1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallSite.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/Constant.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/GlobalValue.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/IntrinsicsPowerPC.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/MC/MCContext.h" 76 #include "llvm/MC/MCExpr.h" 77 #include "llvm/MC/MCRegisterInfo.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 122 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 123 124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 125 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 126 127 STATISTIC(NumTailCalls, "Number of tail calls"); 128 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 129 130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 131 132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 133 134 // FIXME: Remove this once the bug has been fixed! 135 extern cl::opt<bool> ANDIGlueBug; 136 137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 138 const PPCSubtarget &STI) 139 : TargetLowering(TM), Subtarget(STI) { 140 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 141 // arguments are at least 4/8 bytes aligned. 142 bool isPPC64 = Subtarget.isPPC64(); 143 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 144 145 // Set up the register classes. 146 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 147 if (!useSoftFloat()) { 148 if (hasSPE()) { 149 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 150 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 151 } else { 152 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 153 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 154 } 155 } 156 157 // Match BITREVERSE to customized fast code sequence in the td file. 158 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 159 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 160 161 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 162 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 163 164 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 165 for (MVT VT : MVT::integer_valuetypes()) { 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 168 } 169 170 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 171 172 // PowerPC has pre-inc load and store's. 173 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 174 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 175 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 176 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 177 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 178 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 180 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 181 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 182 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 183 if (!Subtarget.hasSPE()) { 184 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 185 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 186 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 187 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 188 } 189 190 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 191 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 192 for (MVT VT : ScalarIntVTs) { 193 setOperationAction(ISD::ADDC, VT, Legal); 194 setOperationAction(ISD::ADDE, VT, Legal); 195 setOperationAction(ISD::SUBC, VT, Legal); 196 setOperationAction(ISD::SUBE, VT, Legal); 197 } 198 199 if (Subtarget.useCRBits()) { 200 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 201 202 if (isPPC64 || Subtarget.hasFPCVT()) { 203 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 204 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 205 isPPC64 ? MVT::i64 : MVT::i32); 206 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 207 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 208 isPPC64 ? MVT::i64 : MVT::i32); 209 } else { 210 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 211 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 212 } 213 214 // PowerPC does not support direct load/store of condition registers. 215 setOperationAction(ISD::LOAD, MVT::i1, Custom); 216 setOperationAction(ISD::STORE, MVT::i1, Custom); 217 218 // FIXME: Remove this once the ANDI glue bug is fixed: 219 if (ANDIGlueBug) 220 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 221 222 for (MVT VT : MVT::integer_valuetypes()) { 223 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 224 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 225 setTruncStoreAction(VT, MVT::i1, Expand); 226 } 227 228 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 229 } 230 231 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 232 // PPC (the libcall is not available). 233 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 234 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 235 236 // We do not currently implement these libm ops for PowerPC. 237 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 238 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 239 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 240 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 241 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 242 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 243 244 // PowerPC has no SREM/UREM instructions unless we are on P9 245 // On P9 we may use a hardware instruction to compute the remainder. 246 // The instructions are not legalized directly because in the cases where the 247 // result of both the remainder and the division is required it is more 248 // efficient to compute the remainder from the result of the division rather 249 // than use the remainder instruction. 250 if (Subtarget.isISA3_0()) { 251 setOperationAction(ISD::SREM, MVT::i32, Custom); 252 setOperationAction(ISD::UREM, MVT::i32, Custom); 253 setOperationAction(ISD::SREM, MVT::i64, Custom); 254 setOperationAction(ISD::UREM, MVT::i64, Custom); 255 } else { 256 setOperationAction(ISD::SREM, MVT::i32, Expand); 257 setOperationAction(ISD::UREM, MVT::i32, Expand); 258 setOperationAction(ISD::SREM, MVT::i64, Expand); 259 setOperationAction(ISD::UREM, MVT::i64, Expand); 260 } 261 262 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 263 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 264 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 265 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 266 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 267 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 268 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 269 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 270 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 271 272 // Handle constrained floating-point operations of scalar. 273 // TODO: Handle SPE specific operation. 274 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 275 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 276 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 277 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 278 279 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 280 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 281 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 282 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 283 284 // We don't support sin/cos/sqrt/fmod/pow 285 setOperationAction(ISD::FSIN , MVT::f64, Expand); 286 setOperationAction(ISD::FCOS , MVT::f64, Expand); 287 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 288 setOperationAction(ISD::FREM , MVT::f64, Expand); 289 setOperationAction(ISD::FPOW , MVT::f64, Expand); 290 setOperationAction(ISD::FSIN , MVT::f32, Expand); 291 setOperationAction(ISD::FCOS , MVT::f32, Expand); 292 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 293 setOperationAction(ISD::FREM , MVT::f32, Expand); 294 setOperationAction(ISD::FPOW , MVT::f32, Expand); 295 if (Subtarget.hasSPE()) { 296 setOperationAction(ISD::FMA , MVT::f64, Expand); 297 setOperationAction(ISD::FMA , MVT::f32, Expand); 298 } else { 299 setOperationAction(ISD::FMA , MVT::f64, Legal); 300 setOperationAction(ISD::FMA , MVT::f32, Legal); 301 } 302 303 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 304 305 // If we're enabling GP optimizations, use hardware square root 306 if (!Subtarget.hasFSQRT() && 307 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 308 Subtarget.hasFRE())) 309 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 310 311 if (!Subtarget.hasFSQRT() && 312 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 313 Subtarget.hasFRES())) 314 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 315 316 if (Subtarget.hasFCPSGN()) { 317 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 318 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 319 } else { 320 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 321 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 322 } 323 324 if (Subtarget.hasFPRND()) { 325 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 326 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 327 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 328 setOperationAction(ISD::FROUND, MVT::f64, Legal); 329 330 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 331 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 332 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 333 setOperationAction(ISD::FROUND, MVT::f32, Legal); 334 } 335 336 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 337 // to speed up scalar BSWAP64. 338 // CTPOP or CTTZ were introduced in P8/P9 respectively 339 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 340 if (Subtarget.hasP9Vector()) 341 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 342 else 343 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 344 if (Subtarget.isISA3_0()) { 345 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 346 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 347 } else { 348 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 349 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 350 } 351 352 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 353 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 354 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 355 } else { 356 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 357 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 358 } 359 360 // PowerPC does not have ROTR 361 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 362 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 363 364 if (!Subtarget.useCRBits()) { 365 // PowerPC does not have Select 366 setOperationAction(ISD::SELECT, MVT::i32, Expand); 367 setOperationAction(ISD::SELECT, MVT::i64, Expand); 368 setOperationAction(ISD::SELECT, MVT::f32, Expand); 369 setOperationAction(ISD::SELECT, MVT::f64, Expand); 370 } 371 372 // PowerPC wants to turn select_cc of FP into fsel when possible. 373 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 374 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 375 376 // PowerPC wants to optimize integer setcc a bit 377 if (!Subtarget.useCRBits()) 378 setOperationAction(ISD::SETCC, MVT::i32, Custom); 379 380 // PowerPC does not have BRCOND which requires SetCC 381 if (!Subtarget.useCRBits()) 382 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 383 384 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 385 386 if (Subtarget.hasSPE()) { 387 // SPE has built-in conversions 388 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 389 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 390 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 391 } else { 392 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 393 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 394 395 // PowerPC does not have [U|S]INT_TO_FP 396 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 397 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 398 } 399 400 if (Subtarget.hasDirectMove() && isPPC64) { 401 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 402 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 403 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 404 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 405 if (TM.Options.UnsafeFPMath) { 406 setOperationAction(ISD::LRINT, MVT::f64, Legal); 407 setOperationAction(ISD::LRINT, MVT::f32, Legal); 408 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 409 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 410 setOperationAction(ISD::LROUND, MVT::f64, Legal); 411 setOperationAction(ISD::LROUND, MVT::f32, Legal); 412 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 413 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 414 } 415 } else { 416 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 417 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 418 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 419 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 420 } 421 422 // We cannot sextinreg(i1). Expand to shifts. 423 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 424 425 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 426 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 427 // support continuation, user-level threading, and etc.. As a result, no 428 // other SjLj exception interfaces are implemented and please don't build 429 // your own exception handling based on them. 430 // LLVM/Clang supports zero-cost DWARF exception handling. 431 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 432 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 433 434 // We want to legalize GlobalAddress and ConstantPool nodes into the 435 // appropriate instructions to materialize the address. 436 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 437 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 438 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 439 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 440 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 441 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 442 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 443 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 444 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 445 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 446 447 // TRAP is legal. 448 setOperationAction(ISD::TRAP, MVT::Other, Legal); 449 450 // TRAMPOLINE is custom lowered. 451 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 452 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 453 454 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 455 setOperationAction(ISD::VASTART , MVT::Other, Custom); 456 457 if (Subtarget.is64BitELFABI()) { 458 // VAARG always uses double-word chunks, so promote anything smaller. 459 setOperationAction(ISD::VAARG, MVT::i1, Promote); 460 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 461 setOperationAction(ISD::VAARG, MVT::i8, Promote); 462 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 463 setOperationAction(ISD::VAARG, MVT::i16, Promote); 464 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 465 setOperationAction(ISD::VAARG, MVT::i32, Promote); 466 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 467 setOperationAction(ISD::VAARG, MVT::Other, Expand); 468 } else if (Subtarget.is32BitELFABI()) { 469 // VAARG is custom lowered with the 32-bit SVR4 ABI. 470 setOperationAction(ISD::VAARG, MVT::Other, Custom); 471 setOperationAction(ISD::VAARG, MVT::i64, Custom); 472 } else 473 setOperationAction(ISD::VAARG, MVT::Other, Expand); 474 475 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 476 if (Subtarget.is32BitELFABI()) 477 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 478 else 479 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 480 481 // Use the default implementation. 482 setOperationAction(ISD::VAEND , MVT::Other, Expand); 483 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 484 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 485 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 486 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 487 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 488 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 489 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 490 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 491 492 // We want to custom lower some of our intrinsics. 493 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 494 495 // To handle counter-based loop conditions. 496 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 497 498 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 499 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 500 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 501 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 502 503 // Comparisons that require checking two conditions. 504 if (Subtarget.hasSPE()) { 505 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 506 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 507 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 508 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 509 } 510 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 511 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 512 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 513 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 514 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 515 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 516 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 517 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 518 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 519 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 520 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 521 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 522 523 if (Subtarget.has64BitSupport()) { 524 // They also have instructions for converting between i64 and fp. 525 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 526 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 527 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 528 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 529 // This is just the low 32 bits of a (signed) fp->i64 conversion. 530 // We cannot do this with Promote because i64 is not a legal type. 531 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 532 533 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 534 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 535 } else { 536 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 537 if (Subtarget.hasSPE()) 538 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 539 else 540 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 541 } 542 543 // With the instructions enabled under FPCVT, we can do everything. 544 if (Subtarget.hasFPCVT()) { 545 if (Subtarget.has64BitSupport()) { 546 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 547 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 548 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 549 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 550 } 551 552 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 553 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 554 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 555 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 556 } 557 558 if (Subtarget.use64BitRegs()) { 559 // 64-bit PowerPC implementations can support i64 types directly 560 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 561 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 562 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 563 // 64-bit PowerPC wants to expand i128 shifts itself. 564 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 565 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 566 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 567 } else { 568 // 32-bit PowerPC wants to expand i64 shifts itself. 569 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 570 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 571 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 572 } 573 574 if (Subtarget.hasVSX()) { 575 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 576 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 577 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 578 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 579 } 580 581 if (Subtarget.hasAltivec()) { 582 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 583 setOperationAction(ISD::SADDSAT, VT, Legal); 584 setOperationAction(ISD::SSUBSAT, VT, Legal); 585 setOperationAction(ISD::UADDSAT, VT, Legal); 586 setOperationAction(ISD::USUBSAT, VT, Legal); 587 } 588 // First set operation action for all vector types to expand. Then we 589 // will selectively turn on ones that can be effectively codegen'd. 590 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 591 // add/sub are legal for all supported vector VT's. 592 setOperationAction(ISD::ADD, VT, Legal); 593 setOperationAction(ISD::SUB, VT, Legal); 594 595 // For v2i64, these are only valid with P8Vector. This is corrected after 596 // the loop. 597 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 598 setOperationAction(ISD::SMAX, VT, Legal); 599 setOperationAction(ISD::SMIN, VT, Legal); 600 setOperationAction(ISD::UMAX, VT, Legal); 601 setOperationAction(ISD::UMIN, VT, Legal); 602 } 603 else { 604 setOperationAction(ISD::SMAX, VT, Expand); 605 setOperationAction(ISD::SMIN, VT, Expand); 606 setOperationAction(ISD::UMAX, VT, Expand); 607 setOperationAction(ISD::UMIN, VT, Expand); 608 } 609 610 if (Subtarget.hasVSX()) { 611 setOperationAction(ISD::FMAXNUM, VT, Legal); 612 setOperationAction(ISD::FMINNUM, VT, Legal); 613 } 614 615 // Vector instructions introduced in P8 616 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 617 setOperationAction(ISD::CTPOP, VT, Legal); 618 setOperationAction(ISD::CTLZ, VT, Legal); 619 } 620 else { 621 setOperationAction(ISD::CTPOP, VT, Expand); 622 setOperationAction(ISD::CTLZ, VT, Expand); 623 } 624 625 // Vector instructions introduced in P9 626 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 627 setOperationAction(ISD::CTTZ, VT, Legal); 628 else 629 setOperationAction(ISD::CTTZ, VT, Expand); 630 631 // We promote all shuffles to v16i8. 632 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 633 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 634 635 // We promote all non-typed operations to v4i32. 636 setOperationAction(ISD::AND , VT, Promote); 637 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 638 setOperationAction(ISD::OR , VT, Promote); 639 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 640 setOperationAction(ISD::XOR , VT, Promote); 641 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 642 setOperationAction(ISD::LOAD , VT, Promote); 643 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 644 setOperationAction(ISD::SELECT, VT, Promote); 645 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 646 setOperationAction(ISD::VSELECT, VT, Legal); 647 setOperationAction(ISD::SELECT_CC, VT, Promote); 648 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 649 setOperationAction(ISD::STORE, VT, Promote); 650 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 651 652 // No other operations are legal. 653 setOperationAction(ISD::MUL , VT, Expand); 654 setOperationAction(ISD::SDIV, VT, Expand); 655 setOperationAction(ISD::SREM, VT, Expand); 656 setOperationAction(ISD::UDIV, VT, Expand); 657 setOperationAction(ISD::UREM, VT, Expand); 658 setOperationAction(ISD::FDIV, VT, Expand); 659 setOperationAction(ISD::FREM, VT, Expand); 660 setOperationAction(ISD::FNEG, VT, Expand); 661 setOperationAction(ISD::FSQRT, VT, Expand); 662 setOperationAction(ISD::FLOG, VT, Expand); 663 setOperationAction(ISD::FLOG10, VT, Expand); 664 setOperationAction(ISD::FLOG2, VT, Expand); 665 setOperationAction(ISD::FEXP, VT, Expand); 666 setOperationAction(ISD::FEXP2, VT, Expand); 667 setOperationAction(ISD::FSIN, VT, Expand); 668 setOperationAction(ISD::FCOS, VT, Expand); 669 setOperationAction(ISD::FABS, VT, Expand); 670 setOperationAction(ISD::FFLOOR, VT, Expand); 671 setOperationAction(ISD::FCEIL, VT, Expand); 672 setOperationAction(ISD::FTRUNC, VT, Expand); 673 setOperationAction(ISD::FRINT, VT, Expand); 674 setOperationAction(ISD::FNEARBYINT, VT, Expand); 675 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 676 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 677 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 678 setOperationAction(ISD::MULHU, VT, Expand); 679 setOperationAction(ISD::MULHS, VT, Expand); 680 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 681 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 682 setOperationAction(ISD::UDIVREM, VT, Expand); 683 setOperationAction(ISD::SDIVREM, VT, Expand); 684 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 685 setOperationAction(ISD::FPOW, VT, Expand); 686 setOperationAction(ISD::BSWAP, VT, Expand); 687 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 688 setOperationAction(ISD::ROTL, VT, Expand); 689 setOperationAction(ISD::ROTR, VT, Expand); 690 691 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 692 setTruncStoreAction(VT, InnerVT, Expand); 693 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 694 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 695 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 696 } 697 } 698 if (!Subtarget.hasP8Vector()) { 699 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 700 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 701 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 702 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 703 } 704 705 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 706 setOperationAction(ISD::ABS, VT, Custom); 707 708 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 709 // with merges, splats, etc. 710 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 711 712 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 713 // are cheap, so handle them before they get expanded to scalar. 714 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 715 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 716 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 717 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 718 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 719 720 setOperationAction(ISD::AND , MVT::v4i32, Legal); 721 setOperationAction(ISD::OR , MVT::v4i32, Legal); 722 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 723 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 724 setOperationAction(ISD::SELECT, MVT::v4i32, 725 Subtarget.useCRBits() ? Legal : Expand); 726 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 727 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 728 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 729 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 730 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 731 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 732 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 733 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 734 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 735 736 // Without hasP8Altivec set, v2i64 SMAX isn't available. 737 // But ABS custom lowering requires SMAX support. 738 if (!Subtarget.hasP8Altivec()) 739 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 740 741 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 742 if (Subtarget.hasAltivec()) 743 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 744 setOperationAction(ISD::ROTL, VT, Legal); 745 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 746 if (Subtarget.hasP8Altivec()) 747 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 748 749 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 750 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 751 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 752 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 753 754 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 755 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 756 757 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 758 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 759 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 760 } 761 762 if (Subtarget.hasP8Altivec()) 763 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 764 else 765 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 766 767 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 768 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 769 770 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 771 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 772 773 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 774 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 775 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 776 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 777 778 // Altivec does not contain unordered floating-point compare instructions 779 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 780 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 781 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 782 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 783 784 if (Subtarget.hasVSX()) { 785 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 786 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 787 if (Subtarget.hasP8Vector()) { 788 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 789 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 790 } 791 if (Subtarget.hasDirectMove() && isPPC64) { 792 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 793 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 794 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 795 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 796 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 797 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 798 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 799 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 800 } 801 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 802 803 // The nearbyint variants are not allowed to raise the inexact exception 804 // so we can only code-gen them with unsafe math. 805 if (TM.Options.UnsafeFPMath) { 806 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 807 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 808 } 809 810 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 811 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 812 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 813 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 814 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 815 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 816 setOperationAction(ISD::FROUND, MVT::f64, Legal); 817 setOperationAction(ISD::FRINT, MVT::f64, Legal); 818 819 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 820 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 821 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 822 setOperationAction(ISD::FROUND, MVT::f32, Legal); 823 setOperationAction(ISD::FRINT, MVT::f32, Legal); 824 825 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 826 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 827 828 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 829 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 830 831 // Share the Altivec comparison restrictions. 832 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 833 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 834 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 835 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 836 837 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 838 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 839 840 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 841 842 if (Subtarget.hasP8Vector()) 843 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 844 845 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 846 847 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 848 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 849 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 850 851 if (Subtarget.hasP8Altivec()) { 852 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 853 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 854 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 855 856 // 128 bit shifts can be accomplished via 3 instructions for SHL and 857 // SRL, but not for SRA because of the instructions available: 858 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 859 // doing 860 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 861 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 862 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 863 864 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 865 } 866 else { 867 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 868 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 869 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 870 871 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 872 873 // VSX v2i64 only supports non-arithmetic operations. 874 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 875 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 876 } 877 878 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 879 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 880 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 881 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 882 883 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 884 885 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 886 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 887 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 888 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 889 890 // Custom handling for partial vectors of integers converted to 891 // floating point. We already have optimal handling for v2i32 through 892 // the DAG combine, so those aren't necessary. 893 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 894 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 895 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 896 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 897 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 898 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 899 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 900 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 901 902 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 903 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 904 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 905 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 906 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 907 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 908 909 if (Subtarget.hasDirectMove()) 910 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 911 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 912 913 // Handle constrained floating-point operations of vector. 914 // The predictor is `hasVSX` because altivec instruction has 915 // no exception but VSX vector instruction has. 916 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 917 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 918 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 919 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 920 921 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 922 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 923 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 924 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 925 926 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 927 } 928 929 if (Subtarget.hasP8Altivec()) { 930 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 931 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 932 } 933 934 if (Subtarget.hasP9Vector()) { 935 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 936 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 937 938 // 128 bit shifts can be accomplished via 3 instructions for SHL and 939 // SRL, but not for SRA because of the instructions available: 940 // VS{RL} and VS{RL}O. 941 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 942 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 943 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 944 945 if (EnableQuadPrecision) { 946 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 947 setOperationAction(ISD::FADD, MVT::f128, Legal); 948 setOperationAction(ISD::FSUB, MVT::f128, Legal); 949 setOperationAction(ISD::FDIV, MVT::f128, Legal); 950 setOperationAction(ISD::FMUL, MVT::f128, Legal); 951 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 952 // No extending loads to f128 on PPC. 953 for (MVT FPT : MVT::fp_valuetypes()) 954 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 955 setOperationAction(ISD::FMA, MVT::f128, Legal); 956 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 957 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 958 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 959 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 960 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 961 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 962 963 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 964 setOperationAction(ISD::FRINT, MVT::f128, Legal); 965 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 966 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 967 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 968 setOperationAction(ISD::FROUND, MVT::f128, Legal); 969 970 setOperationAction(ISD::SELECT, MVT::f128, Expand); 971 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 972 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 973 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 974 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 975 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 976 // No implementation for these ops for PowerPC. 977 setOperationAction(ISD::FSIN , MVT::f128, Expand); 978 setOperationAction(ISD::FCOS , MVT::f128, Expand); 979 setOperationAction(ISD::FPOW, MVT::f128, Expand); 980 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 981 setOperationAction(ISD::FREM, MVT::f128, Expand); 982 983 // Handle constrained floating-point operations of fp128 984 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 985 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 986 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 987 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 988 } 989 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 990 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 991 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 992 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 993 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 994 } 995 996 if (Subtarget.hasP9Altivec()) { 997 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 998 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 999 1000 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1001 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1002 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1003 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1004 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1005 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1006 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1007 } 1008 } 1009 1010 if (Subtarget.hasQPX()) { 1011 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 1012 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 1013 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 1014 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 1015 1016 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 1017 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 1018 1019 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 1020 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 1021 1022 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 1023 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 1024 1025 if (!Subtarget.useCRBits()) 1026 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 1027 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 1028 1029 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 1030 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 1031 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 1032 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 1033 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 1034 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 1035 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 1036 1037 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 1038 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 1039 1040 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1041 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1042 1043 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1044 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1045 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1046 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1047 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1048 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1049 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1050 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1051 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1052 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1053 1054 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1055 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1056 1057 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1058 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1059 1060 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1061 1062 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1063 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1064 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1065 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1066 1067 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1068 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1069 1070 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1071 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1072 1073 if (!Subtarget.useCRBits()) 1074 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1075 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1076 1077 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1078 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1079 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1080 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1081 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1082 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1083 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1084 1085 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1086 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1087 1088 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1089 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1090 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1091 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1092 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1093 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1094 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1095 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1096 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1097 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1098 1099 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1100 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1101 1102 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1103 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1104 1105 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1106 1107 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1108 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1109 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1110 1111 if (!Subtarget.useCRBits()) 1112 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1113 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1114 1115 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1116 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1117 1118 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1119 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1120 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1121 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1122 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1123 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1124 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1125 1126 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1127 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1128 1129 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1130 1131 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1132 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1133 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1134 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1135 1136 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1137 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1138 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1139 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1140 1141 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1142 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1143 1144 // These need to set FE_INEXACT, and so cannot be vectorized here. 1145 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1146 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1147 1148 if (TM.Options.UnsafeFPMath) { 1149 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1150 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1151 1152 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1153 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1154 } else { 1155 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1156 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1157 1158 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1159 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1160 } 1161 1162 // TODO: Handle constrained floating-point operations of v4f64 1163 } 1164 1165 if (Subtarget.has64BitSupport()) 1166 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1167 1168 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1169 1170 if (!isPPC64) { 1171 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1172 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1173 } 1174 1175 setBooleanContents(ZeroOrOneBooleanContent); 1176 1177 if (Subtarget.hasAltivec()) { 1178 // Altivec instructions set fields to all zeros or all ones. 1179 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1180 } 1181 1182 if (!isPPC64) { 1183 // These libcalls are not available in 32-bit. 1184 setLibcallName(RTLIB::SHL_I128, nullptr); 1185 setLibcallName(RTLIB::SRL_I128, nullptr); 1186 setLibcallName(RTLIB::SRA_I128, nullptr); 1187 } 1188 1189 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1190 1191 // We have target-specific dag combine patterns for the following nodes: 1192 setTargetDAGCombine(ISD::ADD); 1193 setTargetDAGCombine(ISD::SHL); 1194 setTargetDAGCombine(ISD::SRA); 1195 setTargetDAGCombine(ISD::SRL); 1196 setTargetDAGCombine(ISD::MUL); 1197 setTargetDAGCombine(ISD::SINT_TO_FP); 1198 setTargetDAGCombine(ISD::BUILD_VECTOR); 1199 if (Subtarget.hasFPCVT()) 1200 setTargetDAGCombine(ISD::UINT_TO_FP); 1201 setTargetDAGCombine(ISD::LOAD); 1202 setTargetDAGCombine(ISD::STORE); 1203 setTargetDAGCombine(ISD::BR_CC); 1204 if (Subtarget.useCRBits()) 1205 setTargetDAGCombine(ISD::BRCOND); 1206 setTargetDAGCombine(ISD::BSWAP); 1207 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1208 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1209 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1210 1211 setTargetDAGCombine(ISD::SIGN_EXTEND); 1212 setTargetDAGCombine(ISD::ZERO_EXTEND); 1213 setTargetDAGCombine(ISD::ANY_EXTEND); 1214 1215 setTargetDAGCombine(ISD::TRUNCATE); 1216 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1217 1218 1219 if (Subtarget.useCRBits()) { 1220 setTargetDAGCombine(ISD::TRUNCATE); 1221 setTargetDAGCombine(ISD::SETCC); 1222 setTargetDAGCombine(ISD::SELECT_CC); 1223 } 1224 1225 // Use reciprocal estimates. 1226 if (TM.Options.UnsafeFPMath) { 1227 setTargetDAGCombine(ISD::FDIV); 1228 setTargetDAGCombine(ISD::FSQRT); 1229 } 1230 1231 if (Subtarget.hasP9Altivec()) { 1232 setTargetDAGCombine(ISD::ABS); 1233 setTargetDAGCombine(ISD::VSELECT); 1234 } 1235 1236 if (EnableQuadPrecision) { 1237 setLibcallName(RTLIB::LOG_F128, "logf128"); 1238 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1239 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1240 setLibcallName(RTLIB::EXP_F128, "expf128"); 1241 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1242 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1243 setLibcallName(RTLIB::COS_F128, "cosf128"); 1244 setLibcallName(RTLIB::POW_F128, "powf128"); 1245 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1246 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1247 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1248 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1249 } 1250 1251 // With 32 condition bits, we don't need to sink (and duplicate) compares 1252 // aggressively in CodeGenPrep. 1253 if (Subtarget.useCRBits()) { 1254 setHasMultipleConditionRegisters(); 1255 setJumpIsExpensive(); 1256 } 1257 1258 setMinFunctionAlignment(Align(4)); 1259 1260 switch (Subtarget.getCPUDirective()) { 1261 default: break; 1262 case PPC::DIR_970: 1263 case PPC::DIR_A2: 1264 case PPC::DIR_E500: 1265 case PPC::DIR_E500mc: 1266 case PPC::DIR_E5500: 1267 case PPC::DIR_PWR4: 1268 case PPC::DIR_PWR5: 1269 case PPC::DIR_PWR5X: 1270 case PPC::DIR_PWR6: 1271 case PPC::DIR_PWR6X: 1272 case PPC::DIR_PWR7: 1273 case PPC::DIR_PWR8: 1274 case PPC::DIR_PWR9: 1275 case PPC::DIR_PWR_FUTURE: 1276 setPrefLoopAlignment(Align(16)); 1277 setPrefFunctionAlignment(Align(16)); 1278 break; 1279 } 1280 1281 if (Subtarget.enableMachineScheduler()) 1282 setSchedulingPreference(Sched::Source); 1283 else 1284 setSchedulingPreference(Sched::Hybrid); 1285 1286 computeRegisterProperties(STI.getRegisterInfo()); 1287 1288 // The Freescale cores do better with aggressive inlining of memcpy and 1289 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1290 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1291 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1292 MaxStoresPerMemset = 32; 1293 MaxStoresPerMemsetOptSize = 16; 1294 MaxStoresPerMemcpy = 32; 1295 MaxStoresPerMemcpyOptSize = 8; 1296 MaxStoresPerMemmove = 32; 1297 MaxStoresPerMemmoveOptSize = 8; 1298 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1299 // The A2 also benefits from (very) aggressive inlining of memcpy and 1300 // friends. The overhead of a the function call, even when warm, can be 1301 // over one hundred cycles. 1302 MaxStoresPerMemset = 128; 1303 MaxStoresPerMemcpy = 128; 1304 MaxStoresPerMemmove = 128; 1305 MaxLoadsPerMemcmp = 128; 1306 } else { 1307 MaxLoadsPerMemcmp = 8; 1308 MaxLoadsPerMemcmpOptSize = 4; 1309 } 1310 } 1311 1312 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1313 /// the desired ByVal argument alignment. 1314 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1315 unsigned MaxMaxAlign) { 1316 if (MaxAlign == MaxMaxAlign) 1317 return; 1318 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1319 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1320 MaxAlign = 32; 1321 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1322 MaxAlign = 16; 1323 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1324 unsigned EltAlign = 0; 1325 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1326 if (EltAlign > MaxAlign) 1327 MaxAlign = EltAlign; 1328 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1329 for (auto *EltTy : STy->elements()) { 1330 unsigned EltAlign = 0; 1331 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1332 if (EltAlign > MaxAlign) 1333 MaxAlign = EltAlign; 1334 if (MaxAlign == MaxMaxAlign) 1335 break; 1336 } 1337 } 1338 } 1339 1340 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1341 /// function arguments in the caller parameter area. 1342 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1343 const DataLayout &DL) const { 1344 // 16byte and wider vectors are passed on 16byte boundary. 1345 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1346 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1347 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1348 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1349 return Align; 1350 } 1351 1352 bool PPCTargetLowering::useSoftFloat() const { 1353 return Subtarget.useSoftFloat(); 1354 } 1355 1356 bool PPCTargetLowering::hasSPE() const { 1357 return Subtarget.hasSPE(); 1358 } 1359 1360 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1361 return VT.isScalarInteger(); 1362 } 1363 1364 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1365 switch ((PPCISD::NodeType)Opcode) { 1366 case PPCISD::FIRST_NUMBER: break; 1367 case PPCISD::FSEL: return "PPCISD::FSEL"; 1368 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1369 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1370 case PPCISD::FCFID: return "PPCISD::FCFID"; 1371 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1372 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1373 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1374 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1375 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1376 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1377 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1378 case PPCISD::FP_TO_UINT_IN_VSR: 1379 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1380 case PPCISD::FP_TO_SINT_IN_VSR: 1381 return "PPCISD::FP_TO_SINT_IN_VSR"; 1382 case PPCISD::FRE: return "PPCISD::FRE"; 1383 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1384 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1385 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1386 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1387 case PPCISD::VPERM: return "PPCISD::VPERM"; 1388 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1389 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1390 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1391 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1392 case PPCISD::CMPB: return "PPCISD::CMPB"; 1393 case PPCISD::Hi: return "PPCISD::Hi"; 1394 case PPCISD::Lo: return "PPCISD::Lo"; 1395 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1396 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1397 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1398 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1399 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1400 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1401 case PPCISD::SRL: return "PPCISD::SRL"; 1402 case PPCISD::SRA: return "PPCISD::SRA"; 1403 case PPCISD::SHL: return "PPCISD::SHL"; 1404 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1405 case PPCISD::CALL: return "PPCISD::CALL"; 1406 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1407 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1408 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1409 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1410 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1411 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1412 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1413 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1414 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1415 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1416 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1417 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1418 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1419 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1420 case PPCISD::ANDI_rec_1_EQ_BIT: 1421 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1422 case PPCISD::ANDI_rec_1_GT_BIT: 1423 return "PPCISD::ANDI_rec_1_GT_BIT"; 1424 case PPCISD::VCMP: return "PPCISD::VCMP"; 1425 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1426 case PPCISD::LBRX: return "PPCISD::LBRX"; 1427 case PPCISD::STBRX: return "PPCISD::STBRX"; 1428 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1429 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1430 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1431 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1432 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1433 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1434 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1435 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1436 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1437 case PPCISD::ST_VSR_SCAL_INT: 1438 return "PPCISD::ST_VSR_SCAL_INT"; 1439 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1440 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1441 case PPCISD::BDZ: return "PPCISD::BDZ"; 1442 case PPCISD::MFFS: return "PPCISD::MFFS"; 1443 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1444 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1445 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1446 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1447 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1448 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1449 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1450 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1451 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1452 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1453 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1454 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1455 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1456 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1457 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1458 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1459 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1460 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1461 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1462 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1463 case PPCISD::SC: return "PPCISD::SC"; 1464 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1465 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1466 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1467 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1468 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1469 case PPCISD::VABSD: return "PPCISD::VABSD"; 1470 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1471 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1472 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1473 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1474 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1475 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1476 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1477 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1478 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1479 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1480 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1481 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1482 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1483 } 1484 return nullptr; 1485 } 1486 1487 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1488 EVT VT) const { 1489 if (!VT.isVector()) 1490 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1491 1492 if (Subtarget.hasQPX()) 1493 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1494 1495 return VT.changeVectorElementTypeToInteger(); 1496 } 1497 1498 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1499 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1500 return true; 1501 } 1502 1503 //===----------------------------------------------------------------------===// 1504 // Node matching predicates, for use by the tblgen matching code. 1505 //===----------------------------------------------------------------------===// 1506 1507 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1508 static bool isFloatingPointZero(SDValue Op) { 1509 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1510 return CFP->getValueAPF().isZero(); 1511 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1512 // Maybe this has already been legalized into the constant pool? 1513 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1514 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1515 return CFP->getValueAPF().isZero(); 1516 } 1517 return false; 1518 } 1519 1520 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1521 /// true if Op is undef or if it matches the specified value. 1522 static bool isConstantOrUndef(int Op, int Val) { 1523 return Op < 0 || Op == Val; 1524 } 1525 1526 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1527 /// VPKUHUM instruction. 1528 /// The ShuffleKind distinguishes between big-endian operations with 1529 /// two different inputs (0), either-endian operations with two identical 1530 /// inputs (1), and little-endian operations with two different inputs (2). 1531 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1532 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1533 SelectionDAG &DAG) { 1534 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1535 if (ShuffleKind == 0) { 1536 if (IsLE) 1537 return false; 1538 for (unsigned i = 0; i != 16; ++i) 1539 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1540 return false; 1541 } else if (ShuffleKind == 2) { 1542 if (!IsLE) 1543 return false; 1544 for (unsigned i = 0; i != 16; ++i) 1545 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1546 return false; 1547 } else if (ShuffleKind == 1) { 1548 unsigned j = IsLE ? 0 : 1; 1549 for (unsigned i = 0; i != 8; ++i) 1550 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1551 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1552 return false; 1553 } 1554 return true; 1555 } 1556 1557 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1558 /// VPKUWUM instruction. 1559 /// The ShuffleKind distinguishes between big-endian operations with 1560 /// two different inputs (0), either-endian operations with two identical 1561 /// inputs (1), and little-endian operations with two different inputs (2). 1562 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1563 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1564 SelectionDAG &DAG) { 1565 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1566 if (ShuffleKind == 0) { 1567 if (IsLE) 1568 return false; 1569 for (unsigned i = 0; i != 16; i += 2) 1570 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1571 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1572 return false; 1573 } else if (ShuffleKind == 2) { 1574 if (!IsLE) 1575 return false; 1576 for (unsigned i = 0; i != 16; i += 2) 1577 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1578 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1579 return false; 1580 } else if (ShuffleKind == 1) { 1581 unsigned j = IsLE ? 0 : 2; 1582 for (unsigned i = 0; i != 8; i += 2) 1583 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1584 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1585 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1586 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1587 return false; 1588 } 1589 return true; 1590 } 1591 1592 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1593 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1594 /// current subtarget. 1595 /// 1596 /// The ShuffleKind distinguishes between big-endian operations with 1597 /// two different inputs (0), either-endian operations with two identical 1598 /// inputs (1), and little-endian operations with two different inputs (2). 1599 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1600 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1601 SelectionDAG &DAG) { 1602 const PPCSubtarget& Subtarget = 1603 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1604 if (!Subtarget.hasP8Vector()) 1605 return false; 1606 1607 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1608 if (ShuffleKind == 0) { 1609 if (IsLE) 1610 return false; 1611 for (unsigned i = 0; i != 16; i += 4) 1612 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1613 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1614 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1615 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1616 return false; 1617 } else if (ShuffleKind == 2) { 1618 if (!IsLE) 1619 return false; 1620 for (unsigned i = 0; i != 16; i += 4) 1621 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1622 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1623 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1624 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1625 return false; 1626 } else if (ShuffleKind == 1) { 1627 unsigned j = IsLE ? 0 : 4; 1628 for (unsigned i = 0; i != 8; i += 4) 1629 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1630 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1631 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1632 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1633 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1634 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1635 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1636 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1637 return false; 1638 } 1639 return true; 1640 } 1641 1642 /// isVMerge - Common function, used to match vmrg* shuffles. 1643 /// 1644 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1645 unsigned LHSStart, unsigned RHSStart) { 1646 if (N->getValueType(0) != MVT::v16i8) 1647 return false; 1648 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1649 "Unsupported merge size!"); 1650 1651 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1652 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1653 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1654 LHSStart+j+i*UnitSize) || 1655 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1656 RHSStart+j+i*UnitSize)) 1657 return false; 1658 } 1659 return true; 1660 } 1661 1662 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1663 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1664 /// The ShuffleKind distinguishes between big-endian merges with two 1665 /// different inputs (0), either-endian merges with two identical inputs (1), 1666 /// and little-endian merges with two different inputs (2). For the latter, 1667 /// the input operands are swapped (see PPCInstrAltivec.td). 1668 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1669 unsigned ShuffleKind, SelectionDAG &DAG) { 1670 if (DAG.getDataLayout().isLittleEndian()) { 1671 if (ShuffleKind == 1) // unary 1672 return isVMerge(N, UnitSize, 0, 0); 1673 else if (ShuffleKind == 2) // swapped 1674 return isVMerge(N, UnitSize, 0, 16); 1675 else 1676 return false; 1677 } else { 1678 if (ShuffleKind == 1) // unary 1679 return isVMerge(N, UnitSize, 8, 8); 1680 else if (ShuffleKind == 0) // normal 1681 return isVMerge(N, UnitSize, 8, 24); 1682 else 1683 return false; 1684 } 1685 } 1686 1687 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1688 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1689 /// The ShuffleKind distinguishes between big-endian merges with two 1690 /// different inputs (0), either-endian merges with two identical inputs (1), 1691 /// and little-endian merges with two different inputs (2). For the latter, 1692 /// the input operands are swapped (see PPCInstrAltivec.td). 1693 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1694 unsigned ShuffleKind, SelectionDAG &DAG) { 1695 if (DAG.getDataLayout().isLittleEndian()) { 1696 if (ShuffleKind == 1) // unary 1697 return isVMerge(N, UnitSize, 8, 8); 1698 else if (ShuffleKind == 2) // swapped 1699 return isVMerge(N, UnitSize, 8, 24); 1700 else 1701 return false; 1702 } else { 1703 if (ShuffleKind == 1) // unary 1704 return isVMerge(N, UnitSize, 0, 0); 1705 else if (ShuffleKind == 0) // normal 1706 return isVMerge(N, UnitSize, 0, 16); 1707 else 1708 return false; 1709 } 1710 } 1711 1712 /** 1713 * Common function used to match vmrgew and vmrgow shuffles 1714 * 1715 * The indexOffset determines whether to look for even or odd words in 1716 * the shuffle mask. This is based on the of the endianness of the target 1717 * machine. 1718 * - Little Endian: 1719 * - Use offset of 0 to check for odd elements 1720 * - Use offset of 4 to check for even elements 1721 * - Big Endian: 1722 * - Use offset of 0 to check for even elements 1723 * - Use offset of 4 to check for odd elements 1724 * A detailed description of the vector element ordering for little endian and 1725 * big endian can be found at 1726 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1727 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1728 * compiler differences mean to you 1729 * 1730 * The mask to the shuffle vector instruction specifies the indices of the 1731 * elements from the two input vectors to place in the result. The elements are 1732 * numbered in array-access order, starting with the first vector. These vectors 1733 * are always of type v16i8, thus each vector will contain 16 elements of size 1734 * 8. More info on the shuffle vector can be found in the 1735 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1736 * Language Reference. 1737 * 1738 * The RHSStartValue indicates whether the same input vectors are used (unary) 1739 * or two different input vectors are used, based on the following: 1740 * - If the instruction uses the same vector for both inputs, the range of the 1741 * indices will be 0 to 15. In this case, the RHSStart value passed should 1742 * be 0. 1743 * - If the instruction has two different vectors then the range of the 1744 * indices will be 0 to 31. In this case, the RHSStart value passed should 1745 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1746 * to 31 specify elements in the second vector). 1747 * 1748 * \param[in] N The shuffle vector SD Node to analyze 1749 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1750 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1751 * vector to the shuffle_vector instruction 1752 * \return true iff this shuffle vector represents an even or odd word merge 1753 */ 1754 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1755 unsigned RHSStartValue) { 1756 if (N->getValueType(0) != MVT::v16i8) 1757 return false; 1758 1759 for (unsigned i = 0; i < 2; ++i) 1760 for (unsigned j = 0; j < 4; ++j) 1761 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1762 i*RHSStartValue+j+IndexOffset) || 1763 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1764 i*RHSStartValue+j+IndexOffset+8)) 1765 return false; 1766 return true; 1767 } 1768 1769 /** 1770 * Determine if the specified shuffle mask is suitable for the vmrgew or 1771 * vmrgow instructions. 1772 * 1773 * \param[in] N The shuffle vector SD Node to analyze 1774 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1775 * \param[in] ShuffleKind Identify the type of merge: 1776 * - 0 = big-endian merge with two different inputs; 1777 * - 1 = either-endian merge with two identical inputs; 1778 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1779 * little-endian merges). 1780 * \param[in] DAG The current SelectionDAG 1781 * \return true iff this shuffle mask 1782 */ 1783 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1784 unsigned ShuffleKind, SelectionDAG &DAG) { 1785 if (DAG.getDataLayout().isLittleEndian()) { 1786 unsigned indexOffset = CheckEven ? 4 : 0; 1787 if (ShuffleKind == 1) // Unary 1788 return isVMerge(N, indexOffset, 0); 1789 else if (ShuffleKind == 2) // swapped 1790 return isVMerge(N, indexOffset, 16); 1791 else 1792 return false; 1793 } 1794 else { 1795 unsigned indexOffset = CheckEven ? 0 : 4; 1796 if (ShuffleKind == 1) // Unary 1797 return isVMerge(N, indexOffset, 0); 1798 else if (ShuffleKind == 0) // Normal 1799 return isVMerge(N, indexOffset, 16); 1800 else 1801 return false; 1802 } 1803 return false; 1804 } 1805 1806 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1807 /// amount, otherwise return -1. 1808 /// The ShuffleKind distinguishes between big-endian operations with two 1809 /// different inputs (0), either-endian operations with two identical inputs 1810 /// (1), and little-endian operations with two different inputs (2). For the 1811 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1812 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1813 SelectionDAG &DAG) { 1814 if (N->getValueType(0) != MVT::v16i8) 1815 return -1; 1816 1817 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1818 1819 // Find the first non-undef value in the shuffle mask. 1820 unsigned i; 1821 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1822 /*search*/; 1823 1824 if (i == 16) return -1; // all undef. 1825 1826 // Otherwise, check to see if the rest of the elements are consecutively 1827 // numbered from this value. 1828 unsigned ShiftAmt = SVOp->getMaskElt(i); 1829 if (ShiftAmt < i) return -1; 1830 1831 ShiftAmt -= i; 1832 bool isLE = DAG.getDataLayout().isLittleEndian(); 1833 1834 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1835 // Check the rest of the elements to see if they are consecutive. 1836 for (++i; i != 16; ++i) 1837 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1838 return -1; 1839 } else if (ShuffleKind == 1) { 1840 // Check the rest of the elements to see if they are consecutive. 1841 for (++i; i != 16; ++i) 1842 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1843 return -1; 1844 } else 1845 return -1; 1846 1847 if (isLE) 1848 ShiftAmt = 16 - ShiftAmt; 1849 1850 return ShiftAmt; 1851 } 1852 1853 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1854 /// specifies a splat of a single element that is suitable for input to 1855 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1856 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1857 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1858 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1859 1860 // The consecutive indices need to specify an element, not part of two 1861 // different elements. So abandon ship early if this isn't the case. 1862 if (N->getMaskElt(0) % EltSize != 0) 1863 return false; 1864 1865 // This is a splat operation if each element of the permute is the same, and 1866 // if the value doesn't reference the second vector. 1867 unsigned ElementBase = N->getMaskElt(0); 1868 1869 // FIXME: Handle UNDEF elements too! 1870 if (ElementBase >= 16) 1871 return false; 1872 1873 // Check that the indices are consecutive, in the case of a multi-byte element 1874 // splatted with a v16i8 mask. 1875 for (unsigned i = 1; i != EltSize; ++i) 1876 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1877 return false; 1878 1879 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1880 if (N->getMaskElt(i) < 0) continue; 1881 for (unsigned j = 0; j != EltSize; ++j) 1882 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1883 return false; 1884 } 1885 return true; 1886 } 1887 1888 /// Check that the mask is shuffling N byte elements. Within each N byte 1889 /// element of the mask, the indices could be either in increasing or 1890 /// decreasing order as long as they are consecutive. 1891 /// \param[in] N the shuffle vector SD Node to analyze 1892 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1893 /// Word/DoubleWord/QuadWord). 