();
13422 }
13423 
13424 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13425                                                  DAGCombinerInfo &DCI) const {
13426   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13427          "Should be called with a BUILD_VECTOR node");
13428 
13429   SelectionDAG &DAG = DCI.DAG;
13430   SDLoc dl(N);
13431 
13432   if (!Subtarget.hasVSX())
13433     return SDValue();
13434 
13435   // The target independent DAG combiner will leave a build_vector of
13436   // float-to-int conversions intact. We can generate MUCH better code for
13437   // a float-to-int conversion of a vector of floats.
13438   SDValue FirstInput = N->getOperand(0);
13439   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13440     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13441     if (Reduced)
13442       return Reduced;
13443   }
13444 
13445   // If we're building a vector out of consecutive loads, just load that
13446   // vector type.
13447   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13448   if (Reduced)
13449     return Reduced;
13450 
13451   // If we're building a vector out of extended elements from another vector
13452   // we have P9 vector integer extend instructions. The code assumes legal
13453   // input types (i.e. it can't handle things like v4i16) so do not run before
13454   // legalization.
13455   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13456     Reduced = combineBVOfVecSExt(N, DAG);
13457     if (Reduced)
13458       return Reduced;
13459   }
13460 
13461 
13462   if (N->getValueType(0) != MVT::v2f64)
13463     return SDValue();
13464 
13465   // Looking for:
13466   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13467   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13468       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13469     return SDValue();
13470   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13471       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13472     return SDValue();
13473   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13474     return SDValue();
13475 
13476   SDValue Ext1 = FirstInput.getOperand(0);
13477   SDValue Ext2 = N->getOperand(1).getOperand(0);
13478   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13479      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13480     return SDValue();
13481 
13482   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13483   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13484   if (!Ext1Op || !Ext2Op)
13485     return SDValue();
13486   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13487       Ext1.getOperand(0) != Ext2.getOperand(0))
13488     return SDValue();
13489 
13490   int FirstElem = Ext1Op->getZExtValue();
13491   int SecondElem = Ext2Op->getZExtValue();
13492   int SubvecIdx;
13493   if (FirstElem == 0 && SecondElem == 1)
13494     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13495   else if (FirstElem == 2 && SecondElem == 3)
13496     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13497   else
13498     return SDValue();
13499 
13500   SDValue SrcVec = Ext1.getOperand(0);
13501   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13502     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13503   return DAG.getNode(NodeType, dl, MVT::v2f64,
13504                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13505 }
13506 
13507 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13508                                               DAGCombinerInfo &DCI) const {
13509   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13510           N->getOpcode() == ISD::UINT_TO_FP) &&
13511          "Need an int -> FP conversion node here");
13512 
13513   if (useSoftFloat() || !Subtarget.has64BitSupport())
13514     return SDValue();
13515 
13516   SelectionDAG &DAG = DCI.DAG;
13517   SDLoc dl(N);
13518   SDValue Op(N, 0);
13519 
13520   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13521   // from the hardware.
13522   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13523     return SDValue();
13524   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13525       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13526     return SDValue();
13527 
13528   SDValue FirstOperand(Op.getOperand(0));
13529   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13530     (FirstOperand.getValueType() == MVT::i8 ||
13531      FirstOperand.getValueType() == MVT::i16);
13532   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13533     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13534     bool DstDouble = Op.getValueType() == MVT::f64;
13535     unsigned ConvOp = Signed ?
13536       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13537       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13538     SDValue WidthConst =
13539       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13540                             dl, false);
13541     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13542     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13543     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13544                                          DAG.getVTList(MVT::f64, MVT::Other),
13545                                          Ops, MVT::i8, LDN->getMemOperand());
13546 
13547     // For signed conversion, we need to sign-extend the value in the VSR
13548     if (Signed) {
13549       SDValue ExtOps[] = { Ld, WidthConst };
13550       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13551       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13552     } else
13553       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13554   }
13555 
13556 
13557   // For i32 intermediate values, unfortunately, the conversion functions
13558   // leave the upper 32 bits of the value are undefined. Within the set of
13559   // scalar instructions, we have no method for zero- or sign-extending the
13560   // value. Thus, we cannot handle i32 intermediate values here.
13561   if (Op.getOperand(0).getValueType() == MVT::i32)
13562     return SDValue();
13563 
13564   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13565          "UINT_TO_FP is supported only with FPCVT");
13566 
13567   // If we have FCFIDS, then use it when converting to single-precision.
13568   // Otherwise, convert to double-precision and then round.
13569   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13570                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13571                                                             : PPCISD::FCFIDS)
13572                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13573                                                             : PPCISD::FCFID);
13574   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13575                   ? MVT::f32
13576                   : MVT::f64;
13577 
13578   // If we're converting from a float, to an int, and back to a float again,
13579   // then we don't need the store/load pair at all.
13580   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13581        Subtarget.hasFPCVT()) ||
13582       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13583     SDValue Src = Op.getOperand(0).getOperand(0);
13584     if (Src.getValueType() == MVT::f32) {
13585       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13586       DCI.AddToWorklist(Src.getNode());
13587     } else if (Src.getValueType() != MVT::f64) {
13588       // Make sure that we don't pick up a ppc_fp128 source value.
13589       return SDValue();
13590     }
13591 
13592     unsigned FCTOp =
13593       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13594                                                         PPCISD::FCTIDUZ;
13595 
13596     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13597     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13598 
13599     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13600       FP = DAG.getNode(ISD::FP_ROUND, dl,
13601                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13602       DCI.AddToWorklist(FP.getNode());
13603     }
13604 
13605     return FP;
13606   }
13607 
13608   return SDValue();
13609 }
13610 
13611 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13612 // builtins) into loads with swaps.
13613 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13614                                               DAGCombinerInfo &DCI) const {
13615   SelectionDAG &DAG = DCI.DAG;
13616   SDLoc dl(N);
13617   SDValue Chain;
13618   SDValue Base;
13619   MachineMemOperand *MMO;
13620 
13621   switch (N->getOpcode()) {
13622   default:
13623     llvm_unreachable("Unexpected opcode for little endian VSX load");
13624   case ISD::LOAD: {
13625     LoadSDNode *LD = cast<LoadSDNode>(N);
13626     Chain = LD->getChain();
13627     Base = LD->getBasePtr();
13628     MMO = LD->getMemOperand();
13629     // If the MMO suggests this isn't a load of a full vector, leave
13630     // things alone.  For a built-in, we have to make the change for
13631     // correctness, so if there is a size problem that will be a bug.
13632     if (MMO->getSize() < 16)
13633       return SDValue();
13634     break;
13635   }
13636   case ISD::INTRINSIC_W_CHAIN: {
13637     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13638     Chain = Intrin->getChain();
13639     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13640     // us what we want. Get operand 2 instead.
13641     Base = Intrin->getOperand(2);
13642     MMO = Intrin->getMemOperand();
13643     break;
13644   }
13645   }
13646 
13647   MVT VecTy = N->getValueType(0).getSimpleVT();
13648 
13649   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13650   // aligned and the type is a vector with elements up to 4 bytes
13651   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13652       VecTy.getScalarSizeInBits() <= 32) {
13653     return SDValue();
13654   }
13655 
13656   SDValue LoadOps[] = { Chain, Base };
13657   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13658                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13659                                          LoadOps, MVT::v2f64, MMO);
13660 
13661   DCI.AddToWorklist(Load.getNode());
13662   Chain = Load.getValue(1);
13663   SDValue Swap = DAG.getNode(
13664       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13665   DCI.AddToWorklist(Swap.getNode());
13666 
13667   // Add a bitcast if the resulting load type doesn't match v2f64.
13668   if (VecTy != MVT::v2f64) {
13669     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13670     DCI.AddToWorklist(N.getNode());
13671     // Package {bitcast value, swap's chain} to match Load's shape.
13672     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13673                        N, Swap.getValue(1));
13674   }
13675 
13676   return Swap;
13677 }
13678 
13679 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13680 // builtins) into stores with swaps.
13681 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13682                                                DAGCombinerInfo &DCI) const {
13683   SelectionDAG &DAG = DCI.DAG;
13684   SDLoc dl(N);
13685   SDValue Chain;
13686   SDValue Base;
13687   unsigned SrcOpnd;
13688   MachineMemOperand *MMO;
13689 
13690   switch (N->getOpcode()) {
13691   default:
13692     llvm_unreachable("Unexpected opcode for little endian VSX store");
13693   case ISD::STORE: {
13694     StoreSDNode *ST = cast<StoreSDNode>(N);
13695     Chain = ST->getChain();
13696     Base = ST->getBasePtr();
13697     MMO = ST->getMemOperand();
13698     SrcOpnd = 1;
13699     // If the MMO suggests this isn't a store of a full vector, leave
13700     // things alone.  For a built-in, we have to make the change for
13701     // correctness, so if there is a size problem that will be a bug.
13702     if (MMO->getSize() < 16)
13703       return SDValue();
13704     break;
13705   }
13706   case ISD::INTRINSIC_VOID: {
13707     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13708     Chain = Intrin->getChain();
13709     // Intrin->getBasePtr() oddly does not get what we want.
13710     Base = Intrin->getOperand(3);
13711     MMO = Intrin->getMemOperand();
13712     SrcOpnd = 2;
13713     break;
13714   }
13715   }
13716 
13717   SDValue Src = N->getOperand(SrcOpnd);
13718   MVT VecTy = Src.getValueType().getSimpleVT();
13719 
13720   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13721   // aligned and the type is a vector with elements up to 4 bytes
13722   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13723       VecTy.getScalarSizeInBits() <= 32) {
13724     return SDValue();
13725   }
13726 
13727   // All stores are done as v2f64 and possible bit cast.
13728   if (VecTy != MVT::v2f64) {
13729     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13730     DCI.AddToWorklist(Src.getNode());
13731   }
13732 
13733   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13734                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13735   DCI.AddToWorklist(Swap.getNode());
13736   Chain = Swap.getValue(1);
13737   SDValue StoreOps[] = { Chain, Swap, Base };
13738   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13739                                           DAG.getVTList(MVT::Other),
13740                                           StoreOps, VecTy, MMO);
13741   DCI.AddToWorklist(Store.getNode());
13742   return Store;
13743 }
13744 
13745 // Handle DAG combine for STORE (FP_TO_INT F).
13746 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13747                                                DAGCombinerInfo &DCI) const {
13748 
13749   SelectionDAG &DAG = DCI.DAG;
13750   SDLoc dl(N);
13751   unsigned Opcode = N->getOperand(1).getOpcode();
13752 
13753   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13754          && "Not a FP_TO_INT Instruction!");
13755 
13756   SDValue Val = N->getOperand(1).getOperand(0);
13757   EVT Op1VT = N->getOperand(1).getValueType();
13758   EVT ResVT = Val.getValueType();
13759 
13760   // Floating point types smaller than 32 bits are not legal on Power.
13761   if (ResVT.getScalarSizeInBits() < 32)
13762     return SDValue();
13763 
13764   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13765   bool ValidTypeForStoreFltAsInt =
13766         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13767          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13768 
13769   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
13770       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13771     return SDValue();
13772 
13773   // Extend f32 values to f64
13774   if (ResVT.getScalarSizeInBits() == 32) {
13775     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13776     DCI.AddToWorklist(Val.getNode());
13777   }
13778 
13779   // Set signed or unsigned conversion opcode.
13780   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13781                           PPCISD::FP_TO_SINT_IN_VSR :
13782                           PPCISD::FP_TO_UINT_IN_VSR;
13783 
13784   Val = DAG.getNode(ConvOpcode,
13785                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13786   DCI.AddToWorklist(Val.getNode());
13787 
13788   // Set number of bytes being converted.
