1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCFrameLowering.h"
20 #include "PPCInstrInfo.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCPerfectShuffle.h"
23 #include "PPCRegisterInfo.h"
24 #include "PPCSubtarget.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/CodeGen/CallingConvLower.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineLoopInfo.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/MachineValueType.h"
51 #include "llvm/CodeGen/RuntimeLibcalls.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetLowering.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallSite.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/Constant.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/GlobalValue.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCExpr.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/Support/AtomicOrdering.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CodeGen.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/Format.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <list>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 
100 #define DEBUG_TYPE "ppc-lowering"
101 
102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
104 
105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisableSCO("disable-ppc-sco",
112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
113 
114 STATISTIC(NumTailCalls, "Number of tail calls");
115 STATISTIC(NumSiblingCalls, "Number of sibling calls");
116 
117 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
118 
119 // FIXME: Remove this once the bug has been fixed!
120 extern cl::opt<bool> ANDIGlueBug;
121 
122 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
123                                      const PPCSubtarget &STI)
124     : TargetLowering(TM), Subtarget(STI) {
125   // Use _setjmp/_longjmp instead of setjmp/longjmp.
126   setUseUnderscoreSetJmp(true);
127   setUseUnderscoreLongJmp(true);
128 
129   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
130   // arguments are at least 4/8 bytes aligned.
131   bool isPPC64 = Subtarget.isPPC64();
132   setMinStackArgumentAlignment(isPPC64 ? 8:4);
133 
134   // Set up the register classes.
135   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
136   if (!useSoftFloat()) {
137     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
138     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
139   }
140 
141   // Match BITREVERSE to customized fast code sequence in the td file.
142   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
143   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
144 
145   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
146   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
147 
148   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
149   for (MVT VT : MVT::integer_valuetypes()) {
150     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
151     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
152   }
153 
154   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
155 
156   // PowerPC has pre-inc load and store's.
157   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
158   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
159   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
160   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
161   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
162   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
163   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
164   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
165   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
166   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
167   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
168   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
169   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
170   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
171 
172   if (Subtarget.useCRBits()) {
173     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
174 
175     if (isPPC64 || Subtarget.hasFPCVT()) {
176       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
177       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
178                          isPPC64 ? MVT::i64 : MVT::i32);
179       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
180       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
181                         isPPC64 ? MVT::i64 : MVT::i32);
182     } else {
183       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
184       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
185     }
186 
187     // PowerPC does not support direct load/store of condition registers.
188     setOperationAction(ISD::LOAD, MVT::i1, Custom);
189     setOperationAction(ISD::STORE, MVT::i1, Custom);
190 
191     // FIXME: Remove this once the ANDI glue bug is fixed:
192     if (ANDIGlueBug)
193       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
194 
195     for (MVT VT : MVT::integer_valuetypes()) {
196       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
197       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
198       setTruncStoreAction(VT, MVT::i1, Expand);
199     }
200 
201     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
202   }
203 
204   // This is used in the ppcf128->int sequence.  Note it has different semantics
205   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
206   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
207 
208   // We do not currently implement these libm ops for PowerPC.
209   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
210   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
211   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
212   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
213   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
214   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
215 
216   // PowerPC has no SREM/UREM instructions unless we are on P9
217   // On P9 we may use a hardware instruction to compute the remainder.
218   // The instructions are not legalized directly because in the cases where the
219   // result of both the remainder and the division is required it is more
220   // efficient to compute the remainder from the result of the division rather
221   // than use the remainder instruction.
222   if (Subtarget.isISA3_0()) {
223     setOperationAction(ISD::SREM, MVT::i32, Custom);
224     setOperationAction(ISD::UREM, MVT::i32, Custom);
225     setOperationAction(ISD::SREM, MVT::i64, Custom);
226     setOperationAction(ISD::UREM, MVT::i64, Custom);
227   } else {
228     setOperationAction(ISD::SREM, MVT::i32, Expand);
229     setOperationAction(ISD::UREM, MVT::i32, Expand);
230     setOperationAction(ISD::SREM, MVT::i64, Expand);
231     setOperationAction(ISD::UREM, MVT::i64, Expand);
232   }
233 
234   if (Subtarget.hasP9Vector()) {
235     setOperationAction(ISD::ABS, MVT::v4i32, Legal);
236     setOperationAction(ISD::ABS, MVT::v8i16, Legal);
237     setOperationAction(ISD::ABS, MVT::v16i8, Legal);
238   }
239 
240   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
241   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
242   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
243   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
244   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
245   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
246   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
247   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
248   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
249 
250   // We don't support sin/cos/sqrt/fmod/pow
251   setOperationAction(ISD::FSIN , MVT::f64, Expand);
252   setOperationAction(ISD::FCOS , MVT::f64, Expand);
253   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
254   setOperationAction(ISD::FREM , MVT::f64, Expand);
255   setOperationAction(ISD::FPOW , MVT::f64, Expand);
256   setOperationAction(ISD::FMA  , MVT::f64, Legal);
257   setOperationAction(ISD::FSIN , MVT::f32, Expand);
258   setOperationAction(ISD::FCOS , MVT::f32, Expand);
259   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
260   setOperationAction(ISD::FREM , MVT::f32, Expand);
261   setOperationAction(ISD::FPOW , MVT::f32, Expand);
262   setOperationAction(ISD::FMA  , MVT::f32, Legal);
263 
264   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
265 
266   // If we're enabling GP optimizations, use hardware square root
267   if (!Subtarget.hasFSQRT() &&
268       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
269         Subtarget.hasFRE()))
270     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
271 
272   if (!Subtarget.hasFSQRT() &&
273       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
274         Subtarget.hasFRES()))
275     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
276 
277   if (Subtarget.hasFCPSGN()) {
278     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
279     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
280   } else {
281     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
282     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
283   }
284 
285   if (Subtarget.hasFPRND()) {
286     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
287     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
288     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
289     setOperationAction(ISD::FROUND, MVT::f64, Legal);
290 
291     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
292     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
293     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
294     setOperationAction(ISD::FROUND, MVT::f32, Legal);
295   }
296 
297   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
298   // to speed up scalar BSWAP64.
299   // CTPOP or CTTZ were introduced in P8/P9 respectivelly
300   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
301   if (Subtarget.isISA3_0()) {
302     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
303     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
304     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
305   } else {
306     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
307     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
308     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
309   }
310 
311   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
312     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
313     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
314   } else {
315     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
316     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
317   }
318 
319   // PowerPC does not have ROTR
320   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
321   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
322 
323   if (!Subtarget.useCRBits()) {
324     // PowerPC does not have Select
325     setOperationAction(ISD::SELECT, MVT::i32, Expand);
326     setOperationAction(ISD::SELECT, MVT::i64, Expand);
327     setOperationAction(ISD::SELECT, MVT::f32, Expand);
328     setOperationAction(ISD::SELECT, MVT::f64, Expand);
329   }
330 
331   // PowerPC wants to turn select_cc of FP into fsel when possible.
332   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
333   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
334 
335   // PowerPC wants to optimize integer setcc a bit
336   if (!Subtarget.useCRBits())
337     setOperationAction(ISD::SETCC, MVT::i32, Custom);
338 
339   // PowerPC does not have BRCOND which requires SetCC
340   if (!Subtarget.useCRBits())
341     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
342 
343   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
344 
345   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
346   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
347 
348   // PowerPC does not have [U|S]INT_TO_FP
349   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
350   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
351 
352   if (Subtarget.hasDirectMove() && isPPC64) {
353     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
354     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
355     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
356     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
357   } else {
358     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
359     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
360     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
361     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
362   }
363 
364   // We cannot sextinreg(i1).  Expand to shifts.
365   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
366 
367   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
368   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
369   // support continuation, user-level threading, and etc.. As a result, no
370   // other SjLj exception interfaces are implemented and please don't build
371   // your own exception handling based on them.
372   // LLVM/Clang supports zero-cost DWARF exception handling.
373   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
374   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
375 
376   // We want to legalize GlobalAddress and ConstantPool nodes into the
377   // appropriate instructions to materialize the address.
378   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
379   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
380   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
381   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
382   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
383   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
384   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
385   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
386   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
387   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
388 
389   // TRAP is legal.
390   setOperationAction(ISD::TRAP, MVT::Other, Legal);
391 
392   // TRAMPOLINE is custom lowered.
393   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
394   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
395 
396   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
397   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
398 
399   if (Subtarget.isSVR4ABI()) {
400     if (isPPC64) {
401       // VAARG always uses double-word chunks, so promote anything smaller.
402       setOperationAction(ISD::VAARG, MVT::i1, Promote);
403       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
404       setOperationAction(ISD::VAARG, MVT::i8, Promote);
405       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
406       setOperationAction(ISD::VAARG, MVT::i16, Promote);
407       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
408       setOperationAction(ISD::VAARG, MVT::i32, Promote);
409       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
410       setOperationAction(ISD::VAARG, MVT::Other, Expand);
411     } else {
412       // VAARG is custom lowered with the 32-bit SVR4 ABI.
413       setOperationAction(ISD::VAARG, MVT::Other, Custom);
414       setOperationAction(ISD::VAARG, MVT::i64, Custom);
415     }
416   } else
417     setOperationAction(ISD::VAARG, MVT::Other, Expand);
418 
419   if (Subtarget.isSVR4ABI() && !isPPC64)
420     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
421     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
422   else
423     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
424 
425   // Use the default implementation.
426   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
427   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
428   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
429   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
430   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
431   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
432   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
433   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
434   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
435 
436   // We want to custom lower some of our intrinsics.
437   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
438 
439   // To handle counter-based loop conditions.
440   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
441 
442   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
443   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
444   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
445   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
446 
447   // Comparisons that require checking two conditions.
448   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
449   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
450   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
451   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
452   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
453   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
454   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
455   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
456   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
457   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
458   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
459   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
460 
461   if (Subtarget.has64BitSupport()) {
462     // They also have instructions for converting between i64 and fp.
463     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
464     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
465     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
466     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
467     // This is just the low 32 bits of a (signed) fp->i64 conversion.
468     // We cannot do this with Promote because i64 is not a legal type.
469     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
470 
471     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
472       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
473   } else {
474     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
475     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
476   }
477 
478   // With the instructions enabled under FPCVT, we can do everything.
479   if (Subtarget.hasFPCVT()) {
480     if (Subtarget.has64BitSupport()) {
481       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
482       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
483       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
484       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
485     }
486 
487     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
488     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
489     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
490     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
491   }
492 
493   if (Subtarget.use64BitRegs()) {
494     // 64-bit PowerPC implementations can support i64 types directly
495     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
496     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
497     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
498     // 64-bit PowerPC wants to expand i128 shifts itself.
499     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
500     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
501     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
502   } else {
503     // 32-bit PowerPC wants to expand i64 shifts itself.
504     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
505     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
506     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
507   }
508 
509   if (Subtarget.hasAltivec()) {
510     // First set operation action for all vector types to expand. Then we
511     // will selectively turn on ones that can be effectively codegen'd.
512     for (MVT VT : MVT::vector_valuetypes()) {
513       // add/sub are legal for all supported vector VT's.
514       setOperationAction(ISD::ADD, VT, Legal);
515       setOperationAction(ISD::SUB, VT, Legal);
516 
517       // Vector instructions introduced in P8
518       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
519         setOperationAction(ISD::CTPOP, VT, Legal);
520         setOperationAction(ISD::CTLZ, VT, Legal);
521       }
522       else {
523         setOperationAction(ISD::CTPOP, VT, Expand);
524         setOperationAction(ISD::CTLZ, VT, Expand);
525       }
526 
527       // Vector instructions introduced in P9
528       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
529         setOperationAction(ISD::CTTZ, VT, Legal);
530       else
531         setOperationAction(ISD::CTTZ, VT, Expand);
532 
533       // We promote all shuffles to v16i8.
534       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
535       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
536 
537       // We promote all non-typed operations to v4i32.
538       setOperationAction(ISD::AND   , VT, Promote);
539       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
540       setOperationAction(ISD::OR    , VT, Promote);
541       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
542       setOperationAction(ISD::XOR   , VT, Promote);
543       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
544       setOperationAction(ISD::LOAD  , VT, Promote);
545       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
546       setOperationAction(ISD::SELECT, VT, Promote);
547       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
548       setOperationAction(ISD::SELECT_CC, VT, Promote);
549       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
550       setOperationAction(ISD::STORE, VT, Promote);
551       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
552 
553       // No other operations are legal.
554       setOperationAction(ISD::MUL , VT, Expand);
555       setOperationAction(ISD::SDIV, VT, Expand);
556       setOperationAction(ISD::SREM, VT, Expand);
557       setOperationAction(ISD::UDIV, VT, Expand);
558       setOperationAction(ISD::UREM, VT, Expand);
559       setOperationAction(ISD::FDIV, VT, Expand);
560       setOperationAction(ISD::FREM, VT, Expand);
561       setOperationAction(ISD::FNEG, VT, Expand);
562       setOperationAction(ISD::FSQRT, VT, Expand);
563       setOperationAction(ISD::FLOG, VT, Expand);
564       setOperationAction(ISD::FLOG10, VT, Expand);
565       setOperationAction(ISD::FLOG2, VT, Expand);
566       setOperationAction(ISD::FEXP, VT, Expand);
567       setOperationAction(ISD::FEXP2, VT, Expand);
568       setOperationAction(ISD::FSIN, VT, Expand);
569       setOperationAction(ISD::FCOS, VT, Expand);
570       setOperationAction(ISD::FABS, VT, Expand);
571       setOperationAction(ISD::FFLOOR, VT, Expand);
572       setOperationAction(ISD::FCEIL,  VT, Expand);
573       setOperationAction(ISD::FTRUNC, VT, Expand);
574       setOperationAction(ISD::FRINT,  VT, Expand);
575       setOperationAction(ISD::FNEARBYINT, VT, Expand);
576       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
577       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
578       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
579       setOperationAction(ISD::MULHU, VT, Expand);
580       setOperationAction(ISD::MULHS, VT, Expand);
581       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
582       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
583       setOperationAction(ISD::UDIVREM, VT, Expand);
584       setOperationAction(ISD::SDIVREM, VT, Expand);
585       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
586       setOperationAction(ISD::FPOW, VT, Expand);
587       setOperationAction(ISD::BSWAP, VT, Expand);
588       setOperationAction(ISD::VSELECT, VT, Expand);
589       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
590       setOperationAction(ISD::ROTL, VT, Expand);
591       setOperationAction(ISD::ROTR, VT, Expand);
592 
593       for (MVT InnerVT : MVT::vector_valuetypes()) {
594         setTruncStoreAction(VT, InnerVT, Expand);
595         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
596         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
597         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
598       }
599     }
600 
601     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
602     // with merges, splats, etc.
603     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
604 
605     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
606     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
607     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
608     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
609     setOperationAction(ISD::SELECT, MVT::v4i32,
610                        Subtarget.useCRBits() ? Legal : Expand);
611     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
612     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
613     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
614     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
615     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
616     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
617     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
618     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
619     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
620 
621     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
622     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
623     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
624     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
625 
626     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
627     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
628 
629     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
630       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
631       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
632     }
633 
634     if (Subtarget.hasP8Altivec())
635       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
636     else
637       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
638 
639     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
640     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
641 
642     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
643     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
644 
645     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
646     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
647     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
648     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
649 
650     // Altivec does not contain unordered floating-point compare instructions
651     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
652     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
653     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
654     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
655 
656     if (Subtarget.hasVSX()) {
657       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
658       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
659       if (Subtarget.hasP8Vector()) {
660         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
661         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
662       }
663       if (Subtarget.hasDirectMove() && isPPC64) {
664         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
665         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
666         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
667         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
668         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
669         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
670         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
671         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
672       }
673       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
674 
675       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
676       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
677       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
678       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
679       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
680 
681       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
682 
683       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
684       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
685 
686       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
687       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
688 
689       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
690       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
691       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
692       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
693       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
694 
695       // Share the Altivec comparison restrictions.
696       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
697       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
698       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
699       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
700 
701       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
702       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
703 
704       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
705 
706       if (Subtarget.hasP8Vector())
707         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
708 
709       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
710 
711       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
712       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
713       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
714 
715       if (Subtarget.hasP8Altivec()) {
716         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
717         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
718         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
719 
720         // 128 bit shifts can be accomplished via 3 instructions for SHL and
721         // SRL, but not for SRA because of the instructions available:
722         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
723         // doing
724         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
725         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
726         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
727 
728         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
729       }
730       else {
731         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
732         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
733         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
734 
735         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
736 
737         // VSX v2i64 only supports non-arithmetic operations.
738         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
739         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
740       }
741 
742       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
743       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
744       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
745       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
746 
747       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
748 
749       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
750       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
751       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
752       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
753 
754       // Vector operation legalization checks the result type of
755       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
756       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
757       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
758       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
759       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
760 
761       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
762       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
763       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
764       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
765 
766       if (Subtarget.hasDirectMove())
767         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
768       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
769 
770       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
771     }
772 
773     if (Subtarget.hasP8Altivec()) {
774       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
775       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
776     }
777 
778     if (Subtarget.hasP9Vector()) {
779       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
780       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
781 
782       // 128 bit shifts can be accomplished via 3 instructions for SHL and
783       // SRL, but not for SRA because of the instructions available:
784       // VS{RL} and VS{RL}O.
785       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
786       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
787       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
788     }
789 
790     if (Subtarget.hasP9Altivec()) {
791       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
792       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
793     }
794   }
795 
796   if (Subtarget.hasQPX()) {
797     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
798     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
799     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
800     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
801 
802     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
803     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
804 
805     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
806     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
807 
808     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
809     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
810 
811     if (!Subtarget.useCRBits())
812       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
813     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
814 
815     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
816     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
817     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
818     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
819     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
820     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
821     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
822 
823     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
824     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
825 
826     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
827     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
828     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
829 
830     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
831     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
832     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
833     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
834     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
835     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
836     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
837     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
838     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
839     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
840 
841     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
842     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
843 
844     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
845     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
846 
847     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
848 
849     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
850     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
851     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
852     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
853 
854     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
855     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
856 
857     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
858     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
859 
860     if (!Subtarget.useCRBits())
861       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
862     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
863 
864     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
865     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
866     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
867     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
868     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
869     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
870     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
871 
872     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
873     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
874 
875     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
876     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
877     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
878     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
879     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
880     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
881     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
882     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
883     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
884     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
885 
886     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
887     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
888 
889     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
890     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
891 
892     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
893 
894     setOperationAction(ISD::AND , MVT::v4i1, Legal);
895     setOperationAction(ISD::OR , MVT::v4i1, Legal);
896     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
897 
898     if (!Subtarget.useCRBits())
899       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
900     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
901 
902     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
903     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
904 
905     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
906     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
907     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
908     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
909     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
910     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
911     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
912 
913     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
914     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
915 
916     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
917 
918     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
919     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
920     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
921     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
922 
923     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
924     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
925     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
926     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
927 
928     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
929     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
930 
931     // These need to set FE_INEXACT, and so cannot be vectorized here.
932     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
933     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
934 
935     if (TM.Options.UnsafeFPMath) {
936       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
937       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
938 
939       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
940       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
941     } else {
942       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
943       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
944 
945       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
946       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
947     }
948   }
949 
950   if (Subtarget.has64BitSupport())
951     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
952 
953   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
954 
955   if (!isPPC64) {
956     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
957     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
958   }
959 
960   setBooleanContents(ZeroOrOneBooleanContent);
961 
962   if (Subtarget.hasAltivec()) {
963     // Altivec instructions set fields to all zeros or all ones.
964     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
965   }
966 
967   if (!isPPC64) {
968     // These libcalls are not available in 32-bit.
969     setLibcallName(RTLIB::SHL_I128, nullptr);
970     setLibcallName(RTLIB::SRL_I128, nullptr);
971     setLibcallName(RTLIB::SRA_I128, nullptr);
972   }
973 
974   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
975 
976   // We have target-specific dag combine patterns for the following nodes:
977   setTargetDAGCombine(ISD::SHL);
978   setTargetDAGCombine(ISD::SRA);
979   setTargetDAGCombine(ISD::SRL);
980   setTargetDAGCombine(ISD::SINT_TO_FP);
981   setTargetDAGCombine(ISD::BUILD_VECTOR);
982   if (Subtarget.hasFPCVT())
983     setTargetDAGCombine(ISD::UINT_TO_FP);
984   setTargetDAGCombine(ISD::LOAD);
985   setTargetDAGCombine(ISD::STORE);
986   setTargetDAGCombine(ISD::BR_CC);
987   if (Subtarget.useCRBits())
988     setTargetDAGCombine(ISD::BRCOND);
989   setTargetDAGCombine(ISD::BSWAP);
990   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
991   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
992   setTargetDAGCombine(ISD::INTRINSIC_VOID);
993 
994   setTargetDAGCombine(ISD::SIGN_EXTEND);
995   setTargetDAGCombine(ISD::ZERO_EXTEND);
996   setTargetDAGCombine(ISD::ANY_EXTEND);
997 
998   if (Subtarget.useCRBits()) {
999     setTargetDAGCombine(ISD::TRUNCATE);
1000     setTargetDAGCombine(ISD::SETCC);
1001     setTargetDAGCombine(ISD::SELECT_CC);
1002   }
1003 
1004   // Use reciprocal estimates.
1005   if (TM.Options.UnsafeFPMath) {
1006     setTargetDAGCombine(ISD::FDIV);
1007     setTargetDAGCombine(ISD::FSQRT);
1008   }
1009 
1010   // Darwin long double math library functions have $LDBL128 appended.
1011   if (Subtarget.isDarwin()) {
1012     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1013     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1014     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1015     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1016     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1017     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1018     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1019     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1020     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1021     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1022   }
1023 
1024   // With 32 condition bits, we don't need to sink (and duplicate) compares
1025   // aggressively in CodeGenPrep.
1026   if (Subtarget.useCRBits()) {
1027     setHasMultipleConditionRegisters();
1028     setJumpIsExpensive();
1029   }
1030 
1031   setMinFunctionAlignment(2);
1032   if (Subtarget.isDarwin())
1033     setPrefFunctionAlignment(4);
1034 
1035   switch (Subtarget.getDarwinDirective()) {
1036   default: break;
1037   case PPC::DIR_970:
1038   case PPC::DIR_A2:
1039   case PPC::DIR_E500mc:
1040   case PPC::DIR_E5500:
1041   case PPC::DIR_PWR4:
1042   case PPC::DIR_PWR5:
1043   case PPC::DIR_PWR5X:
1044   case PPC::DIR_PWR6:
1045   case PPC::DIR_PWR6X:
1046   case PPC::DIR_PWR7:
1047   case PPC::DIR_PWR8:
1048   case PPC::DIR_PWR9:
1049     setPrefFunctionAlignment(4);
1050     setPrefLoopAlignment(4);
1051     break;
1052   }
1053 
1054   if (Subtarget.enableMachineScheduler())
1055     setSchedulingPreference(Sched::Source);
1056   else
1057     setSchedulingPreference(Sched::Hybrid);
1058 
1059   computeRegisterProperties(STI.getRegisterInfo());
1060 
1061   // The Freescale cores do better with aggressive inlining of memcpy and
1062   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1063   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1064       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1065     MaxStoresPerMemset = 32;
1066     MaxStoresPerMemsetOptSize = 16;
1067     MaxStoresPerMemcpy = 32;
1068     MaxStoresPerMemcpyOptSize = 8;
1069     MaxStoresPerMemmove = 32;
1070     MaxStoresPerMemmoveOptSize = 8;
1071   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1072     // The A2 also benefits from (very) aggressive inlining of memcpy and
1073     // friends. The overhead of a the function call, even when warm, can be
1074     // over one hundred cycles.
1075     MaxStoresPerMemset = 128;
1076     MaxStoresPerMemcpy = 128;
1077     MaxStoresPerMemmove = 128;
1078     MaxLoadsPerMemcmp = 128;
1079   } else {
1080     MaxLoadsPerMemcmp = 8;
1081     MaxLoadsPerMemcmpOptSize = 4;
1082   }
1083 }
1084 
1085 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1086 /// the desired ByVal argument alignment.
1087 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1088                              unsigned MaxMaxAlign) {
1089   if (MaxAlign == MaxMaxAlign)
1090     return;
1091   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1092     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1093       MaxAlign = 32;
1094     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1095       MaxAlign = 16;
1096   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1097     unsigned EltAlign = 0;
1098     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1099     if (EltAlign > MaxAlign)
1100       MaxAlign = EltAlign;
1101   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1102     for (auto *EltTy : STy->elements()) {
1103       unsigned EltAlign = 0;
1104       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1105       if (EltAlign > MaxAlign)
1106         MaxAlign = EltAlign;
1107       if (MaxAlign == MaxMaxAlign)
1108         break;
1109     }
1110   }
1111 }
1112 
1113 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1114 /// function arguments in the caller parameter area.
1115 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1116                                                   const DataLayout &DL) const {
1117   // Darwin passes everything on 4 byte boundary.
1118   if (Subtarget.isDarwin())
1119     return 4;
1120 
1121   // 16byte and wider vectors are passed on 16byte boundary.
1122   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1123   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1124   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1125     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1126   return Align;
1127 }
1128 
1129 bool PPCTargetLowering::useSoftFloat() const {
1130   return Subtarget.useSoftFloat();
1131 }
1132 
1133 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1134   switch ((PPCISD::NodeType)Opcode) {
1135   case PPCISD::FIRST_NUMBER:    break;
1136   case PPCISD::FSEL:            return "PPCISD::FSEL";
1137   case PPCISD::FCFID:           return "PPCISD::FCFID";
1138   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1139   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1140   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1141   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1142   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1143   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1144   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1145   case PPCISD::FRE:             return "PPCISD::FRE";
1146   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1147   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1148   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1149   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1150   case PPCISD::VPERM:           return "PPCISD::VPERM";
1151   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1152   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1153   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1154   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1155   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1156   case PPCISD::CMPB:            return "PPCISD::CMPB";
1157   case PPCISD::Hi:              return "PPCISD::Hi";
1158   case PPCISD::Lo:              return "PPCISD::Lo";
1159   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1160   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1161   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1162   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1163   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1164   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1165   case PPCISD::SRL:             return "PPCISD::SRL";
1166   case PPCISD::SRA:             return "PPCISD::SRA";
1167   case PPCISD::SHL:             return "PPCISD::SHL";
1168   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1169   case PPCISD::CALL:            return "PPCISD::CALL";
1170   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1171   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1172   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1173   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1174   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1175   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1176   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1177   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1178   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1179   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1180   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1181   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1182   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1183   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1184   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1185   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1186   case PPCISD::VCMP:            return "PPCISD::VCMP";
1187   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1188   case PPCISD::LBRX:            return "PPCISD::LBRX";
1189   case PPCISD::STBRX:           return "PPCISD::STBRX";
1190   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1191   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1192   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1193   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1194   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1195   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1196   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1197   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1198   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1199   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1200   case PPCISD::BDZ:             return "PPCISD::BDZ";
1201   case PPCISD::MFFS:            return "PPCISD::MFFS";
1202   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1203   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1204   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1205   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1206   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1207   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1208   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1209   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1210   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1211   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1212   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1213   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1214   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1215   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1216   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1217   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1218   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1219   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1220   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1221   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1222   case PPCISD::SC:              return "PPCISD::SC";
1223   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1224   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1225   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1226   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1227   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1228   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1229   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1230   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1231   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1232   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1233   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1234   }
1235   return nullptr;
1236 }
1237 
1238 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1239                                           EVT VT) const {
1240   if (!VT.isVector())
1241     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1242 
1243   if (Subtarget.hasQPX())
1244     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1245 
1246   return VT.changeVectorElementTypeToInteger();
1247 }
1248 
1249 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1250   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1251   return true;
1252 }
1253 
1254 //===----------------------------------------------------------------------===//
1255 // Node matching predicates, for use by the tblgen matching code.
1256 //===----------------------------------------------------------------------===//
1257 
1258 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1259 static bool isFloatingPointZero(SDValue Op) {
1260   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1261     return CFP->getValueAPF().isZero();
1262   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1263     // Maybe this has already been legalized into the constant pool?
1264     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1265       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1266         return CFP->getValueAPF().isZero();
1267   }
1268   return false;
1269 }
1270 
1271 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1272 /// true if Op is undef or if it matches the specified value.
1273 static bool isConstantOrUndef(int Op, int Val) {
1274   return Op < 0 || Op == Val;
1275 }
1276 
1277 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1278 /// VPKUHUM instruction.
1279 /// The ShuffleKind distinguishes between big-endian operations with
1280 /// two different inputs (0), either-endian operations with two identical
1281 /// inputs (1), and little-endian operations with two different inputs (2).
1282 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1283 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1284                                SelectionDAG &DAG) {
1285   bool IsLE = DAG.getDataLayout().isLittleEndian();
1286   if (ShuffleKind == 0) {
1287     if (IsLE)
1288       return false;
1289     for (unsigned i = 0; i != 16; ++i)
1290       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1291         return false;
1292   } else if (ShuffleKind == 2) {
1293     if (!IsLE)
1294       return false;
1295     for (unsigned i = 0; i != 16; ++i)
1296       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1297         return false;
1298   } else if (ShuffleKind == 1) {
1299     unsigned j = IsLE ? 0 : 1;
1300     for (unsigned i = 0; i != 8; ++i)
1301       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1302           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1303         return false;
1304   }
1305   return true;
1306 }
1307 
1308 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1309 /// VPKUWUM instruction.
1310 /// The ShuffleKind distinguishes between big-endian operations with
1311 /// two different inputs (0), either-endian operations with two identical
1312 /// inputs (1), and little-endian operations with two different inputs (2).
1313 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1314 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1315                                SelectionDAG &DAG) {
1316   bool IsLE = DAG.getDataLayout().isLittleEndian();
1317   if (ShuffleKind == 0) {
1318     if (IsLE)
1319       return false;
1320     for (unsigned i = 0; i != 16; i += 2)
1321       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1322           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1323         return false;
1324   } else if (ShuffleKind == 2) {
1325     if (!IsLE)
1326       return false;
1327     for (unsigned i = 0; i != 16; i += 2)
1328       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1329           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1330         return false;
1331   } else if (ShuffleKind == 1) {
1332     unsigned j = IsLE ? 0 : 2;
1333     for (unsigned i = 0; i != 8; i += 2)
1334       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1335           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1336           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1337           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1338         return false;
1339   }
1340   return true;
1341 }
1342 
1343 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1344 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1345 /// current subtarget.
1346 ///
1347 /// The ShuffleKind distinguishes between big-endian operations with
1348 /// two different inputs (0), either-endian operations with two identical
1349 /// inputs (1), and little-endian operations with two different inputs (2).
1350 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1351 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1352                                SelectionDAG &DAG) {
1353   const PPCSubtarget& Subtarget =
1354     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1355   if (!Subtarget.hasP8Vector())
1356     return false;
1357 
1358   bool IsLE = DAG.getDataLayout().isLittleEndian();
1359   if (ShuffleKind == 0) {
1360     if (IsLE)
1361       return false;
1362     for (unsigned i = 0; i != 16; i += 4)
1363       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1364           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1365           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1366           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1367         return false;
1368   } else if (ShuffleKind == 2) {
1369     if (!IsLE)
1370       return false;
1371     for (unsigned i = 0; i != 16; i += 4)
1372       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1373           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1374           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1375           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1376         return false;
1377   } else if (ShuffleKind == 1) {
1378     unsigned j = IsLE ? 0 : 4;
1379     for (unsigned i = 0; i != 8; i += 4)
1380       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1381           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1382           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1383           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1384           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1385           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1386           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1387           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1388         return false;
1389   }
1390   return true;
1391 }
1392 
1393 /// isVMerge - Common function, used to match vmrg* shuffles.
1394 ///
1395 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1396                      unsigned LHSStart, unsigned RHSStart) {
1397   if (N->getValueType(0) != MVT::v16i8)
1398     return false;
1399   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1400          "Unsupported merge size!");
1401 
1402   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1403     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1404       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1405                              LHSStart+j+i*UnitSize) ||
1406           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1407                              RHSStart+j+i*UnitSize))
1408         return false;
1409     }
1410   return true;
1411 }
1412 
1413 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1414 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1415 /// The ShuffleKind distinguishes between big-endian merges with two
1416 /// different inputs (0), either-endian merges with two identical inputs (1),
1417 /// and little-endian merges with two different inputs (2).  For the latter,
1418 /// the input operands are swapped (see PPCInstrAltivec.td).
1419 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1420                              unsigned ShuffleKind, SelectionDAG &DAG) {
1421   if (DAG.getDataLayout().isLittleEndian()) {
1422     if (ShuffleKind == 1) // unary
1423       return isVMerge(N, UnitSize, 0, 0);
1424     else if (ShuffleKind == 2) // swapped
1425       return isVMerge(N, UnitSize, 0, 16);
1426     else
1427       return false;
1428   } else {
1429     if (ShuffleKind == 1) // unary
1430       return isVMerge(N, UnitSize, 8, 8);
1431     else if (ShuffleKind == 0) // normal
1432       return isVMerge(N, UnitSize, 8, 24);
1433     else
1434       return false;
1435   }
1436 }
1437 
1438 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1439 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1440 /// The ShuffleKind distinguishes between big-endian merges with two
1441 /// different inputs (0), either-endian merges with two identical inputs (1),
1442 /// and little-endian merges with two different inputs (2).  For the latter,
1443 /// the input operands are swapped (see PPCInstrAltivec.td).
1444 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1445                              unsigned ShuffleKind, SelectionDAG &DAG) {
1446   if (DAG.getDataLayout().isLittleEndian()) {
1447     if (ShuffleKind == 1) // unary
1448       return isVMerge(N, UnitSize, 8, 8);
1449     else if (ShuffleKind == 2) // swapped
1450       return isVMerge(N, UnitSize, 8, 24);
1451     else
1452       return false;
1453   } else {
1454     if (ShuffleKind == 1) // unary
1455       return isVMerge(N, UnitSize, 0, 0);
1456     else if (ShuffleKind == 0) // normal
1457       return isVMerge(N, UnitSize, 0, 16);
1458     else
1459       return false;
1460   }
1461 }
1462 
1463 /**
1464  * \brief Common function used to match vmrgew and vmrgow shuffles
1465  *
1466  * The indexOffset determines whether to look for even or odd words in
1467  * the shuffle mask. This is based on the of the endianness of the target
1468  * machine.
1469  *   - Little Endian:
1470  *     - Use offset of 0 to check for odd elements
1471  *     - Use offset of 4 to check for even elements
1472  *   - Big Endian:
1473  *     - Use offset of 0 to check for even elements
1474  *     - Use offset of 4 to check for odd elements
1475  * A detailed description of the vector element ordering for little endian and
1476  * big endian can be found at
1477  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1478  * Targeting your applications - what little endian and big endian IBM XL C/C++
1479  * compiler differences mean to you
1480  *
1481  * The mask to the shuffle vector instruction specifies the indices of the
1482  * elements from the two input vectors to place in the result. The elements are
1483  * numbered in array-access order, starting with the first vector. These vectors
1484  * are always of type v16i8, thus each vector will contain 16 elements of size
1485  * 8. More info on the shuffle vector can be found in the
1486  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1487  * Language Reference.
1488  *
1489  * The RHSStartValue indicates whether the same input vectors are used (unary)
1490  * or two different input vectors are used, based on the following:
1491  *   - If the instruction uses the same vector for both inputs, the range of the
1492  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1493  *     be 0.
1494  *   - If the instruction has two different vectors then the range of the
1495  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1496  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1497  *     to 31 specify elements in the second vector).
1498  *
1499  * \param[in] N The shuffle vector SD Node to analyze
1500  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1501  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1502  * vector to the shuffle_vector instruction
1503  * \return true iff this shuffle vector represents an even or odd word merge
1504  */
1505 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1506                      unsigned RHSStartValue) {
1507   if (N->getValueType(0) != MVT::v16i8)
1508     return false;
1509 
1510   for (unsigned i = 0; i < 2; ++i)
1511     for (unsigned j = 0; j < 4; ++j)
1512       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1513                              i*RHSStartValue+j+IndexOffset) ||
1514           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1515                              i*RHSStartValue+j+IndexOffset+8))
1516         return false;
1517   return true;
1518 }
1519 
1520 /**
1521  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1522  * vmrgow instructions.
1523  *
1524  * \param[in] N The shuffle vector SD Node to analyze
1525  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1526  * \param[in] ShuffleKind Identify the type of merge:
1527  *   - 0 = big-endian merge with two different inputs;
1528  *   - 1 = either-endian merge with two identical inputs;
1529  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1530  *     little-endian merges).
1531  * \param[in] DAG The current SelectionDAG
1532  * \return true iff this shuffle mask
1533  */
1534 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1535                               unsigned ShuffleKind, SelectionDAG &DAG) {
1536   if (DAG.getDataLayout().isLittleEndian()) {
1537     unsigned indexOffset = CheckEven ? 4 : 0;
1538     if (ShuffleKind == 1) // Unary
1539       return isVMerge(N, indexOffset, 0);
1540     else if (ShuffleKind == 2) // swapped
1541       return isVMerge(N, indexOffset, 16);
1542     else
1543       return false;
1544   }
1545   else {
1546     unsigned indexOffset = CheckEven ? 0 : 4;
1547     if (ShuffleKind == 1) // Unary
1548       return isVMerge(N, indexOffset, 0);
1549     else if (ShuffleKind == 0) // Normal
1550       return isVMerge(N, indexOffset, 16);
1551     else
1552       return false;
1553   }
1554   return false;
1555 }
1556 
1557 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1558 /// amount, otherwise return -1.
1559 /// The ShuffleKind distinguishes between big-endian operations with two
1560 /// different inputs (0), either-endian operations with two identical inputs
1561 /// (1), and little-endian operations with two different inputs (2).  For the
1562 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1563 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1564                              SelectionDAG &DAG) {
1565   if (N->getValueType(0) != MVT::v16i8)
1566     return -1;
1567 
1568   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1569 
1570   // Find the first non-undef value in the shuffle mask.
1571   unsigned i;
1572   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1573     /*search*/;
1574 
1575   if (i == 16) return -1;  // all undef.
1576 
1577   // Otherwise, check to see if the rest of the elements are consecutively
1578   // numbered from this value.
1579   unsigned ShiftAmt = SVOp->getMaskElt(i);
1580   if (ShiftAmt < i) return -1;
1581 
1582   ShiftAmt -= i;
1583   bool isLE = DAG.getDataLayout().isLittleEndian();
1584 
1585   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1586     // Check the rest of the elements to see if they are consecutive.
1587     for (++i; i != 16; ++i)
1588       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1589         return -1;
1590   } else if (ShuffleKind == 1) {
1591     // Check the rest of the elements to see if they are consecutive.
1592     for (++i; i != 16; ++i)
1593       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1594         return -1;
1595   } else
1596     return -1;
1597 
1598   if (isLE)
1599     ShiftAmt = 16 - ShiftAmt;
1600 
1601   return ShiftAmt;
1602 }
1603 
1604 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1605 /// specifies a splat of a single element that is suitable for input to
1606 /// VSPLTB/VSPLTH/VSPLTW.
1607 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1608   assert(N->getValueType(0) == MVT::v16i8 &&
1609          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1610 
1611   // The consecutive indices need to specify an element, not part of two
1612   // different elements.  So abandon ship early if this isn't the case.
1613   if (N->getMaskElt(0) % EltSize != 0)
1614     return false;
1615 
1616   // This is a splat operation if each element of the permute is the same, and
1617   // if the value doesn't reference the second vector.
1618   unsigned ElementBase = N->getMaskElt(0);
1619 
1620   // FIXME: Handle UNDEF elements too!
1621   if (ElementBase >= 16)
1622     return false;
1623 
1624   // Check that the indices are consecutive, in the case of a multi-byte element
1625   // splatted with a v16i8 mask.
1626   for (unsigned i = 1; i != EltSize; ++i)
1627     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1628       return false;
1629 
1630   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1631     if (N->getMaskElt(i) < 0) continue;
1632     for (unsigned j = 0; j != EltSize; ++j)
1633       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1634         return false;
1635   }
1636   return true;
1637 }
1638 
1639 /// Check that the mask is shuffling N byte elements. Within each N byte
1640 /// element of the mask, the indices could be either in increasing or
1641 /// decreasing order as long as they are consecutive.
1642 /// \param[in] N the shuffle vector SD Node to analyze
1643 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1644 /// Word/DoubleWord/QuadWord).
1645 /// \param[in] StepLen the delta indices number among the N byte element, if
1646 /// the mask is in increasing/decreasing order then it is 1/-1.
1647 /// \return true iff the mask is shuffling N byte elements.
1648 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1649                                    int StepLen) {
1650   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1651          "Unexpected element width.");
1652   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1653 
1654   unsigned NumOfElem = 16 / Width;
1655   unsigned MaskVal[16]; //  Width is never greater than 16
1656   for (unsigned i = 0; i < NumOfElem; ++i) {
1657     MaskVal[0] = N->getMaskElt(i * Width);
1658     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1659       return false;
1660     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1661       return false;
1662     }
1663 
1664     for (unsigned int j = 1; j < Width; ++j) {
1665       MaskVal[j] = N->getMaskElt(i * Width + j);
1666       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1667         return false;
1668       }
1669     }
1670   }
1671 
1672   return true;
1673 }
1674 
1675 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1676                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1677   if (!isNByteElemShuffleMask(N, 4, 1))
1678     return false;
1679 
1680   // Now we look at mask elements 0,4,8,12
1681   unsigned M0 = N->getMaskElt(0) / 4;
1682   unsigned M1 = N->getMaskElt(4) / 4;
1683   unsigned M2 = N->getMaskElt(8) / 4;
1684   unsigned M3 = N->getMaskElt(12) / 4;
1685   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1686   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1687 
1688   // Below, let H and L be arbitrary elements of the shuffle mask
1689   // where H is in the range [4,7] and L is in the range [0,3].
1690   // H, 1, 2, 3 or L, 5, 6, 7
1691   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1692       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1693     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1694     InsertAtByte = IsLE ? 12 : 0;
1695     Swap = M0 < 4;
1696     return true;
1697   }
1698   // 0, H, 2, 3 or 4, L, 6, 7
1699   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1700       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1701     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1702     InsertAtByte = IsLE ? 8 : 4;
1703     Swap = M1 < 4;
1704     return true;
1705   }
1706   // 0, 1, H, 3 or 4, 5, L, 7
1707   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1708       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1709     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1710     InsertAtByte = IsLE ? 4 : 8;
1711     Swap = M2 < 4;
1712     return true;
1713   }
1714   // 0, 1, 2, H or 4, 5, 6, L
1715   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1716       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1717     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1718     InsertAtByte = IsLE ? 0 : 12;
1719     Swap = M3 < 4;
1720     return true;
1721   }
1722 
1723   // If both vector operands for the shuffle are the same vector, the mask will
1724   // contain only elements from the first one and the second one will be undef.
1725   if (N->getOperand(1).isUndef()) {
1726     ShiftElts = 0;
1727     Swap = true;
1728     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1729     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1730       InsertAtByte = IsLE ? 12 : 0;
1731       return true;
1732     }
1733     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1734       InsertAtByte = IsLE ? 8 : 4;
1735       return true;
1736     }
1737     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1738       InsertAtByte = IsLE ? 4 : 8;
1739       return true;
1740     }
1741     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1742       InsertAtByte = IsLE ? 0 : 12;
1743       return true;
1744     }
1745   }
1746 
1747   return false;
1748 }
1749 
1750 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1751                                bool &Swap, bool IsLE) {
1752   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1753   // Ensure each byte index of the word is consecutive.
1754   if (!isNByteElemShuffleMask(N, 4, 1))
1755     return false;
1756 
1757   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1758   unsigned M0 = N->getMaskElt(0) / 4;
1759   unsigned M1 = N->getMaskElt(4) / 4;
1760   unsigned M2 = N->getMaskElt(8) / 4;
1761   unsigned M3 = N->getMaskElt(12) / 4;
1762 
1763   // If both vector operands for the shuffle are the same vector, the mask will
1764   // contain only elements from the first one and the second one will be undef.
1765   if (N->getOperand(1).isUndef()) {
1766     assert(M0 < 4 && "Indexing into an undef vector?");
1767     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1768       return false;
1769 
1770     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1771     Swap = false;
1772     return true;
1773   }
1774 
1775   // Ensure each word index of the ShuffleVector Mask is consecutive.
1776   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1777     return false;
1778 
1779   if (IsLE) {
1780     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1781       // Input vectors don't need to be swapped if the leading element
1782       // of the result is one of the 3 left elements of the second vector
1783       // (or if there is no shift to be done at all).
1784       Swap = false;
1785       ShiftElts = (8 - M0) % 8;
1786     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1787       // Input vectors need to be swapped if the leading element
1788       // of the result is one of the 3 left elements of the first vector
1789       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1790       Swap = true;
1791       ShiftElts = (4 - M0) % 4;
1792     }
1793 
1794     return true;
1795   } else {                                          // BE
1796     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1797       // Input vectors don't need to be swapped if the leading element
1798       // of the result is one of the 4 elements of the first vector.
1799       Swap = false;
1800       ShiftElts = M0;
1801     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1802       // Input vectors need to be swapped if the leading element
1803       // of the result is one of the 4 elements of the right vector.