1894 /// \param[in] StepLen the delta indices number among the N byte element, if 1895 /// the mask is in increasing/decreasing order then it is 1/-1. 1896 /// \return true iff the mask is shuffling N byte elements. 1897 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1898 int StepLen) { 1899 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1900 "Unexpected element width."); 1901 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1902 1903 unsigned NumOfElem = 16 / Width; 1904 unsigned MaskVal[16]; // Width is never greater than 16 1905 for (unsigned i = 0; i < NumOfElem; ++i) { 1906 MaskVal[0] = N->getMaskElt(i * Width); 1907 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1908 return false; 1909 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1910 return false; 1911 } 1912 1913 for (unsigned int j = 1; j < Width; ++j) { 1914 MaskVal[j] = N->getMaskElt(i * Width + j); 1915 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1916 return false; 1917 } 1918 } 1919 } 1920 1921 return true; 1922 } 1923 1924 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1925 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1926 if (!isNByteElemShuffleMask(N, 4, 1)) 1927 return false; 1928 1929 // Now we look at mask elements 0,4,8,12 1930 unsigned M0 = N->getMaskElt(0) / 4; 1931 unsigned M1 = N->getMaskElt(4) / 4; 1932 unsigned M2 = N->getMaskElt(8) / 4; 1933 unsigned M3 = N->getMaskElt(12) / 4; 1934 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1935 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1936 1937 // Below, let H and L be arbitrary elements of the shuffle mask 1938 // where H is in the range [4,7] and L is in the range [0,3]. 1939 // H, 1, 2, 3 or L, 5, 6, 7 1940 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1941 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1942 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1943 InsertAtByte = IsLE ? 12 : 0; 1944 Swap = M0 < 4; 1945 return true; 1946 } 1947 // 0, H, 2, 3 or 4, L, 6, 7 1948 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1949 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1950 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1951 InsertAtByte = IsLE ? 8 : 4; 1952 Swap = M1 < 4; 1953 return true; 1954 } 1955 // 0, 1, H, 3 or 4, 5, L, 7 1956 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1957 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1958 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1959 InsertAtByte = IsLE ? 4 : 8; 1960 Swap = M2 < 4; 1961 return true; 1962 } 1963 // 0, 1, 2, H or 4, 5, 6, L 1964 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1965 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1966 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1967 InsertAtByte = IsLE ? 0 : 12; 1968 Swap = M3 < 4; 1969 return true; 1970 } 1971 1972 // If both vector operands for the shuffle are the same vector, the mask will 1973 // contain only elements from the first one and the second one will be undef. 1974 if (N->getOperand(1).isUndef()) { 1975 ShiftElts = 0; 1976 Swap = true; 1977 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1978 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1979 InsertAtByte = IsLE ? 12 : 0; 1980 return true; 1981 } 1982 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1983 InsertAtByte = IsLE ? 8 : 4; 1984 return true; 1985 } 1986 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1987 InsertAtByte = IsLE ? 4 : 8; 1988 return true; 1989 } 1990 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1991 InsertAtByte = IsLE ? 0 : 12; 1992 return true; 1993 } 1994 } 1995 1996 return false; 1997 } 1998 1999 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2000 bool &Swap, bool IsLE) { 2001 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2002 // Ensure each byte index of the word is consecutive. 2003 if (!isNByteElemShuffleMask(N, 4, 1)) 2004 return false; 2005 2006 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2007 unsigned M0 = N->getMaskElt(0) / 4; 2008 unsigned M1 = N->getMaskElt(4) / 4; 2009 unsigned M2 = N->getMaskElt(8) / 4; 2010 unsigned M3 = N->getMaskElt(12) / 4; 2011 2012 // If both vector operands for the shuffle are the same vector, the mask will 2013 // contain only elements from the first one and the second one will be undef. 2014 if (N->getOperand(1).isUndef()) { 2015 assert(M0 < 4 && "Indexing into an undef vector?"); 2016 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2017 return false; 2018 2019 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2020 Swap = false; 2021 return true; 2022 } 2023 2024 // Ensure each word index of the ShuffleVector Mask is consecutive. 2025 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2026 return false; 2027 2028 if (IsLE) { 2029 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2030 // Input vectors don't need to be swapped if the leading element 2031 // of the result is one of the 3 left elements of the second vector 2032 // (or if there is no shift to be done at all). 2033 Swap = false; 2034 ShiftElts = (8 - M0) % 8; 2035 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2036 // Input vectors need to be swapped if the leading element 2037 // of the result is one of the 3 left elements of the first vector 2038 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2039 Swap = true; 2040 ShiftElts = (4 - M0) % 4; 2041 } 2042 2043 return true; 2044 } else { // BE 2045 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2046 // Input vectors don't need to be swapped if the leading element 2047 // of the result is one of the 4 elements of the first vector. 2048 Swap = false; 2049 ShiftElts = M0; 2050 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2051 // Input vectors need to be swapped if the leading element 2052 // of the result is one of the 4 elements of the right vector. 2053 Swap = true; 2054 ShiftElts = M0 - 4; 2055 } 2056 2057 return true; 2058 } 2059 } 2060 2061 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2062 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2063 2064 if (!isNByteElemShuffleMask(N, Width, -1)) 2065 return false; 2066 2067 for (int i = 0; i < 16; i += Width) 2068 if (N->getMaskElt(i) != i + Width - 1) 2069 return false; 2070 2071 return true; 2072 } 2073 2074 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2075 return isXXBRShuffleMaskHelper(N, 2); 2076 } 2077 2078 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2079 return isXXBRShuffleMaskHelper(N, 4); 2080 } 2081 2082 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2083 return isXXBRShuffleMaskHelper(N, 8); 2084 } 2085 2086 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2087 return isXXBRShuffleMaskHelper(N, 16); 2088 } 2089 2090 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2091 /// if the inputs to the instruction should be swapped and set \p DM to the 2092 /// value for the immediate. 2093 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2094 /// AND element 0 of the result comes from the first input (LE) or second input 2095 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2096 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2097 /// mask. 2098 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2099 bool &Swap, bool IsLE) { 2100 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2101 2102 // Ensure each byte index of the double word is consecutive. 2103 if (!isNByteElemShuffleMask(N, 8, 1)) 2104 return false; 2105 2106 unsigned M0 = N->getMaskElt(0) / 8; 2107 unsigned M1 = N->getMaskElt(8) / 8; 2108 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2109 2110 // If both vector operands for the shuffle are the same vector, the mask will 2111 // contain only elements from the first one and the second one will be undef. 2112 if (N->getOperand(1).isUndef()) { 2113 if ((M0 | M1) < 2) { 2114 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2115 Swap = false; 2116 return true; 2117 } else 2118 return false; 2119 } 2120 2121 if (IsLE) { 2122 if (M0 > 1 && M1 < 2) { 2123 Swap = false; 2124 } else if (M0 < 2 && M1 > 1) { 2125 M0 = (M0 + 2) % 4; 2126 M1 = (M1 + 2) % 4; 2127 Swap = true; 2128 } else 2129 return false; 2130 2131 // Note: if control flow comes here that means Swap is already set above 2132 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2133 return true; 2134 } else { // BE 2135 if (M0 < 2 && M1 > 1) { 2136 Swap = false; 2137 } else if (M0 > 1 && M1 < 2) { 2138 M0 = (M0 + 2) % 4; 2139 M1 = (M1 + 2) % 4; 2140 Swap = true; 2141 } else 2142 return false; 2143 2144 // Note: if control flow comes here that means Swap is already set above 2145 DM = (M0 << 1) + (M1 & 1); 2146 return true; 2147 } 2148 } 2149 2150 2151 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2152 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2153 /// elements are counted from the left of the vector register). 2154 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2155 SelectionDAG &DAG) { 2156 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2157 assert(isSplatShuffleMask(SVOp, EltSize)); 2158 if (DAG.getDataLayout().isLittleEndian()) 2159 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2160 else 2161 return SVOp->getMaskElt(0) / EltSize; 2162 } 2163 2164 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2165 /// by using a vspltis[bhw] instruction of the specified element size, return 2166 /// the constant being splatted. The ByteSize field indicates the number of 2167 /// bytes of each element [124] -> [bhw]. 2168 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2169 SDValue OpVal(nullptr, 0); 2170 2171 // If ByteSize of the splat is bigger than the element size of the 2172 // build_vector, then we have a case where we are checking for a splat where 2173 // multiple elements of the buildvector are folded together into a single 2174 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2175 unsigned EltSize = 16/N->getNumOperands(); 2176 if (EltSize < ByteSize) { 2177 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2178 SDValue UniquedVals[4]; 2179 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2180 2181 // See if all of the elements in the buildvector agree across. 2182 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2183 if (N->getOperand(i).isUndef()) continue; 2184 // If the element isn't a constant, bail fully out. 2185 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2186 2187 if (!UniquedVals[i&(Multiple-1)].getNode()) 2188 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2189 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2190 return SDValue(); // no match. 2191 } 2192 2193 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2194 // either constant or undef values that are identical for each chunk. See 2195 // if these chunks can form into a larger vspltis*. 2196 2197 // Check to see if all of the leading entries are either 0 or -1. If 2198 // neither, then this won't fit into the immediate field. 2199 bool LeadingZero = true; 2200 bool LeadingOnes = true; 2201 for (unsigned i = 0; i != Multiple-1; ++i) { 2202 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2203 2204 LeadingZero &= isNullConstant(UniquedVals[i]); 2205 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2206 } 2207 // Finally, check the least significant entry. 2208 if (LeadingZero) { 2209 if (!UniquedVals[Multiple-1].getNode()) 2210 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2211 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2212 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2213 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2214 } 2215 if (LeadingOnes) { 2216 if (!UniquedVals[Multiple-1].getNode()) 2217 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2218 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2219 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2220 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2221 } 2222 2223 return SDValue(); 2224 } 2225 2226 // Check to see if this buildvec has a single non-undef value in its elements. 2227 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2228 if (N->getOperand(i).isUndef()) continue; 2229 if (!OpVal.getNode()) 2230 OpVal = N->getOperand(i); 2231 else if (OpVal != N->getOperand(i)) 2232 return SDValue(); 2233 } 2234 2235 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2236 2237 unsigned ValSizeInBytes = EltSize; 2238 uint64_t Value = 0; 2239 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2240 Value = CN->getZExtValue(); 2241 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2242 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2243 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2244 } 2245 2246 // If the splat value is larger than the element value, then we can never do 2247 // this splat. The only case that we could fit the replicated bits into our 2248 // immediate field for would be zero, and we prefer to use vxor for it. 2249 if (ValSizeInBytes < ByteSize) return SDValue(); 2250 2251 // If the element value is larger than the splat value, check if it consists 2252 // of a repeated bit pattern of size ByteSize. 2253 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2254 return SDValue(); 2255 2256 // Properly sign extend the value. 2257 int MaskVal = SignExtend32(Value, ByteSize * 8); 2258 2259 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2260 if (MaskVal == 0) return SDValue(); 2261 2262 // Finally, if this value fits in a 5 bit sext field, return it 2263 if (SignExtend32<5>(MaskVal) == MaskVal) 2264 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2265 return SDValue(); 2266 } 2267 2268 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2269 /// amount, otherwise return -1. 2270 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2271 EVT VT = N->getValueType(0); 2272 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2273 return -1; 2274 2275 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2276 2277 // Find the first non-undef value in the shuffle mask. 2278 unsigned i; 2279 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2280 /*search*/; 2281 2282 if (i == 4) return -1; // all undef. 2283 2284 // Otherwise, check to see if the rest of the elements are consecutively 2285 // numbered from this value. 2286 unsigned ShiftAmt = SVOp->getMaskElt(i); 2287 if (ShiftAmt < i) return -1; 2288 ShiftAmt -= i; 2289 2290 // Check the rest of the elements to see if they are consecutive. 2291 for (++i; i != 4; ++i) 2292 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2293 return -1; 2294 2295 return ShiftAmt; 2296 } 2297 2298 //===----------------------------------------------------------------------===// 2299 // Addressing Mode Selection 2300 //===----------------------------------------------------------------------===// 2301 2302 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2303 /// or 64-bit immediate, and if the value can be accurately represented as a 2304 /// sign extension from a 16-bit value. If so, this returns true and the 2305 /// immediate. 2306 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2307 if (!isa<ConstantSDNode>(N)) 2308 return false; 2309 2310 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2311 if (N->getValueType(0) == MVT::i32) 2312 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2313 else 2314 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2315 } 2316 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2317 return isIntS16Immediate(Op.getNode(), Imm); 2318 } 2319 2320 2321 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2322 /// be represented as an indexed [r+r] operation. 2323 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2324 SDValue &Index, 2325 SelectionDAG &DAG) const { 2326 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2327 UI != E; ++UI) { 2328 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2329 if (Memop->getMemoryVT() == MVT::f64) { 2330 Base = N.getOperand(0); 2331 Index = N.getOperand(1); 2332 return true; 2333 } 2334 } 2335 } 2336 return false; 2337 } 2338 2339 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2340 /// can be represented as an indexed [r+r] operation. Returns false if it 2341 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2342 /// non-zero and N can be represented by a base register plus a signed 16-bit 2343 /// displacement, make a more precise judgement by checking (displacement % \p 2344 /// EncodingAlignment). 2345 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2346 SDValue &Index, SelectionDAG &DAG, 2347 unsigned EncodingAlignment) const { 2348 int16_t imm = 0; 2349 if (N.getOpcode() == ISD::ADD) { 2350 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2351 // SPE load/store can only handle 8-bit offsets. 2352 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2353 return true; 2354 if (isIntS16Immediate(N.getOperand(1), imm) && 2355 (!EncodingAlignment || !(imm % EncodingAlignment))) 2356 return false; // r+i 2357 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2358 return false; // r+i 2359 2360 Base = N.getOperand(0); 2361 Index = N.getOperand(1); 2362 return true; 2363 } else if (N.getOpcode() == ISD::OR) { 2364 if (isIntS16Immediate(N.getOperand(1), imm) && 2365 (!EncodingAlignment || !(imm % EncodingAlignment))) 2366 return false; // r+i can fold it if we can. 2367 2368 // If this is an or of disjoint bitfields, we can codegen this as an add 2369 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2370 // disjoint. 2371 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2372 2373 if (LHSKnown.Zero.getBoolValue()) { 2374 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2375 // If all of the bits are known zero on the LHS or RHS, the add won't 2376 // carry. 2377 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2378 Base = N.getOperand(0); 2379 Index = N.getOperand(1); 2380 return true; 2381 } 2382 } 2383 } 2384 2385 return false; 2386 } 2387 2388 // If we happen to be doing an i64 load or store into a stack slot that has 2389 // less than a 4-byte alignment, then the frame-index elimination may need to 2390 // use an indexed load or store instruction (because the offset may not be a 2391 // multiple of 4). The extra register needed to hold the offset comes from the 2392 // register scavenger, and it is possible that the scavenger will need to use 2393 // an emergency spill slot. As a result, we need to make sure that a spill slot 2394 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2395 // stack slot. 2396 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2397 // FIXME: This does not handle the LWA case. 2398 if (VT != MVT::i64) 2399 return; 2400 2401 // NOTE: We'll exclude negative FIs here, which come from argument 2402 // lowering, because there are no known test cases triggering this problem 2403 // using packed structures (or similar). We can remove this exclusion if 2404 // we find such a test case. The reason why this is so test-case driven is 2405 // because this entire 'fixup' is only to prevent crashes (from the 2406 // register scavenger) on not-really-valid inputs. For example, if we have: 2407 // %a = alloca i1 2408 // %b = bitcast i1* %a to i64* 2409 // store i64* a, i64 b 2410 // then the store should really be marked as 'align 1', but is not. If it 2411 // were marked as 'align 1' then the indexed form would have been 2412 // instruction-selected initially, and the problem this 'fixup' is preventing 2413 // won't happen regardless. 2414 if (FrameIdx < 0) 2415 return; 2416 2417 MachineFunction &MF = DAG.getMachineFunction(); 2418 MachineFrameInfo &MFI = MF.getFrameInfo(); 2419 2420 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2421 if (Align >= 4) 2422 return; 2423 2424 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2425 FuncInfo->setHasNonRISpills(); 2426 } 2427 2428 /// Returns true if the address N can be represented by a base register plus 2429 /// a signed 16-bit displacement [r+imm], and if it is not better 2430 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2431 /// displacements that are multiples of that value. 2432 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2433 SDValue &Base, 2434 SelectionDAG &DAG, 2435 unsigned EncodingAlignment) const { 2436 // FIXME dl should come from parent load or store, not from address 2437 SDLoc dl(N); 2438 // If this can be more profitably realized as r+r, fail. 2439 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2440 return false; 2441 2442 if (N.getOpcode() == ISD::ADD) { 2443 int16_t imm = 0; 2444 if (isIntS16Immediate(N.getOperand(1), imm) && 2445 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2446 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2447 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2448 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2449 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2450 } else { 2451 Base = N.getOperand(0); 2452 } 2453 return true; // [r+i] 2454 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2455 // Match LOAD (ADD (X, Lo(G))). 2456 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2457 && "Cannot handle constant offsets yet!"); 2458 Disp = N.getOperand(1).getOperand(0); // The global address. 2459 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2460 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2461 Disp.getOpcode() == ISD::TargetConstantPool || 2462 Disp.getOpcode() == ISD::TargetJumpTable); 2463 Base = N.getOperand(0); 2464 return true; // [&g+r] 2465 } 2466 } else if (N.getOpcode() == ISD::OR) { 2467 int16_t imm = 0; 2468 if (isIntS16Immediate(N.getOperand(1), imm) && 2469 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2470 // If this is an or of disjoint bitfields, we can codegen this as an add 2471 // (for better address arithmetic) if the LHS and RHS of the OR are 2472 // provably disjoint. 2473 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2474 2475 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2476 // If all of the bits are known zero on the LHS or RHS, the add won't 2477 // carry. 2478 if (FrameIndexSDNode *FI = 2479 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2480 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2481 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2482 } else { 2483 Base = N.getOperand(0); 2484 } 2485 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2486 return true; 2487 } 2488 } 2489 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2490 // Loading from a constant address. 2491 2492 // If this address fits entirely in a 16-bit sext immediate field, codegen 2493 // this as "d, 0" 2494 int16_t Imm; 2495 if (isIntS16Immediate(CN, Imm) && 2496 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2497 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2498 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2499 CN->getValueType(0)); 2500 return true; 2501 } 2502 2503 // Handle 32-bit sext immediates with LIS + addr mode. 2504 if ((CN->getValueType(0) == MVT::i32 || 2505 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2506 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2507 int Addr = (int)CN->getZExtValue(); 2508 2509 // Otherwise, break this down into an LIS + disp. 2510 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2511 2512 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2513 MVT::i32); 2514 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2515 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2516 return true; 2517 } 2518 } 2519 2520 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2521 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2522 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2523 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2524 } else 2525 Base = N; 2526 return true; // [r+0] 2527 } 2528 2529 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2530 /// represented as an indexed [r+r] operation. 2531 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2532 SDValue &Index, 2533 SelectionDAG &DAG) const { 2534 // Check to see if we can easily represent this as an [r+r] address. This 2535 // will fail if it thinks that the address is more profitably represented as 2536 // reg+imm, e.g. where imm = 0. 2537 if (SelectAddressRegReg(N, Base, Index, DAG)) 2538 return true; 2539 2540 // If the address is the result of an add, we will utilize the fact that the 2541 // address calculation includes an implicit add. However, we can reduce 2542 // register pressure if we do not materialize a constant just for use as the 2543 // index register. We only get rid of the add if it is not an add of a 2544 // value and a 16-bit signed constant and both have a single use. 2545 int16_t imm = 0; 2546 if (N.getOpcode() == ISD::ADD && 2547 (!isIntS16Immediate(N.getOperand(1), imm) || 2548 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2549 Base = N.getOperand(0); 2550 Index = N.getOperand(1); 2551 return true; 2552 } 2553 2554 // Otherwise, do it the hard way, using R0 as the base register. 2555 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2556 N.getValueType()); 2557 Index = N; 2558 return true; 2559 } 2560 2561 /// Returns true if we should use a direct load into vector instruction 2562 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2563 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2564 2565 // If there are any other uses other than scalar to vector, then we should 2566 // keep it as a scalar load -> direct move pattern to prevent multiple 2567 // loads. 2568 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2569 if (!LD) 2570 return false; 2571 2572 EVT MemVT = LD->getMemoryVT(); 2573 if (!MemVT.isSimple()) 2574 return false; 2575 switch(MemVT.getSimpleVT().SimpleTy) { 2576 case MVT::i64: 2577 break; 2578 case MVT::i32: 2579 if (!ST.hasP8Vector()) 2580 return false; 2581 break; 2582 case MVT::i16: 2583 case MVT::i8: 2584 if (!ST.hasP9Vector()) 2585 return false; 2586 break; 2587 default: 2588 return false; 2589 } 2590 2591 SDValue LoadedVal(N, 0); 2592 if (!LoadedVal.hasOneUse()) 2593 return false; 2594 2595 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2596 UI != UE; ++UI) 2597 if (UI.getUse().get().getResNo() == 0 && 2598 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2599 return false; 2600 2601 return true; 2602 } 2603 2604 /// getPreIndexedAddressParts - returns true by value, base pointer and 2605 /// offset pointer and addressing mode by reference if the node's address 2606 /// can be legally represented as pre-indexed load / store address. 2607 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2608 SDValue &Offset, 2609 ISD::MemIndexedMode &AM, 2610 SelectionDAG &DAG) const { 2611 if (DisablePPCPreinc) return false; 2612 2613 bool isLoad = true; 2614 SDValue Ptr; 2615 EVT VT; 2616 unsigned Alignment; 2617 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2618 Ptr = LD->getBasePtr(); 2619 VT = LD->getMemoryVT(); 2620 Alignment = LD->getAlignment(); 2621 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2622 Ptr = ST->getBasePtr(); 2623 VT = ST->getMemoryVT(); 2624 Alignment = ST->getAlignment(); 2625 isLoad = false; 2626 } else 2627 return false; 2628 2629 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2630 // instructions because we can fold these into a more efficient instruction 2631 // instead, (such as LXSD). 2632 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2633 return false; 2634 } 2635 2636 // PowerPC doesn't have preinc load/store instructions for vectors (except 2637 // for QPX, which does have preinc r+r forms). 2638 if (VT.isVector()) { 2639 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2640 return false; 2641 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2642 AM = ISD::PRE_INC; 2643 return true; 2644 } 2645 } 2646 2647 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2648 // Common code will reject creating a pre-inc form if the base pointer 2649 // is a frame index, or if N is a store and the base pointer is either 2650 // the same as or a predecessor of the value being stored. Check for 2651 // those situations here, and try with swapped Base/Offset instead. 2652 bool Swap = false; 2653 2654 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2655 Swap = true; 2656 else if (!isLoad) { 2657 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2658 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2659 Swap = true; 2660 } 2661 2662 if (Swap) 2663 std::swap(Base, Offset); 2664 2665 AM = ISD::PRE_INC; 2666 return true; 2667 } 2668 2669 // LDU/STU can only handle immediates that are a multiple of 4. 2670 if (VT != MVT::i64) { 2671 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2672 return false; 2673 } else { 2674 // LDU/STU need an address with at least 4-byte alignment. 2675 if (Alignment < 4) 2676 return false; 2677 2678 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2679 return false; 2680 } 2681 2682 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2683 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2684 // sext i32 to i64 when addr mode is r+i. 2685 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2686 LD->getExtensionType() == ISD::SEXTLOAD && 2687 isa<ConstantSDNode>(Offset)) 2688 return false; 2689 } 2690 2691 AM = ISD::PRE_INC; 2692 return true; 2693 } 2694 2695 //===----------------------------------------------------------------------===// 2696 // LowerOperation implementation 2697 //===----------------------------------------------------------------------===// 2698 2699 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2700 /// and LoOpFlags to the target MO flags. 2701 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2702 unsigned &HiOpFlags, unsigned &LoOpFlags, 2703 const GlobalValue *GV = nullptr) { 2704 HiOpFlags = PPCII::MO_HA; 2705 LoOpFlags = PPCII::MO_LO; 2706 2707 // Don't use the pic base if not in PIC relocation model. 2708 if (IsPIC) { 2709 HiOpFlags |= PPCII::MO_PIC_FLAG; 2710 LoOpFlags |= PPCII::MO_PIC_FLAG; 2711 } 2712 } 2713 2714 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2715 SelectionDAG &DAG) { 2716 SDLoc DL(HiPart); 2717 EVT PtrVT = HiPart.getValueType(); 2718 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2719 2720 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2721 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2722 2723 // With PIC, the first instruction is actually "GR+hi(&G)". 2724 if (isPIC) 2725 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2726 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2727 2728 // Generate non-pic code that has direct accesses to the constant pool. 2729 // The address of the global is just (hi(&g)+lo(&g)). 2730 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2731 } 2732 2733 static void setUsesTOCBasePtr(MachineFunction &MF) { 2734 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2735 FuncInfo->setUsesTOCBasePtr(); 2736 } 2737 2738 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2739 setUsesTOCBasePtr(DAG.getMachineFunction()); 2740 } 2741 2742 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2743 SDValue GA) const { 2744 const bool Is64Bit = Subtarget.isPPC64(); 2745 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2746 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2747 : Subtarget.isAIXABI() 2748 ? DAG.getRegister(PPC::R2, VT) 2749 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2750 SDValue Ops[] = { GA, Reg }; 2751 return DAG.getMemIntrinsicNode( 2752 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2753 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2754 MachineMemOperand::MOLoad); 2755 } 2756 2757 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2758 SelectionDAG &DAG) const { 2759 EVT PtrVT = Op.getValueType(); 2760 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2761 const Constant *C = CP->getConstVal(); 2762 2763 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2764 // The actual address of the GlobalValue is stored in the TOC. 2765 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2766 setUsesTOCBasePtr(DAG); 2767 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2768 return getTOCEntry(DAG, SDLoc(CP), GA); 2769 } 2770 2771 unsigned MOHiFlag, MOLoFlag; 2772 bool IsPIC = isPositionIndependent(); 2773 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2774 2775 if (IsPIC && Subtarget.isSVR4ABI()) { 2776 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2777 PPCII::MO_PIC_FLAG); 2778 return getTOCEntry(DAG, SDLoc(CP), GA); 2779 } 2780 2781 SDValue CPIHi = 2782 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2783 SDValue CPILo = 2784 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2785 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2786 } 2787 2788 // For 64-bit PowerPC, prefer the more compact relative encodings. 2789 // This trades 32 bits per jump table entry for one or two instructions 2790 // on the jump site. 2791 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2792 if (isJumpTableRelative()) 2793 return MachineJumpTableInfo::EK_LabelDifference32; 2794 2795 return TargetLowering::getJumpTableEncoding(); 2796 } 2797 2798 bool PPCTargetLowering::isJumpTableRelative() const { 2799 if (UseAbsoluteJumpTables) 2800 return false; 2801 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2802 return true; 2803 return TargetLowering::isJumpTableRelative(); 2804 } 2805 2806 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2807 SelectionDAG &DAG) const { 2808 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2809 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2810 2811 switch (getTargetMachine().getCodeModel()) { 2812 case CodeModel::Small: 2813 case CodeModel::Medium: 2814 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2815 default: 2816 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2817 getPointerTy(DAG.getDataLayout())); 2818 } 2819 } 2820 2821 const MCExpr * 2822 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2823 unsigned JTI, 2824 MCContext &Ctx) const { 2825 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2826 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2827 2828 switch (getTargetMachine().getCodeModel()) { 2829 case CodeModel::Small: 2830 case CodeModel::Medium: 2831 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2832 default: 2833 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2834 } 2835 } 2836 2837 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2838 EVT PtrVT = Op.getValueType(); 2839 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2840 2841 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2842 // The actual address of the GlobalValue is stored in the TOC. 2843 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2844 setUsesTOCBasePtr(DAG); 2845 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2846 return getTOCEntry(DAG, SDLoc(JT), GA); 2847 } 2848 2849 unsigned MOHiFlag, MOLoFlag; 2850 bool IsPIC = isPositionIndependent(); 2851 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2852 2853 if (IsPIC && Subtarget.isSVR4ABI()) { 2854 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2855 PPCII::MO_PIC_FLAG); 2856 return getTOCEntry(DAG, SDLoc(GA), GA); 2857 } 2858 2859 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2860 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2861 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2862 } 2863 2864 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2865 SelectionDAG &DAG) const { 2866 EVT PtrVT = Op.getValueType(); 2867 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2868 const BlockAddress *BA = BASDN->getBlockAddress(); 2869 2870 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2871 // The actual BlockAddress is stored in the TOC. 2872 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2873 setUsesTOCBasePtr(DAG); 2874 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2875 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2876 } 2877 2878 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2879 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2880 return getTOCEntry( 2881 DAG, SDLoc(BASDN), 2882 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2883 2884 unsigned MOHiFlag, MOLoFlag; 2885 bool IsPIC = isPositionIndependent(); 2886 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2887 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2888 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2889 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2890 } 2891 2892 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2893 SelectionDAG &DAG) const { 2894 // FIXME: TLS addresses currently use medium model code sequences, 2895 // which is the most useful form. Eventually support for small and 2896 // large models could be added if users need it, at the cost of 2897 // additional complexity. 2898 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2899 if (DAG.getTarget().useEmulatedTLS()) 2900 return LowerToTLSEmulatedModel(GA, DAG); 2901 2902 SDLoc dl(GA); 2903 const GlobalValue *GV = GA->getGlobal(); 2904 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2905 bool is64bit = Subtarget.isPPC64(); 2906 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2907 PICLevel::Level picLevel = M->getPICLevel(); 2908 2909 const TargetMachine &TM = getTargetMachine(); 2910 TLSModel::Model Model = TM.getTLSModel(GV); 2911 2912 if (Model == TLSModel::LocalExec) { 2913 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2914 PPCII::MO_TPREL_HA); 2915 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2916 PPCII::MO_TPREL_LO); 2917 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2918 : DAG.getRegister(PPC::R2, MVT::i32); 2919 2920 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2921 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2922 } 2923 2924 if (Model == TLSModel::InitialExec) { 2925 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2926 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2927 PPCII::MO_TLS); 2928 SDValue GOTPtr; 2929 if (is64bit) { 2930 setUsesTOCBasePtr(DAG); 2931 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2932 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2933 PtrVT, GOTReg, TGA); 2934 } else { 2935 if (!TM.isPositionIndependent()) 2936 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2937 else if (picLevel == PICLevel::SmallPIC) 2938 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2939 else 2940 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2941 } 2942 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2943 PtrVT, TGA, GOTPtr); 2944 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2945 } 2946 2947 if (Model == TLSModel::GeneralDynamic) { 2948 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2949 SDValue GOTPtr; 2950 if (is64bit) { 2951 setUsesTOCBasePtr(DAG); 2952 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2953 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2954 GOTReg, TGA); 2955 } else { 2956 if (picLevel == PICLevel::SmallPIC) 2957 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2958 else 2959 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2960 } 2961 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2962 GOTPtr, TGA, TGA); 2963 } 2964 2965 if (Model == TLSModel::LocalDynamic) { 2966 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2967 SDValue GOTPtr; 2968 if (is64bit) { 2969 setUsesTOCBasePtr(DAG); 2970 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2971 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2972 GOTReg, TGA); 2973 } else { 2974 if (picLevel == PICLevel::SmallPIC) 2975 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2976 else 2977 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2978 } 2979 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2980 PtrVT, GOTPtr, TGA, TGA); 2981 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2982 PtrVT, TLSAddr, TGA); 2983 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2984 } 2985 2986 llvm_unreachable("Unknown TLS model!"); 2987 } 2988 2989 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2990 SelectionDAG &DAG) const { 2991 EVT PtrVT = Op.getValueType(); 2992 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2993 SDLoc DL(GSDN); 2994 const GlobalValue *GV = GSDN->getGlobal(); 2995 2996 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 2997 // The actual address of the GlobalValue is stored in the TOC. 2998 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2999 setUsesTOCBasePtr(DAG); 3000 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3001 return getTOCEntry(DAG, DL, GA); 3002 } 3003 3004 unsigned MOHiFlag, MOLoFlag; 3005 bool IsPIC = isPositionIndependent(); 3006 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3007 3008 if (IsPIC && Subtarget.isSVR4ABI()) { 3009 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3010 GSDN->getOffset(), 3011 PPCII::MO_PIC_FLAG); 3012 return getTOCEntry(DAG, DL, GA); 3013 } 3014 3015 SDValue GAHi = 3016 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3017 SDValue GALo = 3018 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3019 3020 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3021 } 3022 3023 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3024 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3025 SDLoc dl(Op); 3026 3027 if (Op.getValueType() == MVT::v2i64) { 3028 // When the operands themselves are v2i64 values, we need to do something 3029 // special because VSX has no underlying comparison operations for these. 3030 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3031 // Equality can be handled by casting to the legal type for Altivec 3032 // comparisons, everything else needs to be expanded. 3033 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3034 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3035 DAG.getSetCC(dl, MVT::v4i32, 3036 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3037 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3038 CC)); 3039 } 3040 3041 return SDValue(); 3042 } 3043 3044 // We handle most of these in the usual way. 3045 return Op; 3046 } 3047 3048 // If we're comparing for equality to zero, expose the fact that this is 3049 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3050 // fold the new nodes. 3051 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3052 return V; 3053 3054 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3055 // Leave comparisons against 0 and -1 alone for now, since they're usually 3056 // optimized. FIXME: revisit this when we can custom lower all setcc 3057 // optimizations. 3058 if (C->isAllOnesValue() || C->isNullValue()) 3059 return SDValue(); 3060 } 3061 3062 // If we have an integer seteq/setne, turn it into a compare against zero 3063 // by xor'ing the rhs with the lhs, which is faster than setting a 3064 // condition register, reading it back out, and masking the correct bit. The 3065 // normal approach here uses sub to do this instead of xor. Using xor exposes 3066 // the result to other bit-twiddling opportunities. 3067 EVT LHSVT = Op.getOperand(0).getValueType(); 3068 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3069 EVT VT = Op.getValueType(); 3070 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3071 Op.getOperand(1)); 3072 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3073 } 3074 return SDValue(); 3075 } 3076 3077 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3078 SDNode *Node = Op.getNode(); 3079 EVT VT = Node->getValueType(0); 3080 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3081 SDValue InChain = Node->getOperand(0); 3082 SDValue VAListPtr = Node->getOperand(1); 3083 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3084 SDLoc dl(Node); 3085 3086 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3087 3088 // gpr_index 3089 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3090 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3091 InChain = GprIndex.getValue(1); 3092 3093 if (VT == MVT::i64) { 3094 // Check if GprIndex is even 3095 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3096 DAG.getConstant(1, dl, MVT::i32)); 3097 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3098 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3099 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3100 DAG.getConstant(1, dl, MVT::i32)); 3101 // Align GprIndex to be even if it isn't 3102 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3103 GprIndex); 3104 } 3105 3106 // fpr index is 1 byte after gpr 3107 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3108 DAG.getConstant(1, dl, MVT::i32)); 3109 3110 // fpr 3111 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3112 FprPtr, MachinePointerInfo(SV), MVT::i8); 3113 InChain = FprIndex.getValue(1); 3114 3115 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3116 DAG.getConstant(8, dl, MVT::i32)); 3117 3118 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3119 DAG.getConstant(4, dl, MVT::i32)); 3120 3121 // areas 3122 SDValue OverflowArea = 3123 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3124 InChain = OverflowArea.getValue(1); 3125 3126 SDValue RegSaveArea = 3127 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3128 InChain = RegSaveArea.getValue(1); 3129 3130 // select overflow_area if index > 8 3131 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3132 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3133 3134 // adjustment constant gpr_index * 4/8 3135 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3136 VT.isInteger() ? GprIndex : FprIndex, 3137 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3138 MVT::i32)); 3139 3140 // OurReg = RegSaveArea + RegConstant 3141 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3142 RegConstant); 3143 3144 // Floating types are 32 bytes into RegSaveArea 3145 if (VT.isFloatingPoint()) 3146 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3147 DAG.getConstant(32, dl, MVT::i32)); 3148 3149 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3150 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3151 VT.isInteger() ? GprIndex : FprIndex, 3152 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3153 MVT::i32)); 3154 3155 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3156 VT.isInteger() ? VAListPtr : FprPtr, 3157 MachinePointerInfo(SV), MVT::i8); 3158 3159 // determine if we should load from reg_save_area or overflow_area 3160 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3161 3162 // increase overflow_area by 4/8 if gpr/fpr > 8 3163 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3164 DAG.getConstant(VT.isInteger() ? 4 : 8, 3165 dl, MVT::i32)); 3166 3167 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3168 OverflowAreaPlusN); 3169 3170 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3171 MachinePointerInfo(), MVT::i32); 3172 3173 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3174 } 3175 3176 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3177 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3178 3179 // We have to copy the entire va_list struct: 3180 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3181 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3182 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3183 false, true, false, MachinePointerInfo(), 3184 MachinePointerInfo()); 3185 } 3186 3187 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3188 SelectionDAG &DAG) const { 3189 if (Subtarget.isAIXABI()) 3190 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3191 3192 return Op.getOperand(0); 3193 } 3194 3195 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3196 SelectionDAG &DAG) const { 3197 if (Subtarget.isAIXABI()) 3198 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3199 3200 SDValue Chain = Op.getOperand(0); 3201 SDValue Trmp = Op.getOperand(1); // trampoline 3202 SDValue FPtr = Op.getOperand(2); // nested function 3203 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3204 SDLoc dl(Op); 3205 3206 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3207 bool isPPC64 = (PtrVT == MVT::i64); 3208 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3209 3210 TargetLowering::ArgListTy Args; 3211 TargetLowering::ArgListEntry Entry; 3212 3213 Entry.Ty = IntPtrTy; 3214 Entry.Node = Trmp; Args.push_back(Entry); 3215 3216 // TrampSize == (isPPC64 ? 48 : 40); 3217 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3218 isPPC64 ? MVT::i64 : MVT::i32); 3219 Args.push_back(Entry); 3220 3221 Entry.Node = FPtr; Args.push_back(Entry); 3222 Entry.Node = Nest; Args.push_back(Entry); 3223 3224 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3225 TargetLowering::CallLoweringInfo CLI(DAG); 3226 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3227 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3228 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3229 3230 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3231 return CallResult.second; 3232 } 3233 3234 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3235 MachineFunction &MF = DAG.getMachineFunction(); 3236 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3237 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3238 3239 SDLoc dl(Op); 3240 3241 if (Subtarget.isPPC64()) { 3242 // vastart just stores the address of the VarArgsFrameIndex slot into the 3243 // memory location argument. 3244 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3245 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3246 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3247 MachinePointerInfo(SV)); 3248 } 3249 3250 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3251 // We suppose the given va_list is already allocated. 3252 // 3253 // typedef struct { 3254 // char gpr; /* index into the array of 8 GPRs 3255 // * stored in the register save area 3256 // * gpr=0 corresponds to r3, 3257 // * gpr=1 to r4, etc. 3258 // */ 3259 // char fpr; /* index into the array of 8 FPRs 3260 // * stored in the register save area 3261 // * fpr=0 corresponds to f1, 3262 // * fpr=1 to f2, etc. 3263 // */ 3264 // char *overflow_arg_area; 3265 // /* location on stack that holds 3266 // * the next overflow argument 3267 // */ 3268 // char *reg_save_area; 3269 // /* where r3:r10 and f1:f8 (if saved) 3270 // * are stored 3271 // */ 3272 // } va_list[1]; 3273 3274 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3275 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3276 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3277 PtrVT); 3278 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3279 PtrVT); 3280 3281 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3282 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3283 3284 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3285 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3286 3287 uint64_t FPROffset = 1; 3288 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3289 3290 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3291 3292 // Store first byte : number of int regs 3293 SDValue firstStore = 3294 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3295 MachinePointerInfo(SV), MVT::i8); 3296 uint64_t nextOffset = FPROffset; 3297 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3298 ConstFPROffset); 3299 3300 // Store second byte : number of float regs 3301 SDValue secondStore = 3302 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3303 MachinePointerInfo(SV, nextOffset), MVT::i8); 3304 nextOffset += StackOffset; 3305 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3306 3307 // Store second word : arguments given on stack 3308 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3309 MachinePointerInfo(SV, nextOffset)); 3310 nextOffset += FrameOffset; 3311 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3312 3313 // Store third word : arguments given in registers 3314 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3315 MachinePointerInfo(SV, nextOffset)); 3316 } 3317 3318 /// FPR - The set of FP registers that should be allocated for arguments 3319 /// on Darwin and AIX. 3320 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3321 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3322 PPC::F11, PPC::F12, PPC::F13}; 3323 3324 /// QFPR - The set of QPX registers that should be allocated for arguments. 3325 static const MCPhysReg QFPR[] = { 3326 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3327 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3328 3329 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3330 /// the stack. 3331 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3332 unsigned PtrByteSize) { 3333 unsigned ArgSize = ArgVT.getStoreSize(); 3334 if (Flags.isByVal()) 3335 ArgSize = Flags.getByValSize(); 3336 3337 // Round up to multiples of the pointer size, except for array members, 3338 // which are always packed. 3339 if (!Flags.isInConsecutiveRegs()) 3340 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3341 3342 return ArgSize; 3343 } 3344 3345 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3346 /// on the stack. 3347 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3348 ISD::ArgFlagsTy Flags, 3349 unsigned PtrByteSize) { 3350 Align Alignment(PtrByteSize); 3351 3352 // Altivec parameters are padded to a 16 byte boundary. 3353 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3354 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3355 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3356 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3357 Alignment = Align(16); 3358 // QPX vector types stored in double-precision are padded to a 32 byte 3359 // boundary. 3360 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3361 Alignment = Align(32); 3362 3363 // ByVal parameters are aligned as requested. 3364 if (Flags.isByVal()) { 3365 auto BVAlign = Flags.getNonZeroByValAlign(); 3366 if (BVAlign > PtrByteSize) { 3367 if (BVAlign.value() % PtrByteSize != 0) 3368 llvm_unreachable( 3369 "ByVal alignment is not a multiple of the pointer size"); 3370 3371 Alignment = BVAlign; 3372 } 3373 } 3374 3375 // Array members are always packed to their original alignment. 3376 if (Flags.isInConsecutiveRegs()) { 3377 // If the array member was split into multiple registers, the first 3378 // needs to be aligned to the size of the full type. (Except for 3379 // ppcf128, which is only aligned as its f64 components.) 3380 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3381 Alignment = Align(OrigVT.getStoreSize()); 3382 else 3383 Alignment = Align(ArgVT.getStoreSize()); 3384 } 3385 3386 return Alignment; 3387 } 3388 3389 /// CalculateStackSlotUsed - Return whether this argument will use its 3390 /// stack slot (instead of being passed in registers). ArgOffset, 3391 /// AvailableFPRs, and AvailableVRs must hold the current argument 3392 /// position, and will be updated to account for this argument. 3393 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3394 ISD::ArgFlagsTy Flags, 3395 unsigned PtrByteSize, 3396 unsigned LinkageSize, 3397 unsigned ParamAreaSize, 3398 unsigned &ArgOffset, 3399 unsigned &AvailableFPRs, 3400 unsigned &AvailableVRs, bool HasQPX) { 3401 bool UseMemory = false; 3402 3403 // Respect alignment of argument on the stack. 3404 Align Alignment = 3405 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3406 ArgOffset = alignTo(ArgOffset, Alignment); 3407 // If there's no space left in the argument save area, we must 3408 // use memory (this check also catches zero-sized arguments). 3409 if (ArgOffset >= LinkageSize + ParamAreaSize) 3410 UseMemory = true; 3411 3412 // Allocate argument on the stack. 3413 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3414 if (Flags.isInConsecutiveRegsLast()) 3415 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3416 // If we overran the argument save area, we must use memory 3417 // (this check catches arguments passed partially in memory) 3418 if (ArgOffset > LinkageSize + ParamAreaSize) 3419 UseMemory = true; 3420 3421 // However, if the argument is actually passed in an FPR or a VR, 3422 // we don't use memory after all. 3423 if (!Flags.isByVal()) { 3424 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3425 // QPX registers overlap with the scalar FP registers. 3426 (HasQPX && (ArgVT == MVT::v4f32 || 3427 ArgVT == MVT::v4f64 || 3428 ArgVT == MVT::v4i1))) 3429 if (AvailableFPRs > 0) { 3430 --AvailableFPRs; 3431 return false; 3432 } 3433 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3434 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3435 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3436 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3437 if (AvailableVRs > 0) { 3438 --AvailableVRs; 3439 return false; 3440 } 3441 } 3442 3443 return UseMemory; 3444 } 3445 3446 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3447 /// ensure minimum alignment required for target. 3448 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3449 unsigned NumBytes) { 3450 return alignTo(NumBytes, Lowering->getStackAlign()); 3451 } 3452 3453 SDValue PPCTargetLowering::LowerFormalArguments( 3454 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3455 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3456 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3457 if (Subtarget.isAIXABI()) 3458 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3459 InVals); 3460 if (Subtarget.is64BitELFABI()) 3461 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3462 InVals); 3463 if (Subtarget.is32BitELFABI()) 3464 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3465 InVals); 3466 3467 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3468 InVals); 3469 } 3470 3471 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3472 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3473 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3474 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3475 3476 // 32-bit SVR4 ABI Stack Frame Layout: 3477 // +-----------------------------------+ 3478 // +--> | Back chain | 3479 // | +-----------------------------------+ 3480 // | | Floating-point register save area | 3481 // | +-----------------------------------+ 3482 // | | General register save area | 3483 // | +-----------------------------------+ 3484 // | | CR save word | 3485 // | +-----------------------------------+ 3486 // | | VRSAVE save word | 3487 // | +-----------------------------------+ 3488 // | | Alignment padding | 3489 // | +-----------------------------------+ 3490 // | | Vector register save area | 3491 // | +-----------------------------------+ 3492 // | | Local variable space | 3493 // | +-----------------------------------+ 3494 // | | Parameter list area | 3495 // | +-----------------------------------+ 3496 // | | LR save word | 3497 // | +-----------------------------------+ 3498 // SP--> +--- | Back chain | 3499 // +-----------------------------------+ 3500 // 3501 // Specifications: 3502 // System V Application Binary Interface PowerPC Processor Supplement 3503 // AltiVec Technology Programming Interface Manual 3504 3505 MachineFunction &MF = DAG.getMachineFunction(); 3506 MachineFrameInfo &MFI = MF.getFrameInfo(); 3507 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3508 3509 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3510 // Potential tail calls could cause overwriting of argument stack slots. 3511 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3512 (CallConv == CallingConv::Fast)); 3513 unsigned PtrByteSize = 4; 3514 3515 // Assign locations to all of the incoming arguments. 3516 SmallVector<CCValAssign, 16> ArgLocs; 3517 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3518 *DAG.getContext()); 3519 3520 // Reserve space for the linkage area on the stack. 3521 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3522 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3523 if (useSoftFloat()) 3524 CCInfo.PreAnalyzeFormalArguments(Ins); 3525 3526 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3527 CCInfo.clearWasPPCF128(); 3528 3529 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3530 CCValAssign &VA = ArgLocs[i]; 3531 3532 // Arguments stored in registers. 3533 if (VA.isRegLoc()) { 3534 const TargetRegisterClass *RC; 3535 EVT ValVT = VA.getValVT(); 3536 3537 switch (ValVT.getSimpleVT().SimpleTy) { 3538 default: 3539 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3540 case MVT::i1: 3541 case MVT::i32: 3542 RC = &PPC::GPRCRegClass; 3543 break; 3544 case MVT::f32: 3545 if (Subtarget.hasP8Vector()) 3546 RC = &PPC::VSSRCRegClass; 3547 else if (Subtarget.hasSPE()) 3548 RC = &PPC::GPRCRegClass; 3549 else 3550 RC = &PPC::F4RCRegClass; 3551 break; 3552 case MVT::f64: 3553 if (Subtarget.hasVSX()) 3554 RC = &PPC::VSFRCRegClass; 3555 else if (Subtarget.hasSPE()) 3556 // SPE passes doubles in GPR pairs. 3557 RC = &PPC::GPRCRegClass; 3558 else 3559 RC = &PPC::F8RCRegClass; 3560 break; 3561 case MVT::v16i8: 3562 case MVT::v8i16: 3563 case MVT::v4i32: 3564 RC = &PPC::VRRCRegClass; 3565 break; 3566 case MVT::v4f32: 3567 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3568 break; 3569 case MVT::v2f64: 3570 case MVT::v2i64: 3571 RC = &PPC::VRRCRegClass; 3572 break; 3573 case MVT::v4f64: 3574 RC = &PPC::QFRCRegClass; 3575 break; 3576 case MVT::v4i1: 3577 RC = &PPC::QBRCRegClass; 3578 break; 3579 } 3580 3581 SDValue ArgValue; 3582 // Transform the arguments stored in physical registers into 3583 // virtual ones. 3584 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3585 assert(i + 1 < e && "No second half of double precision argument"); 3586 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3587 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3588 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3589 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3590 if (!Subtarget.isLittleEndian()) 3591 std::swap (ArgValueLo, ArgValueHi); 3592 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3593 ArgValueHi); 3594 } else { 3595 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3596 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3597 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3598 if (ValVT == MVT::i1) 3599 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3600 } 3601 3602 InVals.push_back(ArgValue); 3603 } else { 3604 // Argument stored in memory. 3605 assert(VA.isMemLoc()); 3606 3607 // Get the extended size of the argument type in stack 3608 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3609 // Get the actual size of the argument type 3610 unsigned ObjSize = VA.getValVT().getStoreSize(); 3611 unsigned ArgOffset = VA.getLocMemOffset(); 3612 // Stack objects in PPC32 are right justified. 3613 ArgOffset += ArgSize - ObjSize; 3614 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3615 3616 // Create load nodes to retrieve arguments from the stack. 3617 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3618 InVals.push_back( 3619 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3620 } 3621 } 3622 3623 // Assign locations to all of the incoming aggregate by value arguments. 3624 // Aggregates passed by value are stored in the local variable space of the 3625 // caller's stack frame, right above the parameter list area. 3626 SmallVector<CCValAssign, 16> ByValArgLocs; 3627 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3628 ByValArgLocs, *DAG.getContext()); 3629 3630 // Reserve stack space for the allocations in CCInfo. 3631 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3632 3633 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3634 3635 // Area that is at least reserved in the caller of this function. 3636 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3637 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3638 3639 // Set the size that is at least reserved in caller of this function. Tail 3640 // call optimized function's reserved stack space needs to be aligned so that 3641 // taking the difference between two stack areas will result in an aligned 3642 // stack. 3643 MinReservedArea = 3644 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3645 FuncInfo->setMinReservedArea(MinReservedArea); 3646 3647 SmallVector<SDValue, 8> MemOps; 3648 3649 // If the function takes variable number of arguments, make a frame index for 3650 // the start of the first vararg value... for expansion of llvm.va_start. 3651 if (isVarArg) { 3652 static const MCPhysReg GPArgRegs[] = { 3653 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3654 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3655 }; 3656 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3657 3658 static const MCPhysReg FPArgRegs[] = { 3659 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3660 PPC::F8 3661 }; 3662 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3663 3664 if (useSoftFloat() || hasSPE()) 3665 NumFPArgRegs = 0; 3666 3667 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3668 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3669 3670 // Make room for NumGPArgRegs and NumFPArgRegs. 3671 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3672 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3673 3674 FuncInfo->setVarArgsStackOffset( 3675 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3676 CCInfo.getNextStackOffset(), true)); 3677 3678 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3679 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3680 3681 // The fixed integer arguments of a variadic function are stored to the 3682 // VarArgsFrameIndex on the stack so that they may be loaded by 3683 // dereferencing the result of va_next. 3684 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3685 // Get an existing live-in vreg, or add a new one. 3686 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3687 if (!VReg) 3688 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3689 3690 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3691 SDValue Store = 3692 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3693 MemOps.push_back(Store); 3694 // Increment the address by four for the next argument to store 3695 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3696 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3697 } 3698 3699 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3700 // is set. 3701 // The double arguments are stored to the VarArgsFrameIndex 3702 // on the stack. 3703 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3704 // Get an existing live-in vreg, or add a new one. 3705 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3706 if (!VReg) 3707 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3708 3709 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3710 SDValue Store = 3711 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3712 MemOps.push_back(Store); 3713 // Increment the address by eight for the next argument to store 3714 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3715 PtrVT); 3716 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3717 } 3718 } 3719 3720 if (!MemOps.empty()) 3721 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3722 3723 return Chain; 3724 } 3725 3726 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3727 // value to MVT::i64 and then truncate to the correct register size. 3728 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3729 EVT ObjectVT, SelectionDAG &DAG, 3730 SDValue ArgVal, 3731 const SDLoc &dl) const { 3732 if (Flags.isSExt()) 3733 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3734 DAG.getValueType(ObjectVT)); 3735 else if (Flags.isZExt()) 3736 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3737 DAG.getValueType(ObjectVT)); 3738 3739 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3740 } 3741 3742 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3743 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3744 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3745 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3746 // TODO: add description of PPC stack frame format, or at least some docs. 3747 // 3748 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3749 bool isLittleEndian = Subtarget.isLittleEndian(); 3750 MachineFunction &MF = DAG.getMachineFunction(); 3751 MachineFrameInfo &MFI = MF.getFrameInfo(); 3752 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3753 3754 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3755 "fastcc not supported on varargs functions"); 3756 3757 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3758 // Potential tail calls could cause overwriting of argument stack slots. 3759 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3760 (CallConv == CallingConv::Fast)); 3761 unsigned PtrByteSize = 8; 3762 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3763 3764 static const MCPhysReg GPR[] = { 3765 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3766 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3767 }; 3768 static const MCPhysReg VR[] = { 3769 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3770 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3771 }; 3772 3773 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3774 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3775 const unsigned Num_VR_Regs = array_lengthof(VR); 3776 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3777 3778 // Do a first pass over the arguments to determine whether the ABI 3779 // guarantees that our caller has allocated the parameter save area 3780 // on its stack frame. In the ELFv1 ABI, this is always the case; 3781 // in the ELFv2 ABI, it is true if this is a vararg function or if 3782 // any parameter is located in a stack slot. 3783 3784 bool HasParameterArea = !isELFv2ABI || isVarArg; 3785 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3786 unsigned NumBytes = LinkageSize; 3787 unsigned AvailableFPRs = Num_FPR_Regs; 3788 unsigned AvailableVRs = Num_VR_Regs; 3789 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3790 if (Ins[i].Flags.isNest()) 3791 continue; 3792 3793 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3794 PtrByteSize, LinkageSize, ParamAreaSize, 3795 NumBytes, AvailableFPRs, AvailableVRs, 3796 Subtarget.hasQPX())) 3797 HasParameterArea = true; 3798 } 3799 3800 // Add DAG nodes to load the arguments or copy them out of registers. On 3801 // entry to a function on PPC, the arguments start after the linkage area, 3802 // although the first ones are often in registers. 3803 3804 unsigned ArgOffset = LinkageSize; 3805 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3806 unsigned &QFPR_idx = FPR_idx; 3807 SmallVector<SDValue, 8> MemOps; 3808 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3809 unsigned CurArgIdx = 0; 3810 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3811 SDValue ArgVal; 3812 bool needsLoad = false; 3813 EVT ObjectVT = Ins[ArgNo].VT; 3814 EVT OrigVT = Ins[ArgNo].ArgVT; 3815 unsigned ObjSize = ObjectVT.getStoreSize(); 3816 unsigned ArgSize = ObjSize; 3817 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3818 if (Ins[ArgNo].isOrigArg()) { 3819 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3820 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3821 } 3822 // We re-align the argument offset for each argument, except when using the 3823 // fast calling convention, when we need to make sure we do that only when 3824 // we'll actually use a stack slot. 3825 unsigned CurArgOffset; 3826 Align Alignment; 3827 auto ComputeArgOffset = [&]() { 3828 /* Respect alignment of argument on the stack. */ 3829 Alignment = 3830 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3831 ArgOffset = alignTo(ArgOffset, Alignment); 3832 CurArgOffset = ArgOffset; 3833 }; 3834 3835 if (CallConv != CallingConv::Fast) { 3836 ComputeArgOffset(); 3837 3838 /* Compute GPR index associated with argument offset. */ 3839 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3840 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3841 } 3842 3843 // FIXME the codegen can be much improved in some cases. 3844 // We do not have to keep everything in memory. 3845 if (Flags.isByVal()) { 3846 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3847 3848 if (CallConv == CallingConv::Fast) 3849 ComputeArgOffset(); 3850 3851 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3852 ObjSize = Flags.getByValSize(); 3853 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3854 // Empty aggregate parameters do not take up registers. Examples: 3855 // struct { } a; 3856 // union { } b; 3857 // int c[0]; 3858 // etc. However, we have to provide a place-holder in InVals, so 3859 // pretend we have an 8-byte item at the current address for that 3860 // purpose. 3861 if (!ObjSize) { 3862 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3863 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3864 InVals.push_back(FIN); 3865 continue; 3866 } 3867 3868 // Create a stack object covering all stack doublewords occupied 3869 // by the argument. If the argument is (fully or partially) on 3870 // the stack, or if the argument is fully in registers but the 3871 // caller has allocated the parameter save anyway, we can refer 3872 // directly to the caller's stack frame. Otherwise, create a 3873 // local copy in our own frame. 3874 int FI; 3875 if (HasParameterArea || 3876 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3877 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3878 else 3879 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 3880 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3881 3882 // Handle aggregates smaller than 8 bytes. 3883 if (ObjSize < PtrByteSize) { 3884 // The value of the object is its address, which differs from the 3885 // address of the enclosing doubleword on big-endian systems. 3886 SDValue Arg = FIN; 3887 if (!isLittleEndian) { 3888 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3889 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3890 } 3891 InVals.push_back(Arg); 3892 3893 if (GPR_idx != Num_GPR_Regs) { 3894 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3895 FuncInfo->addLiveInAttr(VReg, Flags); 3896 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3897 SDValue Store; 3898 3899 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3900 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3901 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3902 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3903 MachinePointerInfo(&*FuncArg), ObjType); 3904 } else { 3905 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3906 // store the whole register as-is to the parameter save area 3907 // slot. 3908 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3909 MachinePointerInfo(&*FuncArg)); 3910 } 3911 3912 MemOps.push_back(Store); 3913 } 3914 // Whether we copied from a register or not, advance the offset 3915 // into the parameter save area by a full doubleword. 3916 ArgOffset += PtrByteSize; 3917 continue; 3918 } 3919 3920 // The value of the object is its address, which is the address of 3921 // its first stack doubleword. 3922 InVals.push_back(FIN); 3923 3924 // Store whatever pieces of the object are in registers to memory. 3925 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3926 if (GPR_idx == Num_GPR_Regs) 3927 break; 3928 3929 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3930 FuncInfo->addLiveInAttr(VReg, Flags); 3931 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3932 SDValue Addr = FIN; 3933 if (j) { 3934 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3935 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3936 } 3937 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3938 MachinePointerInfo(&*FuncArg, j)); 3939 MemOps.push_back(Store); 3940 ++GPR_idx; 3941 } 3942 ArgOffset += ArgSize; 3943 continue; 3944 } 3945 3946 switch (ObjectVT.getSimpleVT().SimpleTy) { 3947 default: llvm_unreachable("Unhandled argument type!"); 3948 case MVT::i1: 3949 case MVT::i32: 3950 case MVT::i64: 3951 if (Flags.isNest()) { 3952 // The 'nest' parameter, if any, is passed in R11. 