13789   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13790   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13791                     DAG.getIntPtrConstant(ByteSize, dl, false),
13792                     DAG.getValueType(Op1VT) };
13793 
13794   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13795           DAG.getVTList(MVT::Other), Ops,
13796           cast<StoreSDNode>(N)->getMemoryVT(),
13797           cast<StoreSDNode>(N)->getMemOperand());
13798 
13799   DCI.AddToWorklist(Val.getNode());
13800   return Val;
13801 }
13802 
13803 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
13804   // Check that the source of the element keeps flipping
13805   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
13806   bool PrevElemFromFirstVec = Mask[0] < NumElts;
13807   for (int i = 1, e = Mask.size(); i < e; i++) {
13808     if (PrevElemFromFirstVec && Mask[i] < NumElts)
13809       return false;
13810     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
13811       return false;
13812     PrevElemFromFirstVec = !PrevElemFromFirstVec;
13813   }
13814   return true;
13815 }
13816 
13817 static bool isSplatBV(SDValue Op) {
13818   if (Op.getOpcode() != ISD::BUILD_VECTOR)
13819     return false;
13820   SDValue FirstOp;
13821 
13822   // Find first non-undef input.
13823   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
13824     FirstOp = Op.getOperand(i);
13825     if (!FirstOp.isUndef())
13826       break;
13827   }
13828 
13829   // All inputs are undef or the same as the first non-undef input.
13830   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
13831     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
13832       return false;
13833   return true;
13834 }
13835 
13836 static SDValue isScalarToVec(SDValue Op) {
13837   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
13838     return Op;
13839   if (Op.getOpcode() != ISD::BITCAST)
13840     return SDValue();
13841   Op = Op.getOperand(0);
13842   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
13843     return Op;
13844   return SDValue();
13845 }
13846 
13847 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
13848                                             int LHSMaxIdx, int RHSMinIdx,
13849                                             int RHSMaxIdx, int HalfVec) {
13850   for (int i = 0, e = ShuffV.size(); i < e; i++) {
13851     int Idx = ShuffV[i];
13852     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
13853       ShuffV[i] += HalfVec;
13854   }
13855   return;
13856 }
13857 
13858 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
13859 // the original is:
13860 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
13861 // In such a case, just change the shuffle mask to extract the element
13862 // from the permuted index.
13863 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
13864   SDLoc dl(OrigSToV);
13865   EVT VT = OrigSToV.getValueType();
13866   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
13867          "Expecting a SCALAR_TO_VECTOR here");
13868   SDValue Input = OrigSToV.getOperand(0);
13869 
13870   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
13871     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
13872     SDValue OrigVector = Input.getOperand(0);
13873 
13874     // Can't handle non-const element indices or different vector types
13875     // for the input to the extract and the output of the scalar_to_vector.
13876     if (Idx && VT == OrigVector.getValueType()) {
13877       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
13878       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
13879       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
13880     }
13881   }
13882   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
13883                      OrigSToV.getOperand(0));
13884 }
13885 
13886 // On little endian subtargets, combine shuffles such as:
13887 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
13888 // into:
13889 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
13890 // because the latter can be matched to a single instruction merge.
13891 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
13892 // to put the value into element zero. Adjust the shuffle mask so that the
13893 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
13894 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
13895                                                 SelectionDAG &DAG) const {
13896   SDValue LHS = SVN->getOperand(0);
13897   SDValue RHS = SVN->getOperand(1);
13898   auto Mask = SVN->getMask();
13899   int NumElts = LHS.getValueType().getVectorNumElements();
13900   SDValue Res(SVN, 0);
13901   SDLoc dl(SVN);
13902 
13903   // None of these combines are useful on big endian systems since the ISA
13904   // already has a big endian bias.
13905   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13906     return Res;
13907 
13908   // If this is not a shuffle of a shuffle and the first element comes from
13909   // the second vector, canonicalize to the commuted form. This will make it
13910   // more likely to match one of the single instruction patterns.
13911   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
13912       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
13913     std::swap(LHS, RHS);
13914     Res = DAG.getCommutedVectorShuffle(*SVN);
13915     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
13916   }
13917 
13918   // Adjust the shuffle mask if either input vector comes from a
13919   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
13920   // form (to prevent the need for a swap).
13921   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
13922   SDValue SToVLHS = isScalarToVec(LHS);
13923   SDValue SToVRHS = isScalarToVec(RHS);
13924   if (SToVLHS || SToVRHS) {
13925     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
13926                             : SToVRHS.getValueType().getVectorNumElements();
13927     int NumEltsOut = ShuffV.size();
13928 
13929     // Initially assume that neither input is permuted. These will be adjusted
13930     // accordingly if either input is.
13931     int LHSMaxIdx = -1;
13932     int RHSMinIdx = -1;
13933     int RHSMaxIdx = -1;
13934     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
13935 
13936     // Get the permuted scalar to vector nodes for the source(s) that come from
13937     // ISD::SCALAR_TO_VECTOR.
13938     if (SToVLHS) {
13939       // Set up the values for the shuffle vector fixup.
13940       LHSMaxIdx = NumEltsOut / NumEltsIn;
13941       SToVLHS = getSToVPermuted(SToVLHS, DAG);
13942       if (SToVLHS.getValueType() != LHS.getValueType())
13943         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
13944       LHS = SToVLHS;
13945     }
13946     if (SToVRHS) {
13947       RHSMinIdx = NumEltsOut;
13948       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
13949       SToVRHS = getSToVPermuted(SToVRHS, DAG);
13950       if (SToVRHS.getValueType() != RHS.getValueType())
13951         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
13952       RHS = SToVRHS;
13953     }
13954 
13955     // Fix up the shuffle mask to reflect where the desired element actually is.
13956     // The minimum and maximum indices that correspond to element zero for both
13957     // the LHS and RHS are computed and will control which shuffle mask entries
13958     // are to be changed. For example, if the RHS is permuted, any shuffle mask
13959     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
13960     // HalfVec to refer to the corresponding element in the permuted vector.
13961     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
13962                                     HalfVec);
13963     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
13964 
13965     // We may have simplified away the shuffle. We won't be able to do anything
13966     // further with it here.
13967     if (!isa<ShuffleVectorSDNode>(Res))
13968       return Res;
13969     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
13970   }
13971 
13972   // The common case after we commuted the shuffle is that the RHS is a splat
13973   // and we have elements coming in from the splat at indices that are not
13974   // conducive to using a merge.
13975   // Example:
13976   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
13977   if (!isSplatBV(RHS))
13978     return Res;
13979 
13980   // We are looking for a mask such that all even elements are from
13981   // one vector and all odd elements from the other.
13982   if (!isAlternatingShuffMask(Mask, NumElts))
13983     return Res;
13984 
13985   // Adjust the mask so we are pulling in the same index from the splat
13986   // as the index from the interesting vector in consecutive elements.
13987   // Example (even elements from first vector):
13988   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
13989   if (Mask[0] < NumElts)
13990     for (int i = 1, e = Mask.size(); i < e; i += 2)
13991       ShuffV[i] = (ShuffV[i - 1] + NumElts);
13992   // Example (odd elements from first vector):
13993   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
13994   else
13995     for (int i = 0, e = Mask.size(); i < e; i += 2)
13996       ShuffV[i] = (ShuffV[i + 1] + NumElts);
13997 
13998   // If the RHS has undefs, we need to remove them since we may have created
13999   // a shuffle that adds those instead of the splat value.
14000   SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
14001   RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
14002 
14003   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14004   return Res;
14005 }
14006 
14007 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14008                                                 LSBaseSDNode *LSBase,
14009                                                 DAGCombinerInfo &DCI) const {
14010   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14011         "Not a reverse memop pattern!");
14012 
14013   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14014     auto Mask = SVN->getMask();
14015     int i = 0;
14016     auto I = Mask.rbegin();
14017     auto E = Mask.rend();
14018 
14019     for (; I != E; ++I) {
14020       if (*I != i)
14021         return false;
14022       i++;
14023     }
14024     return true;
14025   };
14026 
14027   SelectionDAG &DAG = DCI.DAG;
14028   EVT VT = SVN->getValueType(0);
14029 
14030   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14031     return SDValue();
14032 
14033   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14034   // See comment in PPCVSXSwapRemoval.cpp.
14035   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14036   if (!Subtarget.hasP9Vector())
14037     return SDValue();
14038 
14039   if(!IsElementReverse(SVN))
14040     return SDValue();
14041 
14042   if (LSBase->getOpcode() == ISD::LOAD) {
14043     SDLoc dl(SVN);
14044     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14045     return DAG.getMemIntrinsicNode(
14046         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14047         LSBase->getMemoryVT(), LSBase->getMemOperand());
14048   }
14049 
14050   if (LSBase->getOpcode() == ISD::STORE) {
14051     SDLoc dl(LSBase);
14052     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14053                           LSBase->getBasePtr()};
14054     return DAG.getMemIntrinsicNode(
14055         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14056         LSBase->getMemoryVT(), LSBase->getMemOperand());
14057   }
14058 
14059   llvm_unreachable("Expected a load or store node here");
14060 }
14061 
14062 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14063                                              DAGCombinerInfo &DCI) const {
14064   SelectionDAG &DAG = DCI.DAG;
14065   SDLoc dl(N);
14066   switch (N->getOpcode()) {
14067   default: break;
14068   case ISD::ADD:
14069     return combineADD(N, DCI);
14070   case ISD::SHL:
14071     return combineSHL(N, DCI);
14072   case ISD::SRA:
14073     return combineSRA(N, DCI);
14074   case ISD::SRL:
14075     return combineSRL(N, DCI);
14076   case ISD::MUL:
14077     return combineMUL(N, DCI);
14078   case ISD::FMA:
14079   case PPCISD::FNMSUB:
14080     return combineFMALike(N, DCI);
14081   case PPCISD::SHL:
14082     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14083         return N->getOperand(0);
14084     break;
14085   case PPCISD::SRL:
14086     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14087         return N->getOperand(0);
14088     break;
14089   case PPCISD::SRA:
14090     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14091       if (C->isNullValue() ||   //  0 >>s V -> 0.
14092           C->isAllOnesValue())    // -1 >>s V -> -1.
14093         return N->getOperand(0);
14094     }
14095     break;
14096   case ISD::SIGN_EXTEND:
14097   case ISD::ZERO_EXTEND:
14098   case ISD::ANY_EXTEND:
14099     return DAGCombineExtBoolTrunc(N, DCI);
14100   case ISD::TRUNCATE:
14101     return combineTRUNCATE(N, DCI);
14102   case ISD::SETCC:
14103     if (SDValue CSCC = combineSetCC(N, DCI))
14104       return CSCC;
14105     LLVM_FALLTHROUGH;
14106   case ISD::SELECT_CC:
14107     return DAGCombineTruncBoolExt(N, DCI);
14108   case ISD::SINT_TO_FP:
14109   case ISD::UINT_TO_FP:
14110     return combineFPToIntToFP(N, DCI);
14111   case ISD::VECTOR_SHUFFLE:
14112     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14113       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14114       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14115     }
14116     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14117   case ISD::STORE: {
14118 
14119     EVT Op1VT = N->getOperand(1).getValueType();
14120     unsigned Opcode = N->getOperand(1).getOpcode();
14121 
14122     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14123       SDValue Val= combineStoreFPToInt(N, DCI);
14124       if (Val)
14125         return Val;
14126     }
14127 
14128     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14129       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14130       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14131       if (Val)
14132         return Val;
14133     }
14134 
14135     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14136     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14137         N->getOperand(1).getNode()->hasOneUse() &&
14138         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14139          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14140 
14141       // STBRX can only handle simple types and it makes no sense to store less
14142       // two bytes in byte-reversed order.