1804       Swap = true;
1805       ShiftElts = M0 - 4;
1806     }
1807 
1808     return true;
1809   }
1810 }
1811 
1812 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1813   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1814 
1815   if (!isNByteElemShuffleMask(N, Width, -1))
1816     return false;
1817 
1818   for (int i = 0; i < 16; i += Width)
1819     if (N->getMaskElt(i) != i + Width - 1)
1820       return false;
1821 
1822   return true;
1823 }
1824 
1825 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1826   return isXXBRShuffleMaskHelper(N, 2);
1827 }
1828 
1829 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1830   return isXXBRShuffleMaskHelper(N, 4);
1831 }
1832 
1833 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1834   return isXXBRShuffleMaskHelper(N, 8);
1835 }
1836 
1837 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1838   return isXXBRShuffleMaskHelper(N, 16);
1839 }
1840 
1841 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1842 /// if the inputs to the instruction should be swapped and set \p DM to the
1843 /// value for the immediate.
1844 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1845 /// AND element 0 of the result comes from the first input (LE) or second input
1846 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1847 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1848 /// mask.
1849 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1850                                bool &Swap, bool IsLE) {
1851   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1852 
1853   // Ensure each byte index of the double word is consecutive.
1854   if (!isNByteElemShuffleMask(N, 8, 1))
1855     return false;
1856 
1857   unsigned M0 = N->getMaskElt(0) / 8;
1858   unsigned M1 = N->getMaskElt(8) / 8;
1859   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
1860 
1861   // If both vector operands for the shuffle are the same vector, the mask will
1862   // contain only elements from the first one and the second one will be undef.
1863   if (N->getOperand(1).isUndef()) {
1864     if ((M0 | M1) < 2) {
1865       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
1866       Swap = false;
1867       return true;
1868     } else
1869       return false;
1870   }
1871 
1872   if (IsLE) {
1873     if (M0 > 1 && M1 < 2) {
1874       Swap = false;
1875     } else if (M0 < 2 && M1 > 1) {
1876       M0 = (M0 + 2) % 4;
1877       M1 = (M1 + 2) % 4;
1878       Swap = true;
1879     } else
1880       return false;
1881 
1882     // Note: if control flow comes here that means Swap is already set above
1883     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
1884     return true;
1885   } else { // BE
1886     if (M0 < 2 && M1 > 1) {
1887       Swap = false;
1888     } else if (M0 > 1 && M1 < 2) {
1889       M0 = (M0 + 2) % 4;
1890       M1 = (M1 + 2) % 4;
1891       Swap = true;
1892     } else
1893       return false;
1894 
1895     // Note: if control flow comes here that means Swap is already set above
1896     DM = (M0 << 1) + (M1 & 1);
1897     return true;
1898   }
1899 }
1900 
1901 
1902 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1903 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1904 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1905                                 SelectionDAG &DAG) {
1906   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1907   assert(isSplatShuffleMask(SVOp, EltSize));
1908   if (DAG.getDataLayout().isLittleEndian())
1909     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1910   else
1911     return SVOp->getMaskElt(0) / EltSize;
1912 }
1913 
1914 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1915 /// by using a vspltis[bhw] instruction of the specified element size, return
1916 /// the constant being splatted.  The ByteSize field indicates the number of
1917 /// bytes of each element [124] -> [bhw].
1918 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1919   SDValue OpVal(nullptr, 0);
1920 
1921   // If ByteSize of the splat is bigger than the element size of the
1922   // build_vector, then we have a case where we are checking for a splat where
1923   // multiple elements of the buildvector are folded together into a single
1924   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1925   unsigned EltSize = 16/N->getNumOperands();
1926   if (EltSize < ByteSize) {
1927     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1928     SDValue UniquedVals[4];
1929     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1930 
1931     // See if all of the elements in the buildvector agree across.
1932     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1933       if (N->getOperand(i).isUndef()) continue;
1934       // If the element isn't a constant, bail fully out.
1935       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1936 
1937       if (!UniquedVals[i&(Multiple-1)].getNode())
1938         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1939       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1940         return SDValue();  // no match.
1941     }
1942 
1943     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1944     // either constant or undef values that are identical for each chunk.  See
1945     // if these chunks can form into a larger vspltis*.
1946 
1947     // Check to see if all of the leading entries are either 0 or -1.  If
1948     // neither, then this won't fit into the immediate field.
1949     bool LeadingZero = true;
1950     bool LeadingOnes = true;
1951     for (unsigned i = 0; i != Multiple-1; ++i) {
1952       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1953 
1954       LeadingZero &= isNullConstant(UniquedVals[i]);
1955       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1956     }
1957     // Finally, check the least significant entry.
1958     if (LeadingZero) {
1959       if (!UniquedVals[Multiple-1].getNode())
1960         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1961       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1962       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1963         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1964     }
1965     if (LeadingOnes) {
1966       if (!UniquedVals[Multiple-1].getNode())
1967         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1968       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1969       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1970         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1971     }
1972 
1973     return SDValue();
1974   }
1975 
1976   // Check to see if this buildvec has a single non-undef value in its elements.
1977   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1978     if (N->getOperand(i).isUndef()) continue;
1979     if (!OpVal.getNode())
1980       OpVal = N->getOperand(i);
1981     else if (OpVal != N->getOperand(i))
1982       return SDValue();
1983   }
1984 
1985   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1986 
1987   unsigned ValSizeInBytes = EltSize;
1988   uint64_t Value = 0;
1989   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1990     Value = CN->getZExtValue();
1991   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1992     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1993     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1994   }
1995 
1996   // If the splat value is larger than the element value, then we can never do
1997   // this splat.  The only case that we could fit the replicated bits into our
1998   // immediate field for would be zero, and we prefer to use vxor for it.
1999   if (ValSizeInBytes < ByteSize) return SDValue();
2000 
2001   // If the element value is larger than the splat value, check if it consists
2002   // of a repeated bit pattern of size ByteSize.
2003   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2004     return SDValue();
2005 
2006   // Properly sign extend the value.
2007   int MaskVal = SignExtend32(Value, ByteSize * 8);
2008 
2009   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2010   if (MaskVal == 0) return SDValue();
2011 
2012   // Finally, if this value fits in a 5 bit sext field, return it
2013   if (SignExtend32<5>(MaskVal) == MaskVal)
2014     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2015   return SDValue();
2016 }
2017 
2018 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2019 /// amount, otherwise return -1.
2020 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2021   EVT VT = N->getValueType(0);
2022   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2023     return -1;
2024 
2025   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2026 
2027   // Find the first non-undef value in the shuffle mask.
2028   unsigned i;
2029   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2030     /*search*/;
2031 
2032   if (i == 4) return -1;  // all undef.
2033 
2034   // Otherwise, check to see if the rest of the elements are consecutively
2035   // numbered from this value.
2036   unsigned ShiftAmt = SVOp->getMaskElt(i);
2037   if (ShiftAmt < i) return -1;
2038   ShiftAmt -= i;
2039 
2040   // Check the rest of the elements to see if they are consecutive.
2041   for (++i; i != 4; ++i)
2042     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2043       return -1;
2044 
2045   return ShiftAmt;
2046 }
2047 
2048 //===----------------------------------------------------------------------===//
2049 //  Addressing Mode Selection
2050 //===----------------------------------------------------------------------===//
2051 
2052 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2053 /// or 64-bit immediate, and if the value can be accurately represented as a
2054 /// sign extension from a 16-bit value.  If so, this returns true and the
2055 /// immediate.
2056 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2057   if (!isa<ConstantSDNode>(N))
2058     return false;
2059 
2060   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2061   if (N->getValueType(0) == MVT::i32)
2062     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2063   else
2064     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2065 }
2066 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2067   return isIntS16Immediate(Op.getNode(), Imm);
2068 }
2069 
2070 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2071 /// can be represented as an indexed [r+r] operation.  Returns false if it
2072 /// can be more efficiently represented with [r+imm].
2073 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2074                                             SDValue &Index,
2075                                             SelectionDAG &DAG) const {
2076   int16_t imm = 0;
2077   if (N.getOpcode() == ISD::ADD) {
2078     if (isIntS16Immediate(N.getOperand(1), imm))
2079       return false;    // r+i
2080     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2081       return false;    // r+i
2082 
2083     Base = N.getOperand(0);
2084     Index = N.getOperand(1);
2085     return true;
2086   } else if (N.getOpcode() == ISD::OR) {
2087     if (isIntS16Immediate(N.getOperand(1), imm))
2088       return false;    // r+i can fold it if we can.
2089 
2090     // If this is an or of disjoint bitfields, we can codegen this as an add
2091     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2092     // disjoint.
2093     KnownBits LHSKnown, RHSKnown;
2094     DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2095 
2096     if (LHSKnown.Zero.getBoolValue()) {
2097       DAG.computeKnownBits(N.getOperand(1), RHSKnown);
2098       // If all of the bits are known zero on the LHS or RHS, the add won't
2099       // carry.
2100       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2101         Base = N.getOperand(0);
2102         Index = N.getOperand(1);
2103         return true;
2104       }
2105     }
2106   }
2107 
2108   return false;
2109 }
2110 
2111 // If we happen to be doing an i64 load or store into a stack slot that has
2112 // less than a 4-byte alignment, then the frame-index elimination may need to
2113 // use an indexed load or store instruction (because the offset may not be a
2114 // multiple of 4). The extra register needed to hold the offset comes from the
2115 // register scavenger, and it is possible that the scavenger will need to use
2116 // an emergency spill slot. As a result, we need to make sure that a spill slot
2117 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2118 // stack slot.
2119 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2120   // FIXME: This does not handle the LWA case.
2121   if (VT != MVT::i64)
2122     return;
2123 
2124   // NOTE: We'll exclude negative FIs here, which come from argument
2125   // lowering, because there are no known test cases triggering this problem
2126   // using packed structures (or similar). We can remove this exclusion if
2127   // we find such a test case. The reason why this is so test-case driven is
2128   // because this entire 'fixup' is only to prevent crashes (from the
2129   // register scavenger) on not-really-valid inputs. For example, if we have:
2130   //   %a = alloca i1
2131   //   %b = bitcast i1* %a to i64*
2132   //   store i64* a, i64 b
2133   // then the store should really be marked as 'align 1', but is not. If it
2134   // were marked as 'align 1' then the indexed form would have been
2135   // instruction-selected initially, and the problem this 'fixup' is preventing
2136   // won't happen regardless.
2137   if (FrameIdx < 0)
2138     return;
2139 
2140   MachineFunction &MF = DAG.getMachineFunction();
2141   MachineFrameInfo &MFI = MF.getFrameInfo();
2142 
2143   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2144   if (Align >= 4)
2145     return;
2146 
2147   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2148   FuncInfo->setHasNonRISpills();
2149 }
2150 
2151 /// Returns true if the address N can be represented by a base register plus
2152 /// a signed 16-bit displacement [r+imm], and if it is not better
2153 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
2154 /// displacements that are multiples of that value.
2155 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2156                                             SDValue &Base,
2157                                             SelectionDAG &DAG,
2158                                             unsigned Alignment) const {
2159   // FIXME dl should come from parent load or store, not from address
2160   SDLoc dl(N);
2161   // If this can be more profitably realized as r+r, fail.
2162   if (SelectAddressRegReg(N, Disp, Base, DAG))
2163     return false;
2164 
2165   if (N.getOpcode() == ISD::ADD) {
2166     int16_t imm = 0;
2167     if (isIntS16Immediate(N.getOperand(1), imm) &&
2168         (!Alignment || (imm % Alignment) == 0)) {
2169       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2170       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2171         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2172         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2173       } else {
2174         Base = N.getOperand(0);
2175       }
2176       return true; // [r+i]
2177     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2178       // Match LOAD (ADD (X, Lo(G))).
2179       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2180              && "Cannot handle constant offsets yet!");
2181       Disp = N.getOperand(1).getOperand(0);  // The global address.
2182       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2183              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2184              Disp.getOpcode() == ISD::TargetConstantPool ||
2185              Disp.getOpcode() == ISD::TargetJumpTable);
2186       Base = N.getOperand(0);
2187       return true;  // [&g+r]
2188     }
2189   } else if (N.getOpcode() == ISD::OR) {
2190     int16_t imm = 0;
2191     if (isIntS16Immediate(N.getOperand(1), imm) &&
2192         (!Alignment || (imm % Alignment) == 0)) {
2193       // If this is an or of disjoint bitfields, we can codegen this as an add
2194       // (for better address arithmetic) if the LHS and RHS of the OR are
2195       // provably disjoint.
2196       KnownBits LHSKnown;
2197       DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2198 
2199       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2200         // If all of the bits are known zero on the LHS or RHS, the add won't
2201         // carry.
2202         if (FrameIndexSDNode *FI =
2203               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2204           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2205           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2206         } else {
2207           Base = N.getOperand(0);
2208         }
2209         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2210         return true;
2211       }
2212     }
2213   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2214     // Loading from a constant address.
2215 
2216     // If this address fits entirely in a 16-bit sext immediate field, codegen
2217     // this as "d, 0"
2218     int16_t Imm;
2219     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2220       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2221       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2222                              CN->getValueType(0));
2223       return true;
2224     }
2225 
2226     // Handle 32-bit sext immediates with LIS + addr mode.
2227     if ((CN->getValueType(0) == MVT::i32 ||
2228          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2229         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2230       int Addr = (int)CN->getZExtValue();
2231 
2232       // Otherwise, break this down into an LIS + disp.
2233       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2234 
2235       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2236                                    MVT::i32);
2237       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2238       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2239       return true;
2240     }
2241   }
2242 
2243   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2244   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2245     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2246     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2247   } else
2248     Base = N;
2249   return true;      // [r+0]
2250 }
2251 
2252 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2253 /// represented as an indexed [r+r] operation.
2254 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2255                                                 SDValue &Index,
2256                                                 SelectionDAG &DAG) const {
2257   // Check to see if we can easily represent this as an [r+r] address.  This
2258   // will fail if it thinks that the address is more profitably represented as
2259   // reg+imm, e.g. where imm = 0.
2260   if (SelectAddressRegReg(N, Base, Index, DAG))
2261     return true;
2262 
2263   // If the address is the result of an add, we will utilize the fact that the
2264   // address calculation includes an implicit add.  However, we can reduce
2265   // register pressure if we do not materialize a constant just for use as the
2266   // index register.  We only get rid of the add if it is not an add of a
2267   // value and a 16-bit signed constant and both have a single use.
2268   int16_t imm = 0;
2269   if (N.getOpcode() == ISD::ADD &&
2270       (!isIntS16Immediate(N.getOperand(1), imm) ||
2271        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2272     Base = N.getOperand(0);
2273     Index = N.getOperand(1);
2274     return true;
2275   }
2276 
2277   // Otherwise, do it the hard way, using R0 as the base register.
2278   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2279                          N.getValueType());
2280   Index = N;
2281   return true;
2282 }
2283 
2284 /// getPreIndexedAddressParts - returns true by value, base pointer and
2285 /// offset pointer and addressing mode by reference if the node's address
2286 /// can be legally represented as pre-indexed load / store address.
2287 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2288                                                   SDValue &Offset,
2289                                                   ISD::MemIndexedMode &AM,
2290                                                   SelectionDAG &DAG) const {
2291   if (DisablePPCPreinc) return false;
2292 
2293   bool isLoad = true;
2294   SDValue Ptr;
2295   EVT VT;
2296   unsigned Alignment;
2297   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2298     Ptr = LD->getBasePtr();
2299     VT = LD->getMemoryVT();
2300     Alignment = LD->getAlignment();
2301   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2302     Ptr = ST->getBasePtr();
2303     VT  = ST->getMemoryVT();
2304     Alignment = ST->getAlignment();
2305     isLoad = false;
2306   } else
2307     return false;
2308 
2309   // PowerPC doesn't have preinc load/store instructions for vectors (except
2310   // for QPX, which does have preinc r+r forms).
2311   if (VT.isVector()) {
2312     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2313       return false;
2314     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2315       AM = ISD::PRE_INC;
2316       return true;
2317     }
2318   }
2319 
2320   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2321     // Common code will reject creating a pre-inc form if the base pointer
2322     // is a frame index, or if N is a store and the base pointer is either
2323     // the same as or a predecessor of the value being stored.  Check for
2324     // those situations here, and try with swapped Base/Offset instead.
2325     bool Swap = false;
2326 
2327     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2328       Swap = true;
2329     else if (!isLoad) {
2330       SDValue Val = cast<StoreSDNode>(N)->getValue();
2331       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2332         Swap = true;
2333     }
2334 
2335     if (Swap)
2336       std::swap(Base, Offset);
2337 
2338     AM = ISD::PRE_INC;
2339     return true;
2340   }
2341 
2342   // LDU/STU can only handle immediates that are a multiple of 4.
2343   if (VT != MVT::i64) {
2344     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2345       return false;
2346   } else {
2347     // LDU/STU need an address with at least 4-byte alignment.
2348     if (Alignment < 4)
2349       return false;
2350 
2351     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2352       return false;
2353   }
2354 
2355   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2356     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2357     // sext i32 to i64 when addr mode is r+i.
2358     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2359         LD->getExtensionType() == ISD::SEXTLOAD &&
2360         isa<ConstantSDNode>(Offset))
2361       return false;
2362   }
2363 
2364   AM = ISD::PRE_INC;
2365   return true;
2366 }
2367 
2368 //===----------------------------------------------------------------------===//
2369 //  LowerOperation implementation
2370 //===----------------------------------------------------------------------===//
2371 
2372 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2373 /// and LoOpFlags to the target MO flags.
2374 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2375                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2376                                const GlobalValue *GV = nullptr) {
2377   HiOpFlags = PPCII::MO_HA;
2378   LoOpFlags = PPCII::MO_LO;
2379 
2380   // Don't use the pic base if not in PIC relocation model.
2381   if (IsPIC) {
2382     HiOpFlags |= PPCII::MO_PIC_FLAG;
2383     LoOpFlags |= PPCII::MO_PIC_FLAG;
2384   }
2385 
2386   // If this is a reference to a global value that requires a non-lazy-ptr, make
2387   // sure that instruction lowering adds it.
2388   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2389     HiOpFlags |= PPCII::MO_NLP_FLAG;
2390     LoOpFlags |= PPCII::MO_NLP_FLAG;
2391 
2392     if (GV->hasHiddenVisibility()) {
2393       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2394       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2395     }
2396   }
2397 }
2398 
2399 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2400                              SelectionDAG &DAG) {
2401   SDLoc DL(HiPart);
2402   EVT PtrVT = HiPart.getValueType();
2403   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2404 
2405   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2406   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2407 
2408   // With PIC, the first instruction is actually "GR+hi(&G)".
2409   if (isPIC)
2410     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2411                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2412 
2413   // Generate non-pic code that has direct accesses to the constant pool.
2414   // The address of the global is just (hi(&g)+lo(&g)).
2415   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2416 }
2417 
2418 static void setUsesTOCBasePtr(MachineFunction &MF) {
2419   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2420   FuncInfo->setUsesTOCBasePtr();
2421 }
2422 
2423 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2424   setUsesTOCBasePtr(DAG.getMachineFunction());
2425 }
2426 
2427 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2428                            SDValue GA) {
2429   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2430   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2431                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2432 
2433   SDValue Ops[] = { GA, Reg };
2434   return DAG.getMemIntrinsicNode(
2435       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2436       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2437       MachineMemOperand::MOLoad);
2438 }
2439 
2440 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2441                                              SelectionDAG &DAG) const {
2442   EVT PtrVT = Op.getValueType();
2443   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2444   const Constant *C = CP->getConstVal();
2445 
2446   // 64-bit SVR4 ABI code is always position-independent.
2447   // The actual address of the GlobalValue is stored in the TOC.
2448   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2449     setUsesTOCBasePtr(DAG);
2450     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2451     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2452   }
2453 
2454   unsigned MOHiFlag, MOLoFlag;
2455   bool IsPIC = isPositionIndependent();
2456   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2457 
2458   if (IsPIC && Subtarget.isSVR4ABI()) {
2459     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2460                                            PPCII::MO_PIC_FLAG);
2461     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2462   }
2463 
2464   SDValue CPIHi =
2465     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2466   SDValue CPILo =
2467     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2468   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2469 }
2470 
2471 // For 64-bit PowerPC, prefer the more compact relative encodings.
2472 // This trades 32 bits per jump table entry for one or two instructions
2473 // on the jump site.
2474 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2475   if (isJumpTableRelative())
2476     return MachineJumpTableInfo::EK_LabelDifference32;
2477 
2478   return TargetLowering::getJumpTableEncoding();
2479 }
2480 
2481 bool PPCTargetLowering::isJumpTableRelative() const {
2482   if (Subtarget.isPPC64())
2483     return true;
2484   return TargetLowering::isJumpTableRelative();
2485 }
2486 
2487 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2488                                                     SelectionDAG &DAG) const {
2489   if (!Subtarget.isPPC64())
2490     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2491 
2492   switch (getTargetMachine().getCodeModel()) {
2493   case CodeModel::Small:
2494   case CodeModel::Medium:
2495     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2496   default:
2497     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2498                        getPointerTy(DAG.getDataLayout()));
2499   }
2500 }
2501 
2502 const MCExpr *
2503 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2504                                                 unsigned JTI,
2505                                                 MCContext &Ctx) const {
2506   if (!Subtarget.isPPC64())
2507     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2508 
2509   switch (getTargetMachine().getCodeModel()) {
2510   case CodeModel::Small:
2511   case CodeModel::Medium:
2512     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2513   default:
2514     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2515   }
2516 }
2517 
2518 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2519   EVT PtrVT = Op.getValueType();
2520   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2521 
2522   // 64-bit SVR4 ABI code is always position-independent.
2523   // The actual address of the GlobalValue is stored in the TOC.
2524   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2525     setUsesTOCBasePtr(DAG);
2526     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2527     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2528   }
2529 
2530   unsigned MOHiFlag, MOLoFlag;
2531   bool IsPIC = isPositionIndependent();
2532   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2533 
2534   if (IsPIC && Subtarget.isSVR4ABI()) {
2535     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2536                                         PPCII::MO_PIC_FLAG);
2537     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2538   }
2539 
2540   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2541   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2542   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2543 }
2544 
2545 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2546                                              SelectionDAG &DAG) const {
2547   EVT PtrVT = Op.getValueType();
2548   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2549   const BlockAddress *BA = BASDN->getBlockAddress();
2550 
2551   // 64-bit SVR4 ABI code is always position-independent.
2552   // The actual BlockAddress is stored in the TOC.
2553   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2554     setUsesTOCBasePtr(DAG);
2555     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2556     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2557   }
2558 
2559   unsigned MOHiFlag, MOLoFlag;
2560   bool IsPIC = isPositionIndependent();
2561   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2562   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2563   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2564   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2565 }
2566 
2567 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2568                                               SelectionDAG &DAG) const {
2569   // FIXME: TLS addresses currently use medium model code sequences,
2570   // which is the most useful form.  Eventually support for small and
2571   // large models could be added if users need it, at the cost of
2572   // additional complexity.
2573   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2574   if (DAG.getTarget().Options.EmulatedTLS)
2575     return LowerToTLSEmulatedModel(GA, DAG);
2576 
2577   SDLoc dl(GA);
2578   const GlobalValue *GV = GA->getGlobal();
2579   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2580   bool is64bit = Subtarget.isPPC64();
2581   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2582   PICLevel::Level picLevel = M->getPICLevel();
2583 
2584   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2585 
2586   if (Model == TLSModel::LocalExec) {
2587     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2588                                                PPCII::MO_TPREL_HA);
2589     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2590                                                PPCII::MO_TPREL_LO);
2591     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2592                              : DAG.getRegister(PPC::R2, MVT::i32);
2593 
2594     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2595     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2596   }
2597 
2598   if (Model == TLSModel::InitialExec) {
2599     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2600     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2601                                                 PPCII::MO_TLS);
2602     SDValue GOTPtr;
2603     if (is64bit) {
2604       setUsesTOCBasePtr(DAG);
2605       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2606       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2607                            PtrVT, GOTReg, TGA);
2608     } else
2609       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2610     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2611                                    PtrVT, TGA, GOTPtr);
2612     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2613   }
2614 
2615   if (Model == TLSModel::GeneralDynamic) {
2616     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2617     SDValue GOTPtr;
2618     if (is64bit) {
2619       setUsesTOCBasePtr(DAG);
2620       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2621       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2622                                    GOTReg, TGA);
2623     } else {
2624       if (picLevel == PICLevel::SmallPIC)
2625         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2626       else
2627         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2628     }
2629     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2630                        GOTPtr, TGA, TGA);
2631   }
2632 
2633   if (Model == TLSModel::LocalDynamic) {
2634     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2635     SDValue GOTPtr;
2636     if (is64bit) {
2637       setUsesTOCBasePtr(DAG);
2638       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2639       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2640                            GOTReg, TGA);
2641     } else {
2642       if (picLevel == PICLevel::SmallPIC)
2643         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2644       else
2645         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2646     }
2647     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2648                                   PtrVT, GOTPtr, TGA, TGA);
2649     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2650                                       PtrVT, TLSAddr, TGA);
2651     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2652   }
2653 
2654   llvm_unreachable("Unknown TLS model!");
2655 }
2656 
2657 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2658                                               SelectionDAG &DAG) const {
2659   EVT PtrVT = Op.getValueType();
2660   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2661   SDLoc DL(GSDN);
2662   const GlobalValue *GV = GSDN->getGlobal();
2663 
2664   // 64-bit SVR4 ABI code is always position-independent.
2665   // The actual address of the GlobalValue is stored in the TOC.
2666   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2667     setUsesTOCBasePtr(DAG);
2668     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2669     return getTOCEntry(DAG, DL, true, GA);
2670   }
2671 
2672   unsigned MOHiFlag, MOLoFlag;
2673   bool IsPIC = isPositionIndependent();
2674   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2675 
2676   if (IsPIC && Subtarget.isSVR4ABI()) {
2677     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2678                                             GSDN->getOffset(),
2679                                             PPCII::MO_PIC_FLAG);
2680     return getTOCEntry(DAG, DL, false, GA);
2681   }
2682 
2683   SDValue GAHi =
2684     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2685   SDValue GALo =
2686     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2687 
2688   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2689 
2690   // If the global reference is actually to a non-lazy-pointer, we have to do an
2691   // extra load to get the address of the global.
2692   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2693     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2694   return Ptr;
2695 }
2696 
2697 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2698   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2699   SDLoc dl(Op);
2700 
2701   if (Op.getValueType() == MVT::v2i64) {
2702     // When the operands themselves are v2i64 values, we need to do something
2703     // special because VSX has no underlying comparison operations for these.
2704     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2705       // Equality can be handled by casting to the legal type for Altivec
2706       // comparisons, everything else needs to be expanded.
2707       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2708         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2709                  DAG.getSetCC(dl, MVT::v4i32,
2710                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2711                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2712                    CC));
2713       }
2714 
2715       return SDValue();
2716     }
2717 
2718     // We handle most of these in the usual way.
2719     return Op;
2720   }
2721 
2722   // If we're comparing for equality to zero, expose the fact that this is
2723   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2724   // fold the new nodes.
2725   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2726     return V;
2727 
2728   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2729     // Leave comparisons against 0 and -1 alone for now, since they're usually
2730     // optimized.  FIXME: revisit this when we can custom lower all setcc
2731     // optimizations.
2732     if (C->isAllOnesValue() || C->isNullValue())
2733       return SDValue();
2734   }
2735 
2736   // If we have an integer seteq/setne, turn it into a compare against zero
2737   // by xor'ing the rhs with the lhs, which is faster than setting a
2738   // condition register, reading it back out, and masking the correct bit.  The
2739   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2740   // the result to other bit-twiddling opportunities.
2741   EVT LHSVT = Op.getOperand(0).getValueType();
2742   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2743     EVT VT = Op.getValueType();
2744     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2745                                 Op.getOperand(1));
2746     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2747   }
2748   return SDValue();
2749 }
2750 
2751 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2752   SDNode *Node = Op.getNode();
2753   EVT VT = Node->getValueType(0);
2754   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2755   SDValue InChain = Node->getOperand(0);
2756   SDValue VAListPtr = Node->getOperand(1);
2757   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2758   SDLoc dl(Node);
2759 
2760   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2761 
2762   // gpr_index
2763   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2764                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2765   InChain = GprIndex.getValue(1);
2766 
2767   if (VT == MVT::i64) {
2768     // Check if GprIndex is even
2769     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2770                                  DAG.getConstant(1, dl, MVT::i32));
2771     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2772                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2773     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2774                                           DAG.getConstant(1, dl, MVT::i32));
2775     // Align GprIndex to be even if it isn't
2776     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2777                            GprIndex);
2778   }
2779 
2780   // fpr index is 1 byte after gpr
2781   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2782                                DAG.getConstant(1, dl, MVT::i32));
2783 
2784   // fpr
2785   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2786                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2787   InChain = FprIndex.getValue(1);
2788 
2789   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2790                                        DAG.getConstant(8, dl, MVT::i32));
2791 
2792   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2793                                         DAG.getConstant(4, dl, MVT::i32));
2794 
2795   // areas
2796   SDValue OverflowArea =
2797       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2798   InChain = OverflowArea.getValue(1);
2799 
2800   SDValue RegSaveArea =
2801       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2802   InChain = RegSaveArea.getValue(1);
2803 
2804   // select overflow_area if index > 8
2805   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2806                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2807 
2808   // adjustment constant gpr_index * 4/8
2809   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2810                                     VT.isInteger() ? GprIndex : FprIndex,
2811                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2812                                                     MVT::i32));
2813 
2814   // OurReg = RegSaveArea + RegConstant
2815   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2816                                RegConstant);
2817 
2818   // Floating types are 32 bytes into RegSaveArea
2819   if (VT.isFloatingPoint())
2820     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2821                          DAG.getConstant(32, dl, MVT::i32));
2822 
2823   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2824   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2825                                    VT.isInteger() ? GprIndex : FprIndex,
2826                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2827                                                    MVT::i32));
2828 
2829   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2830                               VT.isInteger() ? VAListPtr : FprPtr,
2831                               MachinePointerInfo(SV), MVT::i8);
2832 
2833   // determine if we should load from reg_save_area or overflow_area
2834   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2835 
2836   // increase overflow_area by 4/8 if gpr/fpr > 8
2837   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2838                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2839                                           dl, MVT::i32));
2840 
2841   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2842                              OverflowAreaPlusN);
2843 
2844   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
2845                               MachinePointerInfo(), MVT::i32);
2846 
2847   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
2848 }
2849 
2850 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2851   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2852 
2853   // We have to copy the entire va_list struct:
2854   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2855   return DAG.getMemcpy(Op.getOperand(0), Op,
2856                        Op.getOperand(1), Op.getOperand(2),
2857                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2858                        false, MachinePointerInfo(), MachinePointerInfo());
2859 }
2860 
2861 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2862                                                   SelectionDAG &DAG) const {
2863   return Op.getOperand(0);
2864 }
2865 
2866 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2867                                                 SelectionDAG &DAG) const {
2868   SDValue Chain = Op.getOperand(0);
2869   SDValue Trmp = Op.getOperand(1); // trampoline
2870   SDValue FPtr = Op.getOperand(2); // nested function
2871   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2872   SDLoc dl(Op);
2873 
2874   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2875   bool isPPC64 = (PtrVT == MVT::i64);
2876   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2877 
2878   TargetLowering::ArgListTy Args;
2879   TargetLowering::ArgListEntry Entry;
2880 
2881   Entry.Ty = IntPtrTy;
2882   Entry.Node = Trmp; Args.push_back(Entry);
2883 
2884   // TrampSize == (isPPC64 ? 48 : 40);
2885   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2886                                isPPC64 ? MVT::i64 : MVT::i32);
2887   Args.push_back(Entry);
2888 
2889   Entry.Node = FPtr; Args.push_back(Entry);
2890   Entry.Node = Nest; Args.push_back(Entry);
2891 
2892   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2893   TargetLowering::CallLoweringInfo CLI(DAG);
2894   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
2895       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2896       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
2897 
2898   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2899   return CallResult.second;
2900 }
2901 
2902 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2903   MachineFunction &MF = DAG.getMachineFunction();
2904   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2905   EVT PtrVT = getPointerTy(MF.getDataLayout());
2906 
2907   SDLoc dl(Op);
2908 
2909   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2910     // vastart just stores the address of the VarArgsFrameIndex slot into the
2911     // memory location argument.
2912     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2913     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2914     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2915                         MachinePointerInfo(SV));
2916   }
2917 
2918   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2919   // We suppose the given va_list is already allocated.
2920   //
2921   // typedef struct {
2922   //  char gpr;     /* index into the array of 8 GPRs
2923   //                 * stored in the register save area
2924   //                 * gpr=0 corresponds to r3,
2925   //                 * gpr=1 to r4, etc.
2926   //                 */
2927   //  char fpr;     /* index into the array of 8 FPRs
2928   //                 * stored in the register save area
2929   //                 * fpr=0 corresponds to f1,
2930   //                 * fpr=1 to f2, etc.
2931   //                 */
2932   //  char *overflow_arg_area;
2933   //                /* location on stack that holds
2934   //                 * the next overflow argument
2935   //                 */
2936   //  char *reg_save_area;
2937   //               /* where r3:r10 and f1:f8 (if saved)
2938   //                * are stored
2939   //                */
2940   // } va_list[1];
2941 
2942   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2943   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2944   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2945                                             PtrVT);
2946   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2947                                  PtrVT);
2948 
2949   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2950   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2951 
2952   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2953   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2954 
2955   uint64_t FPROffset = 1;
2956   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2957 
2958   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2959 
2960   // Store first byte : number of int regs
2961   SDValue firstStore =
2962       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
2963                         MachinePointerInfo(SV), MVT::i8);
2964   uint64_t nextOffset = FPROffset;
2965   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2966                                   ConstFPROffset);
2967 
2968   // Store second byte : number of float regs
2969   SDValue secondStore =
2970       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2971                         MachinePointerInfo(SV, nextOffset), MVT::i8);
2972   nextOffset += StackOffset;
2973   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2974 
2975   // Store second word : arguments given on stack
2976   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2977                                     MachinePointerInfo(SV, nextOffset));
2978   nextOffset += FrameOffset;
2979   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2980 
2981   // Store third word : arguments given in registers
2982   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2983                       MachinePointerInfo(SV, nextOffset));
2984 }
2985 
2986 #include "PPCGenCallingConv.inc"
2987 
2988 // Function whose sole purpose is to kill compiler warnings
2989 // stemming from unused functions included from PPCGenCallingConv.inc.
2990 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2991   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2992 }
2993 
2994 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2995                                       CCValAssign::LocInfo &LocInfo,
2996                                       ISD::ArgFlagsTy &ArgFlags,
2997                                       CCState &State) {
2998   return true;
2999 }
3000 
3001 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
3002                                              MVT &LocVT,
3003                                              CCValAssign::LocInfo &LocInfo,
3004                                              ISD::ArgFlagsTy &ArgFlags,
3005                                              CCState &State) {
3006   static const MCPhysReg ArgRegs[] = {
3007     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3008     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3009   };
3010   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3011 
3012   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3013 
3014   // Skip one register if the first unallocated register has an even register
3015   // number and there are still argument registers available which have not been
3016   // allocated yet. RegNum is actually an index into ArgRegs, which means we
3017   // need to skip a register if RegNum is odd.
3018   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
3019     State.AllocateReg(ArgRegs[RegNum]);
3020   }
3021 
3022   // Always return false here, as this function only makes sure that the first
3023   // unallocated register has an odd register number and does not actually
3024   // allocate a register for the current argument.
3025   return false;
3026 }
3027 
3028 bool
3029 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
3030                                                   MVT &LocVT,
3031                                                   CCValAssign::LocInfo &LocInfo,
3032                                                   ISD::ArgFlagsTy &ArgFlags,
3033                                                   CCState &State) {
3034   static const MCPhysReg ArgRegs[] = {
3035     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3036     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3037   };
3038   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3039 
3040   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3041   int RegsLeft = NumArgRegs - RegNum;
3042 
3043   // Skip if there is not enough registers left for long double type (4 gpr regs
3044   // in soft float mode) and put long double argument on the stack.
3045   if (RegNum != NumArgRegs && RegsLeft < 4) {
3046     for (int i = 0; i < RegsLeft; i++) {
3047       State.AllocateReg(ArgRegs[RegNum + i]);
3048     }
3049   }
3050 
3051   return false;
3052 }
3053 
3054 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
3055                                                MVT &LocVT,
3056                                                CCValAssign::LocInfo &LocInfo,
3057                                                ISD::ArgFlagsTy &ArgFlags,
3058                                                CCState &State) {
3059   static const MCPhysReg ArgRegs[] = {
3060     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3061     PPC::F8
3062   };
3063 
3064   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3065 
3066   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3067 
3068   // If there is only one Floating-point register left we need to put both f64
3069   // values of a split ppc_fp128 value on the stack.
3070   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
3071     State.AllocateReg(ArgRegs[RegNum]);
3072   }
3073 
3074   // Always return false here, as this function only makes sure that the two f64
3075   // values a ppc_fp128 value is split into are both passed in registers or both
3076   // passed on the stack and does not actually allocate a register for the
3077   // current argument.
3078   return false;
3079 }
3080 
3081 /// FPR - The set of FP registers that should be allocated for arguments,
3082 /// on Darwin.
3083 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3084                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3085                                 PPC::F11, PPC::F12, PPC::F13};
3086 
3087 /// QFPR - The set of QPX registers that should be allocated for arguments.
3088 static const MCPhysReg QFPR[] = {
3089     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3090     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3091 
3092 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3093 /// the stack.
3094 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3095                                        unsigned PtrByteSize) {
3096   unsigned ArgSize = ArgVT.getStoreSize();
3097   if (Flags.isByVal())
3098     ArgSize = Flags.getByValSize();
3099 
3100   // Round up to multiples of the pointer size, except for array members,
3101   // which are always packed.
3102   if (!Flags.isInConsecutiveRegs())
3103     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3104 
3105   return ArgSize;
3106 }
3107 
3108 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3109 /// on the stack.
3110 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3111                                             ISD::ArgFlagsTy Flags,
3112                                             unsigned PtrByteSize) {
3113   unsigned Align = PtrByteSize;
3114 
3115   // Altivec parameters are padded to a 16 byte boundary.
3116   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3117       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3118       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3119       ArgVT == MVT::v1i128)
3120     Align = 16;
3121   // QPX vector types stored in double-precision are padded to a 32 byte
3122   // boundary.
3123   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3124     Align = 32;
3125 
3126   // ByVal parameters are aligned as requested.
3127   if (Flags.isByVal()) {
3128     unsigned BVAlign = Flags.getByValAlign();
3129     if (BVAlign > PtrByteSize) {
3130       if (BVAlign % PtrByteSize != 0)
3131           llvm_unreachable(
3132             "ByVal alignment is not a multiple of the pointer size");
3133 
3134       Align = BVAlign;
3135     }
3136   }
3137 
3138   // Array members are always packed to their original alignment.
3139   if (Flags.isInConsecutiveRegs()) {
3140     // If the array member was split into multiple registers, the first
3141     // needs to be aligned to the size of the full type.  (Except for
3142     // ppcf128, which is only aligned as its f64 components.)
3143     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3144       Align = OrigVT.getStoreSize();
3145     else
3146       Align = ArgVT.getStoreSize();
3147   }
3148 
3149   return Align;
3150 }
3151 
3152 /// CalculateStackSlotUsed - Return whether this argument will use its
3153 /// stack slot (instead of being passed in registers).  ArgOffset,
3154 /// AvailableFPRs, and AvailableVRs must hold the current argument
3155 /// position, and will be updated to account for this argument.
3156 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3157                                    ISD::ArgFlagsTy Flags,
3158                                    unsigned PtrByteSize,
3159                                    unsigned LinkageSize,
3160                                    unsigned ParamAreaSize,
3161                                    unsigned &ArgOffset,
3162                                    unsigned &AvailableFPRs,
3163                                    unsigned &AvailableVRs, bool HasQPX) {
3164   bool UseMemory = false;
3165 
3166   // Respect alignment of argument on the stack.
3167   unsigned Align =
3168     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3169   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3170   // If there's no space left in the argument save area, we must
3171   // use memory (this check also catches zero-sized arguments).
3172   if (ArgOffset >= LinkageSize + ParamAreaSize)
3173     UseMemory = true;
3174 
3175   // Allocate argument on the stack.
3176   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3177   if (Flags.isInConsecutiveRegsLast())
3178     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3179   // If we overran the argument save area, we must use memory
3180   // (this check catches arguments passed partially in memory)
3181   if (ArgOffset > LinkageSize + ParamAreaSize)
3182     UseMemory = true;
3183 
3184   // However, if the argument is actually passed in an FPR or a VR,
3185   // we don't use memory after all.
3186   if (!Flags.isByVal()) {
3187     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3188         // QPX registers overlap with the scalar FP registers.
3189         (HasQPX && (ArgVT == MVT::v4f32 ||
3190                     ArgVT == MVT::v4f64 ||
3191                     ArgVT == MVT::v4i1)))
3192       if (AvailableFPRs > 0) {
3193         --AvailableFPRs;
3194         return false;
3195       }
3196     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3197         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3198         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3199         ArgVT == MVT::v1i128)
3200       if (AvailableVRs > 0) {
3201         --AvailableVRs;
3202         return false;
3203       }
3204   }
3205 
3206   return UseMemory;
3207 }
3208 
3209 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3210 /// ensure minimum alignment required for target.
3211 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3212                                      unsigned NumBytes) {
3213   unsigned TargetAlign = Lowering->getStackAlignment();
3214   unsigned AlignMask = TargetAlign - 1;
3215   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3216   return NumBytes;
3217 }
3218 
3219 SDValue PPCTargetLowering::LowerFormalArguments(
3220     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3221     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3222     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3223   if (Subtarget.isSVR4ABI()) {
3224     if (Subtarget.isPPC64())
3225       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3226                                          dl, DAG, InVals);
3227     else
3228       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3229                                          dl, DAG, InVals);
3230   } else {
3231     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3232                                        dl, DAG, InVals);
3233   }
3234 }
3235 
3236 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3237     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3238     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3239     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3240 
3241   // 32-bit SVR4 ABI Stack Frame Layout:
3242   //              +-----------------------------------+
3243   //        +-->  |            Back chain             |
3244   //        |     +-----------------------------------+
3245   //        |     | Floating-point register save area |
3246   //        |     +-----------------------------------+
3247   //        |     |    General register save area     |
3248   //        |     +-----------------------------------+
3249   //        |     |          CR save word             |
3250   //        |     +-----------------------------------+
3251   //        |     |         VRSAVE save word          |
3252   //        |     +-----------------------------------+
3253   //        |     |         Alignment padding         |
3254   //        |     +-----------------------------------+
3255   //        |     |     Vector register save area     |
3256   //        |     +-----------------------------------+
3257   //        |     |       Local variable space        |
3258   //        |     +-----------------------------------+
3259   //        |     |        Parameter list area        |
3260   //        |     +-----------------------------------+
3261   //        |     |           LR save word            |
3262   //        |     +-----------------------------------+
3263   // SP-->  +---  |            Back chain             |
3264   //              +-----------------------------------+
3265   //
3266   // Specifications:
3267   //   System V Application Binary Interface PowerPC Processor Supplement
3268   //   AltiVec Technology Programming Interface Manual
3269 
3270   MachineFunction &MF = DAG.getMachineFunction();
3271   MachineFrameInfo &MFI = MF.getFrameInfo();
3272   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3273 
3274   EVT PtrVT = getPointerTy(MF.getDataLayout());
3275   // Potential tail calls could cause overwriting of argument stack slots.
3276   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3277                        (CallConv == CallingConv::Fast));
3278   unsigned PtrByteSize = 4;
3279 
3280   // Assign locations to all of the incoming arguments.
3281   SmallVector<CCValAssign, 16> ArgLocs;
3282   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3283                  *DAG.getContext());
3284 
3285   // Reserve space for the linkage area on the stack.
3286   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3287   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3288   if (useSoftFloat())
3289     CCInfo.PreAnalyzeFormalArguments(Ins);
3290 
3291   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3292   CCInfo.clearWasPPCF128();
3293 
3294   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3295     CCValAssign &VA = ArgLocs[i];
3296 
3297     // Arguments stored in registers.
3298     if (VA.isRegLoc()) {
3299       const TargetRegisterClass *RC;
3300       EVT ValVT = VA.getValVT();
3301 
3302       switch (ValVT.getSimpleVT().SimpleTy) {
3303         default:
3304           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3305         case MVT::i1:
3306         case MVT::i32:
3307           RC = &PPC::GPRCRegClass;
3308           break;
3309         case MVT::f32:
3310           if (Subtarget.hasP8Vector())
3311             RC = &PPC::VSSRCRegClass;
3312           else
3313             RC = &PPC::F4RCRegClass;
3314           break;
3315         case MVT::f64:
3316           if (Subtarget.hasVSX())
3317             RC = &PPC::VSFRCRegClass;
3318           else
3319             RC = &PPC::F8RCRegClass;
3320           break;
3321         case MVT::v16i8:
3322         case MVT::v8i16:
3323         case MVT::v4i32:
3324           RC = &PPC::VRRCRegClass;
3325           break;
3326         case MVT::v4f32:
3327           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3328           break;
3329         case MVT::v2f64:
3330         case MVT::v2i64:
3331           RC = &PPC::VRRCRegClass;
3332           break;
3333         case MVT::v4f64:
3334           RC = &PPC::QFRCRegClass;
3335           break;
3336         case MVT::v4i1:
3337           RC = &PPC::QBRCRegClass;
3338           break;
3339       }
3340 
3341       // Transform the arguments stored in physical registers into virtual ones.