3953 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3954 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3955 3956 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3957 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3958 3959 break; 3960 } 3961 3962 // These can be scalar arguments or elements of an integer array type 3963 // passed directly. Clang may use those instead of "byval" aggregate 3964 // types to avoid forcing arguments to memory unnecessarily. 3965 if (GPR_idx != Num_GPR_Regs) { 3966 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3967 FuncInfo->addLiveInAttr(VReg, Flags); 3968 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3969 3970 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3971 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3972 // value to MVT::i64 and then truncate to the correct register size. 3973 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3974 } else { 3975 if (CallConv == CallingConv::Fast) 3976 ComputeArgOffset(); 3977 3978 needsLoad = true; 3979 ArgSize = PtrByteSize; 3980 } 3981 if (CallConv != CallingConv::Fast || needsLoad) 3982 ArgOffset += 8; 3983 break; 3984 3985 case MVT::f32: 3986 case MVT::f64: 3987 // These can be scalar arguments or elements of a float array type 3988 // passed directly. The latter are used to implement ELFv2 homogenous 3989 // float aggregates. 3990 if (FPR_idx != Num_FPR_Regs) { 3991 unsigned VReg; 3992 3993 if (ObjectVT == MVT::f32) 3994 VReg = MF.addLiveIn(FPR[FPR_idx], 3995 Subtarget.hasP8Vector() 3996 ? &PPC::VSSRCRegClass 3997 : &PPC::F4RCRegClass); 3998 else 3999 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4000 ? &PPC::VSFRCRegClass 4001 : &PPC::F8RCRegClass); 4002 4003 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4004 ++FPR_idx; 4005 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4006 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4007 // once we support fp <-> gpr moves. 4008 4009 // This can only ever happen in the presence of f32 array types, 4010 // since otherwise we never run out of FPRs before running out 4011 // of GPRs. 4012 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4013 FuncInfo->addLiveInAttr(VReg, Flags); 4014 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4015 4016 if (ObjectVT == MVT::f32) { 4017 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4018 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4019 DAG.getConstant(32, dl, MVT::i32)); 4020 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4021 } 4022 4023 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4024 } else { 4025 if (CallConv == CallingConv::Fast) 4026 ComputeArgOffset(); 4027 4028 needsLoad = true; 4029 } 4030 4031 // When passing an array of floats, the array occupies consecutive 4032 // space in the argument area; only round up to the next doubleword 4033 // at the end of the array. Otherwise, each float takes 8 bytes. 4034 if (CallConv != CallingConv::Fast || needsLoad) { 4035 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4036 ArgOffset += ArgSize; 4037 if (Flags.isInConsecutiveRegsLast()) 4038 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4039 } 4040 break; 4041 case MVT::v4f32: 4042 case MVT::v4i32: 4043 case MVT::v8i16: 4044 case MVT::v16i8: 4045 case MVT::v2f64: 4046 case MVT::v2i64: 4047 case MVT::v1i128: 4048 case MVT::f128: 4049 if (!Subtarget.hasQPX()) { 4050 // These can be scalar arguments or elements of a vector array type 4051 // passed directly. The latter are used to implement ELFv2 homogenous 4052 // vector aggregates. 4053 if (VR_idx != Num_VR_Regs) { 4054 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4055 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4056 ++VR_idx; 4057 } else { 4058 if (CallConv == CallingConv::Fast) 4059 ComputeArgOffset(); 4060 needsLoad = true; 4061 } 4062 if (CallConv != CallingConv::Fast || needsLoad) 4063 ArgOffset += 16; 4064 break; 4065 } // not QPX 4066 4067 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4068 "Invalid QPX parameter type"); 4069 LLVM_FALLTHROUGH; 4070 4071 case MVT::v4f64: 4072 case MVT::v4i1: 4073 // QPX vectors are treated like their scalar floating-point subregisters 4074 // (except that they're larger). 4075 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4076 if (QFPR_idx != Num_QFPR_Regs) { 4077 const TargetRegisterClass *RC; 4078 switch (ObjectVT.getSimpleVT().SimpleTy) { 4079 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4080 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4081 default: RC = &PPC::QBRCRegClass; break; 4082 } 4083 4084 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4085 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4086 ++QFPR_idx; 4087 } else { 4088 if (CallConv == CallingConv::Fast) 4089 ComputeArgOffset(); 4090 needsLoad = true; 4091 } 4092 if (CallConv != CallingConv::Fast || needsLoad) 4093 ArgOffset += Sz; 4094 break; 4095 } 4096 4097 // We need to load the argument to a virtual register if we determined 4098 // above that we ran out of physical registers of the appropriate type. 4099 if (needsLoad) { 4100 if (ObjSize < ArgSize && !isLittleEndian) 4101 CurArgOffset += ArgSize - ObjSize; 4102 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4103 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4104 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4105 } 4106 4107 InVals.push_back(ArgVal); 4108 } 4109 4110 // Area that is at least reserved in the caller of this function. 4111 unsigned MinReservedArea; 4112 if (HasParameterArea) 4113 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4114 else 4115 MinReservedArea = LinkageSize; 4116 4117 // Set the size that is at least reserved in caller of this function. Tail 4118 // call optimized functions' reserved stack space needs to be aligned so that 4119 // taking the difference between two stack areas will result in an aligned 4120 // stack. 4121 MinReservedArea = 4122 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4123 FuncInfo->setMinReservedArea(MinReservedArea); 4124 4125 // If the function takes variable number of arguments, make a frame index for 4126 // the start of the first vararg value... for expansion of llvm.va_start. 4127 if (isVarArg) { 4128 int Depth = ArgOffset; 4129 4130 FuncInfo->setVarArgsFrameIndex( 4131 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4132 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4133 4134 // If this function is vararg, store any remaining integer argument regs 4135 // to their spots on the stack so that they may be loaded by dereferencing 4136 // the result of va_next. 4137 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4138 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4139 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4140 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4141 SDValue Store = 4142 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4143 MemOps.push_back(Store); 4144 // Increment the address by four for the next argument to store 4145 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4146 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4147 } 4148 } 4149 4150 if (!MemOps.empty()) 4151 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4152 4153 return Chain; 4154 } 4155 4156 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4157 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4158 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4159 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4160 // TODO: add description of PPC stack frame format, or at least some docs. 4161 // 4162 MachineFunction &MF = DAG.getMachineFunction(); 4163 MachineFrameInfo &MFI = MF.getFrameInfo(); 4164 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4165 4166 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4167 bool isPPC64 = PtrVT == MVT::i64; 4168 // Potential tail calls could cause overwriting of argument stack slots. 4169 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4170 (CallConv == CallingConv::Fast)); 4171 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4172 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4173 unsigned ArgOffset = LinkageSize; 4174 // Area that is at least reserved in caller of this function. 4175 unsigned MinReservedArea = ArgOffset; 4176 4177 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4178 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4179 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4180 }; 4181 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4182 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4183 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4184 }; 4185 static const MCPhysReg VR[] = { 4186 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4187 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4188 }; 4189 4190 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4191 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4192 const unsigned Num_VR_Regs = array_lengthof( VR); 4193 4194 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4195 4196 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4197 4198 // In 32-bit non-varargs functions, the stack space for vectors is after the 4199 // stack space for non-vectors. We do not use this space unless we have 4200 // too many vectors to fit in registers, something that only occurs in 4201 // constructed examples:), but we have to walk the arglist to figure 4202 // that out...for the pathological case, compute VecArgOffset as the 4203 // start of the vector parameter area. Computing VecArgOffset is the 4204 // entire point of the following loop. 4205 unsigned VecArgOffset = ArgOffset; 4206 if (!isVarArg && !isPPC64) { 4207 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4208 ++ArgNo) { 4209 EVT ObjectVT = Ins[ArgNo].VT; 4210 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4211 4212 if (Flags.isByVal()) { 4213 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4214 unsigned ObjSize = Flags.getByValSize(); 4215 unsigned ArgSize = 4216 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4217 VecArgOffset += ArgSize; 4218 continue; 4219 } 4220 4221 switch(ObjectVT.getSimpleVT().SimpleTy) { 4222 default: llvm_unreachable("Unhandled argument type!"); 4223 case MVT::i1: 4224 case MVT::i32: 4225 case MVT::f32: 4226 VecArgOffset += 4; 4227 break; 4228 case MVT::i64: // PPC64 4229 case MVT::f64: 4230 // FIXME: We are guaranteed to be !isPPC64 at this point. 4231 // Does MVT::i64 apply? 4232 VecArgOffset += 8; 4233 break; 4234 case MVT::v4f32: 4235 case MVT::v4i32: 4236 case MVT::v8i16: 4237 case MVT::v16i8: 4238 // Nothing to do, we're only looking at Nonvector args here. 4239 break; 4240 } 4241 } 4242 } 4243 // We've found where the vector parameter area in memory is. Skip the 4244 // first 12 parameters; these don't use that memory. 4245 VecArgOffset = ((VecArgOffset+15)/16)*16; 4246 VecArgOffset += 12*16; 4247 4248 // Add DAG nodes to load the arguments or copy them out of registers. On 4249 // entry to a function on PPC, the arguments start after the linkage area, 4250 // although the first ones are often in registers. 4251 4252 SmallVector<SDValue, 8> MemOps; 4253 unsigned nAltivecParamsAtEnd = 0; 4254 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4255 unsigned CurArgIdx = 0; 4256 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4257 SDValue ArgVal; 4258 bool needsLoad = false; 4259 EVT ObjectVT = Ins[ArgNo].VT; 4260 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4261 unsigned ArgSize = ObjSize; 4262 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4263 if (Ins[ArgNo].isOrigArg()) { 4264 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4265 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4266 } 4267 unsigned CurArgOffset = ArgOffset; 4268 4269 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4270 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4271 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4272 if (isVarArg || isPPC64) { 4273 MinReservedArea = ((MinReservedArea+15)/16)*16; 4274 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4275 Flags, 4276 PtrByteSize); 4277 } else nAltivecParamsAtEnd++; 4278 } else 4279 // Calculate min reserved area. 4280 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4281 Flags, 4282 PtrByteSize); 4283 4284 // FIXME the codegen can be much improved in some cases. 4285 // We do not have to keep everything in memory. 4286 if (Flags.isByVal()) { 4287 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4288 4289 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4290 ObjSize = Flags.getByValSize(); 4291 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4292 // Objects of size 1 and 2 are right justified, everything else is 4293 // left justified. This means the memory address is adjusted forwards. 4294 if (ObjSize==1 || ObjSize==2) { 4295 CurArgOffset = CurArgOffset + (4 - ObjSize); 4296 } 4297 // The value of the object is its address. 4298 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4299 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4300 InVals.push_back(FIN); 4301 if (ObjSize==1 || ObjSize==2) { 4302 if (GPR_idx != Num_GPR_Regs) { 4303 unsigned VReg; 4304 if (isPPC64) 4305 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4306 else 4307 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4308 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4309 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4310 SDValue Store = 4311 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4312 MachinePointerInfo(&*FuncArg), ObjType); 4313 MemOps.push_back(Store); 4314 ++GPR_idx; 4315 } 4316 4317 ArgOffset += PtrByteSize; 4318 4319 continue; 4320 } 4321 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4322 // Store whatever pieces of the object are in registers 4323 // to memory. ArgOffset will be the address of the beginning 4324 // of the object. 4325 if (GPR_idx != Num_GPR_Regs) { 4326 unsigned VReg; 4327 if (isPPC64) 4328 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4329 else 4330 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4331 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4332 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4333 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4334 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4335 MachinePointerInfo(&*FuncArg, j)); 4336 MemOps.push_back(Store); 4337 ++GPR_idx; 4338 ArgOffset += PtrByteSize; 4339 } else { 4340 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4341 break; 4342 } 4343 } 4344 continue; 4345 } 4346 4347 switch (ObjectVT.getSimpleVT().SimpleTy) { 4348 default: llvm_unreachable("Unhandled argument type!"); 4349 case MVT::i1: 4350 case MVT::i32: 4351 if (!isPPC64) { 4352 if (GPR_idx != Num_GPR_Regs) { 4353 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4354 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4355 4356 if (ObjectVT == MVT::i1) 4357 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4358 4359 ++GPR_idx; 4360 } else { 4361 needsLoad = true; 4362 ArgSize = PtrByteSize; 4363 } 4364 // All int arguments reserve stack space in the Darwin ABI. 4365 ArgOffset += PtrByteSize; 4366 break; 4367 } 4368 LLVM_FALLTHROUGH; 4369 case MVT::i64: // PPC64 4370 if (GPR_idx != Num_GPR_Regs) { 4371 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4372 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4373 4374 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4375 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4376 // value to MVT::i64 and then truncate to the correct register size. 4377 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4378 4379 ++GPR_idx; 4380 } else { 4381 needsLoad = true; 4382 ArgSize = PtrByteSize; 4383 } 4384 // All int arguments reserve stack space in the Darwin ABI. 4385 ArgOffset += 8; 4386 break; 4387 4388 case MVT::f32: 4389 case MVT::f64: 4390 // Every 4 bytes of argument space consumes one of the GPRs available for 4391 // argument passing. 4392 if (GPR_idx != Num_GPR_Regs) { 4393 ++GPR_idx; 4394 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4395 ++GPR_idx; 4396 } 4397 if (FPR_idx != Num_FPR_Regs) { 4398 unsigned VReg; 4399 4400 if (ObjectVT == MVT::f32) 4401 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4402 else 4403 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4404 4405 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4406 ++FPR_idx; 4407 } else { 4408 needsLoad = true; 4409 } 4410 4411 // All FP arguments reserve stack space in the Darwin ABI. 4412 ArgOffset += isPPC64 ? 8 : ObjSize; 4413 break; 4414 case MVT::v4f32: 4415 case MVT::v4i32: 4416 case MVT::v8i16: 4417 case MVT::v16i8: 4418 // Note that vector arguments in registers don't reserve stack space, 4419 // except in varargs functions. 4420 if (VR_idx != Num_VR_Regs) { 4421 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4422 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4423 if (isVarArg) { 4424 while ((ArgOffset % 16) != 0) { 4425 ArgOffset += PtrByteSize; 4426 if (GPR_idx != Num_GPR_Regs) 4427 GPR_idx++; 4428 } 4429 ArgOffset += 16; 4430 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4431 } 4432 ++VR_idx; 4433 } else { 4434 if (!isVarArg && !isPPC64) { 4435 // Vectors go after all the nonvectors. 4436 CurArgOffset = VecArgOffset; 4437 VecArgOffset += 16; 4438 } else { 4439 // Vectors are aligned. 4440 ArgOffset = ((ArgOffset+15)/16)*16; 4441 CurArgOffset = ArgOffset; 4442 ArgOffset += 16; 4443 } 4444 needsLoad = true; 4445 } 4446 break; 4447 } 4448 4449 // We need to load the argument to a virtual register if we determined above 4450 // that we ran out of physical registers of the appropriate type. 4451 if (needsLoad) { 4452 int FI = MFI.CreateFixedObject(ObjSize, 4453 CurArgOffset + (ArgSize - ObjSize), 4454 isImmutable); 4455 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4456 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4457 } 4458 4459 InVals.push_back(ArgVal); 4460 } 4461 4462 // Allow for Altivec parameters at the end, if needed. 4463 if (nAltivecParamsAtEnd) { 4464 MinReservedArea = ((MinReservedArea+15)/16)*16; 4465 MinReservedArea += 16*nAltivecParamsAtEnd; 4466 } 4467 4468 // Area that is at least reserved in the caller of this function. 4469 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4470 4471 // Set the size that is at least reserved in caller of this function. Tail 4472 // call optimized functions' reserved stack space needs to be aligned so that 4473 // taking the difference between two stack areas will result in an aligned 4474 // stack. 4475 MinReservedArea = 4476 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4477 FuncInfo->setMinReservedArea(MinReservedArea); 4478 4479 // If the function takes variable number of arguments, make a frame index for 4480 // the start of the first vararg value... for expansion of llvm.va_start. 4481 if (isVarArg) { 4482 int Depth = ArgOffset; 4483 4484 FuncInfo->setVarArgsFrameIndex( 4485 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4486 Depth, true)); 4487 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4488 4489 // If this function is vararg, store any remaining integer argument regs 4490 // to their spots on the stack so that they may be loaded by dereferencing 4491 // the result of va_next. 4492 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4493 unsigned VReg; 4494 4495 if (isPPC64) 4496 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4497 else 4498 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4499 4500 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4501 SDValue Store = 4502 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4503 MemOps.push_back(Store); 4504 // Increment the address by four for the next argument to store 4505 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4506 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4507 } 4508 } 4509 4510 if (!MemOps.empty()) 4511 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4512 4513 return Chain; 4514 } 4515 4516 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4517 /// adjusted to accommodate the arguments for the tailcall. 4518 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4519 unsigned ParamSize) { 4520 4521 if (!isTailCall) return 0; 4522 4523 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4524 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4525 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4526 // Remember only if the new adjustment is bigger. 4527 if (SPDiff < FI->getTailCallSPDelta()) 4528 FI->setTailCallSPDelta(SPDiff); 4529 4530 return SPDiff; 4531 } 4532 4533 static bool isFunctionGlobalAddress(SDValue Callee); 4534 4535 static bool 4536 callsShareTOCBase(const Function *Caller, SDValue Callee, 4537 const TargetMachine &TM) { 4538 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4539 // don't have enough information to determine if the caller and calle share 4540 // the same TOC base, so we have to pessimistically assume they don't for 4541 // correctness. 4542 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4543 if (!G) 4544 return false; 4545 4546 const GlobalValue *GV = G->getGlobal(); 4547 // The medium and large code models are expected to provide a sufficiently 4548 // large TOC to provide all data addressing needs of a module with a 4549 // single TOC. Since each module will be addressed with a single TOC then we 4550 // only need to check that caller and callee don't cross dso boundaries. 4551 if (CodeModel::Medium == TM.getCodeModel() || 4552 CodeModel::Large == TM.getCodeModel()) 4553 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4554 4555 // Otherwise we need to ensure callee and caller are in the same section, 4556 // since the linker may allocate multiple TOCs, and we don't know which 4557 // sections will belong to the same TOC base. 4558 4559 if (!GV->isStrongDefinitionForLinker()) 4560 return false; 4561 4562 // Any explicitly-specified sections and section prefixes must also match. 4563 // Also, if we're using -ffunction-sections, then each function is always in 4564 // a different section (the same is true for COMDAT functions). 4565 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4566 GV->getSection() != Caller->getSection()) 4567 return false; 4568 if (const auto *F = dyn_cast<Function>(GV)) { 4569 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4570 return false; 4571 } 4572 4573 // If the callee might be interposed, then we can't assume the ultimate call 4574 // target will be in the same section. Even in cases where we can assume that 4575 // interposition won't happen, in any case where the linker might insert a 4576 // stub to allow for interposition, we must generate code as though 4577 // interposition might occur. To understand why this matters, consider a 4578 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4579 // in the same section, but a is in a different module (i.e. has a different 4580 // TOC base pointer). If the linker allows for interposition between b and c, 4581 // then it will generate a stub for the call edge between b and c which will 4582 // save the TOC pointer into the designated stack slot allocated by b. If we 4583 // return true here, and therefore allow a tail call between b and c, that 4584 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4585 // pointer into the stack slot allocated by a (where the a -> b stub saved 4586 // a's TOC base pointer). If we're not considering a tail call, but rather, 4587 // whether a nop is needed after the call instruction in b, because the linker 4588 // will insert a stub, it might complain about a missing nop if we omit it 4589 // (although many don't complain in this case). 4590 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4591 return false; 4592 4593 return true; 4594 } 4595 4596 static bool 4597 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4598 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4599 assert(Subtarget.is64BitELFABI()); 4600 4601 const unsigned PtrByteSize = 8; 4602 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4603 4604 static const MCPhysReg GPR[] = { 4605 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4606 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4607 }; 4608 static const MCPhysReg VR[] = { 4609 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4610 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4611 }; 4612 4613 const unsigned NumGPRs = array_lengthof(GPR); 4614 const unsigned NumFPRs = 13; 4615 const unsigned NumVRs = array_lengthof(VR); 4616 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4617 4618 unsigned NumBytes = LinkageSize; 4619 unsigned AvailableFPRs = NumFPRs; 4620 unsigned AvailableVRs = NumVRs; 4621 4622 for (const ISD::OutputArg& Param : Outs) { 4623 if (Param.Flags.isNest()) continue; 4624 4625 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4626 PtrByteSize, LinkageSize, ParamAreaSize, 4627 NumBytes, AvailableFPRs, AvailableVRs, 4628 Subtarget.hasQPX())) 4629 return true; 4630 } 4631 return false; 4632 } 4633 4634 static bool 4635 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4636 if (CS.arg_size() != CallerFn->arg_size()) 4637 return false; 4638 4639 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4640 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4641 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4642 4643 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4644 const Value* CalleeArg = *CalleeArgIter; 4645 const Value* CallerArg = &(*CallerArgIter); 4646 if (CalleeArg == CallerArg) 4647 continue; 4648 4649 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4650 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4651 // } 4652 // 1st argument of callee is undef and has the same type as caller. 4653 if (CalleeArg->getType() == CallerArg->getType() && 4654 isa<UndefValue>(CalleeArg)) 4655 continue; 4656 4657 return false; 4658 } 4659 4660 return true; 4661 } 4662 4663 // Returns true if TCO is possible between the callers and callees 4664 // calling conventions. 4665 static bool 4666 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4667 CallingConv::ID CalleeCC) { 4668 // Tail calls are possible with fastcc and ccc. 4669 auto isTailCallableCC = [] (CallingConv::ID CC){ 4670 return CC == CallingConv::C || CC == CallingConv::Fast; 4671 }; 4672 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4673 return false; 4674 4675 // We can safely tail call both fastcc and ccc callees from a c calling 4676 // convention caller. If the caller is fastcc, we may have less stack space 4677 // than a non-fastcc caller with the same signature so disable tail-calls in 4678 // that case. 4679 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4680 } 4681 4682 bool 4683 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4684 SDValue Callee, 4685 CallingConv::ID CalleeCC, 4686 ImmutableCallSite CS, 4687 bool isVarArg, 4688 const SmallVectorImpl<ISD::OutputArg> &Outs, 4689 const SmallVectorImpl<ISD::InputArg> &Ins, 4690 SelectionDAG& DAG) const { 4691 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4692 4693 if (DisableSCO && !TailCallOpt) return false; 4694 4695 // Variadic argument functions are not supported. 4696 if (isVarArg) return false; 4697 4698 auto &Caller = DAG.getMachineFunction().getFunction(); 4699 // Check that the calling conventions are compatible for tco. 4700 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4701 return false; 4702 4703 // Caller contains any byval parameter is not supported. 4704 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4705 return false; 4706 4707 // Callee contains any byval parameter is not supported, too. 4708 // Note: This is a quick work around, because in some cases, e.g. 4709 // caller's stack size > callee's stack size, we are still able to apply 4710 // sibling call optimization. For example, gcc is able to do SCO for caller1 4711 // in the following example, but not for caller2. 4712 // struct test { 4713 // long int a; 4714 // char ary[56]; 4715 // } gTest; 4716 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4717 // b->a = v.a; 4718 // return 0; 4719 // } 4720 // void caller1(struct test a, struct test c, struct test *b) { 4721 // callee(gTest, b); } 4722 // void caller2(struct test *b) { callee(gTest, b); } 4723 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4724 return false; 4725 4726 // If callee and caller use different calling conventions, we cannot pass 4727 // parameters on stack since offsets for the parameter area may be different. 4728 if (Caller.getCallingConv() != CalleeCC && 4729 needStackSlotPassParameters(Subtarget, Outs)) 4730 return false; 4731 4732 // No TCO/SCO on indirect call because Caller have to restore its TOC 4733 if (!isFunctionGlobalAddress(Callee) && 4734 !isa<ExternalSymbolSDNode>(Callee)) 4735 return false; 4736 4737 // If the caller and callee potentially have different TOC bases then we 4738 // cannot tail call since we need to restore the TOC pointer after the call. 4739 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4740 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4741 return false; 4742 4743 // TCO allows altering callee ABI, so we don't have to check further. 4744 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4745 return true; 4746 4747 if (DisableSCO) return false; 4748 4749 // If callee use the same argument list that caller is using, then we can 4750 // apply SCO on this case. If it is not, then we need to check if callee needs 4751 // stack for passing arguments. 4752 if (!hasSameArgumentList(&Caller, CS) && 4753 needStackSlotPassParameters(Subtarget, Outs)) { 4754 return false; 4755 } 4756 4757 return true; 4758 } 4759 4760 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4761 /// for tail call optimization. Targets which want to do tail call 4762 /// optimization should implement this function. 4763 bool 4764 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4765 CallingConv::ID CalleeCC, 4766 bool isVarArg, 4767 const SmallVectorImpl<ISD::InputArg> &Ins, 4768 SelectionDAG& DAG) const { 4769 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4770 return false; 4771 4772 // Variable argument functions are not supported. 4773 if (isVarArg) 4774 return false; 4775 4776 MachineFunction &MF = DAG.getMachineFunction(); 4777 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4778 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4779 // Functions containing by val parameters are not supported. 4780 for (unsigned i = 0; i != Ins.size(); i++) { 4781 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4782 if (Flags.isByVal()) return false; 4783 } 4784 4785 // Non-PIC/GOT tail calls are supported. 4786 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4787 return true; 4788 4789 // At the moment we can only do local tail calls (in same module, hidden 4790 // or protected) if we are generating PIC. 4791 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4792 return G->getGlobal()->hasHiddenVisibility() 4793 || G->getGlobal()->hasProtectedVisibility(); 4794 } 4795 4796 return false; 4797 } 4798 4799 /// isCallCompatibleAddress - Return the immediate to use if the specified 4800 /// 32-bit value is representable in the immediate field of a BxA instruction. 4801 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4802 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4803 if (!C) return nullptr; 4804 4805 int Addr = C->getZExtValue(); 4806 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4807 SignExtend32<26>(Addr) != Addr) 4808 return nullptr; // Top 6 bits have to be sext of immediate. 4809 4810 return DAG 4811 .getConstant( 4812 (int)C->getZExtValue() >> 2, SDLoc(Op), 4813 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4814 .getNode(); 4815 } 4816 4817 namespace { 4818 4819 struct TailCallArgumentInfo { 4820 SDValue Arg; 4821 SDValue FrameIdxOp; 4822 int FrameIdx = 0; 4823 4824 TailCallArgumentInfo() = default; 4825 }; 4826 4827 } // end anonymous namespace 4828 4829 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4830 static void StoreTailCallArgumentsToStackSlot( 4831 SelectionDAG &DAG, SDValue Chain, 4832 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4833 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4834 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4835 SDValue Arg = TailCallArgs[i].Arg; 4836 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4837 int FI = TailCallArgs[i].FrameIdx; 4838 // Store relative to framepointer. 4839 MemOpChains.push_back(DAG.getStore( 4840 Chain, dl, Arg, FIN, 4841 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4842 } 4843 } 4844 4845 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4846 /// the appropriate stack slot for the tail call optimized function call. 4847 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4848 SDValue OldRetAddr, SDValue OldFP, 4849 int SPDiff, const SDLoc &dl) { 4850 if (SPDiff) { 4851 // Calculate the new stack slot for the return address. 4852 MachineFunction &MF = DAG.getMachineFunction(); 4853 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4854 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4855 bool isPPC64 = Subtarget.isPPC64(); 4856 int SlotSize = isPPC64 ? 8 : 4; 4857 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4858 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4859 NewRetAddrLoc, true); 4860 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4861 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4862 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4863 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4864 } 4865 return Chain; 4866 } 4867 4868 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4869 /// the position of the argument. 4870 static void 4871 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4872 SDValue Arg, int SPDiff, unsigned ArgOffset, 4873 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4874 int Offset = ArgOffset + SPDiff; 4875 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4876 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4877 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4878 SDValue FIN = DAG.getFrameIndex(FI, VT); 4879 TailCallArgumentInfo Info; 4880 Info.Arg = Arg; 4881 Info.FrameIdxOp = FIN; 4882 Info.FrameIdx = FI; 4883 TailCallArguments.push_back(Info); 4884 } 4885 4886 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4887 /// stack slot. Returns the chain as result and the loaded frame pointers in 4888 /// LROpOut/FPOpout. Used when tail calling. 4889 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4890 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4891 SDValue &FPOpOut, const SDLoc &dl) const { 4892 if (SPDiff) { 4893 // Load the LR and FP stack slot for later adjusting. 4894 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4895 LROpOut = getReturnAddrFrameIndex(DAG); 4896 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4897 Chain = SDValue(LROpOut.getNode(), 1); 4898 } 4899 return Chain; 4900 } 4901 4902 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4903 /// by "Src" to address "Dst" of size "Size". Alignment information is 4904 /// specified by the specific parameter attribute. The copy will be passed as 4905 /// a byval function parameter. 4906 /// Sometimes what we are copying is the end of a larger object, the part that 4907 /// does not fit in registers. 4908 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4909 SDValue Chain, ISD::ArgFlagsTy Flags, 4910 SelectionDAG &DAG, const SDLoc &dl) { 4911 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4912 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 4913 Flags.getNonZeroByValAlign(), false, false, false, 4914 MachinePointerInfo(), MachinePointerInfo()); 4915 } 4916 4917 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4918 /// tail calls. 4919 static void LowerMemOpCallTo( 4920 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4921 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4922 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4923 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4924 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4925 if (!isTailCall) { 4926 if (isVector) { 4927 SDValue StackPtr; 4928 if (isPPC64) 4929 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4930 else 4931 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4932 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4933 DAG.getConstant(ArgOffset, dl, PtrVT)); 4934 } 4935 MemOpChains.push_back( 4936 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4937 // Calculate and remember argument location. 4938 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4939 TailCallArguments); 4940 } 4941 4942 static void 4943 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4944 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4945 SDValue FPOp, 4946 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4947 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4948 // might overwrite each other in case of tail call optimization. 4949 SmallVector<SDValue, 8> MemOpChains2; 4950 // Do not flag preceding copytoreg stuff together with the following stuff. 4951 InFlag = SDValue(); 4952 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4953 MemOpChains2, dl); 4954 if (!MemOpChains2.empty()) 4955 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4956 4957 // Store the return address to the appropriate stack slot. 4958 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4959 4960 // Emit callseq_end just before tailcall node. 4961 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4962 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4963 InFlag = Chain.getValue(1); 4964 } 4965 4966 // Is this global address that of a function that can be called by name? (as 4967 // opposed to something that must hold a descriptor for an indirect call). 4968 static bool isFunctionGlobalAddress(SDValue Callee) { 4969 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4970 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4971 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4972 return false; 4973 4974 return G->getGlobal()->getValueType()->isFunctionTy(); 4975 } 4976 4977 return false; 4978 } 4979 4980 SDValue PPCTargetLowering::LowerCallResult( 4981 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4982 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4983 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4984 SmallVector<CCValAssign, 16> RVLocs; 4985 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4986 *DAG.getContext()); 4987 4988 CCRetInfo.AnalyzeCallResult( 4989 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 4990 ? RetCC_PPC_Cold 4991 : RetCC_PPC); 4992 4993 // Copy all of the result registers out of their specified physreg. 4994 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4995 CCValAssign &VA = RVLocs[i]; 4996 assert(VA.isRegLoc() && "Can only return in registers!"); 4997 4998 SDValue Val; 4999 5000 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5001 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5002 InFlag); 5003 Chain = Lo.getValue(1); 5004 InFlag = Lo.getValue(2); 5005 VA = RVLocs[++i]; // skip ahead to next loc 5006 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5007 InFlag); 5008 Chain = Hi.getValue(1); 5009 InFlag = Hi.getValue(2); 5010 if (!Subtarget.isLittleEndian()) 5011 std::swap (Lo, Hi); 5012 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5013 } else { 5014 Val = DAG.getCopyFromReg(Chain, dl, 5015 VA.getLocReg(), VA.getLocVT(), InFlag); 5016 Chain = Val.getValue(1); 5017 InFlag = Val.getValue(2); 5018 } 5019 5020 switch (VA.getLocInfo()) { 5021 default: llvm_unreachable("Unknown loc info!"); 5022 case CCValAssign::Full: break; 5023 case CCValAssign::AExt: 5024 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5025 break; 5026 case CCValAssign::ZExt: 5027 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5028 DAG.getValueType(VA.getValVT())); 5029 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5030 break; 5031 case CCValAssign::SExt: 5032 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5033 DAG.getValueType(VA.getValVT())); 5034 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5035 break; 5036 } 5037 5038 InVals.push_back(Val); 5039 } 5040 5041 return Chain; 5042 } 5043 5044 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5045 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5046 // PatchPoint calls are not indirect. 5047 if (isPatchPoint) 5048 return false; 5049 5050 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5051 return false; 5052 5053 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5054 // becuase the immediate function pointer points to a descriptor instead of 5055 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5056 // pointer immediate points to the global entry point, while the BLA would 5057 // need to jump to the local entry point (see rL211174). 5058 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5059 isBLACompatibleAddress(Callee, DAG)) 5060 return false; 5061 5062 return true; 5063 } 5064 5065 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5066 const Function &Caller, 5067 const SDValue &Callee, 5068 const PPCSubtarget &Subtarget, 5069 const TargetMachine &TM) { 5070 if (CFlags.IsTailCall) 5071 return PPCISD::TC_RETURN; 5072 5073 // This is a call through a function pointer. 5074 if (CFlags.IsIndirect) { 5075 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5076 // indirect calls. The save of the caller's TOC pointer to the stack will be 5077 // inserted into the DAG as part of call lowering. The restore of the TOC 5078 // pointer is modeled by using a pseudo instruction for the call opcode that 5079 // represents the 2 instruction sequence of an indirect branch and link, 5080 // immediately followed by a load of the TOC pointer from the the stack save 5081 // slot into gpr2. 5082 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5083 return PPCISD::BCTRL_LOAD_TOC; 5084 5085 // An indirect call that does not need a TOC restore. 5086 return PPCISD::BCTRL; 5087 } 5088 5089 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5090 // immediately following the call instruction if the caller and callee may 5091 // have different TOC bases. At link time if the linker determines the calls 5092 // may not share a TOC base, the call is redirected to a trampoline inserted 5093 // by the linker. The trampoline will (among other things) save the callers 5094 // TOC pointer at an ABI designated offset in the linkage area and the linker 5095 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5096 // into gpr2. 5097 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5098 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5099 : PPCISD::CALL_NOP; 5100 5101 return PPCISD::CALL; 5102 } 5103 5104 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5105 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5106 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5107 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5108 return SDValue(Dest, 0); 5109 5110 // Returns true if the callee is local, and false otherwise. 5111 auto isLocalCallee = [&]() { 5112 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5113 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5114 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5115 5116 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5117 !dyn_cast_or_null<GlobalIFunc>(GV); 5118 }; 5119 5120 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5121 // a static relocation model causes some versions of GNU LD (2.17.50, at 5122 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5123 // built with secure-PLT. 5124 bool UsePlt = 5125 Subtarget.is32BitELFABI() && !isLocalCallee() && 5126 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5127 5128 // On AIX, direct function calls reference the symbol for the function's 5129 // entry point, which is named by prepending a "." before the function's 5130 // C-linkage name. 5131 const auto getAIXFuncEntryPointSymbolSDNode = 5132 [&](StringRef FuncName, bool IsDeclaration, 5133 const XCOFF::StorageClass &SC) { 5134 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5135 5136 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5137 Context.getOrCreateSymbol(Twine(".") + Twine(FuncName))); 5138 5139 if (IsDeclaration && !S->hasContainingCsect()) { 5140 // On AIX, an undefined symbol needs to be associated with a 5141 // MCSectionXCOFF to get the correct storage mapping class. 5142 // In this case, XCOFF::XMC_PR. 5143 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5144 S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5145 SectionKind::getMetadata()); 5146 S->setContainingCsect(Sec); 5147 } 5148 5149 MVT PtrVT = 5150 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5151 return DAG.getMCSymbol(S, PtrVT); 5152 }; 5153 5154 if (isFunctionGlobalAddress(Callee)) { 5155 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5156 const GlobalValue *GV = G->getGlobal(); 5157 5158 if (!Subtarget.isAIXABI()) 5159 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5160 UsePlt ? PPCII::MO_PLT : 0); 5161 5162 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5163 const GlobalObject *GO = cast<GlobalObject>(GV); 5164 const XCOFF::StorageClass SC = 5165 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5166 return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(), 5167 SC); 5168 } 5169 5170 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5171 const char *SymName = S->getSymbol(); 5172 if (!Subtarget.isAIXABI()) 5173 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5174 UsePlt ? PPCII::MO_PLT : 0); 5175 5176 // If there exists a user-declared function whose name is the same as the 5177 // ExternalSymbol's, then we pick up the user-declared version. 5178 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5179 if (const Function *F = 5180 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) { 5181 const XCOFF::StorageClass SC = 5182 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F); 5183 return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(), 5184 SC); 5185 } 5186 5187 return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT); 5188 } 5189 5190 // No transformation needed. 5191 assert(Callee.getNode() && "What no callee?"); 5192 return Callee; 5193 } 5194 5195 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5196 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5197 "Expected a CALLSEQ_STARTSDNode."); 5198 5199 // The last operand is the chain, except when the node has glue. If the node 5200 // has glue, then the last operand is the glue, and the chain is the second 5201 // last operand. 5202 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5203 if (LastValue.getValueType() != MVT::Glue) 5204 return LastValue; 5205 5206 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5207 } 5208 5209 // Creates the node that moves a functions address into the count register 5210 // to prepare for an indirect call instruction. 5211 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5212 SDValue &Glue, SDValue &Chain, 5213 const SDLoc &dl) { 5214 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5215 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5216 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5217 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5218 // The glue is the second value produced. 5219 Glue = Chain.getValue(1); 5220 } 5221 5222 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5223 SDValue &Glue, SDValue &Chain, 5224 SDValue CallSeqStart, 5225 ImmutableCallSite CS, const SDLoc &dl, 5226 bool hasNest, 5227 const PPCSubtarget &Subtarget) { 5228 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5229 // entry point, but to the function descriptor (the function entry point 5230 // address is part of the function descriptor though). 5231 // The function descriptor is a three doubleword structure with the 5232 // following fields: function entry point, TOC base address and 5233 // environment pointer. 5234 // Thus for a call through a function pointer, the following actions need 5235 // to be performed: 5236 // 1. Save the TOC of the caller in the TOC save area of its stack 5237 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5238 // 2. Load the address of the function entry point from the function 5239 // descriptor. 5240 // 3. Load the TOC of the callee from the function descriptor into r2. 5241 // 4. Load the environment pointer from the function descriptor into 5242 // r11. 5243 // 5. Branch to the function entry point address. 5244 // 6. On return of the callee, the TOC of the caller needs to be 5245 // restored (this is done in FinishCall()). 5246 // 5247 // The loads are scheduled at the beginning of the call sequence, and the 5248 // register copies are flagged together to ensure that no other 5249 // operations can be scheduled in between. E.g. without flagging the 5250 // copies together, a TOC access in the caller could be scheduled between 5251 // the assignment of the callee TOC and the branch to the callee, which leads 5252 // to incorrect code. 5253 5254 // Start by loading the function address from the descriptor. 5255 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5256 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5257 ? (MachineMemOperand::MODereferenceable | 5258 MachineMemOperand::MOInvariant) 5259 : MachineMemOperand::MONone; 5260 5261 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5262 5263 // Registers used in building the DAG. 5264 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5265 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5266 5267 // Offsets of descriptor members. 5268 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5269 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5270 5271 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5272 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5273 5274 // One load for the functions entry point address. 5275 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5276 Alignment, MMOFlags); 5277 5278 // One for loading the TOC anchor for the module that contains the called 5279 // function. 5280 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5281 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5282 SDValue TOCPtr = 5283 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5284 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5285 5286 // One for loading the environment pointer. 5287 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5288 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5289 SDValue LoadEnvPtr = 5290 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5291 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5292 5293 5294 // Then copy the newly loaded TOC anchor to the TOC pointer. 5295 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5296 Chain = TOCVal.getValue(0); 5297 Glue = TOCVal.getValue(1); 5298 5299 // If the function call has an explicit 'nest' parameter, it takes the 5300 // place of the environment pointer. 5301 assert((!hasNest || !Subtarget.isAIXABI()) && 5302 "Nest parameter is not supported on AIX."); 5303 if (!hasNest) { 5304 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5305 Chain = EnvVal.getValue(0); 5306 Glue = EnvVal.getValue(1); 5307 } 5308 5309 // The rest of the indirect call sequence is the same as the non-descriptor 5310 // DAG. 5311 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5312 } 5313 5314 static void 5315 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5316 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5317 SelectionDAG &DAG, 5318 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5319 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5320 const PPCSubtarget &Subtarget) { 5321 const bool IsPPC64 = Subtarget.isPPC64(); 5322 // MVT for a general purpose register. 5323 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5324 5325 // First operand is always the chain. 5326 Ops.push_back(Chain); 5327 5328 // If it's a direct call pass the callee as the second operand. 5329 if (!CFlags.IsIndirect) 5330 Ops.push_back(Callee); 5331 else { 5332 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5333 5334 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5335 // on the stack (this would have been done in `LowerCall_64SVR4` or 5336 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5337 // represents both the indirect branch and a load that restores the TOC 5338 // pointer from the linkage area. The operand for the TOC restore is an add 5339 // of the TOC save offset to the stack pointer. This must be the second 5340 // operand: after the chain input but before any other variadic arguments. 5341 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 5342 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5343 5344 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5345 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5346 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5347 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5348 Ops.push_back(AddTOC); 5349 } 5350 5351 // Add the register used for the environment pointer. 5352 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5353 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5354 RegVT)); 5355 5356 5357 // Add CTR register as callee so a bctr can be emitted later. 5358 if (CFlags.IsTailCall) 5359 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5360 } 5361 5362 // If this is a tail call add stack pointer delta. 5363 if (CFlags.IsTailCall) 5364 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5365 5366 // Add argument registers to the end of the list so that they are known live 5367 // into the call. 5368 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5369 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5370 RegsToPass[i].second.getValueType())); 5371 5372 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5373 // no way to mark dependencies as implicit here. 5374 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5375 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5376 !CFlags.IsPatchPoint) 5377 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5378 5379 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5380 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5381 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5382 5383 // Add a register mask operand representing the call-preserved registers. 5384 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5385 const uint32_t *Mask = 5386 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5387 assert(Mask && "Missing call preserved mask for calling convention"); 5388 Ops.push_back(DAG.getRegisterMask(Mask)); 5389 5390 // If the glue is valid, it is the last operand. 5391 if (Glue.getNode()) 5392 Ops.push_back(Glue); 5393 } 5394 5395 SDValue PPCTargetLowering::FinishCall( 5396 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5397 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5398 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5399 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5400 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5401 5402 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) 5403 setUsesTOCBasePtr(DAG); 5404 5405 unsigned CallOpc = 5406 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5407 Subtarget, DAG.getTarget()); 5408 5409 if (!CFlags.IsIndirect) 5410 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5411 else if (Subtarget.usesFunctionDescriptors()) 5412 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS, 5413 dl, CFlags.HasNest, Subtarget); 5414 else 5415 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5416 5417 // Build the operand list for the call instruction. 5418 SmallVector<SDValue, 8> Ops; 5419 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5420 SPDiff, Subtarget); 5421 5422 // Emit tail call. 5423 if (CFlags.IsTailCall) { 5424 assert(((Callee.getOpcode() == ISD::Register && 5425 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5426 Callee.getOpcode() == ISD::TargetExternalSymbol || 5427 Callee.getOpcode() == ISD::TargetGlobalAddress || 5428 isa<ConstantSDNode>(Callee)) && 5429 "Expecting a global address, external symbol, absolute value or " 5430 "register"); 5431 assert(CallOpc == PPCISD::TC_RETURN && 5432 "Unexpected call opcode for a tail call."); 5433 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5434 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5435 } 5436 5437 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5438 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5439 Glue = Chain.getValue(1); 5440 5441 // When performing tail call optimization the callee pops its arguments off 5442 // the stack. Account for this here so these bytes can be pushed back on in 5443 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5444 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5445 getTargetMachine().Options.GuaranteedTailCallOpt) 5446 ? NumBytes 5447 : 0; 5448 5449 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5450 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5451 Glue, dl); 5452 Glue = Chain.getValue(1); 5453 5454 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5455 DAG, InVals); 5456 } 5457 5458 SDValue 5459 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5460 SmallVectorImpl<SDValue> &InVals) const { 5461 SelectionDAG &DAG = CLI.DAG; 5462 SDLoc &dl = CLI.DL; 5463 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5464 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5465 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5466 SDValue Chain = CLI.Chain; 5467 SDValue Callee = CLI.Callee; 5468 bool &isTailCall = CLI.IsTailCall; 5469 CallingConv::ID CallConv = CLI.CallConv; 5470 bool isVarArg = CLI.IsVarArg; 5471 bool isPatchPoint = CLI.IsPatchPoint; 5472 ImmutableCallSite CS = CLI.CS; 5473 5474 if (isTailCall) { 5475 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5476 isTailCall = false; 5477 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5478 isTailCall = 5479 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5480 isVarArg, Outs, Ins, DAG); 5481 else 5482 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5483 Ins, DAG); 5484 if (isTailCall) { 5485 ++NumTailCalls; 5486 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5487 ++NumSiblingCalls; 5488 5489 assert(isa<GlobalAddressSDNode>(Callee) && 5490 "Callee should be an llvm::Function object."); 5491 LLVM_DEBUG( 5492 const GlobalValue *GV = 5493 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5494 const unsigned Width = 5495 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5496 dbgs() << "TCO caller: " 5497 << left_justify(DAG.getMachineFunction().getName(), Width) 5498 << ", callee linkage: " << GV->getVisibility() << ", " 5499 << GV->getLinkage() << "\n"); 5500 } 5501 } 5502 5503 if (!isTailCall && CS && CS.isMustTailCall()) 5504 report_fatal_error("failed to perform tail call elimination on a call " 5505 "site marked musttail"); 5506 5507 // When long calls (i.e. indirect calls) are always used, calls are always 5508 // made via function pointer. If we have a function name, first translate it 5509 // into a pointer. 5510 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5511 !isTailCall) 5512 Callee = LowerGlobalAddress(Callee, DAG); 5513 5514 CallFlags CFlags( 5515 CallConv, isTailCall, isVarArg, isPatchPoint, 5516 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5517 // hasNest 5518 Subtarget.is64BitELFABI() && 5519 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); })); 5520 5521 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5522 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5523 InVals, CS); 5524 5525 if (Subtarget.isSVR4ABI()) 5526 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5527 InVals, CS); 5528 5529 if (Subtarget.isAIXABI()) 5530 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5531 InVals, CS); 5532 5533 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5534 InVals, CS); 5535 } 5536 5537 SDValue PPCTargetLowering::LowerCall_32SVR4( 5538 SDValue Chain, SDValue Callee, CallFlags CFlags, 5539 const SmallVectorImpl<ISD::OutputArg> &Outs, 5540 const SmallVectorImpl<SDValue> &OutVals, 5541 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5542 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5543 ImmutableCallSite CS) const { 5544 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5545 // of the 32-bit SVR4 ABI stack frame layout. 5546 5547 const CallingConv::ID CallConv = CFlags.CallConv; 5548 const bool IsVarArg = CFlags.IsVarArg; 5549 const bool IsTailCall = CFlags.IsTailCall; 5550 5551 assert((CallConv == CallingConv::C || 5552 CallConv == CallingConv::Cold || 5553 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5554 5555 unsigned PtrByteSize = 4; 5556 5557 MachineFunction &MF = DAG.getMachineFunction(); 5558 5559 // Mark this function as potentially containing a function that contains a 5560 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5561 // and restoring the callers stack pointer in this functions epilog. This is 5562 // done because by tail calling the called function might overwrite the value 5563 // in this function's (MF) stack pointer stack slot 0(SP). 5564 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5565 CallConv == CallingConv::Fast) 5566 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5567 5568 // Count how many bytes are to be pushed on the stack, including the linkage 5569 // area, parameter list area and the part of the local variable space which 5570 // contains copies of aggregates which are passed by value. 5571 5572 // Assign locations to all of the outgoing arguments. 5573 SmallVector<CCValAssign, 16> ArgLocs; 5574 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5575 5576 // Reserve space for the linkage area on the stack. 5577 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5578 PtrByteSize); 5579 if (useSoftFloat()) 5580 CCInfo.PreAnalyzeCallOperands(Outs); 5581 5582 if (IsVarArg) { 5583 // Handle fixed and variable vector arguments differently. 5584 // Fixed vector arguments go into registers as long as registers are 5585 // available. Variable vector arguments always go into memory. 5586 unsigned NumArgs = Outs.size(); 5587 5588 for (unsigned i = 0; i != NumArgs; ++i) { 5589 MVT ArgVT = Outs[i].VT; 5590 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5591 bool Result; 5592 5593 if (Outs[i].IsFixed) { 5594 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5595 CCInfo); 5596 } else { 5597 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5598 ArgFlags, CCInfo); 5599 } 5600 5601 if (Result) { 5602 #ifndef NDEBUG 5603 errs() << "Call operand #" << i << " has unhandled type " 5604 << EVT(ArgVT).getEVTString() << "\n"; 5605 #endif 5606 llvm_unreachable(nullptr); 5607 } 5608 } 5609 } else { 5610 // All arguments are treated the same. 5611 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5612 } 5613 CCInfo.clearWasPPCF128(); 5614 5615 // Assign locations to all of the outgoing aggregate by value arguments. 5616 SmallVector<CCValAssign, 16> ByValArgLocs; 5617 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5618 5619 // Reserve stack space for the allocations in CCInfo. 5620 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5621 5622 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5623 5624 // Size of the linkage area, parameter list area and the part of the local 5625 // space variable where copies of aggregates which are passed by value are 5626 // stored. 5627 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5628 5629 // Calculate by how many bytes the stack has to be adjusted in case of tail 5630 // call optimization. 5631 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5632 5633 // Adjust the stack pointer for the new arguments... 5634 // These operations are automatically eliminated by the prolog/epilog pass 5635 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5636 SDValue CallSeqStart = Chain; 5637 5638 // Load the return address and frame pointer so it can be moved somewhere else 5639 // later. 5640 SDValue LROp, FPOp; 5641 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5642 5643 // Set up a copy of the stack pointer for use loading and storing any 5644 // arguments that may not fit in the registers available for argument 5645 // passing. 5646 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5647 5648 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5649 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5650 SmallVector<SDValue, 8> MemOpChains; 5651 5652 bool seenFloatArg = false; 5653 // Walk the register/memloc assignments, inserting copies/loads. 5654 // i - Tracks the index into the list of registers allocated for the call 5655 // RealArgIdx - Tracks the index into the list of actual function arguments 5656 // j - Tracks the index into the list of byval arguments 5657 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5658 i != e; 5659 ++i, ++RealArgIdx) { 5660 CCValAssign &VA = ArgLocs[i]; 5661 SDValue Arg = OutVals[RealArgIdx]; 5662 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5663 5664 if (Flags.isByVal()) { 5665 // Argument is an aggregate which is passed by value, thus we need to 5666 // create a copy of it in the local variable space of the current stack 5667 // frame (which is the stack frame of the caller) and pass the address of 5668 // this copy to the callee. 5669 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5670 CCValAssign &ByValVA = ByValArgLocs[j++]; 5671 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5672 5673 // Memory reserved in the local variable space of the callers stack frame. 5674 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5675 5676 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5677 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5678 StackPtr, PtrOff); 5679 5680 // Create a copy of the argument in the local area of the current 5681 // stack frame. 5682 SDValue MemcpyCall = 5683 CreateCopyOfByValArgument(Arg, PtrOff, 5684 CallSeqStart.getNode()->getOperand(0), 5685 Flags, DAG, dl); 5686 5687 // This must go outside the CALLSEQ_START..END. 5688 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5689 SDLoc(MemcpyCall)); 5690 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5691 NewCallSeqStart.getNode()); 5692 Chain = CallSeqStart = NewCallSeqStart; 5693 5694 // Pass the address of the aggregate copy on the stack either in a 5695 // physical register or in the parameter list area of the current stack 5696 // frame to the callee. 5697 Arg = PtrOff; 5698 } 5699 5700 // When useCRBits() is true, there can be i1 arguments. 5701 // It is because getRegisterType(MVT::i1) => MVT::i1, 5702 // and for other integer types getRegisterType() => MVT::i32. 5703 // Extend i1 and ensure callee will get i32. 5704 if (Arg.getValueType() == MVT::i1) 5705 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5706 dl, MVT::i32, Arg); 5707 5708 if (VA.isRegLoc()) { 5709 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5710 // Put argument in a physical register. 5711 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5712 bool IsLE = Subtarget.isLittleEndian(); 5713 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5714 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5715 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5716 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5717 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5718 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5719 SVal.getValue(0))); 5720 } else 5721 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5722 } else { 5723 // Put argument in the parameter list area of the current stack frame. 5724 assert(VA.isMemLoc()); 5725 unsigned LocMemOffset = VA.getLocMemOffset(); 5726 5727 if (!IsTailCall) { 5728 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5729 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5730 StackPtr, PtrOff); 5731 5732 MemOpChains.push_back( 5733 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5734 } else { 5735 // Calculate and remember argument location. 5736 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5737 TailCallArguments); 5738 } 5739 } 5740 } 5741 5742 if (!MemOpChains.empty()) 5743 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5744 5745 // Build a sequence of copy-to-reg nodes chained together with token chain 5746 // and flag operands which copy the outgoing args into the appropriate regs. 5747 SDValue InFlag; 5748 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5749 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5750 RegsToPass[i].second, InFlag); 5751 InFlag = Chain.getValue(1); 5752 } 5753 5754 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5755 // registers. 5756 if (IsVarArg) { 5757 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5758 SDValue Ops[] = { Chain, InFlag }; 5759 5760 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5761 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5762 5763 InFlag = Chain.getValue(1); 5764 } 5765 5766 if (IsTailCall) 5767 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5768 TailCallArguments); 5769 5770 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5771 Callee, SPDiff, NumBytes, Ins, InVals, CS); 5772 } 5773 5774 // Copy an argument into memory, being careful to do this outside the 5775 // call sequence for the call to which the argument belongs. 5776 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5777 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5778 SelectionDAG &DAG, const SDLoc &dl) const { 5779 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5780 CallSeqStart.getNode()->getOperand(0), 5781 Flags, DAG, dl); 5782 // The MEMCPY must go outside the CALLSEQ_START..END. 5783 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5784 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5785 SDLoc(MemcpyCall)); 5786 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5787 NewCallSeqStart.getNode()); 5788 return NewCallSeqStart; 5789 } 5790 5791 SDValue PPCTargetLowering::LowerCall_64SVR4( 5792 SDValue Chain, SDValue Callee, CallFlags CFlags, 5793 const SmallVectorImpl<ISD::OutputArg> &Outs, 5794 const SmallVectorImpl<SDValue> &OutVals, 5795 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5796 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5797 ImmutableCallSite CS) const { 5798 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5799 bool isLittleEndian = Subtarget.isLittleEndian(); 5800 unsigned NumOps = Outs.size(); 5801 bool IsSibCall = false; 5802 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5803 5804 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5805 unsigned PtrByteSize = 8; 5806 5807 MachineFunction &MF = DAG.getMachineFunction(); 5808 5809 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5810 IsSibCall = true; 5811 5812 // Mark this function as potentially containing a function that contains a 5813 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5814 // and restoring the callers stack pointer in this functions epilog. This is 5815 // done because by tail calling the called function might overwrite the value 5816 // in this function's (MF) stack pointer stack slot 0(SP). 5817 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5818 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5819 5820 assert(!(IsFastCall && CFlags.IsVarArg) && 5821 "fastcc not supported on varargs functions"); 5822 5823 // Count how many bytes are to be pushed on the stack, including the linkage 5824 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5825 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5826 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5827 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5828 unsigned NumBytes = LinkageSize; 5829 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5830 unsigned &QFPR_idx = FPR_idx; 5831 5832 static const MCPhysReg GPR[] = { 5833 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5834 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5835 }; 5836 static const MCPhysReg VR[] = { 5837 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5838 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5839 }; 5840 5841 const unsigned NumGPRs = array_lengthof(GPR); 5842 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5843 const unsigned NumVRs = array_lengthof(VR); 5844 const unsigned NumQFPRs = NumFPRs; 5845 5846 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5847 // can be passed to the callee in registers. 5848 // For the fast calling convention, there is another check below. 5849 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5850 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5851 if (!HasParameterArea) { 5852 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5853 unsigned AvailableFPRs = NumFPRs; 5854 unsigned AvailableVRs = NumVRs; 5855 unsigned NumBytesTmp = NumBytes; 5856 for (unsigned i = 0; i != NumOps; ++i) { 5857 if (Outs[i].Flags.isNest()) continue; 5858 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5859 PtrByteSize, LinkageSize, ParamAreaSize, 5860 NumBytesTmp, AvailableFPRs, AvailableVRs, 5861 Subtarget.hasQPX())) 5862 HasParameterArea = true; 5863 } 5864 } 5865 5866 // When using the fast calling convention, we don't provide backing for 5867 // arguments that will be in registers. 5868 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5869 5870 // Avoid allocating parameter area for fastcc functions if all the arguments 5871 // can be passed in the registers. 5872 if (IsFastCall) 5873 HasParameterArea = false; 5874 5875 // Add up all the space actually used. 5876 for (unsigned i = 0; i != NumOps; ++i) { 5877 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5878 EVT ArgVT = Outs[i].VT; 5879 EVT OrigVT = Outs[i].ArgVT; 5880 5881 if (Flags.isNest()) 5882 continue; 5883 5884 if (IsFastCall) { 5885 if (Flags.isByVal()) { 5886 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5887 if (NumGPRsUsed > NumGPRs) 5888 HasParameterArea = true; 5889 } else { 5890 switch (ArgVT.getSimpleVT().SimpleTy) { 5891 default: llvm_unreachable("Unexpected ValueType for argument!"); 5892 case MVT::i1: 5893 case MVT::i32: 5894 case MVT::i64: 5895 if (++NumGPRsUsed <= NumGPRs) 5896 continue; 5897 break; 5898 case MVT::v4i32: 5899 case MVT::v8i16: 5900 case MVT::v16i8: 5901 case MVT::v2f64: 5902 case MVT::v2i64: 5903 case MVT::v1i128: 5904 case MVT::f128: 5905 if (++NumVRsUsed <= NumVRs) 5906 continue; 5907 break; 5908 case MVT::v4f32: 5909 // When using QPX, this is handled like a FP register, otherwise, it 5910 // is an Altivec register. 5911 if (Subtarget.hasQPX()) { 5912 if (++NumFPRsUsed <= NumFPRs) 5913 continue; 5914 } else { 5915 if (++NumVRsUsed <= NumVRs) 5916 continue; 5917 } 5918 break; 5919 case MVT::f32: 5920 case MVT::f64: 5921 case MVT::v4f64: // QPX 5922 case MVT::v4i1: // QPX 5923 if (++NumFPRsUsed <= NumFPRs) 5924 continue; 5925 break; 5926 } 5927 HasParameterArea = true; 5928 } 5929 } 5930 5931 /* Respect alignment of argument on the stack. */ 5932 auto Alignement = 5933 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5934 NumBytes = alignTo(NumBytes, Alignement); 5935 5936 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5937 if (Flags.isInConsecutiveRegsLast()) 5938 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5939 } 5940 5941 unsigned NumBytesActuallyUsed = NumBytes; 5942 5943 // In the old ELFv1 ABI, 5944 // the prolog code of the callee may store up to 8 GPR argument registers to 5945 // the stack, allowing va_start to index over them in memory if its varargs. 