14143       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14144       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14145         break;
14146 
14147       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14148       // Do an any-extend to 32-bits if this is a half-word input.
14149       if (BSwapOp.getValueType() == MVT::i16)
14150         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14151 
14152       // If the type of BSWAP operand is wider than stored memory width
14153       // it need to be shifted to the right side before STBRX.
14154       if (Op1VT.bitsGT(mVT)) {
14155         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14156         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14157                               DAG.getConstant(Shift, dl, MVT::i32));
14158         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14159         if (Op1VT == MVT::i64)
14160           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14161       }
14162 
14163       SDValue Ops[] = {
14164         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14165       };
14166       return
14167         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14168                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14169                                 cast<StoreSDNode>(N)->getMemOperand());
14170     }
14171 
14172     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14173     // So it can increase the chance of CSE constant construction.
14174     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14175         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14176       // Need to sign-extended to 64-bits to handle negative values.
14177       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14178       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14179                                     MemVT.getSizeInBits());
14180       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14181 
14182       // DAG.getTruncStore() can't be used here because it doesn't accept
14183       // the general (base + offset) addressing mode.
14184       // So we use UpdateNodeOperands and setTruncatingStore instead.
14185       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14186                              N->getOperand(3));
14187       cast<StoreSDNode>(N)->setTruncatingStore(true);
14188       return SDValue(N, 0);
14189     }
14190 
14191     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14192     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14193     if (Op1VT.isSimple()) {
14194       MVT StoreVT = Op1VT.getSimpleVT();
14195       if (Subtarget.needsSwapsForVSXMemOps() &&
14196           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14197            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14198         return expandVSXStoreForLE(N, DCI);
14199     }
14200     break;
14201   }
14202   case ISD::LOAD: {
14203     LoadSDNode *LD = cast<LoadSDNode>(N);
14204     EVT VT = LD->getValueType(0);
14205 
14206     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14207     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14208     if (VT.isSimple()) {
14209       MVT LoadVT = VT.getSimpleVT();
14210       if (Subtarget.needsSwapsForVSXMemOps() &&
14211           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14212            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14213         return expandVSXLoadForLE(N, DCI);
14214     }
14215 
14216     // We sometimes end up with a 64-bit integer load, from which we extract
14217     // two single-precision floating-point numbers. This happens with
14218     // std::complex<float>, and other similar structures, because of the way we
14219     // canonicalize structure copies. However, if we lack direct moves,
14220     // then the final bitcasts from the extracted integer values to the
14221     // floating-point numbers turn into store/load pairs. Even with direct moves,
14222     // just loading the two floating-point numbers is likely better.
14223     auto ReplaceTwoFloatLoad = [&]() {
14224       if (VT != MVT::i64)
14225         return false;
14226 
14227       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14228           LD->isVolatile())
14229         return false;
14230 
14231       //  We're looking for a sequence like this:
14232       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14233       //      t16: i64 = srl t13, Constant:i32<32>
14234       //    t17: i32 = truncate t16
14235       //  t18: f32 = bitcast t17
14236       //    t19: i32 = truncate t13
14237       //  t20: f32 = bitcast t19
14238 
14239       if (!LD->hasNUsesOfValue(2, 0))
14240         return false;
14241 
14242       auto UI = LD->use_begin();
14243       while (UI.getUse().getResNo() != 0) ++UI;
14244       SDNode *Trunc = *UI++;
14245       while (UI.getUse().getResNo() != 0) ++UI;
14246       SDNode *RightShift = *UI;
14247       if (Trunc->getOpcode() != ISD::TRUNCATE)
14248         std::swap(Trunc, RightShift);
14249 
14250       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14251           Trunc->getValueType(0) != MVT::i32 ||
14252           !Trunc->hasOneUse())
14253         return false;
14254       if (RightShift->getOpcode() != ISD::SRL ||
14255           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14256           RightShift->getConstantOperandVal(1) != 32 ||
14257           !RightShift->hasOneUse())
14258         return false;
14259 
14260       SDNode *Trunc2 = *RightShift->use_begin();
14261       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14262           Trunc2->getValueType(0) != MVT::i32 ||
14263           !Trunc2->hasOneUse())
14264         return false;
14265 
14266       SDNode *Bitcast = *Trunc->use_begin();
14267       SDNode *Bitcast2 = *Trunc2->use_begin();
14268 
14269       if (Bitcast->getOpcode() != ISD::BITCAST ||
14270           Bitcast->getValueType(0) != MVT::f32)
14271         return false;
14272       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14273           Bitcast2->getValueType(0) != MVT::f32)
14274         return false;
14275 
14276       if (Subtarget.isLittleEndian())
14277         std::swap(Bitcast, Bitcast2);
14278 
14279       // Bitcast has the second float (in memory-layout order) and Bitcast2
14280       // has the first one.
14281 
14282       SDValue BasePtr = LD->getBasePtr();
14283       if (LD->isIndexed()) {
14284         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14285                "Non-pre-inc AM on PPC?");
14286         BasePtr =
14287           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14288                       LD->getOffset());
14289       }
14290 
14291       auto MMOFlags =
14292           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14293       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14294                                       LD->getPointerInfo(), LD->getAlignment(),
14295                                       MMOFlags, LD->getAAInfo());
14296       SDValue AddPtr =
14297         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14298                     BasePtr, DAG.getIntPtrConstant(4, dl));
14299       SDValue FloatLoad2 = DAG.getLoad(
14300           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14301           LD->getPointerInfo().getWithOffset(4),
14302           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14303 
14304       if (LD->isIndexed()) {
14305         // Note that DAGCombine should re-form any pre-increment load(s) from
14306         // what is produced here if that makes sense.
14307         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14308       }
14309 
14310       DCI.CombineTo(Bitcast2, FloatLoad);
14311       DCI.CombineTo(Bitcast, FloatLoad2);
14312 
14313       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14314                                     SDValue(FloatLoad2.getNode(), 1));
14315       return true;
14316     };
14317 
14318     if (ReplaceTwoFloatLoad())
14319       return SDValue(N, 0);
14320 
14321     EVT MemVT = LD->getMemoryVT();
14322     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14323     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14324     if (LD->isUnindexed() && VT.isVector() &&
14325         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14326           // P8 and later hardware should just use LOAD.
14327           !Subtarget.hasP8Vector() &&
14328           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14329            VT == MVT::v4f32))) &&
14330         LD->getAlign() < ABIAlignment) {
14331       // This is a type-legal unaligned Altivec load.
14332       SDValue Chain = LD->getChain();
14333       SDValue Ptr = LD->getBasePtr();
14334       bool isLittleEndian = Subtarget.isLittleEndian();
14335 
14336       // This implements the loading of unaligned vectors as described in
14337       // the venerable Apple Velocity Engine overview. Specifically:
14338       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14339       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14340       //
14341       // The general idea is to expand a sequence of one or more unaligned
14342       // loads into an alignment-based permutation-control instruction (lvsl
14343       // or lvsr), a series of regular vector loads (which always truncate
14344       // their input address to an aligned address), and a series of
14345       // permutations.  The results of these permutations are the requested
14346       // loaded values.  The trick is that the last "extra" load is not taken
14347       // from the address you might suspect (sizeof(vector) bytes after the
14348       // last requested load), but rather sizeof(vector) - 1 bytes after the
14349       // last requested vector. The point of this is to avoid a page fault if
14350       // the base address happened to be aligned. This works because if the
14351       // base address is aligned, then adding less than a full vector length
14352       // will cause the last vector in the sequence to be (re)loaded.
14353       // Otherwise, the next vector will be fetched as you might suspect was
14354       // necessary.
14355 
14356       // We might be able to reuse the permutation generation from
14357       // a different base address offset from this one by an aligned amount.
14358       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14359       // optimization later.
14360       Intrinsic::ID Intr, IntrLD, IntrPerm;
14361       MVT PermCntlTy, PermTy, LDTy;
14362       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14363                             : Intrinsic::ppc_altivec_lvsl;
14364       IntrLD = Intrinsic::ppc_altivec_lvx;
14365       IntrPerm = Intrinsic::ppc_altivec_vperm;
14366       PermCntlTy = MVT::v16i8;
14367       PermTy = MVT::v4i32;
14368       LDTy = MVT::v4i32;
14369 
14370       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14371 
14372       // Create the new MMO for the new base load. It is like the original MMO,
14373       // but represents an area in memory almost twice the vector size centered
14374       // on the original address. If the address is unaligned, we might start
14375       // reading up to (sizeof(vector)-1) bytes below the address of the
14376       // original unaligned load.
14377       MachineFunction &MF = DAG.getMachineFunction();
14378       MachineMemOperand *BaseMMO =
14379         MF.getMachineMemOperand(LD->getMemOperand(),
14380                                 -(long)MemVT.getStoreSize()+1,
14381                                 2*MemVT.getStoreSize()-1);
14382 
14383       // Create the new base load.
14384       SDValue LDXIntID =
14385           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14386       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14387       SDValue BaseLoad =
14388         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14389                                 DAG.getVTList(PermTy, MVT::Other),
14390                                 BaseLoadOps, LDTy, BaseMMO);
14391 
14392       // Note that the value of IncOffset (which is provided to the next
14393       // load's pointer info offset value, and thus used to calculate the
14394       // alignment), and the value of IncValue (which is actually used to
14395       // increment the pointer value) are different! This is because we
14396       // require the next load to appear to be aligned, even though it
14397       // is actually offset from the base pointer by a lesser amount.
14398       int IncOffset = VT.getSizeInBits() / 8;
14399       int IncValue = IncOffset;
14400 
14401       // Walk (both up and down) the chain looking for another load at the real
14402       // (aligned) offset (the alignment of the other load does not matter in
14403       // this case). If found, then do not use the offset reduction trick, as
14404       // that will prevent the loads from being later combined (as they would
14405       // otherwise be duplicates).
14406       if (!findConsecutiveLoad(LD, DAG))
14407         --IncValue;
14408 
14409       SDValue Increment =
14410           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14411       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14412 
14413       MachineMemOperand *ExtraMMO =
14414         MF.getMachineMemOperand(LD->getMemOperand(),
14415                                 1, 2*MemVT.getStoreSize()-1);
14416       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14417       SDValue ExtraLoad =
14418         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14419                                 DAG.getVTList(PermTy, MVT::Other),
14420                                 ExtraLoadOps, LDTy, ExtraMMO);
14421 
14422       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14423         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14424 
14425       // Because vperm has a big-endian bias, we must reverse the order
14426       // of the input vectors and complement the permute control vector
14427       // when generating little endian code.  We have already handled the
14428       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14429       // and ExtraLoad here.
14430       SDValue Perm;
14431       if (isLittleEndian)
14432         Perm = BuildIntrinsicOp(IntrPerm,
14433                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14434       else
14435         Perm = BuildIntrinsicOp(IntrPerm,
14436                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14437 
14438       if (VT != PermTy)
14439         Perm = Subtarget.hasAltivec()
14440                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
14441                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
14442                                  DAG.getTargetConstant(1, dl, MVT::i64));
14443                                // second argument is 1 because this rounding
14444                                // is always exact.
14445 
14446       // The output of the permutation is our loaded result, the TokenFactor is
14447       // our new chain.