3342       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3343       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3344                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3345 
3346       if (ValVT == MVT::i1)
3347         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3348 
3349       InVals.push_back(ArgValue);
3350     } else {
3351       // Argument stored in memory.
3352       assert(VA.isMemLoc());
3353 
3354       unsigned ArgSize = VA.getLocVT().getStoreSize();
3355       int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(),
3356                                      isImmutable);
3357 
3358       // Create load nodes to retrieve arguments from the stack.
3359       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3360       InVals.push_back(
3361           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3362     }
3363   }
3364 
3365   // Assign locations to all of the incoming aggregate by value arguments.
3366   // Aggregates passed by value are stored in the local variable space of the
3367   // caller's stack frame, right above the parameter list area.
3368   SmallVector<CCValAssign, 16> ByValArgLocs;
3369   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3370                       ByValArgLocs, *DAG.getContext());
3371 
3372   // Reserve stack space for the allocations in CCInfo.
3373   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3374 
3375   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3376 
3377   // Area that is at least reserved in the caller of this function.
3378   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3379   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3380 
3381   // Set the size that is at least reserved in caller of this function.  Tail
3382   // call optimized function's reserved stack space needs to be aligned so that
3383   // taking the difference between two stack areas will result in an aligned
3384   // stack.
3385   MinReservedArea =
3386       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3387   FuncInfo->setMinReservedArea(MinReservedArea);
3388 
3389   SmallVector<SDValue, 8> MemOps;
3390 
3391   // If the function takes variable number of arguments, make a frame index for
3392   // the start of the first vararg value... for expansion of llvm.va_start.
3393   if (isVarArg) {
3394     static const MCPhysReg GPArgRegs[] = {
3395       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3396       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3397     };
3398     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3399 
3400     static const MCPhysReg FPArgRegs[] = {
3401       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3402       PPC::F8
3403     };
3404     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3405 
3406     if (useSoftFloat())
3407        NumFPArgRegs = 0;
3408 
3409     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3410     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3411 
3412     // Make room for NumGPArgRegs and NumFPArgRegs.
3413     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3414                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3415 
3416     FuncInfo->setVarArgsStackOffset(
3417       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3418                             CCInfo.getNextStackOffset(), true));
3419 
3420     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3421     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3422 
3423     // The fixed integer arguments of a variadic function are stored to the
3424     // VarArgsFrameIndex on the stack so that they may be loaded by
3425     // dereferencing the result of va_next.
3426     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3427       // Get an existing live-in vreg, or add a new one.
3428       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3429       if (!VReg)
3430         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3431 
3432       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3433       SDValue Store =
3434           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3435       MemOps.push_back(Store);
3436       // Increment the address by four for the next argument to store
3437       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3438       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3439     }
3440 
3441     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3442     // is set.
3443     // The double arguments are stored to the VarArgsFrameIndex
3444     // on the stack.
3445     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3446       // Get an existing live-in vreg, or add a new one.
3447       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3448       if (!VReg)
3449         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3450 
3451       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3452       SDValue Store =
3453           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3454       MemOps.push_back(Store);
3455       // Increment the address by eight for the next argument to store
3456       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3457                                          PtrVT);
3458       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3459     }
3460   }
3461 
3462   if (!MemOps.empty())
3463     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3464 
3465   return Chain;
3466 }
3467 
3468 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3469 // value to MVT::i64 and then truncate to the correct register size.
3470 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3471                                              EVT ObjectVT, SelectionDAG &DAG,
3472                                              SDValue ArgVal,
3473                                              const SDLoc &dl) const {
3474   if (Flags.isSExt())
3475     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3476                          DAG.getValueType(ObjectVT));
3477   else if (Flags.isZExt())
3478     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3479                          DAG.getValueType(ObjectVT));
3480 
3481   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3482 }
3483 
3484 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3485     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3486     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3487     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3488   // TODO: add description of PPC stack frame format, or at least some docs.
3489   //
3490   bool isELFv2ABI = Subtarget.isELFv2ABI();
3491   bool isLittleEndian = Subtarget.isLittleEndian();
3492   MachineFunction &MF = DAG.getMachineFunction();
3493   MachineFrameInfo &MFI = MF.getFrameInfo();
3494   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3495 
3496   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3497          "fastcc not supported on varargs functions");
3498 
3499   EVT PtrVT = getPointerTy(MF.getDataLayout());
3500   // Potential tail calls could cause overwriting of argument stack slots.
3501   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3502                        (CallConv == CallingConv::Fast));
3503   unsigned PtrByteSize = 8;
3504   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3505 
3506   static const MCPhysReg GPR[] = {
3507     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3508     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3509   };
3510   static const MCPhysReg VR[] = {
3511     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3512     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3513   };
3514 
3515   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3516   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3517   const unsigned Num_VR_Regs  = array_lengthof(VR);
3518   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3519 
3520   // Do a first pass over the arguments to determine whether the ABI
3521   // guarantees that our caller has allocated the parameter save area
3522   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3523   // in the ELFv2 ABI, it is true if this is a vararg function or if
3524   // any parameter is located in a stack slot.
3525 
3526   bool HasParameterArea = !isELFv2ABI || isVarArg;
3527   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3528   unsigned NumBytes = LinkageSize;
3529   unsigned AvailableFPRs = Num_FPR_Regs;
3530   unsigned AvailableVRs = Num_VR_Regs;
3531   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3532     if (Ins[i].Flags.isNest())
3533       continue;
3534 
3535     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3536                                PtrByteSize, LinkageSize, ParamAreaSize,
3537                                NumBytes, AvailableFPRs, AvailableVRs,
3538                                Subtarget.hasQPX()))
3539       HasParameterArea = true;
3540   }
3541 
3542   // Add DAG nodes to load the arguments or copy them out of registers.  On
3543   // entry to a function on PPC, the arguments start after the linkage area,
3544   // although the first ones are often in registers.
3545 
3546   unsigned ArgOffset = LinkageSize;
3547   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3548   unsigned &QFPR_idx = FPR_idx;
3549   SmallVector<SDValue, 8> MemOps;
3550   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3551   unsigned CurArgIdx = 0;
3552   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3553     SDValue ArgVal;
3554     bool needsLoad = false;
3555     EVT ObjectVT = Ins[ArgNo].VT;
3556     EVT OrigVT = Ins[ArgNo].ArgVT;
3557     unsigned ObjSize = ObjectVT.getStoreSize();
3558     unsigned ArgSize = ObjSize;
3559     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3560     if (Ins[ArgNo].isOrigArg()) {
3561       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3562       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3563     }
3564     // We re-align the argument offset for each argument, except when using the
3565     // fast calling convention, when we need to make sure we do that only when
3566     // we'll actually use a stack slot.
3567     unsigned CurArgOffset, Align;
3568     auto ComputeArgOffset = [&]() {
3569       /* Respect alignment of argument on the stack.  */
3570       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3571       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3572       CurArgOffset = ArgOffset;
3573     };
3574 
3575     if (CallConv != CallingConv::Fast) {
3576       ComputeArgOffset();
3577 
3578       /* Compute GPR index associated with argument offset.  */
3579       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3580       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3581     }
3582 
3583     // FIXME the codegen can be much improved in some cases.
3584     // We do not have to keep everything in memory.
3585     if (Flags.isByVal()) {
3586       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3587 
3588       if (CallConv == CallingConv::Fast)
3589         ComputeArgOffset();
3590 
3591       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3592       ObjSize = Flags.getByValSize();
3593       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3594       // Empty aggregate parameters do not take up registers.  Examples:
3595       //   struct { } a;
3596       //   union  { } b;
3597       //   int c[0];
3598       // etc.  However, we have to provide a place-holder in InVals, so
3599       // pretend we have an 8-byte item at the current address for that
3600       // purpose.
3601       if (!ObjSize) {
3602         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3603         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3604         InVals.push_back(FIN);
3605         continue;
3606       }
3607 
3608       // Create a stack object covering all stack doublewords occupied
3609       // by the argument.  If the argument is (fully or partially) on
3610       // the stack, or if the argument is fully in registers but the
3611       // caller has allocated the parameter save anyway, we can refer
3612       // directly to the caller's stack frame.  Otherwise, create a
3613       // local copy in our own frame.
3614       int FI;
3615       if (HasParameterArea ||
3616           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3617         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3618       else
3619         FI = MFI.CreateStackObject(ArgSize, Align, false);
3620       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3621 
3622       // Handle aggregates smaller than 8 bytes.
3623       if (ObjSize < PtrByteSize) {
3624         // The value of the object is its address, which differs from the
3625         // address of the enclosing doubleword on big-endian systems.
3626         SDValue Arg = FIN;
3627         if (!isLittleEndian) {
3628           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3629           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3630         }
3631         InVals.push_back(Arg);
3632 
3633         if (GPR_idx != Num_GPR_Regs) {
3634           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3635           FuncInfo->addLiveInAttr(VReg, Flags);
3636           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3637           SDValue Store;
3638 
3639           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3640             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3641                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3642             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3643                                       MachinePointerInfo(&*FuncArg), ObjType);
3644           } else {
3645             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3646             // store the whole register as-is to the parameter save area
3647             // slot.
3648             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3649                                  MachinePointerInfo(&*FuncArg));
3650           }
3651 
3652           MemOps.push_back(Store);
3653         }
3654         // Whether we copied from a register or not, advance the offset
3655         // into the parameter save area by a full doubleword.
3656         ArgOffset += PtrByteSize;
3657         continue;
3658       }
3659 
3660       // The value of the object is its address, which is the address of
3661       // its first stack doubleword.
3662       InVals.push_back(FIN);
3663 
3664       // Store whatever pieces of the object are in registers to memory.
3665       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3666         if (GPR_idx == Num_GPR_Regs)
3667           break;
3668 
3669         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3670         FuncInfo->addLiveInAttr(VReg, Flags);
3671         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3672         SDValue Addr = FIN;
3673         if (j) {
3674           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3675           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3676         }
3677         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3678                                      MachinePointerInfo(&*FuncArg, j));
3679         MemOps.push_back(Store);
3680         ++GPR_idx;
3681       }
3682       ArgOffset += ArgSize;
3683       continue;
3684     }
3685 
3686     switch (ObjectVT.getSimpleVT().SimpleTy) {
3687     default: llvm_unreachable("Unhandled argument type!");
3688     case MVT::i1:
3689     case MVT::i32:
3690     case MVT::i64:
3691       if (Flags.isNest()) {
3692         // The 'nest' parameter, if any, is passed in R11.
3693         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3694         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3695 
3696         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3697           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3698 
3699         break;
3700       }
3701 
3702       // These can be scalar arguments or elements of an integer array type
3703       // passed directly.  Clang may use those instead of "byval" aggregate
3704       // types to avoid forcing arguments to memory unnecessarily.
3705       if (GPR_idx != Num_GPR_Regs) {
3706         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3707         FuncInfo->addLiveInAttr(VReg, Flags);
3708         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3709 
3710         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3711           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3712           // value to MVT::i64 and then truncate to the correct register size.
3713           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3714       } else {
3715         if (CallConv == CallingConv::Fast)
3716           ComputeArgOffset();
3717 
3718         needsLoad = true;
3719         ArgSize = PtrByteSize;
3720       }
3721       if (CallConv != CallingConv::Fast || needsLoad)
3722         ArgOffset += 8;
3723       break;
3724 
3725     case MVT::f32:
3726     case MVT::f64:
3727       // These can be scalar arguments or elements of a float array type
3728       // passed directly.  The latter are used to implement ELFv2 homogenous
3729       // float aggregates.
3730       if (FPR_idx != Num_FPR_Regs) {
3731         unsigned VReg;
3732 
3733         if (ObjectVT == MVT::f32)
3734           VReg = MF.addLiveIn(FPR[FPR_idx],
3735                               Subtarget.hasP8Vector()
3736                                   ? &PPC::VSSRCRegClass
3737                                   : &PPC::F4RCRegClass);
3738         else
3739           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3740                                                 ? &PPC::VSFRCRegClass
3741                                                 : &PPC::F8RCRegClass);
3742 
3743         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3744         ++FPR_idx;
3745       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3746         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3747         // once we support fp <-> gpr moves.
3748 
3749         // This can only ever happen in the presence of f32 array types,
3750         // since otherwise we never run out of FPRs before running out
3751         // of GPRs.
3752         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3753         FuncInfo->addLiveInAttr(VReg, Flags);
3754         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3755 
3756         if (ObjectVT == MVT::f32) {
3757           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3758             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3759                                  DAG.getConstant(32, dl, MVT::i32));
3760           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3761         }
3762 
3763         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3764       } else {
3765         if (CallConv == CallingConv::Fast)
3766           ComputeArgOffset();
3767 
3768         needsLoad = true;
3769       }
3770 
3771       // When passing an array of floats, the array occupies consecutive
3772       // space in the argument area; only round up to the next doubleword
3773       // at the end of the array.  Otherwise, each float takes 8 bytes.
3774       if (CallConv != CallingConv::Fast || needsLoad) {
3775         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3776         ArgOffset += ArgSize;
3777         if (Flags.isInConsecutiveRegsLast())
3778           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3779       }
3780       break;
3781     case MVT::v4f32:
3782     case MVT::v4i32:
3783     case MVT::v8i16:
3784     case MVT::v16i8:
3785     case MVT::v2f64:
3786     case MVT::v2i64:
3787     case MVT::v1i128:
3788       if (!Subtarget.hasQPX()) {
3789       // These can be scalar arguments or elements of a vector array type
3790       // passed directly.  The latter are used to implement ELFv2 homogenous
3791       // vector aggregates.
3792       if (VR_idx != Num_VR_Regs) {
3793         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3794         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3795         ++VR_idx;
3796       } else {
3797         if (CallConv == CallingConv::Fast)
3798           ComputeArgOffset();
3799 
3800         needsLoad = true;
3801       }
3802       if (CallConv != CallingConv::Fast || needsLoad)
3803         ArgOffset += 16;
3804       break;
3805       } // not QPX
3806 
3807       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3808              "Invalid QPX parameter type");
3809       /* fall through */
3810 
3811     case MVT::v4f64:
3812     case MVT::v4i1:
3813       // QPX vectors are treated like their scalar floating-point subregisters
3814       // (except that they're larger).
3815       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3816       if (QFPR_idx != Num_QFPR_Regs) {
3817         const TargetRegisterClass *RC;
3818         switch (ObjectVT.getSimpleVT().SimpleTy) {
3819         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3820         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3821         default:         RC = &PPC::QBRCRegClass; break;
3822         }
3823 
3824         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3825         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3826         ++QFPR_idx;
3827       } else {
3828         if (CallConv == CallingConv::Fast)
3829           ComputeArgOffset();
3830         needsLoad = true;
3831       }
3832       if (CallConv != CallingConv::Fast || needsLoad)
3833         ArgOffset += Sz;
3834       break;
3835     }
3836 
3837     // We need to load the argument to a virtual register if we determined
3838     // above that we ran out of physical registers of the appropriate type.
3839     if (needsLoad) {
3840       if (ObjSize < ArgSize && !isLittleEndian)
3841         CurArgOffset += ArgSize - ObjSize;
3842       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3843       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3844       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3845     }
3846 
3847     InVals.push_back(ArgVal);
3848   }
3849 
3850   // Area that is at least reserved in the caller of this function.
3851   unsigned MinReservedArea;
3852   if (HasParameterArea)
3853     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3854   else
3855     MinReservedArea = LinkageSize;
3856 
3857   // Set the size that is at least reserved in caller of this function.  Tail
3858   // call optimized functions' reserved stack space needs to be aligned so that
3859   // taking the difference between two stack areas will result in an aligned
3860   // stack.
3861   MinReservedArea =
3862       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3863   FuncInfo->setMinReservedArea(MinReservedArea);
3864 
3865   // If the function takes variable number of arguments, make a frame index for
3866   // the start of the first vararg value... for expansion of llvm.va_start.
3867   if (isVarArg) {
3868     int Depth = ArgOffset;
3869 
3870     FuncInfo->setVarArgsFrameIndex(
3871       MFI.CreateFixedObject(PtrByteSize, Depth, true));
3872     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3873 
3874     // If this function is vararg, store any remaining integer argument regs
3875     // to their spots on the stack so that they may be loaded by dereferencing
3876     // the result of va_next.
3877     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3878          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3879       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3880       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3881       SDValue Store =
3882           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3883       MemOps.push_back(Store);
3884       // Increment the address by four for the next argument to store
3885       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3886       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3887     }
3888   }
3889 
3890   if (!MemOps.empty())
3891     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3892 
3893   return Chain;
3894 }
3895 
3896 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3897     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3898     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3899     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3900   // TODO: add description of PPC stack frame format, or at least some docs.
3901   //
3902   MachineFunction &MF = DAG.getMachineFunction();
3903   MachineFrameInfo &MFI = MF.getFrameInfo();
3904   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3905 
3906   EVT PtrVT = getPointerTy(MF.getDataLayout());
3907   bool isPPC64 = PtrVT == MVT::i64;
3908   // Potential tail calls could cause overwriting of argument stack slots.
3909   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3910                        (CallConv == CallingConv::Fast));
3911   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3912   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3913   unsigned ArgOffset = LinkageSize;
3914   // Area that is at least reserved in caller of this function.
3915   unsigned MinReservedArea = ArgOffset;
3916 
3917   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3918     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3919     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3920   };
3921   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3922     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3923     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3924   };
3925   static const MCPhysReg VR[] = {
3926     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3927     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3928   };
3929 
3930   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3931   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3932   const unsigned Num_VR_Regs  = array_lengthof( VR);
3933 
3934   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3935 
3936   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3937 
3938   // In 32-bit non-varargs functions, the stack space for vectors is after the
3939   // stack space for non-vectors.  We do not use this space unless we have
3940   // too many vectors to fit in registers, something that only occurs in
3941   // constructed examples:), but we have to walk the arglist to figure
3942   // that out...for the pathological case, compute VecArgOffset as the
3943   // start of the vector parameter area.  Computing VecArgOffset is the
3944   // entire point of the following loop.
3945   unsigned VecArgOffset = ArgOffset;
3946   if (!isVarArg && !isPPC64) {
3947     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3948          ++ArgNo) {
3949       EVT ObjectVT = Ins[ArgNo].VT;
3950       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3951 
3952       if (Flags.isByVal()) {
3953         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3954         unsigned ObjSize = Flags.getByValSize();
3955         unsigned ArgSize =
3956                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3957         VecArgOffset += ArgSize;
3958         continue;
3959       }
3960 
3961       switch(ObjectVT.getSimpleVT().SimpleTy) {
3962       default: llvm_unreachable("Unhandled argument type!");
3963       case MVT::i1:
3964       case MVT::i32:
3965       case MVT::f32:
3966         VecArgOffset += 4;
3967         break;
3968       case MVT::i64:  // PPC64
3969       case MVT::f64:
3970         // FIXME: We are guaranteed to be !isPPC64 at this point.
3971         // Does MVT::i64 apply?
3972         VecArgOffset += 8;
3973         break;
3974       case MVT::v4f32:
3975       case MVT::v4i32:
3976       case MVT::v8i16:
3977       case MVT::v16i8:
3978         // Nothing to do, we're only looking at Nonvector args here.
3979         break;
3980       }
3981     }
3982   }
3983   // We've found where the vector parameter area in memory is.  Skip the
3984   // first 12 parameters; these don't use that memory.
3985   VecArgOffset = ((VecArgOffset+15)/16)*16;
3986   VecArgOffset += 12*16;
3987 
3988   // Add DAG nodes to load the arguments or copy them out of registers.  On
3989   // entry to a function on PPC, the arguments start after the linkage area,
3990   // although the first ones are often in registers.
3991 
3992   SmallVector<SDValue, 8> MemOps;
3993   unsigned nAltivecParamsAtEnd = 0;
3994   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3995   unsigned CurArgIdx = 0;
3996   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3997     SDValue ArgVal;
3998     bool needsLoad = false;
3999     EVT ObjectVT = Ins[ArgNo].VT;
4000     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4001     unsigned ArgSize = ObjSize;
4002     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4003     if (Ins[ArgNo].isOrigArg()) {
4004       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4005       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4006     }
4007     unsigned CurArgOffset = ArgOffset;
4008 
4009     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4010     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4011         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4012       if (isVarArg || isPPC64) {
4013         MinReservedArea = ((MinReservedArea+15)/16)*16;
4014         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4015                                                   Flags,
4016                                                   PtrByteSize);
4017       } else  nAltivecParamsAtEnd++;
4018     } else
4019       // Calculate min reserved area.
4020       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4021                                                 Flags,
4022                                                 PtrByteSize);
4023 
4024     // FIXME the codegen can be much improved in some cases.
4025     // We do not have to keep everything in memory.
4026     if (Flags.isByVal()) {
4027       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4028 
4029       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4030       ObjSize = Flags.getByValSize();
4031       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4032       // Objects of size 1 and 2 are right justified, everything else is
4033       // left justified.  This means the memory address is adjusted forwards.
4034       if (ObjSize==1 || ObjSize==2) {
4035         CurArgOffset = CurArgOffset + (4 - ObjSize);
4036       }
4037       // The value of the object is its address.
4038       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4039       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4040       InVals.push_back(FIN);
4041       if (ObjSize==1 || ObjSize==2) {
4042         if (GPR_idx != Num_GPR_Regs) {
4043           unsigned VReg;
4044           if (isPPC64)
4045             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4046           else
4047             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4048           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4049           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4050           SDValue Store =
4051               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4052                                 MachinePointerInfo(&*FuncArg), ObjType);
4053           MemOps.push_back(Store);
4054           ++GPR_idx;
4055         }
4056 
4057         ArgOffset += PtrByteSize;
4058 
4059         continue;
4060       }
4061       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4062         // Store whatever pieces of the object are in registers
4063         // to memory.  ArgOffset will be the address of the beginning
4064         // of the object.
4065         if (GPR_idx != Num_GPR_Regs) {
4066           unsigned VReg;
4067           if (isPPC64)
4068             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4069           else
4070             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4071           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4072           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4073           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4074           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4075                                        MachinePointerInfo(&*FuncArg, j));
4076           MemOps.push_back(Store);
4077           ++GPR_idx;
4078           ArgOffset += PtrByteSize;
4079         } else {
4080           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4081           break;
4082         }
4083       }
4084       continue;
4085     }
4086 
4087     switch (ObjectVT.getSimpleVT().SimpleTy) {
4088     default: llvm_unreachable("Unhandled argument type!");
4089     case MVT::i1:
4090     case MVT::i32:
4091       if (!isPPC64) {
4092         if (GPR_idx != Num_GPR_Regs) {
4093           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4094           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4095 
4096           if (ObjectVT == MVT::i1)
4097             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4098 
4099           ++GPR_idx;
4100         } else {
4101           needsLoad = true;
4102           ArgSize = PtrByteSize;
4103         }
4104         // All int arguments reserve stack space in the Darwin ABI.
4105         ArgOffset += PtrByteSize;
4106         break;
4107       }
4108       LLVM_FALLTHROUGH;
4109     case MVT::i64:  // PPC64
4110       if (GPR_idx != Num_GPR_Regs) {
4111         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4112         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4113 
4114         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4115           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4116           // value to MVT::i64 and then truncate to the correct register size.
4117           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4118 
4119         ++GPR_idx;
4120       } else {
4121         needsLoad = true;
4122         ArgSize = PtrByteSize;
4123       }
4124       // All int arguments reserve stack space in the Darwin ABI.
4125       ArgOffset += 8;
4126       break;
4127 
4128     case MVT::f32:
4129     case MVT::f64:
4130       // Every 4 bytes of argument space consumes one of the GPRs available for
4131       // argument passing.
4132       if (GPR_idx != Num_GPR_Regs) {
4133         ++GPR_idx;
4134         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4135           ++GPR_idx;
4136       }
4137       if (FPR_idx != Num_FPR_Regs) {
4138         unsigned VReg;
4139 
4140         if (ObjectVT == MVT::f32)
4141           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4142         else
4143           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4144 
4145         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4146         ++FPR_idx;
4147       } else {
4148         needsLoad = true;
4149       }
4150 
4151       // All FP arguments reserve stack space in the Darwin ABI.
4152       ArgOffset += isPPC64 ? 8 : ObjSize;
4153       break;
4154     case MVT::v4f32:
4155     case MVT::v4i32:
4156     case MVT::v8i16:
4157     case MVT::v16i8:
4158       // Note that vector arguments in registers don't reserve stack space,
4159       // except in varargs functions.
4160       if (VR_idx != Num_VR_Regs) {
4161         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4162         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4163         if (isVarArg) {
4164           while ((ArgOffset % 16) != 0) {
4165             ArgOffset += PtrByteSize;
4166             if (GPR_idx != Num_GPR_Regs)
4167               GPR_idx++;
4168           }
4169           ArgOffset += 16;
4170           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4171         }
4172         ++VR_idx;
4173       } else {
4174         if (!isVarArg && !isPPC64) {
4175           // Vectors go after all the nonvectors.
4176           CurArgOffset = VecArgOffset;
4177           VecArgOffset += 16;
4178         } else {
4179           // Vectors are aligned.
4180           ArgOffset = ((ArgOffset+15)/16)*16;
4181           CurArgOffset = ArgOffset;
4182           ArgOffset += 16;
4183         }
4184         needsLoad = true;
4185       }
4186       break;
4187     }
4188 
4189     // We need to load the argument to a virtual register if we determined above
4190     // that we ran out of physical registers of the appropriate type.
4191     if (needsLoad) {
4192       int FI = MFI.CreateFixedObject(ObjSize,
4193                                      CurArgOffset + (ArgSize - ObjSize),
4194                                      isImmutable);
4195       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4196       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4197     }
4198 
4199     InVals.push_back(ArgVal);
4200   }
4201 
4202   // Allow for Altivec parameters at the end, if needed.
4203   if (nAltivecParamsAtEnd) {
4204     MinReservedArea = ((MinReservedArea+15)/16)*16;
4205     MinReservedArea += 16*nAltivecParamsAtEnd;
4206   }
4207 
4208   // Area that is at least reserved in the caller of this function.
4209   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4210 
4211   // Set the size that is at least reserved in caller of this function.  Tail
4212   // call optimized functions' reserved stack space needs to be aligned so that
4213   // taking the difference between two stack areas will result in an aligned
4214   // stack.
4215   MinReservedArea =
4216       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4217   FuncInfo->setMinReservedArea(MinReservedArea);
4218 
4219   // If the function takes variable number of arguments, make a frame index for
4220   // the start of the first vararg value... for expansion of llvm.va_start.
4221   if (isVarArg) {
4222     int Depth = ArgOffset;
4223 
4224     FuncInfo->setVarArgsFrameIndex(
4225       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4226                             Depth, true));
4227     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4228 
4229     // If this function is vararg, store any remaining integer argument regs
4230     // to their spots on the stack so that they may be loaded by dereferencing
4231     // the result of va_next.
4232     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4233       unsigned VReg;
4234 
4235       if (isPPC64)
4236         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4237       else
4238         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4239 
4240       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4241       SDValue Store =
4242           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4243       MemOps.push_back(Store);
4244       // Increment the address by four for the next argument to store
4245       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4246       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4247     }
4248   }
4249 
4250   if (!MemOps.empty())
4251     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4252 
4253   return Chain;
4254 }
4255 
4256 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4257 /// adjusted to accommodate the arguments for the tailcall.
4258 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4259                                    unsigned ParamSize) {
4260 
4261   if (!isTailCall) return 0;
4262 
4263   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4264   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4265   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4266   // Remember only if the new adjustement is bigger.
4267   if (SPDiff < FI->getTailCallSPDelta())
4268     FI->setTailCallSPDelta(SPDiff);
4269 
4270   return SPDiff;
4271 }
4272 
4273 static bool isFunctionGlobalAddress(SDValue Callee);
4274 
4275 static bool
4276 callsShareTOCBase(const Function *Caller, SDValue Callee,
4277                     const TargetMachine &TM) {
4278   // If !G, Callee can be an external symbol.
4279   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4280   if (!G)
4281     return false;
4282 
4283   // The medium and large code models are expected to provide a sufficiently
4284   // large TOC to provide all data addressing needs of a module with a
4285   // single TOC. Since each module will be addressed with a single TOC then we
4286   // only need to check that caller and callee don't cross dso boundaries.
4287   if (CodeModel::Medium == TM.getCodeModel() ||
4288       CodeModel::Large == TM.getCodeModel())
4289     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4290 
4291   // Otherwise we need to ensure callee and caller are in the same section,
4292   // since the linker may allocate multiple TOCs, and we don't know which
4293   // sections will belong to the same TOC base.
4294 
4295   const GlobalValue *GV = G->getGlobal();
4296   if (!GV->isStrongDefinitionForLinker())
4297     return false;
4298 
4299   // Any explicitly-specified sections and section prefixes must also match.
4300   // Also, if we're using -ffunction-sections, then each function is always in
4301   // a different section (the same is true for COMDAT functions).
4302   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4303       GV->getSection() != Caller->getSection())
4304     return false;
4305   if (const auto *F = dyn_cast<Function>(GV)) {
4306     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4307       return false;
4308   }
4309 
4310   // If the callee might be interposed, then we can't assume the ultimate call
4311   // target will be in the same section. Even in cases where we can assume that
4312   // interposition won't happen, in any case where the linker might insert a
4313   // stub to allow for interposition, we must generate code as though
4314   // interposition might occur. To understand why this matters, consider a
4315   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4316   // in the same section, but a is in a different module (i.e. has a different
4317   // TOC base pointer). If the linker allows for interposition between b and c,
4318   // then it will generate a stub for the call edge between b and c which will
4319   // save the TOC pointer into the designated stack slot allocated by b. If we
4320   // return true here, and therefore allow a tail call between b and c, that
4321   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4322   // pointer into the stack slot allocated by a (where the a -> b stub saved
4323   // a's TOC base pointer). If we're not considering a tail call, but rather,
4324   // whether a nop is needed after the call instruction in b, because the linker
4325   // will insert a stub, it might complain about a missing nop if we omit it
4326   // (although many don't complain in this case).
4327   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4328     return false;
4329 
4330   return true;
4331 }
4332 
4333 static bool
4334 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4335                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4336   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4337 
4338   const unsigned PtrByteSize = 8;
4339   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4340 
4341   static const MCPhysReg GPR[] = {
4342     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4343     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4344   };
4345   static const MCPhysReg VR[] = {
4346     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4347     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4348   };
4349 
4350   const unsigned NumGPRs = array_lengthof(GPR);
4351   const unsigned NumFPRs = 13;
4352   const unsigned NumVRs = array_lengthof(VR);
4353   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4354 
4355   unsigned NumBytes = LinkageSize;
4356   unsigned AvailableFPRs = NumFPRs;
4357   unsigned AvailableVRs = NumVRs;
4358 
4359   for (const ISD::OutputArg& Param : Outs) {
4360     if (Param.Flags.isNest()) continue;
4361 
4362     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4363                                PtrByteSize, LinkageSize, ParamAreaSize,
4364                                NumBytes, AvailableFPRs, AvailableVRs,
4365                                Subtarget.hasQPX()))
4366       return true;
4367   }
4368   return false;
4369 }
4370 
4371 static bool
4372 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4373   if (CS.arg_size() != CallerFn->arg_size())
4374     return false;
4375 
4376   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4377   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4378   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4379 
4380   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4381     const Value* CalleeArg = *CalleeArgIter;
4382     const Value* CallerArg = &(*CallerArgIter);
4383     if (CalleeArg == CallerArg)
4384       continue;
4385 
4386     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4387     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4388     //      }
4389     // 1st argument of callee is undef and has the same type as caller.
4390     if (CalleeArg->getType() == CallerArg->getType() &&
4391         isa<UndefValue>(CalleeArg))
4392       continue;
4393 
4394     return false;
4395   }
4396 
4397   return true;
4398 }
4399 
4400 // Returns true if TCO is possible between the callers and callees
4401 // calling conventions.
4402 static bool
4403 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4404                                     CallingConv::ID CalleeCC) {
4405   // Tail calls are possible with fastcc and ccc.
4406   auto isTailCallableCC  = [] (CallingConv::ID CC){
4407       return  CC == CallingConv::C || CC == CallingConv::Fast;
4408   };
4409   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4410     return false;
4411 
4412   // We can safely tail call both fastcc and ccc callees from a c calling
4413   // convention caller. If the caller is fastcc, we may have less stack space
4414   // than a non-fastcc caller with the same signature so disable tail-calls in
4415   // that case.
4416   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4417 }
4418 
4419 bool
4420 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4421                                     SDValue Callee,
4422                                     CallingConv::ID CalleeCC,
4423                                     ImmutableCallSite CS,
4424                                     bool isVarArg,
4425                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4426                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4427                                     SelectionDAG& DAG) const {
4428   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4429 
4430   if (DisableSCO && !TailCallOpt) return false;
4431 
4432   // Variadic argument functions are not supported.
4433   if (isVarArg) return false;
4434 
4435   auto &Caller = DAG.getMachineFunction().getFunction();
4436   // Check that the calling conventions are compatible for tco.
4437   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4438     return false;
4439 
4440   // Caller contains any byval parameter is not supported.
4441   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4442     return false;
4443 
4444   // Callee contains any byval parameter is not supported, too.
4445   // Note: This is a quick work around, because in some cases, e.g.
4446   // caller's stack size > callee's stack size, we are still able to apply
4447   // sibling call optimization. For example, gcc is able to do SCO for caller1
4448   // in the following example, but not for caller2.
4449   //   struct test {
4450   //     long int a;
4451   //     char ary[56];
4452   //   } gTest;
4453   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4454   //     b->a = v.a;
4455   //     return 0;
4456   //   }
4457   //   void caller1(struct test a, struct test c, struct test *b) {
4458   //     callee(gTest, b); }
4459   //   void caller2(struct test *b) { callee(gTest, b); }
4460   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4461     return false;
4462 
4463   // If callee and caller use different calling conventions, we cannot pass
4464   // parameters on stack since offsets for the parameter area may be different.
4465   if (Caller.getCallingConv() != CalleeCC &&
4466       needStackSlotPassParameters(Subtarget, Outs))
4467     return false;
4468 
4469   // No TCO/SCO on indirect call because Caller have to restore its TOC
4470   if (!isFunctionGlobalAddress(Callee) &&
4471       !isa<ExternalSymbolSDNode>(Callee))
4472     return false;
4473 
4474   // If the caller and callee potentially have different TOC bases then we
4475   // cannot tail call since we need to restore the TOC pointer after the call.
4476   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4477   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4478     return false;
4479 
4480   // TCO allows altering callee ABI, so we don't have to check further.
4481   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4482     return true;
4483 
4484   if (DisableSCO) return false;
4485 
4486   // If callee use the same argument list that caller is using, then we can
4487   // apply SCO on this case. If it is not, then we need to check if callee needs
4488   // stack for passing arguments.
4489   if (!hasSameArgumentList(&Caller, CS) &&
4490       needStackSlotPassParameters(Subtarget, Outs)) {
4491     return false;
4492   }
4493 
4494   return true;
4495 }
4496 
4497 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4498 /// for tail call optimization. Targets which want to do tail call
4499 /// optimization should implement this function.
4500 bool
4501 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4502                                                      CallingConv::ID CalleeCC,
4503                                                      bool isVarArg,
4504                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4505                                                      SelectionDAG& DAG) const {
4506   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4507     return false;
4508 
4509   // Variable argument functions are not supported.
4510   if (isVarArg)
4511     return false;
4512 
4513   MachineFunction &MF = DAG.getMachineFunction();
4514   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4515   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4516     // Functions containing by val parameters are not supported.
4517     for (unsigned i = 0; i != Ins.size(); i++) {
4518        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4519        if (Flags.isByVal()) return false;
4520     }
4521 
4522     // Non-PIC/GOT tail calls are supported.
4523     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4524       return true;
4525 
4526     // At the moment we can only do local tail calls (in same module, hidden
4527     // or protected) if we are generating PIC.
4528     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4529       return G->getGlobal()->hasHiddenVisibility()
4530           || G->getGlobal()->hasProtectedVisibility();
4531   }
4532 
4533   return false;
4534 }
4535 
4536 /// isCallCompatibleAddress - Return the immediate to use if the specified
4537 /// 32-bit value is representable in the immediate field of a BxA instruction.
4538 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4539   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4540   if (!C) return nullptr;
4541 
4542   int Addr = C->getZExtValue();
4543   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4544       SignExtend32<26>(Addr) != Addr)
4545     return nullptr;  // Top 6 bits have to be sext of immediate.
4546 
4547   return DAG
4548       .getConstant(
4549           (int)C->getZExtValue() >> 2, SDLoc(Op),
4550           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4551       .getNode();
4552 }
4553 
4554 namespace {
4555 
4556 struct TailCallArgumentInfo {
4557   SDValue Arg;
4558   SDValue FrameIdxOp;
4559   int FrameIdx = 0;
4560 
4561   TailCallArgumentInfo() = default;
4562 };
4563 
4564 } // end anonymous namespace
4565 
4566 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4567 static void StoreTailCallArgumentsToStackSlot(
4568     SelectionDAG &DAG, SDValue Chain,
4569     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4570     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4571   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4572     SDValue Arg = TailCallArgs[i].Arg;
4573     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4574     int FI = TailCallArgs[i].FrameIdx;
4575     // Store relative to framepointer.
4576     MemOpChains.push_back(DAG.getStore(
4577         Chain, dl, Arg, FIN,
4578         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4579   }
4580 }
4581 
4582 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4583 /// the appropriate stack slot for the tail call optimized function call.
4584 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4585                                              SDValue OldRetAddr, SDValue OldFP,
4586                                              int SPDiff, const SDLoc &dl) {
4587   if (SPDiff) {
4588     // Calculate the new stack slot for the return address.
4589     MachineFunction &MF = DAG.getMachineFunction();
4590     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4591     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4592     bool isPPC64 = Subtarget.isPPC64();
4593     int SlotSize = isPPC64 ? 8 : 4;
4594     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4595     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4596                                                          NewRetAddrLoc, true);
4597     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4598     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4599     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4600                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4601 
4602     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4603     // slot as the FP is never overwritten.
4604     if (Subtarget.isDarwinABI()) {
4605       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4606       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4607                                                          true);
4608       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4609       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4610                            MachinePointerInfo::getFixedStack(
4611                                DAG.getMachineFunction(), NewFPIdx));
4612     }
4613   }
4614   return Chain;
4615 }
4616 
4617 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4618 /// the position of the argument.
4619 static void
4620 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4621                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4622                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4623   int Offset = ArgOffset + SPDiff;
4624   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4625   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4626   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4627   SDValue FIN = DAG.getFrameIndex(FI, VT);
4628   TailCallArgumentInfo Info;
4629   Info.Arg = Arg;
4630   Info.FrameIdxOp = FIN;
4631   Info.FrameIdx = FI;
4632   TailCallArguments.push_back(Info);
4633 }
4634 
4635 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4636 /// stack slot. Returns the chain as result and the loaded frame pointers in
4637 /// LROpOut/FPOpout. Used when tail calling.
4638 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4639     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4640     SDValue &FPOpOut, const SDLoc &dl) const {
4641   if (SPDiff) {
4642     // Load the LR and FP stack slot for later adjusting.
4643     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4644     LROpOut = getReturnAddrFrameIndex(DAG);
4645     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4646     Chain = SDValue(LROpOut.getNode(), 1);
4647 
4648     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4649     // slot as the FP is never overwritten.
4650     if (Subtarget.isDarwinABI()) {
4651       FPOpOut = getFramePointerFrameIndex(DAG);
4652       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4653       Chain = SDValue(FPOpOut.getNode(), 1);
4654     }
4655   }
4656   return Chain;
4657 }
4658 
4659 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4660 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4661 /// specified by the specific parameter attribute. The copy will be passed as
4662 /// a byval function parameter.
4663 /// Sometimes what we are copying is the end of a larger object, the part that
4664 /// does not fit in registers.
4665 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4666                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4667                                          SelectionDAG &DAG, const SDLoc &dl) {
4668   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4669   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4670                        false, false, false, MachinePointerInfo(),
4671                        MachinePointerInfo());
4672 }
4673 
4674 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4675 /// tail calls.
4676 static void LowerMemOpCallTo(
4677     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4678     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4679     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4680     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4681   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4682   if (!isTailCall) {
4683     if (isVector) {
4684       SDValue StackPtr;
4685       if (isPPC64)
4686         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4687       else
4688         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4689       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4690                            DAG.getConstant(ArgOffset, dl, PtrVT));
4691     }
4692     MemOpChains.push_back(
4693         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4694     // Calculate and remember argument location.
4695   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4696                                   TailCallArguments);
4697 }
4698 
4699 static void
4700 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4701                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4702                 SDValue FPOp,
4703                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4704   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4705   // might overwrite each other in case of tail call optimization.
4706   SmallVector<SDValue, 8> MemOpChains2;
4707   // Do not flag preceding copytoreg stuff together with the following stuff.
4708   InFlag = SDValue();
4709   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4710                                     MemOpChains2, dl);
4711   if (!MemOpChains2.empty())
4712     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4713 
4714   // Store the return address to the appropriate stack slot.
4715   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4716 
4717   // Emit callseq_end just before tailcall node.
4718   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4719                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4720   InFlag = Chain.getValue(1);
4721 }
4722 
4723 // Is this global address that of a function that can be called by name? (as
4724 // opposed to something that must hold a descriptor for an indirect call).
4725 static bool isFunctionGlobalAddress(SDValue Callee) {
4726   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4727     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4728         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4729       return false;
4730 
4731     return G->getGlobal()->getValueType()->isFunctionTy();
4732   }
4733 
4734   return false;
4735 }
4736 
4737 static unsigned
4738 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4739             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4740             bool isPatchPoint, bool hasNest,
4741             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4742             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4743             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4744   bool isPPC64 = Subtarget.isPPC64();
4745   bool isSVR4ABI = Subtarget.isSVR4ABI();
4746   bool isELFv2ABI = Subtarget.isELFv2ABI();
4747 
4748   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4749   NodeTys.push_back(MVT::Other);   // Returns a chain
4750   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4751 
4752   unsigned CallOpc = PPCISD::CALL;
4753 
4754   bool needIndirectCall = true;
4755   if (!isSVR4ABI || !isPPC64)
4756     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4757       // If this is an absolute destination address, use the munged value.
4758       Callee = SDValue(Dest, 0);
4759       needIndirectCall = false;
4760     }
4761 
4762   // PC-relative references to external symbols should go through $stub, unless
4763   // we're building with the leopard linker or later, which automatically
4764   // synthesizes these stubs.
4765   const TargetMachine &TM = DAG.getTarget();
4766   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4767   const GlobalValue *GV = nullptr;
4768   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4769     GV = G->getGlobal();
4770   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4771   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4772 
4773   if (isFunctionGlobalAddress(Callee)) {
4774     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4775     // A call to a TLS address is actually an indirect call to a
4776     // thread-specific pointer.
4777     unsigned OpFlags = 0;
4778     if (UsePlt)
4779       OpFlags = PPCII::MO_PLT;
4780 
4781     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4782     // every direct call is) turn it into a TargetGlobalAddress /
4783     // TargetExternalSymbol node so that legalize doesn't hack it.
4784     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4785                                         Callee.getValueType(), 0, OpFlags);
4786     needIndirectCall = false;
4787   }
4788 
4789   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4790     unsigned char OpFlags = 0;
4791 
4792     if (UsePlt)
4793       OpFlags = PPCII::MO_PLT;
4794 
4795     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4796                                          OpFlags);
4797     needIndirectCall = false;
4798   }
4799 
4800   if (isPatchPoint) {
4801     // We'll form an invalid direct call when lowering a patchpoint; the full
4802     // sequence for an indirect call is complicated, and many of the
4803     // instructions introduced might have side effects (and, thus, can't be
4804     // removed later). The call itself will be removed as soon as the
4805     // argument/return lowering is complete, so the fact that it has the wrong
4806     // kind of operands should not really matter.
4807     needIndirectCall = false;
4808   }
4809 
4810   if (needIndirectCall) {
4811     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4812     // to do the call, we can't use PPCISD::CALL.
4813     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4814 
4815     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4816       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4817       // entry point, but to the function descriptor (the function entry point
4818       // address is part of the function descriptor though).
4819       // The function descriptor is a three doubleword structure with the
4820       // following fields: function entry point, TOC base address and
4821       // environment pointer.
4822       // Thus for a call through a function pointer, the following actions need
4823       // to be performed:
4824       //   1. Save the TOC of the caller in the TOC save area of its stack
4825       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4826       //   2. Load the address of the function entry point from the function
4827       //      descriptor.
4828       //   3. Load the TOC of the callee from the function descriptor into r2.
4829       //   4. Load the environment pointer from the function descriptor into
4830       //      r11.
4831       //   5. Branch to the function entry point address.
4832       //   6. On return of the callee, the TOC of the caller needs to be
4833       //      restored (this is done in FinishCall()).
4834       //
4835       // The loads are scheduled at the beginning of the call sequence, and the
4836       // register copies are flagged together to ensure that no other
4837       // operations can be scheduled in between. E.g. without flagging the
4838       // copies together, a TOC access in the caller could be scheduled between
4839       // the assignment of the callee TOC and the branch to the callee, which
4840       // results in the TOC access going through the TOC of the callee instead
4841       // of going through the TOC of the caller, which leads to incorrect code.