5946 // Because we cannot tell if this is needed on the caller side, we have to 5947 // conservatively assume that it is needed. As such, make sure we have at 5948 // least enough stack space for the caller to store the 8 GPRs. 5949 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5950 // really requires memory operands, e.g. a vararg function. 5951 if (HasParameterArea) 5952 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5953 else 5954 NumBytes = LinkageSize; 5955 5956 // Tail call needs the stack to be aligned. 5957 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5958 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5959 5960 int SPDiff = 0; 5961 5962 // Calculate by how many bytes the stack has to be adjusted in case of tail 5963 // call optimization. 5964 if (!IsSibCall) 5965 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 5966 5967 // To protect arguments on the stack from being clobbered in a tail call, 5968 // force all the loads to happen before doing any other lowering. 5969 if (CFlags.IsTailCall) 5970 Chain = DAG.getStackArgumentTokenFactor(Chain); 5971 5972 // Adjust the stack pointer for the new arguments... 5973 // These operations are automatically eliminated by the prolog/epilog pass 5974 if (!IsSibCall) 5975 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5976 SDValue CallSeqStart = Chain; 5977 5978 // Load the return address and frame pointer so it can be move somewhere else 5979 // later. 5980 SDValue LROp, FPOp; 5981 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5982 5983 // Set up a copy of the stack pointer for use loading and storing any 5984 // arguments that may not fit in the registers available for argument 5985 // passing. 5986 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5987 5988 // Figure out which arguments are going to go in registers, and which in 5989 // memory. Also, if this is a vararg function, floating point operations 5990 // must be stored to our stack, and loaded into integer regs as well, if 5991 // any integer regs are available for argument passing. 5992 unsigned ArgOffset = LinkageSize; 5993 5994 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5995 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5996 5997 SmallVector<SDValue, 8> MemOpChains; 5998 for (unsigned i = 0; i != NumOps; ++i) { 5999 SDValue Arg = OutVals[i]; 6000 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6001 EVT ArgVT = Outs[i].VT; 6002 EVT OrigVT = Outs[i].ArgVT; 6003 6004 // PtrOff will be used to store the current argument to the stack if a 6005 // register cannot be found for it. 6006 SDValue PtrOff; 6007 6008 // We re-align the argument offset for each argument, except when using the 6009 // fast calling convention, when we need to make sure we do that only when 6010 // we'll actually use a stack slot. 6011 auto ComputePtrOff = [&]() { 6012 /* Respect alignment of argument on the stack. */ 6013 auto Alignment = 6014 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6015 ArgOffset = alignTo(ArgOffset, Alignment); 6016 6017 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6018 6019 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6020 }; 6021 6022 if (!IsFastCall) { 6023 ComputePtrOff(); 6024 6025 /* Compute GPR index associated with argument offset. */ 6026 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6027 GPR_idx = std::min(GPR_idx, NumGPRs); 6028 } 6029 6030 // Promote integers to 64-bit values. 6031 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6032 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6033 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6034 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6035 } 6036 6037 // FIXME memcpy is used way more than necessary. Correctness first. 6038 // Note: "by value" is code for passing a structure by value, not 6039 // basic types. 6040 if (Flags.isByVal()) { 6041 // Note: Size includes alignment padding, so 6042 // struct x { short a; char b; } 6043 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6044 // These are the proper values we need for right-justifying the 6045 // aggregate in a parameter register. 6046 unsigned Size = Flags.getByValSize(); 6047 6048 // An empty aggregate parameter takes up no storage and no 6049 // registers. 6050 if (Size == 0) 6051 continue; 6052 6053 if (IsFastCall) 6054 ComputePtrOff(); 6055 6056 // All aggregates smaller than 8 bytes must be passed right-justified. 6057 if (Size==1 || Size==2 || Size==4) { 6058 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6059 if (GPR_idx != NumGPRs) { 6060 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6061 MachinePointerInfo(), VT); 6062 MemOpChains.push_back(Load.getValue(1)); 6063 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6064 6065 ArgOffset += PtrByteSize; 6066 continue; 6067 } 6068 } 6069 6070 if (GPR_idx == NumGPRs && Size < 8) { 6071 SDValue AddPtr = PtrOff; 6072 if (!isLittleEndian) { 6073 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6074 PtrOff.getValueType()); 6075 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6076 } 6077 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6078 CallSeqStart, 6079 Flags, DAG, dl); 6080 ArgOffset += PtrByteSize; 6081 continue; 6082 } 6083 // Copy entire object into memory. There are cases where gcc-generated 6084 // code assumes it is there, even if it could be put entirely into 6085 // registers. (This is not what the doc says.) 6086 6087 // FIXME: The above statement is likely due to a misunderstanding of the 6088 // documents. All arguments must be copied into the parameter area BY 6089 // THE CALLEE in the event that the callee takes the address of any 6090 // formal argument. That has not yet been implemented. However, it is 6091 // reasonable to use the stack area as a staging area for the register 6092 // load. 6093 6094 // Skip this for small aggregates, as we will use the same slot for a 6095 // right-justified copy, below. 6096 if (Size >= 8) 6097 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6098 CallSeqStart, 6099 Flags, DAG, dl); 6100 6101 // When a register is available, pass a small aggregate right-justified. 6102 if (Size < 8 && GPR_idx != NumGPRs) { 6103 // The easiest way to get this right-justified in a register 6104 // is to copy the structure into the rightmost portion of a 6105 // local variable slot, then load the whole slot into the 6106 // register. 6107 // FIXME: The memcpy seems to produce pretty awful code for 6108 // small aggregates, particularly for packed ones. 6109 // FIXME: It would be preferable to use the slot in the 6110 // parameter save area instead of a new local variable. 6111 SDValue AddPtr = PtrOff; 6112 if (!isLittleEndian) { 6113 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6114 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6115 } 6116 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6117 CallSeqStart, 6118 Flags, DAG, dl); 6119 6120 // Load the slot into the register. 6121 SDValue Load = 6122 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6123 MemOpChains.push_back(Load.getValue(1)); 6124 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6125 6126 // Done with this argument. 6127 ArgOffset += PtrByteSize; 6128 continue; 6129 } 6130 6131 // For aggregates larger than PtrByteSize, copy the pieces of the 6132 // object that fit into registers from the parameter save area. 6133 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6134 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6135 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6136 if (GPR_idx != NumGPRs) { 6137 SDValue Load = 6138 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6139 MemOpChains.push_back(Load.getValue(1)); 6140 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6141 ArgOffset += PtrByteSize; 6142 } else { 6143 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6144 break; 6145 } 6146 } 6147 continue; 6148 } 6149 6150 switch (Arg.getSimpleValueType().SimpleTy) { 6151 default: llvm_unreachable("Unexpected ValueType for argument!"); 6152 case MVT::i1: 6153 case MVT::i32: 6154 case MVT::i64: 6155 if (Flags.isNest()) { 6156 // The 'nest' parameter, if any, is passed in R11. 6157 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6158 break; 6159 } 6160 6161 // These can be scalar arguments or elements of an integer array type 6162 // passed directly. Clang may use those instead of "byval" aggregate 6163 // types to avoid forcing arguments to memory unnecessarily. 6164 if (GPR_idx != NumGPRs) { 6165 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6166 } else { 6167 if (IsFastCall) 6168 ComputePtrOff(); 6169 6170 assert(HasParameterArea && 6171 "Parameter area must exist to pass an argument in memory."); 6172 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6173 true, CFlags.IsTailCall, false, MemOpChains, 6174 TailCallArguments, dl); 6175 if (IsFastCall) 6176 ArgOffset += PtrByteSize; 6177 } 6178 if (!IsFastCall) 6179 ArgOffset += PtrByteSize; 6180 break; 6181 case MVT::f32: 6182 case MVT::f64: { 6183 // These can be scalar arguments or elements of a float array type 6184 // passed directly. The latter are used to implement ELFv2 homogenous 6185 // float aggregates. 6186 6187 // Named arguments go into FPRs first, and once they overflow, the 6188 // remaining arguments go into GPRs and then the parameter save area. 6189 // Unnamed arguments for vararg functions always go to GPRs and 6190 // then the parameter save area. For now, put all arguments to vararg 6191 // routines always in both locations (FPR *and* GPR or stack slot). 6192 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6193 bool NeededLoad = false; 6194 6195 // First load the argument into the next available FPR. 6196 if (FPR_idx != NumFPRs) 6197 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6198 6199 // Next, load the argument into GPR or stack slot if needed. 6200 if (!NeedGPROrStack) 6201 ; 6202 else if (GPR_idx != NumGPRs && !IsFastCall) { 6203 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6204 // once we support fp <-> gpr moves. 6205 6206 // In the non-vararg case, this can only ever happen in the 6207 // presence of f32 array types, since otherwise we never run 6208 // out of FPRs before running out of GPRs. 6209 SDValue ArgVal; 6210 6211 // Double values are always passed in a single GPR. 6212 if (Arg.getValueType() != MVT::f32) { 6213 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6214 6215 // Non-array float values are extended and passed in a GPR. 6216 } else if (!Flags.isInConsecutiveRegs()) { 6217 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6218 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6219 6220 // If we have an array of floats, we collect every odd element 6221 // together with its predecessor into one GPR. 6222 } else if (ArgOffset % PtrByteSize != 0) { 6223 SDValue Lo, Hi; 6224 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6225 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6226 if (!isLittleEndian) 6227 std::swap(Lo, Hi); 6228 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6229 6230 // The final element, if even, goes into the first half of a GPR. 6231 } else if (Flags.isInConsecutiveRegsLast()) { 6232 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6233 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6234 if (!isLittleEndian) 6235 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6236 DAG.getConstant(32, dl, MVT::i32)); 6237 6238 // Non-final even elements are skipped; they will be handled 6239 // together the with subsequent argument on the next go-around. 6240 } else 6241 ArgVal = SDValue(); 6242 6243 if (ArgVal.getNode()) 6244 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6245 } else { 6246 if (IsFastCall) 6247 ComputePtrOff(); 6248 6249 // Single-precision floating-point values are mapped to the 6250 // second (rightmost) word of the stack doubleword. 6251 if (Arg.getValueType() == MVT::f32 && 6252 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6253 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6254 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6255 } 6256 6257 assert(HasParameterArea && 6258 "Parameter area must exist to pass an argument in memory."); 6259 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6260 true, CFlags.IsTailCall, false, MemOpChains, 6261 TailCallArguments, dl); 6262 6263 NeededLoad = true; 6264 } 6265 // When passing an array of floats, the array occupies consecutive 6266 // space in the argument area; only round up to the next doubleword 6267 // at the end of the array. Otherwise, each float takes 8 bytes. 6268 if (!IsFastCall || NeededLoad) { 6269 ArgOffset += (Arg.getValueType() == MVT::f32 && 6270 Flags.isInConsecutiveRegs()) ? 4 : 8; 6271 if (Flags.isInConsecutiveRegsLast()) 6272 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6273 } 6274 break; 6275 } 6276 case MVT::v4f32: 6277 case MVT::v4i32: 6278 case MVT::v8i16: 6279 case MVT::v16i8: 6280 case MVT::v2f64: 6281 case MVT::v2i64: 6282 case MVT::v1i128: 6283 case MVT::f128: 6284 if (!Subtarget.hasQPX()) { 6285 // These can be scalar arguments or elements of a vector array type 6286 // passed directly. The latter are used to implement ELFv2 homogenous 6287 // vector aggregates. 6288 6289 // For a varargs call, named arguments go into VRs or on the stack as 6290 // usual; unnamed arguments always go to the stack or the corresponding 6291 // GPRs when within range. For now, we always put the value in both 6292 // locations (or even all three). 6293 if (CFlags.IsVarArg) { 6294 assert(HasParameterArea && 6295 "Parameter area must exist if we have a varargs call."); 6296 // We could elide this store in the case where the object fits 6297 // entirely in R registers. Maybe later. 6298 SDValue Store = 6299 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6300 MemOpChains.push_back(Store); 6301 if (VR_idx != NumVRs) { 6302 SDValue Load = 6303 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6304 MemOpChains.push_back(Load.getValue(1)); 6305 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6306 } 6307 ArgOffset += 16; 6308 for (unsigned i=0; i<16; i+=PtrByteSize) { 6309 if (GPR_idx == NumGPRs) 6310 break; 6311 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6312 DAG.getConstant(i, dl, PtrVT)); 6313 SDValue Load = 6314 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6315 MemOpChains.push_back(Load.getValue(1)); 6316 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6317 } 6318 break; 6319 } 6320 6321 // Non-varargs Altivec params go into VRs or on the stack. 6322 if (VR_idx != NumVRs) { 6323 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6324 } else { 6325 if (IsFastCall) 6326 ComputePtrOff(); 6327 6328 assert(HasParameterArea && 6329 "Parameter area must exist to pass an argument in memory."); 6330 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6331 true, CFlags.IsTailCall, true, MemOpChains, 6332 TailCallArguments, dl); 6333 if (IsFastCall) 6334 ArgOffset += 16; 6335 } 6336 6337 if (!IsFastCall) 6338 ArgOffset += 16; 6339 break; 6340 } // not QPX 6341 6342 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6343 "Invalid QPX parameter type"); 6344 6345 LLVM_FALLTHROUGH; 6346 case MVT::v4f64: 6347 case MVT::v4i1: { 6348 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6349 if (CFlags.IsVarArg) { 6350 assert(HasParameterArea && 6351 "Parameter area must exist if we have a varargs call."); 6352 // We could elide this store in the case where the object fits 6353 // entirely in R registers. Maybe later. 6354 SDValue Store = 6355 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6356 MemOpChains.push_back(Store); 6357 if (QFPR_idx != NumQFPRs) { 6358 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6359 PtrOff, MachinePointerInfo()); 6360 MemOpChains.push_back(Load.getValue(1)); 6361 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6362 } 6363 ArgOffset += (IsF32 ? 16 : 32); 6364 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6365 if (GPR_idx == NumGPRs) 6366 break; 6367 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6368 DAG.getConstant(i, dl, PtrVT)); 6369 SDValue Load = 6370 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6371 MemOpChains.push_back(Load.getValue(1)); 6372 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6373 } 6374 break; 6375 } 6376 6377 // Non-varargs QPX params go into registers or on the stack. 6378 if (QFPR_idx != NumQFPRs) { 6379 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6380 } else { 6381 if (IsFastCall) 6382 ComputePtrOff(); 6383 6384 assert(HasParameterArea && 6385 "Parameter area must exist to pass an argument in memory."); 6386 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6387 true, CFlags.IsTailCall, true, MemOpChains, 6388 TailCallArguments, dl); 6389 if (IsFastCall) 6390 ArgOffset += (IsF32 ? 16 : 32); 6391 } 6392 6393 if (!IsFastCall) 6394 ArgOffset += (IsF32 ? 16 : 32); 6395 break; 6396 } 6397 } 6398 } 6399 6400 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6401 "mismatch in size of parameter area"); 6402 (void)NumBytesActuallyUsed; 6403 6404 if (!MemOpChains.empty()) 6405 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6406 6407 // Check if this is an indirect call (MTCTR/BCTRL). 6408 // See prepareDescriptorIndirectCall and buildCallOperands for more 6409 // information about calls through function pointers in the 64-bit SVR4 ABI. 6410 if (CFlags.IsIndirect) { 6411 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6412 // Load r2 into a virtual register and store it to the TOC save area. 6413 setUsesTOCBasePtr(DAG); 6414 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6415 // TOC save area offset. 6416 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6417 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6418 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6419 Chain = DAG.getStore( 6420 Val.getValue(1), dl, Val, AddPtr, 6421 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6422 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6423 // This does not mean the MTCTR instruction must use R12; it's easier 6424 // to model this as an extra parameter, so do that. 6425 if (isELFv2ABI && !CFlags.IsPatchPoint) 6426 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6427 } 6428 6429 // Build a sequence of copy-to-reg nodes chained together with token chain 6430 // and flag operands which copy the outgoing args into the appropriate regs. 6431 SDValue InFlag; 6432 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6433 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6434 RegsToPass[i].second, InFlag); 6435 InFlag = Chain.getValue(1); 6436 } 6437 6438 if (CFlags.IsTailCall && !IsSibCall) 6439 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6440 TailCallArguments); 6441 6442 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6443 Callee, SPDiff, NumBytes, Ins, InVals, CS); 6444 } 6445 6446 SDValue PPCTargetLowering::LowerCall_Darwin( 6447 SDValue Chain, SDValue Callee, CallFlags CFlags, 6448 const SmallVectorImpl<ISD::OutputArg> &Outs, 6449 const SmallVectorImpl<SDValue> &OutVals, 6450 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6451 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6452 ImmutableCallSite CS) const { 6453 unsigned NumOps = Outs.size(); 6454 6455 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6456 bool isPPC64 = PtrVT == MVT::i64; 6457 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6458 6459 MachineFunction &MF = DAG.getMachineFunction(); 6460 6461 // Mark this function as potentially containing a function that contains a 6462 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6463 // and restoring the callers stack pointer in this functions epilog. This is 6464 // done because by tail calling the called function might overwrite the value 6465 // in this function's (MF) stack pointer stack slot 0(SP). 6466 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6467 CFlags.CallConv == CallingConv::Fast) 6468 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6469 6470 // Count how many bytes are to be pushed on the stack, including the linkage 6471 // area, and parameter passing area. We start with 24/48 bytes, which is 6472 // prereserved space for [SP][CR][LR][3 x unused]. 6473 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6474 unsigned NumBytes = LinkageSize; 6475 6476 // Add up all the space actually used. 6477 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6478 // they all go in registers, but we must reserve stack space for them for 6479 // possible use by the caller. In varargs or 64-bit calls, parameters are 6480 // assigned stack space in order, with padding so Altivec parameters are 6481 // 16-byte aligned. 6482 unsigned nAltivecParamsAtEnd = 0; 6483 for (unsigned i = 0; i != NumOps; ++i) { 6484 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6485 EVT ArgVT = Outs[i].VT; 6486 // Varargs Altivec parameters are padded to a 16 byte boundary. 6487 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6488 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6489 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6490 if (!CFlags.IsVarArg && !isPPC64) { 6491 // Non-varargs Altivec parameters go after all the non-Altivec 6492 // parameters; handle those later so we know how much padding we need. 6493 nAltivecParamsAtEnd++; 6494 continue; 6495 } 6496 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6497 NumBytes = ((NumBytes+15)/16)*16; 6498 } 6499 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6500 } 6501 6502 // Allow for Altivec parameters at the end, if needed. 6503 if (nAltivecParamsAtEnd) { 6504 NumBytes = ((NumBytes+15)/16)*16; 6505 NumBytes += 16*nAltivecParamsAtEnd; 6506 } 6507 6508 // The prolog code of the callee may store up to 8 GPR argument registers to 6509 // the stack, allowing va_start to index over them in memory if its varargs. 6510 // Because we cannot tell if this is needed on the caller side, we have to 6511 // conservatively assume that it is needed. As such, make sure we have at 6512 // least enough stack space for the caller to store the 8 GPRs. 6513 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6514 6515 // Tail call needs the stack to be aligned. 6516 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6517 CFlags.CallConv == CallingConv::Fast) 6518 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6519 6520 // Calculate by how many bytes the stack has to be adjusted in case of tail 6521 // call optimization. 6522 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6523 6524 // To protect arguments on the stack from being clobbered in a tail call, 6525 // force all the loads to happen before doing any other lowering. 6526 if (CFlags.IsTailCall) 6527 Chain = DAG.getStackArgumentTokenFactor(Chain); 6528 6529 // Adjust the stack pointer for the new arguments... 6530 // These operations are automatically eliminated by the prolog/epilog pass 6531 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6532 SDValue CallSeqStart = Chain; 6533 6534 // Load the return address and frame pointer so it can be move somewhere else 6535 // later. 6536 SDValue LROp, FPOp; 6537 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6538 6539 // Set up a copy of the stack pointer for use loading and storing any 6540 // arguments that may not fit in the registers available for argument 6541 // passing. 6542 SDValue StackPtr; 6543 if (isPPC64) 6544 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6545 else 6546 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6547 6548 // Figure out which arguments are going to go in registers, and which in 6549 // memory. Also, if this is a vararg function, floating point operations 6550 // must be stored to our stack, and loaded into integer regs as well, if 6551 // any integer regs are available for argument passing. 6552 unsigned ArgOffset = LinkageSize; 6553 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6554 6555 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6556 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6557 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6558 }; 6559 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6560 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6561 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6562 }; 6563 static const MCPhysReg VR[] = { 6564 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6565 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6566 }; 6567 const unsigned NumGPRs = array_lengthof(GPR_32); 6568 const unsigned NumFPRs = 13; 6569 const unsigned NumVRs = array_lengthof(VR); 6570 6571 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6572 6573 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6574 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6575 6576 SmallVector<SDValue, 8> MemOpChains; 6577 for (unsigned i = 0; i != NumOps; ++i) { 6578 SDValue Arg = OutVals[i]; 6579 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6580 6581 // PtrOff will be used to store the current argument to the stack if a 6582 // register cannot be found for it. 6583 SDValue PtrOff; 6584 6585 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6586 6587 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6588 6589 // On PPC64, promote integers to 64-bit values. 6590 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6591 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6592 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6593 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6594 } 6595 6596 // FIXME memcpy is used way more than necessary. Correctness first. 6597 // Note: "by value" is code for passing a structure by value, not 6598 // basic types. 6599 if (Flags.isByVal()) { 6600 unsigned Size = Flags.getByValSize(); 6601 // Very small objects are passed right-justified. Everything else is 6602 // passed left-justified. 6603 if (Size==1 || Size==2) { 6604 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6605 if (GPR_idx != NumGPRs) { 6606 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6607 MachinePointerInfo(), VT); 6608 MemOpChains.push_back(Load.getValue(1)); 6609 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6610 6611 ArgOffset += PtrByteSize; 6612 } else { 6613 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6614 PtrOff.getValueType()); 6615 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6616 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6617 CallSeqStart, 6618 Flags, DAG, dl); 6619 ArgOffset += PtrByteSize; 6620 } 6621 continue; 6622 } 6623 // Copy entire object into memory. There are cases where gcc-generated 6624 // code assumes it is there, even if it could be put entirely into 6625 // registers. (This is not what the doc says.) 6626 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6627 CallSeqStart, 6628 Flags, DAG, dl); 6629 6630 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6631 // copy the pieces of the object that fit into registers from the 6632 // parameter save area. 6633 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6634 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6635 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6636 if (GPR_idx != NumGPRs) { 6637 SDValue Load = 6638 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6639 MemOpChains.push_back(Load.getValue(1)); 6640 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6641 ArgOffset += PtrByteSize; 6642 } else { 6643 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6644 break; 6645 } 6646 } 6647 continue; 6648 } 6649 6650 switch (Arg.getSimpleValueType().SimpleTy) { 6651 default: llvm_unreachable("Unexpected ValueType for argument!"); 6652 case MVT::i1: 6653 case MVT::i32: 6654 case MVT::i64: 6655 if (GPR_idx != NumGPRs) { 6656 if (Arg.getValueType() == MVT::i1) 6657 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6658 6659 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6660 } else { 6661 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6662 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6663 TailCallArguments, dl); 6664 } 6665 ArgOffset += PtrByteSize; 6666 break; 6667 case MVT::f32: 6668 case MVT::f64: 6669 if (FPR_idx != NumFPRs) { 6670 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6671 6672 if (CFlags.IsVarArg) { 6673 SDValue Store = 6674 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6675 MemOpChains.push_back(Store); 6676 6677 // Float varargs are always shadowed in available integer registers 6678 if (GPR_idx != NumGPRs) { 6679 SDValue Load = 6680 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6681 MemOpChains.push_back(Load.getValue(1)); 6682 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6683 } 6684 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6685 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6686 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6687 SDValue Load = 6688 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6689 MemOpChains.push_back(Load.getValue(1)); 6690 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6691 } 6692 } else { 6693 // If we have any FPRs remaining, we may also have GPRs remaining. 6694 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6695 // GPRs. 6696 if (GPR_idx != NumGPRs) 6697 ++GPR_idx; 6698 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6699 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6700 ++GPR_idx; 6701 } 6702 } else 6703 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6704 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6705 TailCallArguments, dl); 6706 if (isPPC64) 6707 ArgOffset += 8; 6708 else 6709 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6710 break; 6711 case MVT::v4f32: 6712 case MVT::v4i32: 6713 case MVT::v8i16: 6714 case MVT::v16i8: 6715 if (CFlags.IsVarArg) { 6716 // These go aligned on the stack, or in the corresponding R registers 6717 // when within range. The Darwin PPC ABI doc claims they also go in 6718 // V registers; in fact gcc does this only for arguments that are 6719 // prototyped, not for those that match the ... We do it for all 6720 // arguments, seems to work. 6721 while (ArgOffset % 16 !=0) { 6722 ArgOffset += PtrByteSize; 6723 if (GPR_idx != NumGPRs) 6724 GPR_idx++; 6725 } 6726 // We could elide this store in the case where the object fits 6727 // entirely in R registers. Maybe later. 6728 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6729 DAG.getConstant(ArgOffset, dl, PtrVT)); 6730 SDValue Store = 6731 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6732 MemOpChains.push_back(Store); 6733 if (VR_idx != NumVRs) { 6734 SDValue Load = 6735 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6736 MemOpChains.push_back(Load.getValue(1)); 6737 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6738 } 6739 ArgOffset += 16; 6740 for (unsigned i=0; i<16; i+=PtrByteSize) { 6741 if (GPR_idx == NumGPRs) 6742 break; 6743 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6744 DAG.getConstant(i, dl, PtrVT)); 6745 SDValue Load = 6746 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6747 MemOpChains.push_back(Load.getValue(1)); 6748 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6749 } 6750 break; 6751 } 6752 6753 // Non-varargs Altivec params generally go in registers, but have 6754 // stack space allocated at the end. 6755 if (VR_idx != NumVRs) { 6756 // Doesn't have GPR space allocated. 6757 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6758 } else if (nAltivecParamsAtEnd==0) { 6759 // We are emitting Altivec params in order. 6760 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6761 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6762 TailCallArguments, dl); 6763 ArgOffset += 16; 6764 } 6765 break; 6766 } 6767 } 6768 // If all Altivec parameters fit in registers, as they usually do, 6769 // they get stack space following the non-Altivec parameters. We 6770 // don't track this here because nobody below needs it. 6771 // If there are more Altivec parameters than fit in registers emit 6772 // the stores here. 6773 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6774 unsigned j = 0; 6775 // Offset is aligned; skip 1st 12 params which go in V registers. 6776 ArgOffset = ((ArgOffset+15)/16)*16; 6777 ArgOffset += 12*16; 6778 for (unsigned i = 0; i != NumOps; ++i) { 6779 SDValue Arg = OutVals[i]; 6780 EVT ArgType = Outs[i].VT; 6781 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6782 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6783 if (++j > NumVRs) { 6784 SDValue PtrOff; 6785 // We are emitting Altivec params in order. 6786 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6787 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6788 TailCallArguments, dl); 6789 ArgOffset += 16; 6790 } 6791 } 6792 } 6793 } 6794 6795 if (!MemOpChains.empty()) 6796 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6797 6798 // On Darwin, R12 must contain the address of an indirect callee. This does 6799 // not mean the MTCTR instruction must use R12; it's easier to model this as 6800 // an extra parameter, so do that. 6801 if (CFlags.IsIndirect) { 6802 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6803 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6804 PPC::R12), Callee)); 6805 } 6806 6807 // Build a sequence of copy-to-reg nodes chained together with token chain 6808 // and flag operands which copy the outgoing args into the appropriate regs. 6809 SDValue InFlag; 6810 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6811 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6812 RegsToPass[i].second, InFlag); 6813 InFlag = Chain.getValue(1); 6814 } 6815 6816 if (CFlags.IsTailCall) 6817 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6818 TailCallArguments); 6819 6820 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6821 Callee, SPDiff, NumBytes, Ins, InVals, CS); 6822 } 6823 6824 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6825 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6826 CCState &State) { 6827 6828 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6829 State.getMachineFunction().getSubtarget()); 6830 const bool IsPPC64 = Subtarget.isPPC64(); 6831 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6832 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6833 6834 assert((!ValVT.isInteger() || 6835 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 6836 "Integer argument exceeds register size: should have been legalized"); 6837 6838 if (ValVT == MVT::f128) 6839 report_fatal_error("f128 is unimplemented on AIX."); 6840 6841 if (ArgFlags.isNest()) 6842 report_fatal_error("Nest arguments are unimplemented."); 6843 6844 if (ValVT.isVector() || LocVT.isVector()) 6845 report_fatal_error("Vector arguments are unimplemented on AIX."); 6846 6847 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6848 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6849 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6850 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6851 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6852 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6853 6854 if (ArgFlags.isByVal()) { 6855 if (ArgFlags.getNonZeroByValAlign() > PtrByteSize) 6856 report_fatal_error("Pass-by-value arguments with alignment greater than " 6857 "register width are not supported."); 6858 6859 const unsigned ByValSize = ArgFlags.getByValSize(); 6860 6861 // An empty aggregate parameter takes up no storage and no registers, 6862 // but needs a MemLoc for a stack slot for the formal arguments side. 6863 if (ByValSize == 0) { 6864 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6865 State.getNextStackOffset(), RegVT, 6866 LocInfo)); 6867 return false; 6868 } 6869 6870 if (ByValSize <= PtrByteSize) { 6871 State.AllocateStack(PtrByteSize, PtrByteSize); 6872 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6873 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6874 return false; 6875 } 6876 } 6877 6878 report_fatal_error( 6879 "Pass-by-value arguments are only supported in a single register."); 6880 } 6881 6882 // Arguments always reserve parameter save area. 6883 switch (ValVT.SimpleTy) { 6884 default: 6885 report_fatal_error("Unhandled value type for argument."); 6886 case MVT::i64: 6887 // i64 arguments should have been split to i32 for PPC32. 6888 assert(IsPPC64 && "PPC32 should have split i64 values."); 6889 LLVM_FALLTHROUGH; 6890 case MVT::i1: 6891 case MVT::i32: { 6892 const unsigned Offset = State.AllocateStack(PtrByteSize, PtrByteSize); 6893 // AIX integer arguments are always passed in register width. 6894 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 6895 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6896 : CCValAssign::LocInfo::ZExt; 6897 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6898 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6899 else 6900 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6901 6902 return false; 6903 } 6904 case MVT::f32: 6905 case MVT::f64: { 6906 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6907 const unsigned StoreSize = LocVT.getStoreSize(); 6908 // Floats are always 4-byte aligned in the PSA on AIX. 6909 // This includes f64 in 64-bit mode for ABI compatibility. 6910 const unsigned Offset = State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4); 6911 unsigned FReg = State.AllocateReg(FPR); 6912 if (FReg) 6913 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6914 6915 // Reserve and initialize GPRs or initialize the PSA as required. 6916 for (unsigned I = 0; I < StoreSize; I += PtrByteSize) { 6917 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6918 assert(FReg && "An FPR should be available when a GPR is reserved."); 6919 if (State.isVarArg()) { 6920 // Successfully reserved GPRs are only initialized for vararg calls. 6921 // Custom handling is required for: 6922 // f64 in PPC32 needs to be split into 2 GPRs. 6923 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6924 State.addLoc( 6925 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6926 } 6927 } else { 6928 // If there are insufficient GPRs, the PSA needs to be initialized. 6929 // Initialization occurs even if an FPR was initialized for 6930 // compatibility with the AIX XL compiler. The full memory for the 6931 // argument will be initialized even if a prior word is saved in GPR. 6932 // A custom memLoc is used when the argument also passes in FPR so 6933 // that the callee handling can skip over it easily. 6934 State.addLoc( 6935 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6936 LocInfo) 6937 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6938 break; 6939 } 6940 } 6941 6942 return false; 6943 } 6944 } 6945 return true; 6946 } 6947 6948 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6949 bool IsPPC64) { 6950 assert((IsPPC64 || SVT != MVT::i64) && 6951 "i64 should have been split for 32-bit codegen."); 6952 6953 switch (SVT) { 6954 default: 6955 report_fatal_error("Unexpected value type for formal argument"); 6956 case MVT::i1: 6957 case MVT::i32: 6958 case MVT::i64: 6959 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6960 case MVT::f32: 6961 return &PPC::F4RCRegClass; 6962 case MVT::f64: 6963 return &PPC::F8RCRegClass; 6964 } 6965 } 6966 6967 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6968 SelectionDAG &DAG, SDValue ArgValue, 6969 MVT LocVT, const SDLoc &dl) { 6970 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6971 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 6972 6973 if (Flags.isSExt()) 6974 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6975 DAG.getValueType(ValVT)); 6976 else if (Flags.isZExt()) 6977 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6978 DAG.getValueType(ValVT)); 6979 6980 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6981 } 6982 6983 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6984 const unsigned LASize = FL->getLinkageSize(); 6985 6986 if (PPC::GPRCRegClass.contains(Reg)) { 6987 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6988 "Reg must be a valid argument register!"); 6989 return LASize + 4 * (Reg - PPC::R3); 6990 } 6991 6992 if (PPC::G8RCRegClass.contains(Reg)) { 6993 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6994 "Reg must be a valid argument register!"); 6995 return LASize + 8 * (Reg - PPC::X3); 6996 } 6997 6998 llvm_unreachable("Only general purpose registers expected."); 6999 } 7000 7001 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7002 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7003 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7004 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7005 7006 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7007 CallConv == CallingConv::Fast) && 7008 "Unexpected calling convention!"); 7009 7010 if (isVarArg) 7011 report_fatal_error("This call type is unimplemented on AIX."); 7012 7013 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7014 report_fatal_error("Tail call support is unimplemented on AIX."); 7015 7016 if (useSoftFloat()) 7017 report_fatal_error("Soft float support is unimplemented on AIX."); 7018 7019 const PPCSubtarget &Subtarget = 7020 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7021 if (Subtarget.hasQPX()) 7022 report_fatal_error("QPX support is not supported on AIX."); 7023 7024 const bool IsPPC64 = Subtarget.isPPC64(); 7025 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7026 7027 // Assign locations to all of the incoming arguments. 7028 SmallVector<CCValAssign, 16> ArgLocs; 7029 MachineFunction &MF = DAG.getMachineFunction(); 7030 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7031 7032 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7033 // Reserve space for the linkage area on the stack. 7034 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7035 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 7036 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7037 7038 SmallVector<SDValue, 8> MemOps; 7039 7040 for (CCValAssign &VA : ArgLocs) { 7041 EVT ValVT = VA.getValVT(); 7042 MVT LocVT = VA.getLocVT(); 7043 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7044 assert((VA.isRegLoc() || VA.isMemLoc()) && 7045 "Unexpected location for function call argument."); 7046 7047 // For compatibility with the AIX XL compiler, the float args in the 7048 // parameter save area are initialized even if the argument is available 7049 // in register. The caller is required to initialize both the register 7050 // and memory, however, the callee can choose to expect it in either. 7051 // The memloc is dismissed here because the argument is retrieved from 7052 // the register. 7053 if (VA.isMemLoc() && VA.needsCustom()) 7054 continue; 7055 7056 if (Flags.isByVal() && VA.isMemLoc()) { 7057 if (Flags.getByValSize() != 0) 7058 report_fatal_error( 7059 "ByVal arguments passed on stack not implemented yet"); 7060 7061 const int FI = MF.getFrameInfo().CreateFixedObject( 7062 PtrByteSize, VA.getLocMemOffset(), /* IsImmutable */ false, 7063 /* IsAliased */ true); 7064 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7065 InVals.push_back(FIN); 7066 7067 continue; 7068 } 7069 7070 if (Flags.isByVal()) { 7071 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7072 7073 const unsigned ByValSize = Flags.getByValSize(); 7074 if (ByValSize > PtrByteSize) 7075 report_fatal_error("Formal arguments greater then register size not " 7076 "implemented yet."); 7077 7078 const MCPhysReg ArgReg = VA.getLocReg(); 7079 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7080 const unsigned Offset = mapArgRegToOffsetAIX(ArgReg, FL); 7081 7082 const unsigned StackSize = alignTo(ByValSize, PtrByteSize); 7083 const int FI = MF.getFrameInfo().CreateFixedObject( 7084 StackSize, Offset, /* IsImmutable */ false, /* IsAliased */ true); 7085 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7086 7087 InVals.push_back(FIN); 7088 7089 const unsigned VReg = MF.addLiveIn(ArgReg, IsPPC64 ? &PPC::G8RCRegClass 7090 : &PPC::GPRCRegClass); 7091 7092 // Since the callers side has left justified the aggregate in the 7093 // register, we can simply store the entire register into the stack 7094 // slot. 7095 // The store to the fixedstack object is needed becuase accessing a 7096 // field of the ByVal will use a gep and load. Ideally we will optimize 7097 // to extracting the value from the register directly, and elide the 7098 // stores when the arguments address is not taken, but that will need to 7099 // be future work. 7100 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7101 SDValue Store = 7102 DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom, FIN, 7103 MachinePointerInfo::getFixedStack(MF, FI, 0)); 7104 7105 MemOps.push_back(Store); 7106 continue; 7107 } 7108 7109 if (VA.isRegLoc()) { 7110 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7111 unsigned VReg = 7112 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7113 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7114 if (ValVT.isScalarInteger() && 7115 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7116 ArgValue = 7117 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7118 } 7119 InVals.push_back(ArgValue); 7120 continue; 7121 } 7122 7123 const unsigned LocSize = LocVT.getStoreSize(); 7124 const unsigned ValSize = ValVT.getStoreSize(); 7125 assert((ValSize <= LocSize) && "Object size is larger than size of MemLoc"); 7126 int CurArgOffset = VA.getLocMemOffset(); 7127 // Objects are right-justified because AIX is big-endian. 7128 if (LocSize > ValSize) 7129 CurArgOffset += LocSize - ValSize; 7130 MachineFrameInfo &MFI = MF.getFrameInfo(); 7131 // Potential tail calls could cause overwriting of argument stack slots. 7132 const bool IsImmutable = 7133 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7134 (CallConv == CallingConv::Fast)); 7135 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7136 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7137 SDValue ArgValue = DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7138 InVals.push_back(ArgValue); 7139 } 7140 7141 // On AIX a minimum of 8 words is saved to the parameter save area. 7142 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7143 // Area that is at least reserved in the caller of this function. 7144 unsigned CallerReservedArea = 7145 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7146 7147 // Set the size that is at least reserved in caller of this function. Tail 7148 // call optimized function's reserved stack space needs to be aligned so 7149 // that taking the difference between two stack areas will result in an 7150 // aligned stack. 7151 CallerReservedArea = 7152 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7153 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7154 FuncInfo->setMinReservedArea(CallerReservedArea); 7155 7156 if (!MemOps.empty()) 7157 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7158 7159 return Chain; 7160 } 7161 7162 SDValue PPCTargetLowering::LowerCall_AIX( 7163 SDValue Chain, SDValue Callee, CallFlags CFlags, 7164 const SmallVectorImpl<ISD::OutputArg> &Outs, 7165 const SmallVectorImpl<SDValue> &OutVals, 7166 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7167 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7168 ImmutableCallSite CS) const { 7169 7170 assert((CFlags.CallConv == CallingConv::C || 7171 CFlags.CallConv == CallingConv::Cold || 7172 CFlags.CallConv == CallingConv::Fast) && 7173 "Unexpected calling convention!"); 7174 7175 if (CFlags.IsPatchPoint) 7176 report_fatal_error("This call type is unimplemented on AIX."); 7177 7178 const PPCSubtarget& Subtarget = 7179 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7180 if (Subtarget.hasQPX()) 7181 report_fatal_error("QPX is not supported on AIX."); 7182 if (Subtarget.hasAltivec()) 7183 report_fatal_error("Altivec support is unimplemented on AIX."); 7184 7185 MachineFunction &MF = DAG.getMachineFunction(); 7186 SmallVector<CCValAssign, 16> ArgLocs; 7187 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7188 *DAG.getContext()); 7189 7190 // Reserve space for the linkage save area (LSA) on the stack. 7191 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7192 // [SP][CR][LR][2 x reserved][TOC]. 7193 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7194 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7195 const bool IsPPC64 = Subtarget.isPPC64(); 7196 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7197 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7198 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 7199 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7200 7201 // The prolog code of the callee may store up to 8 GPR argument registers to 7202 // the stack, allowing va_start to index over them in memory if the callee 7203 // is variadic. 7204 // Because we cannot tell if this is needed on the caller side, we have to 7205 // conservatively assume that it is needed. As such, make sure we have at 7206 // least enough stack space for the caller to store the 8 GPRs. 7207 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7208 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7209 CCInfo.getNextStackOffset()); 7210 7211 // Adjust the stack pointer for the new arguments... 7212 // These operations are automatically eliminated by the prolog/epilog pass. 7213 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7214 SDValue CallSeqStart = Chain; 7215 7216 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7217 SmallVector<SDValue, 8> MemOpChains; 7218 7219 // Set up a copy of the stack pointer for loading and storing any 7220 // arguments that may not fit in the registers available for argument 7221 // passing. 7222 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7223 : DAG.getRegister(PPC::R1, MVT::i32); 7224 7225 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7226 CCValAssign &VA = ArgLocs[I++]; 7227 7228 SDValue Arg = OutVals[VA.getValNo()]; 7229 ISD::ArgFlagsTy Flags = Outs[VA.getValNo()].Flags; 7230 const MVT LocVT = VA.getLocVT(); 7231 const MVT ValVT = VA.getValVT(); 7232 7233 if (Flags.isByVal()) { 7234 const unsigned ByValSize = Flags.getByValSize(); 7235 7236 // Nothing to do for zero-sized ByVals on the caller side. 7237 if (!ByValSize) 7238 continue; 7239 7240 assert( 7241 VA.isRegLoc() && ByValSize <= PtrByteSize && 7242 "Pass-by-value arguments are only supported in a single register."); 7243 7244 // Loads must be a power-of-2 size and cannot be larger than the 7245 // ByValSize. For example: a 7 byte by-val arg requires 4, 2 and 1 byte 7246 // loads. 7247 SDValue RegVal; 7248 for (unsigned Bytes = 0; Bytes != ByValSize;) { 7249 unsigned N = PowerOf2Floor(ByValSize - Bytes); 7250 const MVT VT = 7251 N == 1 ? MVT::i8 7252 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7253 7254 SDValue LoadAddr = Arg; 7255 if (Bytes != 0) { 7256 // Adjust the load offset by the number of bytes read so far. 7257 SDNodeFlags Flags; 7258 Flags.setNoUnsignedWrap(true); 7259 LoadAddr = DAG.getNode(ISD::ADD, dl, LocVT, Arg, 7260 DAG.getConstant(Bytes, dl, LocVT), Flags); 7261 } 7262 SDValue Load = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, LoadAddr, 7263 MachinePointerInfo(), VT); 7264 MemOpChains.push_back(Load.getValue(1)); 7265 7266 Bytes += N; 7267 assert(LocVT.getSizeInBits() >= (Bytes * 8)); 7268 if (unsigned NumSHLBits = LocVT.getSizeInBits() - (Bytes * 8)) { 7269 // By-val arguments are passed left-justfied in register. 7270 EVT ShiftAmountTy = 7271 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7272 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7273 SDValue ShiftedLoad = 7274 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7275 RegVal = RegVal ? DAG.getNode(ISD::OR, dl, LocVT, RegVal, ShiftedLoad) 7276 : ShiftedLoad; 7277 } else { 7278 assert(!RegVal && Bytes == ByValSize && 7279 "Pass-by-value argument handling unexpectedly incomplete."); 7280 RegVal = Load; 7281 } 7282 } 7283 7284 RegsToPass.push_back(std::make_pair(VA.getLocReg(), RegVal)); 7285 continue; 7286 } 7287 7288 switch (VA.getLocInfo()) { 7289 default: 7290 report_fatal_error("Unexpected argument extension type."); 7291 case CCValAssign::Full: 7292 break; 7293 case CCValAssign::ZExt: 7294 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7295 break; 7296 case CCValAssign::SExt: 7297 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7298 break; 7299 } 7300 7301 if (VA.isRegLoc() && !VA.needsCustom()) { 7302 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7303 continue; 7304 } 7305 7306 if (VA.isMemLoc()) { 7307 SDValue PtrOff = 7308 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7309 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7310 MemOpChains.push_back( 7311 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7312 7313 continue; 7314 } 7315 7316 // Custom handling is used for GPR initializations for vararg float 7317 // arguments. 7318 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7319 ValVT.isFloatingPoint() && LocVT.isInteger() && 7320 "Unexpected register handling for calling convention."); 7321 7322 SDValue ArgAsInt = 7323 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7324 7325 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7326 // f32 in 32-bit GPR 7327 // f64 in 64-bit GPR 7328 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7329 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7330 // f32 in 64-bit GPR. 7331 RegsToPass.push_back(std::make_pair( 7332 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7333 else { 7334 // f64 in two 32-bit GPRs 7335 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7336 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7337 "Unexpected custom register for argument!"); 7338 CCValAssign &GPR1 = VA; 7339 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7340 DAG.getConstant(32, dl, MVT::i8)); 7341 RegsToPass.push_back(std::make_pair( 7342 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7343 7344 if (I != E) { 7345 // If only 1 GPR was available, there will only be one custom GPR and 7346 // the argument will also pass in memory. 7347 CCValAssign &PeekArg = ArgLocs[I]; 7348 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7349 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7350 CCValAssign &GPR2 = ArgLocs[I++]; 7351 RegsToPass.push_back(std::make_pair( 7352 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7353 } 7354 } 7355 } 7356 } 7357 7358 if (!MemOpChains.empty()) 7359 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7360 7361 // For indirect calls, we need to save the TOC base to the stack for 7362 // restoration after the call. 7363 if (CFlags.IsIndirect) { 7364 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7365 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7366 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7367 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7368 const unsigned TOCSaveOffset = 7369 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7370 7371 setUsesTOCBasePtr(DAG); 7372 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7373 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7374 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7375 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7376 Chain = DAG.getStore( 7377 Val.getValue(1), dl, Val, AddPtr, 7378 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7379 } 7380 7381 // Build a sequence of copy-to-reg nodes chained together with token chain 7382 // and flag operands which copy the outgoing args into the appropriate regs. 7383 SDValue InFlag; 7384 for (auto Reg : RegsToPass) { 7385 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7386 InFlag = Chain.getValue(1); 7387 } 7388 7389 const int SPDiff = 0; 7390 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7391 Callee, SPDiff, NumBytes, Ins, InVals, CS); 7392 } 7393 7394 bool 7395 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7396 MachineFunction &MF, bool isVarArg, 7397 const SmallVectorImpl<ISD::OutputArg> &Outs, 7398 LLVMContext &Context) const { 7399 SmallVector<CCValAssign, 16> RVLocs; 7400 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7401 return CCInfo.CheckReturn( 7402 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7403 ? RetCC_PPC_Cold 7404 : RetCC_PPC); 7405 } 7406 7407 SDValue 7408 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7409 bool isVarArg, 7410 const SmallVectorImpl<ISD::OutputArg> &Outs, 7411 const SmallVectorImpl<SDValue> &OutVals, 7412 const SDLoc &dl, SelectionDAG &DAG) const { 7413 SmallVector<CCValAssign, 16> RVLocs; 7414 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7415 *DAG.getContext()); 7416 CCInfo.AnalyzeReturn(Outs, 7417 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7418 ? RetCC_PPC_Cold 7419 : RetCC_PPC); 7420 7421 SDValue Flag; 7422 SmallVector<SDValue, 4> RetOps(1, Chain); 7423 7424 // Copy the result values into the output registers. 7425 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7426 CCValAssign &VA = RVLocs[i]; 7427 assert(VA.isRegLoc() && "Can only return in registers!"); 7428 7429 SDValue Arg = OutVals[RealResIdx]; 7430 7431 switch (VA.getLocInfo()) { 7432 default: llvm_unreachable("Unknown loc info!"); 7433 case CCValAssign::Full: break; 7434 case CCValAssign::AExt: 7435 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7436 break; 7437 case CCValAssign::ZExt: 7438 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7439 break; 7440 case CCValAssign::SExt: 7441 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7442 break; 7443 } 7444 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7445 bool isLittleEndian = Subtarget.isLittleEndian(); 7446 // Legalize ret f64 -> ret 2 x i32. 7447 SDValue SVal = 7448 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7449 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7450 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7451 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7452 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7453 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7454 Flag = Chain.getValue(1); 7455 VA = RVLocs[++i]; // skip ahead to next loc 7456 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7457 } else 7458 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7459 Flag = Chain.getValue(1); 7460 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7461 } 7462 7463 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7464 const MCPhysReg *I = 7465 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 7466 if (I) { 7467 for (; *I; ++I) { 7468 7469 if (PPC::G8RCRegClass.contains(*I)) 7470 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 7471 else if (PPC::F8RCRegClass.contains(*I)) 7472 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 7473 else if (PPC::CRRCRegClass.contains(*I)) 7474 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 7475 else if (PPC::VRRCRegClass.contains(*I)) 7476 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 7477 else 7478 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 7479 } 7480 } 7481 7482 RetOps[0] = Chain; // Update chain. 7483 7484 // Add the flag if we have it. 7485 if (Flag.getNode()) 7486 RetOps.push_back(Flag); 7487 7488 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7489 } 7490 7491 SDValue 7492 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7493 SelectionDAG &DAG) const { 7494 SDLoc dl(Op); 7495 7496 // Get the correct type for integers. 7497 EVT IntVT = Op.getValueType(); 7498 7499 // Get the inputs. 7500 SDValue Chain = Op.getOperand(0); 7501 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7502 // Build a DYNAREAOFFSET node. 7503 SDValue Ops[2] = {Chain, FPSIdx}; 7504 SDVTList VTs = DAG.getVTList(IntVT); 7505 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7506 } 7507 7508 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7509 SelectionDAG &DAG) const { 7510 // When we pop the dynamic allocation we need to restore the SP link. 7511 SDLoc dl(Op); 7512 7513 // Get the correct type for pointers. 7514 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7515 7516 // Construct the stack pointer operand. 7517 bool isPPC64 = Subtarget.isPPC64(); 7518 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7519 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7520 7521 // Get the operands for the STACKRESTORE. 7522 SDValue Chain = Op.getOperand(0); 7523 SDValue SaveSP = Op.getOperand(1); 7524 7525 // Load the old link SP. 7526 SDValue LoadLinkSP = 7527 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7528 7529 // Restore the stack pointer. 7530 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7531 7532 // Store the old link SP. 7533 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7534 } 7535 7536 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7537 MachineFunction &MF = DAG.getMachineFunction(); 7538 bool isPPC64 = Subtarget.isPPC64(); 7539 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7540 7541 // Get current frame pointer save index. The users of this index will be 7542 // primarily DYNALLOC instructions. 7543 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7544 int RASI = FI->getReturnAddrSaveIndex(); 7545 7546 // If the frame pointer save index hasn't been defined yet. 7547 if (!RASI) { 7548 // Find out what the fix offset of the frame pointer save area. 7549 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7550 // Allocate the frame index for frame pointer save area. 7551 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7552 // Save the result. 7553 FI->setReturnAddrSaveIndex(RASI); 7554 } 7555 return DAG.getFrameIndex(RASI, PtrVT); 7556 } 7557 7558 SDValue 7559 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7560 MachineFunction &MF = DAG.getMachineFunction(); 7561 bool isPPC64 = Subtarget.isPPC64(); 7562 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7563 7564 // Get current frame pointer save index. The users of this index will be 7565 // primarily DYNALLOC instructions. 7566 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7567 int FPSI = FI->getFramePointerSaveIndex(); 7568 7569 // If the frame pointer save index hasn't been defined yet. 7570 if (!FPSI) { 7571 // Find out what the fix offset of the frame pointer save area. 7572 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7573 // Allocate the frame index for frame pointer save area. 7574 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7575 // Save the result. 7576 FI->setFramePointerSaveIndex(FPSI); 7577 } 7578 return DAG.getFrameIndex(FPSI, PtrVT); 7579 } 7580 7581 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7582 SelectionDAG &DAG) const { 7583 // Get the inputs. 7584 SDValue Chain = Op.getOperand(0); 7585 SDValue Size = Op.getOperand(1); 7586 SDLoc dl(Op); 7587 7588 // Get the correct type for pointers. 7589 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7590 // Negate the size. 7591 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7592 DAG.getConstant(0, dl, PtrVT), Size); 7593 // Construct a node for the frame pointer save index. 7594 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7595 // Build a DYNALLOC node. 7596 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7597 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7598 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7599 } 7600 7601 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7602 SelectionDAG &DAG) const { 7603 MachineFunction &MF = DAG.getMachineFunction(); 7604 7605 bool isPPC64 = Subtarget.isPPC64(); 7606 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7607 7608 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7609 return DAG.getFrameIndex(FI, PtrVT); 7610 } 7611 7612 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7613 SelectionDAG &DAG) const { 7614 SDLoc DL(Op); 7615 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7616 DAG.getVTList(MVT::i32, MVT::Other), 7617 Op.getOperand(0), Op.getOperand(1)); 7618 } 7619 7620 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7621 SelectionDAG &DAG) const { 7622 SDLoc DL(Op); 7623 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7624 Op.getOperand(0), Op.getOperand(1)); 7625 } 7626 7627 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7628 if (Op.getValueType().isVector()) 7629 return LowerVectorLoad(Op, DAG); 7630 7631 assert(Op.getValueType() == MVT::i1 && 7632 "Custom lowering only for i1 loads"); 7633 7634 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7635 7636 SDLoc dl(Op); 7637 LoadSDNode *LD = cast<LoadSDNode>(Op); 7638 7639 SDValue Chain = LD->getChain(); 7640 SDValue BasePtr = LD->getBasePtr(); 7641 MachineMemOperand *MMO = LD->getMemOperand(); 7642 7643 SDValue NewLD = 7644 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7645 BasePtr, MVT::i8, MMO); 7646 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7647 7648 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7649 return DAG.getMergeValues(Ops, dl); 7650 } 7651 7652 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7653 if (Op.getOperand(1).getValueType().isVector()) 7654 return LowerVectorStore(Op, DAG); 7655 7656 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7657 "Custom lowering only for i1 stores"); 7658 7659 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7660 7661 SDLoc dl(Op); 7662 StoreSDNode *ST = cast<StoreSDNode>(Op); 7663 7664 SDValue Chain = ST->getChain(); 7665 SDValue BasePtr = ST->getBasePtr(); 7666 SDValue Value = ST->getValue(); 7667 MachineMemOperand *MMO = ST->getMemOperand(); 7668 7669 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7670 Value); 7671 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7672 } 7673 7674 // FIXME: Remove this once the ANDI glue bug is fixed: 7675 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7676 assert(Op.getValueType() == MVT::i1 && 7677 "Custom lowering only for i1 results"); 7678 7679 SDLoc DL(Op); 7680 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7681 } 7682 7683 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7684 SelectionDAG &DAG) const { 7685 7686 // Implements a vector truncate that fits in a vector register as a shuffle. 7687 // We want to legalize vector truncates down to where the source fits in 7688 // a vector register (and target is therefore smaller than vector register 7689 // size). At that point legalization will try to custom lower the sub-legal 7690 // result and get here - where we can contain the truncate as a single target 7691 // operation. 7692 7693 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7694 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7695 // 7696 // We will implement it for big-endian ordering as this (where x denotes 7697 // undefined): 7698 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7699 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7700 // 7701 // The same operation in little-endian ordering will be: 7702 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7703 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7704 7705 assert(Op.getValueType().isVector() && "Vector type expected."); 7706 7707 SDLoc DL(Op); 7708 SDValue N1 = Op.getOperand(0); 7709 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7710 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7711 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7712 7713 EVT TrgVT = Op.getValueType(); 7714 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7715 EVT EltVT = TrgVT.getVectorElementType(); 7716 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7717 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7718 7719 // First list the elements we want to keep. 7720 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7721 SmallVector<int, 16> ShuffV; 7722 if (Subtarget.isLittleEndian()) 7723 for (unsigned i = 0; i < TrgNumElts; ++i) 7724 ShuffV.push_back(i * SizeMult); 7725 else 7726 for (unsigned i = 1; i <= TrgNumElts; ++i) 7727 ShuffV.push_back(i * SizeMult - 1); 7728 7729 // Populate the remaining elements with undefs. 7730 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7731 // ShuffV.push_back(i + WideNumElts); 7732 ShuffV.push_back(WideNumElts + 1); 7733 7734 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7735 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7736 } 7737 7738 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7739 /// possible. 7740 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7741 // Not FP? Not a fsel. 7742 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7743 !Op.getOperand(2).getValueType().isFloatingPoint()) 7744 return Op; 7745 7746 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7747 7748 EVT ResVT = Op.getValueType(); 7749 EVT CmpVT = Op.getOperand(0).getValueType(); 7750 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7751 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7752 SDLoc dl(Op); 7753 7754 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7755 // presence of infinities. 7756 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7757 switch (CC) { 7758 default: 7759 break; 7760 case ISD::SETOGT: 7761 case ISD::SETGT: 7762 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7763 case ISD::SETOLT: 7764 case ISD::SETLT: 7765 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7766 } 7767 } 7768 7769 // We might be able to do better than this under some circumstances, but in 7770 // general, fsel-based lowering of select is a finite-math-only optimization. 7771 // For more information, see section F.3 of the 2.06 ISA specification. 7772 // With ISA 3.0 7773 if (!DAG.getTarget().Options.NoInfsFPMath || 7774 !DAG.getTarget().Options.NoNaNsFPMath) 7775 return Op; 7776 7777 // TODO: Propagate flags from the select rather than global settings. 7778 SDNodeFlags Flags; 7779 Flags.setNoInfs(true); 7780 Flags.setNoNaNs(true); 7781 7782 // If the RHS of the comparison is a 0.0, we don't need to do the 7783 // subtraction at all. 7784 SDValue Sel1; 7785 if (isFloatingPointZero(RHS)) 7786 switch (CC) { 7787 default: break; // SETUO etc aren't handled by fsel. 7788 case ISD::SETNE: 7789 std::swap(TV, FV); 7790 LLVM_FALLTHROUGH; 7791 case ISD::SETEQ: 7792 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7793 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7794 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7795 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7796 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7797 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7798 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7799 case ISD::SETULT: 7800 case ISD::SETLT: 7801 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7802 LLVM_FALLTHROUGH; 7803 case ISD::SETOGE: 7804 case ISD::SETGE: 7805 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7806 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7807 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7808 case ISD::SETUGT: 7809 case ISD::SETGT: 7810 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7811 LLVM_FALLTHROUGH; 7812 case ISD::SETOLE: 7813 case ISD::SETLE: 7814 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7815 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7816 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7817 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7818 } 7819 7820 SDValue Cmp; 7821 switch (CC) { 7822 default: break; // SETUO etc aren't handled by fsel. 7823 case ISD::SETNE: 7824 std::swap(TV, FV); 7825 LLVM_FALLTHROUGH; 7826 case ISD::SETEQ: 7827 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7828 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7829 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7830 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7831 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7832 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7833 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7834 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7835 case ISD::SETULT: 7836 case ISD::SETLT: 7837 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7838 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7839 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7840 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7841 case ISD::SETOGE: 7842 case ISD::SETGE: 7843 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7844 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7845 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7846 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7847 case ISD::SETUGT: 7848 case ISD::SETGT: 7849 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7850 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7851 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7852 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7853 case ISD::SETOLE: 7854 case ISD::SETLE: 7855 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7856 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7857 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7858 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7859 } 7860 return Op; 7861 } 7862 7863 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7864 SelectionDAG &DAG, 7865 const SDLoc &dl) const { 7866 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7867 SDValue Src = Op.getOperand(0); 7868 if (Src.getValueType() == MVT::f32) 7869 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7870 7871 SDValue Tmp; 7872 switch (Op.getSimpleValueType().SimpleTy) { 7873 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7874 case MVT::i32: 7875 Tmp = DAG.getNode( 7876 Op.getOpcode() == ISD::FP_TO_SINT 7877 ? PPCISD::FCTIWZ 7878 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7879 dl, MVT::f64, Src); 7880 break; 7881 case MVT::i64: 7882 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7883 "i64 FP_TO_UINT is supported only with FPCVT"); 7884 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7885 PPCISD::FCTIDUZ, 7886 dl, MVT::f64, Src); 7887 break; 7888 } 7889 7890 // Convert the FP value to an int value through memory. 7891 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7892 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7893 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7894 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7895 MachinePointerInfo MPI = 7896 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7897 7898 // Emit a store to the stack slot. 7899 SDValue Chain; 7900 if (i32Stack) { 7901 MachineFunction &MF = DAG.getMachineFunction(); 7902 MachineMemOperand *MMO = 7903 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(4)); 7904 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7905 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7906 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7907 } else 7908 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7909 7910 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7911 // add in a bias on big endian. 7912 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7913 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7914 DAG.getConstant(4, dl, FIPtr.getValueType())); 7915 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7916 } 7917 7918 RLI.Chain = Chain; 7919 RLI.Ptr = FIPtr; 7920 RLI.MPI = MPI; 7921 } 7922 7923 /// Custom lowers floating point to integer conversions to use 7924 /// the direct move instructions available in ISA 2.07 to avoid the 7925 /// need for load/store combinations. 