14448       DCI.CombineTo(N, Perm, TF);
14449       return SDValue(N, 0);
14450     }
14451     }
14452     break;
14453     case ISD::INTRINSIC_WO_CHAIN: {
14454       bool isLittleEndian = Subtarget.isLittleEndian();
14455       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14456       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14457                                            : Intrinsic::ppc_altivec_lvsl);
14458       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
14459         SDValue Add = N->getOperand(1);
14460 
14461         int Bits = 4 /* 16 byte alignment */;
14462 
14463         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14464                                   APInt::getAllOnesValue(Bits /* alignment */)
14465                                       .zext(Add.getScalarValueSizeInBits()))) {
14466           SDNode *BasePtr = Add->getOperand(0).getNode();
14467           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14468                                     UE = BasePtr->use_end();
14469                UI != UE; ++UI) {
14470             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14471                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
14472                     IID) {
14473               // We've found another LVSL/LVSR, and this address is an aligned
14474               // multiple of that one. The results will be the same, so use the
14475               // one we've just found instead.
14476 
14477               return SDValue(*UI, 0);
14478             }
14479           }
14480         }
14481 
14482         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14483           SDNode *BasePtr = Add->getOperand(0).getNode();
14484           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14485                UE = BasePtr->use_end(); UI != UE; ++UI) {
14486             if (UI->getOpcode() == ISD::ADD &&
14487                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14488                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14489                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14490                 (1ULL << Bits) == 0) {
14491               SDNode *OtherAdd = *UI;
14492               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14493                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14494                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14495                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14496                   return SDValue(*VI, 0);
14497                 }
14498               }
14499             }
14500           }
14501         }
14502       }
14503 
14504       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14505       // Expose the vabsduw/h/b opportunity for down stream
14506       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14507           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14508            IID == Intrinsic::ppc_altivec_vmaxsh ||
14509            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14510         SDValue V1 = N->getOperand(1);
14511         SDValue V2 = N->getOperand(2);
14512         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14513              V1.getSimpleValueType() == MVT::v8i16 ||
14514              V1.getSimpleValueType() == MVT::v16i8) &&
14515             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14516           // (0-a, a)
14517           if (V1.getOpcode() == ISD::SUB &&
14518               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14519               V1.getOperand(1) == V2) {
14520             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14521           }
14522           // (a, 0-a)
14523           if (V2.getOpcode() == ISD::SUB &&
14524               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14525               V2.getOperand(1) == V1) {
14526             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14527           }
14528           // (x-y, y-x)
14529           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14530               V1.getOperand(0) == V2.getOperand(1) &&
14531               V1.getOperand(1) == V2.getOperand(0)) {
14532             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14533           }
14534         }
14535       }
14536     }
14537 
14538     break;
14539   case ISD::INTRINSIC_W_CHAIN:
14540     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14541     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14542     if (Subtarget.needsSwapsForVSXMemOps()) {
14543       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14544       default:
14545         break;
14546       case Intrinsic::ppc_vsx_lxvw4x:
14547       case Intrinsic::ppc_vsx_lxvd2x:
14548         return expandVSXLoadForLE(N, DCI);
14549       }
14550     }
14551     break;
14552   case ISD::INTRINSIC_VOID:
14553     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14554     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14555     if (Subtarget.needsSwapsForVSXMemOps()) {
14556       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14557       default:
14558         break;
14559       case Intrinsic::ppc_vsx_stxvw4x:
14560       case Intrinsic::ppc_vsx_stxvd2x:
14561         return expandVSXStoreForLE(N, DCI);
14562       }
14563     }
14564     break;
14565   case ISD::BSWAP:
14566     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14567     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14568         N->getOperand(0).hasOneUse() &&
14569         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14570          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14571           N->getValueType(0) == MVT::i64))) {
14572       SDValue Load = N->getOperand(0);
14573       LoadSDNode *LD = cast<LoadSDNode>(Load);
14574       // Create the byte-swapping load.
14575       SDValue Ops[] = {
14576         LD->getChain(),    // Chain
14577         LD->getBasePtr(),  // Ptr
14578         DAG.getValueType(N->getValueType(0)) // VT
14579       };
14580       SDValue BSLoad =
14581         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14582                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14583                                               MVT::i64 : MVT::i32, MVT::Other),
14584                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14585 
14586       // If this is an i16 load, insert the truncate.
14587       SDValue ResVal = BSLoad;
14588       if (N->getValueType(0) == MVT::i16)
14589         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14590 
14591       // First, combine the bswap away.  This makes the value produced by the
14592       // load dead.
14593       DCI.CombineTo(N, ResVal);
14594 
14595       // Next, combine the load away, we give it a bogus result value but a real
14596       // chain result.  The result value is dead because the bswap is dead.
14597       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14598 
14599       // Return N so it doesn't get rechecked!
14600       return SDValue(N, 0);
14601     }
14602     break;
14603   case PPCISD::VCMP:
14604     // If a VCMPo node already exists with exactly the same operands as this
14605     // node, use its result instead of this node (VCMPo computes both a CR6 and
14606     // a normal output).
14607     //
14608     if (!N->getOperand(0).hasOneUse() &&
14609         !N->getOperand(1).hasOneUse() &&
14610         !N->getOperand(2).hasOneUse()) {
14611 
14612       // Scan all of the users of the LHS, looking for VCMPo's that match.
14613       SDNode *VCMPoNode = nullptr;
14614 
14615       SDNode *LHSN = N->getOperand(0).getNode();
14616       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14617            UI != E; ++UI)
14618         if (UI->getOpcode() == PPCISD::VCMPo &&
14619             UI->getOperand(1) == N->getOperand(1) &&
14620             UI->getOperand(2) == N->getOperand(2) &&
14621             UI->getOperand(0) == N->getOperand(0)) {
14622           VCMPoNode = *UI;
14623           break;
14624         }
14625 
14626       // If there is no VCMPo node, or if the flag value has a single use, don't
14627       // transform this.
14628       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14629         break;
14630 
14631       // Look at the (necessarily single) use of the flag value.  If it has a
14632       // chain, this transformation is more complex.  Note that multiple things
14633       // could use the value result, which we should ignore.
14634       SDNode *FlagUser = nullptr;
14635       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14636            FlagUser == nullptr; ++UI) {
14637         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14638         SDNode *User = *UI;
14639         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14640           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14641             FlagUser = User;
14642             break;
14643           }
14644         }
14645       }
14646 
14647       // If the user is a MFOCRF instruction, we know this is safe.
14648       // Otherwise we give up for right now.
14649       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14650         return SDValue(VCMPoNode, 0);
14651     }
14652     break;
14653   case ISD::BRCOND: {
14654     SDValue Cond = N->getOperand(1);
14655     SDValue Target = N->getOperand(2);
14656 
14657     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14658         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14659           Intrinsic::loop_decrement) {
14660 
14661       // We now need to make the intrinsic dead (it cannot be instruction
14662       // selected).
14663       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14664       assert(Cond.getNode()->hasOneUse() &&
14665              "Counter decrement has more than one use");
14666 
14667       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14668                          N->getOperand(0), Target);
14669     }
14670   }
14671   break;
14672   case ISD::BR_CC: {
14673     // If this is a branch on an altivec predicate comparison, lower this so
14674     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14675     // lowering is done pre-legalize, because the legalizer lowers the predicate
14676     // compare down to code that is difficult to reassemble.
14677     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14678     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14679 
14680     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14681     // value. If so, pass-through the AND to get to the intrinsic.
14682     if (LHS.getOpcode() == ISD::AND &&
14683         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14684         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14685           Intrinsic::loop_decrement &&
14686         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14687         !isNullConstant(LHS.getOperand(1)))
14688       LHS = LHS.getOperand(0);
14689 
14690     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14691         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14692           Intrinsic::loop_decrement &&
14693         isa<ConstantSDNode>(RHS)) {
14694       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14695              "Counter decrement comparison is not EQ or NE");
14696 
14697       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14698       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14699                     (CC == ISD::SETNE && !Val);
14700 
14701       // We now need to make the intrinsic dead (it cannot be instruction
14702       // selected).
14703       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14704       assert(LHS.getNode()->hasOneUse() &&
14705              "Counter decrement has more than one use");
14706 
14707       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14708                          N->getOperand(0), N->getOperand(4));
14709     }
14710 
14711     int CompareOpc;
14712     bool isDot;
14713 
14714     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14715         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14716         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14717       assert(isDot && "Can't compare against a vector result!");
14718 
14719       // If this is a comparison against something other than 0/1, then we know
14720       // that the condition is never/always true.
14721       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14722       if (Val != 0 && Val != 1) {
14723         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14724           return N->getOperand(0);
14725         // Always !=, turn it into an unconditional branch.
14726         return DAG.getNode(ISD::BR, dl, MVT::Other,
14727                            N->getOperand(0), N->getOperand(4));
14728       }
14729 
14730       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14731 
14732       // Create the PPCISD altivec 'dot' comparison node.
14733       SDValue Ops[] = {
14734         LHS.getOperand(2),  // LHS of compare
14735         LHS.getOperand(3),  // RHS of compare
14736         DAG.getConstant(CompareOpc, dl, MVT::i32)
14737       };
14738       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14739       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14740 
14741       // Unpack the result based on how the target uses it.
14742       PPC::Predicate CompOpc;
14743       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14744       default:  // Can't happen, don't crash on invalid number though.
14745       case 0:   // Branch on the value of the EQ bit of CR6.
14746         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14747         break;
14748       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14749         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14750         break;
14751       case 2:   // Branch on the value of the LT bit of CR6.
14752         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14753         break;
14754       case 3:   // Branch on the inverted value of the LT bit of CR6.
14755         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14756         break;
14757       }
14758 
14759       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14760                          DAG.getConstant(CompOpc, dl, MVT::i32),
14761                          DAG.getRegister(PPC::CR6, MVT::i32),
14762                          N->getOperand(4), CompNode.getValue(1));
14763     }
14764     break;
14765   }
14766   case ISD::BUILD_VECTOR:
14767     return DAGCombineBuildVector(N, DCI);
14768   case ISD::ABS:
14769     return combineABS(N, DCI);
14770   case ISD::VSELECT:
14771     return combineVSelect(N, DCI);
14772   }
14773 
14774   return SDValue();
14775 }
14776 
14777 SDValue
14778 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14779                                  SelectionDAG &DAG,
14780                                  SmallVectorImpl<SDNode *> &Created) const {
14781   // fold (sdiv X, pow2)
14782   EVT VT = N->getValueType(0);
14783   if (VT == MVT::i64 && !Subtarget.isPPC64())
14784     return SDValue();
14785   if ((VT != MVT::i32 && VT != MVT::i64) ||
14786       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14787     return SDValue();
14788 
14789   SDLoc DL(N);
14790   SDValue N0 = N->getOperand(0);
14791 
14792   bool IsNegPow2 = (-Divisor).isPowerOf2();
14793   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14794   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14795 
14796   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14797   Created.push_back(Op.getNode());
14798 
14799   if (IsNegPow2) {
14800     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14801     Created.push_back(Op.getNode());
14802   }
14803 
14804   return Op;
14805 }
14806 
14807 //===----------------------------------------------------------------------===//
14808 // Inline Assembly Support
14809 //===----------------------------------------------------------------------===//
14810 
14811 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14812                                                       KnownBits &Known,
14813                                                       const APInt &DemandedElts,
14814                                                       const SelectionDAG &DAG,
14815                                                       unsigned Depth) const {
14816   Known.resetAll();
14817   switch (Op.getOpcode()) {
14818   default: break;
14819   case PPCISD::LBRX: {
14820     // lhbrx is known to have the top bits cleared out.