4842 
4843       // Load the address of the function entry point from the function
4844       // descriptor.
4845       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4846       if (LDChain.getValueType() == MVT::Glue)
4847         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4848 
4849       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4850                           ? (MachineMemOperand::MODereferenceable |
4851                              MachineMemOperand::MOInvariant)
4852                           : MachineMemOperand::MONone;
4853 
4854       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
4855       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4856                                         /* Alignment = */ 8, MMOFlags);
4857 
4858       // Load environment pointer into r11.
4859       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4860       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4861       SDValue LoadEnvPtr =
4862           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4863                       /* Alignment = */ 8, MMOFlags);
4864 
4865       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4866       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4867       SDValue TOCPtr =
4868           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4869                       /* Alignment = */ 8, MMOFlags);
4870 
4871       setUsesTOCBasePtr(DAG);
4872       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4873                                         InFlag);
4874       Chain = TOCVal.getValue(0);
4875       InFlag = TOCVal.getValue(1);
4876 
4877       // If the function call has an explicit 'nest' parameter, it takes the
4878       // place of the environment pointer.
4879       if (!hasNest) {
4880         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4881                                           InFlag);
4882 
4883         Chain = EnvVal.getValue(0);
4884         InFlag = EnvVal.getValue(1);
4885       }
4886 
4887       MTCTROps[0] = Chain;
4888       MTCTROps[1] = LoadFuncPtr;
4889       MTCTROps[2] = InFlag;
4890     }
4891 
4892     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4893                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4894     InFlag = Chain.getValue(1);
4895 
4896     NodeTys.clear();
4897     NodeTys.push_back(MVT::Other);
4898     NodeTys.push_back(MVT::Glue);
4899     Ops.push_back(Chain);
4900     CallOpc = PPCISD::BCTRL;
4901     Callee.setNode(nullptr);
4902     // Add use of X11 (holding environment pointer)
4903     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4904       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4905     // Add CTR register as callee so a bctr can be emitted later.
4906     if (isTailCall)
4907       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4908   }
4909 
4910   // If this is a direct call, pass the chain and the callee.
4911   if (Callee.getNode()) {
4912     Ops.push_back(Chain);
4913     Ops.push_back(Callee);
4914   }
4915   // If this is a tail call add stack pointer delta.
4916   if (isTailCall)
4917     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4918 
4919   // Add argument registers to the end of the list so that they are known live
4920   // into the call.
4921   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4922     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4923                                   RegsToPass[i].second.getValueType()));
4924 
4925   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4926   // into the call.
4927   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
4928     setUsesTOCBasePtr(DAG);
4929     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4930   }
4931 
4932   return CallOpc;
4933 }
4934 
4935 SDValue PPCTargetLowering::LowerCallResult(
4936     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4937     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4938     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4939   SmallVector<CCValAssign, 16> RVLocs;
4940   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4941                     *DAG.getContext());
4942 
4943   CCRetInfo.AnalyzeCallResult(
4944       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
4945                ? RetCC_PPC_Cold
4946                : RetCC_PPC);
4947 
4948   // Copy all of the result registers out of their specified physreg.
4949   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4950     CCValAssign &VA = RVLocs[i];
4951     assert(VA.isRegLoc() && "Can only return in registers!");
4952 
4953     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4954                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4955     Chain = Val.getValue(1);
4956     InFlag = Val.getValue(2);
4957 
4958     switch (VA.getLocInfo()) {
4959     default: llvm_unreachable("Unknown loc info!");
4960     case CCValAssign::Full: break;
4961     case CCValAssign::AExt:
4962       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4963       break;
4964     case CCValAssign::ZExt:
4965       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4966                         DAG.getValueType(VA.getValVT()));
4967       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4968       break;
4969     case CCValAssign::SExt:
4970       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4971                         DAG.getValueType(VA.getValVT()));
4972       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4973       break;
4974     }
4975 
4976     InVals.push_back(Val);
4977   }
4978 
4979   return Chain;
4980 }
4981 
4982 SDValue PPCTargetLowering::FinishCall(
4983     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
4984     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
4985     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
4986     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
4987     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
4988     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
4989   std::vector<EVT> NodeTys;
4990   SmallVector<SDValue, 8> Ops;
4991   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4992                                  SPDiff, isTailCall, isPatchPoint, hasNest,
4993                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
4994 
4995   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4996   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4997     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4998 
4999   // When performing tail call optimization the callee pops its arguments off
5000   // the stack. Account for this here so these bytes can be pushed back on in
5001   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5002   int BytesCalleePops =
5003     (CallConv == CallingConv::Fast &&
5004      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5005 
5006   // Add a register mask operand representing the call-preserved registers.
5007   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5008   const uint32_t *Mask =
5009       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5010   assert(Mask && "Missing call preserved mask for calling convention");
5011   Ops.push_back(DAG.getRegisterMask(Mask));
5012 
5013   if (InFlag.getNode())
5014     Ops.push_back(InFlag);
5015 
5016   // Emit tail call.
5017   if (isTailCall) {
5018     assert(((Callee.getOpcode() == ISD::Register &&
5019              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5020             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5021             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5022             isa<ConstantSDNode>(Callee)) &&
5023     "Expecting an global address, external symbol, absolute value or register");
5024 
5025     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5026     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5027   }
5028 
5029   // Add a NOP immediately after the branch instruction when using the 64-bit
5030   // SVR4 ABI. At link time, if caller and callee are in a different module and
5031   // thus have a different TOC, the call will be replaced with a call to a stub
5032   // function which saves the current TOC, loads the TOC of the callee and
5033   // branches to the callee. The NOP will be replaced with a load instruction
5034   // which restores the TOC of the caller from the TOC save slot of the current
5035   // stack frame. If caller and callee belong to the same module (and have the
5036   // same TOC), the NOP will remain unchanged.
5037 
5038   MachineFunction &MF = DAG.getMachineFunction();
5039   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5040       !isPatchPoint) {
5041     if (CallOpc == PPCISD::BCTRL) {
5042       // This is a call through a function pointer.
5043       // Restore the caller TOC from the save area into R2.
5044       // See PrepareCall() for more information about calls through function
5045       // pointers in the 64-bit SVR4 ABI.
5046       // We are using a target-specific load with r2 hard coded, because the
5047       // result of a target-independent load would never go directly into r2,
5048       // since r2 is a reserved register (which prevents the register allocator
5049       // from allocating it), resulting in an additional register being
5050       // allocated and an unnecessary move instruction being generated.
5051       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5052 
5053       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5054       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5055       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5056       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5057       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5058 
5059       // The address needs to go after the chain input but before the flag (or
5060       // any other variadic arguments).
5061       Ops.insert(std::next(Ops.begin()), AddTOC);
5062     } else if (CallOpc == PPCISD::CALL &&
5063       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5064       // Otherwise insert NOP for non-local calls.
5065       CallOpc = PPCISD::CALL_NOP;
5066     }
5067   }
5068 
5069   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5070   InFlag = Chain.getValue(1);
5071 
5072   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5073                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5074                              InFlag, dl);
5075   if (!Ins.empty())
5076     InFlag = Chain.getValue(1);
5077 
5078   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5079                          Ins, dl, DAG, InVals);
5080 }
5081 
5082 SDValue
5083 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5084                              SmallVectorImpl<SDValue> &InVals) const {
5085   SelectionDAG &DAG                     = CLI.DAG;
5086   SDLoc &dl                             = CLI.DL;
5087   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5088   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5089   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5090   SDValue Chain                         = CLI.Chain;
5091   SDValue Callee                        = CLI.Callee;
5092   bool &isTailCall                      = CLI.IsTailCall;
5093   CallingConv::ID CallConv              = CLI.CallConv;
5094   bool isVarArg                         = CLI.IsVarArg;
5095   bool isPatchPoint                     = CLI.IsPatchPoint;
5096   ImmutableCallSite CS                  = CLI.CS;
5097 
5098   if (isTailCall) {
5099     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5100       isTailCall = false;
5101     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5102       isTailCall =
5103         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5104                                                  isVarArg, Outs, Ins, DAG);
5105     else
5106       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5107                                                      Ins, DAG);
5108     if (isTailCall) {
5109       ++NumTailCalls;
5110       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5111         ++NumSiblingCalls;
5112 
5113       assert(isa<GlobalAddressSDNode>(Callee) &&
5114              "Callee should be an llvm::Function object.");
5115       DEBUG(
5116         const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5117         const unsigned Width = 80 - strlen("TCO caller: ")
5118                                   - strlen(", callee linkage: 0, 0");
5119         dbgs() << "TCO caller: "
5120                << left_justify(DAG.getMachineFunction().getName(), Width)
5121                << ", callee linkage: "
5122                << GV->getVisibility() << ", " << GV->getLinkage() << "\n"
5123       );
5124     }
5125   }
5126 
5127   if (!isTailCall && CS && CS.isMustTailCall())
5128     report_fatal_error("failed to perform tail call elimination on a call "
5129                        "site marked musttail");
5130 
5131   // When long calls (i.e. indirect calls) are always used, calls are always
5132   // made via function pointer. If we have a function name, first translate it
5133   // into a pointer.
5134   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5135       !isTailCall)
5136     Callee = LowerGlobalAddress(Callee, DAG);
5137 
5138   if (Subtarget.isSVR4ABI()) {
5139     if (Subtarget.isPPC64())
5140       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5141                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5142                               dl, DAG, InVals, CS);
5143     else
5144       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5145                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5146                               dl, DAG, InVals, CS);
5147   }
5148 
5149   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5150                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5151                           dl, DAG, InVals, CS);
5152 }
5153 
5154 SDValue PPCTargetLowering::LowerCall_32SVR4(
5155     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5156     bool isTailCall, bool isPatchPoint,
5157     const SmallVectorImpl<ISD::OutputArg> &Outs,
5158     const SmallVectorImpl<SDValue> &OutVals,
5159     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5160     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5161     ImmutableCallSite CS) const {
5162   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5163   // of the 32-bit SVR4 ABI stack frame layout.
5164 
5165   assert((CallConv == CallingConv::C ||
5166           CallConv == CallingConv::Cold ||
5167           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5168 
5169   unsigned PtrByteSize = 4;
5170 
5171   MachineFunction &MF = DAG.getMachineFunction();
5172 
5173   // Mark this function as potentially containing a function that contains a
5174   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5175   // and restoring the callers stack pointer in this functions epilog. This is
5176   // done because by tail calling the called function might overwrite the value
5177   // in this function's (MF) stack pointer stack slot 0(SP).
5178   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5179       CallConv == CallingConv::Fast)
5180     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5181 
5182   // Count how many bytes are to be pushed on the stack, including the linkage
5183   // area, parameter list area and the part of the local variable space which
5184   // contains copies of aggregates which are passed by value.
5185 
5186   // Assign locations to all of the outgoing arguments.
5187   SmallVector<CCValAssign, 16> ArgLocs;
5188   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5189 
5190   // Reserve space for the linkage area on the stack.
5191   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5192                        PtrByteSize);
5193   if (useSoftFloat())
5194     CCInfo.PreAnalyzeCallOperands(Outs);
5195 
5196   if (isVarArg) {
5197     // Handle fixed and variable vector arguments differently.
5198     // Fixed vector arguments go into registers as long as registers are
5199     // available. Variable vector arguments always go into memory.
5200     unsigned NumArgs = Outs.size();
5201 
5202     for (unsigned i = 0; i != NumArgs; ++i) {
5203       MVT ArgVT = Outs[i].VT;
5204       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5205       bool Result;
5206 
5207       if (Outs[i].IsFixed) {
5208         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5209                                CCInfo);
5210       } else {
5211         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5212                                       ArgFlags, CCInfo);
5213       }
5214 
5215       if (Result) {
5216 #ifndef NDEBUG
5217         errs() << "Call operand #" << i << " has unhandled type "
5218              << EVT(ArgVT).getEVTString() << "\n";
5219 #endif
5220         llvm_unreachable(nullptr);
5221       }
5222     }
5223   } else {
5224     // All arguments are treated the same.
5225     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5226   }
5227   CCInfo.clearWasPPCF128();
5228 
5229   // Assign locations to all of the outgoing aggregate by value arguments.
5230   SmallVector<CCValAssign, 16> ByValArgLocs;
5231   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5232 
5233   // Reserve stack space for the allocations in CCInfo.
5234   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5235 
5236   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5237 
5238   // Size of the linkage area, parameter list area and the part of the local
5239   // space variable where copies of aggregates which are passed by value are
5240   // stored.
5241   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5242 
5243   // Calculate by how many bytes the stack has to be adjusted in case of tail
5244   // call optimization.
5245   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5246 
5247   // Adjust the stack pointer for the new arguments...
5248   // These operations are automatically eliminated by the prolog/epilog pass
5249   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5250   SDValue CallSeqStart = Chain;
5251 
5252   // Load the return address and frame pointer so it can be moved somewhere else
5253   // later.
5254   SDValue LROp, FPOp;
5255   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5256 
5257   // Set up a copy of the stack pointer for use loading and storing any
5258   // arguments that may not fit in the registers available for argument
5259   // passing.
5260   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5261 
5262   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5263   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5264   SmallVector<SDValue, 8> MemOpChains;
5265 
5266   bool seenFloatArg = false;
5267   // Walk the register/memloc assignments, inserting copies/loads.
5268   for (unsigned i = 0, j = 0, e = ArgLocs.size();
5269        i != e;
5270        ++i) {
5271     CCValAssign &VA = ArgLocs[i];
5272     SDValue Arg = OutVals[i];
5273     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5274 
5275     if (Flags.isByVal()) {
5276       // Argument is an aggregate which is passed by value, thus we need to
5277       // create a copy of it in the local variable space of the current stack
5278       // frame (which is the stack frame of the caller) and pass the address of
5279       // this copy to the callee.
5280       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5281       CCValAssign &ByValVA = ByValArgLocs[j++];
5282       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5283 
5284       // Memory reserved in the local variable space of the callers stack frame.
5285       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5286 
5287       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5288       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5289                            StackPtr, PtrOff);
5290 
5291       // Create a copy of the argument in the local area of the current
5292       // stack frame.
5293       SDValue MemcpyCall =
5294         CreateCopyOfByValArgument(Arg, PtrOff,
5295                                   CallSeqStart.getNode()->getOperand(0),
5296                                   Flags, DAG, dl);
5297 
5298       // This must go outside the CALLSEQ_START..END.
5299       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5300                                                      SDLoc(MemcpyCall));
5301       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5302                              NewCallSeqStart.getNode());
5303       Chain = CallSeqStart = NewCallSeqStart;
5304 
5305       // Pass the address of the aggregate copy on the stack either in a
5306       // physical register or in the parameter list area of the current stack
5307       // frame to the callee.
5308       Arg = PtrOff;
5309     }
5310 
5311     if (VA.isRegLoc()) {
5312       if (Arg.getValueType() == MVT::i1)
5313         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
5314 
5315       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5316       // Put argument in a physical register.
5317       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5318     } else {
5319       // Put argument in the parameter list area of the current stack frame.
5320       assert(VA.isMemLoc());
5321       unsigned LocMemOffset = VA.getLocMemOffset();
5322 
5323       if (!isTailCall) {
5324         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5325         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5326                              StackPtr, PtrOff);
5327 
5328         MemOpChains.push_back(
5329             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5330       } else {
5331         // Calculate and remember argument location.
5332         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5333                                  TailCallArguments);
5334       }
5335     }
5336   }
5337 
5338   if (!MemOpChains.empty())
5339     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5340 
5341   // Build a sequence of copy-to-reg nodes chained together with token chain
5342   // and flag operands which copy the outgoing args into the appropriate regs.
5343   SDValue InFlag;
5344   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5345     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5346                              RegsToPass[i].second, InFlag);
5347     InFlag = Chain.getValue(1);
5348   }
5349 
5350   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5351   // registers.
5352   if (isVarArg) {
5353     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5354     SDValue Ops[] = { Chain, InFlag };
5355 
5356     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5357                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5358 
5359     InFlag = Chain.getValue(1);
5360   }
5361 
5362   if (isTailCall)
5363     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5364                     TailCallArguments);
5365 
5366   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5367                     /* unused except on PPC64 ELFv1 */ false, DAG,
5368                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5369                     NumBytes, Ins, InVals, CS);
5370 }
5371 
5372 // Copy an argument into memory, being careful to do this outside the
5373 // call sequence for the call to which the argument belongs.
5374 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5375     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5376     SelectionDAG &DAG, const SDLoc &dl) const {
5377   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5378                         CallSeqStart.getNode()->getOperand(0),
5379                         Flags, DAG, dl);
5380   // The MEMCPY must go outside the CALLSEQ_START..END.
5381   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5382   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5383                                                  SDLoc(MemcpyCall));
5384   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5385                          NewCallSeqStart.getNode());
5386   return NewCallSeqStart;
5387 }
5388 
5389 SDValue PPCTargetLowering::LowerCall_64SVR4(
5390     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5391     bool isTailCall, bool isPatchPoint,
5392     const SmallVectorImpl<ISD::OutputArg> &Outs,
5393     const SmallVectorImpl<SDValue> &OutVals,
5394     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5395     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5396     ImmutableCallSite CS) const {
5397   bool isELFv2ABI = Subtarget.isELFv2ABI();
5398   bool isLittleEndian = Subtarget.isLittleEndian();
5399   unsigned NumOps = Outs.size();
5400   bool hasNest = false;
5401   bool IsSibCall = false;
5402 
5403   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5404   unsigned PtrByteSize = 8;
5405 
5406   MachineFunction &MF = DAG.getMachineFunction();
5407 
5408   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5409     IsSibCall = true;
5410 
5411   // Mark this function as potentially containing a function that contains a
5412   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5413   // and restoring the callers stack pointer in this functions epilog. This is
5414   // done because by tail calling the called function might overwrite the value
5415   // in this function's (MF) stack pointer stack slot 0(SP).
5416   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5417       CallConv == CallingConv::Fast)
5418     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5419 
5420   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5421          "fastcc not supported on varargs functions");
5422 
5423   // Count how many bytes are to be pushed on the stack, including the linkage
5424   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5425   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5426   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5427   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5428   unsigned NumBytes = LinkageSize;
5429   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5430   unsigned &QFPR_idx = FPR_idx;
5431 
5432   static const MCPhysReg GPR[] = {
5433     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5434     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5435   };
5436   static const MCPhysReg VR[] = {
5437     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5438     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5439   };
5440 
5441   const unsigned NumGPRs = array_lengthof(GPR);
5442   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5443   const unsigned NumVRs  = array_lengthof(VR);
5444   const unsigned NumQFPRs = NumFPRs;
5445 
5446   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5447   // can be passed to the callee in registers.
5448   // For the fast calling convention, there is another check below.
5449   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5450   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5451   if (!HasParameterArea) {
5452     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5453     unsigned AvailableFPRs = NumFPRs;
5454     unsigned AvailableVRs = NumVRs;
5455     unsigned NumBytesTmp = NumBytes;
5456     for (unsigned i = 0; i != NumOps; ++i) {
5457       if (Outs[i].Flags.isNest()) continue;
5458       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5459                                 PtrByteSize, LinkageSize, ParamAreaSize,
5460                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5461                                 Subtarget.hasQPX()))
5462         HasParameterArea = true;
5463     }
5464   }
5465 
5466   // When using the fast calling convention, we don't provide backing for
5467   // arguments that will be in registers.
5468   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5469 
5470   // Add up all the space actually used.
5471   for (unsigned i = 0; i != NumOps; ++i) {
5472     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5473     EVT ArgVT = Outs[i].VT;
5474     EVT OrigVT = Outs[i].ArgVT;
5475 
5476     if (Flags.isNest())
5477       continue;
5478 
5479     if (CallConv == CallingConv::Fast) {
5480       if (Flags.isByVal())
5481         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5482       else
5483         switch (ArgVT.getSimpleVT().SimpleTy) {
5484         default: llvm_unreachable("Unexpected ValueType for argument!");
5485         case MVT::i1:
5486         case MVT::i32:
5487         case MVT::i64:
5488           if (++NumGPRsUsed <= NumGPRs)
5489             continue;
5490           break;
5491         case MVT::v4i32:
5492         case MVT::v8i16:
5493         case MVT::v16i8:
5494         case MVT::v2f64:
5495         case MVT::v2i64:
5496         case MVT::v1i128:
5497           if (++NumVRsUsed <= NumVRs)
5498             continue;
5499           break;
5500         case MVT::v4f32:
5501           // When using QPX, this is handled like a FP register, otherwise, it
5502           // is an Altivec register.
5503           if (Subtarget.hasQPX()) {
5504             if (++NumFPRsUsed <= NumFPRs)
5505               continue;
5506           } else {
5507             if (++NumVRsUsed <= NumVRs)
5508               continue;
5509           }
5510           break;
5511         case MVT::f32:
5512         case MVT::f64:
5513         case MVT::v4f64: // QPX
5514         case MVT::v4i1:  // QPX
5515           if (++NumFPRsUsed <= NumFPRs)
5516             continue;
5517           break;
5518         }
5519     }
5520 
5521     /* Respect alignment of argument on the stack.  */
5522     unsigned Align =
5523       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5524     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5525 
5526     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5527     if (Flags.isInConsecutiveRegsLast())
5528       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5529   }
5530 
5531   unsigned NumBytesActuallyUsed = NumBytes;
5532 
5533   // In the old ELFv1 ABI,
5534   // the prolog code of the callee may store up to 8 GPR argument registers to
5535   // the stack, allowing va_start to index over them in memory if its varargs.
5536   // Because we cannot tell if this is needed on the caller side, we have to
5537   // conservatively assume that it is needed.  As such, make sure we have at
5538   // least enough stack space for the caller to store the 8 GPRs.
5539   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5540   // really requires memory operands, e.g. a vararg function.
5541   if (HasParameterArea)
5542     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5543   else
5544     NumBytes = LinkageSize;
5545 
5546   // Tail call needs the stack to be aligned.
5547   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5548       CallConv == CallingConv::Fast)
5549     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5550 
5551   int SPDiff = 0;
5552 
5553   // Calculate by how many bytes the stack has to be adjusted in case of tail
5554   // call optimization.
5555   if (!IsSibCall)
5556     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5557 
5558   // To protect arguments on the stack from being clobbered in a tail call,
5559   // force all the loads to happen before doing any other lowering.
5560   if (isTailCall)
5561     Chain = DAG.getStackArgumentTokenFactor(Chain);
5562 
5563   // Adjust the stack pointer for the new arguments...
5564   // These operations are automatically eliminated by the prolog/epilog pass
5565   if (!IsSibCall)
5566     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5567   SDValue CallSeqStart = Chain;
5568 
5569   // Load the return address and frame pointer so it can be move somewhere else
5570   // later.
5571   SDValue LROp, FPOp;
5572   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5573 
5574   // Set up a copy of the stack pointer for use loading and storing any
5575   // arguments that may not fit in the registers available for argument
5576   // passing.
5577   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5578 
5579   // Figure out which arguments are going to go in registers, and which in
5580   // memory.  Also, if this is a vararg function, floating point operations
5581   // must be stored to our stack, and loaded into integer regs as well, if
5582   // any integer regs are available for argument passing.
5583   unsigned ArgOffset = LinkageSize;
5584 
5585   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5586   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5587 
5588   SmallVector<SDValue, 8> MemOpChains;
5589   for (unsigned i = 0; i != NumOps; ++i) {
5590     SDValue Arg = OutVals[i];
5591     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5592     EVT ArgVT = Outs[i].VT;
5593     EVT OrigVT = Outs[i].ArgVT;
5594 
5595     // PtrOff will be used to store the current argument to the stack if a
5596     // register cannot be found for it.
5597     SDValue PtrOff;
5598 
5599     // We re-align the argument offset for each argument, except when using the
5600     // fast calling convention, when we need to make sure we do that only when
5601     // we'll actually use a stack slot.
5602     auto ComputePtrOff = [&]() {
5603       /* Respect alignment of argument on the stack.  */
5604       unsigned Align =
5605         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5606       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5607 
5608       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5609 
5610       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5611     };
5612 
5613     if (CallConv != CallingConv::Fast) {
5614       ComputePtrOff();
5615 
5616       /* Compute GPR index associated with argument offset.  */
5617       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5618       GPR_idx = std::min(GPR_idx, NumGPRs);
5619     }
5620 
5621     // Promote integers to 64-bit values.
5622     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5623       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5624       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5625       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5626     }
5627 
5628     // FIXME memcpy is used way more than necessary.  Correctness first.
5629     // Note: "by value" is code for passing a structure by value, not
5630     // basic types.
5631     if (Flags.isByVal()) {
5632       // Note: Size includes alignment padding, so
5633       //   struct x { short a; char b; }
5634       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5635       // These are the proper values we need for right-justifying the
5636       // aggregate in a parameter register.
5637       unsigned Size = Flags.getByValSize();
5638 
5639       // An empty aggregate parameter takes up no storage and no
5640       // registers.
5641       if (Size == 0)
5642         continue;
5643 
5644       if (CallConv == CallingConv::Fast)
5645         ComputePtrOff();
5646 
5647       // All aggregates smaller than 8 bytes must be passed right-justified.
5648       if (Size==1 || Size==2 || Size==4) {
5649         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5650         if (GPR_idx != NumGPRs) {
5651           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5652                                         MachinePointerInfo(), VT);
5653           MemOpChains.push_back(Load.getValue(1));
5654           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5655 
5656           ArgOffset += PtrByteSize;
5657           continue;
5658         }
5659       }
5660 
5661       if (GPR_idx == NumGPRs && Size < 8) {
5662         SDValue AddPtr = PtrOff;
5663         if (!isLittleEndian) {
5664           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5665                                           PtrOff.getValueType());
5666           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5667         }
5668         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5669                                                           CallSeqStart,
5670                                                           Flags, DAG, dl);
5671         ArgOffset += PtrByteSize;
5672         continue;
5673       }
5674       // Copy entire object into memory.  There are cases where gcc-generated
5675       // code assumes it is there, even if it could be put entirely into
5676       // registers.  (This is not what the doc says.)
5677 
5678       // FIXME: The above statement is likely due to a misunderstanding of the
5679       // documents.  All arguments must be copied into the parameter area BY
5680       // THE CALLEE in the event that the callee takes the address of any
5681       // formal argument.  That has not yet been implemented.  However, it is
5682       // reasonable to use the stack area as a staging area for the register
5683       // load.
5684 
5685       // Skip this for small aggregates, as we will use the same slot for a
5686       // right-justified copy, below.
5687       if (Size >= 8)
5688         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5689                                                           CallSeqStart,
5690                                                           Flags, DAG, dl);
5691 
5692       // When a register is available, pass a small aggregate right-justified.
5693       if (Size < 8 && GPR_idx != NumGPRs) {
5694         // The easiest way to get this right-justified in a register
5695         // is to copy the structure into the rightmost portion of a
5696         // local variable slot, then load the whole slot into the
5697         // register.
5698         // FIXME: The memcpy seems to produce pretty awful code for
5699         // small aggregates, particularly for packed ones.
5700         // FIXME: It would be preferable to use the slot in the
5701         // parameter save area instead of a new local variable.
5702         SDValue AddPtr = PtrOff;
5703         if (!isLittleEndian) {
5704           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5705           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5706         }
5707         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5708                                                           CallSeqStart,
5709                                                           Flags, DAG, dl);
5710 
5711         // Load the slot into the register.
5712         SDValue Load =
5713             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5714         MemOpChains.push_back(Load.getValue(1));
5715         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5716 
5717         // Done with this argument.
5718         ArgOffset += PtrByteSize;
5719         continue;
5720       }
5721 
5722       // For aggregates larger than PtrByteSize, copy the pieces of the
5723       // object that fit into registers from the parameter save area.
5724       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5725         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5726         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5727         if (GPR_idx != NumGPRs) {
5728           SDValue Load =
5729               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5730           MemOpChains.push_back(Load.getValue(1));
5731           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5732           ArgOffset += PtrByteSize;
5733         } else {
5734           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5735           break;
5736         }
5737       }
5738       continue;
5739     }
5740 
5741     switch (Arg.getSimpleValueType().SimpleTy) {
5742     default: llvm_unreachable("Unexpected ValueType for argument!");
5743     case MVT::i1:
5744     case MVT::i32:
5745     case MVT::i64:
5746       if (Flags.isNest()) {
5747         // The 'nest' parameter, if any, is passed in R11.
5748         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5749         hasNest = true;
5750         break;
5751       }
5752 
5753       // These can be scalar arguments or elements of an integer array type
5754       // passed directly.  Clang may use those instead of "byval" aggregate
5755       // types to avoid forcing arguments to memory unnecessarily.
5756       if (GPR_idx != NumGPRs) {
5757         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5758       } else {
5759         if (CallConv == CallingConv::Fast)
5760           ComputePtrOff();
5761 
5762         assert(HasParameterArea &&
5763                "Parameter area must exist to pass an argument in memory.");
5764         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5765                          true, isTailCall, false, MemOpChains,
5766                          TailCallArguments, dl);
5767         if (CallConv == CallingConv::Fast)
5768           ArgOffset += PtrByteSize;
5769       }
5770       if (CallConv != CallingConv::Fast)
5771         ArgOffset += PtrByteSize;
5772       break;
5773     case MVT::f32:
5774     case MVT::f64: {
5775       // These can be scalar arguments or elements of a float array type
5776       // passed directly.  The latter are used to implement ELFv2 homogenous
5777       // float aggregates.
5778 
5779       // Named arguments go into FPRs first, and once they overflow, the
5780       // remaining arguments go into GPRs and then the parameter save area.
5781       // Unnamed arguments for vararg functions always go to GPRs and
5782       // then the parameter save area.  For now, put all arguments to vararg
5783       // routines always in both locations (FPR *and* GPR or stack slot).
5784       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5785       bool NeededLoad = false;
5786 
5787       // First load the argument into the next available FPR.
5788       if (FPR_idx != NumFPRs)
5789         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5790 
5791       // Next, load the argument into GPR or stack slot if needed.
5792       if (!NeedGPROrStack)
5793         ;
5794       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5795         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5796         // once we support fp <-> gpr moves.
5797 
5798         // In the non-vararg case, this can only ever happen in the
5799         // presence of f32 array types, since otherwise we never run
5800         // out of FPRs before running out of GPRs.
5801         SDValue ArgVal;
5802 
5803         // Double values are always passed in a single GPR.
5804         if (Arg.getValueType() != MVT::f32) {
5805           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5806 
5807         // Non-array float values are extended and passed in a GPR.
5808         } else if (!Flags.isInConsecutiveRegs()) {
5809           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5810           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5811 
5812         // If we have an array of floats, we collect every odd element
5813         // together with its predecessor into one GPR.
5814         } else if (ArgOffset % PtrByteSize != 0) {
5815           SDValue Lo, Hi;
5816           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5817           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5818           if (!isLittleEndian)
5819             std::swap(Lo, Hi);
5820           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5821 
5822         // The final element, if even, goes into the first half of a GPR.
5823         } else if (Flags.isInConsecutiveRegsLast()) {
5824           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5825           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5826           if (!isLittleEndian)
5827             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5828                                  DAG.getConstant(32, dl, MVT::i32));
5829 
5830         // Non-final even elements are skipped; they will be handled
5831         // together the with subsequent argument on the next go-around.
5832         } else
5833           ArgVal = SDValue();
5834 
5835         if (ArgVal.getNode())
5836           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5837       } else {
5838         if (CallConv == CallingConv::Fast)
5839           ComputePtrOff();
5840 
5841         // Single-precision floating-point values are mapped to the
5842         // second (rightmost) word of the stack doubleword.
5843         if (Arg.getValueType() == MVT::f32 &&
5844             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5845           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5846           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5847         }
5848 
5849         assert(HasParameterArea &&
5850                "Parameter area must exist to pass an argument in memory.");
5851         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5852                          true, isTailCall, false, MemOpChains,
5853                          TailCallArguments, dl);
5854 
5855         NeededLoad = true;
5856       }
5857       // When passing an array of floats, the array occupies consecutive
5858       // space in the argument area; only round up to the next doubleword
5859       // at the end of the array.  Otherwise, each float takes 8 bytes.
5860       if (CallConv != CallingConv::Fast || NeededLoad) {
5861         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5862                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5863         if (Flags.isInConsecutiveRegsLast())
5864           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5865       }
5866       break;
5867     }
5868     case MVT::v4f32:
5869     case MVT::v4i32:
5870     case MVT::v8i16:
5871     case MVT::v16i8:
5872     case MVT::v2f64:
5873     case MVT::v2i64:
5874     case MVT::v1i128:
5875       if (!Subtarget.hasQPX()) {
5876       // These can be scalar arguments or elements of a vector array type
5877       // passed directly.  The latter are used to implement ELFv2 homogenous
5878       // vector aggregates.
5879 
5880       // For a varargs call, named arguments go into VRs or on the stack as
5881       // usual; unnamed arguments always go to the stack or the corresponding
5882       // GPRs when within range.  For now, we always put the value in both
5883       // locations (or even all three).
5884       if (isVarArg) {
5885         assert(HasParameterArea &&
5886                "Parameter area must exist if we have a varargs call.");
5887         // We could elide this store in the case where the object fits
5888         // entirely in R registers.  Maybe later.
5889         SDValue Store =
5890             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5891         MemOpChains.push_back(Store);
5892         if (VR_idx != NumVRs) {
5893           SDValue Load =
5894               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
5895           MemOpChains.push_back(Load.getValue(1));
5896           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5897         }
5898         ArgOffset += 16;
5899         for (unsigned i=0; i<16; i+=PtrByteSize) {
5900           if (GPR_idx == NumGPRs)
5901             break;
5902           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5903                                    DAG.getConstant(i, dl, PtrVT));
5904           SDValue Load =
5905               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5906           MemOpChains.push_back(Load.getValue(1));
5907           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5908         }
5909         break;
5910       }
5911 
5912       // Non-varargs Altivec params go into VRs or on the stack.
5913       if (VR_idx != NumVRs) {
5914         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5915       } else {
5916         if (CallConv == CallingConv::Fast)
5917           ComputePtrOff();
5918 
5919         assert(HasParameterArea &&
5920                "Parameter area must exist to pass an argument in memory.");
5921         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5922                          true, isTailCall, true, MemOpChains,
5923                          TailCallArguments, dl);
5924         if (CallConv == CallingConv::Fast)
5925           ArgOffset += 16;
5926       }
5927 
5928       if (CallConv != CallingConv::Fast)
5929         ArgOffset += 16;
5930       break;
5931       } // not QPX
5932 
5933       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5934              "Invalid QPX parameter type");
5935 
5936       /* fall through */
5937     case MVT::v4f64:
5938     case MVT::v4i1: {
5939       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5940       if (isVarArg) {
5941         assert(HasParameterArea &&
5942                "Parameter area must exist if we have a varargs call.");
5943         // We could elide this store in the case where the object fits
5944         // entirely in R registers.  Maybe later.
5945         SDValue Store =
5946             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5947         MemOpChains.push_back(Store);
5948         if (QFPR_idx != NumQFPRs) {
5949           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
5950                                      PtrOff, MachinePointerInfo());
5951           MemOpChains.push_back(Load.getValue(1));
5952           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5953         }
5954         ArgOffset += (IsF32 ? 16 : 32);
5955         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5956           if (GPR_idx == NumGPRs)
5957             break;
5958           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5959                                    DAG.getConstant(i, dl, PtrVT));
5960           SDValue Load =
5961               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5962           MemOpChains.push_back(Load.getValue(1));
5963           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5964         }
5965         break;
5966       }
5967 
5968       // Non-varargs QPX params go into registers or on the stack.
5969       if (QFPR_idx != NumQFPRs) {
5970         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5971       } else {
5972         if (CallConv == CallingConv::Fast)
5973           ComputePtrOff();
5974 
5975         assert(HasParameterArea &&
5976                "Parameter area must exist to pass an argument in memory.");
5977         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5978                          true, isTailCall, true, MemOpChains,
5979                          TailCallArguments, dl);
5980         if (CallConv == CallingConv::Fast)
5981           ArgOffset += (IsF32 ? 16 : 32);
5982       }
5983 
5984       if (CallConv != CallingConv::Fast)
5985         ArgOffset += (IsF32 ? 16 : 32);
5986       break;
5987       }
5988     }
5989   }
5990 
5991   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
5992          "mismatch in size of parameter area");
5993   (void)NumBytesActuallyUsed;
5994 
5995   if (!MemOpChains.empty())
5996     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5997 
5998   // Check if this is an indirect call (MTCTR/BCTRL).
5999   // See PrepareCall() for more information about calls through function
6000   // pointers in the 64-bit SVR4 ABI.
6001   if (!isTailCall && !isPatchPoint &&
6002       !isFunctionGlobalAddress(Callee) &&
6003       !isa<ExternalSymbolSDNode>(Callee)) {
6004     // Load r2 into a virtual register and store it to the TOC save area.
6005     setUsesTOCBasePtr(DAG);
6006     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6007     // TOC save area offset.
6008     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6009     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6010     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6011     Chain = DAG.getStore(
6012         Val.getValue(1), dl, Val, AddPtr,
6013         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6014     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6015     // This does not mean the MTCTR instruction must use R12; it's easier
6016     // to model this as an extra parameter, so do that.
6017     if (isELFv2ABI && !isPatchPoint)
6018       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6019   }
6020 
6021   // Build a sequence of copy-to-reg nodes chained together with token chain
6022   // and flag operands which copy the outgoing args into the appropriate regs.
6023   SDValue InFlag;
6024   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6025     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6026                              RegsToPass[i].second, InFlag);
6027     InFlag = Chain.getValue(1);
6028   }
6029 
6030   if (isTailCall && !IsSibCall)
6031     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6032                     TailCallArguments);
6033 
6034   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6035                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6036                     SPDiff, NumBytes, Ins, InVals, CS);
6037 }
6038 
6039 SDValue PPCTargetLowering::LowerCall_Darwin(
6040     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6041     bool isTailCall, bool isPatchPoint,
6042     const SmallVectorImpl<ISD::OutputArg> &Outs,
6043     const SmallVectorImpl<SDValue> &OutVals,
6044     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6045     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6046     ImmutableCallSite CS) const {
6047   unsigned NumOps = Outs.size();
6048 
6049   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6050   bool isPPC64 = PtrVT == MVT::i64;
6051   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6052 
6053   MachineFunction &MF = DAG.getMachineFunction();
6054 
6055   // Mark this function as potentially containing a function that contains a
6056   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6057   // and restoring the callers stack pointer in this functions epilog. This is
6058   // done because by tail calling the called function might overwrite the value
6059   // in this function's (MF) stack pointer stack slot 0(SP).
6060   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6061       CallConv == CallingConv::Fast)
6062     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6063 
6064   // Count how many bytes are to be pushed on the stack, including the linkage
6065   // area, and parameter passing area.  We start with 24/48 bytes, which is
6066   // prereserved space for [SP][CR][LR][3 x unused].
6067   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6068   unsigned NumBytes = LinkageSize;
6069 
6070   // Add up all the space actually used.
6071   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6072   // they all go in registers, but we must reserve stack space for them for
6073   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6074   // assigned stack space in order, with padding so Altivec parameters are
6075   // 16-byte aligned.
6076   unsigned nAltivecParamsAtEnd = 0;
6077   for (unsigned i = 0; i != NumOps; ++i) {
6078     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6079     EVT ArgVT = Outs[i].VT;
6080     // Varargs Altivec parameters are padded to a 16 byte boundary.
6081     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6082         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6083         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6084       if (!isVarArg && !isPPC64) {
6085         // Non-varargs Altivec parameters go after all the non-Altivec
6086         // parameters; handle those later so we know how much padding we need.
6087         nAltivecParamsAtEnd++;
6088         continue;
6089       }
6090       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6091       NumBytes = ((NumBytes+15)/16)*16;
6092     }
6093     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6094   }
6095 
6096   // Allow for Altivec parameters at the end, if needed.
6097   if (nAltivecParamsAtEnd) {
6098     NumBytes = ((NumBytes+15)/16)*16;
6099     NumBytes += 16*nAltivecParamsAtEnd;
6100   }
6101 
6102   // The prolog code of the callee may store up to 8 GPR argument registers to
6103   // the stack, allowing va_start to index over them in memory if its varargs.
6104   // Because we cannot tell if this is needed on the caller side, we have to
6105   // conservatively assume that it is needed.  As such, make sure we have at
6106   // least enough stack space for the caller to store the 8 GPRs.
6107   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6108 
6109   // Tail call needs the stack to be aligned.
6110   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6111       CallConv == CallingConv::Fast)
6112     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6113 
6114   // Calculate by how many bytes the stack has to be adjusted in case of tail
6115   // call optimization.
6116   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6117 
6118   // To protect arguments on the stack from being clobbered in a tail call,
6119   // force all the loads to happen before doing any other lowering.
6120   if (isTailCall)
6121     Chain = DAG.getStackArgumentTokenFactor(Chain);
6122 
6123   // Adjust the stack pointer for the new arguments...
6124   // These operations are automatically eliminated by the prolog/epilog pass
6125   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6126   SDValue CallSeqStart = Chain;
6127 
6128   // Load the return address and frame pointer so it can be move somewhere else
6129   // later.
6130   SDValue LROp, FPOp;
6131   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6132 
6133   // Set up a copy of the stack pointer for use loading and storing any
6134   // arguments that may not fit in the registers available for argument
6135   // passing.
6136   SDValue StackPtr;
6137   if (isPPC64)
6138     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6139   else
6140     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6141 
6142   // Figure out which arguments are going to go in registers, and which in
6143   // memory.  Also, if this is a vararg function, floating point operations
6144   // must be stored to our stack, and loaded into integer regs as well, if
6145   // any integer regs are available for argument passing.
6146   unsigned ArgOffset = LinkageSize;
6147   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6148 
6149   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6150     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6151     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6152   };
6153   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6154     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6155     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6156   };
6157   static const MCPhysReg VR[] = {
6158     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6159     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6160   };
6161   const unsigned NumGPRs = array_lengthof(GPR_32);
6162   const unsigned NumFPRs = 13;
6163   const unsigned NumVRs  = array_lengthof(VR);
6164 
6165   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6166 
6167   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6168   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6169 
6170   SmallVector<SDValue, 8> MemOpChains;
6171   for (unsigned i = 0; i != NumOps; ++i) {
6172     SDValue Arg = OutVals[i];
6173     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6174 
6175     // PtrOff will be used to store the current argument to the stack if a
6176     // register cannot be found for it.
6177     SDValue PtrOff;
6178 
6179     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6180 
6181     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6182 
6183     // On PPC64, promote integers to 64-bit values.
6184     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6185       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6186       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6187       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6188     }
6189 
6190     // FIXME memcpy is used way more than necessary.  Correctness first.
6191     // Note: "by value" is code for passing a structure by value, not
6192     // basic types.
6193     if (Flags.isByVal()) {
6194       unsigned Size = Flags.getByValSize();
6195       // Very small objects are passed right-justified.  Everything else is
6196       // passed left-justified.
6197       if (Size==1 || Size==2) {
6198         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6199         if (GPR_idx != NumGPRs) {
6200           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6201                                         MachinePointerInfo(), VT);
6202           MemOpChains.push_back(Load.getValue(1));
6203           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6204 
6205           ArgOffset += PtrByteSize;
6206         } else {
6207           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6208                                           PtrOff.getValueType());
6209           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6210           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6211                                                             CallSeqStart,
6212                                                             Flags, DAG, dl);
6213           ArgOffset += PtrByteSize;
6214         }
6215         continue;
6216       }
6217       // Copy entire object into memory.  There are cases where gcc-generated
6218       // code assumes it is there, even if it could be put entirely into
6219       // registers.  (This is not what the doc says.)
6220       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6221                                                         CallSeqStart,
6222                                                         Flags, DAG, dl);
6223 
6224       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6225       // copy the pieces of the object that fit into registers from the
6226       // parameter save area.
6227       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6228         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6229         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6230         if (GPR_idx != NumGPRs) {
6231           SDValue Load =
6232               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6233           MemOpChains.push_back(Load.getValue(1));
6234           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6235           ArgOffset += PtrByteSize;
6236         } else {
6237           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6238           break;
6239         }
6240       }
6241       continue;
6242     }
6243 
6244     switch (Arg.getSimpleValueType().SimpleTy) {
6245     default: llvm_unreachable("Unexpected ValueType for argument!");
6246     case MVT::i1:
6247     case MVT::i32:
6248     case MVT::i64:
6249       if (GPR_idx != NumGPRs) {
6250         if (Arg.getValueType() == MVT::i1)
6251           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6252 
6253         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6254       } else {
6255         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6256                          isPPC64, isTailCall, false, MemOpChains,
6257                          TailCallArguments, dl);
6258       }
6259       ArgOffset += PtrByteSize;
6260       break;
6261     case MVT::f32:
6262     case MVT::f64:
6263       if (FPR_idx != NumFPRs) {
6264         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6265 
6266         if (isVarArg) {
6267           SDValue Store =
6268               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6269           MemOpChains.push_back(Store);
6270 
6271           // Float varargs are always shadowed in available integer registers
6272           if (GPR_idx != NumGPRs) {
6273             SDValue Load =
6274                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6275             MemOpChains.push_back(Load.getValue(1));
6276             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6277           }
6278           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6279             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6280             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6281             SDValue Load =
6282                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6283             MemOpChains.push_back(Load.getValue(1));
6284             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6285           }
6286         } else {
6287           // If we have any FPRs remaining, we may also have GPRs remaining.