7926 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7927 SelectionDAG &DAG, 7928 const SDLoc &dl) const { 7929 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7930 SDValue Src = Op.getOperand(0); 7931 7932 if (Src.getValueType() == MVT::f32) 7933 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7934 7935 SDValue Tmp; 7936 switch (Op.getSimpleValueType().SimpleTy) { 7937 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7938 case MVT::i32: 7939 Tmp = DAG.getNode( 7940 Op.getOpcode() == ISD::FP_TO_SINT 7941 ? PPCISD::FCTIWZ 7942 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7943 dl, MVT::f64, Src); 7944 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7945 break; 7946 case MVT::i64: 7947 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7948 "i64 FP_TO_UINT is supported only with FPCVT"); 7949 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7950 PPCISD::FCTIDUZ, 7951 dl, MVT::f64, Src); 7952 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7953 break; 7954 } 7955 return Tmp; 7956 } 7957 7958 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7959 const SDLoc &dl) const { 7960 7961 // FP to INT conversions are legal for f128. 7962 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7963 return Op; 7964 7965 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7966 // PPC (the libcall is not available). 7967 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7968 if (Op.getValueType() == MVT::i32) { 7969 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7970 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7971 MVT::f64, Op.getOperand(0), 7972 DAG.getIntPtrConstant(0, dl)); 7973 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7974 MVT::f64, Op.getOperand(0), 7975 DAG.getIntPtrConstant(1, dl)); 7976 7977 // Add the two halves of the long double in round-to-zero mode. 7978 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7979 7980 // Now use a smaller FP_TO_SINT. 7981 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7982 } 7983 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7984 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7985 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7986 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7987 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7988 // FIXME: generated code sucks. 7989 // TODO: Are there fast-math-flags to propagate to this FSUB? 7990 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7991 Op.getOperand(0), Tmp); 7992 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7993 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7994 DAG.getConstant(0x80000000, dl, MVT::i32)); 7995 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7996 Op.getOperand(0)); 7997 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7998 ISD::SETGE); 7999 } 8000 } 8001 8002 return SDValue(); 8003 } 8004 8005 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8006 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8007 8008 ReuseLoadInfo RLI; 8009 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8010 8011 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8012 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8013 } 8014 8015 // We're trying to insert a regular store, S, and then a load, L. If the 8016 // incoming value, O, is a load, we might just be able to have our load use the 8017 // address used by O. However, we don't know if anything else will store to 8018 // that address before we can load from it. To prevent this situation, we need 8019 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8020 // the same chain operand as O, we create a token factor from the chain results 8021 // of O and L, and we replace all uses of O's chain result with that token 8022 // factor (see spliceIntoChain below for this last part). 8023 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8024 ReuseLoadInfo &RLI, 8025 SelectionDAG &DAG, 8026 ISD::LoadExtType ET) const { 8027 SDLoc dl(Op); 8028 if (ET == ISD::NON_EXTLOAD && 8029 (Op.getOpcode() == ISD::FP_TO_UINT || 8030 Op.getOpcode() == ISD::FP_TO_SINT) && 8031 isOperationLegalOrCustom(Op.getOpcode(), 8032 Op.getOperand(0).getValueType())) { 8033 8034 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8035 return true; 8036 } 8037 8038 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8039 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8040 LD->isNonTemporal()) 8041 return false; 8042 if (LD->getMemoryVT() != MemVT) 8043 return false; 8044 8045 RLI.Ptr = LD->getBasePtr(); 8046 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8047 assert(LD->getAddressingMode() == ISD::PRE_INC && 8048 "Non-pre-inc AM on PPC?"); 8049 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8050 LD->getOffset()); 8051 } 8052 8053 RLI.Chain = LD->getChain(); 8054 RLI.MPI = LD->getPointerInfo(); 8055 RLI.IsDereferenceable = LD->isDereferenceable(); 8056 RLI.IsInvariant = LD->isInvariant(); 8057 RLI.Alignment = LD->getAlign(); 8058 RLI.AAInfo = LD->getAAInfo(); 8059 RLI.Ranges = LD->getRanges(); 8060 8061 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8062 return true; 8063 } 8064 8065 // Given the head of the old chain, ResChain, insert a token factor containing 8066 // it and NewResChain, and make users of ResChain now be users of that token 8067 // factor. 8068 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8069 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8070 SDValue NewResChain, 8071 SelectionDAG &DAG) const { 8072 if (!ResChain) 8073 return; 8074 8075 SDLoc dl(NewResChain); 8076 8077 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8078 NewResChain, DAG.getUNDEF(MVT::Other)); 8079 assert(TF.getNode() != NewResChain.getNode() && 8080 "A new TF really is required here"); 8081 8082 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8083 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8084 } 8085 8086 /// Analyze profitability of direct move 8087 /// prefer float load to int load plus direct move 8088 /// when there is no integer use of int load 8089 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8090 SDNode *Origin = Op.getOperand(0).getNode(); 8091 if (Origin->getOpcode() != ISD::LOAD) 8092 return true; 8093 8094 // If there is no LXSIBZX/LXSIHZX, like Power8, 8095 // prefer direct move if the memory size is 1 or 2 bytes. 8096 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8097 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8098 return true; 8099 8100 for (SDNode::use_iterator UI = Origin->use_begin(), 8101 UE = Origin->use_end(); 8102 UI != UE; ++UI) { 8103 8104 // Only look at the users of the loaded value. 8105 if (UI.getUse().get().getResNo() != 0) 8106 continue; 8107 8108 if (UI->getOpcode() != ISD::SINT_TO_FP && 8109 UI->getOpcode() != ISD::UINT_TO_FP) 8110 return true; 8111 } 8112 8113 return false; 8114 } 8115 8116 /// Custom lowers integer to floating point conversions to use 8117 /// the direct move instructions available in ISA 2.07 to avoid the 8118 /// need for load/store combinations. 8119 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8120 SelectionDAG &DAG, 8121 const SDLoc &dl) const { 8122 assert((Op.getValueType() == MVT::f32 || 8123 Op.getValueType() == MVT::f64) && 8124 "Invalid floating point type as target of conversion"); 8125 assert(Subtarget.hasFPCVT() && 8126 "Int to FP conversions with direct moves require FPCVT"); 8127 SDValue FP; 8128 SDValue Src = Op.getOperand(0); 8129 bool SinglePrec = Op.getValueType() == MVT::f32; 8130 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8131 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8132 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 8133 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 8134 8135 if (WordInt) { 8136 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 8137 dl, MVT::f64, Src); 8138 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8139 } 8140 else { 8141 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 8142 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8143 } 8144 8145 return FP; 8146 } 8147 8148 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8149 8150 EVT VecVT = Vec.getValueType(); 8151 assert(VecVT.isVector() && "Expected a vector type."); 8152 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8153 8154 EVT EltVT = VecVT.getVectorElementType(); 8155 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8156 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8157 8158 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8159 SmallVector<SDValue, 16> Ops(NumConcat); 8160 Ops[0] = Vec; 8161 SDValue UndefVec = DAG.getUNDEF(VecVT); 8162 for (unsigned i = 1; i < NumConcat; ++i) 8163 Ops[i] = UndefVec; 8164 8165 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8166 } 8167 8168 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8169 const SDLoc &dl) const { 8170 8171 unsigned Opc = Op.getOpcode(); 8172 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8173 "Unexpected conversion type"); 8174 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8175 "Supports conversions to v2f64/v4f32 only."); 8176 8177 bool SignedConv = Opc == ISD::SINT_TO_FP; 8178 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8179 8180 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8181 EVT WideVT = Wide.getValueType(); 8182 unsigned WideNumElts = WideVT.getVectorNumElements(); 8183 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8184 8185 SmallVector<int, 16> ShuffV; 8186 for (unsigned i = 0; i < WideNumElts; ++i) 8187 ShuffV.push_back(i + WideNumElts); 8188 8189 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8190 int SaveElts = FourEltRes ? 4 : 2; 8191 if (Subtarget.isLittleEndian()) 8192 for (int i = 0; i < SaveElts; i++) 8193 ShuffV[i * Stride] = i; 8194 else 8195 for (int i = 1; i <= SaveElts; i++) 8196 ShuffV[i * Stride - 1] = i - 1; 8197 8198 SDValue ShuffleSrc2 = 8199 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8200 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8201 8202 SDValue Extend; 8203 if (SignedConv) { 8204 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8205 EVT ExtVT = Op.getOperand(0).getValueType(); 8206 if (Subtarget.hasP9Altivec()) 8207 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8208 IntermediateVT.getVectorNumElements()); 8209 8210 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8211 DAG.getValueType(ExtVT)); 8212 } else 8213 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8214 8215 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8216 } 8217 8218 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8219 SelectionDAG &DAG) const { 8220 SDLoc dl(Op); 8221 8222 EVT InVT = Op.getOperand(0).getValueType(); 8223 EVT OutVT = Op.getValueType(); 8224 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8225 isOperationCustom(Op.getOpcode(), InVT)) 8226 return LowerINT_TO_FPVector(Op, DAG, dl); 8227 8228 // Conversions to f128 are legal. 8229 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 8230 return Op; 8231 8232 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 8233 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 8234 return SDValue(); 8235 8236 SDValue Value = Op.getOperand(0); 8237 // The values are now known to be -1 (false) or 1 (true). To convert this 8238 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8239 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8240 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8241 8242 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8243 8244 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8245 8246 if (Op.getValueType() != MVT::v4f64) 8247 Value = DAG.getNode(ISD::FP_ROUND, dl, 8248 Op.getValueType(), Value, 8249 DAG.getIntPtrConstant(1, dl)); 8250 return Value; 8251 } 8252 8253 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8254 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8255 return SDValue(); 8256 8257 if (Op.getOperand(0).getValueType() == MVT::i1) 8258 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 8259 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8260 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8261 8262 // If we have direct moves, we can do all the conversion, skip the store/load 8263 // however, without FPCVT we can't do most conversions. 8264 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8265 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8266 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8267 8268 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8269 "UINT_TO_FP is supported only with FPCVT"); 8270 8271 // If we have FCFIDS, then use it when converting to single-precision. 8272 // Otherwise, convert to double-precision and then round. 8273 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8274 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8275 : PPCISD::FCFIDS) 8276 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8277 : PPCISD::FCFID); 8278 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8279 ? MVT::f32 8280 : MVT::f64; 8281 8282 if (Op.getOperand(0).getValueType() == MVT::i64) { 8283 SDValue SINT = Op.getOperand(0); 8284 // When converting to single-precision, we actually need to convert 8285 // to double-precision first and then round to single-precision. 8286 // To avoid double-rounding effects during that operation, we have 8287 // to prepare the input operand. Bits that might be truncated when 8288 // converting to double-precision are replaced by a bit that won't 8289 // be lost at this stage, but is below the single-precision rounding 8290 // position. 8291 // 8292 // However, if -enable-unsafe-fp-math is in effect, accept double 8293 // rounding to avoid the extra overhead. 8294 if (Op.getValueType() == MVT::f32 && 8295 !Subtarget.hasFPCVT() && 8296 !DAG.getTarget().Options.UnsafeFPMath) { 8297 8298 // Twiddle input to make sure the low 11 bits are zero. (If this 8299 // is the case, we are guaranteed the value will fit into the 53 bit 8300 // mantissa of an IEEE double-precision value without rounding.) 8301 // If any of those low 11 bits were not zero originally, make sure 8302 // bit 12 (value 2048) is set instead, so that the final rounding 8303 // to single-precision gets the correct result. 8304 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8305 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8306 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8307 Round, DAG.getConstant(2047, dl, MVT::i64)); 8308 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8309 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8310 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8311 8312 // However, we cannot use that value unconditionally: if the magnitude 8313 // of the input value is small, the bit-twiddling we did above might 8314 // end up visibly changing the output. Fortunately, in that case, we 8315 // don't need to twiddle bits since the original input will convert 8316 // exactly to double-precision floating-point already. Therefore, 8317 // construct a conditional to use the original value if the top 11 8318 // bits are all sign-bit copies, and use the rounded value computed 8319 // above otherwise. 8320 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8321 SINT, DAG.getConstant(53, dl, MVT::i32)); 8322 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8323 Cond, DAG.getConstant(1, dl, MVT::i64)); 8324 Cond = DAG.getSetCC( 8325 dl, 8326 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8327 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8328 8329 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8330 } 8331 8332 ReuseLoadInfo RLI; 8333 SDValue Bits; 8334 8335 MachineFunction &MF = DAG.getMachineFunction(); 8336 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8337 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8338 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8339 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8340 } else if (Subtarget.hasLFIWAX() && 8341 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8342 MachineMemOperand *MMO = 8343 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8344 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8345 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8346 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8347 DAG.getVTList(MVT::f64, MVT::Other), 8348 Ops, MVT::i32, MMO); 8349 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8350 } else if (Subtarget.hasFPCVT() && 8351 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8352 MachineMemOperand *MMO = 8353 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8354 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8355 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8356 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8357 DAG.getVTList(MVT::f64, MVT::Other), 8358 Ops, MVT::i32, MMO); 8359 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8360 } else if (((Subtarget.hasLFIWAX() && 8361 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8362 (Subtarget.hasFPCVT() && 8363 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8364 SINT.getOperand(0).getValueType() == MVT::i32) { 8365 MachineFrameInfo &MFI = MF.getFrameInfo(); 8366 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8367 8368 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8369 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8370 8371 SDValue Store = 8372 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8373 MachinePointerInfo::getFixedStack( 8374 DAG.getMachineFunction(), FrameIdx)); 8375 8376 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8377 "Expected an i32 store"); 8378 8379 RLI.Ptr = FIdx; 8380 RLI.Chain = Store; 8381 RLI.MPI = 8382 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8383 RLI.Alignment = Align(4); 8384 8385 MachineMemOperand *MMO = 8386 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8387 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8388 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8389 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8390 PPCISD::LFIWZX : PPCISD::LFIWAX, 8391 dl, DAG.getVTList(MVT::f64, MVT::Other), 8392 Ops, MVT::i32, MMO); 8393 } else 8394 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8395 8396 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8397 8398 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8399 FP = DAG.getNode(ISD::FP_ROUND, dl, 8400 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8401 return FP; 8402 } 8403 8404 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8405 "Unhandled INT_TO_FP type in custom expander!"); 8406 // Since we only generate this in 64-bit mode, we can take advantage of 8407 // 64-bit registers. In particular, sign extend the input value into the 8408 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8409 // then lfd it and fcfid it. 8410 MachineFunction &MF = DAG.getMachineFunction(); 8411 MachineFrameInfo &MFI = MF.getFrameInfo(); 8412 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8413 8414 SDValue Ld; 8415 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8416 ReuseLoadInfo RLI; 8417 bool ReusingLoad; 8418 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8419 DAG))) { 8420 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8421 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8422 8423 SDValue Store = 8424 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8425 MachinePointerInfo::getFixedStack( 8426 DAG.getMachineFunction(), FrameIdx)); 8427 8428 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8429 "Expected an i32 store"); 8430 8431 RLI.Ptr = FIdx; 8432 RLI.Chain = Store; 8433 RLI.MPI = 8434 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8435 RLI.Alignment = Align(4); 8436 } 8437 8438 MachineMemOperand *MMO = 8439 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8440 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8441 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8442 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8443 PPCISD::LFIWZX : PPCISD::LFIWAX, 8444 dl, DAG.getVTList(MVT::f64, MVT::Other), 8445 Ops, MVT::i32, MMO); 8446 if (ReusingLoad) 8447 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8448 } else { 8449 assert(Subtarget.isPPC64() && 8450 "i32->FP without LFIWAX supported only on PPC64"); 8451 8452 int FrameIdx = MFI.CreateStackObject(8, 8, false); 8453 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8454 8455 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8456 Op.getOperand(0)); 8457 8458 // STD the extended value into the stack slot. 8459 SDValue Store = DAG.getStore( 8460 DAG.getEntryNode(), dl, Ext64, FIdx, 8461 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8462 8463 // Load the value as a double. 8464 Ld = DAG.getLoad( 8465 MVT::f64, dl, Store, FIdx, 8466 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8467 } 8468 8469 // FCFID it and return it. 8470 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8471 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8472 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8473 DAG.getIntPtrConstant(0, dl)); 8474 return FP; 8475 } 8476 8477 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8478 SelectionDAG &DAG) const { 8479 SDLoc dl(Op); 8480 /* 8481 The rounding mode is in bits 30:31 of FPSR, and has the following 8482 settings: 8483 00 Round to nearest 8484 01 Round to 0 8485 10 Round to +inf 8486 11 Round to -inf 8487 8488 FLT_ROUNDS, on the other hand, expects the following: 8489 -1 Undefined 8490 0 Round to 0 8491 1 Round to nearest 8492 2 Round to +inf 8493 3 Round to -inf 8494 8495 To perform the conversion, we do: 8496 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8497 */ 8498 8499 MachineFunction &MF = DAG.getMachineFunction(); 8500 EVT VT = Op.getValueType(); 8501 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8502 8503 // Save FP Control Word to register 8504 SDValue Chain = Op.getOperand(0); 8505 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8506 Chain = MFFS.getValue(1); 8507 8508 // Save FP register to stack slot 8509 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 8510 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8511 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8512 8513 // Load FP Control Word from low 32 bits of stack slot. 8514 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8515 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8516 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8517 Chain = CWD.getValue(1); 8518 8519 // Transform as necessary 8520 SDValue CWD1 = 8521 DAG.getNode(ISD::AND, dl, MVT::i32, 8522 CWD, DAG.getConstant(3, dl, MVT::i32)); 8523 SDValue CWD2 = 8524 DAG.getNode(ISD::SRL, dl, MVT::i32, 8525 DAG.getNode(ISD::AND, dl, MVT::i32, 8526 DAG.getNode(ISD::XOR, dl, MVT::i32, 8527 CWD, DAG.getConstant(3, dl, MVT::i32)), 8528 DAG.getConstant(3, dl, MVT::i32)), 8529 DAG.getConstant(1, dl, MVT::i32)); 8530 8531 SDValue RetVal = 8532 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8533 8534 RetVal = 8535 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8536 dl, VT, RetVal); 8537 8538 return DAG.getMergeValues({RetVal, Chain}, dl); 8539 } 8540 8541 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8542 EVT VT = Op.getValueType(); 8543 unsigned BitWidth = VT.getSizeInBits(); 8544 SDLoc dl(Op); 8545 assert(Op.getNumOperands() == 3 && 8546 VT == Op.getOperand(1).getValueType() && 8547 "Unexpected SHL!"); 8548 8549 // Expand into a bunch of logical ops. Note that these ops 8550 // depend on the PPC behavior for oversized shift amounts. 8551 SDValue Lo = Op.getOperand(0); 8552 SDValue Hi = Op.getOperand(1); 8553 SDValue Amt = Op.getOperand(2); 8554 EVT AmtVT = Amt.getValueType(); 8555 8556 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8557 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8558 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8559 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8560 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8561 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8562 DAG.getConstant(-BitWidth, dl, AmtVT)); 8563 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8564 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8565 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8566 SDValue OutOps[] = { OutLo, OutHi }; 8567 return DAG.getMergeValues(OutOps, dl); 8568 } 8569 8570 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8571 EVT VT = Op.getValueType(); 8572 SDLoc dl(Op); 8573 unsigned BitWidth = VT.getSizeInBits(); 8574 assert(Op.getNumOperands() == 3 && 8575 VT == Op.getOperand(1).getValueType() && 8576 "Unexpected SRL!"); 8577 8578 // Expand into a bunch of logical ops. Note that these ops 8579 // depend on the PPC behavior for oversized shift amounts. 8580 SDValue Lo = Op.getOperand(0); 8581 SDValue Hi = Op.getOperand(1); 8582 SDValue Amt = Op.getOperand(2); 8583 EVT AmtVT = Amt.getValueType(); 8584 8585 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8586 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8587 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8588 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8589 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8590 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8591 DAG.getConstant(-BitWidth, dl, AmtVT)); 8592 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8593 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8594 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8595 SDValue OutOps[] = { OutLo, OutHi }; 8596 return DAG.getMergeValues(OutOps, dl); 8597 } 8598 8599 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8600 SDLoc dl(Op); 8601 EVT VT = Op.getValueType(); 8602 unsigned BitWidth = VT.getSizeInBits(); 8603 assert(Op.getNumOperands() == 3 && 8604 VT == Op.getOperand(1).getValueType() && 8605 "Unexpected SRA!"); 8606 8607 // Expand into a bunch of logical ops, followed by a select_cc. 8608 SDValue Lo = Op.getOperand(0); 8609 SDValue Hi = Op.getOperand(1); 8610 SDValue Amt = Op.getOperand(2); 8611 EVT AmtVT = Amt.getValueType(); 8612 8613 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8614 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8615 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8616 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8617 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8618 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8619 DAG.getConstant(-BitWidth, dl, AmtVT)); 8620 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8621 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8622 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8623 Tmp4, Tmp6, ISD::SETLE); 8624 SDValue OutOps[] = { OutLo, OutHi }; 8625 return DAG.getMergeValues(OutOps, dl); 8626 } 8627 8628 //===----------------------------------------------------------------------===// 8629 // Vector related lowering. 8630 // 8631 8632 /// BuildSplatI - Build a canonical splati of Val with an element size of 8633 /// SplatSize. Cast the result to VT. 8634 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8635 SelectionDAG &DAG, const SDLoc &dl) { 8636 static const MVT VTys[] = { // canonical VT to use for each size. 8637 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8638 }; 8639 8640 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8641 8642 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8643 if (Val == -1) 8644 SplatSize = 1; 8645 8646 EVT CanonicalVT = VTys[SplatSize-1]; 8647 8648 // Build a canonical splat for this value. 8649 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8650 } 8651 8652 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8653 /// specified intrinsic ID. 8654 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8655 const SDLoc &dl, EVT DestVT = MVT::Other) { 8656 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8657 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8658 DAG.getConstant(IID, dl, MVT::i32), Op); 8659 } 8660 8661 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8662 /// specified intrinsic ID. 8663 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8664 SelectionDAG &DAG, const SDLoc &dl, 8665 EVT DestVT = MVT::Other) { 8666 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8667 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8668 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8669 } 8670 8671 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8672 /// specified intrinsic ID. 8673 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8674 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8675 EVT DestVT = MVT::Other) { 8676 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8677 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8678 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8679 } 8680 8681 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8682 /// amount. The result has the specified value type. 8683 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8684 SelectionDAG &DAG, const SDLoc &dl) { 8685 // Force LHS/RHS to be the right type. 8686 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8687 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8688 8689 int Ops[16]; 8690 for (unsigned i = 0; i != 16; ++i) 8691 Ops[i] = i + Amt; 8692 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8693 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8694 } 8695 8696 /// Do we have an efficient pattern in a .td file for this node? 8697 /// 8698 /// \param V - pointer to the BuildVectorSDNode being matched 8699 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8700 /// 8701 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8702 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8703 /// the opposite is true (expansion is beneficial) are: 8704 /// - The node builds a vector out of integers that are not 32 or 64-bits 8705 /// - The node builds a vector out of constants 8706 /// - The node is a "load-and-splat" 8707 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8708 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8709 bool HasDirectMove, 8710 bool HasP8Vector) { 8711 EVT VecVT = V->getValueType(0); 8712 bool RightType = VecVT == MVT::v2f64 || 8713 (HasP8Vector && VecVT == MVT::v4f32) || 8714 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8715 if (!RightType) 8716 return false; 8717 8718 bool IsSplat = true; 8719 bool IsLoad = false; 8720 SDValue Op0 = V->getOperand(0); 8721 8722 // This function is called in a block that confirms the node is not a constant 8723 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8724 // different constants. 8725 if (V->isConstant()) 8726 return false; 8727 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8728 if (V->getOperand(i).isUndef()) 8729 return false; 8730 // We want to expand nodes that represent load-and-splat even if the 8731 // loaded value is a floating point truncation or conversion to int. 8732 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8733 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8734 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8735 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8736 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8737 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8738 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8739 IsLoad = true; 8740 // If the operands are different or the input is not a load and has more 8741 // uses than just this BV node, then it isn't a splat. 8742 if (V->getOperand(i) != Op0 || 8743 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8744 IsSplat = false; 8745 } 8746 return !(IsSplat && IsLoad); 8747 } 8748 8749 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8750 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8751 8752 SDLoc dl(Op); 8753 SDValue Op0 = Op->getOperand(0); 8754 8755 if (!EnableQuadPrecision || 8756 (Op.getValueType() != MVT::f128 ) || 8757 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8758 (Op0.getOperand(0).getValueType() != MVT::i64) || 8759 (Op0.getOperand(1).getValueType() != MVT::i64)) 8760 return SDValue(); 8761 8762 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8763 Op0.getOperand(1)); 8764 } 8765 8766 static const SDValue *getNormalLoadInput(const SDValue &Op) { 8767 const SDValue *InputLoad = &Op; 8768 if (InputLoad->getOpcode() == ISD::BITCAST) 8769 InputLoad = &InputLoad->getOperand(0); 8770 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR) 8771 InputLoad = &InputLoad->getOperand(0); 8772 if (InputLoad->getOpcode() != ISD::LOAD) 8773 return nullptr; 8774 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8775 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8776 } 8777 8778 // If this is a case we can't handle, return null and let the default 8779 // expansion code take care of it. If we CAN select this case, and if it 8780 // selects to a single instruction, return Op. Otherwise, if we can codegen 8781 // this case more efficiently than a constant pool load, lower it to the 8782 // sequence of ops that should be used. 8783 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8784 SelectionDAG &DAG) const { 8785 SDLoc dl(Op); 8786 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8787 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8788 8789 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8790 // We first build an i32 vector, load it into a QPX register, 8791 // then convert it to a floating-point vector and compare it 8792 // to a zero vector to get the boolean result. 8793 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8794 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8795 MachinePointerInfo PtrInfo = 8796 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8797 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8798 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8799 8800 assert(BVN->getNumOperands() == 4 && 8801 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8802 8803 bool IsConst = true; 8804 for (unsigned i = 0; i < 4; ++i) { 8805 if (BVN->getOperand(i).isUndef()) continue; 8806 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8807 IsConst = false; 8808 break; 8809 } 8810 } 8811 8812 if (IsConst) { 8813 Constant *One = 8814 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8815 Constant *NegOne = 8816 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8817 8818 Constant *CV[4]; 8819 for (unsigned i = 0; i < 4; ++i) { 8820 if (BVN->getOperand(i).isUndef()) 8821 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8822 else if (isNullConstant(BVN->getOperand(i))) 8823 CV[i] = NegOne; 8824 else 8825 CV[i] = One; 8826 } 8827 8828 Constant *CP = ConstantVector::get(CV); 8829 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8830 16 /* alignment */); 8831 8832 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8833 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8834 return DAG.getMemIntrinsicNode( 8835 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8836 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8837 } 8838 8839 SmallVector<SDValue, 4> Stores; 8840 for (unsigned i = 0; i < 4; ++i) { 8841 if (BVN->getOperand(i).isUndef()) continue; 8842 8843 unsigned Offset = 4*i; 8844 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8845 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8846 8847 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8848 if (StoreSize > 4) { 8849 Stores.push_back( 8850 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8851 PtrInfo.getWithOffset(Offset), MVT::i32)); 8852 } else { 8853 SDValue StoreValue = BVN->getOperand(i); 8854 if (StoreSize < 4) 8855 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8856 8857 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8858 PtrInfo.getWithOffset(Offset))); 8859 } 8860 } 8861 8862 SDValue StoreChain; 8863 if (!Stores.empty()) 8864 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8865 else 8866 StoreChain = DAG.getEntryNode(); 8867 8868 // Now load from v4i32 into the QPX register; this will extend it to 8869 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8870 // is typed as v4f64 because the QPX register integer states are not 8871 // explicitly represented. 8872 8873 SDValue Ops[] = {StoreChain, 8874 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8875 FIdx}; 8876 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8877 8878 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8879 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8880 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8881 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8882 LoadedVect); 8883 8884 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8885 8886 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8887 } 8888 8889 // All other QPX vectors are handled by generic code. 8890 if (Subtarget.hasQPX()) 8891 return SDValue(); 8892 8893 // Check if this is a splat of a constant value. 8894 APInt APSplatBits, APSplatUndef; 8895 unsigned SplatBitSize; 8896 bool HasAnyUndefs; 8897 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8898 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8899 SplatBitSize > 32) { 8900 8901 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 8902 // Handle load-and-splat patterns as we have instructions that will do this 8903 // in one go. 8904 if (InputLoad && DAG.isSplatValue(Op, true)) { 8905 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8906 8907 // We have handling for 4 and 8 byte elements. 8908 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8909 8910 // Checking for a single use of this load, we have to check for vector 8911 // width (128 bits) / ElementSize uses (since each operand of the 8912 // BUILD_VECTOR is a separate use of the value. 8913 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 8914 ((Subtarget.hasVSX() && ElementSize == 64) || 8915 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8916 SDValue Ops[] = { 8917 LD->getChain(), // Chain 8918 LD->getBasePtr(), // Ptr 8919 DAG.getValueType(Op.getValueType()) // VT 8920 }; 8921 return 8922 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 8923 DAG.getVTList(Op.getValueType(), MVT::Other), 8924 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8925 } 8926 } 8927 8928 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8929 // lowered to VSX instructions under certain conditions. 8930 // Without VSX, there is no pattern more efficient than expanding the node. 8931 if (Subtarget.hasVSX() && 8932 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8933 Subtarget.hasP8Vector())) 8934 return Op; 8935 return SDValue(); 8936 } 8937 8938 unsigned SplatBits = APSplatBits.getZExtValue(); 8939 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8940 unsigned SplatSize = SplatBitSize / 8; 8941 8942 // First, handle single instruction cases. 8943 8944 // All zeros? 8945 if (SplatBits == 0) { 8946 // Canonicalize all zero vectors to be v4i32. 8947 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8948 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8949 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8950 } 8951 return Op; 8952 } 8953 8954 // We have XXSPLTIB for constant splats one byte wide 8955 // FIXME: SplatBits is an unsigned int being cast to an int while passing it 8956 // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here. 8957 if (Subtarget.hasP9Vector() && SplatSize == 1) 8958 return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl); 8959 8960 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8961 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8962 (32-SplatBitSize)); 8963 if (SextVal >= -16 && SextVal <= 15) 8964 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8965 8966 // Two instruction sequences. 8967 8968 // If this value is in the range [-32,30] and is even, use: 8969 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8970 // If this value is in the range [17,31] and is odd, use: 8971 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8972 // If this value is in the range [-31,-17] and is odd, use: 8973 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8974 // Note the last two are three-instruction sequences. 8975 if (SextVal >= -32 && SextVal <= 31) { 8976 // To avoid having these optimizations undone by constant folding, 8977 // we convert to a pseudo that will be expanded later into one of 8978 // the above forms. 8979 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8980 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8981 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8982 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8983 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8984 if (VT == Op.getValueType()) 8985 return RetVal; 8986 else 8987 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8988 } 8989 8990 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8991 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8992 // for fneg/fabs. 8993 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8994 // Make -1 and vspltisw -1: 8995 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8996 8997 // Make the VSLW intrinsic, computing 0x8000_0000. 8998 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8999 OnesV, DAG, dl); 9000 9001 // xor by OnesV to invert it. 9002 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9003 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9004 } 9005 9006 // Check to see if this is a wide variety of vsplti*, binop self cases. 9007 static const signed char SplatCsts[] = { 9008 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9009 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9010 }; 9011 9012 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9013 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9014 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9015 int i = SplatCsts[idx]; 9016 9017 // Figure out what shift amount will be used by altivec if shifted by i in 9018 // this splat size. 9019 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9020 9021 // vsplti + shl self. 9022 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9023 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9024 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9025 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9026 Intrinsic::ppc_altivec_vslw 9027 }; 9028 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9029 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9030 } 9031 9032 // vsplti + srl self. 9033 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9034 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9035 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9036 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9037 Intrinsic::ppc_altivec_vsrw 9038 }; 9039 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9040 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9041 } 9042 9043 // vsplti + sra self. 9044 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9045 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9046 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9047 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9048 Intrinsic::ppc_altivec_vsraw 9049 }; 9050 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9051 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9052 } 9053 9054 // vsplti + rol self. 9055 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9056 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9057 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9058 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9059 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9060 Intrinsic::ppc_altivec_vrlw 9061 }; 9062 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9063 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9064 } 9065 9066 // t = vsplti c, result = vsldoi t, t, 1 9067 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9068 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9069 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9070 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9071 } 9072 // t = vsplti c, result = vsldoi t, t, 2 9073 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9074 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9075 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9076 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9077 } 9078 // t = vsplti c, result = vsldoi t, t, 3 9079 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9080 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9081 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9082 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9083 } 9084 } 9085 9086 return SDValue(); 9087 } 9088 9089 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9090 /// the specified operations to build the shuffle. 9091 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9092 SDValue RHS, SelectionDAG &DAG, 9093 const SDLoc &dl) { 9094 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9095 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9096 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9097 9098 enum { 9099 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9100 OP_VMRGHW, 9101 OP_VMRGLW, 9102 OP_VSPLTISW0, 9103 OP_VSPLTISW1, 9104 OP_VSPLTISW2, 9105 OP_VSPLTISW3, 9106 OP_VSLDOI4, 9107 OP_VSLDOI8, 9108 OP_VSLDOI12 9109 }; 9110 9111 if (OpNum == OP_COPY) { 9112 if (LHSID == (1*9+2)*9+3) return LHS; 9113 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9114 return RHS; 9115 } 9116 9117 SDValue OpLHS, OpRHS; 9118 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9119 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9120 9121 int ShufIdxs[16]; 9122 switch (OpNum) { 9123 default: llvm_unreachable("Unknown i32 permute!"); 9124 case OP_VMRGHW: 9125 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9126 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9127 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9128 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9129 break; 9130 case OP_VMRGLW: 9131 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9132 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9133 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9134 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9135 break; 9136 case OP_VSPLTISW0: 9137 for (unsigned i = 0; i != 16; ++i) 9138 ShufIdxs[i] = (i&3)+0; 9139 break; 9140 case OP_VSPLTISW1: 9141 for (unsigned i = 0; i != 16; ++i) 9142 ShufIdxs[i] = (i&3)+4; 9143 break; 9144 case OP_VSPLTISW2: 9145 for (unsigned i = 0; i != 16; ++i) 9146 ShufIdxs[i] = (i&3)+8; 9147 break; 9148 case OP_VSPLTISW3: 9149 for (unsigned i = 0; i != 16; ++i) 9150 ShufIdxs[i] = (i&3)+12; 9151 break; 9152 case OP_VSLDOI4: 9153 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9154 case OP_VSLDOI8: 9155 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9156 case OP_VSLDOI12: 9157 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9158 } 9159 EVT VT = OpLHS.getValueType(); 9160 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9161 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9162 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9163 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9164 } 9165 9166 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9167 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9168 /// SDValue. 9169 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9170 SelectionDAG &DAG) const { 9171 const unsigned BytesInVector = 16; 9172 bool IsLE = Subtarget.isLittleEndian(); 9173 SDLoc dl(N); 9174 SDValue V1 = N->getOperand(0); 9175 SDValue V2 = N->getOperand(1); 9176 unsigned ShiftElts = 0, InsertAtByte = 0; 9177 bool Swap = false; 9178 9179 // Shifts required to get the byte we want at element 7. 9180 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9181 0, 15, 14, 13, 12, 11, 10, 9}; 9182 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9183 1, 2, 3, 4, 5, 6, 7, 8}; 9184 9185 ArrayRef<int> Mask = N->getMask(); 9186 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9187 9188 // For each mask element, find out if we're just inserting something 9189 // from V2 into V1 or vice versa. 9190 // Possible permutations inserting an element from V2 into V1: 9191 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9192 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9193 // ... 9194 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9195 // Inserting from V1 into V2 will be similar, except mask range will be 9196 // [16,31]. 9197 9198 bool FoundCandidate = false; 9199 // If both vector operands for the shuffle are the same vector, the mask 9200 // will contain only elements from the first one and the second one will be 9201 // undef. 9202 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9203 // Go through the mask of half-words to find an element that's being moved 9204 // from one vector to the other. 9205 for (unsigned i = 0; i < BytesInVector; ++i) { 9206 unsigned CurrentElement = Mask[i]; 9207 // If 2nd operand is undefined, we should only look for element 7 in the 9208 // Mask. 9209 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9210 continue; 9211 9212 bool OtherElementsInOrder = true; 9213 // Examine the other elements in the Mask to see if they're in original 9214 // order. 9215 for (unsigned j = 0; j < BytesInVector; ++j) { 9216 if (j == i) 9217 continue; 9218 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9219 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9220 // in which we always assume we're always picking from the 1st operand. 9221 int MaskOffset = 9222 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9223 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9224 OtherElementsInOrder = false; 9225 break; 9226 } 9227 } 9228 // If other elements are in original order, we record the number of shifts 9229 // we need to get the element we want into element 7. Also record which byte 9230 // in the vector we should insert into. 9231 if (OtherElementsInOrder) { 9232 // If 2nd operand is undefined, we assume no shifts and no swapping. 9233 if (V2.isUndef()) { 9234 ShiftElts = 0; 9235 Swap = false; 9236 } else { 9237 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9238 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9239 : BigEndianShifts[CurrentElement & 0xF]; 9240 Swap = CurrentElement < BytesInVector; 9241 } 9242 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9243 FoundCandidate = true; 9244 break; 9245 } 9246 } 9247 9248 if (!FoundCandidate) 9249 return SDValue(); 9250 9251 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9252 // optionally with VECSHL if shift is required. 9253 if (Swap) 9254 std::swap(V1, V2); 9255 if (V2.isUndef()) 9256 V2 = V1; 9257 if (ShiftElts) { 9258 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9259 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9260 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9261 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9262 } 9263 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9264 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9265 } 9266 9267 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9268 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9269 /// SDValue. 9270 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9271 SelectionDAG &DAG) const { 9272 const unsigned NumHalfWords = 8; 9273 const unsigned BytesInVector = NumHalfWords * 2; 9274 // Check that the shuffle is on half-words. 9275 if (!isNByteElemShuffleMask(N, 2, 1)) 9276 return SDValue(); 9277 9278 bool IsLE = Subtarget.isLittleEndian(); 9279 SDLoc dl(N); 9280 SDValue V1 = N->getOperand(0); 9281 SDValue V2 = N->getOperand(1); 9282 unsigned ShiftElts = 0, InsertAtByte = 0; 9283 bool Swap = false; 9284 9285 // Shifts required to get the half-word we want at element 3. 9286 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9287 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9288 9289 uint32_t Mask = 0; 9290 uint32_t OriginalOrderLow = 0x1234567; 9291 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9292 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9293 // 32-bit space, only need 4-bit nibbles per element. 9294 for (unsigned i = 0; i < NumHalfWords; ++i) { 9295 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9296 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9297 } 9298 9299 // For each mask element, find out if we're just inserting something 9300 // from V2 into V1 or vice versa. Possible permutations inserting an element 9301 // from V2 into V1: 9302 // X, 1, 2, 3, 4, 5, 6, 7 9303 // 0, X, 2, 3, 4, 5, 6, 7 9304 // 0, 1, X, 3, 4, 5, 6, 7 9305 // 0, 1, 2, X, 4, 5, 6, 7 9306 // 0, 1, 2, 3, X, 5, 6, 7 9307 // 0, 1, 2, 3, 4, X, 6, 7 9308 // 0, 1, 2, 3, 4, 5, X, 7 9309 // 0, 1, 2, 3, 4, 5, 6, X 9310 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9311 9312 bool FoundCandidate = false; 9313 // Go through the mask of half-words to find an element that's being moved 9314 // from one vector to the other. 9315 for (unsigned i = 0; i < NumHalfWords; ++i) { 9316 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9317 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9318 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9319 uint32_t TargetOrder = 0x0; 9320 9321 // If both vector operands for the shuffle are the same vector, the mask 9322 // will contain only elements from the first one and the second one will be 9323 // undef. 9324 if (V2.isUndef()) { 9325 ShiftElts = 0; 9326 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9327 TargetOrder = OriginalOrderLow; 9328 Swap = false; 9329 // Skip if not the correct element or mask of other elements don't equal 9330 // to our expected order. 9331 if (MaskOneElt == VINSERTHSrcElem && 9332 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9333 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9334 FoundCandidate = true; 9335 break; 9336 } 9337 } else { // If both operands are defined. 9338 // Target order is [8,15] if the current mask is between [0,7]. 9339 TargetOrder = 9340 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9341 // Skip if mask of other elements don't equal our expected order. 9342 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9343 // We only need the last 3 bits for the number of shifts. 9344 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9345 : BigEndianShifts[MaskOneElt & 0x7]; 9346 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9347 Swap = MaskOneElt < NumHalfWords; 9348 FoundCandidate = true; 9349 break; 9350 } 9351 } 9352 } 9353 9354 if (!FoundCandidate) 9355 return SDValue(); 9356 9357 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9358 // optionally with VECSHL if shift is required. 9359 if (Swap) 9360 std::swap(V1, V2); 9361 if (V2.isUndef()) 9362 V2 = V1; 9363 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9364 if (ShiftElts) { 9365 // Double ShiftElts because we're left shifting on v16i8 type. 9366 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9367 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9368 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9369 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9370 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9371 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9372 } 9373 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9374 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9375 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9376 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9377 } 9378 9379 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9380 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9381 /// return the code it can be lowered into. Worst case, it can always be 9382 /// lowered into a vperm. 9383 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9384 SelectionDAG &DAG) const { 9385 SDLoc dl(Op); 9386 SDValue V1 = Op.getOperand(0); 9387 SDValue V2 = Op.getOperand(1); 9388 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9389 EVT VT = Op.getValueType(); 9390 bool isLittleEndian = Subtarget.isLittleEndian(); 9391 9392 unsigned ShiftElts, InsertAtByte; 9393 bool Swap = false; 9394 9395 // If this is a load-and-splat, we can do that with a single instruction 9396 // in some cases. However if the load has multiple uses, we don't want to 9397 // combine it because that will just produce multiple loads. 9398 const SDValue *InputLoad = getNormalLoadInput(V1); 9399 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9400 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9401 InputLoad->hasOneUse()) { 9402 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9403 int SplatIdx = 9404 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9405 9406 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9407 // For 4-byte load-and-splat, we need Power9. 9408 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9409 uint64_t Offset = 0; 9410 if (IsFourByte) 9411 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9412 else 9413 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9414 SDValue BasePtr = LD->getBasePtr(); 9415 if (Offset != 0) 9416 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9417 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9418 SDValue Ops[] = { 9419 LD->getChain(), // Chain 9420 BasePtr, // BasePtr 9421 DAG.getValueType(Op.getValueType()) // VT 9422 }; 9423 SDVTList VTL = 9424 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9425 SDValue LdSplt = 9426 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9427 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9428 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9429 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9430 return LdSplt; 9431 } 9432 } 9433 if (Subtarget.hasP9Vector() && 9434 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9435 isLittleEndian)) { 9436 if (Swap) 9437 std::swap(V1, V2); 9438 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9439 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9440 if (ShiftElts) { 9441 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9442 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9443 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9444 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9445 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9446 } 9447 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9448 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9449 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9450 } 9451 9452 if (Subtarget.hasP9Altivec()) { 9453 SDValue NewISDNode; 9454 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9455 return NewISDNode; 9456 9457 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9458 return NewISDNode; 9459 } 9460 9461 if (Subtarget.hasVSX() && 9462 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9463 if (Swap) 9464 std::swap(V1, V2); 9465 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9466 SDValue Conv2 = 9467 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9468 9469 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9470 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9471 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9472 } 9473 9474 if (Subtarget.hasVSX() && 9475 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9476 if (Swap) 9477 std::swap(V1, V2); 9478 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9479 SDValue Conv2 = 9480 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9481 9482 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9483 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9484 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9485 } 9486 9487 if (Subtarget.hasP9Vector()) { 9488 if (PPC::isXXBRHShuffleMask(SVOp)) { 9489 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9490 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9491 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9492 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9493 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9494 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9495 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9496 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9497 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9498 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9499 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9500 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9501 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9502 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9503 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9504 } 9505 } 9506 9507 if (Subtarget.hasVSX()) { 9508 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9509 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9510 9511 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9512 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9513 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9514 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9515 } 9516 9517 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9518 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9519 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9520 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9521 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9522 } 9523 } 9524 9525 if (Subtarget.hasQPX()) { 9526 if (VT.getVectorNumElements() != 4) 9527 return SDValue(); 9528 9529 if (V2.isUndef()) V2 = V1; 9530 9531 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 9532 if (AlignIdx != -1) { 9533 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 9534 DAG.getConstant(AlignIdx, dl, MVT::i32)); 9535 } else if (SVOp->isSplat()) { 9536 int SplatIdx = SVOp->getSplatIndex(); 9537 if (SplatIdx >= 4) { 9538 std::swap(V1, V2); 9539 SplatIdx -= 4; 9540 } 9541 9542 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 9543 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9544 } 9545 9546 // Lower this into a qvgpci/qvfperm pair. 9547 9548 // Compute the qvgpci literal 9549 unsigned idx = 0; 9550 for (unsigned i = 0; i < 4; ++i) { 9551 int m = SVOp->getMaskElt(i); 9552 unsigned mm = m >= 0 ? (unsigned) m : i; 9553 idx |= mm << (3-i)*3; 9554 } 9555 9556 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9557 DAG.getConstant(idx, dl, MVT::i32)); 9558 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9559 } 9560 9561 // Cases that are handled by instructions that take permute immediates 9562 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9563 // selected by the instruction selector. 9564 if (V2.isUndef()) { 9565 if (PPC::isSplatShuffleMask(SVOp, 1) || 9566 PPC::isSplatShuffleMask(SVOp, 2) || 9567 PPC::isSplatShuffleMask(SVOp, 4) || 9568 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9569 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9570 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9571 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9572 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9573 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9574 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9575 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9576 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9577 (Subtarget.hasP8Altivec() && ( 9578 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9579 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9580 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9581 return Op; 9582 } 9583 } 9584 9585 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9586 // and produce a fixed permutation. If any of these match, do not lower to 9587 // VPERM. 9588 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9589 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9590 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9591 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9592 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9593 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9594 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9595 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9596 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9597 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9598 (Subtarget.hasP8Altivec() && ( 9599 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9600 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9601 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9602 return Op; 9603 9604 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9605 // perfect shuffle table to emit an optimal matching sequence. 9606 ArrayRef<int> PermMask = SVOp->getMask(); 9607 9608 unsigned PFIndexes[4]; 9609 bool isFourElementShuffle = true; 9610 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9611 unsigned EltNo = 8; // Start out undef. 9612 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9613 if (PermMask[i*4+j] < 0) 9614 continue; // Undef, ignore it. 9615 9616 unsigned ByteSource = PermMask[i*4+j]; 9617 if ((ByteSource & 3) != j) { 9618 isFourElementShuffle = false; 9619 break; 9620 } 9621 9622 if (EltNo == 8) { 9623 EltNo = ByteSource/4; 9624 } else if (EltNo != ByteSource/4) { 9625 isFourElementShuffle = false; 9626 break; 9627 } 9628 } 9629 PFIndexes[i] = EltNo; 9630 } 9631 9632 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9633 // perfect shuffle vector to determine if it is cost effective to do this as 9634 // discrete instructions, or whether we should use a vperm. 9635 // For now, we skip this for little endian until such time as we have a 9636 // little-endian perfect shuffle table. 9637 if (isFourElementShuffle && !isLittleEndian) { 9638 // Compute the index in the perfect shuffle table. 9639 unsigned PFTableIndex = 9640 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9641 9642 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9643 unsigned Cost = (PFEntry >> 30); 9644 9645 // Determining when to avoid vperm is tricky. Many things affect the cost 9646 // of vperm, particularly how many times the perm mask needs to be computed. 9647 // For example, if the perm mask can be hoisted out of a loop or is already 9648 // used (perhaps because there are multiple permutes with the same shuffle 9649 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9650 // the loop requires an extra register. 9651 // 9652 // As a compromise, we only emit discrete instructions if the shuffle can be 9653 // generated in 3 or fewer operations. When we have loop information 9654 // available, if this block is within a loop, we should avoid using vperm 9655 // for 3-operation perms and use a constant pool load instead. 9656 if (Cost < 3) 9657 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9658 } 9659 9660 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9661 // vector that will get spilled to the constant pool. 9662 if (V2.isUndef()) V2 = V1; 9663 9664 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9665 // that it is in input element units, not in bytes. Convert now. 9666 9667 // For little endian, the order of the input vectors is reversed, and 9668 // the permutation mask is complemented with respect to 31. This is 9669 // necessary to produce proper semantics with the big-endian-biased vperm 9670 // instruction. 9671 EVT EltVT = V1.getValueType().getVectorElementType(); 9672 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9673 9674 SmallVector<SDValue, 16> ResultMask; 9675 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9676 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9677 9678 for (unsigned j = 0; j != BytesPerElement; ++j) 9679 if (isLittleEndian) 9680 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9681 dl, MVT::i32)); 9682 else 9683 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9684 MVT::i32)); 9685 } 9686 9687 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9688 if (isLittleEndian) 9689 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9690 V2, V1, VPermMask); 9691 else 9692 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9693 V1, V2, VPermMask); 9694 } 9695 9696 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9697 /// vector comparison. If it is, return true and fill in Opc/isDot with 9698 /// information about the intrinsic. 9699 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9700 bool &isDot, const PPCSubtarget &Subtarget) { 9701 unsigned IntrinsicID = 9702 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9703 CompareOpc = -1; 9704 isDot = false; 9705 switch (IntrinsicID) { 9706 default: 9707 return false; 9708 // Comparison predicates. 9709 case Intrinsic::ppc_altivec_vcmpbfp_p: 9710 CompareOpc = 966; 9711 isDot = true; 9712 break; 9713 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9714 CompareOpc = 198; 9715 isDot = true; 9716 break; 9717 case Intrinsic::ppc_altivec_vcmpequb_p: 9718 CompareOpc = 6; 9719 isDot = true; 9720 break; 9721 case Intrinsic::ppc_altivec_vcmpequh_p: 9722 CompareOpc = 70; 9723 isDot = true; 9724 break; 9725 case Intrinsic::ppc_altivec_vcmpequw_p: 9726 CompareOpc = 134; 9727 isDot = true; 9728 break; 9729 case Intrinsic::ppc_altivec_vcmpequd_p: 9730 if (Subtarget.hasP8Altivec()) { 9731 CompareOpc = 199; 9732 isDot = true; 9733 } else 9734 return false; 9735 break; 9736 case Intrinsic::ppc_altivec_vcmpneb_p: 9737 case Intrinsic::ppc_altivec_vcmpneh_p: 9738 case Intrinsic::ppc_altivec_vcmpnew_p: 9739 case Intrinsic::ppc_altivec_vcmpnezb_p: 9740 case Intrinsic::ppc_altivec_vcmpnezh_p: 9741 case Intrinsic::ppc_altivec_vcmpnezw_p: 9742 if (Subtarget.hasP9Altivec()) { 9743 switch (IntrinsicID) { 9744 default: 9745 llvm_unreachable("Unknown comparison intrinsic."); 9746 case Intrinsic::ppc_altivec_vcmpneb_p: 9747 CompareOpc = 7; 9748 break; 9749 case Intrinsic::ppc_altivec_vcmpneh_p: 9750 CompareOpc = 71; 9751 break; 9752 case Intrinsic::ppc_altivec_vcmpnew_p: 9753 CompareOpc = 135; 9754 break; 9755 case Intrinsic::ppc_altivec_vcmpnezb_p: 9756 CompareOpc = 263; 9757 break; 9758 case Intrinsic::ppc_altivec_vcmpnezh_p: 9759 CompareOpc = 327; 9760 break; 9761 case Intrinsic::ppc_altivec_vcmpnezw_p: 9762 CompareOpc = 391; 9763 break; 9764 } 9765 isDot = true; 9766 } else 9767 return false; 9768 break; 9769 case Intrinsic::ppc_altivec_vcmpgefp_p: 9770 CompareOpc = 454; 9771 isDot = true; 9772 break; 9773 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9774 CompareOpc = 710; 9775 isDot = true; 9776 break; 9777 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9778 CompareOpc = 774; 9779 isDot = true; 9780 break; 9781 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9782 CompareOpc = 838; 9783 isDot = true; 9784 break; 9785 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9786 CompareOpc = 902; 9787 isDot = true; 9788 break; 9789 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9790 if (Subtarget.hasP8Altivec()) { 9791 CompareOpc = 967; 9792 isDot = true; 9793 } else 9794 return false; 9795 break; 9796 case Intrinsic::ppc_altivec_vcmpgtub_p: 9797 CompareOpc = 518; 9798 isDot = true; 9799 break; 9800 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9801 CompareOpc = 582; 9802 isDot = true; 9803 break; 9804 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9805 CompareOpc = 646; 9806 isDot = true; 9807 break; 9808 case Intrinsic::ppc_altivec_vcmpgtud_p: 9809 if (Subtarget.hasP8Altivec()) { 9810 CompareOpc = 711; 9811 isDot = true; 9812 } else 9813 return false; 9814 break; 9815 9816 // VSX predicate comparisons use the same infrastructure 9817 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9818 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9819 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9820 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9821 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9822 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9823 if (Subtarget.hasVSX()) { 9824 switch (IntrinsicID) { 9825 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9826 CompareOpc = 99; 9827 break; 9828 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9829 CompareOpc = 115; 9830 break; 9831 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9832 CompareOpc = 107; 9833 break; 9834 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9835 CompareOpc = 67; 9836 break; 9837 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9838 CompareOpc = 83; 9839 break; 9840 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9841 CompareOpc = 75; 9842 break; 9843 } 9844 isDot = true; 9845 } else 9846 return false; 9847 break; 9848 9849 // Normal Comparisons. 9850 case Intrinsic::ppc_altivec_vcmpbfp: 9851 CompareOpc = 966; 9852 break; 9853 case Intrinsic::ppc_altivec_vcmpeqfp: 9854 CompareOpc = 198; 9855 break; 9856 case Intrinsic::ppc_altivec_vcmpequb: 9857 CompareOpc = 6; 9858 break; 9859 case Intrinsic::ppc_altivec_vcmpequh: 9860 CompareOpc = 70; 9861 break; 9862 case Intrinsic::ppc_altivec_vcmpequw: 9863 CompareOpc = 134; 9864 break; 9865 case Intrinsic::ppc_altivec_vcmpequd: 9866 if (Subtarget.hasP8Altivec()) 9867 CompareOpc = 199; 9868 else 9869 return false; 9870 break; 9871 case Intrinsic::ppc_altivec_vcmpneb: 9872 case Intrinsic::ppc_altivec_vcmpneh: 9873 case Intrinsic::ppc_altivec_vcmpnew: 9874 case Intrinsic::ppc_altivec_vcmpnezb: 9875 case Intrinsic::ppc_altivec_vcmpnezh: 9876 case Intrinsic::ppc_altivec_vcmpnezw: 9877 if (Subtarget.hasP9Altivec()) 9878 switch (IntrinsicID) { 9879 default: 9880 llvm_unreachable("Unknown comparison intrinsic."); 9881 case Intrinsic::ppc_altivec_vcmpneb: 9882 CompareOpc = 7; 9883 break; 9884 case Intrinsic::ppc_altivec_vcmpneh: 9885 CompareOpc = 71; 9886 break; 9887 case Intrinsic::ppc_altivec_vcmpnew: 9888 CompareOpc = 135; 9889 break; 9890 case Intrinsic::ppc_altivec_vcmpnezb: 9891 CompareOpc = 263; 9892 break; 9893 case Intrinsic::ppc_altivec_vcmpnezh: 9894 CompareOpc = 327; 9895 break; 9896 case Intrinsic::ppc_altivec_vcmpnezw: 9897 CompareOpc = 391; 9898 break; 9899 } 9900 else 9901 return false; 9902 break; 9903 case Intrinsic::ppc_altivec_vcmpgefp: 9904 CompareOpc = 454; 9905 break; 9906 case Intrinsic::ppc_altivec_vcmpgtfp: 9907 CompareOpc = 710; 9908 break; 9909 case Intrinsic::ppc_altivec_vcmpgtsb: 9910 CompareOpc = 774; 9911 break; 9912 case Intrinsic::ppc_altivec_vcmpgtsh: 9913 CompareOpc = 838; 9914 break; 9915 case Intrinsic::ppc_altivec_vcmpgtsw: 9916 CompareOpc = 902; 9917 break; 9918 case Intrinsic::ppc_altivec_vcmpgtsd: 9919 if (Subtarget.hasP8Altivec()) 9920 CompareOpc = 967; 9921 else 9922 return false; 9923 break; 9924 case Intrinsic::ppc_altivec_vcmpgtub: 9925 CompareOpc = 518; 9926 break; 9927 case Intrinsic::ppc_altivec_vcmpgtuh: 9928 CompareOpc = 582; 9929 break; 9930 case Intrinsic::ppc_altivec_vcmpgtuw: 9931 CompareOpc = 646; 9932 break; 9933 case Intrinsic::ppc_altivec_vcmpgtud: 9934 if (Subtarget.hasP8Altivec()) 9935 CompareOpc = 711; 9936 else 9937 return false; 9938 break; 9939 } 9940 return true; 9941 } 9942 9943 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9944 /// lower, do it, otherwise return null. 9945 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9946 SelectionDAG &DAG) const { 9947 unsigned IntrinsicID = 9948 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9949 9950 SDLoc dl(Op); 9951 9952 if (IntrinsicID == Intrinsic::thread_pointer) { 9953 // Reads the thread pointer register, used for __builtin_thread_pointer. 9954 if (Subtarget.isPPC64()) 9955 return DAG.getRegister(PPC::X13, MVT::i64); 9956 return DAG.getRegister(PPC::R2, MVT::i32); 9957 } 9958 9959 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9960 // opcode number of the comparison. 9961 int CompareOpc; 9962 bool isDot; 9963 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9964 return SDValue(); // Don't custom lower most intrinsics. 