14821     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14822       Known.Zero = 0xFFFF0000;
14823     break;
14824   }
14825   case ISD::INTRINSIC_WO_CHAIN: {
14826     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14827     default: break;
14828     case Intrinsic::ppc_altivec_vcmpbfp_p:
14829     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14830     case Intrinsic::ppc_altivec_vcmpequb_p:
14831     case Intrinsic::ppc_altivec_vcmpequh_p:
14832     case Intrinsic::ppc_altivec_vcmpequw_p:
14833     case Intrinsic::ppc_altivec_vcmpequd_p:
14834     case Intrinsic::ppc_altivec_vcmpgefp_p:
14835     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14836     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14837     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14838     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14839     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14840     case Intrinsic::ppc_altivec_vcmpgtub_p:
14841     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14842     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14843     case Intrinsic::ppc_altivec_vcmpgtud_p:
14844       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14845       break;
14846     }
14847   }
14848   }
14849 }
14850 
14851 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14852   switch (Subtarget.getCPUDirective()) {
14853   default: break;
14854   case PPC::DIR_970:
14855   case PPC::DIR_PWR4:
14856   case PPC::DIR_PWR5:
14857   case PPC::DIR_PWR5X:
14858   case PPC::DIR_PWR6:
14859   case PPC::DIR_PWR6X:
14860   case PPC::DIR_PWR7:
14861   case PPC::DIR_PWR8:
14862   case PPC::DIR_PWR9:
14863   case PPC::DIR_PWR10:
14864   case PPC::DIR_PWR_FUTURE: {
14865     if (!ML)
14866       break;
14867 
14868     if (!DisableInnermostLoopAlign32) {
14869       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14870       // so that we can decrease cache misses and branch-prediction misses.
14871       // Actual alignment of the loop will depend on the hotness check and other
14872       // logic in alignBlocks.
14873       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14874         return Align(32);
14875     }
14876 
14877     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14878 
14879     // For small loops (between 5 and 8 instructions), align to a 32-byte
14880     // boundary so that the entire loop fits in one instruction-cache line.
14881     uint64_t LoopSize = 0;
14882     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14883       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14884         LoopSize += TII->getInstSizeInBytes(*J);
14885         if (LoopSize > 32)
14886           break;
14887       }
14888 
14889     if (LoopSize > 16 && LoopSize <= 32)
14890       return Align(32);
14891 
14892     break;
14893   }
14894   }
14895 
14896   return TargetLowering::getPrefLoopAlignment(ML);
14897 }
14898 
14899 /// getConstraintType - Given a constraint, return the type of
14900 /// constraint it is for this target.
14901 PPCTargetLowering::ConstraintType
14902 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14903   if (Constraint.size() == 1) {
14904     switch (Constraint[0]) {
14905     default: break;
14906     case 'b':
14907     case 'r':
14908     case 'f':
14909     case 'd':
14910     case 'v':
14911     case 'y':
14912       return C_RegisterClass;
14913     case 'Z':
14914       // FIXME: While Z does indicate a memory constraint, it specifically
14915       // indicates an r+r address (used in conjunction with the 'y' modifier
14916       // in the replacement string). Currently, we're forcing the base
14917       // register to be r0 in the asm printer (which is interpreted as zero)
14918       // and forming the complete address in the second register. This is
14919       // suboptimal.
14920       return C_Memory;
14921     }
14922   } else if (Constraint == "wc") { // individual CR bits.
14923     return C_RegisterClass;
14924   } else if (Constraint == "wa" || Constraint == "wd" ||
14925              Constraint == "wf" || Constraint == "ws" ||
14926              Constraint == "wi" || Constraint == "ww") {
14927     return C_RegisterClass; // VSX registers.
14928   }
14929   return TargetLowering::getConstraintType(Constraint);
14930 }
14931 
14932 /// Examine constraint type and operand type and determine a weight value.
14933 /// This object must already have been set up with the operand type
14934 /// and the current alternative constraint selected.
14935 TargetLowering::ConstraintWeight
14936 PPCTargetLowering::getSingleConstraintMatchWeight(
14937     AsmOperandInfo &info, const char *constraint) const {
14938   ConstraintWeight weight = CW_Invalid;
14939   Value *CallOperandVal = info.CallOperandVal;
14940     // If we don't have a value, we can't do a match,
14941     // but allow it at the lowest weight.
14942   if (!CallOperandVal)
14943     return CW_Default;
14944   Type *type = CallOperandVal->getType();
14945 
14946   // Look at the constraint type.
14947   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14948     return CW_Register; // an individual CR bit.
14949   else if ((StringRef(constraint) == "wa" ||
14950             StringRef(constraint) == "wd" ||
14951             StringRef(constraint) == "wf") &&
14952            type->isVectorTy())
14953     return CW_Register;
14954   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14955     return CW_Register; // just hold 64-bit integers data.
14956   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14957     return CW_Register;
14958   else if (StringRef(constraint) == "ww" && type->isFloatTy())
14959     return CW_Register;
14960 
14961   switch (*constraint) {
14962   default:
14963     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14964     break;
14965   case 'b':
14966     if (type->isIntegerTy())
14967       weight = CW_Register;
14968     break;
14969   case 'f':
14970     if (type->isFloatTy())
14971       weight = CW_Register;
14972     break;
14973   case 'd':
14974     if (type->isDoubleTy())
14975       weight = CW_Register;
14976     break;
14977   case 'v':
14978     if (type->isVectorTy())
14979       weight = CW_Register;
14980     break;
14981   case 'y':
14982     weight = CW_Register;
14983     break;
14984   case 'Z':
14985     weight = CW_Memory;
14986     break;
14987   }
14988   return weight;
14989 }
14990 
14991 std::pair<unsigned, const TargetRegisterClass *>
14992 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14993                                                 StringRef Constraint,
14994                                                 MVT VT) const {
14995   if (Constraint.size() == 1) {
14996     // GCC RS6000 Constraint Letters
14997     switch (Constraint[0]) {
14998     case 'b':   // R1-R31
14999       if (VT == MVT::i64 && Subtarget.isPPC64())
15000         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15001       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15002     case 'r':   // R0-R31
15003       if (VT == MVT::i64 && Subtarget.isPPC64())
15004         return std::make_pair(0U, &PPC::G8RCRegClass);
15005       return std::make_pair(0U, &PPC::GPRCRegClass);
15006     // 'd' and 'f' constraints are both defined to be "the floating point
15007     // registers", where one is for 32-bit and the other for 64-bit. We don't
15008     // really care overly much here so just give them all the same reg classes.
15009     case 'd':
15010     case 'f':
15011       if (Subtarget.hasSPE()) {
15012         if (VT == MVT::f32 || VT == MVT::i32)
15013           return std::make_pair(0U, &PPC::GPRCRegClass);
15014         if (VT == MVT::f64 || VT == MVT::i64)
15015           return std::make_pair(0U, &PPC::SPERCRegClass);
15016       } else {
15017         if (VT == MVT::f32 || VT == MVT::i32)
15018           return std::make_pair(0U, &PPC::F4RCRegClass);
15019         if (VT == MVT::f64 || VT == MVT::i64)
15020           return std::make_pair(0U, &PPC::F8RCRegClass);
15021       }
15022       break;
15023     case 'v':
15024       if (Subtarget.hasAltivec())
15025         return std::make_pair(0U, &PPC::VRRCRegClass);
15026       break;
15027     case 'y':   // crrc
15028       return std::make_pair(0U, &PPC::CRRCRegClass);
15029     }
15030   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15031     // An individual CR bit.
15032     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15033   } else if ((Constraint == "wa" || Constraint == "wd" ||
15034              Constraint == "wf" || Constraint == "wi") &&
15035              Subtarget.hasVSX()) {
15036     return std::make_pair(0U, &PPC::VSRCRegClass);
15037   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15038     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15039       return std::make_pair(0U, &PPC::VSSRCRegClass);
15040     else
15041       return std::make_pair(0U, &PPC::VSFRCRegClass);
15042   }
15043 
15044   // If we name a VSX register, we can't defer to the base class because it
15045   // will not recognize the correct register (their names will be VSL{0-31}
15046   // and V{0-31} so they won't match). So we match them here.
15047   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15048     int VSNum = atoi(Constraint.data() + 3);
15049     assert(VSNum >= 0 && VSNum <= 63 &&
15050            "Attempted to access a vsr out of range");
15051     if (VSNum < 32)
15052       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15053     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15054   }
15055   std::pair<unsigned, const TargetRegisterClass *> R =
15056       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15057 
15058   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15059   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15060   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15061   // register.
15062   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15063   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15064   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15065       PPC::GPRCRegClass.contains(R.first))
15066     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15067                             PPC::sub_32, &PPC::G8RCRegClass),
15068                           &PPC::G8RCRegClass);
15069 
15070   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15071   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15072     R.first = PPC::CR0;
15073     R.second = &PPC::CRRCRegClass;
15074   }
15075 
15076   return R;
15077 }
15078 
15079 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15080 /// vector.  If it is invalid, don't add anything to Ops.
15081 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15082                                                      std::string &Constraint,
15083                                                      std::vector<SDValue>&Ops,
15084                                                      SelectionDAG &DAG) const {
15085   SDValue Result;
15086 
15087   // Only support length 1 constraints.
15088   if (Constraint.length() > 1) return;
15089 
15090   char Letter = Constraint[0];
15091   switch (Letter) {
15092   default: break;
15093   case 'I':
15094   case 'J':
15095   case 'K':
15096   case 'L':
15097   case 'M':
15098   case 'N':
15099   case 'O':
15100   case 'P': {
15101     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15102     if (!CST) return; // Must be an immediate to match.
15103     SDLoc dl(Op);
15104     int64_t Value = CST->getSExtValue();
15105     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15106                          // numbers are printed as such.
15107     switch (Letter) {
15108     default: llvm_unreachable("Unknown constraint letter!");
15109     case 'I':  // "I" is a signed 16-bit constant.
15110       if (isInt<16>(Value))
15111         Result = DAG.getTargetConstant(Value, dl, TCVT);
15112       break;
15113     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15114       if (isShiftedUInt<16, 16>(Value))
15115         Result = DAG.getTargetConstant(Value, dl, TCVT);
15116       break;
15117     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15118       if (isShiftedInt<16, 16>(Value))
15119         Result = DAG.getTargetConstant(Value, dl, TCVT);
15120       break;
15121     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15122       if (isUInt<16>(Value))
15123         Result = DAG.getTargetConstant(Value, dl, TCVT);
15124       break;
15125     case 'M':  // "M" is a constant that is greater than 31.
15126       if (Value > 31)
15127         Result = DAG.getTargetConstant(Value, dl, TCVT);
15128       break;
15129     case 'N':  // "N" is a positive constant that is an exact power of two.
15130       if (Value > 0 && isPowerOf2_64(Value))
15131         Result = DAG.getTargetConstant(Value, dl, TCVT);
15132       break;
15133     case 'O':  // "O" is the constant zero.
15134       if (Value == 0)
15135         Result = DAG.getTargetConstant(Value, dl, TCVT);
15136       break;
15137     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15138       if (isInt<16>(-Value))
15139         Result = DAG.getTargetConstant(Value, dl, TCVT);
15140       break;
15141     }
15142     break;
15143   }
15144   }
15145 
15146   if (Result.getNode()) {
15147     Ops.push_back(Result);
15148     return;
15149   }
15150 
15151   // Handle standard constraint letters.
15152   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15153 }
15154 
15155 // isLegalAddressingMode - Return true if the addressing mode represented
15156 // by AM is legal for this target, for a load/store of the specified type.
15157 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15158                                               const AddrMode &AM, Type *Ty,
15159                                               unsigned AS,
15160                                               Instruction *I) const {
15161   // Vector type r+i form is supported since power9 as DQ form. We don't check
15162   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15163   // imm form is preferred and the offset can be adjusted to use imm form later
15164   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15165   // max offset to check legal addressing mode, we should be a little aggressive
15166   // to contain other offsets for that LSRUse.
15167   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15168     return false;
15169 
15170   // PPC allows a sign-extended 16-bit immediate field.
15171   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15172     return false;
15173 
15174   // No global is ever allowed as a base.