6288           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6289           // GPRs.
6290           if (GPR_idx != NumGPRs)
6291             ++GPR_idx;
6292           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6293               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6294             ++GPR_idx;
6295         }
6296       } else
6297         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6298                          isPPC64, isTailCall, false, MemOpChains,
6299                          TailCallArguments, dl);
6300       if (isPPC64)
6301         ArgOffset += 8;
6302       else
6303         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6304       break;
6305     case MVT::v4f32:
6306     case MVT::v4i32:
6307     case MVT::v8i16:
6308     case MVT::v16i8:
6309       if (isVarArg) {
6310         // These go aligned on the stack, or in the corresponding R registers
6311         // when within range.  The Darwin PPC ABI doc claims they also go in
6312         // V registers; in fact gcc does this only for arguments that are
6313         // prototyped, not for those that match the ...  We do it for all
6314         // arguments, seems to work.
6315         while (ArgOffset % 16 !=0) {
6316           ArgOffset += PtrByteSize;
6317           if (GPR_idx != NumGPRs)
6318             GPR_idx++;
6319         }
6320         // We could elide this store in the case where the object fits
6321         // entirely in R registers.  Maybe later.
6322         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6323                              DAG.getConstant(ArgOffset, dl, PtrVT));
6324         SDValue Store =
6325             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6326         MemOpChains.push_back(Store);
6327         if (VR_idx != NumVRs) {
6328           SDValue Load =
6329               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6330           MemOpChains.push_back(Load.getValue(1));
6331           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6332         }
6333         ArgOffset += 16;
6334         for (unsigned i=0; i<16; i+=PtrByteSize) {
6335           if (GPR_idx == NumGPRs)
6336             break;
6337           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6338                                    DAG.getConstant(i, dl, PtrVT));
6339           SDValue Load =
6340               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6341           MemOpChains.push_back(Load.getValue(1));
6342           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6343         }
6344         break;
6345       }
6346 
6347       // Non-varargs Altivec params generally go in registers, but have
6348       // stack space allocated at the end.
6349       if (VR_idx != NumVRs) {
6350         // Doesn't have GPR space allocated.
6351         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6352       } else if (nAltivecParamsAtEnd==0) {
6353         // We are emitting Altivec params in order.
6354         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6355                          isPPC64, isTailCall, true, MemOpChains,
6356                          TailCallArguments, dl);
6357         ArgOffset += 16;
6358       }
6359       break;
6360     }
6361   }
6362   // If all Altivec parameters fit in registers, as they usually do,
6363   // they get stack space following the non-Altivec parameters.  We
6364   // don't track this here because nobody below needs it.
6365   // If there are more Altivec parameters than fit in registers emit
6366   // the stores here.
6367   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6368     unsigned j = 0;
6369     // Offset is aligned; skip 1st 12 params which go in V registers.
6370     ArgOffset = ((ArgOffset+15)/16)*16;
6371     ArgOffset += 12*16;
6372     for (unsigned i = 0; i != NumOps; ++i) {
6373       SDValue Arg = OutVals[i];
6374       EVT ArgType = Outs[i].VT;
6375       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6376           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6377         if (++j > NumVRs) {
6378           SDValue PtrOff;
6379           // We are emitting Altivec params in order.
6380           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6381                            isPPC64, isTailCall, true, MemOpChains,
6382                            TailCallArguments, dl);
6383           ArgOffset += 16;
6384         }
6385       }
6386     }
6387   }
6388 
6389   if (!MemOpChains.empty())
6390     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6391 
6392   // On Darwin, R12 must contain the address of an indirect callee.  This does
6393   // not mean the MTCTR instruction must use R12; it's easier to model this as
6394   // an extra parameter, so do that.
6395   if (!isTailCall &&
6396       !isFunctionGlobalAddress(Callee) &&
6397       !isa<ExternalSymbolSDNode>(Callee) &&
6398       !isBLACompatibleAddress(Callee, DAG))
6399     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6400                                                    PPC::R12), Callee));
6401 
6402   // Build a sequence of copy-to-reg nodes chained together with token chain
6403   // and flag operands which copy the outgoing args into the appropriate regs.
6404   SDValue InFlag;
6405   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6406     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6407                              RegsToPass[i].second, InFlag);
6408     InFlag = Chain.getValue(1);
6409   }
6410 
6411   if (isTailCall)
6412     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6413                     TailCallArguments);
6414 
6415   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6416                     /* unused except on PPC64 ELFv1 */ false, DAG,
6417                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6418                     NumBytes, Ins, InVals, CS);
6419 }
6420 
6421 bool
6422 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6423                                   MachineFunction &MF, bool isVarArg,
6424                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6425                                   LLVMContext &Context) const {
6426   SmallVector<CCValAssign, 16> RVLocs;
6427   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6428   return CCInfo.CheckReturn(
6429       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6430                 ? RetCC_PPC_Cold
6431                 : RetCC_PPC);
6432 }
6433 
6434 SDValue
6435 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6436                                bool isVarArg,
6437                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6438                                const SmallVectorImpl<SDValue> &OutVals,
6439                                const SDLoc &dl, SelectionDAG &DAG) const {
6440   SmallVector<CCValAssign, 16> RVLocs;
6441   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6442                  *DAG.getContext());
6443   CCInfo.AnalyzeReturn(Outs,
6444                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6445                            ? RetCC_PPC_Cold
6446                            : RetCC_PPC);
6447 
6448   SDValue Flag;
6449   SmallVector<SDValue, 4> RetOps(1, Chain);
6450 
6451   // Copy the result values into the output registers.
6452   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6453     CCValAssign &VA = RVLocs[i];
6454     assert(VA.isRegLoc() && "Can only return in registers!");
6455 
6456     SDValue Arg = OutVals[i];
6457 
6458     switch (VA.getLocInfo()) {
6459     default: llvm_unreachable("Unknown loc info!");
6460     case CCValAssign::Full: break;
6461     case CCValAssign::AExt:
6462       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6463       break;
6464     case CCValAssign::ZExt:
6465       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6466       break;
6467     case CCValAssign::SExt:
6468       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6469       break;
6470     }
6471 
6472     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6473     Flag = Chain.getValue(1);
6474     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6475   }
6476 
6477   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6478   const MCPhysReg *I =
6479     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6480   if (I) {
6481     for (; *I; ++I) {
6482 
6483       if (PPC::G8RCRegClass.contains(*I))
6484         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6485       else if (PPC::F8RCRegClass.contains(*I))
6486         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6487       else if (PPC::CRRCRegClass.contains(*I))
6488         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6489       else if (PPC::VRRCRegClass.contains(*I))
6490         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6491       else
6492         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6493     }
6494   }
6495 
6496   RetOps[0] = Chain;  // Update chain.
6497 
6498   // Add the flag if we have it.
6499   if (Flag.getNode())
6500     RetOps.push_back(Flag);
6501 
6502   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6503 }
6504 
6505 SDValue
6506 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6507                                                 SelectionDAG &DAG) const {
6508   SDLoc dl(Op);
6509 
6510   // Get the correct type for integers.
6511   EVT IntVT = Op.getValueType();
6512 
6513   // Get the inputs.
6514   SDValue Chain = Op.getOperand(0);
6515   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6516   // Build a DYNAREAOFFSET node.
6517   SDValue Ops[2] = {Chain, FPSIdx};
6518   SDVTList VTs = DAG.getVTList(IntVT);
6519   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6520 }
6521 
6522 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6523                                              SelectionDAG &DAG) const {
6524   // When we pop the dynamic allocation we need to restore the SP link.
6525   SDLoc dl(Op);
6526 
6527   // Get the correct type for pointers.
6528   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6529 
6530   // Construct the stack pointer operand.
6531   bool isPPC64 = Subtarget.isPPC64();
6532   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6533   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6534 
6535   // Get the operands for the STACKRESTORE.
6536   SDValue Chain = Op.getOperand(0);
6537   SDValue SaveSP = Op.getOperand(1);
6538 
6539   // Load the old link SP.
6540   SDValue LoadLinkSP =
6541       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6542 
6543   // Restore the stack pointer.
6544   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6545 
6546   // Store the old link SP.
6547   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6548 }
6549 
6550 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6551   MachineFunction &MF = DAG.getMachineFunction();
6552   bool isPPC64 = Subtarget.isPPC64();
6553   EVT PtrVT = getPointerTy(MF.getDataLayout());
6554 
6555   // Get current frame pointer save index.  The users of this index will be
6556   // primarily DYNALLOC instructions.
6557   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6558   int RASI = FI->getReturnAddrSaveIndex();
6559 
6560   // If the frame pointer save index hasn't been defined yet.
6561   if (!RASI) {
6562     // Find out what the fix offset of the frame pointer save area.
6563     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6564     // Allocate the frame index for frame pointer save area.
6565     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6566     // Save the result.
6567     FI->setReturnAddrSaveIndex(RASI);
6568   }
6569   return DAG.getFrameIndex(RASI, PtrVT);
6570 }
6571 
6572 SDValue
6573 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6574   MachineFunction &MF = DAG.getMachineFunction();
6575   bool isPPC64 = Subtarget.isPPC64();
6576   EVT PtrVT = getPointerTy(MF.getDataLayout());
6577 
6578   // Get current frame pointer save index.  The users of this index will be
6579   // primarily DYNALLOC instructions.
6580   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6581   int FPSI = FI->getFramePointerSaveIndex();
6582 
6583   // If the frame pointer save index hasn't been defined yet.
6584   if (!FPSI) {
6585     // Find out what the fix offset of the frame pointer save area.
6586     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6587     // Allocate the frame index for frame pointer save area.
6588     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6589     // Save the result.
6590     FI->setFramePointerSaveIndex(FPSI);
6591   }
6592   return DAG.getFrameIndex(FPSI, PtrVT);
6593 }
6594 
6595 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6596                                                    SelectionDAG &DAG) const {
6597   // Get the inputs.
6598   SDValue Chain = Op.getOperand(0);
6599   SDValue Size  = Op.getOperand(1);
6600   SDLoc dl(Op);
6601 
6602   // Get the correct type for pointers.
6603   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6604   // Negate the size.
6605   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6606                                 DAG.getConstant(0, dl, PtrVT), Size);
6607   // Construct a node for the frame pointer save index.
6608   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6609   // Build a DYNALLOC node.
6610   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6611   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6612   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6613 }
6614 
6615 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6616                                                      SelectionDAG &DAG) const {
6617   MachineFunction &MF = DAG.getMachineFunction();
6618 
6619   bool isPPC64 = Subtarget.isPPC64();
6620   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6621 
6622   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6623   return DAG.getFrameIndex(FI, PtrVT);
6624 }
6625 
6626 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6627                                                SelectionDAG &DAG) const {
6628   SDLoc DL(Op);
6629   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6630                      DAG.getVTList(MVT::i32, MVT::Other),
6631                      Op.getOperand(0), Op.getOperand(1));
6632 }
6633 
6634 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6635                                                 SelectionDAG &DAG) const {
6636   SDLoc DL(Op);
6637   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6638                      Op.getOperand(0), Op.getOperand(1));
6639 }
6640 
6641 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6642   if (Op.getValueType().isVector())
6643     return LowerVectorLoad(Op, DAG);
6644 
6645   assert(Op.getValueType() == MVT::i1 &&
6646          "Custom lowering only for i1 loads");
6647 
6648   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6649 
6650   SDLoc dl(Op);
6651   LoadSDNode *LD = cast<LoadSDNode>(Op);
6652 
6653   SDValue Chain = LD->getChain();
6654   SDValue BasePtr = LD->getBasePtr();
6655   MachineMemOperand *MMO = LD->getMemOperand();
6656 
6657   SDValue NewLD =
6658       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6659                      BasePtr, MVT::i8, MMO);
6660   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6661 
6662   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6663   return DAG.getMergeValues(Ops, dl);
6664 }
6665 
6666 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6667   if (Op.getOperand(1).getValueType().isVector())
6668     return LowerVectorStore(Op, DAG);
6669 
6670   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6671          "Custom lowering only for i1 stores");
6672 
6673   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6674 
6675   SDLoc dl(Op);
6676   StoreSDNode *ST = cast<StoreSDNode>(Op);
6677 
6678   SDValue Chain = ST->getChain();
6679   SDValue BasePtr = ST->getBasePtr();
6680   SDValue Value = ST->getValue();
6681   MachineMemOperand *MMO = ST->getMemOperand();
6682 
6683   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6684                       Value);
6685   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6686 }
6687 
6688 // FIXME: Remove this once the ANDI glue bug is fixed:
6689 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6690   assert(Op.getValueType() == MVT::i1 &&
6691          "Custom lowering only for i1 results");
6692 
6693   SDLoc DL(Op);
6694   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6695                      Op.getOperand(0));
6696 }
6697 
6698 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6699 /// possible.
6700 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6701   // Not FP? Not a fsel.
6702   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6703       !Op.getOperand(2).getValueType().isFloatingPoint())
6704     return Op;
6705 
6706   // We might be able to do better than this under some circumstances, but in
6707   // general, fsel-based lowering of select is a finite-math-only optimization.
6708   // For more information, see section F.3 of the 2.06 ISA specification.
6709   if (!DAG.getTarget().Options.NoInfsFPMath ||
6710       !DAG.getTarget().Options.NoNaNsFPMath)
6711     return Op;
6712   // TODO: Propagate flags from the select rather than global settings.
6713   SDNodeFlags Flags;
6714   Flags.setNoInfs(true);
6715   Flags.setNoNaNs(true);
6716 
6717   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6718 
6719   EVT ResVT = Op.getValueType();
6720   EVT CmpVT = Op.getOperand(0).getValueType();
6721   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6722   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6723   SDLoc dl(Op);
6724 
6725   // If the RHS of the comparison is a 0.0, we don't need to do the
6726   // subtraction at all.
6727   SDValue Sel1;
6728   if (isFloatingPointZero(RHS))
6729     switch (CC) {
6730     default: break;       // SETUO etc aren't handled by fsel.
6731     case ISD::SETNE:
6732       std::swap(TV, FV);
6733       LLVM_FALLTHROUGH;
6734     case ISD::SETEQ:
6735       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6736         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6737       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6738       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6739         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6740       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6741                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6742     case ISD::SETULT:
6743     case ISD::SETLT:
6744       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6745       LLVM_FALLTHROUGH;
6746     case ISD::SETOGE:
6747     case ISD::SETGE:
6748       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6749         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6750       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6751     case ISD::SETUGT:
6752     case ISD::SETGT:
6753       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6754       LLVM_FALLTHROUGH;
6755     case ISD::SETOLE:
6756     case ISD::SETLE:
6757       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6758         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6759       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6760                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6761     }
6762 
6763   SDValue Cmp;
6764   switch (CC) {
6765   default: break;       // SETUO etc aren't handled by fsel.
6766   case ISD::SETNE:
6767     std::swap(TV, FV);
6768     LLVM_FALLTHROUGH;
6769   case ISD::SETEQ:
6770     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6771     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6772       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6773     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6774     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6775       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6776     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6777                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6778   case ISD::SETULT:
6779   case ISD::SETLT:
6780     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6781     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6782       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6783     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6784   case ISD::SETOGE:
6785   case ISD::SETGE:
6786     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6787     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6788       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6789     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6790   case ISD::SETUGT:
6791   case ISD::SETGT:
6792     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6793     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6794       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6795     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6796   case ISD::SETOLE:
6797   case ISD::SETLE:
6798     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6799     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6800       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6801     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6802   }
6803   return Op;
6804 }
6805 
6806 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6807                                                SelectionDAG &DAG,
6808                                                const SDLoc &dl) const {
6809   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6810   SDValue Src = Op.getOperand(0);
6811   if (Src.getValueType() == MVT::f32)
6812     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6813 
6814   SDValue Tmp;
6815   switch (Op.getSimpleValueType().SimpleTy) {
6816   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6817   case MVT::i32:
6818     Tmp = DAG.getNode(
6819         Op.getOpcode() == ISD::FP_TO_SINT
6820             ? PPCISD::FCTIWZ
6821             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6822         dl, MVT::f64, Src);
6823     break;
6824   case MVT::i64:
6825     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6826            "i64 FP_TO_UINT is supported only with FPCVT");
6827     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6828                                                         PPCISD::FCTIDUZ,
6829                       dl, MVT::f64, Src);
6830     break;
6831   }
6832 
6833   // Convert the FP value to an int value through memory.
6834   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6835     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6836   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6837   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6838   MachinePointerInfo MPI =
6839       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6840 
6841   // Emit a store to the stack slot.
6842   SDValue Chain;
6843   if (i32Stack) {
6844     MachineFunction &MF = DAG.getMachineFunction();
6845     MachineMemOperand *MMO =
6846       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6847     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6848     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6849               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6850   } else
6851     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
6852 
6853   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6854   // add in a bias on big endian.
6855   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6856     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6857                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6858     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6859   }
6860 
6861   RLI.Chain = Chain;
6862   RLI.Ptr = FIPtr;
6863   RLI.MPI = MPI;
6864 }
6865 
6866 /// \brief Custom lowers floating point to integer conversions to use
6867 /// the direct move instructions available in ISA 2.07 to avoid the
6868 /// need for load/store combinations.
6869 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6870                                                     SelectionDAG &DAG,
6871                                                     const SDLoc &dl) const {
6872   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6873   SDValue Src = Op.getOperand(0);
6874 
6875   if (Src.getValueType() == MVT::f32)
6876     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6877 
6878   SDValue Tmp;
6879   switch (Op.getSimpleValueType().SimpleTy) {
6880   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6881   case MVT::i32:
6882     Tmp = DAG.getNode(
6883         Op.getOpcode() == ISD::FP_TO_SINT
6884             ? PPCISD::FCTIWZ
6885             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6886         dl, MVT::f64, Src);
6887     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6888     break;
6889   case MVT::i64:
6890     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6891            "i64 FP_TO_UINT is supported only with FPCVT");
6892     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6893                                                         PPCISD::FCTIDUZ,
6894                       dl, MVT::f64, Src);
6895     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6896     break;
6897   }
6898   return Tmp;
6899 }
6900 
6901 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6902                                           const SDLoc &dl) const {
6903   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6904     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6905 
6906   ReuseLoadInfo RLI;
6907   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6908 
6909   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
6910                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
6911 }
6912 
6913 // We're trying to insert a regular store, S, and then a load, L. If the
6914 // incoming value, O, is a load, we might just be able to have our load use the
6915 // address used by O. However, we don't know if anything else will store to
6916 // that address before we can load from it. To prevent this situation, we need
6917 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6918 // the same chain operand as O, we create a token factor from the chain results
6919 // of O and L, and we replace all uses of O's chain result with that token
6920 // factor (see spliceIntoChain below for this last part).
6921 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6922                                             ReuseLoadInfo &RLI,
6923                                             SelectionDAG &DAG,
6924                                             ISD::LoadExtType ET) const {
6925   SDLoc dl(Op);
6926   if (ET == ISD::NON_EXTLOAD &&
6927       (Op.getOpcode() == ISD::FP_TO_UINT ||
6928        Op.getOpcode() == ISD::FP_TO_SINT) &&
6929       isOperationLegalOrCustom(Op.getOpcode(),
6930                                Op.getOperand(0).getValueType())) {
6931 
6932     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6933     return true;
6934   }
6935 
6936   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6937   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6938       LD->isNonTemporal())
6939     return false;
6940   if (LD->getMemoryVT() != MemVT)
6941     return false;
6942 
6943   RLI.Ptr = LD->getBasePtr();
6944   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
6945     assert(LD->getAddressingMode() == ISD::PRE_INC &&
6946            "Non-pre-inc AM on PPC?");
6947     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6948                           LD->getOffset());
6949   }
6950 
6951   RLI.Chain = LD->getChain();
6952   RLI.MPI = LD->getPointerInfo();
6953   RLI.IsDereferenceable = LD->isDereferenceable();
6954   RLI.IsInvariant = LD->isInvariant();
6955   RLI.Alignment = LD->getAlignment();
6956   RLI.AAInfo = LD->getAAInfo();
6957   RLI.Ranges = LD->getRanges();
6958 
6959   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6960   return true;
6961 }
6962 
6963 // Given the head of the old chain, ResChain, insert a token factor containing
6964 // it and NewResChain, and make users of ResChain now be users of that token
6965 // factor.
6966 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
6967 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6968                                         SDValue NewResChain,
6969                                         SelectionDAG &DAG) const {
6970   if (!ResChain)
6971     return;
6972 
6973   SDLoc dl(NewResChain);
6974 
6975   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6976                            NewResChain, DAG.getUNDEF(MVT::Other));
6977   assert(TF.getNode() != NewResChain.getNode() &&
6978          "A new TF really is required here");
6979 
6980   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6981   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6982 }
6983 
6984 /// \brief Analyze profitability of direct move
6985 /// prefer float load to int load plus direct move
6986 /// when there is no integer use of int load
6987 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
6988   SDNode *Origin = Op.getOperand(0).getNode();
6989   if (Origin->getOpcode() != ISD::LOAD)
6990     return true;
6991 
6992   // If there is no LXSIBZX/LXSIHZX, like Power8,
6993   // prefer direct move if the memory size is 1 or 2 bytes.
6994   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
6995   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
6996     return true;
6997 
6998   for (SDNode::use_iterator UI = Origin->use_begin(),
6999                             UE = Origin->use_end();
7000        UI != UE; ++UI) {
7001 
7002     // Only look at the users of the loaded value.
7003     if (UI.getUse().get().getResNo() != 0)
7004       continue;
7005 
7006     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7007         UI->getOpcode() != ISD::UINT_TO_FP)
7008       return true;
7009   }
7010 
7011   return false;
7012 }
7013 
7014 /// \brief Custom lowers integer to floating point conversions to use
7015 /// the direct move instructions available in ISA 2.07 to avoid the
7016 /// need for load/store combinations.
7017 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7018                                                     SelectionDAG &DAG,
7019                                                     const SDLoc &dl) const {
7020   assert((Op.getValueType() == MVT::f32 ||
7021           Op.getValueType() == MVT::f64) &&
7022          "Invalid floating point type as target of conversion");
7023   assert(Subtarget.hasFPCVT() &&
7024          "Int to FP conversions with direct moves require FPCVT");
7025   SDValue FP;
7026   SDValue Src = Op.getOperand(0);
7027   bool SinglePrec = Op.getValueType() == MVT::f32;
7028   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7029   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7030   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7031                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7032 
7033   if (WordInt) {
7034     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7035                      dl, MVT::f64, Src);
7036     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7037   }
7038   else {
7039     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7040     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7041   }
7042 
7043   return FP;
7044 }
7045 
7046 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7047                                           SelectionDAG &DAG) const {
7048   SDLoc dl(Op);
7049 
7050   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7051     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7052       return SDValue();
7053 
7054     SDValue Value = Op.getOperand(0);
7055     // The values are now known to be -1 (false) or 1 (true). To convert this
7056     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7057     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7058     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7059 
7060     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7061 
7062     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7063 
7064     if (Op.getValueType() != MVT::v4f64)
7065       Value = DAG.getNode(ISD::FP_ROUND, dl,
7066                           Op.getValueType(), Value,
7067                           DAG.getIntPtrConstant(1, dl));
7068     return Value;
7069   }
7070 
7071   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7072   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7073     return SDValue();
7074 
7075   if (Op.getOperand(0).getValueType() == MVT::i1)
7076     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7077                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7078                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7079 
7080   // If we have direct moves, we can do all the conversion, skip the store/load
7081   // however, without FPCVT we can't do most conversions.
7082   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7083       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7084     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7085 
7086   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7087          "UINT_TO_FP is supported only with FPCVT");
7088 
7089   // If we have FCFIDS, then use it when converting to single-precision.
7090   // Otherwise, convert to double-precision and then round.
7091   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7092                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7093                                                             : PPCISD::FCFIDS)
7094                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7095                                                             : PPCISD::FCFID);
7096   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7097                   ? MVT::f32
7098                   : MVT::f64;
7099 
7100   if (Op.getOperand(0).getValueType() == MVT::i64) {
7101     SDValue SINT = Op.getOperand(0);
7102     // When converting to single-precision, we actually need to convert
7103     // to double-precision first and then round to single-precision.
7104     // To avoid double-rounding effects during that operation, we have
7105     // to prepare the input operand.  Bits that might be truncated when
7106     // converting to double-precision are replaced by a bit that won't
7107     // be lost at this stage, but is below the single-precision rounding
7108     // position.
7109     //
7110     // However, if -enable-unsafe-fp-math is in effect, accept double
7111     // rounding to avoid the extra overhead.
7112     if (Op.getValueType() == MVT::f32 &&
7113         !Subtarget.hasFPCVT() &&
7114         !DAG.getTarget().Options.UnsafeFPMath) {
7115 
7116       // Twiddle input to make sure the low 11 bits are zero.  (If this
7117       // is the case, we are guaranteed the value will fit into the 53 bit
7118       // mantissa of an IEEE double-precision value without rounding.)
7119       // If any of those low 11 bits were not zero originally, make sure
7120       // bit 12 (value 2048) is set instead, so that the final rounding
7121       // to single-precision gets the correct result.
7122       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7123                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7124       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7125                           Round, DAG.getConstant(2047, dl, MVT::i64));
7126       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7127       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7128                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7129 
7130       // However, we cannot use that value unconditionally: if the magnitude
7131       // of the input value is small, the bit-twiddling we did above might
7132       // end up visibly changing the output.  Fortunately, in that case, we
7133       // don't need to twiddle bits since the original input will convert
7134       // exactly to double-precision floating-point already.  Therefore,
7135       // construct a conditional to use the original value if the top 11
7136       // bits are all sign-bit copies, and use the rounded value computed
7137       // above otherwise.
7138       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7139                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7140       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7141                          Cond, DAG.getConstant(1, dl, MVT::i64));
7142       Cond = DAG.getSetCC(dl, MVT::i32,
7143                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7144 
7145       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7146     }
7147 
7148     ReuseLoadInfo RLI;
7149     SDValue Bits;
7150 
7151     MachineFunction &MF = DAG.getMachineFunction();
7152     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7153       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7154                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7155       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7156     } else if (Subtarget.hasLFIWAX() &&
7157                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7158       MachineMemOperand *MMO =
7159         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7160                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7161       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7162       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7163                                      DAG.getVTList(MVT::f64, MVT::Other),
7164                                      Ops, MVT::i32, MMO);
7165       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7166     } else if (Subtarget.hasFPCVT() &&
7167                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7168       MachineMemOperand *MMO =
7169         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7170                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7171       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7172       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7173                                      DAG.getVTList(MVT::f64, MVT::Other),
7174                                      Ops, MVT::i32, MMO);
7175       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7176     } else if (((Subtarget.hasLFIWAX() &&
7177                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7178                 (Subtarget.hasFPCVT() &&
7179                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7180                SINT.getOperand(0).getValueType() == MVT::i32) {
7181       MachineFrameInfo &MFI = MF.getFrameInfo();
7182       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7183 
7184       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7185       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7186 
7187       SDValue Store =
7188           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7189                        MachinePointerInfo::getFixedStack(
7190                            DAG.getMachineFunction(), FrameIdx));
7191 
7192       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7193              "Expected an i32 store");
7194 
7195       RLI.Ptr = FIdx;
7196       RLI.Chain = Store;
7197       RLI.MPI =
7198           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7199       RLI.Alignment = 4;
7200 
7201       MachineMemOperand *MMO =
7202         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7203                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7204       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7205       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7206                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7207                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7208                                      Ops, MVT::i32, MMO);
7209     } else
7210       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7211 
7212     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7213 
7214     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7215       FP = DAG.getNode(ISD::FP_ROUND, dl,
7216                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7217     return FP;
7218   }
7219 
7220   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7221          "Unhandled INT_TO_FP type in custom expander!");
7222   // Since we only generate this in 64-bit mode, we can take advantage of
7223   // 64-bit registers.  In particular, sign extend the input value into the
7224   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7225   // then lfd it and fcfid it.
7226   MachineFunction &MF = DAG.getMachineFunction();
7227   MachineFrameInfo &MFI = MF.getFrameInfo();
7228   EVT PtrVT = getPointerTy(MF.getDataLayout());
7229 
7230   SDValue Ld;
7231   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7232     ReuseLoadInfo RLI;
7233     bool ReusingLoad;
7234     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7235                                             DAG))) {
7236       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7237       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7238 
7239       SDValue Store =
7240           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7241                        MachinePointerInfo::getFixedStack(
7242                            DAG.getMachineFunction(), FrameIdx));
7243 
7244       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7245              "Expected an i32 store");
7246 
7247       RLI.Ptr = FIdx;
7248       RLI.Chain = Store;
7249       RLI.MPI =
7250           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7251       RLI.Alignment = 4;
7252     }
7253 
7254     MachineMemOperand *MMO =
7255       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7256                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7257     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7258     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7259                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7260                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7261                                  Ops, MVT::i32, MMO);
7262     if (ReusingLoad)
7263       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7264   } else {
7265     assert(Subtarget.isPPC64() &&
7266            "i32->FP without LFIWAX supported only on PPC64");
7267 
7268     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7269     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7270 
7271     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7272                                 Op.getOperand(0));
7273 
7274     // STD the extended value into the stack slot.
7275     SDValue Store = DAG.getStore(
7276         DAG.getEntryNode(), dl, Ext64, FIdx,
7277         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7278 
7279     // Load the value as a double.
7280     Ld = DAG.getLoad(
7281         MVT::f64, dl, Store, FIdx,
7282         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7283   }
7284 
7285   // FCFID it and return it.
7286   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7287   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7288     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7289                      DAG.getIntPtrConstant(0, dl));
7290   return FP;
7291 }
7292 
7293 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7294                                             SelectionDAG &DAG) const {
7295   SDLoc dl(Op);
7296   /*
7297    The rounding mode is in bits 30:31 of FPSR, and has the following
7298    settings:
7299      00 Round to nearest
7300      01 Round to 0
7301      10 Round to +inf
7302      11 Round to -inf
7303 
7304   FLT_ROUNDS, on the other hand, expects the following:
7305     -1 Undefined
7306      0 Round to 0
7307      1 Round to nearest
7308      2 Round to +inf
7309      3 Round to -inf
7310 
7311   To perform the conversion, we do:
7312     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7313   */
7314 
7315   MachineFunction &MF = DAG.getMachineFunction();
7316   EVT VT = Op.getValueType();
7317   EVT PtrVT = getPointerTy(MF.getDataLayout());
7318 
7319   // Save FP Control Word to register
7320   EVT NodeTys[] = {
7321     MVT::f64,    // return register
7322     MVT::Glue    // unused in this context
7323   };
7324   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7325 
7326   // Save FP register to stack slot
7327   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7328   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7329   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7330                                MachinePointerInfo());
7331 
7332   // Load FP Control Word from low 32 bits of stack slot.
7333   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7334   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7335   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7336 
7337   // Transform as necessary
7338   SDValue CWD1 =
7339     DAG.getNode(ISD::AND, dl, MVT::i32,
7340                 CWD, DAG.getConstant(3, dl, MVT::i32));
7341   SDValue CWD2 =
7342     DAG.getNode(ISD::SRL, dl, MVT::i32,
7343                 DAG.getNode(ISD::AND, dl, MVT::i32,
7344                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7345                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7346                             DAG.getConstant(3, dl, MVT::i32)),
7347                 DAG.getConstant(1, dl, MVT::i32));
7348 
7349   SDValue RetVal =
7350     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7351 
7352   return DAG.getNode((VT.getSizeInBits() < 16 ?
7353                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7354 }
7355 
7356 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7357   EVT VT = Op.getValueType();
7358   unsigned BitWidth = VT.getSizeInBits();
7359   SDLoc dl(Op);
7360   assert(Op.getNumOperands() == 3 &&
7361          VT == Op.getOperand(1).getValueType() &&
7362          "Unexpected SHL!");
7363 
7364   // Expand into a bunch of logical ops.  Note that these ops
7365   // depend on the PPC behavior for oversized shift amounts.
7366   SDValue Lo = Op.getOperand(0);
7367   SDValue Hi = Op.getOperand(1);
7368   SDValue Amt = Op.getOperand(2);
7369   EVT AmtVT = Amt.getValueType();
7370 
7371   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7372                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7373   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7374   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7375   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7376   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7377                              DAG.getConstant(-BitWidth, dl, AmtVT));
7378   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7379   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7380   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7381   SDValue OutOps[] = { OutLo, OutHi };
7382   return DAG.getMergeValues(OutOps, dl);
7383 }
7384 
7385 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7386   EVT VT = Op.getValueType();
7387   SDLoc dl(Op);
7388   unsigned BitWidth = VT.getSizeInBits();
7389   assert(Op.getNumOperands() == 3 &&
7390          VT == Op.getOperand(1).getValueType() &&
7391          "Unexpected SRL!");
7392 
7393   // Expand into a bunch of logical ops.  Note that these ops
7394   // depend on the PPC behavior for oversized shift amounts.
7395   SDValue Lo = Op.getOperand(0);
7396   SDValue Hi = Op.getOperand(1);
7397   SDValue Amt = Op.getOperand(2);
7398   EVT AmtVT = Amt.getValueType();
7399 
7400   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7401                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7402   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7403   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7404   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7405   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7406                              DAG.getConstant(-BitWidth, dl, AmtVT));
7407   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7408   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7409   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7410   SDValue OutOps[] = { OutLo, OutHi };
7411   return DAG.getMergeValues(OutOps, dl);
7412 }
7413 
7414 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7415   SDLoc dl(Op);
7416   EVT VT = Op.getValueType();
7417   unsigned BitWidth = VT.getSizeInBits();
7418   assert(Op.getNumOperands() == 3 &&
7419          VT == Op.getOperand(1).getValueType() &&
7420          "Unexpected SRA!");
7421 
7422   // Expand into a bunch of logical ops, followed by a select_cc.
7423   SDValue Lo = Op.getOperand(0);
7424   SDValue Hi = Op.getOperand(1);
7425   SDValue Amt = Op.getOperand(2);
7426   EVT AmtVT = Amt.getValueType();
7427 
7428   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7429                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7430   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7431   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7432   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7433   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7434                              DAG.getConstant(-BitWidth, dl, AmtVT));
7435   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7436   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7437   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7438                                   Tmp4, Tmp6, ISD::SETLE);
7439   SDValue OutOps[] = { OutLo, OutHi };
7440   return DAG.getMergeValues(OutOps, dl);
7441 }
7442 
7443 //===----------------------------------------------------------------------===//
7444 // Vector related lowering.
7445 //
7446 
7447 /// BuildSplatI - Build a canonical splati of Val with an element size of
7448 /// SplatSize.  Cast the result to VT.
7449 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7450                            SelectionDAG &DAG, const SDLoc &dl) {
7451   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7452 
7453   static const MVT VTys[] = { // canonical VT to use for each size.
7454     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7455   };
7456 
7457   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7458 
7459   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7460   if (Val == -1)
7461     SplatSize = 1;
7462 
7463   EVT CanonicalVT = VTys[SplatSize-1];
7464 
7465   // Build a canonical splat for this value.
7466   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7467 }
7468 
7469 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7470 /// specified intrinsic ID.
7471 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7472                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7473   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7474   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7475                      DAG.getConstant(IID, dl, MVT::i32), Op);
7476 }
7477 
7478 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7479 /// specified intrinsic ID.
7480 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7481                                 SelectionDAG &DAG, const SDLoc &dl,
7482                                 EVT DestVT = MVT::Other) {
7483   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7484   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7485                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7486 }
7487 
7488 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7489 /// specified intrinsic ID.
7490 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7491                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7492                                 EVT DestVT = MVT::Other) {
7493   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7494   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7495                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7496 }
7497 
7498 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7499 /// amount.  The result has the specified value type.
7500 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7501                            SelectionDAG &DAG, const SDLoc &dl) {
7502   // Force LHS/RHS to be the right type.
7503   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7504   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7505 
7506   int Ops[16];
7507   for (unsigned i = 0; i != 16; ++i)
7508     Ops[i] = i + Amt;
7509   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7510   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7511 }
7512 
7513 /// Do we have an efficient pattern in a .td file for this node?
7514 ///
7515 /// \param V - pointer to the BuildVectorSDNode being matched
7516 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7517 ///
7518 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7519 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7520 /// the opposite is true (expansion is beneficial) are:
7521 /// - The node builds a vector out of integers that are not 32 or 64-bits
7522 /// - The node builds a vector out of constants
7523 /// - The node is a "load-and-splat"
7524 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7525 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7526                                             bool HasDirectMove,
7527                                             bool HasP8Vector) {
7528   EVT VecVT = V->getValueType(0);
7529   bool RightType = VecVT == MVT::v2f64 ||
7530     (HasP8Vector && VecVT == MVT::v4f32) ||
7531     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7532   if (!RightType)
7533     return false;
7534 
7535   bool IsSplat = true;
7536   bool IsLoad = false;
7537   SDValue Op0 = V->getOperand(0);
7538 
7539   // This function is called in a block that confirms the node is not a constant
7540   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7541   // different constants.
7542   if (V->isConstant())
7543     return false;
7544   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7545     if (V->getOperand(i).isUndef())
7546       return false;
7547     // We want to expand nodes that represent load-and-splat even if the
7548     // loaded value is a floating point truncation or conversion to int.
7549     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7550         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7551          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7552         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7553          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7554         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7555          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7556       IsLoad = true;
7557     // If the operands are different or the input is not a load and has more
7558     // uses than just this BV node, then it isn't a splat.
7559     if (V->getOperand(i) != Op0 ||
7560         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7561       IsSplat = false;
7562   }
7563   return !(IsSplat && IsLoad);
7564 }
7565 
7566 // If this is a case we can't handle, return null and let the default
7567 // expansion code take care of it.  If we CAN select this case, and if it
7568 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7569 // this case more efficiently than a constant pool load, lower it to the
7570 // sequence of ops that should be used.
7571 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7572                                              SelectionDAG &DAG) const {
7573   SDLoc dl(Op);
7574   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7575   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7576 
7577   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7578     // We first build an i32 vector, load it into a QPX register,
7579     // then convert it to a floating-point vector and compare it
7580     // to a zero vector to get the boolean result.
7581     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7582     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7583     MachinePointerInfo PtrInfo =
7584         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7585     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7586     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7587 
7588     assert(BVN->getNumOperands() == 4 &&
7589       "BUILD_VECTOR for v4i1 does not have 4 operands");
7590 
7591     bool IsConst = true;
7592     for (unsigned i = 0; i < 4; ++i) {
7593       if (BVN->getOperand(i).isUndef()) continue;
7594       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7595         IsConst = false;
7596         break;
7597       }
7598     }
7599 
7600     if (IsConst) {
7601       Constant *One =
7602         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7603       Constant *NegOne =
7604         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7605 
7606       Constant *CV[4];
7607       for (unsigned i = 0; i < 4; ++i) {
7608         if (BVN->getOperand(i).isUndef())
7609           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7610         else if (isNullConstant(BVN->getOperand(i)))
7611           CV[i] = NegOne;
7612         else
7613           CV[i] = One;
7614       }
7615 
7616       Constant *CP = ConstantVector::get(CV);
7617       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7618                                           16 /* alignment */);
7619 
7620       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7621       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7622       return DAG.getMemIntrinsicNode(
7623           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7624           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7625     }
7626 
7627     SmallVector<SDValue, 4> Stores;
7628     for (unsigned i = 0; i < 4; ++i) {
7629       if (BVN->getOperand(i).isUndef()) continue;
7630 
7631       unsigned Offset = 4*i;
7632       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7633       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7634 
7635       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7636       if (StoreSize > 4) {
7637         Stores.push_back(
7638             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7639                               PtrInfo.getWithOffset(Offset), MVT::i32));
7640       } else {
7641         SDValue StoreValue = BVN->getOperand(i);
7642         if (StoreSize < 4)
7643           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7644 
7645         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7646                                       PtrInfo.getWithOffset(Offset)));
7647       }
7648     }
7649 
7650     SDValue StoreChain;
7651     if (!Stores.empty())
7652       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7653     else
7654       StoreChain = DAG.getEntryNode();
7655 
7656     // Now load from v4i32 into the QPX register; this will extend it to
7657     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7658     // is typed as v4f64 because the QPX register integer states are not
7659     // explicitly represented.
7660 
7661     SDValue Ops[] = {StoreChain,
7662                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7663                      FIdx};
7664     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7665 
7666     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7667       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7668     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7669       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7670       LoadedVect);
7671 
7672     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7673 
7674     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7675   }
7676 
7677   // All other QPX vectors are handled by generic code.
7678   if (Subtarget.hasQPX())
7679     return SDValue();
7680 
7681   // Check if this is a splat of a constant value.
7682   APInt APSplatBits, APSplatUndef;
7683   unsigned SplatBitSize;
7684   bool HasAnyUndefs;
7685   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7686                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7687       SplatBitSize > 32) {
7688     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
7689     // lowered to VSX instructions under certain conditions.
7690     // Without VSX, there is no pattern more efficient than expanding the node.
7691     if (Subtarget.hasVSX() &&
7692         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
7693                                         Subtarget.hasP8Vector()))
7694       return Op;
7695     return SDValue();
7696   }
7697 
7698   unsigned SplatBits = APSplatBits.getZExtValue();
7699   unsigned SplatUndef = APSplatUndef.getZExtValue();
7700   unsigned SplatSize = SplatBitSize / 8;
7701 
7702   // First, handle single instruction cases.
7703 
7704   // All zeros?
7705   if (SplatBits == 0) {
7706     // Canonicalize all zero vectors to be v4i32.
7707     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7708       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7709       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7710     }
7711     return Op;
7712   }
7713 
7714   // We have XXSPLTIB for constant splats one byte wide
7715   if (Subtarget.hasP9Vector() && SplatSize == 1) {
7716     // This is a splat of 1-byte elements with some elements potentially undef.
7717     // Rather than trying to match undef in the SDAG patterns, ensure that all
7718     // elements are the same constant.
7719     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
7720       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
7721                                                        dl, MVT::i32));
7722       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
7723       if (Op.getValueType() != MVT::v16i8)
7724         return DAG.getBitcast(Op.getValueType(), NewBV);
7725       return NewBV;
7726     }
7727 
7728     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
7729     // detect that constant splats like v8i16: 0xABAB are really just splats
7730     // of a 1-byte constant. In this case, we need to convert the node to a
7731     // splat of v16i8 and a bitcast.
7732     if (Op.getValueType() != MVT::v16i8)
7733       return DAG.getBitcast(Op.getValueType(),
7734                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
7735 
7736     return Op;
7737   }
7738 
7739   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7740   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7741                     (32-SplatBitSize));
7742   if (SextVal >= -16 && SextVal <= 15)
7743     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7744 
7745   // Two instruction sequences.
7746 
7747   // If this value is in the range [-32,30] and is even, use:
7748   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7749   // If this value is in the range [17,31] and is odd, use:
7750   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7751   // If this value is in the range [-31,-17] and is odd, use:
7752   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7753   // Note the last two are three-instruction sequences.
7754   if (SextVal >= -32 && SextVal <= 31) {
7755     // To avoid having these optimizations undone by constant folding,
7756     // we convert to a pseudo that will be expanded later into one of
7757     // the above forms.
7758     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7759     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7760               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7761     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7762     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7763     if (VT == Op.getValueType())
7764       return RetVal;
7765     else
7766       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7767   }
7768 
7769   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
7770   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
7771   // for fneg/fabs.
7772   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7773     // Make -1 and vspltisw -1:
7774     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7775 
7776     // Make the VSLW intrinsic, computing 0x8000_0000.
7777     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7778                                    OnesV, DAG, dl);
7779 
7780     // xor by OnesV to invert it.
7781     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7782     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7783   }
7784 
7785   // Check to see if this is a wide variety of vsplti*, binop self cases.
7786   static const signed char SplatCsts[] = {
7787     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7788     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7789   };
7790 
7791   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7792     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7793     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
7794     int i = SplatCsts[idx];
7795 
7796     // Figure out what shift amount will be used by altivec if shifted by i in
7797     // this splat size.
7798     unsigned TypeShiftAmt = i & (SplatBitSize-1);
7799 
7800     // vsplti + shl self.
7801     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7802       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7803       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7804         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7805         Intrinsic::ppc_altivec_vslw
7806       };
7807       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7808       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7809     }
7810 
7811     // vsplti + srl self.
7812     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7813       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7814       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7815         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7816         Intrinsic::ppc_altivec_vsrw
7817       };
7818       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7819       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7820     }
7821 
7822     // vsplti + sra self.
7823     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7824       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7825       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7826         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7827         Intrinsic::ppc_altivec_vsraw
7828       };
7829       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7830       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7831     }
7832 
7833     // vsplti + rol self.
7834     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7835                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7836       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7837       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7838         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7839         Intrinsic::ppc_altivec_vrlw
7840       };
7841       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7842       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7843     }
7844 
7845     // t = vsplti c, result = vsldoi t, t, 1
7846     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7847       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7848       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7849       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7850     }
7851     // t = vsplti c, result = vsldoi t, t, 2
7852     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7853       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7854       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7855       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7856     }
7857     // t = vsplti c, result = vsldoi t, t, 3
7858     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7859       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7860       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7861       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7862     }
7863   }
7864 
7865   return SDValue();
7866 }
7867 
7868 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7869 /// the specified operations to build the shuffle.