9965 9966 // If this is a non-dot comparison, make the VCMP node and we are done. 9967 if (!isDot) { 9968 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9969 Op.getOperand(1), Op.getOperand(2), 9970 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9971 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9972 } 9973 9974 // Create the PPCISD altivec 'dot' comparison node. 9975 SDValue Ops[] = { 9976 Op.getOperand(2), // LHS 9977 Op.getOperand(3), // RHS 9978 DAG.getConstant(CompareOpc, dl, MVT::i32) 9979 }; 9980 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9981 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9982 9983 // Now that we have the comparison, emit a copy from the CR to a GPR. 9984 // This is flagged to the above dot comparison. 9985 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9986 DAG.getRegister(PPC::CR6, MVT::i32), 9987 CompNode.getValue(1)); 9988 9989 // Unpack the result based on how the target uses it. 9990 unsigned BitNo; // Bit # of CR6. 9991 bool InvertBit; // Invert result? 9992 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9993 default: // Can't happen, don't crash on invalid number though. 9994 case 0: // Return the value of the EQ bit of CR6. 9995 BitNo = 0; InvertBit = false; 9996 break; 9997 case 1: // Return the inverted value of the EQ bit of CR6. 9998 BitNo = 0; InvertBit = true; 9999 break; 10000 case 2: // Return the value of the LT bit of CR6. 10001 BitNo = 2; InvertBit = false; 10002 break; 10003 case 3: // Return the inverted value of the LT bit of CR6. 10004 BitNo = 2; InvertBit = true; 10005 break; 10006 } 10007 10008 // Shift the bit into the low position. 10009 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10010 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10011 // Isolate the bit. 10012 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10013 DAG.getConstant(1, dl, MVT::i32)); 10014 10015 // If we are supposed to, toggle the bit. 10016 if (InvertBit) 10017 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10018 DAG.getConstant(1, dl, MVT::i32)); 10019 return Flags; 10020 } 10021 10022 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10023 SelectionDAG &DAG) const { 10024 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10025 // the beginning of the argument list. 10026 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10027 SDLoc DL(Op); 10028 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10029 case Intrinsic::ppc_cfence: { 10030 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10031 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10032 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10033 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10034 Op.getOperand(ArgStart + 1)), 10035 Op.getOperand(0)), 10036 0); 10037 } 10038 default: 10039 break; 10040 } 10041 return SDValue(); 10042 } 10043 10044 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 10045 // Check for a DIV with the same operands as this REM. 10046 for (auto UI : Op.getOperand(1)->uses()) { 10047 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 10048 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 10049 if (UI->getOperand(0) == Op.getOperand(0) && 10050 UI->getOperand(1) == Op.getOperand(1)) 10051 return SDValue(); 10052 } 10053 return Op; 10054 } 10055 10056 // Lower scalar BSWAP64 to xxbrd. 10057 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10058 SDLoc dl(Op); 10059 // MTVSRDD 10060 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10061 Op.getOperand(0)); 10062 // XXBRD 10063 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10064 // MFVSRD 10065 int VectorIndex = 0; 10066 if (Subtarget.isLittleEndian()) 10067 VectorIndex = 1; 10068 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10069 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10070 return Op; 10071 } 10072 10073 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10074 // compared to a value that is atomically loaded (atomic loads zero-extend). 10075 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10076 SelectionDAG &DAG) const { 10077 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10078 "Expecting an atomic compare-and-swap here."); 10079 SDLoc dl(Op); 10080 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10081 EVT MemVT = AtomicNode->getMemoryVT(); 10082 if (MemVT.getSizeInBits() >= 32) 10083 return Op; 10084 10085 SDValue CmpOp = Op.getOperand(2); 10086 // If this is already correctly zero-extended, leave it alone. 10087 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10088 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10089 return Op; 10090 10091 // Clear the high bits of the compare operand. 10092 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10093 SDValue NewCmpOp = 10094 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10095 DAG.getConstant(MaskVal, dl, MVT::i32)); 10096 10097 // Replace the existing compare operand with the properly zero-extended one. 10098 SmallVector<SDValue, 4> Ops; 10099 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10100 Ops.push_back(AtomicNode->getOperand(i)); 10101 Ops[2] = NewCmpOp; 10102 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10103 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10104 auto NodeTy = 10105 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10106 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10107 } 10108 10109 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10110 SelectionDAG &DAG) const { 10111 SDLoc dl(Op); 10112 // Create a stack slot that is 16-byte aligned. 10113 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10114 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10115 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10116 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10117 10118 // Store the input value into Value#0 of the stack slot. 10119 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10120 MachinePointerInfo()); 10121 // Load it out. 10122 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10123 } 10124 10125 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10126 SelectionDAG &DAG) const { 10127 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10128 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10129 10130 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10131 // We have legal lowering for constant indices but not for variable ones. 10132 if (!C) 10133 return SDValue(); 10134 10135 EVT VT = Op.getValueType(); 10136 SDLoc dl(Op); 10137 SDValue V1 = Op.getOperand(0); 10138 SDValue V2 = Op.getOperand(1); 10139 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10140 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10141 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10142 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10143 unsigned InsertAtElement = C->getZExtValue(); 10144 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10145 if (Subtarget.isLittleEndian()) { 10146 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10147 } 10148 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10149 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10150 } 10151 return Op; 10152 } 10153 10154 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 10155 SelectionDAG &DAG) const { 10156 SDLoc dl(Op); 10157 SDNode *N = Op.getNode(); 10158 10159 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 10160 "Unknown extract_vector_elt type"); 10161 10162 SDValue Value = N->getOperand(0); 10163 10164 // The first part of this is like the store lowering except that we don't 10165 // need to track the chain. 10166 10167 // The values are now known to be -1 (false) or 1 (true). To convert this 10168 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10169 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10170 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10171 10172 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10173 // understand how to form the extending load. 10174 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10175 10176 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10177 10178 // Now convert to an integer and store. 10179 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10180 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10181 Value); 10182 10183 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10184 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10185 MachinePointerInfo PtrInfo = 10186 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10187 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10188 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10189 10190 SDValue StoreChain = DAG.getEntryNode(); 10191 SDValue Ops[] = {StoreChain, 10192 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10193 Value, FIdx}; 10194 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10195 10196 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10197 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10198 10199 // Extract the value requested. 10200 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10201 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10202 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10203 10204 SDValue IntVal = 10205 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 10206 10207 if (!Subtarget.useCRBits()) 10208 return IntVal; 10209 10210 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 10211 } 10212 10213 /// Lowering for QPX v4i1 loads 10214 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10215 SelectionDAG &DAG) const { 10216 SDLoc dl(Op); 10217 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10218 SDValue LoadChain = LN->getChain(); 10219 SDValue BasePtr = LN->getBasePtr(); 10220 10221 if (Op.getValueType() == MVT::v4f64 || 10222 Op.getValueType() == MVT::v4f32) { 10223 EVT MemVT = LN->getMemoryVT(); 10224 unsigned Alignment = LN->getAlignment(); 10225 10226 // If this load is properly aligned, then it is legal. 10227 if (Alignment >= MemVT.getStoreSize()) 10228 return Op; 10229 10230 EVT ScalarVT = Op.getValueType().getScalarType(), 10231 ScalarMemVT = MemVT.getScalarType(); 10232 unsigned Stride = ScalarMemVT.getStoreSize(); 10233 10234 SDValue Vals[4], LoadChains[4]; 10235 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10236 SDValue Load; 10237 if (ScalarVT != ScalarMemVT) 10238 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 10239 BasePtr, 10240 LN->getPointerInfo().getWithOffset(Idx * Stride), 10241 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10242 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10243 else 10244 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 10245 LN->getPointerInfo().getWithOffset(Idx * Stride), 10246 MinAlign(Alignment, Idx * Stride), 10247 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10248 10249 if (Idx == 0 && LN->isIndexed()) { 10250 assert(LN->getAddressingMode() == ISD::PRE_INC && 10251 "Unknown addressing mode on vector load"); 10252 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 10253 LN->getAddressingMode()); 10254 } 10255 10256 Vals[Idx] = Load; 10257 LoadChains[Idx] = Load.getValue(1); 10258 10259 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10260 DAG.getConstant(Stride, dl, 10261 BasePtr.getValueType())); 10262 } 10263 10264 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10265 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 10266 10267 if (LN->isIndexed()) { 10268 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 10269 return DAG.getMergeValues(RetOps, dl); 10270 } 10271 10272 SDValue RetOps[] = { Value, TF }; 10273 return DAG.getMergeValues(RetOps, dl); 10274 } 10275 10276 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 10277 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 10278 10279 // To lower v4i1 from a byte array, we load the byte elements of the 10280 // vector and then reuse the BUILD_VECTOR logic. 10281 10282 SDValue VectElmts[4], VectElmtChains[4]; 10283 for (unsigned i = 0; i < 4; ++i) { 10284 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10285 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10286 10287 VectElmts[i] = DAG.getExtLoad( 10288 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10289 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10290 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10291 VectElmtChains[i] = VectElmts[i].getValue(1); 10292 } 10293 10294 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10295 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10296 10297 SDValue RVals[] = { Value, LoadChain }; 10298 return DAG.getMergeValues(RVals, dl); 10299 } 10300 10301 /// Lowering for QPX v4i1 stores 10302 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10303 SelectionDAG &DAG) const { 10304 SDLoc dl(Op); 10305 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10306 SDValue StoreChain = SN->getChain(); 10307 SDValue BasePtr = SN->getBasePtr(); 10308 SDValue Value = SN->getValue(); 10309 10310 if (Value.getValueType() == MVT::v4f64 || 10311 Value.getValueType() == MVT::v4f32) { 10312 EVT MemVT = SN->getMemoryVT(); 10313 unsigned Alignment = SN->getAlignment(); 10314 10315 // If this store is properly aligned, then it is legal. 10316 if (Alignment >= MemVT.getStoreSize()) 10317 return Op; 10318 10319 EVT ScalarVT = Value.getValueType().getScalarType(), 10320 ScalarMemVT = MemVT.getScalarType(); 10321 unsigned Stride = ScalarMemVT.getStoreSize(); 10322 10323 SDValue Stores[4]; 10324 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10325 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10326 DAG.getVectorIdxConstant(Idx, dl)); 10327 SDValue Store; 10328 if (ScalarVT != ScalarMemVT) 10329 Store = 10330 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10331 SN->getPointerInfo().getWithOffset(Idx * Stride), 10332 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10333 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10334 else 10335 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10336 SN->getPointerInfo().getWithOffset(Idx * Stride), 10337 MinAlign(Alignment, Idx * Stride), 10338 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10339 10340 if (Idx == 0 && SN->isIndexed()) { 10341 assert(SN->getAddressingMode() == ISD::PRE_INC && 10342 "Unknown addressing mode on vector store"); 10343 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10344 SN->getAddressingMode()); 10345 } 10346 10347 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10348 DAG.getConstant(Stride, dl, 10349 BasePtr.getValueType())); 10350 Stores[Idx] = Store; 10351 } 10352 10353 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10354 10355 if (SN->isIndexed()) { 10356 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10357 return DAG.getMergeValues(RetOps, dl); 10358 } 10359 10360 return TF; 10361 } 10362 10363 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10364 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10365 10366 // The values are now known to be -1 (false) or 1 (true). To convert this 10367 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10368 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10369 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10370 10371 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10372 // understand how to form the extending load. 10373 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10374 10375 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10376 10377 // Now convert to an integer and store. 10378 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10379 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10380 Value); 10381 10382 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10383 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10384 MachinePointerInfo PtrInfo = 10385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10386 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10387 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10388 10389 SDValue Ops[] = {StoreChain, 10390 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10391 Value, FIdx}; 10392 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10393 10394 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10395 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10396 10397 // Move data into the byte array. 10398 SDValue Loads[4], LoadChains[4]; 10399 for (unsigned i = 0; i < 4; ++i) { 10400 unsigned Offset = 4*i; 10401 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10402 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10403 10404 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10405 PtrInfo.getWithOffset(Offset)); 10406 LoadChains[i] = Loads[i].getValue(1); 10407 } 10408 10409 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10410 10411 SDValue Stores[4]; 10412 for (unsigned i = 0; i < 4; ++i) { 10413 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10414 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10415 10416 Stores[i] = DAG.getTruncStore( 10417 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10418 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10419 SN->getAAInfo()); 10420 } 10421 10422 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10423 10424 return StoreChain; 10425 } 10426 10427 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10428 SDLoc dl(Op); 10429 if (Op.getValueType() == MVT::v4i32) { 10430 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10431 10432 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 10433 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 10434 10435 SDValue RHSSwap = // = vrlw RHS, 16 10436 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10437 10438 // Shrinkify inputs to v8i16. 10439 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10440 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10441 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10442 10443 // Low parts multiplied together, generating 32-bit results (we ignore the 10444 // top parts). 10445 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10446 LHS, RHS, DAG, dl, MVT::v4i32); 10447 10448 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10449 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10450 // Shift the high parts up 16 bits. 10451 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10452 Neg16, DAG, dl); 10453 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10454 } else if (Op.getValueType() == MVT::v16i8) { 10455 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10456 bool isLittleEndian = Subtarget.isLittleEndian(); 10457 10458 // Multiply the even 8-bit parts, producing 16-bit sums. 10459 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10460 LHS, RHS, DAG, dl, MVT::v8i16); 10461 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10462 10463 // Multiply the odd 8-bit parts, producing 16-bit sums. 10464 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10465 LHS, RHS, DAG, dl, MVT::v8i16); 10466 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10467 10468 // Merge the results together. Because vmuleub and vmuloub are 10469 // instructions with a big-endian bias, we must reverse the 10470 // element numbering and reverse the meaning of "odd" and "even" 10471 // when generating little endian code. 10472 int Ops[16]; 10473 for (unsigned i = 0; i != 8; ++i) { 10474 if (isLittleEndian) { 10475 Ops[i*2 ] = 2*i; 10476 Ops[i*2+1] = 2*i+16; 10477 } else { 10478 Ops[i*2 ] = 2*i+1; 10479 Ops[i*2+1] = 2*i+1+16; 10480 } 10481 } 10482 if (isLittleEndian) 10483 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10484 else 10485 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10486 } else { 10487 llvm_unreachable("Unknown mul to lower!"); 10488 } 10489 } 10490 10491 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10492 10493 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10494 10495 EVT VT = Op.getValueType(); 10496 assert(VT.isVector() && 10497 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10498 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10499 VT == MVT::v16i8) && 10500 "Unexpected vector element type!"); 10501 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10502 "Current subtarget doesn't support smax v2i64!"); 10503 10504 // For vector abs, it can be lowered to: 10505 // abs x 10506 // ==> 10507 // y = -x 10508 // smax(x, y) 10509 10510 SDLoc dl(Op); 10511 SDValue X = Op.getOperand(0); 10512 SDValue Zero = DAG.getConstant(0, dl, VT); 10513 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10514 10515 // SMAX patch https://reviews.llvm.org/D47332 10516 // hasn't landed yet, so use intrinsic first here. 10517 // TODO: Should use SMAX directly once SMAX patch landed 10518 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10519 if (VT == MVT::v2i64) 10520 BifID = Intrinsic::ppc_altivec_vmaxsd; 10521 else if (VT == MVT::v8i16) 10522 BifID = Intrinsic::ppc_altivec_vmaxsh; 10523 else if (VT == MVT::v16i8) 10524 BifID = Intrinsic::ppc_altivec_vmaxsb; 10525 10526 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10527 } 10528 10529 // Custom lowering for fpext vf32 to v2f64 10530 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10531 10532 assert(Op.getOpcode() == ISD::FP_EXTEND && 10533 "Should only be called for ISD::FP_EXTEND"); 10534 10535 // We only want to custom lower an extend from v2f32 to v2f64. 10536 if (Op.getValueType() != MVT::v2f64 || 10537 Op.getOperand(0).getValueType() != MVT::v2f32) 10538 return SDValue(); 10539 10540 SDLoc dl(Op); 10541 SDValue Op0 = Op.getOperand(0); 10542 10543 switch (Op0.getOpcode()) { 10544 default: 10545 return SDValue(); 10546 case ISD::EXTRACT_SUBVECTOR: { 10547 assert(Op0.getNumOperands() == 2 && 10548 isa<ConstantSDNode>(Op0->getOperand(1)) && 10549 "Node should have 2 operands with second one being a constant!"); 10550 10551 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10552 return SDValue(); 10553 10554 // Custom lower is only done for high or low doubleword. 10555 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10556 if (Idx % 2 != 0) 10557 return SDValue(); 10558 10559 // Since input is v4f32, at this point Idx is either 0 or 2. 10560 // Shift to get the doubleword position we want. 10561 int DWord = Idx >> 1; 10562 10563 // High and low word positions are different on little endian. 10564 if (Subtarget.isLittleEndian()) 10565 DWord ^= 0x1; 10566 10567 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10568 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10569 } 10570 case ISD::FADD: 10571 case ISD::FMUL: 10572 case ISD::FSUB: { 10573 SDValue NewLoad[2]; 10574 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10575 // Ensure both input are loads. 10576 SDValue LdOp = Op0.getOperand(i); 10577 if (LdOp.getOpcode() != ISD::LOAD) 10578 return SDValue(); 10579 // Generate new load node. 10580 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10581 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10582 NewLoad[i] = DAG.getMemIntrinsicNode( 10583 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10584 LD->getMemoryVT(), LD->getMemOperand()); 10585 } 10586 SDValue NewOp = 10587 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10588 NewLoad[1], Op0.getNode()->getFlags()); 10589 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10590 DAG.getConstant(0, dl, MVT::i32)); 10591 } 10592 case ISD::LOAD: { 10593 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10594 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10595 SDValue NewLd = DAG.getMemIntrinsicNode( 10596 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10597 LD->getMemoryVT(), LD->getMemOperand()); 10598 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10599 DAG.getConstant(0, dl, MVT::i32)); 10600 } 10601 } 10602 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10603 } 10604 10605 /// LowerOperation - Provide custom lowering hooks for some operations. 10606 /// 10607 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10608 switch (Op.getOpcode()) { 10609 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10610 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10611 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10612 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10613 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10614 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10615 case ISD::SETCC: return LowerSETCC(Op, DAG); 10616 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10617 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10618 10619 // Variable argument lowering. 10620 case ISD::VASTART: return LowerVASTART(Op, DAG); 10621 case ISD::VAARG: return LowerVAARG(Op, DAG); 10622 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10623 10624 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10625 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10626 case ISD::GET_DYNAMIC_AREA_OFFSET: 10627 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10628 10629 // Exception handling lowering. 10630 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10631 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10632 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10633 10634 case ISD::LOAD: return LowerLOAD(Op, DAG); 10635 case ISD::STORE: return LowerSTORE(Op, DAG); 10636 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10637 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10638 case ISD::FP_TO_UINT: 10639 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10640 case ISD::UINT_TO_FP: 10641 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10642 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10643 10644 // Lower 64-bit shifts. 10645 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10646 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10647 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10648 10649 // Vector-related lowering. 10650 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10651 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10652 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10653 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10654 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10655 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10656 case ISD::MUL: return LowerMUL(Op, DAG); 10657 case ISD::ABS: return LowerABS(Op, DAG); 10658 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10659 10660 // For counter-based loop handling. 10661 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10662 10663 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10664 10665 // Frame & Return address. 10666 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10667 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10668 10669 case ISD::INTRINSIC_VOID: 10670 return LowerINTRINSIC_VOID(Op, DAG); 10671 case ISD::SREM: 10672 case ISD::UREM: 10673 return LowerREM(Op, DAG); 10674 case ISD::BSWAP: 10675 return LowerBSWAP(Op, DAG); 10676 case ISD::ATOMIC_CMP_SWAP: 10677 return LowerATOMIC_CMP_SWAP(Op, DAG); 10678 } 10679 } 10680 10681 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10682 SmallVectorImpl<SDValue>&Results, 10683 SelectionDAG &DAG) const { 10684 SDLoc dl(N); 10685 switch (N->getOpcode()) { 10686 default: 10687 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10688 case ISD::READCYCLECOUNTER: { 10689 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10690 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10691 10692 Results.push_back( 10693 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10694 Results.push_back(RTB.getValue(2)); 10695 break; 10696 } 10697 case ISD::INTRINSIC_W_CHAIN: { 10698 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10699 Intrinsic::loop_decrement) 10700 break; 10701 10702 assert(N->getValueType(0) == MVT::i1 && 10703 "Unexpected result type for CTR decrement intrinsic"); 10704 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10705 N->getValueType(0)); 10706 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10707 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10708 N->getOperand(1)); 10709 10710 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10711 Results.push_back(NewInt.getValue(1)); 10712 break; 10713 } 10714 case ISD::VAARG: { 10715 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10716 return; 10717 10718 EVT VT = N->getValueType(0); 10719 10720 if (VT == MVT::i64) { 10721 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10722 10723 Results.push_back(NewNode); 10724 Results.push_back(NewNode.getValue(1)); 10725 } 10726 return; 10727 } 10728 case ISD::FP_TO_SINT: 10729 case ISD::FP_TO_UINT: 10730 // LowerFP_TO_INT() can only handle f32 and f64. 10731 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10732 return; 10733 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10734 return; 10735 case ISD::TRUNCATE: { 10736 EVT TrgVT = N->getValueType(0); 10737 EVT OpVT = N->getOperand(0).getValueType(); 10738 if (TrgVT.isVector() && 10739 isOperationCustom(N->getOpcode(), TrgVT) && 10740 OpVT.getSizeInBits() <= 128 && 10741 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10742 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10743 return; 10744 } 10745 case ISD::BITCAST: 10746 // Don't handle bitcast here. 10747 return; 10748 } 10749 } 10750 10751 //===----------------------------------------------------------------------===// 10752 // Other Lowering Code 10753 //===----------------------------------------------------------------------===// 10754 10755 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10756 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10757 Function *Func = Intrinsic::getDeclaration(M, Id); 10758 return Builder.CreateCall(Func, {}); 10759 } 10760 10761 // The mappings for emitLeading/TrailingFence is taken from 10762 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10763 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10764 Instruction *Inst, 10765 AtomicOrdering Ord) const { 10766 if (Ord == AtomicOrdering::SequentiallyConsistent) 10767 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10768 if (isReleaseOrStronger(Ord)) 10769 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10770 return nullptr; 10771 } 10772 10773 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10774 Instruction *Inst, 10775 AtomicOrdering Ord) const { 10776 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10777 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10778 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10779 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10780 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10781 return Builder.CreateCall( 10782 Intrinsic::getDeclaration( 10783 Builder.GetInsertBlock()->getParent()->getParent(), 10784 Intrinsic::ppc_cfence, {Inst->getType()}), 10785 {Inst}); 10786 // FIXME: Can use isync for rmw operation. 10787 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10788 } 10789 return nullptr; 10790 } 10791 10792 MachineBasicBlock * 10793 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10794 unsigned AtomicSize, 10795 unsigned BinOpcode, 10796 unsigned CmpOpcode, 10797 unsigned CmpPred) const { 10798 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10799 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10800 10801 auto LoadMnemonic = PPC::LDARX; 10802 auto StoreMnemonic = PPC::STDCX; 10803 switch (AtomicSize) { 10804 default: 10805 llvm_unreachable("Unexpected size of atomic entity"); 10806 case 1: 10807 LoadMnemonic = PPC::LBARX; 10808 StoreMnemonic = PPC::STBCX; 10809 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10810 break; 10811 case 2: 10812 LoadMnemonic = PPC::LHARX; 10813 StoreMnemonic = PPC::STHCX; 10814 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10815 break; 10816 case 4: 10817 LoadMnemonic = PPC::LWARX; 10818 StoreMnemonic = PPC::STWCX; 10819 break; 10820 case 8: 10821 LoadMnemonic = PPC::LDARX; 10822 StoreMnemonic = PPC::STDCX; 10823 break; 10824 } 10825 10826 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10827 MachineFunction *F = BB->getParent(); 10828 MachineFunction::iterator It = ++BB->getIterator(); 10829 10830 Register dest = MI.getOperand(0).getReg(); 10831 Register ptrA = MI.getOperand(1).getReg(); 10832 Register ptrB = MI.getOperand(2).getReg(); 10833 Register incr = MI.getOperand(3).getReg(); 10834 DebugLoc dl = MI.getDebugLoc(); 10835 10836 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10837 MachineBasicBlock *loop2MBB = 10838 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10839 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10840 F->insert(It, loopMBB); 10841 if (CmpOpcode) 10842 F->insert(It, loop2MBB); 10843 F->insert(It, exitMBB); 10844 exitMBB->splice(exitMBB->begin(), BB, 10845 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10846 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10847 10848 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10849 Register TmpReg = (!BinOpcode) ? incr : 10850 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10851 : &PPC::GPRCRegClass); 10852 10853 // thisMBB: 10854 // ... 10855 // fallthrough --> loopMBB 10856 BB->addSuccessor(loopMBB); 10857 10858 // loopMBB: 10859 // l[wd]arx dest, ptr 10860 // add r0, dest, incr 10861 // st[wd]cx. r0, ptr 10862 // bne- loopMBB 10863 // fallthrough --> exitMBB 10864 10865 // For max/min... 10866 // loopMBB: 10867 // l[wd]arx dest, ptr 10868 // cmpl?[wd] incr, dest 10869 // bgt exitMBB 10870 // loop2MBB: 10871 // st[wd]cx. dest, ptr 10872 // bne- loopMBB 10873 // fallthrough --> exitMBB 10874 10875 BB = loopMBB; 10876 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10877 .addReg(ptrA).addReg(ptrB); 10878 if (BinOpcode) 10879 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10880 if (CmpOpcode) { 10881 // Signed comparisons of byte or halfword values must be sign-extended. 10882 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10883 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10884 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10885 ExtReg).addReg(dest); 10886 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10887 .addReg(incr).addReg(ExtReg); 10888 } else 10889 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10890 .addReg(incr).addReg(dest); 10891 10892 BuildMI(BB, dl, TII->get(PPC::BCC)) 10893 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10894 BB->addSuccessor(loop2MBB); 10895 BB->addSuccessor(exitMBB); 10896 BB = loop2MBB; 10897 } 10898 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10899 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10900 BuildMI(BB, dl, TII->get(PPC::BCC)) 10901 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10902 BB->addSuccessor(loopMBB); 10903 BB->addSuccessor(exitMBB); 10904 10905 // exitMBB: 10906 // ... 10907 BB = exitMBB; 10908 return BB; 10909 } 10910 10911 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10912 MachineInstr &MI, MachineBasicBlock *BB, 10913 bool is8bit, // operation 10914 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10915 // If we support part-word atomic mnemonics, just use them 10916 if (Subtarget.hasPartwordAtomics()) 10917 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10918 CmpPred); 10919 10920 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10921 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10922 // In 64 bit mode we have to use 64 bits for addresses, even though the 10923 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10924 // registers without caring whether they're 32 or 64, but here we're 10925 // doing actual arithmetic on the addresses. 10926 bool is64bit = Subtarget.isPPC64(); 10927 bool isLittleEndian = Subtarget.isLittleEndian(); 10928 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10929 10930 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10931 MachineFunction *F = BB->getParent(); 10932 MachineFunction::iterator It = ++BB->getIterator(); 10933 10934 Register dest = MI.getOperand(0).getReg(); 10935 Register ptrA = MI.getOperand(1).getReg(); 10936 Register ptrB = MI.getOperand(2).getReg(); 10937 Register incr = MI.getOperand(3).getReg(); 10938 DebugLoc dl = MI.getDebugLoc(); 10939 10940 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10941 MachineBasicBlock *loop2MBB = 10942 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10943 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10944 F->insert(It, loopMBB); 10945 if (CmpOpcode) 10946 F->insert(It, loop2MBB); 10947 F->insert(It, exitMBB); 10948 exitMBB->splice(exitMBB->begin(), BB, 10949 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10950 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10951 10952 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10953 const TargetRegisterClass *RC = 10954 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10955 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10956 10957 Register PtrReg = RegInfo.createVirtualRegister(RC); 10958 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10959 Register ShiftReg = 10960 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10961 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10962 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10963 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10964 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10965 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10966 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10967 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10968 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10969 Register Ptr1Reg; 10970 Register TmpReg = 10971 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10972 10973 // thisMBB: 10974 // ... 10975 // fallthrough --> loopMBB 10976 BB->addSuccessor(loopMBB); 10977 10978 // The 4-byte load must be aligned, while a char or short may be 10979 // anywhere in the word. Hence all this nasty bookkeeping code. 10980 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10981 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10982 // xori shift, shift1, 24 [16] 10983 // rlwinm ptr, ptr1, 0, 0, 29 10984 // slw incr2, incr, shift 10985 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10986 // slw mask, mask2, shift 10987 // loopMBB: 10988 // lwarx tmpDest, ptr 10989 // add tmp, tmpDest, incr2 10990 // andc tmp2, tmpDest, mask 10991 // and tmp3, tmp, mask 10992 // or tmp4, tmp3, tmp2 10993 // stwcx. tmp4, ptr 10994 // bne- loopMBB 10995 // fallthrough --> exitMBB 10996 // srw dest, tmpDest, shift 10997 if (ptrA != ZeroReg) { 10998 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10999 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11000 .addReg(ptrA) 11001 .addReg(ptrB); 11002 } else { 11003 Ptr1Reg = ptrB; 11004 } 11005 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11006 // mode. 11007 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11008 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11009 .addImm(3) 11010 .addImm(27) 11011 .addImm(is8bit ? 28 : 27); 11012 if (!isLittleEndian) 11013 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11014 .addReg(Shift1Reg) 11015 .addImm(is8bit ? 24 : 16); 11016 if (is64bit) 11017 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11018 .addReg(Ptr1Reg) 11019 .addImm(0) 11020 .addImm(61); 11021 else 11022 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11023 .addReg(Ptr1Reg) 11024 .addImm(0) 11025 .addImm(0) 11026 .addImm(29); 11027 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11028 if (is8bit) 11029 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11030 else { 11031 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11032 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11033 .addReg(Mask3Reg) 11034 .addImm(65535); 11035 } 11036 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11037 .addReg(Mask2Reg) 11038 .addReg(ShiftReg); 11039 11040 BB = loopMBB; 11041 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11042 .addReg(ZeroReg) 11043 .addReg(PtrReg); 11044 if (BinOpcode) 11045 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11046 .addReg(Incr2Reg) 11047 .addReg(TmpDestReg); 11048 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11049 .addReg(TmpDestReg) 11050 .addReg(MaskReg); 11051 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11052 if (CmpOpcode) { 11053 // For unsigned comparisons, we can directly compare the shifted values. 11054 // For signed comparisons we shift and sign extend. 11055 Register SReg = RegInfo.createVirtualRegister(GPRC); 11056 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11057 .addReg(TmpDestReg) 11058 .addReg(MaskReg); 11059 unsigned ValueReg = SReg; 11060 unsigned CmpReg = Incr2Reg; 11061 if (CmpOpcode == PPC::CMPW) { 11062 ValueReg = RegInfo.createVirtualRegister(GPRC); 11063 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11064 .addReg(SReg) 11065 .addReg(ShiftReg); 11066 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11067 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11068 .addReg(ValueReg); 11069 ValueReg = ValueSReg; 11070 CmpReg = incr; 11071 } 11072 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11073 .addReg(CmpReg) 11074 .addReg(ValueReg); 11075 BuildMI(BB, dl, TII->get(PPC::BCC)) 11076 .addImm(CmpPred) 11077 .addReg(PPC::CR0) 11078 .addMBB(exitMBB); 11079 BB->addSuccessor(loop2MBB); 11080 BB->addSuccessor(exitMBB); 11081 BB = loop2MBB; 11082 } 11083 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11084 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11085 .addReg(Tmp4Reg) 11086 .addReg(ZeroReg) 11087 .addReg(PtrReg); 11088 BuildMI(BB, dl, TII->get(PPC::BCC)) 11089 .addImm(PPC::PRED_NE) 11090 .addReg(PPC::CR0) 11091 .addMBB(loopMBB); 11092 BB->addSuccessor(loopMBB); 11093 BB->addSuccessor(exitMBB); 11094 11095 // exitMBB: 11096 // ... 11097 BB = exitMBB; 11098 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11099 .addReg(TmpDestReg) 11100 .addReg(ShiftReg); 11101 return BB; 11102 } 11103 11104 llvm::MachineBasicBlock * 11105 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11106 MachineBasicBlock *MBB) const { 11107 DebugLoc DL = MI.getDebugLoc(); 11108 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11109 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11110 11111 MachineFunction *MF = MBB->getParent(); 11112 MachineRegisterInfo &MRI = MF->getRegInfo(); 11113 11114 const BasicBlock *BB = MBB->getBasicBlock(); 11115 MachineFunction::iterator I = ++MBB->getIterator(); 11116 11117 Register DstReg = MI.getOperand(0).getReg(); 11118 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11119 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11120 Register mainDstReg = MRI.createVirtualRegister(RC); 11121 Register restoreDstReg = MRI.createVirtualRegister(RC); 11122 11123 MVT PVT = getPointerTy(MF->getDataLayout()); 11124 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11125 "Invalid Pointer Size!"); 11126 // For v = setjmp(buf), we generate 11127 // 11128 // thisMBB: 11129 // SjLjSetup mainMBB 11130 // bl mainMBB 11131 // v_restore = 1 11132 // b sinkMBB 11133 // 11134 // mainMBB: 11135 // buf[LabelOffset] = LR 11136 // v_main = 0 11137 // 11138 // sinkMBB: 11139 // v = phi(main, restore) 11140 // 11141 11142 MachineBasicBlock *thisMBB = MBB; 11143 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11144 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11145 MF->insert(I, mainMBB); 11146 MF->insert(I, sinkMBB); 11147 11148 MachineInstrBuilder MIB; 11149 11150 // Transfer the remainder of BB and its successor edges to sinkMBB. 11151 sinkMBB->splice(sinkMBB->begin(), MBB, 11152 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11153 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11154 11155 // Note that the structure of the jmp_buf used here is not compatible 11156 // with that used by libc, and is not designed to be. Specifically, it 11157 // stores only those 'reserved' registers that LLVM does not otherwise 11158 // understand how to spill. Also, by convention, by the time this 11159 // intrinsic is called, Clang has already stored the frame address in the 11160 // first slot of the buffer and stack address in the third. Following the 11161 // X86 target code, we'll store the jump address in the second slot. We also 11162 // need to save the TOC pointer (R2) to handle jumps between shared 11163 // libraries, and that will be stored in the fourth slot. The thread 11164 // identifier (R13) is not affected. 11165 11166 // thisMBB: 11167 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11168 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11169 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11170 11171 // Prepare IP either in reg. 11172 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11173 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11174 Register BufReg = MI.getOperand(1).getReg(); 11175 11176 if (Subtarget.is64BitELFABI()) { 11177 setUsesTOCBasePtr(*MBB->getParent()); 11178 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11179 .addReg(PPC::X2) 11180 .addImm(TOCOffset) 11181 .addReg(BufReg) 11182 .cloneMemRefs(MI); 11183 } 11184 11185 // Naked functions never have a base pointer, and so we use r1. For all 11186 // other functions, this decision must be delayed until during PEI. 11187 unsigned BaseReg; 11188 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11189 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11190 else 11191 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11192 11193 MIB = BuildMI(*thisMBB, MI, DL, 11194 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11195 .addReg(BaseReg) 11196 .addImm(BPOffset) 11197 .addReg(BufReg) 11198 .cloneMemRefs(MI); 11199 11200 // Setup 11201 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11202 MIB.addRegMask(TRI->getNoPreservedMask()); 11203 11204 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11205 11206 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11207 .addMBB(mainMBB); 11208 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11209 11210 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11211 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11212 11213 // mainMBB: 11214 // mainDstReg = 0 11215 MIB = 11216 BuildMI(mainMBB, DL, 11217 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11218 11219 // Store IP 11220 if (Subtarget.isPPC64()) { 11221 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11222 .addReg(LabelReg) 11223 .addImm(LabelOffset) 11224 .addReg(BufReg); 11225 } else { 11226 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11227 .addReg(LabelReg) 11228 .addImm(LabelOffset) 11229 .addReg(BufReg); 11230 } 11231 MIB.cloneMemRefs(MI); 11232 11233 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11234 mainMBB->addSuccessor(sinkMBB); 11235 11236 // sinkMBB: 11237 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11238 TII->get(PPC::PHI), DstReg) 11239 .addReg(mainDstReg).addMBB(mainMBB) 11240 .addReg(restoreDstReg).addMBB(thisMBB); 11241 11242 MI.eraseFromParent(); 11243 return sinkMBB; 11244 } 11245 11246 MachineBasicBlock * 11247 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11248 MachineBasicBlock *MBB) const { 11249 DebugLoc DL = MI.getDebugLoc(); 11250 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11251 11252 MachineFunction *MF = MBB->getParent(); 11253 MachineRegisterInfo &MRI = MF->getRegInfo(); 11254 11255 MVT PVT = getPointerTy(MF->getDataLayout()); 11256 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11257 "Invalid Pointer Size!"); 11258 11259 const TargetRegisterClass *RC = 11260 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11261 Register Tmp = MRI.createVirtualRegister(RC); 11262 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11263 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11264 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11265 unsigned BP = 11266 (PVT == MVT::i64) 11267 ? PPC::X30 11268 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11269 : PPC::R30); 11270 11271 MachineInstrBuilder MIB; 11272 11273 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11274 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11275 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11276 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11277 11278 Register BufReg = MI.getOperand(0).getReg(); 11279 11280 // Reload FP (the jumped-to function may not have had a 11281 // frame pointer, and if so, then its r31 will be restored 11282 // as necessary). 11283 if (PVT == MVT::i64) { 11284 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11285 .addImm(0) 11286 .addReg(BufReg); 11287 } else { 11288 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11289 .addImm(0) 11290 .addReg(BufReg); 11291 } 11292 MIB.cloneMemRefs(MI); 11293 11294 // Reload IP 11295 if (PVT == MVT::i64) { 11296 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11297 .addImm(LabelOffset) 11298 .addReg(BufReg); 11299 } else { 11300 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11301 .addImm(LabelOffset) 11302 .addReg(BufReg); 11303 } 11304 MIB.cloneMemRefs(MI); 11305 11306 // Reload SP 11307 if (PVT == MVT::i64) { 11308 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11309 .addImm(SPOffset) 11310 .addReg(BufReg); 11311 } else { 11312 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11313 .addImm(SPOffset) 11314 .addReg(BufReg); 11315 } 11316 MIB.cloneMemRefs(MI); 11317 11318 // Reload BP 11319 if (PVT == MVT::i64) { 11320 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11321 .addImm(BPOffset) 11322 .addReg(BufReg); 11323 } else { 11324 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11325 .addImm(BPOffset) 11326 .addReg(BufReg); 11327 } 11328 MIB.cloneMemRefs(MI); 11329 11330 // Reload TOC 11331 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11332 setUsesTOCBasePtr(*MBB->getParent()); 11333 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11334 .addImm(TOCOffset) 11335 .addReg(BufReg) 11336 .cloneMemRefs(MI); 11337 } 11338 11339 // Jump 11340 BuildMI(*MBB, MI, DL, 11341 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11342 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11343 11344 MI.eraseFromParent(); 11345 return MBB; 11346 } 11347 11348 MachineBasicBlock * 11349 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11350 MachineBasicBlock *BB) const { 11351 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11352 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11353 if (Subtarget.is64BitELFABI() && 11354 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11355 // Call lowering should have added an r2 operand to indicate a dependence 11356 // on the TOC base pointer value. It can't however, because there is no 11357 // way to mark the dependence as implicit there, and so the stackmap code 11358 // will confuse it with a regular operand. Instead, add the dependence 11359 // here. 11360 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11361 } 11362 11363 return emitPatchPoint(MI, BB); 11364 } 11365 11366 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11367 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11368 return emitEHSjLjSetJmp(MI, BB); 11369 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11370 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11371 return emitEHSjLjLongJmp(MI, BB); 11372 } 11373 11374 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11375 11376 // To "insert" these instructions we actually have to insert their 11377 // control-flow patterns. 11378 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11379 MachineFunction::iterator It = ++BB->getIterator(); 11380 11381 MachineFunction *F = BB->getParent(); 11382 11383 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11384 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11385 MI.getOpcode() == PPC::SELECT_I8) { 11386 SmallVector<MachineOperand, 2> Cond; 11387 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11388 MI.getOpcode() == PPC::SELECT_CC_I8) 11389 Cond.push_back(MI.getOperand(4)); 11390 else 11391 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11392 Cond.push_back(MI.getOperand(1)); 11393 11394 DebugLoc dl = MI.getDebugLoc(); 11395 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11396 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11397 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11398 MI.getOpcode() == PPC::SELECT_CC_F8 || 11399 MI.getOpcode() == PPC::SELECT_CC_F16 || 11400 MI.getOpcode() == PPC::SELECT_CC_QFRC || 11401 MI.getOpcode() == PPC::SELECT_CC_QSRC || 11402 MI.getOpcode() == PPC::SELECT_CC_QBRC || 11403 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11404 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11405 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11406 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11407 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11408 MI.getOpcode() == PPC::SELECT_CC_SPE || 11409 MI.getOpcode() == PPC::SELECT_F4 || 11410 MI.getOpcode() == PPC::SELECT_F8 || 11411 MI.getOpcode() == PPC::SELECT_F16 || 11412 MI.getOpcode() == PPC::SELECT_QFRC || 11413 MI.getOpcode() == PPC::SELECT_QSRC || 11414 MI.getOpcode() == PPC::SELECT_QBRC || 11415 MI.getOpcode() == PPC::SELECT_SPE || 11416 MI.getOpcode() == PPC::SELECT_SPE4 || 11417 MI.getOpcode() == PPC::SELECT_VRRC || 11418 MI.getOpcode() == PPC::SELECT_VSFRC || 11419 MI.getOpcode() == PPC::SELECT_VSSRC || 11420 MI.getOpcode() == PPC::SELECT_VSRC) { 11421 // The incoming instruction knows the destination vreg to set, the 11422 // condition code register to branch on, the true/false values to 11423 // select between, and a branch opcode to use. 11424 11425 // thisMBB: 11426 // ... 11427 // TrueVal = ... 11428 // cmpTY ccX, r1, r2 11429 // bCC copy1MBB 11430 // fallthrough --> copy0MBB 11431 MachineBasicBlock *thisMBB = BB; 11432 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11433 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11434 DebugLoc dl = MI.getDebugLoc(); 11435 F->insert(It, copy0MBB); 11436 F->insert(It, sinkMBB); 11437 11438 // Transfer the remainder of BB and its successor edges to sinkMBB. 11439 sinkMBB->splice(sinkMBB->begin(), BB, 11440 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11441 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11442 11443 // Next, add the true and fallthrough blocks as its successors. 11444 BB->addSuccessor(copy0MBB); 11445 BB->addSuccessor(sinkMBB); 11446 11447 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11448 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11449 MI.getOpcode() == PPC::SELECT_F16 || 11450 MI.getOpcode() == PPC::SELECT_SPE4 || 11451 MI.getOpcode() == PPC::SELECT_SPE || 11452 MI.getOpcode() == PPC::SELECT_QFRC || 11453 MI.getOpcode() == PPC::SELECT_QSRC || 11454 MI.getOpcode() == PPC::SELECT_QBRC || 11455 MI.getOpcode() == PPC::SELECT_VRRC || 11456 MI.getOpcode() == PPC::SELECT_VSFRC || 11457 MI.getOpcode() == PPC::SELECT_VSSRC || 11458 MI.getOpcode() == PPC::SELECT_VSRC) { 11459 BuildMI(BB, dl, TII->get(PPC::BC)) 11460 .addReg(MI.getOperand(1).getReg()) 11461 .addMBB(sinkMBB); 11462 } else { 11463 unsigned SelectPred = MI.getOperand(4).getImm(); 11464 BuildMI(BB, dl, TII->get(PPC::BCC)) 11465 .addImm(SelectPred) 11466 .addReg(MI.getOperand(1).getReg()) 11467 .addMBB(sinkMBB); 11468 } 11469 11470 // copy0MBB: 11471 // %FalseValue = ... 11472 // # fallthrough to sinkMBB 11473 BB = copy0MBB; 11474 11475 // Update machine-CFG edges 11476 BB->addSuccessor(sinkMBB); 11477 11478 // sinkMBB: 11479 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11480 // ... 11481 BB = sinkMBB; 11482 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11483 .addReg(MI.getOperand(3).getReg()) 11484 .addMBB(copy0MBB) 11485 .addReg(MI.getOperand(2).getReg()) 11486 .addMBB(thisMBB); 11487 } else if (MI.getOpcode() == PPC::ReadTB) { 11488 // To read the 64-bit time-base register on a 32-bit target, we read the 11489 // two halves. Should the counter have wrapped while it was being read, we 11490 // need to try again. 11491 // ... 11492 // readLoop: 11493 // mfspr Rx,TBU # load from TBU 11494 // mfspr Ry,TB # load from TB 11495 // mfspr Rz,TBU # load from TBU 11496 // cmpw crX,Rx,Rz # check if 'old'='new' 11497 // bne readLoop # branch if they're not equal 11498 // ... 11499 11500 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11501 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11502 DebugLoc dl = MI.getDebugLoc(); 11503 F->insert(It, readMBB); 11504 F->insert(It, sinkMBB); 11505 11506 // Transfer the remainder of BB and its successor edges to sinkMBB. 11507 sinkMBB->splice(sinkMBB->begin(), BB, 11508 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11509 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11510 11511 BB->addSuccessor(readMBB); 11512 BB = readMBB; 11513 11514 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11515 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11516 Register LoReg = MI.getOperand(0).getReg(); 11517 Register HiReg = MI.getOperand(1).getReg(); 11518 11519 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11520 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11521 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11522 11523 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11524 11525 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11526 .addReg(HiReg) 11527 .addReg(ReadAgainReg); 11528 BuildMI(BB, dl, TII->get(PPC::BCC)) 11529 .addImm(PPC::PRED_NE) 11530 .addReg(CmpReg) 11531 .addMBB(readMBB); 11532 11533 BB->addSuccessor(readMBB); 11534 BB->addSuccessor(sinkMBB); 11535 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11536 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11537 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11538 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11539 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11540 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11541 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11542 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11543 11544 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11545 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11546 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11547 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11548 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11549 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11550 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11551 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11552 11553 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11554 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11555 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11556 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11557 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11558 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11559 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11560 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11561 11562 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11563 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11564 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11565 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11566 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11567 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11568 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11569 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11570 11571 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11572 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11573 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11574 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11575 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11576 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11577 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11578 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11579 11580 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11581 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11582 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11583 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11584 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11585 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11586 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11587 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11588 11589 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11590 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11591 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11592 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11593 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11594 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11595 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11596 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11597 11598 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11599 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11600 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11601 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11602 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11603 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11604 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11605 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11606 11607 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11608 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11609 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11610 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11611 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11612 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11613 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11614 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11615 11616 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11617 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11618 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11619 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11620 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11621 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11622 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11623 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11624 11625 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11626 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11627 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11628 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11629 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11630 BB = EmitAtomicBinary(MI, BB, 4, 0); 11631 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11632 BB = EmitAtomicBinary(MI, BB, 8, 0); 11633 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11634 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11635 (Subtarget.hasPartwordAtomics() && 11636 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11637 (Subtarget.hasPartwordAtomics() && 11638 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11639 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11640 11641 auto LoadMnemonic = PPC::LDARX; 11642 auto StoreMnemonic = PPC::STDCX; 11643 switch (MI.getOpcode()) { 11644 default: 11645 llvm_unreachable("Compare and swap of unknown size"); 11646 case PPC::ATOMIC_CMP_SWAP_I8: 11647 LoadMnemonic = PPC::LBARX; 11648 StoreMnemonic = PPC::STBCX; 11649 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11650 break; 11651 case PPC::ATOMIC_CMP_SWAP_I16: 11652 LoadMnemonic = PPC::LHARX; 11653 StoreMnemonic = PPC::STHCX; 11654 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11655 break; 11656 case PPC::ATOMIC_CMP_SWAP_I32: 11657 LoadMnemonic = PPC::LWARX; 11658 StoreMnemonic = PPC::STWCX; 11659 break; 11660 case PPC::ATOMIC_CMP_SWAP_I64: 11661 LoadMnemonic = PPC::LDARX; 11662 StoreMnemonic = PPC::STDCX; 11663 break; 11664 } 11665 Register dest = MI.getOperand(0).getReg(); 11666 Register ptrA = MI.getOperand(1).getReg(); 11667 Register ptrB = MI.getOperand(2).getReg(); 11668 Register oldval = MI.getOperand(3).getReg(); 11669 Register newval = MI.getOperand(4).getReg(); 11670 DebugLoc dl = MI.getDebugLoc(); 11671 11672 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11673 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11674 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11675 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11676 F->insert(It, loop1MBB); 11677 F->insert(It, loop2MBB); 11678 F->insert(It, midMBB); 11679 F->insert(It, exitMBB); 11680 exitMBB->splice(exitMBB->begin(), BB, 11681 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11682 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11683 11684 // thisMBB: 11685 // ... 11686 // fallthrough --> loopMBB 11687 BB->addSuccessor(loop1MBB); 11688 11689 // loop1MBB: 11690 // l[bhwd]arx dest, ptr 11691 // cmp[wd] dest, oldval 11692 // bne- midMBB 11693 // loop2MBB: 11694 // st[bhwd]cx. newval, ptr 11695 // bne- loopMBB 11696 // b exitBB 11697 // midMBB: 11698 // st[bhwd]cx. dest, ptr 11699 // exitBB: 11700 BB = loop1MBB; 11701 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11702 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11703 .addReg(oldval) 11704 .addReg(dest); 11705 BuildMI(BB, dl, TII->get(PPC::BCC)) 11706 .addImm(PPC::PRED_NE) 11707 .addReg(PPC::CR0) 11708 .addMBB(midMBB); 11709 BB->addSuccessor(loop2MBB); 11710 BB->addSuccessor(midMBB); 11711 11712 BB = loop2MBB; 11713 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11714 .addReg(newval) 11715 .addReg(ptrA) 11716 .addReg(ptrB); 11717 BuildMI(BB, dl, TII->get(PPC::BCC)) 11718 .addImm(PPC::PRED_NE) 11719 .addReg(PPC::CR0) 11720 .addMBB(loop1MBB); 11721 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11722 BB->addSuccessor(loop1MBB); 11723 BB->addSuccessor(exitMBB); 11724 11725 BB = midMBB; 11726 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11727 .addReg(dest) 11728 .addReg(ptrA) 11729 .addReg(ptrB); 11730 BB->addSuccessor(exitMBB); 11731 11732 // exitMBB: 11733 // ... 11734 BB = exitMBB; 11735 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11736 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11737 // We must use 64-bit registers for addresses when targeting 64-bit, 11738 // since we're actually doing arithmetic on them. Other registers 11739 // can be 32-bit. 11740 bool is64bit = Subtarget.isPPC64(); 11741 bool isLittleEndian = Subtarget.isLittleEndian(); 11742 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11743 11744 Register dest = MI.getOperand(0).getReg(); 11745 Register ptrA = MI.getOperand(1).getReg(); 11746 Register ptrB = MI.getOperand(2).getReg(); 11747 Register oldval = MI.getOperand(3).getReg(); 11748 Register newval = MI.getOperand(4).getReg(); 11749 DebugLoc dl = MI.getDebugLoc(); 11750 11751 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11752 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11753 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11754 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11755 F->insert(It, loop1MBB); 11756 F->insert(It, loop2MBB); 11757 F->insert(It, midMBB); 11758 F->insert(It, exitMBB); 11759 exitMBB->splice(exitMBB->begin(), BB, 11760 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11761 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11762 11763 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11764 const TargetRegisterClass *RC = 11765 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11766 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11767 11768 Register PtrReg = RegInfo.createVirtualRegister(RC); 11769 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11770 Register ShiftReg = 11771 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11772 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11773 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11774 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11775 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11776 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11777 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11778 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11779 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11780 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11781 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11782 Register Ptr1Reg; 11783 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11784 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11785 // thisMBB: 11786 // ... 11787 // fallthrough --> loopMBB 11788 BB->addSuccessor(loop1MBB); 11789 11790 // The 4-byte load must be aligned, while a char or short may be 11791 // anywhere in the word. Hence all this nasty bookkeeping code. 11792 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11793 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11794 // xori shift, shift1, 24 [16] 11795 // rlwinm ptr, ptr1, 0, 0, 29 11796 // slw newval2, newval, shift 11797 // slw oldval2, oldval,shift 11798 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11799 // slw mask, mask2, shift 11800 // and newval3, newval2, mask 11801 // and oldval3, oldval2, mask 11802 // loop1MBB: 11803 // lwarx tmpDest, ptr 11804 // and tmp, tmpDest, mask 11805 // cmpw tmp, oldval3 11806 // bne- midMBB 11807 // loop2MBB: 11808 // andc tmp2, tmpDest, mask 11809 // or tmp4, tmp2, newval3 11810 // stwcx. tmp4, ptr 11811 // bne- loop1MBB 11812 // b exitBB 11813 // midMBB: 11814 // stwcx. tmpDest, ptr 11815 // exitBB: 11816 // srw dest, tmpDest, shift 11817 if (ptrA != ZeroReg) { 11818 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11819 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11820 .addReg(ptrA) 11821 .addReg(ptrB); 11822 } else { 11823 Ptr1Reg = ptrB; 11824 } 11825 11826 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11827 // mode. 11828 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11829 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11830 .addImm(3) 11831 .addImm(27) 11832 .addImm(is8bit ? 28 : 27); 11833 if (!isLittleEndian) 11834 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11835 .addReg(Shift1Reg) 11836 .addImm(is8bit ? 24 : 16); 11837 if (is64bit) 11838 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11839 .addReg(Ptr1Reg) 11840 .addImm(0) 11841 .addImm(61); 11842 else 11843 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11844 .addReg(Ptr1Reg) 11845 .addImm(0) 11846 .addImm(0) 11847 .addImm(29); 11848 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11849 .addReg(newval) 11850 .addReg(ShiftReg); 11851 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11852 .addReg(oldval) 11853 .addReg(ShiftReg); 11854 if (is8bit) 11855 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11856 else { 11857 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11858 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11859 .addReg(Mask3Reg) 11860 .addImm(65535); 11861 } 11862 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11863 .addReg(Mask2Reg) 11864 .addReg(ShiftReg); 11865 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11866 .addReg(NewVal2Reg) 11867 .addReg(MaskReg); 11868 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11869 .addReg(OldVal2Reg) 11870 .addReg(MaskReg); 11871 11872 BB = loop1MBB; 11873 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11874 .addReg(ZeroReg) 11875 .addReg(PtrReg); 11876 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11877 .addReg(TmpDestReg) 11878 .addReg(MaskReg); 11879 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11880 .addReg(TmpReg) 11881 .addReg(OldVal3Reg); 11882 BuildMI(BB, dl, TII->get(PPC::BCC)) 11883 .addImm(PPC::PRED_NE) 11884 .addReg(PPC::CR0) 11885 .addMBB(midMBB); 11886 BB->addSuccessor(loop2MBB); 11887 BB->addSuccessor(midMBB); 11888 11889 BB = loop2MBB; 11890 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11891 .addReg(TmpDestReg) 11892 .addReg(MaskReg); 11893 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11894 .addReg(Tmp2Reg) 11895 .addReg(NewVal3Reg); 11896 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11897 .addReg(Tmp4Reg) 11898 .addReg(ZeroReg) 11899 .addReg(PtrReg); 11900 BuildMI(BB, dl, TII->get(PPC::BCC)) 11901 .addImm(PPC::PRED_NE) 11902 .addReg(PPC::CR0) 11903 .addMBB(loop1MBB); 11904 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11905 BB->addSuccessor(loop1MBB); 11906 BB->addSuccessor(exitMBB); 11907 11908 BB = midMBB; 11909 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11910 .addReg(TmpDestReg) 11911 .addReg(ZeroReg) 11912 .addReg(PtrReg); 11913 BB->addSuccessor(exitMBB); 11914 11915 // exitMBB: 11916 // ... 11917 BB = exitMBB; 11918 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11919 .addReg(TmpReg) 11920 .addReg(ShiftReg); 11921 } else if (MI.getOpcode() == PPC::FADDrtz) { 11922 // This pseudo performs an FADD with rounding mode temporarily forced 11923 // to round-to-zero. We emit this via custom inserter since the FPSCR 11924 // is not modeled at the SelectionDAG level. 11925 Register Dest = MI.getOperand(0).getReg(); 11926 Register Src1 = MI.getOperand(1).getReg(); 11927 Register Src2 = MI.getOperand(2).getReg(); 11928 DebugLoc dl = MI.getDebugLoc(); 11929 11930 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11931 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11932 11933 // Save FPSCR value. 11934 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11935 11936 // Set rounding mode to round-to-zero. 11937 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11938 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11939 11940 // Perform addition. 11941 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11942 11943 // Restore FPSCR value. 11944 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11945 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11946 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 11947 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11948 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 11949 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11950 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 11951 ? PPC::ANDI8_rec 11952 : PPC::ANDI_rec; 11953 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11954 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 11955 11956 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11957 Register Dest = RegInfo.createVirtualRegister( 11958 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11959 11960 DebugLoc Dl = MI.getDebugLoc(); 11961 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 11962 .addReg(MI.getOperand(1).getReg()) 11963 .addImm(1); 11964 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11965 MI.getOperand(0).getReg()) 11966 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 11967 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11968 DebugLoc Dl = MI.getDebugLoc(); 11969 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11970 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11971 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11972 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11973 MI.getOperand(0).getReg()) 11974 .addReg(CRReg); 11975 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11976 DebugLoc Dl = MI.getDebugLoc(); 11977 unsigned Imm = MI.getOperand(1).getImm(); 11978 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11979 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11980 MI.getOperand(0).getReg()) 11981 .addReg(PPC::CR0EQ); 11982 } else if (MI.getOpcode() == PPC::SETRNDi) { 11983 DebugLoc dl = MI.getDebugLoc(); 11984 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11985 11986 // Save FPSCR value. 