15175   if (AM.BaseGV)
15176     return false;
15177 
15178   // PPC only support r+r,
15179   switch (AM.Scale) {
15180   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15181     break;
15182   case 1:
15183     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15184       return false;
15185     // Otherwise we have r+r or r+i.
15186     break;
15187   case 2:
15188     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15189       return false;
15190     // Allow 2*r as r+r.
15191     break;
15192   default:
15193     // No other scales are supported.
15194     return false;
15195   }
15196 
15197   return true;
15198 }
15199 
15200 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15201                                            SelectionDAG &DAG) const {
15202   MachineFunction &MF = DAG.getMachineFunction();
15203   MachineFrameInfo &MFI = MF.getFrameInfo();
15204   MFI.setReturnAddressIsTaken(true);
15205 
15206   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15207     return SDValue();
15208 
15209   SDLoc dl(Op);
15210   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15211 
15212   // Make sure the function does not optimize away the store of the RA to
15213   // the stack.
15214   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15215   FuncInfo->setLRStoreRequired();
15216   bool isPPC64 = Subtarget.isPPC64();
15217   auto PtrVT = getPointerTy(MF.getDataLayout());
15218 
15219   if (Depth > 0) {
15220     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15221     SDValue Offset =
15222         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15223                         isPPC64 ? MVT::i64 : MVT::i32);
15224     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15225                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15226                        MachinePointerInfo());
15227   }
15228 
15229   // Just load the return address off the stack.
15230   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15231   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15232                      MachinePointerInfo());
15233 }
15234 
15235 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15236                                           SelectionDAG &DAG) const {
15237   SDLoc dl(Op);
15238   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15239 
15240   MachineFunction &MF = DAG.getMachineFunction();
15241   MachineFrameInfo &MFI = MF.getFrameInfo();
15242   MFI.setFrameAddressIsTaken(true);
15243 
15244   EVT PtrVT = getPointerTy(MF.getDataLayout());
15245   bool isPPC64 = PtrVT == MVT::i64;
15246 
15247   // Naked functions never have a frame pointer, and so we use r1. For all
15248   // other functions, this decision must be delayed until during PEI.
15249   unsigned FrameReg;
15250   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15251     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15252   else
15253     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15254 
15255   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15256                                          PtrVT);
15257   while (Depth--)
15258     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15259                             FrameAddr, MachinePointerInfo());
15260   return FrameAddr;
15261 }
15262 
15263 // FIXME? Maybe this could be a TableGen attribute on some registers and
15264 // this table could be generated automatically from RegInfo.
15265 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15266                                               const MachineFunction &MF) const {
15267   bool isPPC64 = Subtarget.isPPC64();
15268 
15269   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15270   if (!is64Bit && VT != LLT::scalar(32))
15271     report_fatal_error("Invalid register global variable type");
15272 
15273   Register Reg = StringSwitch<Register>(RegName)
15274                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15275                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15276                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15277                      .Default(Register());
15278 
15279   if (Reg)
15280     return Reg;
15281   report_fatal_error("Invalid register name global variable");
15282 }
15283 
15284 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15285   // 32-bit SVR4 ABI access everything as got-indirect.
15286   if (Subtarget.is32BitELFABI())
15287     return true;
15288 
15289   // AIX accesses everything indirectly through the TOC, which is similar to
15290   // the GOT.
15291   if (Subtarget.isAIXABI())
15292     return true;
15293 
15294   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15295   // If it is small or large code model, module locals are accessed
15296   // indirectly by loading their address from .toc/.got.
15297   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15298     return true;
15299 
15300   // JumpTable and BlockAddress are accessed as got-indirect.
15301   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15302     return true;
15303 
15304   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15305     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15306 
15307   return false;
15308 }
15309 
15310 bool
15311 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15312   // The PowerPC target isn't yet aware of offsets.
15313   return false;
15314 }
15315 
15316 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15317                                            const CallInst &I,
15318                                            MachineFunction &MF,
15319                                            unsigned Intrinsic) const {
15320   switch (Intrinsic) {
15321   case Intrinsic::ppc_altivec_lvx:
15322   case Intrinsic::ppc_altivec_lvxl:
15323   case Intrinsic::ppc_altivec_lvebx:
15324   case Intrinsic::ppc_altivec_lvehx:
15325   case Intrinsic::ppc_altivec_lvewx:
15326   case Intrinsic::ppc_vsx_lxvd2x:
15327   case Intrinsic::ppc_vsx_lxvw4x: {
15328     EVT VT;
15329     switch (Intrinsic) {
15330     case Intrinsic::ppc_altivec_lvebx:
15331       VT = MVT::i8;
15332       break;
15333     case Intrinsic::ppc_altivec_lvehx:
15334       VT = MVT::i16;
15335       break;
15336     case Intrinsic::ppc_altivec_lvewx:
15337       VT = MVT::i32;
15338       break;
15339     case Intrinsic::ppc_vsx_lxvd2x:
15340       VT = MVT::v2f64;
15341       break;
15342     default:
15343       VT = MVT::v4i32;
15344       break;
15345     }
15346 
15347     Info.opc = ISD::INTRINSIC_W_CHAIN;
15348     Info.memVT = VT;
15349     Info.ptrVal = I.getArgOperand(0);
15350     Info.offset = -VT.getStoreSize()+1;
15351     Info.size = 2*VT.getStoreSize()-1;
15352     Info.align = Align(1);
15353     Info.flags = MachineMemOperand::MOLoad;
15354     return true;
15355   }
15356   case Intrinsic::ppc_altivec_stvx:
15357   case Intrinsic::ppc_altivec_stvxl:
15358   case Intrinsic::ppc_altivec_stvebx:
15359   case Intrinsic::ppc_altivec_stvehx:
15360   case Intrinsic::ppc_altivec_stvewx:
15361   case Intrinsic::ppc_vsx_stxvd2x:
15362   case Intrinsic::ppc_vsx_stxvw4x: {
15363     EVT VT;
15364     switch (Intrinsic) {
15365     case Intrinsic::ppc_altivec_stvebx:
15366       VT = MVT::i8;
15367       break;
15368     case Intrinsic::ppc_altivec_stvehx:
15369       VT = MVT::i16;
15370       break;
15371     case Intrinsic::ppc_altivec_stvewx:
15372       VT = MVT::i32;
15373       break;
15374     case Intrinsic::ppc_vsx_stxvd2x:
15375       VT = MVT::v2f64;
15376       break;
15377     default:
15378       VT = MVT::v4i32;
15379       break;
15380     }
15381 
15382     Info.opc = ISD::INTRINSIC_VOID;
15383     Info.memVT = VT;
15384     Info.ptrVal = I.getArgOperand(1);
15385     Info.offset = -VT.getStoreSize()+1;
15386     Info.size = 2*VT.getStoreSize()-1;
15387     Info.align = Align(1);
15388     Info.flags = MachineMemOperand::MOStore;
15389     return true;
15390   }
15391   default:
15392     break;
15393   }
15394 
15395   return false;
15396 }
15397 
15398 /// It returns EVT::Other if the type should be determined using generic
15399 /// target-independent logic.
15400 EVT PPCTargetLowering::getOptimalMemOpType(
15401     const MemOp &Op, const AttributeList &FuncAttributes) const {
15402   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15403     // We should use Altivec/VSX loads and stores when available. For unaligned
15404     // addresses, unaligned VSX loads are only fast starting with the P8.
15405     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15406         (Op.isAligned(Align(16)) ||
15407          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15408       return MVT::v4i32;
15409   }
15410 
15411   if (Subtarget.isPPC64()) {
15412     return MVT::i64;
15413   }
15414 
15415   return MVT::i32;
15416 }
15417 
15418 /// Returns true if it is beneficial to convert a load of a constant
15419 /// to just the constant itself.
15420 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15421                                                           Type *Ty) const {
15422   assert(Ty->isIntegerTy());
15423 
15424   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15425   return !(BitSize == 0 || BitSize > 64);
15426 }
15427 
15428 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15429   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15430     return false;
15431   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15432   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15433   return NumBits1 == 64 && NumBits2 == 32;
15434 }
15435 
15436 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15437   if (!VT1.isInteger() || !VT2.isInteger())
15438     return false;
15439   unsigned NumBits1 = VT1.getSizeInBits();
15440   unsigned NumBits2 = VT2.getSizeInBits();
15441   return NumBits1 == 64 && NumBits2 == 32;
15442 }
15443 
15444 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15445   // Generally speaking, zexts are not free, but they are free when they can be
15446   // folded with other operations.
15447   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15448     EVT MemVT = LD->getMemoryVT();
15449     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15450          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15451         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15452          LD->getExtensionType() == ISD::ZEXTLOAD))
15453       return true;
15454   }
15455 
15456   // FIXME: Add other cases...
15457   //  - 32-bit shifts with a zext to i64
15458   //  - zext after ctlz, bswap, etc.
15459   //  - zext after and by a constant mask
15460 
15461   return TargetLowering::isZExtFree(Val, VT2);
15462 }
15463 
15464 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15465   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15466          "invalid fpext types");
15467   // Extending to float128 is not free.
15468   if (DestVT == MVT::f128)
15469     return false;
15470   return true;
15471 }
15472 
15473 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15474   return isInt<16>(Imm) || isUInt<16>(Imm);
15475 }
15476 
15477 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15478   return isInt<16>(Imm) || isUInt<16>(Imm);
15479 }
15480 
15481 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15482                                                        unsigned,
15483                                                        unsigned,
15484                                                        MachineMemOperand::Flags,
15485                                                        bool *Fast) const {
15486   if (DisablePPCUnaligned)
15487     return false;
15488 
15489   // PowerPC supports unaligned memory access for simple non-vector types.
15490   // Although accessing unaligned addresses is not as efficient as accessing
15491   // aligned addresses, it is generally more efficient than manual expansion,
15492   // and generally only traps for software emulation when crossing page
15493   // boundaries.
15494 
15495   if (!VT.isSimple())
15496     return false;
15497 
15498   if (VT.isFloatingPoint() && !VT.isVector() &&
15499       !Subtarget.allowsUnalignedFPAccess())
15500     return false;
15501 
15502   if (VT.getSimpleVT().isVector()) {
15503     if (Subtarget.hasVSX()) {
15504       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15505           VT != MVT::v4f32 && VT != MVT::v4i32)
15506         return false;
15507     } else {
15508       return false;
15509     }
15510   }
15511 
15512   if (VT == MVT::ppcf128)
15513     return false;
15514 
15515   if (Fast)
15516     *Fast = true;
15517 
15518   return true;
15519 }
15520 
15521 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15522                                                    EVT VT) const {
15523   return isFMAFasterThanFMulAndFAdd(
15524       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
15525 }
15526 
15527 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
15528                                                    Type *Ty) const {
15529   switch (Ty->getScalarType()->getTypeID()) {
15530   case Type::FloatTyID:
15531   case Type::DoubleTyID:
15532     return true;
15533   case Type::FP128TyID:
15534     return Subtarget.hasP9Vector();
15535   default:
15536     return false;
15537   }
15538 }
15539 
15540 // FIXME: add more patterns which are not profitable to hoist.
15541 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
15542   if (!I->hasOneUse())
15543     return true;
15544 
15545   Instruction *User = I->user_back();
15546   assert(User && "A single use instruction with no uses.");
15547 
15548   switch (I->getOpcode()) {
15549   case Instruction::FMul: {
15550     // Don't break FMA, PowerPC prefers FMA.