7870 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7871                                       SDValue RHS, SelectionDAG &DAG,
7872                                       const SDLoc &dl) {
7873   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7874   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7875   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7876 
7877   enum {
7878     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7879     OP_VMRGHW,
7880     OP_VMRGLW,
7881     OP_VSPLTISW0,
7882     OP_VSPLTISW1,
7883     OP_VSPLTISW2,
7884     OP_VSPLTISW3,
7885     OP_VSLDOI4,
7886     OP_VSLDOI8,
7887     OP_VSLDOI12
7888   };
7889 
7890   if (OpNum == OP_COPY) {
7891     if (LHSID == (1*9+2)*9+3) return LHS;
7892     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7893     return RHS;
7894   }
7895 
7896   SDValue OpLHS, OpRHS;
7897   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7898   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7899 
7900   int ShufIdxs[16];
7901   switch (OpNum) {
7902   default: llvm_unreachable("Unknown i32 permute!");
7903   case OP_VMRGHW:
7904     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7905     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7906     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7907     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7908     break;
7909   case OP_VMRGLW:
7910     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7911     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7912     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7913     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7914     break;
7915   case OP_VSPLTISW0:
7916     for (unsigned i = 0; i != 16; ++i)
7917       ShufIdxs[i] = (i&3)+0;
7918     break;
7919   case OP_VSPLTISW1:
7920     for (unsigned i = 0; i != 16; ++i)
7921       ShufIdxs[i] = (i&3)+4;
7922     break;
7923   case OP_VSPLTISW2:
7924     for (unsigned i = 0; i != 16; ++i)
7925       ShufIdxs[i] = (i&3)+8;
7926     break;
7927   case OP_VSPLTISW3:
7928     for (unsigned i = 0; i != 16; ++i)
7929       ShufIdxs[i] = (i&3)+12;
7930     break;
7931   case OP_VSLDOI4:
7932     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7933   case OP_VSLDOI8:
7934     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7935   case OP_VSLDOI12:
7936     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7937   }
7938   EVT VT = OpLHS.getValueType();
7939   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7940   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7941   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7942   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7943 }
7944 
7945 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
7946 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
7947 /// SDValue.
7948 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
7949                                            SelectionDAG &DAG) const {
7950   const unsigned BytesInVector = 16;
7951   bool IsLE = Subtarget.isLittleEndian();
7952   SDLoc dl(N);
7953   SDValue V1 = N->getOperand(0);
7954   SDValue V2 = N->getOperand(1);
7955   unsigned ShiftElts = 0, InsertAtByte = 0;
7956   bool Swap = false;
7957 
7958   // Shifts required to get the byte we want at element 7.
7959   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
7960                                    0, 15, 14, 13, 12, 11, 10, 9};
7961   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
7962                                 1, 2,  3,  4,  5,  6,  7,  8};
7963 
7964   ArrayRef<int> Mask = N->getMask();
7965   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
7966 
7967   // For each mask element, find out if we're just inserting something
7968   // from V2 into V1 or vice versa.
7969   // Possible permutations inserting an element from V2 into V1:
7970   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
7971   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
7972   //   ...
7973   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
7974   // Inserting from V1 into V2 will be similar, except mask range will be
7975   // [16,31].
7976 
7977   bool FoundCandidate = false;
7978   // If both vector operands for the shuffle are the same vector, the mask
7979   // will contain only elements from the first one and the second one will be
7980   // undef.
7981   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
7982   // Go through the mask of half-words to find an element that's being moved
7983   // from one vector to the other.
7984   for (unsigned i = 0; i < BytesInVector; ++i) {
7985     unsigned CurrentElement = Mask[i];
7986     // If 2nd operand is undefined, we should only look for element 7 in the
7987     // Mask.
7988     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
7989       continue;
7990 
7991     bool OtherElementsInOrder = true;
7992     // Examine the other elements in the Mask to see if they're in original
7993     // order.
7994     for (unsigned j = 0; j < BytesInVector; ++j) {
7995       if (j == i)
7996         continue;
7997       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
7998       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
7999       // in which we always assume we're always picking from the 1st operand.
8000       int MaskOffset =
8001           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8002       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8003         OtherElementsInOrder = false;
8004         break;
8005       }
8006     }
8007     // If other elements are in original order, we record the number of shifts
8008     // we need to get the element we want into element 7. Also record which byte
8009     // in the vector we should insert into.
8010     if (OtherElementsInOrder) {
8011       // If 2nd operand is undefined, we assume no shifts and no swapping.
8012       if (V2.isUndef()) {
8013         ShiftElts = 0;
8014         Swap = false;
8015       } else {
8016         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8017         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8018                          : BigEndianShifts[CurrentElement & 0xF];
8019         Swap = CurrentElement < BytesInVector;
8020       }
8021       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8022       FoundCandidate = true;
8023       break;
8024     }
8025   }
8026 
8027   if (!FoundCandidate)
8028     return SDValue();
8029 
8030   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8031   // optionally with VECSHL if shift is required.
8032   if (Swap)
8033     std::swap(V1, V2);
8034   if (V2.isUndef())
8035     V2 = V1;
8036   if (ShiftElts) {
8037     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8038                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8039     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8040                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8041   }
8042   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8043                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8044 }
8045 
8046 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8047 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8048 /// SDValue.
8049 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8050                                            SelectionDAG &DAG) const {
8051   const unsigned NumHalfWords = 8;
8052   const unsigned BytesInVector = NumHalfWords * 2;
8053   // Check that the shuffle is on half-words.
8054   if (!isNByteElemShuffleMask(N, 2, 1))
8055     return SDValue();
8056 
8057   bool IsLE = Subtarget.isLittleEndian();
8058   SDLoc dl(N);
8059   SDValue V1 = N->getOperand(0);
8060   SDValue V2 = N->getOperand(1);
8061   unsigned ShiftElts = 0, InsertAtByte = 0;
8062   bool Swap = false;
8063 
8064   // Shifts required to get the half-word we want at element 3.
8065   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8066   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8067 
8068   uint32_t Mask = 0;
8069   uint32_t OriginalOrderLow = 0x1234567;
8070   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8071   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8072   // 32-bit space, only need 4-bit nibbles per element.
8073   for (unsigned i = 0; i < NumHalfWords; ++i) {
8074     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8075     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8076   }
8077 
8078   // For each mask element, find out if we're just inserting something
8079   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8080   // from V2 into V1:
8081   //   X, 1, 2, 3, 4, 5, 6, 7
8082   //   0, X, 2, 3, 4, 5, 6, 7
8083   //   0, 1, X, 3, 4, 5, 6, 7
8084   //   0, 1, 2, X, 4, 5, 6, 7
8085   //   0, 1, 2, 3, X, 5, 6, 7
8086   //   0, 1, 2, 3, 4, X, 6, 7
8087   //   0, 1, 2, 3, 4, 5, X, 7
8088   //   0, 1, 2, 3, 4, 5, 6, X
8089   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8090 
8091   bool FoundCandidate = false;
8092   // Go through the mask of half-words to find an element that's being moved
8093   // from one vector to the other.
8094   for (unsigned i = 0; i < NumHalfWords; ++i) {
8095     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8096     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8097     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8098     uint32_t TargetOrder = 0x0;
8099 
8100     // If both vector operands for the shuffle are the same vector, the mask
8101     // will contain only elements from the first one and the second one will be
8102     // undef.
8103     if (V2.isUndef()) {
8104       ShiftElts = 0;
8105       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8106       TargetOrder = OriginalOrderLow;
8107       Swap = false;
8108       // Skip if not the correct element or mask of other elements don't equal
8109       // to our expected order.
8110       if (MaskOneElt == VINSERTHSrcElem &&
8111           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8112         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8113         FoundCandidate = true;
8114         break;
8115       }
8116     } else { // If both operands are defined.
8117       // Target order is [8,15] if the current mask is between [0,7].
8118       TargetOrder =
8119           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8120       // Skip if mask of other elements don't equal our expected order.
8121       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8122         // We only need the last 3 bits for the number of shifts.
8123         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8124                          : BigEndianShifts[MaskOneElt & 0x7];
8125         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8126         Swap = MaskOneElt < NumHalfWords;
8127         FoundCandidate = true;
8128         break;
8129       }
8130     }
8131   }
8132 
8133   if (!FoundCandidate)
8134     return SDValue();
8135 
8136   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8137   // optionally with VECSHL if shift is required.
8138   if (Swap)
8139     std::swap(V1, V2);
8140   if (V2.isUndef())
8141     V2 = V1;
8142   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8143   if (ShiftElts) {
8144     // Double ShiftElts because we're left shifting on v16i8 type.
8145     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8146                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8147     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8148     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8149                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8150     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8151   }
8152   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8153   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8154                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8155   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8156 }
8157 
8158 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8159 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8160 /// return the code it can be lowered into.  Worst case, it can always be
8161 /// lowered into a vperm.
8162 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8163                                                SelectionDAG &DAG) const {
8164   SDLoc dl(Op);
8165   SDValue V1 = Op.getOperand(0);
8166   SDValue V2 = Op.getOperand(1);
8167   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8168   EVT VT = Op.getValueType();
8169   bool isLittleEndian = Subtarget.isLittleEndian();
8170 
8171   unsigned ShiftElts, InsertAtByte;
8172   bool Swap = false;
8173   if (Subtarget.hasP9Vector() &&
8174       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8175                            isLittleEndian)) {
8176     if (Swap)
8177       std::swap(V1, V2);
8178     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8179     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8180     if (ShiftElts) {
8181       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8182                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8183       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8184                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8185       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8186     }
8187     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8188                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8189     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8190   }
8191 
8192   if (Subtarget.hasP9Altivec()) {
8193     SDValue NewISDNode;
8194     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8195       return NewISDNode;
8196 
8197     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8198       return NewISDNode;
8199   }
8200 
8201   if (Subtarget.hasVSX() &&
8202       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8203     if (Swap)
8204       std::swap(V1, V2);
8205     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8206     SDValue Conv2 =
8207         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8208 
8209     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8210                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8211     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8212   }
8213 
8214   if (Subtarget.hasVSX() &&
8215     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8216     if (Swap)
8217       std::swap(V1, V2);
8218     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8219     SDValue Conv2 =
8220         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8221 
8222     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8223                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8224     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8225   }
8226 
8227   if (Subtarget.hasP9Vector()) {
8228      if (PPC::isXXBRHShuffleMask(SVOp)) {
8229       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8230       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8231       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8232     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8233       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8234       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8235       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8236     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8237       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8238       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8239       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8240     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8241       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8242       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8243       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8244     }
8245   }
8246 
8247   if (Subtarget.hasVSX()) {
8248     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8249       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8250 
8251       // If the source for the shuffle is a scalar_to_vector that came from a
8252       // 32-bit load, it will have used LXVWSX so we don't need to splat again.
8253       if (Subtarget.hasP9Vector() &&
8254           ((isLittleEndian && SplatIdx == 3) ||
8255            (!isLittleEndian && SplatIdx == 0))) {
8256         SDValue Src = V1.getOperand(0);
8257         if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8258             Src.getOperand(0).getOpcode() == ISD::LOAD &&
8259             Src.getOperand(0).hasOneUse())
8260           return V1;
8261       }
8262       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8263       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8264                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8265       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8266     }
8267 
8268     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8269     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8270       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8271       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8272       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8273     }
8274   }
8275 
8276   if (Subtarget.hasQPX()) {
8277     if (VT.getVectorNumElements() != 4)
8278       return SDValue();
8279 
8280     if (V2.isUndef()) V2 = V1;
8281 
8282     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8283     if (AlignIdx != -1) {
8284       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8285                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8286     } else if (SVOp->isSplat()) {
8287       int SplatIdx = SVOp->getSplatIndex();
8288       if (SplatIdx >= 4) {
8289         std::swap(V1, V2);
8290         SplatIdx -= 4;
8291       }
8292 
8293       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8294                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8295     }
8296 
8297     // Lower this into a qvgpci/qvfperm pair.
8298 
8299     // Compute the qvgpci literal
8300     unsigned idx = 0;
8301     for (unsigned i = 0; i < 4; ++i) {
8302       int m = SVOp->getMaskElt(i);
8303       unsigned mm = m >= 0 ? (unsigned) m : i;
8304       idx |= mm << (3-i)*3;
8305     }
8306 
8307     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8308                              DAG.getConstant(idx, dl, MVT::i32));
8309     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8310   }
8311 
8312   // Cases that are handled by instructions that take permute immediates
8313   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8314   // selected by the instruction selector.
8315   if (V2.isUndef()) {
8316     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8317         PPC::isSplatShuffleMask(SVOp, 2) ||
8318         PPC::isSplatShuffleMask(SVOp, 4) ||
8319         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8320         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8321         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8322         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8323         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8324         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8325         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8326         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8327         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8328         (Subtarget.hasP8Altivec() && (
8329          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8330          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8331          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8332       return Op;
8333     }
8334   }
8335 
8336   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8337   // and produce a fixed permutation.  If any of these match, do not lower to
8338   // VPERM.
8339   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8340   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8341       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8342       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8343       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8344       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8345       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8346       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8347       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8348       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8349       (Subtarget.hasP8Altivec() && (
8350        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8351        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8352        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8353     return Op;
8354 
8355   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8356   // perfect shuffle table to emit an optimal matching sequence.
8357   ArrayRef<int> PermMask = SVOp->getMask();
8358 
8359   unsigned PFIndexes[4];
8360   bool isFourElementShuffle = true;
8361   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8362     unsigned EltNo = 8;   // Start out undef.
8363     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8364       if (PermMask[i*4+j] < 0)
8365         continue;   // Undef, ignore it.
8366 
8367       unsigned ByteSource = PermMask[i*4+j];
8368       if ((ByteSource & 3) != j) {
8369         isFourElementShuffle = false;
8370         break;
8371       }
8372 
8373       if (EltNo == 8) {
8374         EltNo = ByteSource/4;
8375       } else if (EltNo != ByteSource/4) {
8376         isFourElementShuffle = false;
8377         break;
8378       }
8379     }
8380     PFIndexes[i] = EltNo;
8381   }
8382 
8383   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8384   // perfect shuffle vector to determine if it is cost effective to do this as
8385   // discrete instructions, or whether we should use a vperm.
8386   // For now, we skip this for little endian until such time as we have a
8387   // little-endian perfect shuffle table.
8388   if (isFourElementShuffle && !isLittleEndian) {
8389     // Compute the index in the perfect shuffle table.
8390     unsigned PFTableIndex =
8391       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8392 
8393     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8394     unsigned Cost  = (PFEntry >> 30);
8395 
8396     // Determining when to avoid vperm is tricky.  Many things affect the cost
8397     // of vperm, particularly how many times the perm mask needs to be computed.
8398     // For example, if the perm mask can be hoisted out of a loop or is already
8399     // used (perhaps because there are multiple permutes with the same shuffle
8400     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8401     // the loop requires an extra register.
8402     //
8403     // As a compromise, we only emit discrete instructions if the shuffle can be
8404     // generated in 3 or fewer operations.  When we have loop information
8405     // available, if this block is within a loop, we should avoid using vperm
8406     // for 3-operation perms and use a constant pool load instead.
8407     if (Cost < 3)
8408       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8409   }
8410 
8411   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8412   // vector that will get spilled to the constant pool.
8413   if (V2.isUndef()) V2 = V1;
8414 
8415   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8416   // that it is in input element units, not in bytes.  Convert now.
8417 
8418   // For little endian, the order of the input vectors is reversed, and
8419   // the permutation mask is complemented with respect to 31.  This is
8420   // necessary to produce proper semantics with the big-endian-biased vperm
8421   // instruction.
8422   EVT EltVT = V1.getValueType().getVectorElementType();
8423   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8424 
8425   SmallVector<SDValue, 16> ResultMask;
8426   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8427     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8428 
8429     for (unsigned j = 0; j != BytesPerElement; ++j)
8430       if (isLittleEndian)
8431         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8432                                              dl, MVT::i32));
8433       else
8434         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8435                                              MVT::i32));
8436   }
8437 
8438   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8439   if (isLittleEndian)
8440     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8441                        V2, V1, VPermMask);
8442   else
8443     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8444                        V1, V2, VPermMask);
8445 }
8446 
8447 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8448 /// vector comparison.  If it is, return true and fill in Opc/isDot with
8449 /// information about the intrinsic.
8450 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8451                                  bool &isDot, const PPCSubtarget &Subtarget) {
8452   unsigned IntrinsicID =
8453       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8454   CompareOpc = -1;
8455   isDot = false;
8456   switch (IntrinsicID) {
8457   default:
8458     return false;
8459   // Comparison predicates.
8460   case Intrinsic::ppc_altivec_vcmpbfp_p:
8461     CompareOpc = 966;
8462     isDot = true;
8463     break;
8464   case Intrinsic::ppc_altivec_vcmpeqfp_p:
8465     CompareOpc = 198;
8466     isDot = true;
8467     break;
8468   case Intrinsic::ppc_altivec_vcmpequb_p:
8469     CompareOpc = 6;
8470     isDot = true;
8471     break;
8472   case Intrinsic::ppc_altivec_vcmpequh_p:
8473     CompareOpc = 70;
8474     isDot = true;
8475     break;
8476   case Intrinsic::ppc_altivec_vcmpequw_p:
8477     CompareOpc = 134;
8478     isDot = true;
8479     break;
8480   case Intrinsic::ppc_altivec_vcmpequd_p:
8481     if (Subtarget.hasP8Altivec()) {
8482       CompareOpc = 199;
8483       isDot = true;
8484     } else
8485       return false;
8486     break;
8487   case Intrinsic::ppc_altivec_vcmpneb_p:
8488   case Intrinsic::ppc_altivec_vcmpneh_p:
8489   case Intrinsic::ppc_altivec_vcmpnew_p:
8490   case Intrinsic::ppc_altivec_vcmpnezb_p:
8491   case Intrinsic::ppc_altivec_vcmpnezh_p:
8492   case Intrinsic::ppc_altivec_vcmpnezw_p:
8493     if (Subtarget.hasP9Altivec()) {
8494       switch (IntrinsicID) {
8495       default:
8496         llvm_unreachable("Unknown comparison intrinsic.");
8497       case Intrinsic::ppc_altivec_vcmpneb_p:
8498         CompareOpc = 7;
8499         break;
8500       case Intrinsic::ppc_altivec_vcmpneh_p:
8501         CompareOpc = 71;
8502         break;
8503       case Intrinsic::ppc_altivec_vcmpnew_p:
8504         CompareOpc = 135;
8505         break;
8506       case Intrinsic::ppc_altivec_vcmpnezb_p:
8507         CompareOpc = 263;
8508         break;
8509       case Intrinsic::ppc_altivec_vcmpnezh_p:
8510         CompareOpc = 327;
8511         break;
8512       case Intrinsic::ppc_altivec_vcmpnezw_p:
8513         CompareOpc = 391;
8514         break;
8515       }
8516       isDot = true;
8517     } else
8518       return false;
8519     break;
8520   case Intrinsic::ppc_altivec_vcmpgefp_p:
8521     CompareOpc = 454;
8522     isDot = true;
8523     break;
8524   case Intrinsic::ppc_altivec_vcmpgtfp_p:
8525     CompareOpc = 710;
8526     isDot = true;
8527     break;
8528   case Intrinsic::ppc_altivec_vcmpgtsb_p:
8529     CompareOpc = 774;
8530     isDot = true;
8531     break;
8532   case Intrinsic::ppc_altivec_vcmpgtsh_p:
8533     CompareOpc = 838;
8534     isDot = true;
8535     break;
8536   case Intrinsic::ppc_altivec_vcmpgtsw_p:
8537     CompareOpc = 902;
8538     isDot = true;
8539     break;
8540   case Intrinsic::ppc_altivec_vcmpgtsd_p:
8541     if (Subtarget.hasP8Altivec()) {
8542       CompareOpc = 967;
8543       isDot = true;
8544     } else
8545       return false;
8546     break;
8547   case Intrinsic::ppc_altivec_vcmpgtub_p:
8548     CompareOpc = 518;
8549     isDot = true;
8550     break;
8551   case Intrinsic::ppc_altivec_vcmpgtuh_p:
8552     CompareOpc = 582;
8553     isDot = true;
8554     break;
8555   case Intrinsic::ppc_altivec_vcmpgtuw_p:
8556     CompareOpc = 646;
8557     isDot = true;
8558     break;
8559   case Intrinsic::ppc_altivec_vcmpgtud_p:
8560     if (Subtarget.hasP8Altivec()) {
8561       CompareOpc = 711;
8562       isDot = true;
8563     } else
8564       return false;
8565     break;
8566 
8567   // VSX predicate comparisons use the same infrastructure
8568   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8569   case Intrinsic::ppc_vsx_xvcmpgedp_p:
8570   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8571   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8572   case Intrinsic::ppc_vsx_xvcmpgesp_p:
8573   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8574     if (Subtarget.hasVSX()) {
8575       switch (IntrinsicID) {
8576       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8577         CompareOpc = 99;
8578         break;
8579       case Intrinsic::ppc_vsx_xvcmpgedp_p:
8580         CompareOpc = 115;
8581         break;
8582       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8583         CompareOpc = 107;
8584         break;
8585       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8586         CompareOpc = 67;
8587         break;
8588       case Intrinsic::ppc_vsx_xvcmpgesp_p:
8589         CompareOpc = 83;
8590         break;
8591       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8592         CompareOpc = 75;
8593         break;
8594       }
8595       isDot = true;
8596     } else
8597       return false;
8598     break;
8599 
8600   // Normal Comparisons.
8601   case Intrinsic::ppc_altivec_vcmpbfp:
8602     CompareOpc = 966;
8603     break;
8604   case Intrinsic::ppc_altivec_vcmpeqfp:
8605     CompareOpc = 198;
8606     break;
8607   case Intrinsic::ppc_altivec_vcmpequb:
8608     CompareOpc = 6;
8609     break;
8610   case Intrinsic::ppc_altivec_vcmpequh:
8611     CompareOpc = 70;
8612     break;
8613   case Intrinsic::ppc_altivec_vcmpequw:
8614     CompareOpc = 134;
8615     break;
8616   case Intrinsic::ppc_altivec_vcmpequd:
8617     if (Subtarget.hasP8Altivec())
8618       CompareOpc = 199;
8619     else
8620       return false;
8621     break;
8622   case Intrinsic::ppc_altivec_vcmpneb:
8623   case Intrinsic::ppc_altivec_vcmpneh:
8624   case Intrinsic::ppc_altivec_vcmpnew:
8625   case Intrinsic::ppc_altivec_vcmpnezb:
8626   case Intrinsic::ppc_altivec_vcmpnezh:
8627   case Intrinsic::ppc_altivec_vcmpnezw:
8628     if (Subtarget.hasP9Altivec())
8629       switch (IntrinsicID) {
8630       default:
8631         llvm_unreachable("Unknown comparison intrinsic.");
8632       case Intrinsic::ppc_altivec_vcmpneb:
8633         CompareOpc = 7;
8634         break;
8635       case Intrinsic::ppc_altivec_vcmpneh:
8636         CompareOpc = 71;
8637         break;
8638       case Intrinsic::ppc_altivec_vcmpnew:
8639         CompareOpc = 135;
8640         break;
8641       case Intrinsic::ppc_altivec_vcmpnezb:
8642         CompareOpc = 263;
8643         break;
8644       case Intrinsic::ppc_altivec_vcmpnezh:
8645         CompareOpc = 327;
8646         break;
8647       case Intrinsic::ppc_altivec_vcmpnezw:
8648         CompareOpc = 391;
8649         break;
8650       }
8651     else
8652       return false;
8653     break;
8654   case Intrinsic::ppc_altivec_vcmpgefp:
8655     CompareOpc = 454;
8656     break;
8657   case Intrinsic::ppc_altivec_vcmpgtfp:
8658     CompareOpc = 710;
8659     break;
8660   case Intrinsic::ppc_altivec_vcmpgtsb:
8661     CompareOpc = 774;
8662     break;
8663   case Intrinsic::ppc_altivec_vcmpgtsh:
8664     CompareOpc = 838;
8665     break;
8666   case Intrinsic::ppc_altivec_vcmpgtsw:
8667     CompareOpc = 902;
8668     break;
8669   case Intrinsic::ppc_altivec_vcmpgtsd:
8670     if (Subtarget.hasP8Altivec())
8671       CompareOpc = 967;
8672     else
8673       return false;
8674     break;
8675   case Intrinsic::ppc_altivec_vcmpgtub:
8676     CompareOpc = 518;
8677     break;
8678   case Intrinsic::ppc_altivec_vcmpgtuh:
8679     CompareOpc = 582;
8680     break;
8681   case Intrinsic::ppc_altivec_vcmpgtuw:
8682     CompareOpc = 646;
8683     break;
8684   case Intrinsic::ppc_altivec_vcmpgtud:
8685     if (Subtarget.hasP8Altivec())
8686       CompareOpc = 711;
8687     else
8688       return false;
8689     break;
8690   }
8691   return true;
8692 }
8693 
8694 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8695 /// lower, do it, otherwise return null.
8696 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8697                                                    SelectionDAG &DAG) const {
8698   unsigned IntrinsicID =
8699     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8700 
8701   SDLoc dl(Op);
8702 
8703   if (IntrinsicID == Intrinsic::thread_pointer) {
8704     // Reads the thread pointer register, used for __builtin_thread_pointer.
8705     if (Subtarget.isPPC64())
8706       return DAG.getRegister(PPC::X13, MVT::i64);
8707     return DAG.getRegister(PPC::R2, MVT::i32);
8708   }
8709 
8710   // We are looking for absolute values here.
8711   // The idea is to try to fit one of two patterns:
8712   //  max (a, (0-a))  OR  max ((0-a), a)
8713   if (Subtarget.hasP9Vector() &&
8714       (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw ||
8715        IntrinsicID == Intrinsic::ppc_altivec_vmaxsh ||
8716        IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) {
8717     SDValue V1 = Op.getOperand(1);
8718     SDValue V2 = Op.getOperand(2);
8719     if (V1.getSimpleValueType() == V2.getSimpleValueType() &&
8720         (V1.getSimpleValueType() == MVT::v4i32 ||
8721          V1.getSimpleValueType() == MVT::v8i16 ||
8722          V1.getSimpleValueType() == MVT::v16i8)) {
8723       if ( V1.getOpcode() == ISD::SUB &&
8724            ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
8725            V1.getOperand(1) == V2 ) {
8726         // Generate the abs instruction with the operands
8727         return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2);
8728       }
8729 
8730       if ( V2.getOpcode() == ISD::SUB &&
8731            ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
8732            V2.getOperand(1) == V1 ) {
8733         // Generate the abs instruction with the operands
8734         return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1);
8735       }
8736     }
8737   }
8738 
8739   // If this is a lowered altivec predicate compare, CompareOpc is set to the
8740   // opcode number of the comparison.
8741   int CompareOpc;
8742   bool isDot;
8743   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
8744     return SDValue();    // Don't custom lower most intrinsics.
8745 
8746   // If this is a non-dot comparison, make the VCMP node and we are done.
8747   if (!isDot) {
8748     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
8749                               Op.getOperand(1), Op.getOperand(2),
8750                               DAG.getConstant(CompareOpc, dl, MVT::i32));
8751     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
8752   }
8753 
8754   // Create the PPCISD altivec 'dot' comparison node.
8755   SDValue Ops[] = {
8756     Op.getOperand(2),  // LHS
8757     Op.getOperand(3),  // RHS
8758     DAG.getConstant(CompareOpc, dl, MVT::i32)
8759   };
8760   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
8761   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
8762 
8763   // Now that we have the comparison, emit a copy from the CR to a GPR.
8764   // This is flagged to the above dot comparison.
8765   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
8766                                 DAG.getRegister(PPC::CR6, MVT::i32),
8767                                 CompNode.getValue(1));
8768 
8769   // Unpack the result based on how the target uses it.
8770   unsigned BitNo;   // Bit # of CR6.
8771   bool InvertBit;   // Invert result?
8772   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
8773   default:  // Can't happen, don't crash on invalid number though.
8774   case 0:   // Return the value of the EQ bit of CR6.
8775     BitNo = 0; InvertBit = false;
8776     break;
8777   case 1:   // Return the inverted value of the EQ bit of CR6.
8778     BitNo = 0; InvertBit = true;
8779     break;
8780   case 2:   // Return the value of the LT bit of CR6.
8781     BitNo = 2; InvertBit = false;
8782     break;
8783   case 3:   // Return the inverted value of the LT bit of CR6.
8784     BitNo = 2; InvertBit = true;
8785     break;
8786   }
8787 
8788   // Shift the bit into the low position.
8789   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
8790                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
8791   // Isolate the bit.
8792   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
8793                       DAG.getConstant(1, dl, MVT::i32));
8794 
8795   // If we are supposed to, toggle the bit.
8796   if (InvertBit)
8797     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
8798                         DAG.getConstant(1, dl, MVT::i32));
8799   return Flags;
8800 }
8801 
8802 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
8803                                                SelectionDAG &DAG) const {
8804   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
8805   // the beginning of the argument list.
8806   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
8807   SDLoc DL(Op);
8808   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
8809   case Intrinsic::ppc_cfence: {
8810     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
8811     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
8812     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
8813                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
8814                                                   Op.getOperand(ArgStart + 1)),
8815                                       Op.getOperand(0)),
8816                    0);
8817   }
8818   default:
8819     break;
8820   }
8821   return SDValue();
8822 }
8823 
8824 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
8825   // Check for a DIV with the same operands as this REM.
8826   for (auto UI : Op.getOperand(1)->uses()) {
8827     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
8828         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
8829       if (UI->getOperand(0) == Op.getOperand(0) &&
8830           UI->getOperand(1) == Op.getOperand(1))
8831         return SDValue();
8832   }
8833   return Op;
8834 }
8835 
8836 // Lower scalar BSWAP64 to xxbrd.
8837 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
8838   SDLoc dl(Op);
8839   // MTVSRDD
8840   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
8841                    Op.getOperand(0));
8842   // XXBRD
8843   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
8844   // MFVSRD
8845   int VectorIndex = 0;
8846   if (Subtarget.isLittleEndian())
8847     VectorIndex = 1;
8848   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
8849                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
8850   return Op;
8851 }
8852 
8853 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
8854 // compared to a value that is atomically loaded (atomic loads zero-extend).
8855 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
8856                                                 SelectionDAG &DAG) const {
8857   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
8858          "Expecting an atomic compare-and-swap here.");
8859   SDLoc dl(Op);
8860   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
8861   EVT MemVT = AtomicNode->getMemoryVT();
8862   if (MemVT.getSizeInBits() >= 32)
8863     return Op;
8864 
8865   SDValue CmpOp = Op.getOperand(2);
8866   // If this is already correctly zero-extended, leave it alone.
8867   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
8868   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
8869     return Op;
8870 
8871   // Clear the high bits of the compare operand.
8872   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
8873   SDValue NewCmpOp =
8874     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
8875                 DAG.getConstant(MaskVal, dl, MVT::i32));
8876 
8877   // Replace the existing compare operand with the properly zero-extended one.
8878   SmallVector<SDValue, 4> Ops;
8879   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
8880     Ops.push_back(AtomicNode->getOperand(i));
8881   Ops[2] = NewCmpOp;
8882   MachineMemOperand *MMO = AtomicNode->getMemOperand();
8883   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
8884   auto NodeTy =
8885     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
8886   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
8887 }
8888 
8889 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
8890                                                   SelectionDAG &DAG) const {
8891   SDLoc dl(Op);
8892   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
8893   // instructions), but for smaller types, we need to first extend up to v2i32
8894   // before doing going farther.
8895   if (Op.getValueType() == MVT::v2i64) {
8896     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
8897     if (ExtVT != MVT::v2i32) {
8898       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
8899       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
8900                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
8901                                         ExtVT.getVectorElementType(), 4)));
8902       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
8903       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
8904                        DAG.getValueType(MVT::v2i32));
8905     }
8906 
8907     return Op;
8908   }
8909 
8910   return SDValue();
8911 }
8912 
8913 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
8914                                                  SelectionDAG &DAG) const {
8915   SDLoc dl(Op);
8916   // Create a stack slot that is 16-byte aligned.
8917   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8918   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8919   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8920   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8921 
8922   // Store the input value into Value#0 of the stack slot.
8923   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8924                                MachinePointerInfo());
8925   // Load it out.
8926   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
8927 }
8928 
8929 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8930                                                   SelectionDAG &DAG) const {
8931   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
8932          "Should only be called for ISD::INSERT_VECTOR_ELT");
8933 
8934   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
8935   // We have legal lowering for constant indices but not for variable ones.
8936   if (!C)
8937     return SDValue();
8938 
8939   EVT VT = Op.getValueType();
8940   SDLoc dl(Op);
8941   SDValue V1 = Op.getOperand(0);
8942   SDValue V2 = Op.getOperand(1);
8943   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
8944   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
8945     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
8946     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
8947     unsigned InsertAtElement = C->getZExtValue();
8948     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
8949     if (Subtarget.isLittleEndian()) {
8950       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
8951     }
8952     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
8953                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8954   }
8955   return Op;
8956 }
8957 
8958 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
8959                                                    SelectionDAG &DAG) const {
8960   SDLoc dl(Op);
8961   SDNode *N = Op.getNode();
8962 
8963   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
8964          "Unknown extract_vector_elt type");
8965 
8966   SDValue Value = N->getOperand(0);
8967 
8968   // The first part of this is like the store lowering except that we don't
8969   // need to track the chain.
8970 
8971   // The values are now known to be -1 (false) or 1 (true). To convert this
8972   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8973   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8974   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8975 
8976   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
8977   // understand how to form the extending load.
8978   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8979 
8980   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8981 
8982   // Now convert to an integer and store.
8983   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8984     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
8985     Value);
8986 
8987   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8988   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8989   MachinePointerInfo PtrInfo =
8990       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8991   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8992   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8993 
8994   SDValue StoreChain = DAG.getEntryNode();
8995   SDValue Ops[] = {StoreChain,
8996                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
8997                    Value, FIdx};
8998   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
8999 
9000   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9001     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9002 
9003   // Extract the value requested.
9004   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9005   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9006   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9007 
9008   SDValue IntVal =
9009       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9010 
9011   if (!Subtarget.useCRBits())
9012     return IntVal;
9013 
9014   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9015 }
9016 
9017 /// Lowering for QPX v4i1 loads
9018 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9019                                            SelectionDAG &DAG) const {
9020   SDLoc dl(Op);
9021   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9022   SDValue LoadChain = LN->getChain();
9023   SDValue BasePtr = LN->getBasePtr();
9024 
9025   if (Op.getValueType() == MVT::v4f64 ||
9026       Op.getValueType() == MVT::v4f32) {
9027     EVT MemVT = LN->getMemoryVT();
9028     unsigned Alignment = LN->getAlignment();
9029 
9030     // If this load is properly aligned, then it is legal.
9031     if (Alignment >= MemVT.getStoreSize())
9032       return Op;
9033 
9034     EVT ScalarVT = Op.getValueType().getScalarType(),
9035         ScalarMemVT = MemVT.getScalarType();
9036     unsigned Stride = ScalarMemVT.getStoreSize();
9037 
9038     SDValue Vals[4], LoadChains[4];
9039     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9040       SDValue Load;
9041       if (ScalarVT != ScalarMemVT)
9042         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9043                               BasePtr,
9044                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9045                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9046                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9047       else
9048         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9049                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9050                            MinAlign(Alignment, Idx * Stride),
9051                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9052 
9053       if (Idx == 0 && LN->isIndexed()) {
9054         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9055                "Unknown addressing mode on vector load");
9056         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9057                                   LN->getAddressingMode());
9058       }
9059 
9060       Vals[Idx] = Load;
9061       LoadChains[Idx] = Load.getValue(1);
9062 
9063       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9064                             DAG.getConstant(Stride, dl,
9065                                             BasePtr.getValueType()));
9066     }
9067 
9068     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9069     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9070 
9071     if (LN->isIndexed()) {
9072       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9073       return DAG.getMergeValues(RetOps, dl);
9074     }
9075 
9076     SDValue RetOps[] = { Value, TF };
9077     return DAG.getMergeValues(RetOps, dl);
9078   }
9079 
9080   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9081   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9082 
9083   // To lower v4i1 from a byte array, we load the byte elements of the
9084   // vector and then reuse the BUILD_VECTOR logic.
9085 
9086   SDValue VectElmts[4], VectElmtChains[4];
9087   for (unsigned i = 0; i < 4; ++i) {
9088     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9089     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9090 
9091     VectElmts[i] = DAG.getExtLoad(
9092         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9093         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9094         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9095     VectElmtChains[i] = VectElmts[i].getValue(1);
9096   }
9097 
9098   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9099   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9100 
9101   SDValue RVals[] = { Value, LoadChain };
9102   return DAG.getMergeValues(RVals, dl);
9103 }
9104 
9105 /// Lowering for QPX v4i1 stores
9106 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9107                                             SelectionDAG &DAG) const {
9108   SDLoc dl(Op);
9109   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9110   SDValue StoreChain = SN->getChain();
9111   SDValue BasePtr = SN->getBasePtr();
9112   SDValue Value = SN->getValue();
9113 
9114   if (Value.getValueType() == MVT::v4f64 ||
9115       Value.getValueType() == MVT::v4f32) {
9116     EVT MemVT = SN->getMemoryVT();
9117     unsigned Alignment = SN->getAlignment();
9118 
9119     // If this store is properly aligned, then it is legal.
9120     if (Alignment >= MemVT.getStoreSize())
9121       return Op;
9122 
9123     EVT ScalarVT = Value.getValueType().getScalarType(),
9124         ScalarMemVT = MemVT.getScalarType();
9125     unsigned Stride = ScalarMemVT.getStoreSize();
9126 
9127     SDValue Stores[4];
9128     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9129       SDValue Ex = DAG.getNode(
9130           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9131           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9132       SDValue Store;
9133       if (ScalarVT != ScalarMemVT)
9134         Store =
9135             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9136                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9137                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9138                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9139       else
9140         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9141                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9142                              MinAlign(Alignment, Idx * Stride),
9143                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9144 
9145       if (Idx == 0 && SN->isIndexed()) {
9146         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9147                "Unknown addressing mode on vector store");
9148         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9149                                     SN->getAddressingMode());
9150       }
9151 
9152       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9153                             DAG.getConstant(Stride, dl,
9154                                             BasePtr.getValueType()));
9155       Stores[Idx] = Store;
9156     }
9157 
9158     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9159 
9160     if (SN->isIndexed()) {
9161       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9162       return DAG.getMergeValues(RetOps, dl);
9163     }
9164 
9165     return TF;
9166   }
9167 
9168   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9169   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9170 
9171   // The values are now known to be -1 (false) or 1 (true). To convert this
9172   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9173   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9174   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9175 
9176   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9177   // understand how to form the extending load.
9178   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9179 
9180   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9181 
9182   // Now convert to an integer and store.
9183   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9184     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9185     Value);
9186 
9187   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9188   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9189   MachinePointerInfo PtrInfo =
9190       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9191   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9192   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9193 
9194   SDValue Ops[] = {StoreChain,
9195                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9196                    Value, FIdx};
9197   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9198 
9199   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9200     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9201 
9202   // Move data into the byte array.
9203   SDValue Loads[4], LoadChains[4];
9204   for (unsigned i = 0; i < 4; ++i) {
9205     unsigned Offset = 4*i;
9206     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9207     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9208 
9209     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9210                            PtrInfo.getWithOffset(Offset));
9211     LoadChains[i] = Loads[i].getValue(1);
9212   }
9213 
9214   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9215 
9216   SDValue Stores[4];
9217   for (unsigned i = 0; i < 4; ++i) {
9218     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9219     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9220 
9221     Stores[i] = DAG.getTruncStore(
9222         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9223         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9224         SN->getAAInfo());
9225   }
9226 
9227   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9228 
9229   return StoreChain;
9230 }
9231 
9232 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9233   SDLoc dl(Op);
9234   if (Op.getValueType() == MVT::v4i32) {
9235     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9236 
9237     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9238     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9239 
9240     SDValue RHSSwap =   // = vrlw RHS, 16
9241       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9242 
9243     // Shrinkify inputs to v8i16.
9244     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9245     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9246     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9247 
9248     // Low parts multiplied together, generating 32-bit results (we ignore the
9249     // top parts).
9250     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9251                                         LHS, RHS, DAG, dl, MVT::v4i32);
9252 
9253     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9254                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9255     // Shift the high parts up 16 bits.
9256     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9257                               Neg16, DAG, dl);
9258     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9259   } else if (Op.getValueType() == MVT::v8i16) {
9260     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9261 
9262     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9263 
9264     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9265                             LHS, RHS, Zero, DAG, dl);
9266   } else if (Op.getValueType() == MVT::v16i8) {
9267     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9268     bool isLittleEndian = Subtarget.isLittleEndian();
9269 
9270     // Multiply the even 8-bit parts, producing 16-bit sums.
9271     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9272                                            LHS, RHS, DAG, dl, MVT::v8i16);
9273     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9274 
9275     // Multiply the odd 8-bit parts, producing 16-bit sums.
9276     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9277                                           LHS, RHS, DAG, dl, MVT::v8i16);
9278     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9279 
9280     // Merge the results together.  Because vmuleub and vmuloub are
9281     // instructions with a big-endian bias, we must reverse the
9282     // element numbering and reverse the meaning of "odd" and "even"
9283     // when generating little endian code.
9284     int Ops[16];
9285     for (unsigned i = 0; i != 8; ++i) {
9286       if (isLittleEndian) {
9287         Ops[i*2  ] = 2*i;
9288         Ops[i*2+1] = 2*i+16;
9289       } else {
9290         Ops[i*2  ] = 2*i+1;
9291         Ops[i*2+1] = 2*i+1+16;
9292       }
9293     }
9294     if (isLittleEndian)
9295       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9296     else
9297       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9298   } else {
9299     llvm_unreachable("Unknown mul to lower!");
9300   }
9301 }
9302 
9303 /// LowerOperation - Provide custom lowering hooks for some operations.
9304 ///
9305 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9306   switch (Op.getOpcode()) {
9307   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9308   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9309   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9310   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9311   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9312   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9313   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9314   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9315   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9316   case ISD::VASTART:
9317     return LowerVASTART(Op, DAG);
9318 
9319   case ISD::VAARG:
9320     return LowerVAARG(Op, DAG);
9321 
9322   case ISD::VACOPY:
9323     return LowerVACOPY(Op, DAG);
9324 
9325   case ISD::STACKRESTORE:
9326     return LowerSTACKRESTORE(Op, DAG);
9327 
9328   case ISD::DYNAMIC_STACKALLOC:
9329     return LowerDYNAMIC_STACKALLOC(Op, DAG);
9330 
9331   case ISD::GET_DYNAMIC_AREA_OFFSET:
9332     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9333 
9334   case ISD::EH_DWARF_CFA:
9335     return LowerEH_DWARF_CFA(Op, DAG);
9336 
9337   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9338   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9339 
9340   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9341   case ISD::STORE:              return LowerSTORE(Op, DAG);
9342   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9343   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9344   case ISD::FP_TO_UINT:
9345   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
9346                                                       SDLoc(Op));
9347   case ISD::UINT_TO_FP:
9348   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9349   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9350 
9351   // Lower 64-bit shifts.
9352   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9353   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9354   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9355 
9356   // Vector-related lowering.
9357   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9358   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9359   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9360   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9361   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
9362   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9363   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9364   case ISD::MUL:                return LowerMUL(Op, DAG);
9365 
9366   // For counter-based loop handling.
9367   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9368 
9369   // Frame & Return address.
9370   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9371   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9372 
9373   case ISD::INTRINSIC_VOID:
9374     return LowerINTRINSIC_VOID(Op, DAG);
9375   case ISD::SREM:
9376   case ISD::UREM:
9377     return LowerREM(Op, DAG);
9378   case ISD::BSWAP:
9379     return LowerBSWAP(Op, DAG);
9380   case ISD::ATOMIC_CMP_SWAP:
9381     return LowerATOMIC_CMP_SWAP(Op, DAG);
9382   }
9383 }
9384 
9385 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9386                                            SmallVectorImpl<SDValue>&Results,
9387                                            SelectionDAG &DAG) const {
9388   SDLoc dl(N);
9389   switch (N->getOpcode()) {
9390   default:
9391     llvm_unreachable("Do not know how to custom type legalize this operation!");
9392   case ISD::READCYCLECOUNTER: {
9393     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9394     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9395 
9396     Results.push_back(RTB);
9397     Results.push_back(RTB.getValue(1));
9398     Results.push_back(RTB.getValue(2));
9399     break;
9400   }
9401   case ISD::INTRINSIC_W_CHAIN: {
9402     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9403         Intrinsic::ppc_is_decremented_ctr_nonzero)
9404       break;
9405 
9406     assert(N->getValueType(0) == MVT::i1 &&
9407            "Unexpected result type for CTR decrement intrinsic");
9408     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9409                                  N->getValueType(0));
9410     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9411     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9412                                  N->getOperand(1));
9413 
9414     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
9415     Results.push_back(NewInt.getValue(1));
9416     break;
9417   }
9418   case ISD::VAARG: {
9419     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9420       return;
9421 
9422     EVT VT = N->getValueType(0);
9423 
9424     if (VT == MVT::i64) {
9425       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9426 
9427       Results.push_back(NewNode);
9428       Results.push_back(NewNode.getValue(1));
9429     }
9430     return;
9431   }
9432   case ISD::FP_ROUND_INREG: {
9433     assert(N->getValueType(0) == MVT::ppcf128);
9434     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
9435     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
9436                              MVT::f64, N->getOperand(0),
9437                              DAG.getIntPtrConstant(0, dl));
9438     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
9439                              MVT::f64, N->getOperand(0),
9440                              DAG.getIntPtrConstant(1, dl));
9441 
9442     // Add the two halves of the long double in round-to-zero mode.