11987 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11988 11989 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11990 // the following settings: 11991 // 00 Round to nearest 11992 // 01 Round to 0 11993 // 10 Round to +inf 11994 // 11 Round to -inf 11995 11996 // When the operand is immediate, using the two least significant bits of 11997 // the immediate to set the bits 62:63 of FPSCR. 11998 unsigned Mode = MI.getOperand(1).getImm(); 11999 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12000 .addImm(31); 12001 12002 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12003 .addImm(30); 12004 } else if (MI.getOpcode() == PPC::SETRND) { 12005 DebugLoc dl = MI.getDebugLoc(); 12006 12007 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12008 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12009 // If the target doesn't have DirectMove, we should use stack to do the 12010 // conversion, because the target doesn't have the instructions like mtvsrd 12011 // or mfvsrd to do this conversion directly. 12012 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12013 if (Subtarget.hasDirectMove()) { 12014 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12015 .addReg(SrcReg); 12016 } else { 12017 // Use stack to do the register copy. 12018 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12019 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12020 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12021 if (RC == &PPC::F8RCRegClass) { 12022 // Copy register from F8RCRegClass to G8RCRegclass. 12023 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12024 "Unsupported RegClass."); 12025 12026 StoreOp = PPC::STFD; 12027 LoadOp = PPC::LD; 12028 } else { 12029 // Copy register from G8RCRegClass to F8RCRegclass. 12030 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12031 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12032 "Unsupported RegClass."); 12033 } 12034 12035 MachineFrameInfo &MFI = F->getFrameInfo(); 12036 int FrameIdx = MFI.CreateStackObject(8, 8, false); 12037 12038 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12039 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12040 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12041 MFI.getObjectAlign(FrameIdx)); 12042 12043 // Store the SrcReg into the stack. 12044 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12045 .addReg(SrcReg) 12046 .addImm(0) 12047 .addFrameIndex(FrameIdx) 12048 .addMemOperand(MMOStore); 12049 12050 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12051 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12052 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12053 MFI.getObjectAlign(FrameIdx)); 12054 12055 // Load from the stack where SrcReg is stored, and save to DestReg, 12056 // so we have done the RegClass conversion from RegClass::SrcReg to 12057 // RegClass::DestReg. 12058 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12059 .addImm(0) 12060 .addFrameIndex(FrameIdx) 12061 .addMemOperand(MMOLoad); 12062 } 12063 }; 12064 12065 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12066 12067 // Save FPSCR value. 12068 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12069 12070 // When the operand is gprc register, use two least significant bits of the 12071 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12072 // 12073 // copy OldFPSCRTmpReg, OldFPSCRReg 12074 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12075 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12076 // copy NewFPSCRReg, NewFPSCRTmpReg 12077 // mtfsf 255, NewFPSCRReg 12078 MachineOperand SrcOp = MI.getOperand(1); 12079 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12080 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12081 12082 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12083 12084 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12085 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12086 12087 // The first operand of INSERT_SUBREG should be a register which has 12088 // subregisters, we only care about its RegClass, so we should use an 12089 // IMPLICIT_DEF register. 12090 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12091 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12092 .addReg(ImDefReg) 12093 .add(SrcOp) 12094 .addImm(1); 12095 12096 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12097 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12098 .addReg(OldFPSCRTmpReg) 12099 .addReg(ExtSrcReg) 12100 .addImm(0) 12101 .addImm(62); 12102 12103 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12104 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12105 12106 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12107 // bits of FPSCR. 12108 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12109 .addImm(255) 12110 .addReg(NewFPSCRReg) 12111 .addImm(0) 12112 .addImm(0); 12113 } else { 12114 llvm_unreachable("Unexpected instr type to insert"); 12115 } 12116 12117 MI.eraseFromParent(); // The pseudo instruction is gone now. 12118 return BB; 12119 } 12120 12121 //===----------------------------------------------------------------------===// 12122 // Target Optimization Hooks 12123 //===----------------------------------------------------------------------===// 12124 12125 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12126 // For the estimates, convergence is quadratic, so we essentially double the 12127 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12128 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12129 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12130 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12131 if (VT.getScalarType() == MVT::f64) 12132 RefinementSteps++; 12133 return RefinementSteps; 12134 } 12135 12136 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12137 int Enabled, int &RefinementSteps, 12138 bool &UseOneConstNR, 12139 bool Reciprocal) const { 12140 EVT VT = Operand.getValueType(); 12141 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12142 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12143 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12144 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12145 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12146 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12147 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12148 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12149 12150 // The Newton-Raphson computation with a single constant does not provide 12151 // enough accuracy on some CPUs. 12152 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12153 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12154 } 12155 return SDValue(); 12156 } 12157 12158 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12159 int Enabled, 12160 int &RefinementSteps) const { 12161 EVT VT = Operand.getValueType(); 12162 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12163 (VT == MVT::f64 && Subtarget.hasFRE()) || 12164 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12165 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12166 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12167 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12168 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12169 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12170 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12171 } 12172 return SDValue(); 12173 } 12174 12175 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12176 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12177 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12178 // enabled for division), this functionality is redundant with the default 12179 // combiner logic (once the division -> reciprocal/multiply transformation 12180 // has taken place). As a result, this matters more for older cores than for 12181 // newer ones. 12182 12183 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12184 // reciprocal if there are two or more FDIVs (for embedded cores with only 12185 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12186 switch (Subtarget.getCPUDirective()) { 12187 default: 12188 return 3; 12189 case PPC::DIR_440: 12190 case PPC::DIR_A2: 12191 case PPC::DIR_E500: 12192 case PPC::DIR_E500mc: 12193 case PPC::DIR_E5500: 12194 return 2; 12195 } 12196 } 12197 12198 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12199 // collapsed, and so we need to look through chains of them. 12200 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12201 int64_t& Offset, SelectionDAG &DAG) { 12202 if (DAG.isBaseWithConstantOffset(Loc)) { 12203 Base = Loc.getOperand(0); 12204 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12205 12206 // The base might itself be a base plus an offset, and if so, accumulate 12207 // that as well. 12208 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12209 } 12210 } 12211 12212 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12213 unsigned Bytes, int Dist, 12214 SelectionDAG &DAG) { 12215 if (VT.getSizeInBits() / 8 != Bytes) 12216 return false; 12217 12218 SDValue BaseLoc = Base->getBasePtr(); 12219 if (Loc.getOpcode() == ISD::FrameIndex) { 12220 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12221 return false; 12222 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12223 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12224 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12225 int FS = MFI.getObjectSize(FI); 12226 int BFS = MFI.getObjectSize(BFI); 12227 if (FS != BFS || FS != (int)Bytes) return false; 12228 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12229 } 12230 12231 SDValue Base1 = Loc, Base2 = BaseLoc; 12232 int64_t Offset1 = 0, Offset2 = 0; 12233 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12234 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12235 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12236 return true; 12237 12238 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12239 const GlobalValue *GV1 = nullptr; 12240 const GlobalValue *GV2 = nullptr; 12241 Offset1 = 0; 12242 Offset2 = 0; 12243 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12244 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12245 if (isGA1 && isGA2 && GV1 == GV2) 12246 return Offset1 == (Offset2 + Dist*Bytes); 12247 return false; 12248 } 12249 12250 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12251 // not enforce equality of the chain operands. 12252 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12253 unsigned Bytes, int Dist, 12254 SelectionDAG &DAG) { 12255 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12256 EVT VT = LS->getMemoryVT(); 12257 SDValue Loc = LS->getBasePtr(); 12258 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12259 } 12260 12261 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12262 EVT VT; 12263 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12264 default: return false; 12265 case Intrinsic::ppc_qpx_qvlfd: 12266 case Intrinsic::ppc_qpx_qvlfda: 12267 VT = MVT::v4f64; 12268 break; 12269 case Intrinsic::ppc_qpx_qvlfs: 12270 case Intrinsic::ppc_qpx_qvlfsa: 12271 VT = MVT::v4f32; 12272 break; 12273 case Intrinsic::ppc_qpx_qvlfcd: 12274 case Intrinsic::ppc_qpx_qvlfcda: 12275 VT = MVT::v2f64; 12276 break; 12277 case Intrinsic::ppc_qpx_qvlfcs: 12278 case Intrinsic::ppc_qpx_qvlfcsa: 12279 VT = MVT::v2f32; 12280 break; 12281 case Intrinsic::ppc_qpx_qvlfiwa: 12282 case Intrinsic::ppc_qpx_qvlfiwz: 12283 case Intrinsic::ppc_altivec_lvx: 12284 case Intrinsic::ppc_altivec_lvxl: 12285 case Intrinsic::ppc_vsx_lxvw4x: 12286 case Intrinsic::ppc_vsx_lxvw4x_be: 12287 VT = MVT::v4i32; 12288 break; 12289 case Intrinsic::ppc_vsx_lxvd2x: 12290 case Intrinsic::ppc_vsx_lxvd2x_be: 12291 VT = MVT::v2f64; 12292 break; 12293 case Intrinsic::ppc_altivec_lvebx: 12294 VT = MVT::i8; 12295 break; 12296 case Intrinsic::ppc_altivec_lvehx: 12297 VT = MVT::i16; 12298 break; 12299 case Intrinsic::ppc_altivec_lvewx: 12300 VT = MVT::i32; 12301 break; 12302 } 12303 12304 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12305 } 12306 12307 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12308 EVT VT; 12309 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12310 default: return false; 12311 case Intrinsic::ppc_qpx_qvstfd: 12312 case Intrinsic::ppc_qpx_qvstfda: 12313 VT = MVT::v4f64; 12314 break; 12315 case Intrinsic::ppc_qpx_qvstfs: 12316 case Intrinsic::ppc_qpx_qvstfsa: 12317 VT = MVT::v4f32; 12318 break; 12319 case Intrinsic::ppc_qpx_qvstfcd: 12320 case Intrinsic::ppc_qpx_qvstfcda: 12321 VT = MVT::v2f64; 12322 break; 12323 case Intrinsic::ppc_qpx_qvstfcs: 12324 case Intrinsic::ppc_qpx_qvstfcsa: 12325 VT = MVT::v2f32; 12326 break; 12327 case Intrinsic::ppc_qpx_qvstfiw: 12328 case Intrinsic::ppc_qpx_qvstfiwa: 12329 case Intrinsic::ppc_altivec_stvx: 12330 case Intrinsic::ppc_altivec_stvxl: 12331 case Intrinsic::ppc_vsx_stxvw4x: 12332 VT = MVT::v4i32; 12333 break; 12334 case Intrinsic::ppc_vsx_stxvd2x: 12335 VT = MVT::v2f64; 12336 break; 12337 case Intrinsic::ppc_vsx_stxvw4x_be: 12338 VT = MVT::v4i32; 12339 break; 12340 case Intrinsic::ppc_vsx_stxvd2x_be: 12341 VT = MVT::v2f64; 12342 break; 12343 case Intrinsic::ppc_altivec_stvebx: 12344 VT = MVT::i8; 12345 break; 12346 case Intrinsic::ppc_altivec_stvehx: 12347 VT = MVT::i16; 12348 break; 12349 case Intrinsic::ppc_altivec_stvewx: 12350 VT = MVT::i32; 12351 break; 12352 } 12353 12354 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12355 } 12356 12357 return false; 12358 } 12359 12360 // Return true is there is a nearyby consecutive load to the one provided 12361 // (regardless of alignment). We search up and down the chain, looking though 12362 // token factors and other loads (but nothing else). As a result, a true result 12363 // indicates that it is safe to create a new consecutive load adjacent to the 12364 // load provided. 12365 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12366 SDValue Chain = LD->getChain(); 12367 EVT VT = LD->getMemoryVT(); 12368 12369 SmallSet<SDNode *, 16> LoadRoots; 12370 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12371 SmallSet<SDNode *, 16> Visited; 12372 12373 // First, search up the chain, branching to follow all token-factor operands. 12374 // If we find a consecutive load, then we're done, otherwise, record all 12375 // nodes just above the top-level loads and token factors. 12376 while (!Queue.empty()) { 12377 SDNode *ChainNext = Queue.pop_back_val(); 12378 if (!Visited.insert(ChainNext).second) 12379 continue; 12380 12381 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12382 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12383 return true; 12384 12385 if (!Visited.count(ChainLD->getChain().getNode())) 12386 Queue.push_back(ChainLD->getChain().getNode()); 12387 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12388 for (const SDUse &O : ChainNext->ops()) 12389 if (!Visited.count(O.getNode())) 12390 Queue.push_back(O.getNode()); 12391 } else 12392 LoadRoots.insert(ChainNext); 12393 } 12394 12395 // Second, search down the chain, starting from the top-level nodes recorded 12396 // in the first phase. These top-level nodes are the nodes just above all 12397 // loads and token factors. Starting with their uses, recursively look though 12398 // all loads (just the chain uses) and token factors to find a consecutive 12399 // load. 12400 Visited.clear(); 12401 Queue.clear(); 12402 12403 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12404 IE = LoadRoots.end(); I != IE; ++I) { 12405 Queue.push_back(*I); 12406 12407 while (!Queue.empty()) { 12408 SDNode *LoadRoot = Queue.pop_back_val(); 12409 if (!Visited.insert(LoadRoot).second) 12410 continue; 12411 12412 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12413 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12414 return true; 12415 12416 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12417 UE = LoadRoot->use_end(); UI != UE; ++UI) 12418 if (((isa<MemSDNode>(*UI) && 12419 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12420 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12421 Queue.push_back(*UI); 12422 } 12423 } 12424 12425 return false; 12426 } 12427 12428 /// This function is called when we have proved that a SETCC node can be replaced 12429 /// by subtraction (and other supporting instructions) so that the result of 12430 /// comparison is kept in a GPR instead of CR. This function is purely for 12431 /// codegen purposes and has some flags to guide the codegen process. 12432 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12433 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12434 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12435 12436 // Zero extend the operands to the largest legal integer. Originally, they 12437 // must be of a strictly smaller size. 12438 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12439 DAG.getConstant(Size, DL, MVT::i32)); 12440 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12441 DAG.getConstant(Size, DL, MVT::i32)); 12442 12443 // Swap if needed. Depends on the condition code. 12444 if (Swap) 12445 std::swap(Op0, Op1); 12446 12447 // Subtract extended integers. 12448 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12449 12450 // Move the sign bit to the least significant position and zero out the rest. 12451 // Now the least significant bit carries the result of original comparison. 12452 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12453 DAG.getConstant(Size - 1, DL, MVT::i32)); 12454 auto Final = Shifted; 12455 12456 // Complement the result if needed. Based on the condition code. 12457 if (Complement) 12458 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12459 DAG.getConstant(1, DL, MVT::i64)); 12460 12461 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12462 } 12463 12464 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12465 DAGCombinerInfo &DCI) const { 12466 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12467 12468 SelectionDAG &DAG = DCI.DAG; 12469 SDLoc DL(N); 12470 12471 // Size of integers being compared has a critical role in the following 12472 // analysis, so we prefer to do this when all types are legal. 12473 if (!DCI.isAfterLegalizeDAG()) 12474 return SDValue(); 12475 12476 // If all users of SETCC extend its value to a legal integer type 12477 // then we replace SETCC with a subtraction 12478 for (SDNode::use_iterator UI = N->use_begin(), 12479 UE = N->use_end(); UI != UE; ++UI) { 12480 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12481 return SDValue(); 12482 } 12483 12484 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12485 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12486 12487 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12488 12489 if (OpSize < Size) { 12490 switch (CC) { 12491 default: break; 12492 case ISD::SETULT: 12493 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12494 case ISD::SETULE: 12495 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12496 case ISD::SETUGT: 12497 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12498 case ISD::SETUGE: 12499 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12500 } 12501 } 12502 12503 return SDValue(); 12504 } 12505 12506 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12507 DAGCombinerInfo &DCI) const { 12508 SelectionDAG &DAG = DCI.DAG; 12509 SDLoc dl(N); 12510 12511 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12512 // If we're tracking CR bits, we need to be careful that we don't have: 12513 // trunc(binary-ops(zext(x), zext(y))) 12514 // or 12515 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12516 // such that we're unnecessarily moving things into GPRs when it would be 12517 // better to keep them in CR bits. 12518 12519 // Note that trunc here can be an actual i1 trunc, or can be the effective 12520 // truncation that comes from a setcc or select_cc. 12521 if (N->getOpcode() == ISD::TRUNCATE && 12522 N->getValueType(0) != MVT::i1) 12523 return SDValue(); 12524 12525 if (N->getOperand(0).getValueType() != MVT::i32 && 12526 N->getOperand(0).getValueType() != MVT::i64) 12527 return SDValue(); 12528 12529 if (N->getOpcode() == ISD::SETCC || 12530 N->getOpcode() == ISD::SELECT_CC) { 12531 // If we're looking at a comparison, then we need to make sure that the 12532 // high bits (all except for the first) don't matter the result. 12533 ISD::CondCode CC = 12534 cast<CondCodeSDNode>(N->getOperand( 12535 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12536 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12537 12538 if (ISD::isSignedIntSetCC(CC)) { 12539 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12540 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12541 return SDValue(); 12542 } else if (ISD::isUnsignedIntSetCC(CC)) { 12543 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12544 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12545 !DAG.MaskedValueIsZero(N->getOperand(1), 12546 APInt::getHighBitsSet(OpBits, OpBits-1))) 12547 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12548 : SDValue()); 12549 } else { 12550 // This is neither a signed nor an unsigned comparison, just make sure 12551 // that the high bits are equal. 12552 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12553 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12554 12555 // We don't really care about what is known about the first bit (if 12556 // anything), so clear it in all masks prior to comparing them. 12557 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12558 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12559 12560 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12561 return SDValue(); 12562 } 12563 } 12564 12565 // We now know that the higher-order bits are irrelevant, we just need to 12566 // make sure that all of the intermediate operations are bit operations, and 12567 // all inputs are extensions. 12568 if (N->getOperand(0).getOpcode() != ISD::AND && 12569 N->getOperand(0).getOpcode() != ISD::OR && 12570 N->getOperand(0).getOpcode() != ISD::XOR && 12571 N->getOperand(0).getOpcode() != ISD::SELECT && 12572 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12573 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12574 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12575 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12576 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12577 return SDValue(); 12578 12579 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12580 N->getOperand(1).getOpcode() != ISD::AND && 12581 N->getOperand(1).getOpcode() != ISD::OR && 12582 N->getOperand(1).getOpcode() != ISD::XOR && 12583 N->getOperand(1).getOpcode() != ISD::SELECT && 12584 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12585 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12586 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12587 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12588 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12589 return SDValue(); 12590 12591 SmallVector<SDValue, 4> Inputs; 12592 SmallVector<SDValue, 8> BinOps, PromOps; 12593 SmallPtrSet<SDNode *, 16> Visited; 12594 12595 for (unsigned i = 0; i < 2; ++i) { 12596 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12597 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12598 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12599 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12600 isa<ConstantSDNode>(N->getOperand(i))) 12601 Inputs.push_back(N->getOperand(i)); 12602 else 12603 BinOps.push_back(N->getOperand(i)); 12604 12605 if (N->getOpcode() == ISD::TRUNCATE) 12606 break; 12607 } 12608 12609 // Visit all inputs, collect all binary operations (and, or, xor and 12610 // select) that are all fed by extensions. 12611 while (!BinOps.empty()) { 12612 SDValue BinOp = BinOps.back(); 12613 BinOps.pop_back(); 12614 12615 if (!Visited.insert(BinOp.getNode()).second) 12616 continue; 12617 12618 PromOps.push_back(BinOp); 12619 12620 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12621 // The condition of the select is not promoted. 12622 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12623 continue; 12624 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12625 continue; 12626 12627 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12628 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12629 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12630 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12631 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12632 Inputs.push_back(BinOp.getOperand(i)); 12633 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12634 BinOp.getOperand(i).getOpcode() == ISD::OR || 12635 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12636 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12637 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12638 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12639 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12640 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12641 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12642 BinOps.push_back(BinOp.getOperand(i)); 12643 } else { 12644 // We have an input that is not an extension or another binary 12645 // operation; we'll abort this transformation. 12646 return SDValue(); 12647 } 12648 } 12649 } 12650 12651 // Make sure that this is a self-contained cluster of operations (which 12652 // is not quite the same thing as saying that everything has only one 12653 // use). 12654 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12655 if (isa<ConstantSDNode>(Inputs[i])) 12656 continue; 12657 12658 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12659 UE = Inputs[i].getNode()->use_end(); 12660 UI != UE; ++UI) { 12661 SDNode *User = *UI; 12662 if (User != N && !Visited.count(User)) 12663 return SDValue(); 12664 12665 // Make sure that we're not going to promote the non-output-value 12666 // operand(s) or SELECT or SELECT_CC. 12667 // FIXME: Although we could sometimes handle this, and it does occur in 12668 // practice that one of the condition inputs to the select is also one of 12669 // the outputs, we currently can't deal with this. 12670 if (User->getOpcode() == ISD::SELECT) { 12671 if (User->getOperand(0) == Inputs[i]) 12672 return SDValue(); 12673 } else if (User->getOpcode() == ISD::SELECT_CC) { 12674 if (User->getOperand(0) == Inputs[i] || 12675 User->getOperand(1) == Inputs[i]) 12676 return SDValue(); 12677 } 12678 } 12679 } 12680 12681 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12682 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12683 UE = PromOps[i].getNode()->use_end(); 12684 UI != UE; ++UI) { 12685 SDNode *User = *UI; 12686 if (User != N && !Visited.count(User)) 12687 return SDValue(); 12688 12689 // Make sure that we're not going to promote the non-output-value 12690 // operand(s) or SELECT or SELECT_CC. 12691 // FIXME: Although we could sometimes handle this, and it does occur in 12692 // practice that one of the condition inputs to the select is also one of 12693 // the outputs, we currently can't deal with this. 12694 if (User->getOpcode() == ISD::SELECT) { 12695 if (User->getOperand(0) == PromOps[i]) 12696 return SDValue(); 12697 } else if (User->getOpcode() == ISD::SELECT_CC) { 12698 if (User->getOperand(0) == PromOps[i] || 12699 User->getOperand(1) == PromOps[i]) 12700 return SDValue(); 12701 } 12702 } 12703 } 12704 12705 // Replace all inputs with the extension operand. 12706 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12707 // Constants may have users outside the cluster of to-be-promoted nodes, 12708 // and so we need to replace those as we do the promotions. 12709 if (isa<ConstantSDNode>(Inputs[i])) 12710 continue; 12711 else 12712 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12713 } 12714 12715 std::list<HandleSDNode> PromOpHandles; 12716 for (auto &PromOp : PromOps) 12717 PromOpHandles.emplace_back(PromOp); 12718 12719 // Replace all operations (these are all the same, but have a different 12720 // (i1) return type). DAG.getNode will validate that the types of 12721 // a binary operator match, so go through the list in reverse so that 12722 // we've likely promoted both operands first. Any intermediate truncations or 12723 // extensions disappear. 12724 while (!PromOpHandles.empty()) { 12725 SDValue PromOp = PromOpHandles.back().getValue(); 12726 PromOpHandles.pop_back(); 12727 12728 if (PromOp.getOpcode() == ISD::TRUNCATE || 12729 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12730 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12731 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12732 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12733 PromOp.getOperand(0).getValueType() != MVT::i1) { 12734 // The operand is not yet ready (see comment below). 12735 PromOpHandles.emplace_front(PromOp); 12736 continue; 12737 } 12738 12739 SDValue RepValue = PromOp.getOperand(0); 12740 if (isa<ConstantSDNode>(RepValue)) 12741 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12742 12743 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12744 continue; 12745 } 12746 12747 unsigned C; 12748 switch (PromOp.getOpcode()) { 12749 default: C = 0; break; 12750 case ISD::SELECT: C = 1; break; 12751 case ISD::SELECT_CC: C = 2; break; 12752 } 12753 12754 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12755 PromOp.getOperand(C).getValueType() != MVT::i1) || 12756 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12757 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12758 // The to-be-promoted operands of this node have not yet been 12759 // promoted (this should be rare because we're going through the 12760 // list backward, but if one of the operands has several users in 12761 // this cluster of to-be-promoted nodes, it is possible). 12762 PromOpHandles.emplace_front(PromOp); 12763 continue; 12764 } 12765 12766 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12767 PromOp.getNode()->op_end()); 12768 12769 // If there are any constant inputs, make sure they're replaced now. 12770 for (unsigned i = 0; i < 2; ++i) 12771 if (isa<ConstantSDNode>(Ops[C+i])) 12772 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12773 12774 DAG.ReplaceAllUsesOfValueWith(PromOp, 12775 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12776 } 12777 12778 // Now we're left with the initial truncation itself. 12779 if (N->getOpcode() == ISD::TRUNCATE) 12780 return N->getOperand(0); 12781 12782 // Otherwise, this is a comparison. The operands to be compared have just 12783 // changed type (to i1), but everything else is the same. 12784 return SDValue(N, 0); 12785 } 12786 12787 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12788 DAGCombinerInfo &DCI) const { 12789 SelectionDAG &DAG = DCI.DAG; 12790 SDLoc dl(N); 12791 12792 // If we're tracking CR bits, we need to be careful that we don't have: 12793 // zext(binary-ops(trunc(x), trunc(y))) 12794 // or 12795 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12796 // such that we're unnecessarily moving things into CR bits that can more 12797 // efficiently stay in GPRs. Note that if we're not certain that the high 12798 // bits are set as required by the final extension, we still may need to do 12799 // some masking to get the proper behavior. 12800 12801 // This same functionality is important on PPC64 when dealing with 12802 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12803 // the return values of functions. Because it is so similar, it is handled 12804 // here as well. 12805 12806 if (N->getValueType(0) != MVT::i32 && 12807 N->getValueType(0) != MVT::i64) 12808 return SDValue(); 12809 12810 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12811 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12812 return SDValue(); 12813 12814 if (N->getOperand(0).getOpcode() != ISD::AND && 12815 N->getOperand(0).getOpcode() != ISD::OR && 12816 N->getOperand(0).getOpcode() != ISD::XOR && 12817 N->getOperand(0).getOpcode() != ISD::SELECT && 12818 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12819 return SDValue(); 12820 12821 SmallVector<SDValue, 4> Inputs; 12822 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12823 SmallPtrSet<SDNode *, 16> Visited; 12824 12825 // Visit all inputs, collect all binary operations (and, or, xor and 12826 // select) that are all fed by truncations. 12827 while (!BinOps.empty()) { 12828 SDValue BinOp = BinOps.back(); 12829 BinOps.pop_back(); 12830 12831 if (!Visited.insert(BinOp.getNode()).second) 12832 continue; 12833 12834 PromOps.push_back(BinOp); 12835 12836 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12837 // The condition of the select is not promoted. 12838 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12839 continue; 12840 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12841 continue; 12842 12843 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12844 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12845 Inputs.push_back(BinOp.getOperand(i)); 12846 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12847 BinOp.getOperand(i).getOpcode() == ISD::OR || 12848 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12849 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12850 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12851 BinOps.push_back(BinOp.getOperand(i)); 12852 } else { 12853 // We have an input that is not a truncation or another binary 12854 // operation; we'll abort this transformation. 12855 return SDValue(); 12856 } 12857 } 12858 } 12859 12860 // The operands of a select that must be truncated when the select is 12861 // promoted because the operand is actually part of the to-be-promoted set. 12862 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12863 12864 // Make sure that this is a self-contained cluster of operations (which 12865 // is not quite the same thing as saying that everything has only one 12866 // use). 12867 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12868 if (isa<ConstantSDNode>(Inputs[i])) 12869 continue; 12870 12871 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12872 UE = Inputs[i].getNode()->use_end(); 12873 UI != UE; ++UI) { 12874 SDNode *User = *UI; 12875 if (User != N && !Visited.count(User)) 12876 return SDValue(); 12877 12878 // If we're going to promote the non-output-value operand(s) or SELECT or 12879 // SELECT_CC, record them for truncation. 12880 if (User->getOpcode() == ISD::SELECT) { 12881 if (User->getOperand(0) == Inputs[i]) 12882 SelectTruncOp[0].insert(std::make_pair(User, 12883 User->getOperand(0).getValueType())); 12884 } else if (User->getOpcode() == ISD::SELECT_CC) { 12885 if (User->getOperand(0) == Inputs[i]) 12886 SelectTruncOp[0].insert(std::make_pair(User, 12887 User->getOperand(0).getValueType())); 12888 if (User->getOperand(1) == Inputs[i]) 12889 SelectTruncOp[1].insert(std::make_pair(User, 12890 User->getOperand(1).getValueType())); 12891 } 12892 } 12893 } 12894 12895 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12896 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12897 UE = PromOps[i].getNode()->use_end(); 12898 UI != UE; ++UI) { 12899 SDNode *User = *UI; 12900 if (User != N && !Visited.count(User)) 12901 return SDValue(); 12902 12903 // If we're going to promote the non-output-value operand(s) or SELECT or 12904 // SELECT_CC, record them for truncation. 12905 if (User->getOpcode() == ISD::SELECT) { 12906 if (User->getOperand(0) == PromOps[i]) 12907 SelectTruncOp[0].insert(std::make_pair(User, 12908 User->getOperand(0).getValueType())); 12909 } else if (User->getOpcode() == ISD::SELECT_CC) { 12910 if (User->getOperand(0) == PromOps[i]) 12911 SelectTruncOp[0].insert(std::make_pair(User, 12912 User->getOperand(0).getValueType())); 12913 if (User->getOperand(1) == PromOps[i]) 12914 SelectTruncOp[1].insert(std::make_pair(User, 12915 User->getOperand(1).getValueType())); 12916 } 12917 } 12918 } 12919 12920 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12921 bool ReallyNeedsExt = false; 12922 if (N->getOpcode() != ISD::ANY_EXTEND) { 12923 // If all of the inputs are not already sign/zero extended, then 12924 // we'll still need to do that at the end. 12925 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12926 if (isa<ConstantSDNode>(Inputs[i])) 12927 continue; 12928 12929 unsigned OpBits = 12930 Inputs[i].getOperand(0).getValueSizeInBits(); 12931 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12932 12933 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12934 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12935 APInt::getHighBitsSet(OpBits, 12936 OpBits-PromBits))) || 12937 (N->getOpcode() == ISD::SIGN_EXTEND && 12938 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12939 (OpBits-(PromBits-1)))) { 12940 ReallyNeedsExt = true; 12941 break; 12942 } 12943 } 12944 } 12945 12946 // Replace all inputs, either with the truncation operand, or a 12947 // truncation or extension to the final output type. 12948 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12949 // Constant inputs need to be replaced with the to-be-promoted nodes that 12950 // use them because they might have users outside of the cluster of 12951 // promoted nodes. 12952 if (isa<ConstantSDNode>(Inputs[i])) 12953 continue; 12954 12955 SDValue InSrc = Inputs[i].getOperand(0); 12956 if (Inputs[i].getValueType() == N->getValueType(0)) 12957 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12958 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12959 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12960 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12961 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12962 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12963 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12964 else 12965 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12966 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12967 } 12968 12969 std::list<HandleSDNode> PromOpHandles; 12970 for (auto &PromOp : PromOps) 12971 PromOpHandles.emplace_back(PromOp); 12972 12973 // Replace all operations (these are all the same, but have a different 12974 // (promoted) return type). DAG.getNode will validate that the types of 12975 // a binary operator match, so go through the list in reverse so that 12976 // we've likely promoted both operands first. 12977 while (!PromOpHandles.empty()) { 12978 SDValue PromOp = PromOpHandles.back().getValue(); 12979 PromOpHandles.pop_back(); 12980 12981 unsigned C; 12982 switch (PromOp.getOpcode()) { 12983 default: C = 0; break; 12984 case ISD::SELECT: C = 1; break; 12985 case ISD::SELECT_CC: C = 2; break; 12986 } 12987 12988 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12989 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12990 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12991 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12992 // The to-be-promoted operands of this node have not yet been 12993 // promoted (this should be rare because we're going through the 12994 // list backward, but if one of the operands has several users in 12995 // this cluster of to-be-promoted nodes, it is possible). 12996 PromOpHandles.emplace_front(PromOp); 12997 continue; 12998 } 12999 13000 // For SELECT and SELECT_CC nodes, we do a similar check for any 13001 // to-be-promoted comparison inputs. 13002 if (PromOp.getOpcode() == ISD::SELECT || 13003 PromOp.getOpcode() == ISD::SELECT_CC) { 13004 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13005 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13006 (SelectTruncOp[1].count(PromOp.getNode()) && 13007 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13008 PromOpHandles.emplace_front(PromOp); 13009 continue; 13010 } 13011 } 13012 13013 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13014 PromOp.getNode()->op_end()); 13015 13016 // If this node has constant inputs, then they'll need to be promoted here. 13017 for (unsigned i = 0; i < 2; ++i) { 13018 if (!isa<ConstantSDNode>(Ops[C+i])) 13019 continue; 13020 if (Ops[C+i].getValueType() == N->getValueType(0)) 13021 continue; 13022 13023 if (N->getOpcode() == ISD::SIGN_EXTEND) 13024 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13025 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13026 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13027 else 13028 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13029 } 13030 13031 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13032 // truncate them again to the original value type. 13033 if (PromOp.getOpcode() == ISD::SELECT || 13034 PromOp.getOpcode() == ISD::SELECT_CC) { 13035 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13036 if (SI0 != SelectTruncOp[0].end()) 13037 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13038 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13039 if (SI1 != SelectTruncOp[1].end()) 13040 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13041 } 13042 13043 DAG.ReplaceAllUsesOfValueWith(PromOp, 13044 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13045 } 13046 13047 // Now we're left with the initial extension itself. 13048 if (!ReallyNeedsExt) 13049 return N->getOperand(0); 13050 13051 // To zero extend, just mask off everything except for the first bit (in the 13052 // i1 case). 13053 if (N->getOpcode() == ISD::ZERO_EXTEND) 13054 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13055 DAG.getConstant(APInt::getLowBitsSet( 13056 N->getValueSizeInBits(0), PromBits), 13057 dl, N->getValueType(0))); 13058 13059 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13060 "Invalid extension type"); 13061 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13062 SDValue ShiftCst = 13063 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13064 return DAG.getNode( 13065 ISD::SRA, dl, N->getValueType(0), 13066 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13067 ShiftCst); 13068 } 13069 13070 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13071 DAGCombinerInfo &DCI) const { 13072 assert(N->getOpcode() == ISD::SETCC && 13073 "Should be called with a SETCC node"); 13074 13075 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13076 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13077 SDValue LHS = N->getOperand(0); 13078 SDValue RHS = N->getOperand(1); 13079 13080 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13081 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13082 LHS.hasOneUse()) 13083 std::swap(LHS, RHS); 13084 13085 // x == 0-y --> x+y == 0 13086 // x != 0-y --> x+y != 0 13087 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13088 RHS.hasOneUse()) { 13089 SDLoc DL(N); 13090 SelectionDAG &DAG = DCI.DAG; 13091 EVT VT = N->getValueType(0); 13092 EVT OpVT = LHS.getValueType(); 13093 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13094 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13095 } 13096 } 13097 13098 return DAGCombineTruncBoolExt(N, DCI); 13099 } 13100 13101 // Is this an extending load from an f32 to an f64? 13102 static bool isFPExtLoad(SDValue Op) { 13103 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13104 return LD->getExtensionType() == ISD::EXTLOAD && 13105 Op.getValueType() == MVT::f64; 13106 return false; 13107 } 13108 13109 /// Reduces the number of fp-to-int conversion when building a vector. 13110 /// 13111 /// If this vector is built out of floating to integer conversions, 13112 /// transform it to a vector built out of floating point values followed by a 13113 /// single floating to integer conversion of the vector. 13114 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13115 /// becomes (fptosi (build_vector ($A, $B, ...))) 13116 SDValue PPCTargetLowering:: 13117 combineElementTruncationToVectorTruncation(SDNode *N, 13118 DAGCombinerInfo &DCI) const { 13119 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13120 "Should be called with a BUILD_VECTOR node"); 13121 13122 SelectionDAG &DAG = DCI.DAG; 13123 SDLoc dl(N); 13124 13125 SDValue FirstInput = N->getOperand(0); 13126 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13127 "The input operand must be an fp-to-int conversion."); 13128 13129 // This combine happens after legalization so the fp_to_[su]i nodes are 13130 // already converted to PPCSISD nodes. 13131 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13132 if (FirstConversion == PPCISD::FCTIDZ || 13133 FirstConversion == PPCISD::FCTIDUZ || 13134 FirstConversion == PPCISD::FCTIWZ || 13135 FirstConversion == PPCISD::FCTIWUZ) { 13136 bool IsSplat = true; 13137 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13138 FirstConversion == PPCISD::FCTIWUZ; 13139 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13140 SmallVector<SDValue, 4> Ops; 13141 EVT TargetVT = N->getValueType(0); 13142 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13143 SDValue NextOp = N->getOperand(i); 13144 if (NextOp.getOpcode() != PPCISD::MFVSR) 13145 return SDValue(); 13146 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13147 if (NextConversion != FirstConversion) 13148 return SDValue(); 13149 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13150 // This is not valid if the input was originally double precision. It is 13151 // also not profitable to do unless this is an extending load in which 13152 // case doing this combine will allow us to combine consecutive loads. 13153 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13154 return SDValue(); 13155 if (N->getOperand(i) != FirstInput) 13156 IsSplat = false; 13157 } 13158 13159 // If this is a splat, we leave it as-is since there will be only a single 13160 // fp-to-int conversion followed by a splat of the integer. This is better 13161 // for 32-bit and smaller ints and neutral for 64-bit ints. 13162 if (IsSplat) 13163 return SDValue(); 13164 13165 // Now that we know we have the right type of node, get its operands 13166 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13167 SDValue In = N->getOperand(i).getOperand(0); 13168 if (Is32Bit) { 13169 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13170 // here, we know that all inputs are extending loads so this is safe). 13171 if (In.isUndef()) 13172 Ops.push_back(DAG.getUNDEF(SrcVT)); 13173 else { 13174 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13175 MVT::f32, In.getOperand(0), 13176 DAG.getIntPtrConstant(1, dl)); 13177 Ops.push_back(Trunc); 13178 } 13179 } else 13180 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13181 } 13182 13183 unsigned Opcode; 13184 if (FirstConversion == PPCISD::FCTIDZ || 13185 FirstConversion == PPCISD::FCTIWZ) 13186 Opcode = ISD::FP_TO_SINT; 13187 else 13188 Opcode = ISD::FP_TO_UINT; 13189 13190 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13191 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13192 return DAG.getNode(Opcode, dl, TargetVT, BV); 13193 } 13194 return SDValue(); 13195 } 13196 13197 /// Reduce the number of loads when building a vector. 13198 /// 13199 /// Building a vector out of multiple loads can be converted to a load 13200 /// of the vector type if the loads are consecutive. If the loads are 13201 /// consecutive but in descending order, a shuffle is added at the end 13202 /// to reorder the vector. 13203 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13204 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13205 "Should be called with a BUILD_VECTOR node"); 13206 13207 SDLoc dl(N); 13208 13209 // Return early for non byte-sized type, as they can't be consecutive. 13210 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13211 return SDValue(); 13212 13213 bool InputsAreConsecutiveLoads = true; 13214 bool InputsAreReverseConsecutive = true; 13215 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13216 SDValue FirstInput = N->getOperand(0); 13217 bool IsRoundOfExtLoad = false; 13218 13219 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13220 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13221 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13222 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13223 } 13224 // Not a build vector of (possibly fp_rounded) loads. 13225 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13226 N->getNumOperands() == 1) 13227 return SDValue(); 13228 13229 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13230 // If any inputs are fp_round(extload), they all must be. 13231 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13232 return SDValue(); 13233 13234 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13235 N->getOperand(i); 13236 if (NextInput.getOpcode() != ISD::LOAD) 13237 return SDValue(); 13238 13239 SDValue PreviousInput = 13240 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13241 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13242 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13243 13244 // If any inputs are fp_round(extload), they all must be. 13245 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13246 return SDValue(); 13247 13248 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13249 InputsAreConsecutiveLoads = false; 13250 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13251 InputsAreReverseConsecutive = false; 13252 13253 // Exit early if the loads are neither consecutive nor reverse consecutive. 13254 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13255 return SDValue(); 13256 } 13257 13258 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13259 "The loads cannot be both consecutive and reverse consecutive."); 13260 13261 SDValue FirstLoadOp = 13262 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13263 SDValue LastLoadOp = 13264 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13265 N->getOperand(N->getNumOperands()-1); 13266 13267 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13268 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13269 if (InputsAreConsecutiveLoads) { 13270 assert(LD1 && "Input needs to be a LoadSDNode."); 13271 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13272 LD1->getBasePtr(), LD1->getPointerInfo(), 13273 LD1->getAlignment()); 13274 } 13275 if (InputsAreReverseConsecutive) { 13276 assert(LDL && "Input needs to be a LoadSDNode."); 13277 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13278 LDL->getBasePtr(), LDL->getPointerInfo(), 13279 LDL->getAlignment()); 13280 SmallVector<int, 16> Ops; 13281 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13282 Ops.push_back(i); 13283 13284 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13285 DAG.getUNDEF(N->getValueType(0)), Ops); 13286 } 13287 return SDValue(); 13288 } 13289 13290 // This function adds the required vector_shuffle needed to get 13291 // the elements of the vector extract in the correct position 13292 // as specified by the CorrectElems encoding. 13293 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13294 SDValue Input, uint64_t Elems, 13295 uint64_t CorrectElems) { 13296 SDLoc dl(N); 13297 13298 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13299 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13300 13301 // Knowing the element indices being extracted from the original 13302 // vector and the order in which they're being inserted, just put 13303 // them at element indices required for the instruction. 13304 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13305 if (DAG.getDataLayout().isLittleEndian()) 13306 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13307 else 13308 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13309 CorrectElems = CorrectElems >> 8; 13310 Elems = Elems >> 8; 13311 } 13312 13313 SDValue Shuffle = 13314 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13315 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13316 13317 EVT VT = N->getValueType(0); 13318 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13319 13320 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13321 Input.getValueType().getVectorElementType(), 13322 VT.getVectorNumElements()); 13323 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13324 DAG.getValueType(ExtVT)); 13325 } 13326 13327 // Look for build vector patterns where input operands come from sign 13328 // extended vector_extract elements of specific indices. If the correct indices 13329 // aren't used, add a vector shuffle to fix up the indices and create 13330 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13331 // during instruction selection. 13332 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13333 // This array encodes the indices that the vector sign extend instructions 13334 // extract from when extending from one type to another for both BE and LE. 13335 // The right nibble of each byte corresponds to the LE incides. 13336 // and the left nibble of each byte corresponds to the BE incides. 13337 // For example: 0x3074B8FC byte->word 13338 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13339 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13340 // For example: 0x000070F8 byte->double word 13341 // For LE: the allowed indices are: 0x0,0x8 13342 // For BE: the allowed indices are: 0x7,0xF 13343 uint64_t TargetElems[] = { 13344 0x3074B8FC, // b->w 13345 0x000070F8, // b->d 13346 0x10325476, // h->w 13347 0x00003074, // h->d 13348 0x00001032, // w->d 13349 }; 13350 13351 uint64_t Elems = 0; 13352 int Index; 13353 SDValue Input; 13354 13355 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13356 if (!Op) 13357 return false; 13358 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13359 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13360 return false; 13361 13362 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13363 // of the right width. 13364 SDValue Extract = Op.getOperand(0); 13365 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13366 Extract = Extract.getOperand(0); 13367 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13368 return false; 13369 13370 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13371 if (!ExtOp) 13372 return false; 13373 13374 Index = ExtOp->getZExtValue(); 13375 if (Input && Input != Extract.getOperand(0)) 13376 return false; 13377 13378 if (!Input) 13379 Input = Extract.getOperand(0); 13380 13381 Elems = Elems << 8; 13382 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13383 Elems |= Index; 13384 13385 return true; 13386 }; 13387 13388 // If the build vector operands aren't sign extended vector extracts, 13389 // of the same input vector, then return. 13390 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13391 if (!isSExtOfVecExtract(N->getOperand(i))) { 13392 return SDValue(); 13393 } 13394 } 13395 13396 // If the vector extract indicies are not correct, add the appropriate 13397 // vector_shuffle. 13398 int TgtElemArrayIdx; 13399 int InputSize = Input.getValueType().getScalarSizeInBits(); 13400 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13401 if (InputSize + OutputSize == 40) 13402 TgtElemArrayIdx = 0; 13403 else if (InputSize + OutputSize == 72) 13404 TgtElemArrayIdx = 1; 13405 else if (InputSize + OutputSize == 48) 13406 TgtElemArrayIdx = 2; 13407 else if (InputSize + OutputSize == 80) 13408 TgtElemArrayIdx = 3; 13409 else if (InputSize + OutputSize == 96) 13410 TgtElemArrayIdx = 4; 13411 else 13412 return SDValue(); 13413 13414 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13415 CorrectElems = DAG.getDataLayout().isLittleEndian() 13416 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13417 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13418 if (Elems != CorrectElems) { 13419 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13420 } 13421 13422 // Regular lowering will catch cases where a shuffle is not needed. 13423 return SDValue(); 13424 } 13425 13426 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13427 DAGCombinerInfo &DCI) const { 13428 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13429 "Should be called with a BUILD_VECTOR node"); 13430 13431 SelectionDAG &DAG = DCI.DAG; 13432 SDLoc dl(N); 13433 13434 if (!Subtarget.hasVSX()) 13435 return SDValue(); 13436 13437 // The target independent DAG combiner will leave a build_vector of 13438 // float-to-int conversions intact. We can generate MUCH better code for 13439 // a float-to-int conversion of a vector of floats. 13440 SDValue FirstInput = N->getOperand(0); 13441 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13442 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13443 if (Reduced) 13444 return Reduced; 13445 } 13446 13447 // If we're building a vector out of consecutive loads, just load that 13448 // vector type. 13449 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13450 if (Reduced) 13451 return Reduced; 13452 13453 // If we're building a vector out of extended elements from another vector 13454 // we have P9 vector integer extend instructions. The code assumes legal 13455 // input types (i.e. it can't handle things like v4i16) so do not run before 13456 // legalization. 13457 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13458 Reduced = combineBVOfVecSExt(N, DAG); 13459 if (Reduced) 13460 return Reduced; 13461 } 13462 13463 13464 if (N->getValueType(0) != MVT::v2f64) 13465 return SDValue(); 13466 13467 // Looking for: 13468 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13469 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13470 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13471 return SDValue(); 13472 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13473 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13474 return SDValue(); 13475 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13476 return SDValue(); 13477 13478 SDValue Ext1 = FirstInput.getOperand(0); 13479 SDValue Ext2 = N->getOperand(1).getOperand(0); 13480 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13481 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13482 return SDValue(); 13483 13484 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13485 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13486 if (!Ext1Op || !Ext2Op) 13487 return SDValue(); 13488 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13489 Ext1.getOperand(0) != Ext2.getOperand(0)) 13490 return SDValue(); 13491 13492 int FirstElem = Ext1Op->getZExtValue(); 13493 int SecondElem = Ext2Op->getZExtValue(); 13494 int SubvecIdx; 13495 if (FirstElem == 0 && SecondElem == 1) 13496 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13497 else if (FirstElem == 2 && SecondElem == 3) 13498 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13499 else 13500 return SDValue(); 13501 13502 SDValue SrcVec = Ext1.getOperand(0); 13503 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13504 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13505 return DAG.getNode(NodeType, dl, MVT::v2f64, 13506 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13507 } 13508 13509 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13510 DAGCombinerInfo &DCI) const { 13511 assert((N->getOpcode() == ISD::SINT_TO_FP || 13512 N->getOpcode() == ISD::UINT_TO_FP) && 13513 "Need an int -> FP conversion node here"); 13514 13515 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13516 return SDValue(); 13517 13518 SelectionDAG &DAG = DCI.DAG; 13519 SDLoc dl(N); 13520 SDValue Op(N, 0); 13521 13522 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13523 // from the hardware. 13524 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13525 return SDValue(); 13526 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13527 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13528 return SDValue(); 13529 13530 SDValue FirstOperand(Op.getOperand(0)); 13531 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13532 (FirstOperand.getValueType() == MVT::i8 || 13533 FirstOperand.getValueType() == MVT::i16); 13534 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13535 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13536 bool DstDouble = Op.getValueType() == MVT::f64; 13537 unsigned ConvOp = Signed ? 13538 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13539 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13540 SDValue WidthConst = 13541 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13542 dl, false); 13543 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13544 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13545 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13546 DAG.getVTList(MVT::f64, MVT::Other), 13547 Ops, MVT::i8, LDN->getMemOperand()); 13548 13549 // For signed conversion, we need to sign-extend the value in the VSR 13550 if (Signed) { 13551 SDValue ExtOps[] = { Ld, WidthConst }; 13552 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13553 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13554 } else 13555 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13556 } 13557 13558 13559 // For i32 intermediate values, unfortunately, the conversion functions 13560 // leave the upper 32 bits of the value are undefined. Within the set of 13561 // scalar instructions, we have no method for zero- or sign-extending the 13562 // value. Thus, we cannot handle i32 intermediate values here. 13563 if (Op.getOperand(0).getValueType() == MVT::i32) 13564 return SDValue(); 13565 13566 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13567 "UINT_TO_FP is supported only with FPCVT"); 13568 13569 // If we have FCFIDS, then use it when converting to single-precision. 13570 // Otherwise, convert to double-precision and then round. 13571 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13572 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13573 : PPCISD::FCFIDS) 13574 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13575 : PPCISD::FCFID); 13576 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13577 ? MVT::f32 13578 : MVT::f64; 13579 13580 // If we're converting from a float, to an int, and back to a float again, 13581 // then we don't need the store/load pair at all. 13582 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13583 Subtarget.hasFPCVT()) || 13584 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13585 SDValue Src = Op.getOperand(0).getOperand(0); 13586 if (Src.getValueType() == MVT::f32) { 13587 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13588 DCI.AddToWorklist(Src.getNode()); 13589 } else if (Src.getValueType() != MVT::f64) { 13590 // Make sure that we don't pick up a ppc_fp128 source value. 13591 return SDValue(); 13592 } 13593 13594 unsigned FCTOp = 13595 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13596 PPCISD::FCTIDUZ; 13597 13598 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13599 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13600 13601 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13602 FP = DAG.getNode(ISD::FP_ROUND, dl, 13603 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13604 DCI.AddToWorklist(FP.getNode()); 13605 } 13606 13607 return FP; 13608 } 13609 13610 return SDValue(); 13611 } 13612 13613 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13614 // builtins) into loads with swaps. 13615 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13616 DAGCombinerInfo &DCI) const { 13617 SelectionDAG &DAG = DCI.DAG; 13618 SDLoc dl(N); 13619 SDValue Chain; 13620 SDValue Base; 13621 MachineMemOperand *MMO; 13622 13623 switch (N->getOpcode()) { 13624 default: 13625 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13626 case ISD::LOAD: { 13627 LoadSDNode *LD = cast<LoadSDNode>(N); 13628 Chain = LD->getChain(); 13629 Base = LD->getBasePtr(); 13630 MMO = LD->getMemOperand(); 13631 // If the MMO suggests this isn't a load of a full vector, leave 13632 // things alone. For a built-in, we have to make the change for 13633 // correctness, so if there is a size problem that will be a bug. 13634 if (MMO->getSize() < 16) 13635 return SDValue(); 13636 break; 13637 } 13638 case ISD::INTRINSIC_W_CHAIN: { 13639 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13640 Chain = Intrin->getChain(); 13641 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13642 // us what we want. Get operand 2 instead. 13643 Base = Intrin->getOperand(2); 13644 MMO = Intrin->getMemOperand(); 13645 break; 13646 } 13647 } 13648 13649 MVT VecTy = N->getValueType(0).getSimpleVT(); 13650 13651 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13652 // aligned and the type is a vector with elements up to 4 bytes 13653 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13654 VecTy.getScalarSizeInBits() <= 32) { 13655 return SDValue(); 13656 } 13657 13658 SDValue LoadOps[] = { Chain, Base }; 13659 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13660 DAG.getVTList(MVT::v2f64, MVT::Other), 13661 LoadOps, MVT::v2f64, MMO); 13662 13663 DCI.AddToWorklist(Load.getNode()); 13664 Chain = Load.getValue(1); 13665 SDValue Swap = DAG.getNode( 13666 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13667 DCI.AddToWorklist(Swap.getNode()); 13668 13669 // Add a bitcast if the resulting load type doesn't match v2f64. 13670 if (VecTy != MVT::v2f64) { 13671 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13672 DCI.AddToWorklist(N.getNode()); 13673 // Package {bitcast value, swap's chain} to match Load's shape. 13674 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13675 N, Swap.getValue(1)); 13676 } 13677 13678 return Swap; 13679 } 13680 13681 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13682 // builtins) into stores with swaps. 13683 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13684 DAGCombinerInfo &DCI) const { 13685 SelectionDAG &DAG = DCI.DAG; 13686 SDLoc dl(N); 13687 SDValue Chain; 13688 SDValue Base; 13689 unsigned SrcOpnd; 13690 MachineMemOperand *MMO; 13691 13692 switch (N->getOpcode()) { 13693 default: 13694 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13695 case ISD::STORE: { 13696 StoreSDNode *ST = cast<StoreSDNode>(N); 13697 Chain = ST->getChain(); 13698 Base = ST->getBasePtr(); 13699 MMO = ST->getMemOperand(); 13700 SrcOpnd = 1; 13701 // If the MMO suggests this isn't a store of a full vector, leave 13702 // things alone. For a built-in, we have to make the change for 13703 // correctness, so if there is a size problem that will be a bug. 13704 if (MMO->getSize() < 16) 13705 return SDValue(); 13706 break; 13707 } 13708 case ISD::INTRINSIC_VOID: { 13709 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13710 Chain = Intrin->getChain(); 13711 // Intrin->getBasePtr() oddly does not get what we want. 13712 Base = Intrin->getOperand(3); 13713 MMO = Intrin->getMemOperand(); 13714 SrcOpnd = 2; 13715 break; 13716 } 13717 } 13718 13719 SDValue Src = N->getOperand(SrcOpnd); 13720 MVT VecTy = Src.getValueType().getSimpleVT(); 13721 13722 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13723 // aligned and the type is a vector with elements up to 4 bytes 13724 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13725 VecTy.getScalarSizeInBits() <= 32) { 13726 return SDValue(); 13727 } 13728 13729 // All stores are done as v2f64 and possible bit cast. 13730 if (VecTy != MVT::v2f64) { 13731 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13732 DCI.AddToWorklist(Src.getNode()); 13733 } 13734 13735 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13736 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13737 DCI.AddToWorklist(Swap.getNode()); 13738 Chain = Swap.getValue(1); 13739 SDValue StoreOps[] = { Chain, Swap, Base }; 13740 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13741 DAG.getVTList(MVT::Other), 13742 StoreOps, VecTy, MMO); 13743 DCI.AddToWorklist(Store.getNode()); 13744 return Store; 13745 } 13746 13747 // Handle DAG combine for STORE (FP_TO_INT F). 13748 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13749 DAGCombinerInfo &DCI) const { 13750 13751 SelectionDAG &DAG = DCI.DAG; 13752 SDLoc dl(N); 13753 unsigned Opcode = N->getOperand(1).getOpcode(); 13754 13755 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13756 && "Not a FP_TO_INT Instruction!"); 13757 13758 SDValue Val = N->getOperand(1).getOperand(0); 13759 EVT Op1VT = N->getOperand(1).getValueType(); 13760 EVT ResVT = Val.getValueType(); 13761 13762 // Floating point types smaller than 32 bits are not legal on Power. 13763 if (ResVT.getScalarSizeInBits() < 32) 13764 return SDValue(); 13765 13766 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13767 bool ValidTypeForStoreFltAsInt = 13768 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13769 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13770 13771 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 13772 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13773 return SDValue(); 13774 13775 // Extend f32 values to f64 13776 if (ResVT.getScalarSizeInBits() == 32) { 13777 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13778 DCI.AddToWorklist(Val.getNode()); 13779 } 13780 13781 // Set signed or unsigned conversion opcode. 13782 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13783 PPCISD::FP_TO_SINT_IN_VSR : 13784 PPCISD::FP_TO_UINT_IN_VSR; 13785 13786 Val = DAG.getNode(ConvOpcode, 13787 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13788 DCI.AddToWorklist(Val.getNode()); 13789 13790 // Set number of bytes being converted. 13791 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13792 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13793 DAG.getIntPtrConstant(ByteSize, dl, false), 13794 DAG.getValueType(Op1VT) }; 13795 13796 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13797 DAG.getVTList(MVT::Other), Ops, 13798 cast<StoreSDNode>(N)->getMemoryVT(), 13799 cast<StoreSDNode>(N)->getMemOperand()); 13800 13801 DCI.AddToWorklist(Val.getNode()); 13802 return Val; 13803 } 13804 13805 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13806 LSBaseSDNode *LSBase, 13807 DAGCombinerInfo &DCI) const { 13808 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13809 "Not a reverse memop pattern!"); 13810 13811 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 13812 auto Mask = SVN->getMask(); 13813 int i = 0; 13814 auto I = Mask.rbegin(); 13815 auto E = Mask.rend(); 13816 13817 for (; I != E; ++I) { 13818 if (*I != i) 13819 return false; 13820 i++; 13821 } 13822 return true; 13823 }; 13824 13825 SelectionDAG &DAG = DCI.DAG; 13826 EVT VT = SVN->getValueType(0); 13827 13828 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13829 return SDValue(); 13830 13831 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 13832 // See comment in PPCVSXSwapRemoval.cpp. 13833 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 13834 if (!Subtarget.hasP9Vector()) 13835 return SDValue(); 13836 13837 if(!IsElementReverse(SVN)) 13838 return SDValue(); 13839 13840 if (LSBase->getOpcode() == ISD::LOAD) { 13841 SDLoc dl(SVN); 13842 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 13843 return DAG.getMemIntrinsicNode( 13844 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 13845 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13846 } 13847 13848 if (LSBase->getOpcode() == ISD::STORE) { 13849 SDLoc dl(LSBase); 13850 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 13851 LSBase->getBasePtr()}; 13852 return DAG.getMemIntrinsicNode( 13853 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 13854 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13855 } 13856 13857 llvm_unreachable("Expected a load or store node here"); 13858 } 13859 13860 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 13861 DAGCombinerInfo &DCI) const { 13862 SelectionDAG &DAG = DCI.DAG; 13863 SDLoc dl(N); 13864 switch (N->getOpcode()) { 13865 default: break; 13866 case ISD::ADD: 13867 return combineADD(N, DCI); 13868 case ISD::SHL: 13869 return combineSHL(N, DCI); 13870 case ISD::SRA: 13871 return combineSRA(N, DCI); 13872 case ISD::SRL: 13873 return combineSRL(N, DCI); 13874 case ISD::MUL: 13875 return combineMUL(N, DCI); 13876 case PPCISD::SHL: 13877 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 13878 return N->getOperand(0); 13879 break; 13880 case PPCISD::SRL: 13881 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 13882 return N->getOperand(0); 13883 break; 13884 case PPCISD::SRA: 13885 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 13886 if (C->isNullValue() || // 0 >>s V -> 0. 13887 C->isAllOnesValue()) // -1 >>s V -> -1. 13888 return N->getOperand(0); 13889 } 13890 break; 13891 case ISD::SIGN_EXTEND: 13892 case ISD::ZERO_EXTEND: 13893 case ISD::ANY_EXTEND: 13894 return DAGCombineExtBoolTrunc(N, DCI); 13895 case ISD::TRUNCATE: 13896 return combineTRUNCATE(N, DCI); 13897 case ISD::SETCC: 13898 if (SDValue CSCC = combineSetCC(N, DCI)) 13899 return CSCC; 13900 LLVM_FALLTHROUGH; 13901 case ISD::SELECT_CC: 13902 return DAGCombineTruncBoolExt(N, DCI); 13903 case ISD::SINT_TO_FP: 13904 case ISD::UINT_TO_FP: 13905 return combineFPToIntToFP(N, DCI); 13906 case ISD::VECTOR_SHUFFLE: 13907 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 13908 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 13909 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 13910 } 13911 break; 13912 case ISD::STORE: { 13913 13914 EVT Op1VT = N->getOperand(1).getValueType(); 13915 unsigned Opcode = N->getOperand(1).getOpcode(); 13916 13917 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 13918 SDValue Val= combineStoreFPToInt(N, DCI); 13919 if (Val) 13920 return Val; 13921 } 13922 13923 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 13924 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 13925 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 13926 if (Val) 13927 return Val; 13928 } 13929 13930 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 13931 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 13932 N->getOperand(1).getNode()->hasOneUse() && 13933 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 13934 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 13935 13936 // STBRX can only handle simple types and it makes no sense to store less 13937 // two bytes in byte-reversed order. 13938 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 13939 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 13940 break; 13941 13942 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13943 // Do an any-extend to 32-bits if this is a half-word input. 13944 if (BSwapOp.getValueType() == MVT::i16) 13945 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13946 13947 // If the type of BSWAP operand is wider than stored memory width 13948 // it need to be shifted to the right side before STBRX. 13949 if (Op1VT.bitsGT(mVT)) { 13950 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13951 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13952 DAG.getConstant(Shift, dl, MVT::i32)); 13953 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13954 if (Op1VT == MVT::i64) 13955 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13956 } 13957 13958 SDValue Ops[] = { 13959 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13960 }; 13961 return 13962 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13963 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13964 cast<StoreSDNode>(N)->getMemOperand()); 13965 } 13966 13967 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13968 // So it can increase the chance of CSE constant construction. 13969 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13970 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13971 // Need to sign-extended to 64-bits to handle negative values. 13972 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13973 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13974 MemVT.getSizeInBits()); 13975 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13976 13977 // DAG.getTruncStore() can't be used here because it doesn't accept 13978 // the general (base + offset) addressing mode. 13979 // So we use UpdateNodeOperands and setTruncatingStore instead. 