15551     if (User->getOpcode() != Instruction::FSub &&
15552         User->getOpcode() != Instruction::FAdd)
15553       return true;
15554 
15555     const TargetOptions &Options = getTargetMachine().Options;
15556     const Function *F = I->getFunction();
15557     const DataLayout &DL = F->getParent()->getDataLayout();
15558     Type *Ty = User->getOperand(0)->getType();
15559 
15560     return !(
15561         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
15562         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
15563         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
15564   }
15565   case Instruction::Load: {
15566     // Don't break "store (load float*)" pattern, this pattern will be combined
15567     // to "store (load int32)" in later InstCombine pass. See function
15568     // combineLoadToOperationType. On PowerPC, loading a float point takes more
15569     // cycles than loading a 32 bit integer.
15570     LoadInst *LI = cast<LoadInst>(I);
15571     // For the loads that combineLoadToOperationType does nothing, like
15572     // ordered load, it should be profitable to hoist them.
15573     // For swifterror load, it can only be used for pointer to pointer type, so
15574     // later type check should get rid of this case.
15575     if (!LI->isUnordered())
15576       return true;
15577 
15578     if (User->getOpcode() != Instruction::Store)
15579       return true;
15580 
15581     if (I->getType()->getTypeID() != Type::FloatTyID)
15582       return true;
15583 
15584     return false;
15585   }
15586   default:
15587     return true;
15588   }
15589   return true;
15590 }
15591 
15592 const MCPhysReg *
15593 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15594   // LR is a callee-save register, but we must treat it as clobbered by any call
15595   // site. Hence we include LR in the scratch registers, which are in turn added
15596   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15597   // to CTR, which is used by any indirect call.
15598   static const MCPhysReg ScratchRegs[] = {
15599     PPC::X12, PPC::LR8, PPC::CTR8, 0
15600   };
15601 
15602   return ScratchRegs;
15603 }
15604 
15605 Register PPCTargetLowering::getExceptionPointerRegister(
15606     const Constant *PersonalityFn) const {
15607   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15608 }
15609 
15610 Register PPCTargetLowering::getExceptionSelectorRegister(
15611     const Constant *PersonalityFn) const {
15612   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15613 }
15614 
15615 bool
15616 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15617                      EVT VT , unsigned DefinedValues) const {
15618   if (VT == MVT::v2i64)
15619     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15620 
15621   if (Subtarget.hasVSX())
15622     return true;
15623 
15624   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15625 }
15626 
15627 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15628   if (DisableILPPref || Subtarget.enableMachineScheduler())
15629     return TargetLowering::getSchedulingPreference(N);
15630 
15631   return Sched::ILP;
15632 }
15633 
15634 // Create a fast isel object.
15635 FastISel *
15636 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15637                                   const TargetLibraryInfo *LibInfo) const {
15638   return PPC::createFastISel(FuncInfo, LibInfo);
15639 }
15640 
15641 // 'Inverted' means the FMA opcode after negating one multiplicand.
15642 // For example, (fma -a b c) = (fnmsub a b c)
15643 static unsigned invertFMAOpcode(unsigned Opc) {
15644   switch (Opc) {
15645   default:
15646     llvm_unreachable("Invalid FMA opcode for PowerPC!");
15647   case ISD::FMA:
15648     return PPCISD::FNMSUB;
15649   case PPCISD::FNMSUB:
15650     return ISD::FMA;
15651   }
15652 }
15653 
15654 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
15655                                                 bool LegalOps, bool OptForSize,
15656                                                 NegatibleCost &Cost,
15657                                                 unsigned Depth) const {
15658   if (Depth > SelectionDAG::MaxRecursionDepth)
15659     return SDValue();
15660 
15661   unsigned Opc = Op.getOpcode();
15662   EVT VT = Op.getValueType();
15663   SDNodeFlags Flags = Op.getNode()->getFlags();
15664 
15665   switch (Opc) {
15666   case PPCISD::FNMSUB:
15667     if (!Op.hasOneUse() || !isTypeLegal(VT))
15668       break;
15669 
15670     const TargetOptions &Options = getTargetMachine().Options;
15671     SDValue N0 = Op.getOperand(0);
15672     SDValue N1 = Op.getOperand(1);
15673     SDValue N2 = Op.getOperand(2);
15674     SDLoc Loc(Op);
15675 
15676     NegatibleCost N2Cost = NegatibleCost::Expensive;
15677     SDValue NegN2 =
15678         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
15679 
15680     if (!NegN2)
15681       return SDValue();
15682 
15683     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
15684     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
15685     // These transformations may change sign of zeroes. For example,
15686     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
15687     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
15688       // Try and choose the cheaper one to negate.
15689       NegatibleCost N0Cost = NegatibleCost::Expensive;
15690       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
15691                                            N0Cost, Depth + 1);
15692 
15693       NegatibleCost N1Cost = NegatibleCost::Expensive;
15694       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
15695                                            N1Cost, Depth + 1);
15696 
15697       if (NegN0 && N0Cost <= N1Cost) {
15698         Cost = std::min(N0Cost, N2Cost);
15699         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
15700       } else if (NegN1) {
15701         Cost = std::min(N1Cost, N2Cost);
15702         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
15703       }
15704     }
15705 
15706     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
15707     if (isOperationLegal(ISD::FMA, VT)) {
15708       Cost = N2Cost;
15709       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
15710     }
15711 
15712     break;
15713   }
15714 
15715   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
15716                                               Cost, Depth);
15717 }
15718 
15719 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15720 bool PPCTargetLowering::useLoadStackGuardNode() const {
15721   if (!Subtarget.isTargetLinux())
15722     return TargetLowering::useLoadStackGuardNode();
15723   return true;
15724 }
15725 
15726 // Override to disable global variable loading on Linux.
15727 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15728   if (!Subtarget.isTargetLinux())
15729     return TargetLowering::insertSSPDeclarations(M);
15730 }
15731 
15732 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15733                                      bool ForCodeSize) const {
15734   if (!VT.isSimple() || !Subtarget.hasVSX())
15735     return false;
15736 
15737   switch(VT.getSimpleVT().SimpleTy) {
15738   default:
15739     // For FP types that are currently not supported by PPC backend, return
15740     // false. Examples: f16, f80.
15741     return false;
15742   case MVT::f32:
15743   case MVT::f64:
15744     if (Subtarget.hasPrefixInstrs()) {
15745       // With prefixed instructions, we can materialize anything that can be
15746       // represented with a 32-bit immediate, not just positive zero.
15747       APFloat APFloatOfImm = Imm;
15748       return convertToNonDenormSingle(APFloatOfImm);
15749     }
15750     LLVM_FALLTHROUGH;
15751   case MVT::ppcf128:
15752     return Imm.isPosZero();
15753   }
15754 }
15755 
15756 // For vector shift operation op, fold
15757 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15758 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15759                                   SelectionDAG &DAG) {
15760   SDValue N0 = N->getOperand(0);
15761   SDValue N1 = N->getOperand(1);
15762   EVT VT = N0.getValueType();
15763   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15764   unsigned Opcode = N->getOpcode();
15765   unsigned TargetOpcode;
15766 
15767   switch (Opcode) {
15768   default:
15769     llvm_unreachable("Unexpected shift operation");
15770   case ISD::SHL:
15771     TargetOpcode = PPCISD::SHL;
15772     break;
15773   case ISD::SRL:
15774     TargetOpcode = PPCISD::SRL;
15775     break;
15776   case ISD::SRA:
15777     TargetOpcode = PPCISD::SRA;
15778     break;
15779   }
15780 
15781   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15782       N1->getOpcode() == ISD::AND)
15783     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15784       if (Mask->getZExtValue() == OpSizeInBits - 1)
15785         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15786 
15787   return SDValue();
15788 }
15789 
15790 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15791   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15792     return Value;
15793 
15794   SDValue N0 = N->getOperand(0);
15795   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15796   if (!Subtarget.isISA3_0() ||
15797       N0.getOpcode() != ISD::SIGN_EXTEND ||
15798       N0.getOperand(0).getValueType() != MVT::i32 ||
15799       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15800     return SDValue();
15801 
15802   // We can't save an operation here if the value is already extended, and
15803   // the existing shift is easier to combine.
15804   SDValue ExtsSrc = N0.getOperand(0);
15805   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15806       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15807     return SDValue();
15808 
15809   SDLoc DL(N0);
15810   SDValue ShiftBy = SDValue(CN1, 0);
15811   // We want the shift amount to be i32 on the extswli, but the shift could
15812   // have an i64.
15813   if (ShiftBy.getValueType() == MVT::i64)
15814     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15815 
15816   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15817                          ShiftBy);
15818 }
15819 
15820 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15821   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15822     return Value;
15823 
15824   return SDValue();
15825 }
15826 
15827 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15828   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15829     return Value;
15830 
15831   return SDValue();
15832 }
15833 
15834 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15835 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15836 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15837 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15838 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15839                                  const PPCSubtarget &Subtarget) {
15840   if (!Subtarget.isPPC64())
15841     return SDValue();
15842 
15843   SDValue LHS = N->getOperand(0);
15844   SDValue RHS = N->getOperand(1);
15845 
15846   auto isZextOfCompareWithConstant = [](SDValue Op) {
15847     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15848         Op.getValueType() != MVT::i64)
15849       return false;
15850 
15851     SDValue Cmp = Op.getOperand(0);
15852     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15853         Cmp.getOperand(0).getValueType() != MVT::i64)
15854       return false;
15855 
15856     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15857       int64_t NegConstant = 0 - Constant->getSExtValue();
15858       // Due to the limitations of the addi instruction,
15859       // -C is required to be [-32768, 32767].
15860       return isInt<16>(NegConstant);
15861     }
15862 
15863     return false;
15864   };
15865 
15866   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15867   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15868 
15869   // If there is a pattern, canonicalize a zext operand to the RHS.
15870   if (LHSHasPattern && !RHSHasPattern)
15871     std::swap(LHS, RHS);
15872   else if (!LHSHasPattern && !RHSHasPattern)
15873     return SDValue();
15874 
15875   SDLoc DL(N);
15876   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15877   SDValue Cmp = RHS.getOperand(0);
15878   SDValue Z = Cmp.getOperand(0);
15879   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15880 
15881   assert(Constant && "Constant Should not be a null pointer.");
15882   int64_t NegConstant = 0 - Constant->getSExtValue();
15883 
15884   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15885   default: break;
15886   case ISD::SETNE: {
15887     //                                 when C == 0
15888     //                             --> addze X, (addic Z, -1).carry
15889     //                            /
15890     // add X, (zext(setne Z, C))--
15891     //                            \    when -32768 <= -C <= 32767 && C != 0
15892     //                             --> addze X, (addic (addi Z, -C), -1).carry
15893     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15894                               DAG.getConstant(NegConstant, DL, MVT::i64));
15895     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15896     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15897                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15898     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15899                        SDValue(Addc.getNode(), 1));
15900     }
15901   case ISD::SETEQ: {
15902     //                                 when C == 0
15903     //                             --> addze X, (subfic Z, 0).carry
15904     //                            /
15905     // add X, (zext(sete  Z, C))--
15906     //                            \    when -32768 <= -C <= 32767 && C != 0
15907     //                             --> addze X, (subfic (addi Z, -C), 0).carry
15908     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15909                               DAG.getConstant(NegConstant, DL, MVT::i64));
15910     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15911     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15912                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
15913     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15914                        SDValue(Subc.getNode(), 1));
15915     }
15916   }
15917 
15918   return SDValue();
15919 }
15920 
15921 // Transform
15922 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
15923 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
15924 // In this case both C1 and C2 must be known constants.
15925 // C1+C2 must fit into a 34 bit signed integer.
15926 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
15927                                           const PPCSubtarget &Subtarget) {
15928   if (!Subtarget.isUsingPCRelativeCalls())
15929     return SDValue();
15930 
15931   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
15932   // If we find that node try to cast the Global Address and the Constant.