9443     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
9444 
9445     // We know the low half is about to be thrown away, so just use something
9446     // convenient.
9447     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
9448                                 FPreg, FPreg));
9449     return;
9450   }
9451   case ISD::FP_TO_SINT:
9452   case ISD::FP_TO_UINT:
9453     // LowerFP_TO_INT() can only handle f32 and f64.
9454     if (N->getOperand(0).getValueType() == MVT::ppcf128)
9455       return;
9456     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9457     return;
9458   }
9459 }
9460 
9461 //===----------------------------------------------------------------------===//
9462 //  Other Lowering Code
9463 //===----------------------------------------------------------------------===//
9464 
9465 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9466   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9467   Function *Func = Intrinsic::getDeclaration(M, Id);
9468   return Builder.CreateCall(Func, {});
9469 }
9470 
9471 // The mappings for emitLeading/TrailingFence is taken from
9472 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
9473 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9474                                                  Instruction *Inst,
9475                                                  AtomicOrdering Ord) const {
9476   if (Ord == AtomicOrdering::SequentiallyConsistent)
9477     return callIntrinsic(Builder, Intrinsic::ppc_sync);
9478   if (isReleaseOrStronger(Ord))
9479     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9480   return nullptr;
9481 }
9482 
9483 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9484                                                   Instruction *Inst,
9485                                                   AtomicOrdering Ord) const {
9486   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9487     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9488     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9489     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9490     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9491       return Builder.CreateCall(
9492           Intrinsic::getDeclaration(
9493               Builder.GetInsertBlock()->getParent()->getParent(),
9494               Intrinsic::ppc_cfence, {Inst->getType()}),
9495           {Inst});
9496     // FIXME: Can use isync for rmw operation.
9497     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9498   }
9499   return nullptr;
9500 }
9501 
9502 MachineBasicBlock *
9503 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9504                                     unsigned AtomicSize,
9505                                     unsigned BinOpcode,
9506                                     unsigned CmpOpcode,
9507                                     unsigned CmpPred) const {
9508   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9509   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9510 
9511   auto LoadMnemonic = PPC::LDARX;
9512   auto StoreMnemonic = PPC::STDCX;
9513   switch (AtomicSize) {
9514   default:
9515     llvm_unreachable("Unexpected size of atomic entity");
9516   case 1:
9517     LoadMnemonic = PPC::LBARX;
9518     StoreMnemonic = PPC::STBCX;
9519     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9520     break;
9521   case 2:
9522     LoadMnemonic = PPC::LHARX;
9523     StoreMnemonic = PPC::STHCX;
9524     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9525     break;
9526   case 4:
9527     LoadMnemonic = PPC::LWARX;
9528     StoreMnemonic = PPC::STWCX;
9529     break;
9530   case 8:
9531     LoadMnemonic = PPC::LDARX;
9532     StoreMnemonic = PPC::STDCX;
9533     break;
9534   }
9535 
9536   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9537   MachineFunction *F = BB->getParent();
9538   MachineFunction::iterator It = ++BB->getIterator();
9539 
9540   unsigned dest = MI.getOperand(0).getReg();
9541   unsigned ptrA = MI.getOperand(1).getReg();
9542   unsigned ptrB = MI.getOperand(2).getReg();
9543   unsigned incr = MI.getOperand(3).getReg();
9544   DebugLoc dl = MI.getDebugLoc();
9545 
9546   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9547   MachineBasicBlock *loop2MBB =
9548     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9549   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9550   F->insert(It, loopMBB);
9551   if (CmpOpcode)
9552     F->insert(It, loop2MBB);
9553   F->insert(It, exitMBB);
9554   exitMBB->splice(exitMBB->begin(), BB,
9555                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9556   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9557 
9558   MachineRegisterInfo &RegInfo = F->getRegInfo();
9559   unsigned TmpReg = (!BinOpcode) ? incr :
9560     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9561                                            : &PPC::GPRCRegClass);
9562 
9563   //  thisMBB:
9564   //   ...
9565   //   fallthrough --> loopMBB
9566   BB->addSuccessor(loopMBB);
9567 
9568   //  loopMBB:
9569   //   l[wd]arx dest, ptr
9570   //   add r0, dest, incr
9571   //   st[wd]cx. r0, ptr
9572   //   bne- loopMBB
9573   //   fallthrough --> exitMBB
9574 
9575   // For max/min...
9576   //  loopMBB:
9577   //   l[wd]arx dest, ptr
9578   //   cmpl?[wd] incr, dest
9579   //   bgt exitMBB
9580   //  loop2MBB:
9581   //   st[wd]cx. dest, ptr
9582   //   bne- loopMBB
9583   //   fallthrough --> exitMBB
9584 
9585   BB = loopMBB;
9586   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9587     .addReg(ptrA).addReg(ptrB);
9588   if (BinOpcode)
9589     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9590   if (CmpOpcode) {
9591     // Signed comparisons of byte or halfword values must be sign-extended.
9592     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9593       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9594       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9595               ExtReg).addReg(dest);
9596       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9597         .addReg(incr).addReg(ExtReg);
9598     } else
9599       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9600         .addReg(incr).addReg(dest);
9601 
9602     BuildMI(BB, dl, TII->get(PPC::BCC))
9603       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9604     BB->addSuccessor(loop2MBB);
9605     BB->addSuccessor(exitMBB);
9606     BB = loop2MBB;
9607   }
9608   BuildMI(BB, dl, TII->get(StoreMnemonic))
9609     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9610   BuildMI(BB, dl, TII->get(PPC::BCC))
9611     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9612   BB->addSuccessor(loopMBB);
9613   BB->addSuccessor(exitMBB);
9614 
9615   //  exitMBB:
9616   //   ...
9617   BB = exitMBB;
9618   return BB;
9619 }
9620 
9621 MachineBasicBlock *
9622 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
9623                                             MachineBasicBlock *BB,
9624                                             bool is8bit, // operation
9625                                             unsigned BinOpcode,
9626                                             unsigned CmpOpcode,
9627                                             unsigned CmpPred) const {
9628   // If we support part-word atomic mnemonics, just use them
9629   if (Subtarget.hasPartwordAtomics())
9630     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
9631                             CmpOpcode, CmpPred);
9632 
9633   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9634   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9635   // In 64 bit mode we have to use 64 bits for addresses, even though the
9636   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
9637   // registers without caring whether they're 32 or 64, but here we're
9638   // doing actual arithmetic on the addresses.
9639   bool is64bit = Subtarget.isPPC64();
9640   bool isLittleEndian = Subtarget.isLittleEndian();
9641   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9642 
9643   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9644   MachineFunction *F = BB->getParent();
9645   MachineFunction::iterator It = ++BB->getIterator();
9646 
9647   unsigned dest = MI.getOperand(0).getReg();
9648   unsigned ptrA = MI.getOperand(1).getReg();
9649   unsigned ptrB = MI.getOperand(2).getReg();
9650   unsigned incr = MI.getOperand(3).getReg();
9651   DebugLoc dl = MI.getDebugLoc();
9652 
9653   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9654   MachineBasicBlock *loop2MBB =
9655     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9656   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9657   F->insert(It, loopMBB);
9658   if (CmpOpcode)
9659     F->insert(It, loop2MBB);
9660   F->insert(It, exitMBB);
9661   exitMBB->splice(exitMBB->begin(), BB,
9662                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9663   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9664 
9665   MachineRegisterInfo &RegInfo = F->getRegInfo();
9666   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9667                                           : &PPC::GPRCRegClass;
9668   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9669   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9670   unsigned ShiftReg =
9671     isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
9672   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
9673   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9674   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9675   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9676   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9677   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
9678   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9679   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9680   unsigned Ptr1Reg;
9681   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
9682 
9683   //  thisMBB:
9684   //   ...
9685   //   fallthrough --> loopMBB
9686   BB->addSuccessor(loopMBB);
9687 
9688   // The 4-byte load must be aligned, while a char or short may be
9689   // anywhere in the word.  Hence all this nasty bookkeeping code.
9690   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9691   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9692   //   xori shift, shift1, 24 [16]
9693   //   rlwinm ptr, ptr1, 0, 0, 29
9694   //   slw incr2, incr, shift
9695   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9696   //   slw mask, mask2, shift
9697   //  loopMBB:
9698   //   lwarx tmpDest, ptr
9699   //   add tmp, tmpDest, incr2
9700   //   andc tmp2, tmpDest, mask
9701   //   and tmp3, tmp, mask
9702   //   or tmp4, tmp3, tmp2
9703   //   stwcx. tmp4, ptr
9704   //   bne- loopMBB
9705   //   fallthrough --> exitMBB
9706   //   srw dest, tmpDest, shift
9707   if (ptrA != ZeroReg) {
9708     Ptr1Reg = RegInfo.createVirtualRegister(RC);
9709     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9710       .addReg(ptrA).addReg(ptrB);
9711   } else {
9712     Ptr1Reg = ptrB;
9713   }
9714   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9715       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9716   if (!isLittleEndian)
9717     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9718         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9719   if (is64bit)
9720     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9721       .addReg(Ptr1Reg).addImm(0).addImm(61);
9722   else
9723     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9724       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9725   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
9726       .addReg(incr).addReg(ShiftReg);
9727   if (is8bit)
9728     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9729   else {
9730     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9731     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
9732   }
9733   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9734       .addReg(Mask2Reg).addReg(ShiftReg);
9735 
9736   BB = loopMBB;
9737   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9738     .addReg(ZeroReg).addReg(PtrReg);
9739   if (BinOpcode)
9740     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
9741       .addReg(Incr2Reg).addReg(TmpDestReg);
9742   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
9743     .addReg(TmpDestReg).addReg(MaskReg);
9744   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
9745     .addReg(TmpReg).addReg(MaskReg);
9746   if (CmpOpcode) {
9747     // For unsigned comparisons, we can directly compare the shifted values.
9748     // For signed comparisons we shift and sign extend.
9749     unsigned SReg = RegInfo.createVirtualRegister(RC);
9750     BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
9751       .addReg(TmpDestReg).addReg(MaskReg);
9752     unsigned ValueReg = SReg;
9753     unsigned CmpReg = Incr2Reg;
9754     if (CmpOpcode == PPC::CMPW) {
9755       ValueReg = RegInfo.createVirtualRegister(RC);
9756       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
9757         .addReg(SReg).addReg(ShiftReg);
9758       unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
9759       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
9760         .addReg(ValueReg);
9761       ValueReg = ValueSReg;
9762       CmpReg = incr;
9763     }
9764     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9765       .addReg(CmpReg).addReg(ValueReg);
9766     BuildMI(BB, dl, TII->get(PPC::BCC))
9767       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9768     BB->addSuccessor(loop2MBB);
9769     BB->addSuccessor(exitMBB);
9770     BB = loop2MBB;
9771   }
9772   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
9773     .addReg(Tmp3Reg).addReg(Tmp2Reg);
9774   BuildMI(BB, dl, TII->get(PPC::STWCX))
9775     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
9776   BuildMI(BB, dl, TII->get(PPC::BCC))
9777     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9778   BB->addSuccessor(loopMBB);
9779   BB->addSuccessor(exitMBB);
9780 
9781   //  exitMBB:
9782   //   ...
9783   BB = exitMBB;
9784   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
9785     .addReg(ShiftReg);
9786   return BB;
9787 }
9788 
9789 llvm::MachineBasicBlock *
9790 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
9791                                     MachineBasicBlock *MBB) const {
9792   DebugLoc DL = MI.getDebugLoc();
9793   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9794   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
9795 
9796   MachineFunction *MF = MBB->getParent();
9797   MachineRegisterInfo &MRI = MF->getRegInfo();
9798 
9799   const BasicBlock *BB = MBB->getBasicBlock();
9800   MachineFunction::iterator I = ++MBB->getIterator();
9801 
9802   // Memory Reference
9803   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9804   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9805 
9806   unsigned DstReg = MI.getOperand(0).getReg();
9807   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
9808   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
9809   unsigned mainDstReg = MRI.createVirtualRegister(RC);
9810   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
9811 
9812   MVT PVT = getPointerTy(MF->getDataLayout());
9813   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9814          "Invalid Pointer Size!");
9815   // For v = setjmp(buf), we generate
9816   //
9817   // thisMBB:
9818   //  SjLjSetup mainMBB
9819   //  bl mainMBB
9820   //  v_restore = 1
9821   //  b sinkMBB
9822   //
9823   // mainMBB:
9824   //  buf[LabelOffset] = LR
9825   //  v_main = 0
9826   //
9827   // sinkMBB:
9828   //  v = phi(main, restore)
9829   //
9830 
9831   MachineBasicBlock *thisMBB = MBB;
9832   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
9833   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
9834   MF->insert(I, mainMBB);
9835   MF->insert(I, sinkMBB);
9836 
9837   MachineInstrBuilder MIB;
9838 
9839   // Transfer the remainder of BB and its successor edges to sinkMBB.
9840   sinkMBB->splice(sinkMBB->begin(), MBB,
9841                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9842   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
9843 
9844   // Note that the structure of the jmp_buf used here is not compatible
9845   // with that used by libc, and is not designed to be. Specifically, it
9846   // stores only those 'reserved' registers that LLVM does not otherwise
9847   // understand how to spill. Also, by convention, by the time this
9848   // intrinsic is called, Clang has already stored the frame address in the
9849   // first slot of the buffer and stack address in the third. Following the
9850   // X86 target code, we'll store the jump address in the second slot. We also
9851   // need to save the TOC pointer (R2) to handle jumps between shared
9852   // libraries, and that will be stored in the fourth slot. The thread
9853   // identifier (R13) is not affected.
9854 
9855   // thisMBB:
9856   const int64_t LabelOffset = 1 * PVT.getStoreSize();
9857   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
9858   const int64_t BPOffset    = 4 * PVT.getStoreSize();
9859 
9860   // Prepare IP either in reg.
9861   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
9862   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
9863   unsigned BufReg = MI.getOperand(1).getReg();
9864 
9865   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
9866     setUsesTOCBasePtr(*MBB->getParent());
9867     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
9868             .addReg(PPC::X2)
9869             .addImm(TOCOffset)
9870             .addReg(BufReg);
9871     MIB.setMemRefs(MMOBegin, MMOEnd);
9872   }
9873 
9874   // Naked functions never have a base pointer, and so we use r1. For all
9875   // other functions, this decision must be delayed until during PEI.
9876   unsigned BaseReg;
9877   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
9878     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
9879   else
9880     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
9881 
9882   MIB = BuildMI(*thisMBB, MI, DL,
9883                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
9884             .addReg(BaseReg)
9885             .addImm(BPOffset)
9886             .addReg(BufReg);
9887   MIB.setMemRefs(MMOBegin, MMOEnd);
9888 
9889   // Setup
9890   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
9891   MIB.addRegMask(TRI->getNoPreservedMask());
9892 
9893   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
9894 
9895   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
9896           .addMBB(mainMBB);
9897   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
9898 
9899   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
9900   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
9901 
9902   // mainMBB:
9903   //  mainDstReg = 0
9904   MIB =
9905       BuildMI(mainMBB, DL,
9906               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
9907 
9908   // Store IP
9909   if (Subtarget.isPPC64()) {
9910     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
9911             .addReg(LabelReg)
9912             .addImm(LabelOffset)
9913             .addReg(BufReg);
9914   } else {
9915     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
9916             .addReg(LabelReg)
9917             .addImm(LabelOffset)
9918             .addReg(BufReg);
9919   }
9920 
9921   MIB.setMemRefs(MMOBegin, MMOEnd);
9922 
9923   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
9924   mainMBB->addSuccessor(sinkMBB);
9925 
9926   // sinkMBB:
9927   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9928           TII->get(PPC::PHI), DstReg)
9929     .addReg(mainDstReg).addMBB(mainMBB)
9930     .addReg(restoreDstReg).addMBB(thisMBB);
9931 
9932   MI.eraseFromParent();
9933   return sinkMBB;
9934 }
9935 
9936 MachineBasicBlock *
9937 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
9938                                      MachineBasicBlock *MBB) const {
9939   DebugLoc DL = MI.getDebugLoc();
9940   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9941 
9942   MachineFunction *MF = MBB->getParent();
9943   MachineRegisterInfo &MRI = MF->getRegInfo();
9944 
9945   // Memory Reference
9946   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9947   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9948 
9949   MVT PVT = getPointerTy(MF->getDataLayout());
9950   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9951          "Invalid Pointer Size!");
9952 
9953   const TargetRegisterClass *RC =
9954     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9955   unsigned Tmp = MRI.createVirtualRegister(RC);
9956   // Since FP is only updated here but NOT referenced, it's treated as GPR.
9957   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
9958   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
9959   unsigned BP =
9960       (PVT == MVT::i64)
9961           ? PPC::X30
9962           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
9963                                                               : PPC::R30);
9964 
9965   MachineInstrBuilder MIB;
9966 
9967   const int64_t LabelOffset = 1 * PVT.getStoreSize();
9968   const int64_t SPOffset    = 2 * PVT.getStoreSize();
9969   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
9970   const int64_t BPOffset    = 4 * PVT.getStoreSize();
9971 
9972   unsigned BufReg = MI.getOperand(0).getReg();
9973 
9974   // Reload FP (the jumped-to function may not have had a
9975   // frame pointer, and if so, then its r31 will be restored
9976   // as necessary).
9977   if (PVT == MVT::i64) {
9978     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
9979             .addImm(0)
9980             .addReg(BufReg);
9981   } else {
9982     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
9983             .addImm(0)
9984             .addReg(BufReg);
9985   }
9986   MIB.setMemRefs(MMOBegin, MMOEnd);
9987 
9988   // Reload IP
9989   if (PVT == MVT::i64) {
9990     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
9991             .addImm(LabelOffset)
9992             .addReg(BufReg);
9993   } else {
9994     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
9995             .addImm(LabelOffset)
9996             .addReg(BufReg);
9997   }
9998   MIB.setMemRefs(MMOBegin, MMOEnd);
9999 
10000   // Reload SP
10001   if (PVT == MVT::i64) {
10002     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10003             .addImm(SPOffset)
10004             .addReg(BufReg);
10005   } else {
10006     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10007             .addImm(SPOffset)
10008             .addReg(BufReg);
10009   }
10010   MIB.setMemRefs(MMOBegin, MMOEnd);
10011 
10012   // Reload BP
10013   if (PVT == MVT::i64) {
10014     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10015             .addImm(BPOffset)
10016             .addReg(BufReg);
10017   } else {
10018     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10019             .addImm(BPOffset)
10020             .addReg(BufReg);
10021   }
10022   MIB.setMemRefs(MMOBegin, MMOEnd);
10023 
10024   // Reload TOC
10025   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10026     setUsesTOCBasePtr(*MBB->getParent());
10027     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10028             .addImm(TOCOffset)
10029             .addReg(BufReg);
10030 
10031     MIB.setMemRefs(MMOBegin, MMOEnd);
10032   }
10033 
10034   // Jump
10035   BuildMI(*MBB, MI, DL,
10036           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10037   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10038 
10039   MI.eraseFromParent();
10040   return MBB;
10041 }
10042 
10043 MachineBasicBlock *
10044 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10045                                                MachineBasicBlock *BB) const {
10046   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10047       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10048     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10049         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10050       // Call lowering should have added an r2 operand to indicate a dependence
10051       // on the TOC base pointer value. It can't however, because there is no
10052       // way to mark the dependence as implicit there, and so the stackmap code
10053       // will confuse it with a regular operand. Instead, add the dependence
10054       // here.
10055       setUsesTOCBasePtr(*BB->getParent());
10056       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10057     }
10058 
10059     return emitPatchPoint(MI, BB);
10060   }
10061 
10062   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10063       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10064     return emitEHSjLjSetJmp(MI, BB);
10065   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10066              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10067     return emitEHSjLjLongJmp(MI, BB);
10068   }
10069 
10070   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10071 
10072   // To "insert" these instructions we actually have to insert their
10073   // control-flow patterns.
10074   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10075   MachineFunction::iterator It = ++BB->getIterator();
10076 
10077   MachineFunction *F = BB->getParent();
10078 
10079   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10080        MI.getOpcode() == PPC::SELECT_CC_I8 ||
10081        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) {
10082     SmallVector<MachineOperand, 2> Cond;
10083     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10084         MI.getOpcode() == PPC::SELECT_CC_I8)
10085       Cond.push_back(MI.getOperand(4));
10086     else
10087       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10088     Cond.push_back(MI.getOperand(1));
10089 
10090     DebugLoc dl = MI.getDebugLoc();
10091     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10092                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10093   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10094              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10095              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10096              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10097              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10098              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10099              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10100              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10101              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10102              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10103              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10104              MI.getOpcode() == PPC::SELECT_I4 ||
10105              MI.getOpcode() == PPC::SELECT_I8 ||
10106              MI.getOpcode() == PPC::SELECT_F4 ||
10107              MI.getOpcode() == PPC::SELECT_F8 ||
10108              MI.getOpcode() == PPC::SELECT_QFRC ||
10109              MI.getOpcode() == PPC::SELECT_QSRC ||
10110              MI.getOpcode() == PPC::SELECT_QBRC ||
10111              MI.getOpcode() == PPC::SELECT_VRRC ||
10112              MI.getOpcode() == PPC::SELECT_VSFRC ||
10113              MI.getOpcode() == PPC::SELECT_VSSRC ||
10114              MI.getOpcode() == PPC::SELECT_VSRC) {
10115     // The incoming instruction knows the destination vreg to set, the
10116     // condition code register to branch on, the true/false values to
10117     // select between, and a branch opcode to use.
10118 
10119     //  thisMBB:
10120     //  ...
10121     //   TrueVal = ...
10122     //   cmpTY ccX, r1, r2
10123     //   bCC copy1MBB
10124     //   fallthrough --> copy0MBB
10125     MachineBasicBlock *thisMBB = BB;
10126     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10127     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10128     DebugLoc dl = MI.getDebugLoc();
10129     F->insert(It, copy0MBB);
10130     F->insert(It, sinkMBB);
10131 
10132     // Transfer the remainder of BB and its successor edges to sinkMBB.
10133     sinkMBB->splice(sinkMBB->begin(), BB,
10134                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10135     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10136 
10137     // Next, add the true and fallthrough blocks as its successors.
10138     BB->addSuccessor(copy0MBB);
10139     BB->addSuccessor(sinkMBB);
10140 
10141     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10142         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10143         MI.getOpcode() == PPC::SELECT_QFRC ||
10144         MI.getOpcode() == PPC::SELECT_QSRC ||
10145         MI.getOpcode() == PPC::SELECT_QBRC ||
10146         MI.getOpcode() == PPC::SELECT_VRRC ||
10147         MI.getOpcode() == PPC::SELECT_VSFRC ||
10148         MI.getOpcode() == PPC::SELECT_VSSRC ||
10149         MI.getOpcode() == PPC::SELECT_VSRC) {
10150       BuildMI(BB, dl, TII->get(PPC::BC))
10151           .addReg(MI.getOperand(1).getReg())
10152           .addMBB(sinkMBB);
10153     } else {
10154       unsigned SelectPred = MI.getOperand(4).getImm();
10155       BuildMI(BB, dl, TII->get(PPC::BCC))
10156           .addImm(SelectPred)
10157           .addReg(MI.getOperand(1).getReg())
10158           .addMBB(sinkMBB);
10159     }
10160 
10161     //  copy0MBB:
10162     //   %FalseValue = ...
10163     //   # fallthrough to sinkMBB
10164     BB = copy0MBB;
10165 
10166     // Update machine-CFG edges
10167     BB->addSuccessor(sinkMBB);
10168 
10169     //  sinkMBB:
10170     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10171     //  ...
10172     BB = sinkMBB;
10173     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10174         .addReg(MI.getOperand(3).getReg())
10175         .addMBB(copy0MBB)
10176         .addReg(MI.getOperand(2).getReg())
10177         .addMBB(thisMBB);
10178   } else if (MI.getOpcode() == PPC::ReadTB) {
10179     // To read the 64-bit time-base register on a 32-bit target, we read the
10180     // two halves. Should the counter have wrapped while it was being read, we
10181     // need to try again.
10182     // ...
10183     // readLoop:
10184     // mfspr Rx,TBU # load from TBU
10185     // mfspr Ry,TB  # load from TB
10186     // mfspr Rz,TBU # load from TBU
10187     // cmpw crX,Rx,Rz # check if 'old'='new'
10188     // bne readLoop   # branch if they're not equal
10189     // ...
10190 
10191     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10192     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10193     DebugLoc dl = MI.getDebugLoc();
10194     F->insert(It, readMBB);
10195     F->insert(It, sinkMBB);
10196 
10197     // Transfer the remainder of BB and its successor edges to sinkMBB.
10198     sinkMBB->splice(sinkMBB->begin(), BB,
10199                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10200     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10201 
10202     BB->addSuccessor(readMBB);
10203     BB = readMBB;
10204 
10205     MachineRegisterInfo &RegInfo = F->getRegInfo();
10206     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10207     unsigned LoReg = MI.getOperand(0).getReg();
10208     unsigned HiReg = MI.getOperand(1).getReg();
10209 
10210     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10211     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10212     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10213 
10214     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10215 
10216     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10217       .addReg(HiReg).addReg(ReadAgainReg);
10218     BuildMI(BB, dl, TII->get(PPC::BCC))
10219       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
10220 
10221     BB->addSuccessor(readMBB);
10222     BB->addSuccessor(sinkMBB);
10223   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10224     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10225   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10226     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10227   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10228     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10229   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10230     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10231 
10232   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10233     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10234   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10235     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10236   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10237     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10238   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10239     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10240 
10241   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10242     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10243   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10244     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10245   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10246     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10247   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10248     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10249 
10250   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10251     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10252   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10253     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10254   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10255     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10256   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10257     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10258 
10259   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10260     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10261   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10262     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10263   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10264     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10265   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10266     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10267 
10268   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10269     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10270   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10271     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10272   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10273     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10274   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10275     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10276 
10277   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10278     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10279   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10280     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10281   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10282     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10283   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10284     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10285 
10286   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10287     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10288   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10289     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10290   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10291     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10292   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10293     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10294 
10295   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10296     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10297   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10298     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10299   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10300     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10301   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10302     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10303 
10304   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10305     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10306   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10307     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10308   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10309     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10310   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10311     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10312 
10313   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10314     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10315   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10316     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10317   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10318     BB = EmitAtomicBinary(MI, BB, 4, 0);
10319   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10320     BB = EmitAtomicBinary(MI, BB, 8, 0);
10321   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10322            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10323            (Subtarget.hasPartwordAtomics() &&
10324             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10325            (Subtarget.hasPartwordAtomics() &&
10326             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10327     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10328 
10329     auto LoadMnemonic = PPC::LDARX;
10330     auto StoreMnemonic = PPC::STDCX;
10331     switch (MI.getOpcode()) {
10332     default:
10333       llvm_unreachable("Compare and swap of unknown size");
10334     case PPC::ATOMIC_CMP_SWAP_I8:
10335       LoadMnemonic = PPC::LBARX;
10336       StoreMnemonic = PPC::STBCX;
10337       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10338       break;
10339     case PPC::ATOMIC_CMP_SWAP_I16:
10340       LoadMnemonic = PPC::LHARX;
10341       StoreMnemonic = PPC::STHCX;
10342       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10343       break;
10344     case PPC::ATOMIC_CMP_SWAP_I32:
10345       LoadMnemonic = PPC::LWARX;
10346       StoreMnemonic = PPC::STWCX;
10347       break;
10348     case PPC::ATOMIC_CMP_SWAP_I64:
10349       LoadMnemonic = PPC::LDARX;
10350       StoreMnemonic = PPC::STDCX;
10351       break;
10352     }
10353     unsigned dest = MI.getOperand(0).getReg();
10354     unsigned ptrA = MI.getOperand(1).getReg();
10355     unsigned ptrB = MI.getOperand(2).getReg();
10356     unsigned oldval = MI.getOperand(3).getReg();
10357     unsigned newval = MI.getOperand(4).getReg();
10358     DebugLoc dl = MI.getDebugLoc();
10359 
10360     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10361     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10362     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10363     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10364     F->insert(It, loop1MBB);
10365     F->insert(It, loop2MBB);
10366     F->insert(It, midMBB);
10367     F->insert(It, exitMBB);
10368     exitMBB->splice(exitMBB->begin(), BB,
10369                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10370     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10371 
10372     //  thisMBB:
10373     //   ...
10374     //   fallthrough --> loopMBB
10375     BB->addSuccessor(loop1MBB);
10376 
10377     // loop1MBB:
10378     //   l[bhwd]arx dest, ptr
10379     //   cmp[wd] dest, oldval
10380     //   bne- midMBB
10381     // loop2MBB:
10382     //   st[bhwd]cx. newval, ptr
10383     //   bne- loopMBB
10384     //   b exitBB
10385     // midMBB:
10386     //   st[bhwd]cx. dest, ptr
10387     // exitBB:
10388     BB = loop1MBB;
10389     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10390       .addReg(ptrA).addReg(ptrB);
10391     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10392       .addReg(oldval).addReg(dest);
10393     BuildMI(BB, dl, TII->get(PPC::BCC))
10394       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10395     BB->addSuccessor(loop2MBB);
10396     BB->addSuccessor(midMBB);
10397 
10398     BB = loop2MBB;
10399     BuildMI(BB, dl, TII->get(StoreMnemonic))
10400       .addReg(newval).addReg(ptrA).addReg(ptrB);
10401     BuildMI(BB, dl, TII->get(PPC::BCC))
10402       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10403     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10404     BB->addSuccessor(loop1MBB);
10405     BB->addSuccessor(exitMBB);
10406 
10407     BB = midMBB;
10408     BuildMI(BB, dl, TII->get(StoreMnemonic))
10409       .addReg(dest).addReg(ptrA).addReg(ptrB);
10410     BB->addSuccessor(exitMBB);
10411 
10412     //  exitMBB:
10413     //   ...
10414     BB = exitMBB;
10415   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10416              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10417     // We must use 64-bit registers for addresses when targeting 64-bit,
10418     // since we're actually doing arithmetic on them.  Other registers
10419     // can be 32-bit.
10420     bool is64bit = Subtarget.isPPC64();
10421     bool isLittleEndian = Subtarget.isLittleEndian();
10422     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10423 
10424     unsigned dest = MI.getOperand(0).getReg();
10425     unsigned ptrA = MI.getOperand(1).getReg();
10426     unsigned ptrB = MI.getOperand(2).getReg();
10427     unsigned oldval = MI.getOperand(3).getReg();
10428     unsigned newval = MI.getOperand(4).getReg();
10429     DebugLoc dl = MI.getDebugLoc();
10430 
10431     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10432     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10433     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10434     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10435     F->insert(It, loop1MBB);
10436     F->insert(It, loop2MBB);
10437     F->insert(It, midMBB);
10438     F->insert(It, exitMBB);
10439     exitMBB->splice(exitMBB->begin(), BB,
10440                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10441     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10442 
10443     MachineRegisterInfo &RegInfo = F->getRegInfo();
10444     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
10445                                             : &PPC::GPRCRegClass;
10446     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10447     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
10448     unsigned ShiftReg =
10449       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
10450     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
10451     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
10452     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
10453     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
10454     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
10455     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
10456     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
10457     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
10458     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
10459     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
10460     unsigned Ptr1Reg;
10461     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
10462     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10463     //  thisMBB:
10464     //   ...
10465     //   fallthrough --> loopMBB
10466     BB->addSuccessor(loop1MBB);
10467 
10468     // The 4-byte load must be aligned, while a char or short may be
10469     // anywhere in the word.  Hence all this nasty bookkeeping code.
10470     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10471     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10472     //   xori shift, shift1, 24 [16]
10473     //   rlwinm ptr, ptr1, 0, 0, 29
10474     //   slw newval2, newval, shift
10475     //   slw oldval2, oldval,shift
10476     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10477     //   slw mask, mask2, shift
10478     //   and newval3, newval2, mask
10479     //   and oldval3, oldval2, mask
10480     // loop1MBB:
10481     //   lwarx tmpDest, ptr
10482     //   and tmp, tmpDest, mask
10483     //   cmpw tmp, oldval3
10484     //   bne- midMBB
10485     // loop2MBB:
10486     //   andc tmp2, tmpDest, mask
10487     //   or tmp4, tmp2, newval3
10488     //   stwcx. tmp4, ptr
10489     //   bne- loop1MBB
10490     //   b exitBB
10491     // midMBB:
10492     //   stwcx. tmpDest, ptr
10493     // exitBB:
10494     //   srw dest, tmpDest, shift
10495     if (ptrA != ZeroReg) {
10496       Ptr1Reg = RegInfo.createVirtualRegister(RC);
10497       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10498         .addReg(ptrA).addReg(ptrB);
10499     } else {
10500       Ptr1Reg = ptrB;
10501     }
10502     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
10503         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
10504     if (!isLittleEndian)
10505       BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
10506           .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
10507     if (is64bit)
10508       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10509         .addReg(Ptr1Reg).addImm(0).addImm(61);
10510     else
10511       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10512         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
10513     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10514         .addReg(newval).addReg(ShiftReg);
10515     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10516         .addReg(oldval).addReg(ShiftReg);
10517     if (is8bit)
10518       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10519     else {
10520       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10521       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10522         .addReg(Mask3Reg).addImm(65535);
10523     }
10524     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10525         .addReg(Mask2Reg).addReg(ShiftReg);
10526     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10527         .addReg(NewVal2Reg).addReg(MaskReg);
10528     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10529         .addReg(OldVal2Reg).addReg(MaskReg);
10530 
10531     BB = loop1MBB;
10532     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10533         .addReg(ZeroReg).addReg(PtrReg);
10534     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
10535         .addReg(TmpDestReg).addReg(MaskReg);
10536     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10537         .addReg(TmpReg).addReg(OldVal3Reg);
10538     BuildMI(BB, dl, TII->get(PPC::BCC))
10539         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10540     BB->addSuccessor(loop2MBB);
10541     BB->addSuccessor(midMBB);
10542 
10543     BB = loop2MBB;
10544     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
10545         .addReg(TmpDestReg).addReg(MaskReg);
10546     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
10547         .addReg(Tmp2Reg).addReg(NewVal3Reg);
10548     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
10549         .addReg(ZeroReg).addReg(PtrReg);
10550     BuildMI(BB, dl, TII->get(PPC::BCC))
10551       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10552     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10553     BB->addSuccessor(loop1MBB);
10554     BB->addSuccessor(exitMBB);
10555 
10556     BB = midMBB;
10557     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
10558       .addReg(ZeroReg).addReg(PtrReg);
10559     BB->addSuccessor(exitMBB);
10560 
10561     //  exitMBB:
10562     //   ...
10563     BB = exitMBB;
10564     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
10565       .addReg(ShiftReg);
10566   } else if (MI.getOpcode() == PPC::FADDrtz) {
10567     // This pseudo performs an FADD with rounding mode temporarily forced
10568     // to round-to-zero.  We emit this via custom inserter since the FPSCR
10569     // is not modeled at the SelectionDAG level.
10570     unsigned Dest = MI.getOperand(0).getReg();
10571     unsigned Src1 = MI.getOperand(1).getReg();
10572     unsigned Src2 = MI.getOperand(2).getReg();
10573     DebugLoc dl = MI.getDebugLoc();
10574 
10575     MachineRegisterInfo &RegInfo = F->getRegInfo();
10576     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10577 
10578     // Save FPSCR value.
10579     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10580 
10581     // Set rounding mode to round-to-zero.
10582     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10583     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10584 
10585     // Perform addition.
10586     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10587 
10588     // Restore FPSCR value.
10589     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10590   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10591              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10592              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10593              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10594     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10595                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10596                           ? PPC::ANDIo8
10597                           : PPC::ANDIo;
10598     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10599                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10600 
10601     MachineRegisterInfo &RegInfo = F->getRegInfo();
10602     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
10603                                                   &PPC::GPRCRegClass :
10604                                                   &PPC::G8RCRegClass);
10605 
10606     DebugLoc dl = MI.getDebugLoc();
10607     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10608         .addReg(MI.getOperand(1).getReg())
10609         .addImm(1);
10610     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10611             MI.getOperand(0).getReg())
10612         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10613   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10614     DebugLoc Dl = MI.getDebugLoc();
10615     MachineRegisterInfo &RegInfo = F->getRegInfo();
10616     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10617     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10618     return BB;
10619   } else {
10620     llvm_unreachable("Unexpected instr type to insert");
10621   }
10622 
10623   MI.eraseFromParent(); // The pseudo instruction is gone now.
10624   return BB;
10625 }
10626 
10627 //===----------------------------------------------------------------------===//
10628 // Target Optimization Hooks
10629 //===----------------------------------------------------------------------===//
10630 
10631 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
10632   // For the estimates, convergence is quadratic, so we essentially double the
10633   // number of digits correct after every iteration. For both FRE and FRSQRTE,
10634   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
10635   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
10636   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
10637   if (VT.getScalarType() == MVT::f64)
10638     RefinementSteps++;
10639   return RefinementSteps;
10640 }
10641 
10642 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
10643                                            int Enabled, int &RefinementSteps,
10644                                            bool &UseOneConstNR,
10645                                            bool Reciprocal) const {
10646   EVT VT = Operand.getValueType();
10647   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
10648       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
10649       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10650       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10651       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10652       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10653     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10654       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10655 
10656     UseOneConstNR = true;
10657     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
10658   }
10659   return SDValue();
10660 }
10661 
10662 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
10663                                             int Enabled,
10664                                             int &RefinementSteps) const {
10665   EVT VT = Operand.getValueType();
10666   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
10667       (VT == MVT::f64 && Subtarget.hasFRE()) ||
10668       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10669       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10670       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10671       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10672     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10673       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10674     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
10675   }
10676   return SDValue();
10677 }
10678 
10679 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
10680   // Note: This functionality is used only when unsafe-fp-math is enabled, and
10681   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
10682   // enabled for division), this functionality is redundant with the default
10683   // combiner logic (once the division -> reciprocal/multiply transformation
10684   // has taken place). As a result, this matters more for older cores than for
10685   // newer ones.
10686 
10687   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10688   // reciprocal if there are two or more FDIVs (for embedded cores with only
10689   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
10690   switch (Subtarget.getDarwinDirective()) {
10691   default:
10692     return 3;
10693   case PPC::DIR_440:
10694   case PPC::DIR_A2:
10695   case PPC::DIR_E500mc:
10696   case PPC::DIR_E5500:
10697     return 2;
10698   }
10699 }
10700 
10701 // isConsecutiveLSLoc needs to work even if all adds have not yet been
10702 // collapsed, and so we need to look through chains of them.
10703 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
10704                                      int64_t& Offset, SelectionDAG &DAG) {
10705   if (DAG.isBaseWithConstantOffset(Loc)) {
10706     Base = Loc.getOperand(0);
10707     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
10708 
10709     // The base might itself be a base plus an offset, and if so, accumulate
10710     // that as well.
10711     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
10712   }
10713 }
10714 
10715 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
10716                             unsigned Bytes, int Dist,
10717                             SelectionDAG &DAG) {
10718   if (VT.getSizeInBits() / 8 != Bytes)
10719     return false;
10720 
10721   SDValue BaseLoc = Base->getBasePtr();
10722   if (Loc.getOpcode() == ISD::FrameIndex) {
10723     if (BaseLoc.getOpcode() != ISD::FrameIndex)
10724       return false;
10725     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10726     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
10727     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
10728     int FS  = MFI.getObjectSize(FI);
10729     int BFS = MFI.getObjectSize(BFI);
10730     if (FS != BFS || FS != (int)Bytes) return false;
10731     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
10732   }
10733 
10734   SDValue Base1 = Loc, Base2 = BaseLoc;
10735   int64_t Offset1 = 0, Offset2 = 0;
10736   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
10737   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
10738   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
10739     return true;
10740 
10741   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10742   const GlobalValue *GV1 = nullptr;
10743   const GlobalValue *GV2 = nullptr;
10744   Offset1 = 0;
10745   Offset2 = 0;
10746   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
10747   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
10748   if (isGA1 && isGA2 && GV1 == GV2)
10749     return Offset1 == (Offset2 + Dist*Bytes);
10750   return false;
10751 }
10752 
10753 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
10754 // not enforce equality of the chain operands.
10755 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
10756                             unsigned Bytes, int Dist,
10757                             SelectionDAG &DAG) {
10758   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
10759     EVT VT = LS->getMemoryVT();
10760     SDValue Loc = LS->getBasePtr();
10761     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
10762   }
10763 
10764   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
10765     EVT VT;
10766     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10767     default: return false;
10768     case Intrinsic::ppc_qpx_qvlfd:
10769     case Intrinsic::ppc_qpx_qvlfda:
10770       VT = MVT::v4f64;
10771       break;
10772     case Intrinsic::ppc_qpx_qvlfs:
10773     case Intrinsic::ppc_qpx_qvlfsa:
10774       VT = MVT::v4f32;
10775       break;
10776     case Intrinsic::ppc_qpx_qvlfcd:
10777     case Intrinsic::ppc_qpx_qvlfcda:
10778       VT = MVT::v2f64;
10779       break;
10780     case Intrinsic::ppc_qpx_qvlfcs:
10781     case Intrinsic::ppc_qpx_qvlfcsa:
10782       VT = MVT::v2f32;
10783       break;
10784     case Intrinsic::ppc_qpx_qvlfiwa:
10785     case Intrinsic::ppc_qpx_qvlfiwz:
10786     case Intrinsic::ppc_altivec_lvx:
10787     case Intrinsic::ppc_altivec_lvxl:
10788     case Intrinsic::ppc_vsx_lxvw4x:
10789     case Intrinsic::ppc_vsx_lxvw4x_be:
10790       VT = MVT::v4i32;
10791       break;
10792     case Intrinsic::ppc_vsx_lxvd2x:
10793     case Intrinsic::ppc_vsx_lxvd2x_be:
10794       VT = MVT::v2f64;
10795       break;
10796     case Intrinsic::ppc_altivec_lvebx:
10797       VT = MVT::i8;
10798       break;
10799     case Intrinsic::ppc_altivec_lvehx:
10800       VT = MVT::i16;
10801       break;
10802     case Intrinsic::ppc_altivec_lvewx:
10803       VT = MVT::i32;
10804       break;
10805     }
10806 
10807     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
10808   }
10809 
10810   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
10811     EVT VT;
10812     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10813     default: return false;
10814     case Intrinsic::ppc_qpx_qvstfd:
10815     case Intrinsic::ppc_qpx_qvstfda:
10816       VT = MVT::v4f64;
10817       break;
10818     case Intrinsic::ppc_qpx_qvstfs:
10819     case Intrinsic::ppc_qpx_qvstfsa:
10820       VT = MVT::v4f32;
10821       break;
10822     case Intrinsic::ppc_qpx_qvstfcd:
10823     case Intrinsic::ppc_qpx_qvstfcda:
10824       VT = MVT::v2f64;
10825       break;
10826     case Intrinsic::ppc_qpx_qvstfcs:
10827     case Intrinsic::ppc_qpx_qvstfcsa:
10828       VT = MVT::v2f32;
10829       break;
10830     case Intrinsic::ppc_qpx_qvstfiw:
10831     case Intrinsic::ppc_qpx_qvstfiwa:
10832     case Intrinsic::ppc_altivec_stvx:
10833     case Intrinsic::ppc_altivec_stvxl:
10834     case Intrinsic::ppc_vsx_stxvw4x:
10835       VT = MVT::v4i32;
10836       break;
10837     case Intrinsic::ppc_vsx_stxvd2x:
10838       VT = MVT::v2f64;
10839       break;
10840     case Intrinsic::ppc_vsx_stxvw4x_be:
10841       VT = MVT::v4i32;
10842       break;
10843     case Intrinsic::ppc_vsx_stxvd2x_be:
10844       VT = MVT::v2f64;
10845       break;
10846     case Intrinsic::ppc_altivec_stvebx:
10847       VT = MVT::i8;
10848       break;
10849     case Intrinsic::ppc_altivec_stvehx:
10850       VT = MVT::i16;
10851       break;
10852     case Intrinsic::ppc_altivec_stvewx:
10853       VT = MVT::i32;
10854       break;
10855     }
10856 
10857     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
10858   }
10859 
10860   return false;
10861 }
10862 
10863 // Return true is there is a nearyby consecutive load to the one provided
10864 // (regardless of alignment). We search up and down the chain, looking though
10865 // token factors and other loads (but nothing else). As a result, a true result
10866 // indicates that it is safe to create a new consecutive load adjacent to the
10867 // load provided.
10868 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
10869   SDValue Chain = LD->getChain();
10870   EVT VT = LD->getMemoryVT();
10871 
10872   SmallSet<SDNode *, 16> LoadRoots;
10873   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
10874   SmallSet<SDNode *, 16> Visited;
10875 
10876   // First, search up the chain, branching to follow all token-factor operands.