13980 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13981 N->getOperand(3)); 13982 cast<StoreSDNode>(N)->setTruncatingStore(true); 13983 return SDValue(N, 0); 13984 } 13985 13986 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13987 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13988 if (Op1VT.isSimple()) { 13989 MVT StoreVT = Op1VT.getSimpleVT(); 13990 if (Subtarget.needsSwapsForVSXMemOps() && 13991 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 13992 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 13993 return expandVSXStoreForLE(N, DCI); 13994 } 13995 break; 13996 } 13997 case ISD::LOAD: { 13998 LoadSDNode *LD = cast<LoadSDNode>(N); 13999 EVT VT = LD->getValueType(0); 14000 14001 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14002 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14003 if (VT.isSimple()) { 14004 MVT LoadVT = VT.getSimpleVT(); 14005 if (Subtarget.needsSwapsForVSXMemOps() && 14006 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14007 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14008 return expandVSXLoadForLE(N, DCI); 14009 } 14010 14011 // We sometimes end up with a 64-bit integer load, from which we extract 14012 // two single-precision floating-point numbers. This happens with 14013 // std::complex<float>, and other similar structures, because of the way we 14014 // canonicalize structure copies. However, if we lack direct moves, 14015 // then the final bitcasts from the extracted integer values to the 14016 // floating-point numbers turn into store/load pairs. Even with direct moves, 14017 // just loading the two floating-point numbers is likely better. 14018 auto ReplaceTwoFloatLoad = [&]() { 14019 if (VT != MVT::i64) 14020 return false; 14021 14022 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14023 LD->isVolatile()) 14024 return false; 14025 14026 // We're looking for a sequence like this: 14027 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14028 // t16: i64 = srl t13, Constant:i32<32> 14029 // t17: i32 = truncate t16 14030 // t18: f32 = bitcast t17 14031 // t19: i32 = truncate t13 14032 // t20: f32 = bitcast t19 14033 14034 if (!LD->hasNUsesOfValue(2, 0)) 14035 return false; 14036 14037 auto UI = LD->use_begin(); 14038 while (UI.getUse().getResNo() != 0) ++UI; 14039 SDNode *Trunc = *UI++; 14040 while (UI.getUse().getResNo() != 0) ++UI; 14041 SDNode *RightShift = *UI; 14042 if (Trunc->getOpcode() != ISD::TRUNCATE) 14043 std::swap(Trunc, RightShift); 14044 14045 if (Trunc->getOpcode() != ISD::TRUNCATE || 14046 Trunc->getValueType(0) != MVT::i32 || 14047 !Trunc->hasOneUse()) 14048 return false; 14049 if (RightShift->getOpcode() != ISD::SRL || 14050 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14051 RightShift->getConstantOperandVal(1) != 32 || 14052 !RightShift->hasOneUse()) 14053 return false; 14054 14055 SDNode *Trunc2 = *RightShift->use_begin(); 14056 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14057 Trunc2->getValueType(0) != MVT::i32 || 14058 !Trunc2->hasOneUse()) 14059 return false; 14060 14061 SDNode *Bitcast = *Trunc->use_begin(); 14062 SDNode *Bitcast2 = *Trunc2->use_begin(); 14063 14064 if (Bitcast->getOpcode() != ISD::BITCAST || 14065 Bitcast->getValueType(0) != MVT::f32) 14066 return false; 14067 if (Bitcast2->getOpcode() != ISD::BITCAST || 14068 Bitcast2->getValueType(0) != MVT::f32) 14069 return false; 14070 14071 if (Subtarget.isLittleEndian()) 14072 std::swap(Bitcast, Bitcast2); 14073 14074 // Bitcast has the second float (in memory-layout order) and Bitcast2 14075 // has the first one. 14076 14077 SDValue BasePtr = LD->getBasePtr(); 14078 if (LD->isIndexed()) { 14079 assert(LD->getAddressingMode() == ISD::PRE_INC && 14080 "Non-pre-inc AM on PPC?"); 14081 BasePtr = 14082 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14083 LD->getOffset()); 14084 } 14085 14086 auto MMOFlags = 14087 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14088 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14089 LD->getPointerInfo(), LD->getAlignment(), 14090 MMOFlags, LD->getAAInfo()); 14091 SDValue AddPtr = 14092 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14093 BasePtr, DAG.getIntPtrConstant(4, dl)); 14094 SDValue FloatLoad2 = DAG.getLoad( 14095 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14096 LD->getPointerInfo().getWithOffset(4), 14097 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14098 14099 if (LD->isIndexed()) { 14100 // Note that DAGCombine should re-form any pre-increment load(s) from 14101 // what is produced here if that makes sense. 14102 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14103 } 14104 14105 DCI.CombineTo(Bitcast2, FloatLoad); 14106 DCI.CombineTo(Bitcast, FloatLoad2); 14107 14108 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14109 SDValue(FloatLoad2.getNode(), 1)); 14110 return true; 14111 }; 14112 14113 if (ReplaceTwoFloatLoad()) 14114 return SDValue(N, 0); 14115 14116 EVT MemVT = LD->getMemoryVT(); 14117 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14118 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 14119 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 14120 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 14121 if (LD->isUnindexed() && VT.isVector() && 14122 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14123 // P8 and later hardware should just use LOAD. 14124 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 14125 VT == MVT::v4i32 || VT == MVT::v4f32)) || 14126 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 14127 LD->getAlignment() >= ScalarABIAlignment)) && 14128 LD->getAlignment() < ABIAlignment) { 14129 // This is a type-legal unaligned Altivec or QPX load. 14130 SDValue Chain = LD->getChain(); 14131 SDValue Ptr = LD->getBasePtr(); 14132 bool isLittleEndian = Subtarget.isLittleEndian(); 14133 14134 // This implements the loading of unaligned vectors as described in 14135 // the venerable Apple Velocity Engine overview. Specifically: 14136 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14137 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14138 // 14139 // The general idea is to expand a sequence of one or more unaligned 14140 // loads into an alignment-based permutation-control instruction (lvsl 14141 // or lvsr), a series of regular vector loads (which always truncate 14142 // their input address to an aligned address), and a series of 14143 // permutations. The results of these permutations are the requested 14144 // loaded values. The trick is that the last "extra" load is not taken 14145 // from the address you might suspect (sizeof(vector) bytes after the 14146 // last requested load), but rather sizeof(vector) - 1 bytes after the 14147 // last requested vector. The point of this is to avoid a page fault if 14148 // the base address happened to be aligned. This works because if the 14149 // base address is aligned, then adding less than a full vector length 14150 // will cause the last vector in the sequence to be (re)loaded. 14151 // Otherwise, the next vector will be fetched as you might suspect was 14152 // necessary. 14153 14154 // We might be able to reuse the permutation generation from 14155 // a different base address offset from this one by an aligned amount. 14156 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14157 // optimization later. 14158 Intrinsic::ID Intr, IntrLD, IntrPerm; 14159 MVT PermCntlTy, PermTy, LDTy; 14160 if (Subtarget.hasAltivec()) { 14161 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 14162 Intrinsic::ppc_altivec_lvsl; 14163 IntrLD = Intrinsic::ppc_altivec_lvx; 14164 IntrPerm = Intrinsic::ppc_altivec_vperm; 14165 PermCntlTy = MVT::v16i8; 14166 PermTy = MVT::v4i32; 14167 LDTy = MVT::v4i32; 14168 } else { 14169 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 14170 Intrinsic::ppc_qpx_qvlpcls; 14171 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 14172 Intrinsic::ppc_qpx_qvlfs; 14173 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 14174 PermCntlTy = MVT::v4f64; 14175 PermTy = MVT::v4f64; 14176 LDTy = MemVT.getSimpleVT(); 14177 } 14178 14179 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14180 14181 // Create the new MMO for the new base load. It is like the original MMO, 14182 // but represents an area in memory almost twice the vector size centered 14183 // on the original address. If the address is unaligned, we might start 14184 // reading up to (sizeof(vector)-1) bytes below the address of the 14185 // original unaligned load. 14186 MachineFunction &MF = DAG.getMachineFunction(); 14187 MachineMemOperand *BaseMMO = 14188 MF.getMachineMemOperand(LD->getMemOperand(), 14189 -(long)MemVT.getStoreSize()+1, 14190 2*MemVT.getStoreSize()-1); 14191 14192 // Create the new base load. 14193 SDValue LDXIntID = 14194 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14195 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14196 SDValue BaseLoad = 14197 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14198 DAG.getVTList(PermTy, MVT::Other), 14199 BaseLoadOps, LDTy, BaseMMO); 14200 14201 // Note that the value of IncOffset (which is provided to the next 14202 // load's pointer info offset value, and thus used to calculate the 14203 // alignment), and the value of IncValue (which is actually used to 14204 // increment the pointer value) are different! This is because we 14205 // require the next load to appear to be aligned, even though it 14206 // is actually offset from the base pointer by a lesser amount. 14207 int IncOffset = VT.getSizeInBits() / 8; 14208 int IncValue = IncOffset; 14209 14210 // Walk (both up and down) the chain looking for another load at the real 14211 // (aligned) offset (the alignment of the other load does not matter in 14212 // this case). If found, then do not use the offset reduction trick, as 14213 // that will prevent the loads from being later combined (as they would 14214 // otherwise be duplicates). 14215 if (!findConsecutiveLoad(LD, DAG)) 14216 --IncValue; 14217 14218 SDValue Increment = 14219 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14220 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14221 14222 MachineMemOperand *ExtraMMO = 14223 MF.getMachineMemOperand(LD->getMemOperand(), 14224 1, 2*MemVT.getStoreSize()-1); 14225 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14226 SDValue ExtraLoad = 14227 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14228 DAG.getVTList(PermTy, MVT::Other), 14229 ExtraLoadOps, LDTy, ExtraMMO); 14230 14231 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14232 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14233 14234 // Because vperm has a big-endian bias, we must reverse the order 14235 // of the input vectors and complement the permute control vector 14236 // when generating little endian code. We have already handled the 14237 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14238 // and ExtraLoad here. 14239 SDValue Perm; 14240 if (isLittleEndian) 14241 Perm = BuildIntrinsicOp(IntrPerm, 14242 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14243 else 14244 Perm = BuildIntrinsicOp(IntrPerm, 14245 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14246 14247 if (VT != PermTy) 14248 Perm = Subtarget.hasAltivec() ? 14249 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 14250 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 14251 DAG.getTargetConstant(1, dl, MVT::i64)); 14252 // second argument is 1 because this rounding 14253 // is always exact. 14254 14255 // The output of the permutation is our loaded result, the TokenFactor is 14256 // our new chain. 14257 DCI.CombineTo(N, Perm, TF); 14258 return SDValue(N, 0); 14259 } 14260 } 14261 break; 14262 case ISD::INTRINSIC_WO_CHAIN: { 14263 bool isLittleEndian = Subtarget.isLittleEndian(); 14264 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14265 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14266 : Intrinsic::ppc_altivec_lvsl); 14267 if ((IID == Intr || 14268 IID == Intrinsic::ppc_qpx_qvlpcld || 14269 IID == Intrinsic::ppc_qpx_qvlpcls) && 14270 N->getOperand(1)->getOpcode() == ISD::ADD) { 14271 SDValue Add = N->getOperand(1); 14272 14273 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 14274 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 14275 14276 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14277 APInt::getAllOnesValue(Bits /* alignment */) 14278 .zext(Add.getScalarValueSizeInBits()))) { 14279 SDNode *BasePtr = Add->getOperand(0).getNode(); 14280 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14281 UE = BasePtr->use_end(); 14282 UI != UE; ++UI) { 14283 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14284 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 14285 // We've found another LVSL/LVSR, and this address is an aligned 14286 // multiple of that one. The results will be the same, so use the 14287 // one we've just found instead. 14288 14289 return SDValue(*UI, 0); 14290 } 14291 } 14292 } 14293 14294 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14295 SDNode *BasePtr = Add->getOperand(0).getNode(); 14296 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14297 UE = BasePtr->use_end(); UI != UE; ++UI) { 14298 if (UI->getOpcode() == ISD::ADD && 14299 isa<ConstantSDNode>(UI->getOperand(1)) && 14300 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14301 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14302 (1ULL << Bits) == 0) { 14303 SDNode *OtherAdd = *UI; 14304 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14305 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14306 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14307 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14308 return SDValue(*VI, 0); 14309 } 14310 } 14311 } 14312 } 14313 } 14314 } 14315 14316 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14317 // Expose the vabsduw/h/b opportunity for down stream 14318 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14319 (IID == Intrinsic::ppc_altivec_vmaxsw || 14320 IID == Intrinsic::ppc_altivec_vmaxsh || 14321 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14322 SDValue V1 = N->getOperand(1); 14323 SDValue V2 = N->getOperand(2); 14324 if ((V1.getSimpleValueType() == MVT::v4i32 || 14325 V1.getSimpleValueType() == MVT::v8i16 || 14326 V1.getSimpleValueType() == MVT::v16i8) && 14327 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14328 // (0-a, a) 14329 if (V1.getOpcode() == ISD::SUB && 14330 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14331 V1.getOperand(1) == V2) { 14332 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14333 } 14334 // (a, 0-a) 14335 if (V2.getOpcode() == ISD::SUB && 14336 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14337 V2.getOperand(1) == V1) { 14338 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14339 } 14340 // (x-y, y-x) 14341 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14342 V1.getOperand(0) == V2.getOperand(1) && 14343 V1.getOperand(1) == V2.getOperand(0)) { 14344 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14345 } 14346 } 14347 } 14348 } 14349 14350 break; 14351 case ISD::INTRINSIC_W_CHAIN: 14352 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14353 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14354 if (Subtarget.needsSwapsForVSXMemOps()) { 14355 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14356 default: 14357 break; 14358 case Intrinsic::ppc_vsx_lxvw4x: 14359 case Intrinsic::ppc_vsx_lxvd2x: 14360 return expandVSXLoadForLE(N, DCI); 14361 } 14362 } 14363 break; 14364 case ISD::INTRINSIC_VOID: 14365 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14366 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14367 if (Subtarget.needsSwapsForVSXMemOps()) { 14368 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14369 default: 14370 break; 14371 case Intrinsic::ppc_vsx_stxvw4x: 14372 case Intrinsic::ppc_vsx_stxvd2x: 14373 return expandVSXStoreForLE(N, DCI); 14374 } 14375 } 14376 break; 14377 case ISD::BSWAP: 14378 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14379 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14380 N->getOperand(0).hasOneUse() && 14381 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14382 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14383 N->getValueType(0) == MVT::i64))) { 14384 SDValue Load = N->getOperand(0); 14385 LoadSDNode *LD = cast<LoadSDNode>(Load); 14386 // Create the byte-swapping load. 14387 SDValue Ops[] = { 14388 LD->getChain(), // Chain 14389 LD->getBasePtr(), // Ptr 14390 DAG.getValueType(N->getValueType(0)) // VT 14391 }; 14392 SDValue BSLoad = 14393 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14394 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14395 MVT::i64 : MVT::i32, MVT::Other), 14396 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14397 14398 // If this is an i16 load, insert the truncate. 14399 SDValue ResVal = BSLoad; 14400 if (N->getValueType(0) == MVT::i16) 14401 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14402 14403 // First, combine the bswap away. This makes the value produced by the 14404 // load dead. 14405 DCI.CombineTo(N, ResVal); 14406 14407 // Next, combine the load away, we give it a bogus result value but a real 14408 // chain result. The result value is dead because the bswap is dead. 14409 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14410 14411 // Return N so it doesn't get rechecked! 14412 return SDValue(N, 0); 14413 } 14414 break; 14415 case PPCISD::VCMP: 14416 // If a VCMPo node already exists with exactly the same operands as this 14417 // node, use its result instead of this node (VCMPo computes both a CR6 and 14418 // a normal output). 14419 // 14420 if (!N->getOperand(0).hasOneUse() && 14421 !N->getOperand(1).hasOneUse() && 14422 !N->getOperand(2).hasOneUse()) { 14423 14424 // Scan all of the users of the LHS, looking for VCMPo's that match. 14425 SDNode *VCMPoNode = nullptr; 14426 14427 SDNode *LHSN = N->getOperand(0).getNode(); 14428 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14429 UI != E; ++UI) 14430 if (UI->getOpcode() == PPCISD::VCMPo && 14431 UI->getOperand(1) == N->getOperand(1) && 14432 UI->getOperand(2) == N->getOperand(2) && 14433 UI->getOperand(0) == N->getOperand(0)) { 14434 VCMPoNode = *UI; 14435 break; 14436 } 14437 14438 // If there is no VCMPo node, or if the flag value has a single use, don't 14439 // transform this. 14440 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14441 break; 14442 14443 // Look at the (necessarily single) use of the flag value. If it has a 14444 // chain, this transformation is more complex. Note that multiple things 14445 // could use the value result, which we should ignore. 14446 SDNode *FlagUser = nullptr; 14447 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14448 FlagUser == nullptr; ++UI) { 14449 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14450 SDNode *User = *UI; 14451 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14452 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14453 FlagUser = User; 14454 break; 14455 } 14456 } 14457 } 14458 14459 // If the user is a MFOCRF instruction, we know this is safe. 14460 // Otherwise we give up for right now. 14461 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14462 return SDValue(VCMPoNode, 0); 14463 } 14464 break; 14465 case ISD::BRCOND: { 14466 SDValue Cond = N->getOperand(1); 14467 SDValue Target = N->getOperand(2); 14468 14469 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14470 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14471 Intrinsic::loop_decrement) { 14472 14473 // We now need to make the intrinsic dead (it cannot be instruction 14474 // selected). 14475 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14476 assert(Cond.getNode()->hasOneUse() && 14477 "Counter decrement has more than one use"); 14478 14479 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14480 N->getOperand(0), Target); 14481 } 14482 } 14483 break; 14484 case ISD::BR_CC: { 14485 // If this is a branch on an altivec predicate comparison, lower this so 14486 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14487 // lowering is done pre-legalize, because the legalizer lowers the predicate 14488 // compare down to code that is difficult to reassemble. 14489 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14490 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14491 14492 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14493 // value. If so, pass-through the AND to get to the intrinsic. 14494 if (LHS.getOpcode() == ISD::AND && 14495 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14496 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14497 Intrinsic::loop_decrement && 14498 isa<ConstantSDNode>(LHS.getOperand(1)) && 14499 !isNullConstant(LHS.getOperand(1))) 14500 LHS = LHS.getOperand(0); 14501 14502 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14503 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14504 Intrinsic::loop_decrement && 14505 isa<ConstantSDNode>(RHS)) { 14506 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14507 "Counter decrement comparison is not EQ or NE"); 14508 14509 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14510 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14511 (CC == ISD::SETNE && !Val); 14512 14513 // We now need to make the intrinsic dead (it cannot be instruction 14514 // selected). 14515 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14516 assert(LHS.getNode()->hasOneUse() && 14517 "Counter decrement has more than one use"); 14518 14519 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14520 N->getOperand(0), N->getOperand(4)); 14521 } 14522 14523 int CompareOpc; 14524 bool isDot; 14525 14526 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14527 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14528 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14529 assert(isDot && "Can't compare against a vector result!"); 14530 14531 // If this is a comparison against something other than 0/1, then we know 14532 // that the condition is never/always true. 14533 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14534 if (Val != 0 && Val != 1) { 14535 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14536 return N->getOperand(0); 14537 // Always !=, turn it into an unconditional branch. 14538 return DAG.getNode(ISD::BR, dl, MVT::Other, 14539 N->getOperand(0), N->getOperand(4)); 14540 } 14541 14542 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14543 14544 // Create the PPCISD altivec 'dot' comparison node. 14545 SDValue Ops[] = { 14546 LHS.getOperand(2), // LHS of compare 14547 LHS.getOperand(3), // RHS of compare 14548 DAG.getConstant(CompareOpc, dl, MVT::i32) 14549 }; 14550 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14551 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14552 14553 // Unpack the result based on how the target uses it. 14554 PPC::Predicate CompOpc; 14555 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14556 default: // Can't happen, don't crash on invalid number though. 14557 case 0: // Branch on the value of the EQ bit of CR6. 14558 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14559 break; 14560 case 1: // Branch on the inverted value of the EQ bit of CR6. 14561 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14562 break; 14563 case 2: // Branch on the value of the LT bit of CR6. 14564 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14565 break; 14566 case 3: // Branch on the inverted value of the LT bit of CR6. 14567 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14568 break; 14569 } 14570 14571 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14572 DAG.getConstant(CompOpc, dl, MVT::i32), 14573 DAG.getRegister(PPC::CR6, MVT::i32), 14574 N->getOperand(4), CompNode.getValue(1)); 14575 } 14576 break; 14577 } 14578 case ISD::BUILD_VECTOR: 14579 return DAGCombineBuildVector(N, DCI); 14580 case ISD::ABS: 14581 return combineABS(N, DCI); 14582 case ISD::VSELECT: 14583 return combineVSelect(N, DCI); 14584 } 14585 14586 return SDValue(); 14587 } 14588 14589 SDValue 14590 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14591 SelectionDAG &DAG, 14592 SmallVectorImpl<SDNode *> &Created) const { 14593 // fold (sdiv X, pow2) 14594 EVT VT = N->getValueType(0); 14595 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14596 return SDValue(); 14597 if ((VT != MVT::i32 && VT != MVT::i64) || 14598 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14599 return SDValue(); 14600 14601 SDLoc DL(N); 14602 SDValue N0 = N->getOperand(0); 14603 14604 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14605 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14606 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14607 14608 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14609 Created.push_back(Op.getNode()); 14610 14611 if (IsNegPow2) { 14612 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14613 Created.push_back(Op.getNode()); 14614 } 14615 14616 return Op; 14617 } 14618 14619 //===----------------------------------------------------------------------===// 14620 // Inline Assembly Support 14621 //===----------------------------------------------------------------------===// 14622 14623 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14624 KnownBits &Known, 14625 const APInt &DemandedElts, 14626 const SelectionDAG &DAG, 14627 unsigned Depth) const { 14628 Known.resetAll(); 14629 switch (Op.getOpcode()) { 14630 default: break; 14631 case PPCISD::LBRX: { 14632 // lhbrx is known to have the top bits cleared out. 14633 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14634 Known.Zero = 0xFFFF0000; 14635 break; 14636 } 14637 case ISD::INTRINSIC_WO_CHAIN: { 14638 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14639 default: break; 14640 case Intrinsic::ppc_altivec_vcmpbfp_p: 14641 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14642 case Intrinsic::ppc_altivec_vcmpequb_p: 14643 case Intrinsic::ppc_altivec_vcmpequh_p: 14644 case Intrinsic::ppc_altivec_vcmpequw_p: 14645 case Intrinsic::ppc_altivec_vcmpequd_p: 14646 case Intrinsic::ppc_altivec_vcmpgefp_p: 14647 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14648 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14649 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14650 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14651 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14652 case Intrinsic::ppc_altivec_vcmpgtub_p: 14653 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14654 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14655 case Intrinsic::ppc_altivec_vcmpgtud_p: 14656 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14657 break; 14658 } 14659 } 14660 } 14661 } 14662 14663 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14664 switch (Subtarget.getCPUDirective()) { 14665 default: break; 14666 case PPC::DIR_970: 14667 case PPC::DIR_PWR4: 14668 case PPC::DIR_PWR5: 14669 case PPC::DIR_PWR5X: 14670 case PPC::DIR_PWR6: 14671 case PPC::DIR_PWR6X: 14672 case PPC::DIR_PWR7: 14673 case PPC::DIR_PWR8: 14674 case PPC::DIR_PWR9: 14675 case PPC::DIR_PWR_FUTURE: { 14676 if (!ML) 14677 break; 14678 14679 if (!DisableInnermostLoopAlign32) { 14680 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14681 // so that we can decrease cache misses and branch-prediction misses. 14682 // Actual alignment of the loop will depend on the hotness check and other 14683 // logic in alignBlocks. 14684 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14685 return Align(32); 14686 } 14687 14688 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14689 14690 // For small loops (between 5 and 8 instructions), align to a 32-byte 14691 // boundary so that the entire loop fits in one instruction-cache line. 14692 uint64_t LoopSize = 0; 14693 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14694 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14695 LoopSize += TII->getInstSizeInBytes(*J); 14696 if (LoopSize > 32) 14697 break; 14698 } 14699 14700 if (LoopSize > 16 && LoopSize <= 32) 14701 return Align(32); 14702 14703 break; 14704 } 14705 } 14706 14707 return TargetLowering::getPrefLoopAlignment(ML); 14708 } 14709 14710 /// getConstraintType - Given a constraint, return the type of 14711 /// constraint it is for this target. 14712 PPCTargetLowering::ConstraintType 14713 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14714 if (Constraint.size() == 1) { 14715 switch (Constraint[0]) { 14716 default: break; 14717 case 'b': 14718 case 'r': 14719 case 'f': 14720 case 'd': 14721 case 'v': 14722 case 'y': 14723 return C_RegisterClass; 14724 case 'Z': 14725 // FIXME: While Z does indicate a memory constraint, it specifically 14726 // indicates an r+r address (used in conjunction with the 'y' modifier 14727 // in the replacement string). Currently, we're forcing the base 14728 // register to be r0 in the asm printer (which is interpreted as zero) 14729 // and forming the complete address in the second register. This is 14730 // suboptimal. 14731 return C_Memory; 14732 } 14733 } else if (Constraint == "wc") { // individual CR bits. 14734 return C_RegisterClass; 14735 } else if (Constraint == "wa" || Constraint == "wd" || 14736 Constraint == "wf" || Constraint == "ws" || 14737 Constraint == "wi" || Constraint == "ww") { 14738 return C_RegisterClass; // VSX registers. 14739 } 14740 return TargetLowering::getConstraintType(Constraint); 14741 } 14742 14743 /// Examine constraint type and operand type and determine a weight value. 14744 /// This object must already have been set up with the operand type 14745 /// and the current alternative constraint selected. 14746 TargetLowering::ConstraintWeight 14747 PPCTargetLowering::getSingleConstraintMatchWeight( 14748 AsmOperandInfo &info, const char *constraint) const { 14749 ConstraintWeight weight = CW_Invalid; 14750 Value *CallOperandVal = info.CallOperandVal; 14751 // If we don't have a value, we can't do a match, 14752 // but allow it at the lowest weight. 14753 if (!CallOperandVal) 14754 return CW_Default; 14755 Type *type = CallOperandVal->getType(); 14756 14757 // Look at the constraint type. 14758 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14759 return CW_Register; // an individual CR bit. 14760 else if ((StringRef(constraint) == "wa" || 14761 StringRef(constraint) == "wd" || 14762 StringRef(constraint) == "wf") && 14763 type->isVectorTy()) 14764 return CW_Register; 14765 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14766 return CW_Register; // just hold 64-bit integers data. 14767 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14768 return CW_Register; 14769 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14770 return CW_Register; 14771 14772 switch (*constraint) { 14773 default: 14774 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14775 break; 14776 case 'b': 14777 if (type->isIntegerTy()) 14778 weight = CW_Register; 14779 break; 14780 case 'f': 14781 if (type->isFloatTy()) 14782 weight = CW_Register; 14783 break; 14784 case 'd': 14785 if (type->isDoubleTy()) 14786 weight = CW_Register; 14787 break; 14788 case 'v': 14789 if (type->isVectorTy()) 14790 weight = CW_Register; 14791 break; 14792 case 'y': 14793 weight = CW_Register; 14794 break; 14795 case 'Z': 14796 weight = CW_Memory; 14797 break; 14798 } 14799 return weight; 14800 } 14801 14802 std::pair<unsigned, const TargetRegisterClass *> 14803 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14804 StringRef Constraint, 14805 MVT VT) const { 14806 if (Constraint.size() == 1) { 14807 // GCC RS6000 Constraint Letters 14808 switch (Constraint[0]) { 14809 case 'b': // R1-R31 14810 if (VT == MVT::i64 && Subtarget.isPPC64()) 14811 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14812 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14813 case 'r': // R0-R31 14814 if (VT == MVT::i64 && Subtarget.isPPC64()) 14815 return std::make_pair(0U, &PPC::G8RCRegClass); 14816 return std::make_pair(0U, &PPC::GPRCRegClass); 14817 // 'd' and 'f' constraints are both defined to be "the floating point 14818 // registers", where one is for 32-bit and the other for 64-bit. We don't 14819 // really care overly much here so just give them all the same reg classes. 14820 case 'd': 14821 case 'f': 14822 if (Subtarget.hasSPE()) { 14823 if (VT == MVT::f32 || VT == MVT::i32) 14824 return std::make_pair(0U, &PPC::GPRCRegClass); 14825 if (VT == MVT::f64 || VT == MVT::i64) 14826 return std::make_pair(0U, &PPC::SPERCRegClass); 14827 } else { 14828 if (VT == MVT::f32 || VT == MVT::i32) 14829 return std::make_pair(0U, &PPC::F4RCRegClass); 14830 if (VT == MVT::f64 || VT == MVT::i64) 14831 return std::make_pair(0U, &PPC::F8RCRegClass); 14832 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14833 return std::make_pair(0U, &PPC::QFRCRegClass); 14834 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14835 return std::make_pair(0U, &PPC::QSRCRegClass); 14836 } 14837 break; 14838 case 'v': 14839 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14840 return std::make_pair(0U, &PPC::QFRCRegClass); 14841 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14842 return std::make_pair(0U, &PPC::QSRCRegClass); 14843 if (Subtarget.hasAltivec()) 14844 return std::make_pair(0U, &PPC::VRRCRegClass); 14845 break; 14846 case 'y': // crrc 14847 return std::make_pair(0U, &PPC::CRRCRegClass); 14848 } 14849 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 14850 // An individual CR bit. 14851 return std::make_pair(0U, &PPC::CRBITRCRegClass); 14852 } else if ((Constraint == "wa" || Constraint == "wd" || 14853 Constraint == "wf" || Constraint == "wi") && 14854 Subtarget.hasVSX()) { 14855 return std::make_pair(0U, &PPC::VSRCRegClass); 14856 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 14857 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 14858 return std::make_pair(0U, &PPC::VSSRCRegClass); 14859 else 14860 return std::make_pair(0U, &PPC::VSFRCRegClass); 14861 } 14862 14863 // If we name a VSX register, we can't defer to the base class because it 14864 // will not recognize the correct register (their names will be VSL{0-31} 14865 // and V{0-31} so they won't match). So we match them here. 14866 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 14867 int VSNum = atoi(Constraint.data() + 3); 14868 assert(VSNum >= 0 && VSNum <= 63 && 14869 "Attempted to access a vsr out of range"); 14870 if (VSNum < 32) 14871 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 14872 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 14873 } 14874 std::pair<unsigned, const TargetRegisterClass *> R = 14875 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14876 14877 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 14878 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 14879 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 14880 // register. 14881 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 14882 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 14883 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 14884 PPC::GPRCRegClass.contains(R.first)) 14885 return std::make_pair(TRI->getMatchingSuperReg(R.first, 14886 PPC::sub_32, &PPC::G8RCRegClass), 14887 &PPC::G8RCRegClass); 14888 14889 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 14890 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 14891 R.first = PPC::CR0; 14892 R.second = &PPC::CRRCRegClass; 14893 } 14894 14895 return R; 14896 } 14897 14898 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 14899 /// vector. If it is invalid, don't add anything to Ops. 14900 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 14901 std::string &Constraint, 14902 std::vector<SDValue>&Ops, 14903 SelectionDAG &DAG) const { 14904 SDValue Result; 14905 14906 // Only support length 1 constraints. 14907 if (Constraint.length() > 1) return; 14908 14909 char Letter = Constraint[0]; 14910 switch (Letter) { 14911 default: break; 14912 case 'I': 14913 case 'J': 14914 case 'K': 14915 case 'L': 14916 case 'M': 14917 case 'N': 14918 case 'O': 14919 case 'P': { 14920 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 14921 if (!CST) return; // Must be an immediate to match. 14922 SDLoc dl(Op); 14923 int64_t Value = CST->getSExtValue(); 14924 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 14925 // numbers are printed as such. 14926 switch (Letter) { 14927 default: llvm_unreachable("Unknown constraint letter!"); 14928 case 'I': // "I" is a signed 16-bit constant. 14929 if (isInt<16>(Value)) 14930 Result = DAG.getTargetConstant(Value, dl, TCVT); 14931 break; 14932 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 14933 if (isShiftedUInt<16, 16>(Value)) 14934 Result = DAG.getTargetConstant(Value, dl, TCVT); 14935 break; 14936 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 14937 if (isShiftedInt<16, 16>(Value)) 14938 Result = DAG.getTargetConstant(Value, dl, TCVT); 14939 break; 14940 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 14941 if (isUInt<16>(Value)) 14942 Result = DAG.getTargetConstant(Value, dl, TCVT); 14943 break; 14944 case 'M': // "M" is a constant that is greater than 31. 14945 if (Value > 31) 14946 Result = DAG.getTargetConstant(Value, dl, TCVT); 14947 break; 14948 case 'N': // "N" is a positive constant that is an exact power of two. 14949 if (Value > 0 && isPowerOf2_64(Value)) 14950 Result = DAG.getTargetConstant(Value, dl, TCVT); 14951 break; 14952 case 'O': // "O" is the constant zero. 14953 if (Value == 0) 14954 Result = DAG.getTargetConstant(Value, dl, TCVT); 14955 break; 14956 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 14957 if (isInt<16>(-Value)) 14958 Result = DAG.getTargetConstant(Value, dl, TCVT); 14959 break; 14960 } 14961 break; 14962 } 14963 } 14964 14965 if (Result.getNode()) { 14966 Ops.push_back(Result); 14967 return; 14968 } 14969 14970 // Handle standard constraint letters. 14971 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14972 } 14973 14974 // isLegalAddressingMode - Return true if the addressing mode represented 14975 // by AM is legal for this target, for a load/store of the specified type. 14976 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14977 const AddrMode &AM, Type *Ty, 14978 unsigned AS, Instruction *I) const { 14979 // PPC does not allow r+i addressing modes for vectors! 14980 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14981 return false; 14982 14983 // PPC allows a sign-extended 16-bit immediate field. 14984 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14985 return false; 14986 14987 // No global is ever allowed as a base. 14988 if (AM.BaseGV) 14989 return false; 14990 14991 // PPC only support r+r, 14992 switch (AM.Scale) { 14993 case 0: // "r+i" or just "i", depending on HasBaseReg. 14994 break; 14995 case 1: 14996 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 14997 return false; 14998 // Otherwise we have r+r or r+i. 14999 break; 15000 case 2: 15001 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15002 return false; 15003 // Allow 2*r as r+r. 15004 break; 15005 default: 15006 // No other scales are supported. 15007 return false; 15008 } 15009 15010 return true; 15011 } 15012 15013 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15014 SelectionDAG &DAG) const { 15015 MachineFunction &MF = DAG.getMachineFunction(); 15016 MachineFrameInfo &MFI = MF.getFrameInfo(); 15017 MFI.setReturnAddressIsTaken(true); 15018 15019 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15020 return SDValue(); 15021 15022 SDLoc dl(Op); 15023 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15024 15025 // Make sure the function does not optimize away the store of the RA to 15026 // the stack. 15027 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15028 FuncInfo->setLRStoreRequired(); 15029 bool isPPC64 = Subtarget.isPPC64(); 15030 auto PtrVT = getPointerTy(MF.getDataLayout()); 15031 15032 if (Depth > 0) { 15033 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15034 SDValue Offset = 15035 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15036 isPPC64 ? MVT::i64 : MVT::i32); 15037 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15038 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15039 MachinePointerInfo()); 15040 } 15041 15042 // Just load the return address off the stack. 15043 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15044 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15045 MachinePointerInfo()); 15046 } 15047 15048 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15049 SelectionDAG &DAG) const { 15050 SDLoc dl(Op); 15051 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15052 15053 MachineFunction &MF = DAG.getMachineFunction(); 15054 MachineFrameInfo &MFI = MF.getFrameInfo(); 15055 MFI.setFrameAddressIsTaken(true); 15056 15057 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15058 bool isPPC64 = PtrVT == MVT::i64; 15059 15060 // Naked functions never have a frame pointer, and so we use r1. For all 15061 // other functions, this decision must be delayed until during PEI. 15062 unsigned FrameReg; 15063 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15064 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15065 else 15066 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15067 15068 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15069 PtrVT); 15070 while (Depth--) 15071 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15072 FrameAddr, MachinePointerInfo()); 15073 return FrameAddr; 15074 } 15075 15076 // FIXME? Maybe this could be a TableGen attribute on some registers and 15077 // this table could be generated automatically from RegInfo. 15078 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15079 const MachineFunction &MF) const { 15080 bool isPPC64 = Subtarget.isPPC64(); 15081 15082 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15083 if (!is64Bit && VT != LLT::scalar(32)) 15084 report_fatal_error("Invalid register global variable type"); 15085 15086 Register Reg = StringSwitch<Register>(RegName) 15087 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15088 .Case("r2", isPPC64 ? Register() : PPC::R2) 15089 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15090 .Default(Register()); 15091 15092 if (Reg) 15093 return Reg; 15094 report_fatal_error("Invalid register name global variable"); 15095 } 15096 15097 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15098 // 32-bit SVR4 ABI access everything as got-indirect. 15099 if (Subtarget.is32BitELFABI()) 15100 return true; 15101 15102 // AIX accesses everything indirectly through the TOC, which is similar to 15103 // the GOT. 15104 if (Subtarget.isAIXABI()) 15105 return true; 15106 15107 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15108 // If it is small or large code model, module locals are accessed 15109 // indirectly by loading their address from .toc/.got. 15110 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15111 return true; 15112 15113 // JumpTable and BlockAddress are accessed as got-indirect. 15114 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15115 return true; 15116 15117 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15118 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15119 15120 return false; 15121 } 15122 15123 bool 15124 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15125 // The PowerPC target isn't yet aware of offsets. 15126 return false; 15127 } 15128 15129 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15130 const CallInst &I, 15131 MachineFunction &MF, 15132 unsigned Intrinsic) const { 15133 switch (Intrinsic) { 15134 case Intrinsic::ppc_qpx_qvlfd: 15135 case Intrinsic::ppc_qpx_qvlfs: 15136 case Intrinsic::ppc_qpx_qvlfcd: 15137 case Intrinsic::ppc_qpx_qvlfcs: 15138 case Intrinsic::ppc_qpx_qvlfiwa: 15139 case Intrinsic::ppc_qpx_qvlfiwz: 15140 case Intrinsic::ppc_altivec_lvx: 15141 case Intrinsic::ppc_altivec_lvxl: 15142 case Intrinsic::ppc_altivec_lvebx: 15143 case Intrinsic::ppc_altivec_lvehx: 15144 case Intrinsic::ppc_altivec_lvewx: 15145 case Intrinsic::ppc_vsx_lxvd2x: 15146 case Intrinsic::ppc_vsx_lxvw4x: { 15147 EVT VT; 15148 switch (Intrinsic) { 15149 case Intrinsic::ppc_altivec_lvebx: 15150 VT = MVT::i8; 15151 break; 15152 case Intrinsic::ppc_altivec_lvehx: 15153 VT = MVT::i16; 15154 break; 15155 case Intrinsic::ppc_altivec_lvewx: 15156 VT = MVT::i32; 15157 break; 15158 case Intrinsic::ppc_vsx_lxvd2x: 15159 VT = MVT::v2f64; 15160 break; 15161 case Intrinsic::ppc_qpx_qvlfd: 15162 VT = MVT::v4f64; 15163 break; 15164 case Intrinsic::ppc_qpx_qvlfs: 15165 VT = MVT::v4f32; 15166 break; 15167 case Intrinsic::ppc_qpx_qvlfcd: 15168 VT = MVT::v2f64; 15169 break; 15170 case Intrinsic::ppc_qpx_qvlfcs: 15171 VT = MVT::v2f32; 15172 break; 15173 default: 15174 VT = MVT::v4i32; 15175 break; 15176 } 15177 15178 Info.opc = ISD::INTRINSIC_W_CHAIN; 15179 Info.memVT = VT; 15180 Info.ptrVal = I.getArgOperand(0); 15181 Info.offset = -VT.getStoreSize()+1; 15182 Info.size = 2*VT.getStoreSize()-1; 15183 Info.align = Align(1); 15184 Info.flags = MachineMemOperand::MOLoad; 15185 return true; 15186 } 15187 case Intrinsic::ppc_qpx_qvlfda: 15188 case Intrinsic::ppc_qpx_qvlfsa: 15189 case Intrinsic::ppc_qpx_qvlfcda: 15190 case Intrinsic::ppc_qpx_qvlfcsa: 15191 case Intrinsic::ppc_qpx_qvlfiwaa: 15192 case Intrinsic::ppc_qpx_qvlfiwza: { 15193 EVT VT; 15194 switch (Intrinsic) { 15195 case Intrinsic::ppc_qpx_qvlfda: 15196 VT = MVT::v4f64; 15197 break; 15198 case Intrinsic::ppc_qpx_qvlfsa: 15199 VT = MVT::v4f32; 15200 break; 15201 case Intrinsic::ppc_qpx_qvlfcda: 15202 VT = MVT::v2f64; 15203 break; 15204 case Intrinsic::ppc_qpx_qvlfcsa: 15205 VT = MVT::v2f32; 15206 break; 15207 default: 15208 VT = MVT::v4i32; 15209 break; 15210 } 15211 15212 Info.opc = ISD::INTRINSIC_W_CHAIN; 15213 Info.memVT = VT; 15214 Info.ptrVal = I.getArgOperand(0); 15215 Info.offset = 0; 15216 Info.size = VT.getStoreSize(); 15217 Info.align = Align(1); 15218 Info.flags = MachineMemOperand::MOLoad; 15219 return true; 15220 } 15221 case Intrinsic::ppc_qpx_qvstfd: 15222 case Intrinsic::ppc_qpx_qvstfs: 15223 case Intrinsic::ppc_qpx_qvstfcd: 15224 case Intrinsic::ppc_qpx_qvstfcs: 15225 case Intrinsic::ppc_qpx_qvstfiw: 15226 case Intrinsic::ppc_altivec_stvx: 15227 case Intrinsic::ppc_altivec_stvxl: 15228 case Intrinsic::ppc_altivec_stvebx: 15229 case Intrinsic::ppc_altivec_stvehx: 15230 case Intrinsic::ppc_altivec_stvewx: 15231 case Intrinsic::ppc_vsx_stxvd2x: 15232 case Intrinsic::ppc_vsx_stxvw4x: { 15233 EVT VT; 15234 switch (Intrinsic) { 15235 case Intrinsic::ppc_altivec_stvebx: 15236 VT = MVT::i8; 15237 break; 15238 case Intrinsic::ppc_altivec_stvehx: 15239 VT = MVT::i16; 15240 break; 15241 case Intrinsic::ppc_altivec_stvewx: 15242 VT = MVT::i32; 15243 break; 15244 case Intrinsic::ppc_vsx_stxvd2x: 15245 VT = MVT::v2f64; 15246 break; 15247 case Intrinsic::ppc_qpx_qvstfd: 15248 VT = MVT::v4f64; 15249 break; 15250 case Intrinsic::ppc_qpx_qvstfs: 15251 VT = MVT::v4f32; 15252 break; 15253 case Intrinsic::ppc_qpx_qvstfcd: 15254 VT = MVT::v2f64; 15255 break; 15256 case Intrinsic::ppc_qpx_qvstfcs: 15257 VT = MVT::v2f32; 15258 break; 15259 default: 15260 VT = MVT::v4i32; 15261 break; 15262 } 15263 15264 Info.opc = ISD::INTRINSIC_VOID; 15265 Info.memVT = VT; 15266 Info.ptrVal = I.getArgOperand(1); 15267 Info.offset = -VT.getStoreSize()+1; 15268 Info.size = 2*VT.getStoreSize()-1; 15269 Info.align = Align(1); 15270 Info.flags = MachineMemOperand::MOStore; 15271 return true; 15272 } 15273 case Intrinsic::ppc_qpx_qvstfda: 15274 case Intrinsic::ppc_qpx_qvstfsa: 15275 case Intrinsic::ppc_qpx_qvstfcda: 15276 case Intrinsic::ppc_qpx_qvstfcsa: 15277 case Intrinsic::ppc_qpx_qvstfiwa: { 15278 EVT VT; 15279 switch (Intrinsic) { 15280 case Intrinsic::ppc_qpx_qvstfda: 15281 VT = MVT::v4f64; 15282 break; 15283 case Intrinsic::ppc_qpx_qvstfsa: 15284 VT = MVT::v4f32; 15285 break; 15286 case Intrinsic::ppc_qpx_qvstfcda: 15287 VT = MVT::v2f64; 15288 break; 15289 case Intrinsic::ppc_qpx_qvstfcsa: 15290 VT = MVT::v2f32; 15291 break; 15292 default: 15293 VT = MVT::v4i32; 15294 break; 15295 } 15296 15297 Info.opc = ISD::INTRINSIC_VOID; 15298 Info.memVT = VT; 15299 Info.ptrVal = I.getArgOperand(1); 15300 Info.offset = 0; 15301 Info.size = VT.getStoreSize(); 15302 Info.align = Align(1); 15303 Info.flags = MachineMemOperand::MOStore; 15304 return true; 15305 } 15306 default: 15307 break; 15308 } 15309 15310 return false; 15311 } 15312 15313 /// It returns EVT::Other if the type should be determined using generic 15314 /// target-independent logic. 15315 EVT PPCTargetLowering::getOptimalMemOpType( 15316 const MemOp &Op, const AttributeList &FuncAttributes) const { 15317 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15318 // When expanding a memset, require at least two QPX instructions to cover 15319 // the cost of loading the value to be stored from the constant pool. 15320 if (Subtarget.hasQPX() && Op.size() >= 32 && 15321 (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) && 15322 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 15323 return MVT::v4f64; 15324 } 15325 15326 // We should use Altivec/VSX loads and stores when available. For unaligned 15327 // addresses, unaligned VSX loads are only fast starting with the P8. 15328 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15329 (Op.isAligned(Align(16)) || 15330 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15331 return MVT::v4i32; 15332 } 15333 15334 if (Subtarget.isPPC64()) { 15335 return MVT::i64; 15336 } 15337 15338 return MVT::i32; 15339 } 15340 15341 /// Returns true if it is beneficial to convert a load of a constant 15342 /// to just the constant itself. 15343 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15344 Type *Ty) const { 15345 assert(Ty->isIntegerTy()); 15346 15347 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15348 return !(BitSize == 0 || BitSize > 64); 15349 } 15350 15351 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15352 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15353 return false; 15354 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15355 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15356 return NumBits1 == 64 && NumBits2 == 32; 15357 } 15358 15359 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15360 if (!VT1.isInteger() || !VT2.isInteger()) 15361 return false; 15362 unsigned NumBits1 = VT1.getSizeInBits(); 15363 unsigned NumBits2 = VT2.getSizeInBits(); 15364 return NumBits1 == 64 && NumBits2 == 32; 15365 } 15366 15367 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15368 // Generally speaking, zexts are not free, but they are free when they can be 15369 // folded with other operations. 15370 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15371 EVT MemVT = LD->getMemoryVT(); 15372 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15373 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15374 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15375 LD->getExtensionType() == ISD::ZEXTLOAD)) 15376 return true; 15377 } 15378 15379 // FIXME: Add other cases... 15380 // - 32-bit shifts with a zext to i64 15381 // - zext after ctlz, bswap, etc. 15382 // - zext after and by a constant mask 15383 15384 return TargetLowering::isZExtFree(Val, VT2); 15385 } 15386 15387 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15388 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15389 "invalid fpext types"); 15390 // Extending to float128 is not free. 15391 if (DestVT == MVT::f128) 15392 return false; 15393 return true; 15394 } 15395 15396 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15397 return isInt<16>(Imm) || isUInt<16>(Imm); 15398 } 15399 15400 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15401 return isInt<16>(Imm) || isUInt<16>(Imm); 15402 } 15403 15404 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15405 unsigned, 15406 unsigned, 15407 MachineMemOperand::Flags, 15408 bool *Fast) const { 15409 if (DisablePPCUnaligned) 15410 return false; 15411 15412 // PowerPC supports unaligned memory access for simple non-vector types. 15413 // Although accessing unaligned addresses is not as efficient as accessing 15414 // aligned addresses, it is generally more efficient than manual expansion, 15415 // and generally only traps for software emulation when crossing page 15416 // boundaries. 15417 15418 if (!VT.isSimple()) 15419 return false; 15420 15421 if (VT.isFloatingPoint() && !Subtarget.allowsUnalignedFPAccess()) 15422 return false; 15423 15424 if (VT.getSimpleVT().isVector()) { 15425 if (Subtarget.hasVSX()) { 15426 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15427 VT != MVT::v4f32 && VT != MVT::v4i32) 15428 return false; 15429 } else { 15430 return false; 15431 } 15432 } 15433 15434 if (VT == MVT::ppcf128) 15435 return false; 15436 15437 if (Fast) 15438 *Fast = true; 15439 15440 return true; 15441 } 15442 15443 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15444 EVT VT) const { 15445 return isFMAFasterThanFMulAndFAdd( 15446 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15447 } 15448 15449 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15450 Type *Ty) const { 15451 switch (Ty->getScalarType()->getTypeID()) { 15452 case Type::FloatTyID: 15453 case Type::DoubleTyID: 15454 return true; 15455 case Type::FP128TyID: 15456 return EnableQuadPrecision && Subtarget.hasP9Vector(); 15457 default: 15458 return false; 15459 } 15460 } 15461 15462 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist. 15463 // FIXME: add more patterns which are profitable to hoist. 15464 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15465 if (I->getOpcode() != Instruction::FMul) 15466 return true; 15467 15468 if (!I->hasOneUse()) 15469 return true; 15470 15471 Instruction *User = I->user_back(); 15472 assert(User && "A single use instruction with no uses."); 15473 15474 if (User->getOpcode() != Instruction::FSub && 15475 User->getOpcode() != Instruction::FAdd) 15476 return true; 15477 15478 const TargetOptions &Options = getTargetMachine().Options; 15479 const Function *F = I->getFunction(); 15480 const DataLayout &DL = F->getParent()->getDataLayout(); 15481 Type *Ty = User->getOperand(0)->getType(); 15482 15483 return !( 15484 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15485 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15486 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15487 } 15488 15489 const MCPhysReg * 15490 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15491 // LR is a callee-save register, but we must treat it as clobbered by any call 15492 // site. Hence we include LR in the scratch registers, which are in turn added 15493 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15494 // to CTR, which is used by any indirect call. 15495 static const MCPhysReg ScratchRegs[] = { 15496 PPC::X12, PPC::LR8, PPC::CTR8, 0 15497 }; 15498 15499 return ScratchRegs; 15500 } 15501 15502 unsigned PPCTargetLowering::getExceptionPointerRegister( 15503 const Constant *PersonalityFn) const { 15504 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15505 } 15506 15507 unsigned PPCTargetLowering::getExceptionSelectorRegister( 15508 const Constant *PersonalityFn) const { 15509 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15510 } 15511 15512 bool 15513 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15514 EVT VT , unsigned DefinedValues) const { 15515 if (VT == MVT::v2i64) 15516 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15517 15518 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 15519 return true; 15520 15521 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15522 } 15523 15524 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15525 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15526 return TargetLowering::getSchedulingPreference(N); 15527 15528 return Sched::ILP; 15529 } 15530 15531 // Create a fast isel object. 15532 FastISel * 15533 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15534 const TargetLibraryInfo *LibInfo) const { 15535 return PPC::createFastISel(FuncInfo, LibInfo); 15536 } 15537 15538 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 15539 if (!Subtarget.isPPC64()) return; 15540 15541 // Update IsSplitCSR in PPCFunctionInfo 15542 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 15543 PFI->setIsSplitCSR(true); 15544 } 15545 15546 void PPCTargetLowering::insertCopiesSplitCSR( 15547 MachineBasicBlock *Entry, 15548 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 15549 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 15550 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 15551 if (!IStart) 15552 return; 15553 15554 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 15555 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 15556 MachineBasicBlock::iterator MBBI = Entry->begin(); 15557 for (const MCPhysReg *I = IStart; *I; ++I) { 15558 const TargetRegisterClass *RC = nullptr; 15559 if (PPC::G8RCRegClass.contains(*I)) 15560 RC = &PPC::G8RCRegClass; 15561 else if (PPC::F8RCRegClass.contains(*I)) 15562 RC = &PPC::F8RCRegClass; 15563 else if (PPC::CRRCRegClass.contains(*I)) 15564 RC = &PPC::CRRCRegClass; 15565 else if (PPC::VRRCRegClass.contains(*I)) 15566 RC = &PPC::VRRCRegClass; 15567 else 15568 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 15569 15570 Register NewVR = MRI->createVirtualRegister(RC); 15571 // Create copy from CSR to a virtual register. 15572 // FIXME: this currently does not emit CFI pseudo-instructions, it works 15573 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 15574 // nounwind. If we want to generalize this later, we may need to emit 15575 // CFI pseudo-instructions. 15576 assert(Entry->getParent()->getFunction().hasFnAttribute( 15577 Attribute::NoUnwind) && 15578 "Function should be nounwind in insertCopiesSplitCSR!"); 15579 Entry->addLiveIn(*I); 15580 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 15581 .addReg(*I); 15582 15583 // Insert the copy-back instructions right before the terminator. 15584 for (auto *Exit : Exits) 15585 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 15586 TII->get(TargetOpcode::COPY), *I) 15587 .addReg(NewVR); 15588 } 15589 } 15590 15591 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15592 bool PPCTargetLowering::useLoadStackGuardNode() const { 15593 if (!Subtarget.isTargetLinux()) 15594 return TargetLowering::useLoadStackGuardNode(); 15595 return true; 15596 } 15597 15598 // Override to disable global variable loading on Linux. 15599 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15600 if (!Subtarget.isTargetLinux()) 15601 return TargetLowering::insertSSPDeclarations(M); 15602 } 15603 15604 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15605 bool ForCodeSize) const { 15606 if (!VT.isSimple() || !Subtarget.hasVSX()) 15607 return false; 15608 15609 switch(VT.getSimpleVT().SimpleTy) { 15610 default: 15611 // For FP types that are currently not supported by PPC backend, return 15612 // false. Examples: f16, f80. 15613 return false; 15614 case MVT::f32: 15615 case MVT::f64: 15616 case MVT::ppcf128: 15617 return Imm.isPosZero(); 15618 } 15619 } 15620 15621 // For vector shift operation op, fold 15622 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15623 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15624 SelectionDAG &DAG) { 15625 SDValue N0 = N->getOperand(0); 15626 SDValue N1 = N->getOperand(1); 15627 EVT VT = N0.getValueType(); 15628 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15629 unsigned Opcode = N->getOpcode(); 15630 unsigned TargetOpcode; 15631 15632 switch (Opcode) { 15633 default: 15634 llvm_unreachable("Unexpected shift operation"); 15635 case ISD::SHL: 15636 TargetOpcode = PPCISD::SHL; 15637 break; 15638 case ISD::SRL: 15639 TargetOpcode = PPCISD::SRL; 15640 break; 15641 case ISD::SRA: 15642 TargetOpcode = PPCISD::SRA; 15643 break; 15644 } 15645 15646 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15647 N1->getOpcode() == ISD::AND) 15648 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15649 if (Mask->getZExtValue() == OpSizeInBits - 1) 15650 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15651 15652 return SDValue(); 15653 } 15654 15655 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15656 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15657 return Value; 15658 15659 SDValue N0 = N->getOperand(0); 15660 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15661 if (!Subtarget.isISA3_0() || 15662 N0.getOpcode() != ISD::SIGN_EXTEND || 15663 N0.getOperand(0).getValueType() != MVT::i32 || 15664 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15665 return SDValue(); 15666 15667 // We can't save an operation here if the value is already extended, and 15668 // the existing shift is easier to combine. 15669 SDValue ExtsSrc = N0.getOperand(0); 15670 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15671 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15672 return SDValue(); 15673 15674 SDLoc DL(N0); 15675 SDValue ShiftBy = SDValue(CN1, 0); 15676 // We want the shift amount to be i32 on the extswli, but the shift could 15677 // have an i64. 15678 if (ShiftBy.getValueType() == MVT::i64) 15679 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15680 15681 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15682 ShiftBy); 15683 } 15684 15685 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15686 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15687 return Value; 15688 15689 return SDValue(); 15690 } 15691 15692 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15693 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15694 return Value; 15695 15696 return SDValue(); 15697 } 15698 15699 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15700 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15701 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15702 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15703 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15704 const PPCSubtarget &Subtarget) { 15705 if (!Subtarget.isPPC64()) 15706 return SDValue(); 15707 15708 SDValue LHS = N->getOperand(0); 15709 SDValue RHS = N->getOperand(1); 15710 15711 auto isZextOfCompareWithConstant = [](SDValue Op) { 15712 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15713 Op.getValueType() != MVT::i64) 15714 return false; 15715 15716 SDValue Cmp = Op.getOperand(0); 15717 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15718 Cmp.getOperand(0).getValueType() != MVT::i64) 15719 return false; 15720 15721 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15722 int64_t NegConstant = 0 - Constant->getSExtValue(); 15723 // Due to the limitations of the addi instruction, 15724 // -C is required to be [-32768, 32767]. 15725 return isInt<16>(NegConstant); 15726 } 15727 15728 return false; 15729 }; 15730 15731 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15732 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15733 15734 // If there is a pattern, canonicalize a zext operand to the RHS. 15735 if (LHSHasPattern && !RHSHasPattern) 15736 std::swap(LHS, RHS); 15737 else if (!LHSHasPattern && !RHSHasPattern) 15738 return SDValue(); 15739 15740 SDLoc DL(N); 15741 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15742 SDValue Cmp = RHS.getOperand(0); 15743 SDValue Z = Cmp.getOperand(0); 15744 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15745 15746 assert(Constant && "Constant Should not be a null pointer."); 15747 int64_t NegConstant = 0 - Constant->getSExtValue(); 15748 15749 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15750 default: break; 15751 case ISD::SETNE: { 15752 // when C == 0 15753 // --> addze X, (addic Z, -1).carry 15754 // / 15755 // add X, (zext(setne Z, C))-- 15756 // \ when -32768 <= -C <= 32767 && C != 0 15757 // --> addze X, (addic (addi Z, -C), -1).carry 15758 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15759 DAG.getConstant(NegConstant, DL, MVT::i64)); 15760 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15761 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15762 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15763 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15764 SDValue(Addc.getNode(), 1)); 15765 } 15766 case ISD::SETEQ: { 15767 // when C == 0 15768 // --> addze X, (subfic Z, 0).carry 15769 // / 15770 // add X, (zext(sete Z, C))-- 15771 // \ when -32768 <= -C <= 32767 && C != 0 15772 // --> addze X, (subfic (addi Z, -C), 0).carry 15773 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15774 DAG.getConstant(NegConstant, DL, MVT::i64)); 15775 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15776 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15777 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15778 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15779 SDValue(Subc.getNode(), 1)); 15780 } 15781 } 15782 15783 return SDValue(); 15784 } 15785 15786 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15787 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15788 return Value; 15789 15790 return SDValue(); 15791 } 15792 15793 // Detect TRUNCATE operations on bitcasts of float128 values. 15794 // What we are looking for here is the situtation where we extract a subset 15795 // of bits from a 128 bit float. 15796 // This can be of two forms: 15797 // 1) BITCAST of f128 feeding TRUNCATE 15798 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15799 // The reason this is required is because we do not have a legal i128 type 15800 // and so we want to prevent having to store the f128 and then reload part 15801 // of it. 15802 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15803 DAGCombinerInfo &DCI) const { 15804 // If we are using CRBits then try that first. 15805 if (Subtarget.useCRBits()) { 15806 // Check if CRBits did anything and return that if it did. 15807 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15808 return CRTruncValue; 15809 } 15810 15811 SDLoc dl(N); 15812 SDValue Op0 = N->getOperand(0); 15813 15814 // Looking for a truncate of i128 to i64. 15815 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15816 return SDValue(); 15817 15818 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15819 15820 // SRL feeding TRUNCATE. 15821 if (Op0.getOpcode() == ISD::SRL) { 15822 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15823 // The right shift has to be by 64 bits. 15824 if (!ConstNode || ConstNode->getZExtValue() != 64) 15825 return SDValue(); 15826 15827 // Switch the element number to extract. 15828 EltToExtract = EltToExtract ? 0 : 1; 15829 // Update Op0 past the SRL. 15830 Op0 = Op0.getOperand(0); 15831 } 15832 15833 // BITCAST feeding a TRUNCATE possibly via SRL. 15834 if (Op0.getOpcode() == ISD::BITCAST && 15835 Op0.getValueType() == MVT::i128 && 15836 Op0.getOperand(0).getValueType() == MVT::f128) { 15837 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15838 return DCI.DAG.getNode( 15839 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15840 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15841 } 15842 return SDValue(); 15843 } 15844 15845 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15846 SelectionDAG &DAG = DCI.DAG; 15847 15848 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15849 if (!ConstOpOrElement) 15850 return SDValue(); 15851 15852 // An imul is usually smaller than the alternative sequence for legal type. 15853 if (DAG.getMachineFunction().getFunction().hasMinSize() && 15854 isOperationLegal(ISD::MUL, N->getValueType(0))) 15855 return SDValue(); 15856 15857 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 15858 switch (this->Subtarget.getCPUDirective()) { 15859 default: 15860 // TODO: enhance the condition for subtarget before pwr8 15861 return false; 15862 case PPC::DIR_PWR8: 15863 // type mul add shl 15864 // scalar 4 1 1 15865 // vector 7 2 2 15866 return true; 15867 case PPC::DIR_PWR9: 15868 case PPC::DIR_PWR_FUTURE: 15869 // type mul add shl 15870 // scalar 5 2 2 15871 // vector 7 2 2 15872 15873 // The cycle RATIO of related operations are showed as a table above. 15874 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 15875 // scalar and vector type. For 2 instrs patterns, add/sub + shl 15876 // are 4, it is always profitable; but for 3 instrs patterns 15877 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 15878 // So we should only do it for vector type. 15879 return IsAddOne && IsNeg ? VT.isVector() : true; 15880 } 15881 }; 15882 15883 EVT VT = N->getValueType(0); 15884 SDLoc DL(N); 15885 15886 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 15887 bool IsNeg = MulAmt.isNegative(); 15888 APInt MulAmtAbs = MulAmt.abs(); 15889 15890 if ((MulAmtAbs - 1).isPowerOf2()) { 15891 // (mul x, 2^N + 1) => (add (shl x, N), x) 15892 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 15893 15894 if (!IsProfitable(IsNeg, true, VT)) 15895 return SDValue(); 15896 15897 SDValue Op0 = N->getOperand(0); 15898 SDValue Op1 = 15899 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15900 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 15901 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 15902 15903 if (!IsNeg) 15904 return Res; 15905 15906 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 15907 } else if ((MulAmtAbs + 1).isPowerOf2()) { 15908 // (mul x, 2^N - 1) => (sub (shl x, N), x) 15909 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 15910 15911 if (!IsProfitable(IsNeg, false, VT)) 15912 return SDValue(); 15913 15914 SDValue Op0 = N->getOperand(0); 15915 SDValue Op1 = 15916 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15917 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 15918 15919 if (!IsNeg) 15920 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 15921 else 15922 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 15923 15924 } else { 15925 return SDValue(); 15926 } 15927 } 15928 15929 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 15930 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 15931 if (!Subtarget.is64BitELFABI()) 15932 return false; 15933 15934 // If not a tail call then no need to proceed. 15935 if (!CI->isTailCall()) 15936 return false; 15937 15938 // If sibling calls have been disabled and tail-calls aren't guaranteed 15939 // there is no reason to duplicate. 15940 auto &TM = getTargetMachine(); 15941 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 15942 return false; 15943 15944 // Can't tail call a function called indirectly, or if it has variadic args. 15945 const Function *Callee = CI->getCalledFunction(); 15946 if (!Callee || Callee->isVarArg()) 15947 return false; 15948 15949 // Make sure the callee and caller calling conventions are eligible for tco. 15950 const Function *Caller = CI->getParent()->getParent(); 15951 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 15952 CI->getCallingConv())) 15953 return false; 15954 15955 // If the function is local then we have a good chance at tail-calling it 15956 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 15957 } 15958 15959 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 15960 if (!Subtarget.hasVSX()) 15961 return false; 15962 if (Subtarget.hasP9Vector() && VT == MVT::f128) 15963 return true; 15964 return VT == MVT::f32 || VT == MVT::f64 || 15965 VT == MVT::v4f32 || VT == MVT::v2f64; 15966 } 15967 15968 bool PPCTargetLowering:: 15969 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 15970 const Value *Mask = AndI.getOperand(1); 15971 // If the mask is suitable for andi. or andis. we should sink the and. 15972 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 15973 // Can't handle constants wider than 64-bits. 15974 if (CI->getBitWidth() > 64) 15975 return false; 15976 int64_t ConstVal = CI->getZExtValue(); 15977 return isUInt<16>(ConstVal) || 15978 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15979 } 15980 15981 // For non-constant masks, we can always use the record-form and. 15982 return true; 15983 } 15984 15985 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15986 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15987 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15988 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15989 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 15990 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 15991 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 15992 assert(Subtarget.hasP9Altivec() && 15993 "Only combine this when P9 altivec supported!"); 15994 EVT VT = N->getValueType(0); 15995 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15996 return SDValue(); 15997 15998 SelectionDAG &DAG = DCI.DAG; 15999 SDLoc dl(N); 16000 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16001 // Even for signed integers, if it's known to be positive (as signed 16002 // integer) due to zero-extended inputs. 16003 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16004 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16005 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16006 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16007 (SubOpcd1 == ISD::ZERO_EXTEND || 16008 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16009 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16010 N->getOperand(0)->getOperand(0), 16011 N->getOperand(0)->getOperand(1), 16012 DAG.getTargetConstant(0, dl, MVT::i32)); 16013 } 16014 16015 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16016 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16017 N->getOperand(0).hasOneUse()) { 16018 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16019 N->getOperand(0)->getOperand(0), 16020 N->getOperand(0)->getOperand(1), 16021 DAG.getTargetConstant(1, dl, MVT::i32)); 16022 } 16023 } 16024 16025 return SDValue(); 16026 } 16027 16028 // For type v4i32/v8ii16/v16i8, transform 16029 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16030 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16031 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16032 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16033 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16034 DAGCombinerInfo &DCI) const { 16035 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16036 assert(Subtarget.hasP9Altivec() && 16037 "Only combine this when P9 altivec supported!"); 16038 16039 SelectionDAG &DAG = DCI.DAG; 16040 SDLoc dl(N); 16041 SDValue Cond = N->getOperand(0); 16042 SDValue TrueOpnd = N->getOperand(1); 16043 SDValue FalseOpnd = N->getOperand(2); 16044 EVT VT = N->getOperand(1).getValueType(); 16045 16046 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16047 FalseOpnd.getOpcode() != ISD::SUB) 16048 return SDValue(); 16049 16050 // ABSD only available for type v4i32/v8i16/v16i8 16051 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16052 return SDValue(); 16053 16054 // At least to save one more dependent computation 16055 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16056 return SDValue(); 16057 16058 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16059 16060 // Can only handle unsigned comparison here 16061 switch (CC) { 16062 default: 16063 return SDValue(); 16064 case ISD::SETUGT: 16065 case ISD::SETUGE: 16066 break; 16067 case ISD::SETULT: 16068 case ISD::SETULE: 16069 std::swap(TrueOpnd, FalseOpnd); 16070 break; 16071 } 16072 16073 SDValue CmpOpnd1 = Cond.getOperand(0); 16074 SDValue CmpOpnd2 = Cond.getOperand(1); 16075 16076 // SETCC CmpOpnd1 CmpOpnd2 cond 16077 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16078 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16079 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16080 TrueOpnd.getOperand(1) == CmpOpnd2 && 16081 FalseOpnd.getOperand(0) == CmpOpnd2 && 16082 FalseOpnd.getOperand(1) == CmpOpnd1) { 16083 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16084 CmpOpnd1, CmpOpnd2, 16085 DAG.getTargetConstant(0, dl, MVT::i32)); 16086 } 16087 16088 return SDValue(); 16089 } 16090