15933   SDValue LHS = N->getOperand(0);
15934   SDValue RHS = N->getOperand(1);
15935 
15936   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
15937     std::swap(LHS, RHS);
15938 
15939   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
15940     return SDValue();
15941 
15942   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
15943   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
15944   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
15945 
15946   // Check that both casts succeeded.
15947   if (!GSDN || !ConstNode)
15948     return SDValue();
15949 
15950   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
15951   SDLoc DL(GSDN);
15952 
15953   // The signed int offset needs to fit in 34 bits.
15954   if (!isInt<34>(NewOffset))
15955     return SDValue();
15956 
15957   // The new global address is a copy of the old global address except
15958   // that it has the updated Offset.
15959   SDValue GA =
15960       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
15961                                  NewOffset, GSDN->getTargetFlags());
15962   SDValue MatPCRel =
15963       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
15964   return MatPCRel;
15965 }
15966 
15967 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
15968   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
15969     return Value;
15970 
15971   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
15972     return Value;
15973 
15974   return SDValue();
15975 }
15976 
15977 // Detect TRUNCATE operations on bitcasts of float128 values.
15978 // What we are looking for here is the situtation where we extract a subset
15979 // of bits from a 128 bit float.
15980 // This can be of two forms:
15981 // 1) BITCAST of f128 feeding TRUNCATE
15982 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
15983 // The reason this is required is because we do not have a legal i128 type
15984 // and so we want to prevent having to store the f128 and then reload part
15985 // of it.
15986 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
15987                                            DAGCombinerInfo &DCI) const {
15988   // If we are using CRBits then try that first.
15989   if (Subtarget.useCRBits()) {
15990     // Check if CRBits did anything and return that if it did.
15991     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
15992       return CRTruncValue;
15993   }
15994 
15995   SDLoc dl(N);
15996   SDValue Op0 = N->getOperand(0);
15997 
15998   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
15999   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16000     EVT VT = N->getValueType(0);
16001     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16002       return SDValue();
16003     SDValue Sub = Op0.getOperand(0);
16004     if (Sub.getOpcode() == ISD::SUB) {
16005       SDValue SubOp0 = Sub.getOperand(0);
16006       SDValue SubOp1 = Sub.getOperand(1);
16007       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16008           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16009         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16010                                SubOp1.getOperand(0),
16011                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16012       }
16013     }
16014   }
16015 
16016   // Looking for a truncate of i128 to i64.
16017   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16018     return SDValue();
16019 
16020   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16021 
16022   // SRL feeding TRUNCATE.
16023   if (Op0.getOpcode() == ISD::SRL) {
16024     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16025     // The right shift has to be by 64 bits.
16026     if (!ConstNode || ConstNode->getZExtValue() != 64)
16027       return SDValue();
16028 
16029     // Switch the element number to extract.
16030     EltToExtract = EltToExtract ? 0 : 1;
16031     // Update Op0 past the SRL.
16032     Op0 = Op0.getOperand(0);
16033   }
16034 
16035   // BITCAST feeding a TRUNCATE possibly via SRL.
16036   if (Op0.getOpcode() == ISD::BITCAST &&
16037       Op0.getValueType() == MVT::i128 &&
16038       Op0.getOperand(0).getValueType() == MVT::f128) {
16039     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16040     return DCI.DAG.getNode(
16041         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16042         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16043   }
16044   return SDValue();
16045 }
16046 
16047 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16048   SelectionDAG &DAG = DCI.DAG;
16049 
16050   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16051   if (!ConstOpOrElement)
16052     return SDValue();
16053 
16054   // An imul is usually smaller than the alternative sequence for legal type.
16055   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16056       isOperationLegal(ISD::MUL, N->getValueType(0)))
16057     return SDValue();
16058 
16059   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16060     switch (this->Subtarget.getCPUDirective()) {
16061     default:
16062       // TODO: enhance the condition for subtarget before pwr8
16063       return false;
16064     case PPC::DIR_PWR8:
16065       //  type        mul     add    shl
16066       // scalar        4       1      1
16067       // vector        7       2      2
16068       return true;
16069     case PPC::DIR_PWR9:
16070     case PPC::DIR_PWR10:
16071     case PPC::DIR_PWR_FUTURE:
16072       //  type        mul     add    shl
16073       // scalar        5       2      2
16074       // vector        7       2      2
16075 
16076       // The cycle RATIO of related operations are showed as a table above.
16077       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16078       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16079       // are 4, it is always profitable; but for 3 instrs patterns
16080       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16081       // So we should only do it for vector type.
16082       return IsAddOne && IsNeg ? VT.isVector() : true;
16083     }
16084   };
16085 
16086   EVT VT = N->getValueType(0);
16087   SDLoc DL(N);
16088 
16089   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16090   bool IsNeg = MulAmt.isNegative();
16091   APInt MulAmtAbs = MulAmt.abs();
16092 
16093   if ((MulAmtAbs - 1).isPowerOf2()) {
16094     // (mul x, 2^N + 1) => (add (shl x, N), x)
16095     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16096 
16097     if (!IsProfitable(IsNeg, true, VT))
16098       return SDValue();
16099 
16100     SDValue Op0 = N->getOperand(0);
16101     SDValue Op1 =
16102         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16103                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16104     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16105 
16106     if (!IsNeg)
16107       return Res;
16108 
16109     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16110   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16111     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16112     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16113 
16114     if (!IsProfitable(IsNeg, false, VT))
16115       return SDValue();
16116 
16117     SDValue Op0 = N->getOperand(0);
16118     SDValue Op1 =
16119         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16120                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16121 
16122     if (!IsNeg)
16123       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16124     else
16125       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16126 
16127   } else {
16128     return SDValue();
16129   }
16130 }
16131 
16132 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16133 // in combiner since we need to check SD flags and other subtarget features.
16134 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16135                                           DAGCombinerInfo &DCI) const {
16136   SDValue N0 = N->getOperand(0);
16137   SDValue N1 = N->getOperand(1);
16138   SDValue N2 = N->getOperand(2);
16139   SDNodeFlags Flags = N->getFlags();
16140   EVT VT = N->getValueType(0);
16141   SelectionDAG &DAG = DCI.DAG;
16142   const TargetOptions &Options = getTargetMachine().Options;
16143   unsigned Opc = N->getOpcode();
16144   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16145   bool LegalOps = !DCI.isBeforeLegalizeOps();
16146   SDLoc Loc(N);
16147 
16148   if (!isOperationLegal(ISD::FMA, VT))
16149     return SDValue();
16150 
16151   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16152   // since (fnmsub a b c)=-0 while c-ab=+0.
16153   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16154     return SDValue();
16155 
16156   // (fma (fneg a) b c) => (fnmsub a b c)
16157   // (fnmsub (fneg a) b c) => (fma a b c)
16158   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16159     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16160 
16161   // (fma a (fneg b) c) => (fnmsub a b c)
16162   // (fnmsub a (fneg b) c) => (fma a b c)
16163   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16164     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16165 
16166   return SDValue();
16167 }
16168 
16169 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16170   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16171   if (!Subtarget.is64BitELFABI())
16172     return false;
16173 
16174   // If not a tail call then no need to proceed.
16175   if (!CI->isTailCall())
16176     return false;
16177 
16178   // If sibling calls have been disabled and tail-calls aren't guaranteed
16179   // there is no reason to duplicate.
16180   auto &TM = getTargetMachine();
16181   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16182     return false;
16183 
16184   // Can't tail call a function called indirectly, or if it has variadic args.
16185   const Function *Callee = CI->getCalledFunction();
16186   if (!Callee || Callee->isVarArg())
16187     return false;
16188 
16189   // Make sure the callee and caller calling conventions are eligible for tco.
16190   const Function *Caller = CI->getParent()->getParent();
16191   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16192                                            CI->getCallingConv()))
16193       return false;
16194 
16195   // If the function is local then we have a good chance at tail-calling it
16196   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16197 }
16198 
16199 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16200   if (!Subtarget.hasVSX())
16201     return false;
16202   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16203     return true;
16204   return VT == MVT::f32 || VT == MVT::f64 ||
16205     VT == MVT::v4f32 || VT == MVT::v2f64;
16206 }
16207 
16208 bool PPCTargetLowering::
16209 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16210   const Value *Mask = AndI.getOperand(1);
16211   // If the mask is suitable for andi. or andis. we should sink the and.
16212   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16213     // Can't handle constants wider than 64-bits.
16214     if (CI->getBitWidth() > 64)
16215       return false;
16216     int64_t ConstVal = CI->getZExtValue();
16217     return isUInt<16>(ConstVal) ||
16218       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16219   }
16220 
16221   // For non-constant masks, we can always use the record-form and.
16222   return true;
16223 }
16224 
16225 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16226 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16227 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16228 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16229 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16230 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16231   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16232   assert(Subtarget.hasP9Altivec() &&
16233          "Only combine this when P9 altivec supported!");
16234   EVT VT = N->getValueType(0);
16235   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16236     return SDValue();
16237 
16238   SelectionDAG &DAG = DCI.DAG;
16239   SDLoc dl(N);
16240   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16241     // Even for signed integers, if it's known to be positive (as signed
16242     // integer) due to zero-extended inputs.
16243     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16244     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16245     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16246          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16247         (SubOpcd1 == ISD::ZERO_EXTEND ||
16248          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16249       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16250                          N->getOperand(0)->getOperand(0),
16251                          N->getOperand(0)->getOperand(1),
16252                          DAG.getTargetConstant(0, dl, MVT::i32));
16253     }
16254 
16255     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16256     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16257         N->getOperand(0).hasOneUse()) {
16258       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16259                          N->getOperand(0)->getOperand(0),
16260                          N->getOperand(0)->getOperand(1),
16261                          DAG.getTargetConstant(1, dl, MVT::i32));
16262     }
16263   }
16264 
16265   return SDValue();
16266 }
16267 
16268 // For type v4i32/v8ii16/v16i8, transform
16269 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16270 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16271 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16272 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16273 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16274                                           DAGCombinerInfo &DCI) const {
16275   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16276   assert(Subtarget.hasP9Altivec() &&
16277          "Only combine this when P9 altivec supported!");
16278 
16279   SelectionDAG &DAG = DCI.DAG;
16280   SDLoc dl(N);
16281   SDValue Cond = N->getOperand(0);
16282   SDValue TrueOpnd = N->getOperand(1);
16283   SDValue FalseOpnd = N->getOperand(2);
16284   EVT VT = N->getOperand(1).getValueType();
16285 
16286   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16287       FalseOpnd.getOpcode() != ISD::SUB)
16288     return SDValue();
16289 
16290   // ABSD only available for type v4i32/v8i16/v16i8
16291   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16292     return SDValue();
16293 
16294   // At least to save one more dependent computation
16295   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16296     return SDValue();
16297 
16298   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16299 
16300   // Can only handle unsigned comparison here
16301   switch (CC) {
16302   default:
16303     return SDValue();
16304   case ISD::SETUGT:
16305   case ISD::SETUGE:
16306     break;
16307   case ISD::SETULT:
16308   case ISD::SETULE:
16309     std::swap(TrueOpnd, FalseOpnd);
16310     break;
16311   }
16312 
16313   SDValue CmpOpnd1 = Cond.getOperand(0);
16314   SDValue CmpOpnd2 = Cond.getOperand(1);
16315 
16316   // SETCC CmpOpnd1 CmpOpnd2 cond
16317   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16318   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16319   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16320       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16321       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16322       FalseOpnd.getOperand(1) == CmpOpnd1) {
16323     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16324                        CmpOpnd1, CmpOpnd2,
16325                        DAG.getTargetConstant(0, dl, MVT::i32));
16326   }
16327 
16328   return SDValue();
16329 }
16330