10877   // If we find a consecutive load, then we're done, otherwise, record all
10878   // nodes just above the top-level loads and token factors.
10879   while (!Queue.empty()) {
10880     SDNode *ChainNext = Queue.pop_back_val();
10881     if (!Visited.insert(ChainNext).second)
10882       continue;
10883 
10884     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
10885       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10886         return true;
10887 
10888       if (!Visited.count(ChainLD->getChain().getNode()))
10889         Queue.push_back(ChainLD->getChain().getNode());
10890     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
10891       for (const SDUse &O : ChainNext->ops())
10892         if (!Visited.count(O.getNode()))
10893           Queue.push_back(O.getNode());
10894     } else
10895       LoadRoots.insert(ChainNext);
10896   }
10897 
10898   // Second, search down the chain, starting from the top-level nodes recorded
10899   // in the first phase. These top-level nodes are the nodes just above all
10900   // loads and token factors. Starting with their uses, recursively look though
10901   // all loads (just the chain uses) and token factors to find a consecutive
10902   // load.
10903   Visited.clear();
10904   Queue.clear();
10905 
10906   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
10907        IE = LoadRoots.end(); I != IE; ++I) {
10908     Queue.push_back(*I);
10909 
10910     while (!Queue.empty()) {
10911       SDNode *LoadRoot = Queue.pop_back_val();
10912       if (!Visited.insert(LoadRoot).second)
10913         continue;
10914 
10915       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
10916         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10917           return true;
10918 
10919       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
10920            UE = LoadRoot->use_end(); UI != UE; ++UI)
10921         if (((isa<MemSDNode>(*UI) &&
10922             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
10923             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
10924           Queue.push_back(*UI);
10925     }
10926   }
10927 
10928   return false;
10929 }
10930 
10931 /// This function is called when we have proved that a SETCC node can be replaced
10932 /// by subtraction (and other supporting instructions) so that the result of
10933 /// comparison is kept in a GPR instead of CR. This function is purely for
10934 /// codegen purposes and has some flags to guide the codegen process.
10935 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
10936                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
10937   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
10938 
10939   // Zero extend the operands to the largest legal integer. Originally, they
10940   // must be of a strictly smaller size.
10941   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
10942                          DAG.getConstant(Size, DL, MVT::i32));
10943   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
10944                          DAG.getConstant(Size, DL, MVT::i32));
10945 
10946   // Swap if needed. Depends on the condition code.
10947   if (Swap)
10948     std::swap(Op0, Op1);
10949 
10950   // Subtract extended integers.
10951   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
10952 
10953   // Move the sign bit to the least significant position and zero out the rest.
10954   // Now the least significant bit carries the result of original comparison.
10955   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
10956                              DAG.getConstant(Size - 1, DL, MVT::i32));
10957   auto Final = Shifted;
10958 
10959   // Complement the result if needed. Based on the condition code.
10960   if (Complement)
10961     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
10962                         DAG.getConstant(1, DL, MVT::i64));
10963 
10964   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
10965 }
10966 
10967 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
10968                                                   DAGCombinerInfo &DCI) const {
10969   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
10970 
10971   SelectionDAG &DAG = DCI.DAG;
10972   SDLoc DL(N);
10973 
10974   // Size of integers being compared has a critical role in the following
10975   // analysis, so we prefer to do this when all types are legal.
10976   if (!DCI.isAfterLegalizeVectorOps())
10977     return SDValue();
10978 
10979   // If all users of SETCC extend its value to a legal integer type
10980   // then we replace SETCC with a subtraction
10981   for (SDNode::use_iterator UI = N->use_begin(),
10982        UE = N->use_end(); UI != UE; ++UI) {
10983     if (UI->getOpcode() != ISD::ZERO_EXTEND)
10984       return SDValue();
10985   }
10986 
10987   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10988   auto OpSize = N->getOperand(0).getValueSizeInBits();
10989 
10990   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
10991 
10992   if (OpSize < Size) {
10993     switch (CC) {
10994     default: break;
10995     case ISD::SETULT:
10996       return generateEquivalentSub(N, Size, false, false, DL, DAG);
10997     case ISD::SETULE:
10998       return generateEquivalentSub(N, Size, true, true, DL, DAG);
10999     case ISD::SETUGT:
11000       return generateEquivalentSub(N, Size, false, true, DL, DAG);
11001     case ISD::SETUGE:
11002       return generateEquivalentSub(N, Size, true, false, DL, DAG);
11003     }
11004   }
11005 
11006   return SDValue();
11007 }
11008 
11009 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11010                                                   DAGCombinerInfo &DCI) const {
11011   SelectionDAG &DAG = DCI.DAG;
11012   SDLoc dl(N);
11013 
11014   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11015   // If we're tracking CR bits, we need to be careful that we don't have:
11016   //   trunc(binary-ops(zext(x), zext(y)))
11017   // or
11018   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11019   // such that we're unnecessarily moving things into GPRs when it would be
11020   // better to keep them in CR bits.
11021 
11022   // Note that trunc here can be an actual i1 trunc, or can be the effective
11023   // truncation that comes from a setcc or select_cc.
11024   if (N->getOpcode() == ISD::TRUNCATE &&
11025       N->getValueType(0) != MVT::i1)
11026     return SDValue();
11027 
11028   if (N->getOperand(0).getValueType() != MVT::i32 &&
11029       N->getOperand(0).getValueType() != MVT::i64)
11030     return SDValue();
11031 
11032   if (N->getOpcode() == ISD::SETCC ||
11033       N->getOpcode() == ISD::SELECT_CC) {
11034     // If we're looking at a comparison, then we need to make sure that the
11035     // high bits (all except for the first) don't matter the result.
11036     ISD::CondCode CC =
11037       cast<CondCodeSDNode>(N->getOperand(
11038         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11039     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11040 
11041     if (ISD::isSignedIntSetCC(CC)) {
11042       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11043           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11044         return SDValue();
11045     } else if (ISD::isUnsignedIntSetCC(CC)) {
11046       if (!DAG.MaskedValueIsZero(N->getOperand(0),
11047                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11048           !DAG.MaskedValueIsZero(N->getOperand(1),
11049                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
11050         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11051                                              : SDValue());
11052     } else {
11053       // This is neither a signed nor an unsigned comparison, just make sure
11054       // that the high bits are equal.
11055       KnownBits Op1Known, Op2Known;
11056       DAG.computeKnownBits(N->getOperand(0), Op1Known);
11057       DAG.computeKnownBits(N->getOperand(1), Op2Known);
11058 
11059       // We don't really care about what is known about the first bit (if
11060       // anything), so clear it in all masks prior to comparing them.
11061       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11062       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11063 
11064       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11065         return SDValue();
11066     }
11067   }
11068 
11069   // We now know that the higher-order bits are irrelevant, we just need to
11070   // make sure that all of the intermediate operations are bit operations, and
11071   // all inputs are extensions.
11072   if (N->getOperand(0).getOpcode() != ISD::AND &&
11073       N->getOperand(0).getOpcode() != ISD::OR  &&
11074       N->getOperand(0).getOpcode() != ISD::XOR &&
11075       N->getOperand(0).getOpcode() != ISD::SELECT &&
11076       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11077       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11078       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11079       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11080       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11081     return SDValue();
11082 
11083   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11084       N->getOperand(1).getOpcode() != ISD::AND &&
11085       N->getOperand(1).getOpcode() != ISD::OR  &&
11086       N->getOperand(1).getOpcode() != ISD::XOR &&
11087       N->getOperand(1).getOpcode() != ISD::SELECT &&
11088       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11089       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11090       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11091       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11092       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11093     return SDValue();
11094 
11095   SmallVector<SDValue, 4> Inputs;
11096   SmallVector<SDValue, 8> BinOps, PromOps;
11097   SmallPtrSet<SDNode *, 16> Visited;
11098 
11099   for (unsigned i = 0; i < 2; ++i) {
11100     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11101           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11102           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11103           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11104         isa<ConstantSDNode>(N->getOperand(i)))
11105       Inputs.push_back(N->getOperand(i));
11106     else
11107       BinOps.push_back(N->getOperand(i));
11108 
11109     if (N->getOpcode() == ISD::TRUNCATE)
11110       break;
11111   }
11112 
11113   // Visit all inputs, collect all binary operations (and, or, xor and
11114   // select) that are all fed by extensions.
11115   while (!BinOps.empty()) {
11116     SDValue BinOp = BinOps.back();
11117     BinOps.pop_back();
11118 
11119     if (!Visited.insert(BinOp.getNode()).second)
11120       continue;
11121 
11122     PromOps.push_back(BinOp);
11123 
11124     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11125       // The condition of the select is not promoted.
11126       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11127         continue;
11128       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11129         continue;
11130 
11131       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11132             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11133             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11134            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11135           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11136         Inputs.push_back(BinOp.getOperand(i));
11137       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11138                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11139                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11140                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11141                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11142                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11143                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11144                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11145                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11146         BinOps.push_back(BinOp.getOperand(i));
11147       } else {
11148         // We have an input that is not an extension or another binary
11149         // operation; we'll abort this transformation.
11150         return SDValue();
11151       }
11152     }
11153   }
11154 
11155   // Make sure that this is a self-contained cluster of operations (which
11156   // is not quite the same thing as saying that everything has only one
11157   // use).
11158   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11159     if (isa<ConstantSDNode>(Inputs[i]))
11160       continue;
11161 
11162     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11163                               UE = Inputs[i].getNode()->use_end();
11164          UI != UE; ++UI) {
11165       SDNode *User = *UI;
11166       if (User != N && !Visited.count(User))
11167         return SDValue();
11168 
11169       // Make sure that we're not going to promote the non-output-value
11170       // operand(s) or SELECT or SELECT_CC.
11171       // FIXME: Although we could sometimes handle this, and it does occur in
11172       // practice that one of the condition inputs to the select is also one of
11173       // the outputs, we currently can't deal with this.
11174       if (User->getOpcode() == ISD::SELECT) {
11175         if (User->getOperand(0) == Inputs[i])
11176           return SDValue();
11177       } else if (User->getOpcode() == ISD::SELECT_CC) {
11178         if (User->getOperand(0) == Inputs[i] ||
11179             User->getOperand(1) == Inputs[i])
11180           return SDValue();
11181       }
11182     }
11183   }
11184 
11185   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11186     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11187                               UE = PromOps[i].getNode()->use_end();
11188          UI != UE; ++UI) {
11189       SDNode *User = *UI;
11190       if (User != N && !Visited.count(User))
11191         return SDValue();
11192 
11193       // Make sure that we're not going to promote the non-output-value
11194       // operand(s) or SELECT or SELECT_CC.
11195       // FIXME: Although we could sometimes handle this, and it does occur in
11196       // practice that one of the condition inputs to the select is also one of
11197       // the outputs, we currently can't deal with this.
11198       if (User->getOpcode() == ISD::SELECT) {
11199         if (User->getOperand(0) == PromOps[i])
11200           return SDValue();
11201       } else if (User->getOpcode() == ISD::SELECT_CC) {
11202         if (User->getOperand(0) == PromOps[i] ||
11203             User->getOperand(1) == PromOps[i])
11204           return SDValue();
11205       }
11206     }
11207   }
11208 
11209   // Replace all inputs with the extension operand.
11210   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11211     // Constants may have users outside the cluster of to-be-promoted nodes,
11212     // and so we need to replace those as we do the promotions.
11213     if (isa<ConstantSDNode>(Inputs[i]))
11214       continue;
11215     else
11216       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11217   }
11218 
11219   std::list<HandleSDNode> PromOpHandles;
11220   for (auto &PromOp : PromOps)
11221     PromOpHandles.emplace_back(PromOp);
11222 
11223   // Replace all operations (these are all the same, but have a different
11224   // (i1) return type). DAG.getNode will validate that the types of
11225   // a binary operator match, so go through the list in reverse so that
11226   // we've likely promoted both operands first. Any intermediate truncations or
11227   // extensions disappear.
11228   while (!PromOpHandles.empty()) {
11229     SDValue PromOp = PromOpHandles.back().getValue();
11230     PromOpHandles.pop_back();
11231 
11232     if (PromOp.getOpcode() == ISD::TRUNCATE ||
11233         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11234         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11235         PromOp.getOpcode() == ISD::ANY_EXTEND) {
11236       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11237           PromOp.getOperand(0).getValueType() != MVT::i1) {
11238         // The operand is not yet ready (see comment below).
11239         PromOpHandles.emplace_front(PromOp);
11240         continue;
11241       }
11242 
11243       SDValue RepValue = PromOp.getOperand(0);
11244       if (isa<ConstantSDNode>(RepValue))
11245         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11246 
11247       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11248       continue;
11249     }
11250 
11251     unsigned C;
11252     switch (PromOp.getOpcode()) {
11253     default:             C = 0; break;
11254     case ISD::SELECT:    C = 1; break;
11255     case ISD::SELECT_CC: C = 2; break;
11256     }
11257 
11258     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11259          PromOp.getOperand(C).getValueType() != MVT::i1) ||
11260         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11261          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11262       // The to-be-promoted operands of this node have not yet been
11263       // promoted (this should be rare because we're going through the
11264       // list backward, but if one of the operands has several users in
11265       // this cluster of to-be-promoted nodes, it is possible).
11266       PromOpHandles.emplace_front(PromOp);
11267       continue;
11268     }
11269 
11270     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11271                                 PromOp.getNode()->op_end());
11272 
11273     // If there are any constant inputs, make sure they're replaced now.
11274     for (unsigned i = 0; i < 2; ++i)
11275       if (isa<ConstantSDNode>(Ops[C+i]))
11276         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11277 
11278     DAG.ReplaceAllUsesOfValueWith(PromOp,
11279       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11280   }
11281 
11282   // Now we're left with the initial truncation itself.
11283   if (N->getOpcode() == ISD::TRUNCATE)
11284     return N->getOperand(0);
11285 
11286   // Otherwise, this is a comparison. The operands to be compared have just
11287   // changed type (to i1), but everything else is the same.
11288   return SDValue(N, 0);
11289 }
11290 
11291 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11292                                                   DAGCombinerInfo &DCI) const {
11293   SelectionDAG &DAG = DCI.DAG;
11294   SDLoc dl(N);
11295 
11296   // If we're tracking CR bits, we need to be careful that we don't have:
11297   //   zext(binary-ops(trunc(x), trunc(y)))
11298   // or
11299   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11300   // such that we're unnecessarily moving things into CR bits that can more
11301   // efficiently stay in GPRs. Note that if we're not certain that the high
11302   // bits are set as required by the final extension, we still may need to do
11303   // some masking to get the proper behavior.
11304 
11305   // This same functionality is important on PPC64 when dealing with
11306   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11307   // the return values of functions. Because it is so similar, it is handled
11308   // here as well.
11309 
11310   if (N->getValueType(0) != MVT::i32 &&
11311       N->getValueType(0) != MVT::i64)
11312     return SDValue();
11313 
11314   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11315         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11316     return SDValue();
11317 
11318   if (N->getOperand(0).getOpcode() != ISD::AND &&
11319       N->getOperand(0).getOpcode() != ISD::OR  &&
11320       N->getOperand(0).getOpcode() != ISD::XOR &&
11321       N->getOperand(0).getOpcode() != ISD::SELECT &&
11322       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11323     return SDValue();
11324 
11325   SmallVector<SDValue, 4> Inputs;
11326   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11327   SmallPtrSet<SDNode *, 16> Visited;
11328 
11329   // Visit all inputs, collect all binary operations (and, or, xor and
11330   // select) that are all fed by truncations.
11331   while (!BinOps.empty()) {
11332     SDValue BinOp = BinOps.back();
11333     BinOps.pop_back();
11334 
11335     if (!Visited.insert(BinOp.getNode()).second)
11336       continue;
11337 
11338     PromOps.push_back(BinOp);
11339 
11340     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11341       // The condition of the select is not promoted.
11342       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11343         continue;
11344       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11345         continue;
11346 
11347       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11348           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11349         Inputs.push_back(BinOp.getOperand(i));
11350       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11351                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11352                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11353                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11354                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11355         BinOps.push_back(BinOp.getOperand(i));
11356       } else {
11357         // We have an input that is not a truncation or another binary
11358         // operation; we'll abort this transformation.
11359         return SDValue();
11360       }
11361     }
11362   }
11363 
11364   // The operands of a select that must be truncated when the select is
11365   // promoted because the operand is actually part of the to-be-promoted set.
11366   DenseMap<SDNode *, EVT> SelectTruncOp[2];
11367 
11368   // Make sure that this is a self-contained cluster of operations (which
11369   // is not quite the same thing as saying that everything has only one
11370   // use).
11371   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11372     if (isa<ConstantSDNode>(Inputs[i]))
11373       continue;
11374 
11375     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11376                               UE = Inputs[i].getNode()->use_end();
11377          UI != UE; ++UI) {
11378       SDNode *User = *UI;
11379       if (User != N && !Visited.count(User))
11380         return SDValue();
11381 
11382       // If we're going to promote the non-output-value operand(s) or SELECT or
11383       // SELECT_CC, record them for truncation.
11384       if (User->getOpcode() == ISD::SELECT) {
11385         if (User->getOperand(0) == Inputs[i])
11386           SelectTruncOp[0].insert(std::make_pair(User,
11387                                     User->getOperand(0).getValueType()));
11388       } else if (User->getOpcode() == ISD::SELECT_CC) {
11389         if (User->getOperand(0) == Inputs[i])
11390           SelectTruncOp[0].insert(std::make_pair(User,
11391                                     User->getOperand(0).getValueType()));
11392         if (User->getOperand(1) == Inputs[i])
11393           SelectTruncOp[1].insert(std::make_pair(User,
11394                                     User->getOperand(1).getValueType()));
11395       }
11396     }
11397   }
11398 
11399   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11400     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11401                               UE = PromOps[i].getNode()->use_end();
11402          UI != UE; ++UI) {
11403       SDNode *User = *UI;
11404       if (User != N && !Visited.count(User))
11405         return SDValue();
11406 
11407       // If we're going to promote the non-output-value operand(s) or SELECT or
11408       // SELECT_CC, record them for truncation.
11409       if (User->getOpcode() == ISD::SELECT) {
11410         if (User->getOperand(0) == PromOps[i])
11411           SelectTruncOp[0].insert(std::make_pair(User,
11412                                     User->getOperand(0).getValueType()));
11413       } else if (User->getOpcode() == ISD::SELECT_CC) {
11414         if (User->getOperand(0) == PromOps[i])
11415           SelectTruncOp[0].insert(std::make_pair(User,
11416                                     User->getOperand(0).getValueType()));
11417         if (User->getOperand(1) == PromOps[i])
11418           SelectTruncOp[1].insert(std::make_pair(User,
11419                                     User->getOperand(1).getValueType()));
11420       }
11421     }
11422   }
11423 
11424   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11425   bool ReallyNeedsExt = false;
11426   if (N->getOpcode() != ISD::ANY_EXTEND) {
11427     // If all of the inputs are not already sign/zero extended, then
11428     // we'll still need to do that at the end.
11429     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11430       if (isa<ConstantSDNode>(Inputs[i]))
11431         continue;
11432 
11433       unsigned OpBits =
11434         Inputs[i].getOperand(0).getValueSizeInBits();
11435       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11436 
11437       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11438            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11439                                   APInt::getHighBitsSet(OpBits,
11440                                                         OpBits-PromBits))) ||
11441           (N->getOpcode() == ISD::SIGN_EXTEND &&
11442            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11443              (OpBits-(PromBits-1)))) {
11444         ReallyNeedsExt = true;
11445         break;
11446       }
11447     }
11448   }
11449 
11450   // Replace all inputs, either with the truncation operand, or a
11451   // truncation or extension to the final output type.
11452   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11453     // Constant inputs need to be replaced with the to-be-promoted nodes that
11454     // use them because they might have users outside of the cluster of
11455     // promoted nodes.
11456     if (isa<ConstantSDNode>(Inputs[i]))
11457       continue;
11458 
11459     SDValue InSrc = Inputs[i].getOperand(0);
11460     if (Inputs[i].getValueType() == N->getValueType(0))
11461       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11462     else if (N->getOpcode() == ISD::SIGN_EXTEND)
11463       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11464         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11465     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11466       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11467         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11468     else
11469       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11470         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11471   }
11472 
11473   std::list<HandleSDNode> PromOpHandles;
11474   for (auto &PromOp : PromOps)
11475     PromOpHandles.emplace_back(PromOp);
11476 
11477   // Replace all operations (these are all the same, but have a different
11478   // (promoted) return type). DAG.getNode will validate that the types of
11479   // a binary operator match, so go through the list in reverse so that
11480   // we've likely promoted both operands first.
11481   while (!PromOpHandles.empty()) {
11482     SDValue PromOp = PromOpHandles.back().getValue();
11483     PromOpHandles.pop_back();
11484 
11485     unsigned C;
11486     switch (PromOp.getOpcode()) {
11487     default:             C = 0; break;
11488     case ISD::SELECT:    C = 1; break;
11489     case ISD::SELECT_CC: C = 2; break;
11490     }
11491 
11492     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11493          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11494         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11495          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11496       // The to-be-promoted operands of this node have not yet been
11497       // promoted (this should be rare because we're going through the
11498       // list backward, but if one of the operands has several users in
11499       // this cluster of to-be-promoted nodes, it is possible).
11500       PromOpHandles.emplace_front(PromOp);
11501       continue;
11502     }
11503 
11504     // For SELECT and SELECT_CC nodes, we do a similar check for any
11505     // to-be-promoted comparison inputs.
11506     if (PromOp.getOpcode() == ISD::SELECT ||
11507         PromOp.getOpcode() == ISD::SELECT_CC) {
11508       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11509            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11510           (SelectTruncOp[1].count(PromOp.getNode()) &&
11511            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11512         PromOpHandles.emplace_front(PromOp);
11513         continue;
11514       }
11515     }
11516 
11517     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11518                                 PromOp.getNode()->op_end());
11519 
11520     // If this node has constant inputs, then they'll need to be promoted here.
11521     for (unsigned i = 0; i < 2; ++i) {
11522       if (!isa<ConstantSDNode>(Ops[C+i]))
11523         continue;
11524       if (Ops[C+i].getValueType() == N->getValueType(0))
11525         continue;
11526 
11527       if (N->getOpcode() == ISD::SIGN_EXTEND)
11528         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11529       else if (N->getOpcode() == ISD::ZERO_EXTEND)
11530         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11531       else
11532         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11533     }
11534 
11535     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
11536     // truncate them again to the original value type.
11537     if (PromOp.getOpcode() == ISD::SELECT ||
11538         PromOp.getOpcode() == ISD::SELECT_CC) {
11539       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
11540       if (SI0 != SelectTruncOp[0].end())
11541         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
11542       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
11543       if (SI1 != SelectTruncOp[1].end())
11544         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
11545     }
11546 
11547     DAG.ReplaceAllUsesOfValueWith(PromOp,
11548       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
11549   }
11550 
11551   // Now we're left with the initial extension itself.
11552   if (!ReallyNeedsExt)
11553     return N->getOperand(0);
11554 
11555   // To zero extend, just mask off everything except for the first bit (in the
11556   // i1 case).
11557   if (N->getOpcode() == ISD::ZERO_EXTEND)
11558     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
11559                        DAG.getConstant(APInt::getLowBitsSet(
11560                                          N->getValueSizeInBits(0), PromBits),
11561                                        dl, N->getValueType(0)));
11562 
11563   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
11564          "Invalid extension type");
11565   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
11566   SDValue ShiftCst =
11567       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
11568   return DAG.getNode(
11569       ISD::SRA, dl, N->getValueType(0),
11570       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
11571       ShiftCst);
11572 }
11573 
11574 /// \brief Reduces the number of fp-to-int conversion when building a vector.
11575 ///
11576 /// If this vector is built out of floating to integer conversions,
11577 /// transform it to a vector built out of floating point values followed by a
11578 /// single floating to integer conversion of the vector.
11579 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
11580 /// becomes (fptosi (build_vector ($A, $B, ...)))
11581 SDValue PPCTargetLowering::
11582 combineElementTruncationToVectorTruncation(SDNode *N,
11583                                            DAGCombinerInfo &DCI) const {
11584   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11585          "Should be called with a BUILD_VECTOR node");
11586 
11587   SelectionDAG &DAG = DCI.DAG;
11588   SDLoc dl(N);
11589 
11590   SDValue FirstInput = N->getOperand(0);
11591   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
11592          "The input operand must be an fp-to-int conversion.");
11593 
11594   // This combine happens after legalization so the fp_to_[su]i nodes are
11595   // already converted to PPCSISD nodes.
11596   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
11597   if (FirstConversion == PPCISD::FCTIDZ ||
11598       FirstConversion == PPCISD::FCTIDUZ ||
11599       FirstConversion == PPCISD::FCTIWZ ||
11600       FirstConversion == PPCISD::FCTIWUZ) {
11601     bool IsSplat = true;
11602     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
11603       FirstConversion == PPCISD::FCTIWUZ;
11604     EVT SrcVT = FirstInput.getOperand(0).getValueType();
11605     SmallVector<SDValue, 4> Ops;
11606     EVT TargetVT = N->getValueType(0);
11607     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11608       if (N->getOperand(i).getOpcode() != PPCISD::MFVSR)
11609         return SDValue();
11610       unsigned NextConversion = N->getOperand(i).getOperand(0).getOpcode();
11611       if (NextConversion != FirstConversion)
11612         return SDValue();
11613       if (N->getOperand(i) != FirstInput)
11614         IsSplat = false;
11615     }
11616 
11617     // If this is a splat, we leave it as-is since there will be only a single
11618     // fp-to-int conversion followed by a splat of the integer. This is better
11619     // for 32-bit and smaller ints and neutral for 64-bit ints.
11620     if (IsSplat)
11621       return SDValue();
11622 
11623     // Now that we know we have the right type of node, get its operands
11624     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11625       SDValue In = N->getOperand(i).getOperand(0);
11626       // For 32-bit values, we need to add an FP_ROUND node.
11627       if (Is32Bit) {
11628         if (In.isUndef())
11629           Ops.push_back(DAG.getUNDEF(SrcVT));
11630         else {
11631           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
11632                                       MVT::f32, In.getOperand(0),
11633                                       DAG.getIntPtrConstant(1, dl));
11634           Ops.push_back(Trunc);
11635         }
11636       } else
11637         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
11638     }
11639 
11640     unsigned Opcode;
11641     if (FirstConversion == PPCISD::FCTIDZ ||
11642         FirstConversion == PPCISD::FCTIWZ)
11643       Opcode = ISD::FP_TO_SINT;
11644     else
11645       Opcode = ISD::FP_TO_UINT;
11646 
11647     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
11648     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
11649     return DAG.getNode(Opcode, dl, TargetVT, BV);
11650   }
11651   return SDValue();
11652 }
11653 
11654 /// \brief Reduce the number of loads when building a vector.
11655 ///
11656 /// Building a vector out of multiple loads can be converted to a load
11657 /// of the vector type if the loads are consecutive. If the loads are
11658 /// consecutive but in descending order, a shuffle is added at the end
11659 /// to reorder the vector.
11660 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
11661   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11662          "Should be called with a BUILD_VECTOR node");
11663 
11664   SDLoc dl(N);
11665   bool InputsAreConsecutiveLoads = true;
11666   bool InputsAreReverseConsecutive = true;
11667   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
11668   SDValue FirstInput = N->getOperand(0);
11669   bool IsRoundOfExtLoad = false;
11670 
11671   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
11672       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
11673     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
11674     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
11675   }
11676   // Not a build vector of (possibly fp_rounded) loads.
11677   if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD)
11678     return SDValue();
11679 
11680   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
11681     // If any inputs are fp_round(extload), they all must be.
11682     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
11683       return SDValue();
11684 
11685     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
11686       N->getOperand(i);
11687     if (NextInput.getOpcode() != ISD::LOAD)
11688       return SDValue();
11689 
11690     SDValue PreviousInput =
11691       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
11692     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
11693     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
11694 
11695     // If any inputs are fp_round(extload), they all must be.
11696     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
11697       return SDValue();
11698 
11699     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
11700       InputsAreConsecutiveLoads = false;
11701     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
11702       InputsAreReverseConsecutive = false;
11703 
11704     // Exit early if the loads are neither consecutive nor reverse consecutive.
11705     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
11706       return SDValue();
11707   }
11708 
11709   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
11710          "The loads cannot be both consecutive and reverse consecutive.");
11711 
11712   SDValue FirstLoadOp =
11713     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
11714   SDValue LastLoadOp =
11715     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
11716                        N->getOperand(N->getNumOperands()-1);
11717 
11718   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
11719   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
11720   if (InputsAreConsecutiveLoads) {
11721     assert(LD1 && "Input needs to be a LoadSDNode.");
11722     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
11723                        LD1->getBasePtr(), LD1->getPointerInfo(),
11724                        LD1->getAlignment());
11725   }
11726   if (InputsAreReverseConsecutive) {
11727     assert(LDL && "Input needs to be a LoadSDNode.");
11728     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
11729                                LDL->getBasePtr(), LDL->getPointerInfo(),
11730                                LDL->getAlignment());
11731     SmallVector<int, 16> Ops;
11732     for (int i = N->getNumOperands() - 1; i >= 0; i--)
11733       Ops.push_back(i);
11734 
11735     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
11736                                 DAG.getUNDEF(N->getValueType(0)), Ops);
11737   }
11738   return SDValue();
11739 }
11740 
11741 // This function adds the required vector_shuffle needed to get
11742 // the elements of the vector extract in the correct position
11743 // as specified by the CorrectElems encoding.
11744 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
11745                                       SDValue Input, uint64_t Elems,
11746                                       uint64_t CorrectElems) {
11747   SDLoc dl(N);
11748 
11749   unsigned NumElems = Input.getValueType().getVectorNumElements();
11750   SmallVector<int, 16> ShuffleMask(NumElems, -1);
11751 
11752   // Knowing the element indices being extracted from the original
11753   // vector and the order in which they're being inserted, just put
11754   // them at element indices required for the instruction.
11755   for (unsigned i = 0; i < N->getNumOperands(); i++) {
11756     if (DAG.getDataLayout().isLittleEndian())
11757       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
11758     else
11759       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
11760     CorrectElems = CorrectElems >> 8;
11761     Elems = Elems >> 8;
11762   }
11763 
11764   SDValue Shuffle =
11765       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
11766                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
11767 
11768   EVT Ty = N->getValueType(0);
11769   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
11770   return BV;
11771 }
11772 
11773 // Look for build vector patterns where input operands come from sign
11774 // extended vector_extract elements of specific indices. If the correct indices
11775 // aren't used, add a vector shuffle to fix up the indices and create a new
11776 // PPCISD:SExtVElems node which selects the vector sign extend instructions
11777 // during instruction selection.
11778 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
11779   // This array encodes the indices that the vector sign extend instructions
11780   // extract from when extending from one type to another for both BE and LE.
11781   // The right nibble of each byte corresponds to the LE incides.
11782   // and the left nibble of each byte corresponds to the BE incides.
11783   // For example: 0x3074B8FC  byte->word
11784   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
11785   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
11786   // For example: 0x000070F8  byte->double word
11787   // For LE: the allowed indices are: 0x0,0x8
11788   // For BE: the allowed indices are: 0x7,0xF
11789   uint64_t TargetElems[] = {
11790       0x3074B8FC, // b->w
11791       0x000070F8, // b->d
11792       0x10325476, // h->w
11793       0x00003074, // h->d
11794       0x00001032, // w->d
11795   };
11796 
11797   uint64_t Elems = 0;
11798   int Index;
11799   SDValue Input;
11800 
11801   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
11802     if (!Op)
11803       return false;
11804     if (Op.getOpcode() != ISD::SIGN_EXTEND)
11805       return false;
11806 
11807     SDValue Extract = Op.getOperand(0);
11808     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11809       return false;
11810 
11811     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
11812     if (!ExtOp)
11813       return false;
11814 
11815     Index = ExtOp->getZExtValue();
11816     if (Input && Input != Extract.getOperand(0))
11817       return false;
11818 
11819     if (!Input)
11820       Input = Extract.getOperand(0);
11821 
11822     Elems = Elems << 8;
11823     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
11824     Elems |= Index;
11825 
11826     return true;
11827   };
11828 
11829   // If the build vector operands aren't sign extended vector extracts,
11830   // of the same input vector, then return.
11831   for (unsigned i = 0; i < N->getNumOperands(); i++) {
11832     if (!isSExtOfVecExtract(N->getOperand(i))) {
11833       return SDValue();
11834     }
11835   }
11836 
11837   // If the vector extract indicies are not correct, add the appropriate
11838   // vector_shuffle.
11839   int TgtElemArrayIdx;
11840   int InputSize = Input.getValueType().getScalarSizeInBits();
11841   int OutputSize = N->getValueType(0).getScalarSizeInBits();
11842   if (InputSize + OutputSize == 40)
11843     TgtElemArrayIdx = 0;
11844   else if (InputSize + OutputSize == 72)
11845     TgtElemArrayIdx = 1;
11846   else if (InputSize + OutputSize == 48)
11847     TgtElemArrayIdx = 2;
11848   else if (InputSize + OutputSize == 80)
11849     TgtElemArrayIdx = 3;
11850   else if (InputSize + OutputSize == 96)
11851     TgtElemArrayIdx = 4;
11852   else
11853     return SDValue();
11854 
11855   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
11856   CorrectElems = DAG.getDataLayout().isLittleEndian()
11857                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
11858                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
11859   if (Elems != CorrectElems) {
11860     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
11861   }
11862 
11863   // Regular lowering will catch cases where a shuffle is not needed.
11864   return SDValue();
11865 }
11866 
11867 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
11868                                                  DAGCombinerInfo &DCI) const {
11869   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11870          "Should be called with a BUILD_VECTOR node");
11871 
11872   SelectionDAG &DAG = DCI.DAG;
11873   SDLoc dl(N);
11874 
11875   if (!Subtarget.hasVSX())
11876     return SDValue();
11877 
11878   // The target independent DAG combiner will leave a build_vector of
11879   // float-to-int conversions intact. We can generate MUCH better code for
11880   // a float-to-int conversion of a vector of floats.
11881   SDValue FirstInput = N->getOperand(0);
11882   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
11883     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
11884     if (Reduced)
11885       return Reduced;
11886   }
11887 
11888   // If we're building a vector out of consecutive loads, just load that
11889   // vector type.
11890   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
11891   if (Reduced)
11892     return Reduced;
11893 
11894   // If we're building a vector out of extended elements from another vector
11895   // we have P9 vector integer extend instructions.
11896   if (Subtarget.hasP9Altivec()) {
11897     Reduced = combineBVOfVecSExt(N, DAG);
11898     if (Reduced)
11899       return Reduced;
11900   }
11901 
11902 
11903   if (N->getValueType(0) != MVT::v2f64)
11904     return SDValue();
11905 
11906   // Looking for:
11907   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
11908   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
11909       FirstInput.getOpcode() != ISD::UINT_TO_FP)
11910     return SDValue();
11911   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
11912       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
11913     return SDValue();
11914   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
11915     return SDValue();
11916 
11917   SDValue Ext1 = FirstInput.getOperand(0);
11918   SDValue Ext2 = N->getOperand(1).getOperand(0);
11919   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11920      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11921     return SDValue();
11922 
11923   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
11924   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
11925   if (!Ext1Op || !Ext2Op)
11926     return SDValue();
11927   if (Ext1.getValueType() != MVT::i32 ||
11928       Ext2.getValueType() != MVT::i32)
11929   if (Ext1.getOperand(0) != Ext2.getOperand(0))
11930     return SDValue();
11931 
11932   int FirstElem = Ext1Op->getZExtValue();
11933   int SecondElem = Ext2Op->getZExtValue();
11934   int SubvecIdx;
11935   if (FirstElem == 0 && SecondElem == 1)
11936     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
11937   else if (FirstElem == 2 && SecondElem == 3)
11938     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
11939   else
11940     return SDValue();
11941 
11942   SDValue SrcVec = Ext1.getOperand(0);
11943   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
11944     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
11945   return DAG.getNode(NodeType, dl, MVT::v2f64,
11946                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
11947 }
11948 
11949 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
11950                                               DAGCombinerInfo &DCI) const {
11951   assert((N->getOpcode() == ISD::SINT_TO_FP ||
11952           N->getOpcode() == ISD::UINT_TO_FP) &&
11953          "Need an int -> FP conversion node here");
11954 
11955   if (useSoftFloat() || !Subtarget.has64BitSupport())
11956     return SDValue();
11957 
11958   SelectionDAG &DAG = DCI.DAG;
11959   SDLoc dl(N);
11960   SDValue Op(N, 0);
11961 
11962   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
11963   // from the hardware.
11964   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
11965     return SDValue();
11966   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
11967       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
11968     return SDValue();
11969 
11970   SDValue FirstOperand(Op.getOperand(0));
11971   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
11972     (FirstOperand.getValueType() == MVT::i8 ||
11973      FirstOperand.getValueType() == MVT::i16);
11974   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
11975     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
11976     bool DstDouble = Op.getValueType() == MVT::f64;
11977     unsigned ConvOp = Signed ?
11978       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
11979       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
11980     SDValue WidthConst =
11981       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
11982                             dl, false);
11983     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
11984     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
11985     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
11986                                          DAG.getVTList(MVT::f64, MVT::Other),
11987                                          Ops, MVT::i8, LDN->getMemOperand());
11988 
11989     // For signed conversion, we need to sign-extend the value in the VSR
11990     if (Signed) {
11991       SDValue ExtOps[] = { Ld, WidthConst };
11992       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
11993       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
11994     } else
11995       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
11996   }
11997 
11998 
11999   // For i32 intermediate values, unfortunately, the conversion functions
12000   // leave the upper 32 bits of the value are undefined. Within the set of
12001   // scalar instructions, we have no method for zero- or sign-extending the
12002   // value. Thus, we cannot handle i32 intermediate values here.
12003   if (Op.getOperand(0).getValueType() == MVT::i32)
12004     return SDValue();
12005 
12006   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12007          "UINT_TO_FP is supported only with FPCVT");
12008 
12009   // If we have FCFIDS, then use it when converting to single-precision.
12010   // Otherwise, convert to double-precision and then round.
12011   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12012                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12013                                                             : PPCISD::FCFIDS)
12014                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12015                                                             : PPCISD::FCFID);
12016   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12017                   ? MVT::f32
12018                   : MVT::f64;
12019 
12020   // If we're converting from a float, to an int, and back to a float again,
12021   // then we don't need the store/load pair at all.
12022   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12023        Subtarget.hasFPCVT()) ||
12024       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12025     SDValue Src = Op.getOperand(0).getOperand(0);
12026     if (Src.getValueType() == MVT::f32) {
12027       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12028       DCI.AddToWorklist(Src.getNode());
12029     } else if (Src.getValueType() != MVT::f64) {
12030       // Make sure that we don't pick up a ppc_fp128 source value.
12031       return SDValue();
12032     }
12033 
12034     unsigned FCTOp =
12035       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12036                                                         PPCISD::FCTIDUZ;
12037 
12038     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12039     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12040 
12041     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12042       FP = DAG.getNode(ISD::FP_ROUND, dl,
12043                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12044       DCI.AddToWorklist(FP.getNode());
12045     }
12046 
12047     return FP;
12048   }
12049 
12050   return SDValue();
12051 }
12052 
12053 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12054 // builtins) into loads with swaps.
12055 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12056                                               DAGCombinerInfo &DCI) const {
12057   SelectionDAG &DAG = DCI.DAG;
12058   SDLoc dl(N);
12059   SDValue Chain;
12060   SDValue Base;
12061   MachineMemOperand *MMO;
12062 
12063   switch (N->getOpcode()) {
12064   default:
12065     llvm_unreachable("Unexpected opcode for little endian VSX load");
12066   case ISD::LOAD: {
12067     LoadSDNode *LD = cast<LoadSDNode>(N);
12068     Chain = LD->getChain();
12069     Base = LD->getBasePtr();
12070     MMO = LD->getMemOperand();
12071     // If the MMO suggests this isn't a load of a full vector, leave
12072     // things alone.  For a built-in, we have to make the change for
12073     // correctness, so if there is a size problem that will be a bug.
12074     if (MMO->getSize() < 16)
12075       return SDValue();
12076     break;
12077   }
12078   case ISD::INTRINSIC_W_CHAIN: {
12079     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12080     Chain = Intrin->getChain();
12081     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12082     // us what we want. Get operand 2 instead.
12083     Base = Intrin->getOperand(2);
12084     MMO = Intrin->getMemOperand();
12085     break;
12086   }
12087   }
12088 
12089   MVT VecTy = N->getValueType(0).getSimpleVT();
12090 
12091   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12092   // aligned and the type is a vector with elements up to 4 bytes
12093   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12094       && VecTy.getScalarSizeInBits() <= 32 ) {
12095     return SDValue();
12096   }
12097 
12098   SDValue LoadOps[] = { Chain, Base };
12099   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12100                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12101                                          LoadOps, MVT::v2f64, MMO);
12102 
12103   DCI.AddToWorklist(Load.getNode());
12104   Chain = Load.getValue(1);
12105   SDValue Swap = DAG.getNode(
12106       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12107   DCI.AddToWorklist(Swap.getNode());
12108 
12109   // Add a bitcast if the resulting load type doesn't match v2f64.
12110   if (VecTy != MVT::v2f64) {
12111     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12112     DCI.AddToWorklist(N.getNode());
12113     // Package {bitcast value, swap's chain} to match Load's shape.
12114     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12115                        N, Swap.getValue(1));
12116   }
12117 
12118   return Swap;
12119 }
12120 
12121 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12122 // builtins) into stores with swaps.
12123 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12124                                                DAGCombinerInfo &DCI) const {
12125   SelectionDAG &DAG = DCI.DAG;
12126   SDLoc dl(N);
12127   SDValue Chain;
12128   SDValue Base;
12129   unsigned SrcOpnd;
12130   MachineMemOperand *MMO;
12131 
12132   switch (N->getOpcode()) {
12133   default:
12134     llvm_unreachable("Unexpected opcode for little endian VSX store");
12135   case ISD::STORE: {
12136     StoreSDNode *ST = cast<StoreSDNode>(N);
12137     Chain = ST->getChain();
12138     Base = ST->getBasePtr();
12139     MMO = ST->getMemOperand();
12140     SrcOpnd = 1;
12141     // If the MMO suggests this isn't a store of a full vector, leave
12142     // things alone.  For a built-in, we have to make the change for
12143     // correctness, so if there is a size problem that will be a bug.
12144     if (MMO->getSize() < 16)
12145       return SDValue();
12146     break;
12147   }
12148   case ISD::INTRINSIC_VOID: {
12149     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12150     Chain = Intrin->getChain();
12151     // Intrin->getBasePtr() oddly does not get what we want.
12152     Base = Intrin->getOperand(3);
12153     MMO = Intrin->getMemOperand();
12154     SrcOpnd = 2;
12155     break;
12156   }
12157   }
12158 
12159   SDValue Src = N->getOperand(SrcOpnd);
12160   MVT VecTy = Src.getValueType().getSimpleVT();
12161 
12162   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12163   // aligned and the type is a vector with elements up to 4 bytes
12164   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12165       && VecTy.getScalarSizeInBits() <= 32 ) {
12166     return SDValue();
12167   }
12168 
12169   // All stores are done as v2f64 and possible bit cast.
12170   if (VecTy != MVT::v2f64) {
12171     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12172     DCI.AddToWorklist(Src.getNode());
12173   }
12174 
12175   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12176                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12177   DCI.AddToWorklist(Swap.getNode());
12178   Chain = Swap.getValue(1);
12179   SDValue StoreOps[] = { Chain, Swap, Base };
12180   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12181                                           DAG.getVTList(MVT::Other),
12182                                           StoreOps, VecTy, MMO);
12183   DCI.AddToWorklist(Store.getNode());
12184   return Store;
12185 }
12186 
12187 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12188                                              DAGCombinerInfo &DCI) const {
12189   SelectionDAG &DAG = DCI.DAG;
12190   SDLoc dl(N);
12191   switch (N->getOpcode()) {
12192   default: break;
12193   case ISD::SHL:
12194     return combineSHL(N, DCI);
12195   case ISD::SRA:
12196     return combineSRA(N, DCI);
12197   case ISD::SRL:
12198     return combineSRL(N, DCI);
12199   case PPCISD::SHL:
12200     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12201         return N->getOperand(0);
12202     break;
12203   case PPCISD::SRL:
12204     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12205         return N->getOperand(0);
12206     break;
12207   case PPCISD::SRA:
12208     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12209       if (C->isNullValue() ||   //  0 >>s V -> 0.
12210           C->isAllOnesValue())    // -1 >>s V -> -1.
12211         return N->getOperand(0);
12212     }
12213     break;
12214   case ISD::SIGN_EXTEND:
12215   case ISD::ZERO_EXTEND:
12216   case ISD::ANY_EXTEND:
12217     return DAGCombineExtBoolTrunc(N, DCI);
12218   case ISD::TRUNCATE:
12219   case ISD::SETCC:
12220   case ISD::SELECT_CC:
12221     return DAGCombineTruncBoolExt(N, DCI);
12222   case ISD::SINT_TO_FP:
12223   case ISD::UINT_TO_FP:
12224     return combineFPToIntToFP(N, DCI);
12225   case ISD::STORE: {
12226     EVT Op1VT = N->getOperand(1).getValueType();
12227     bool ValidTypeForStoreFltAsInt = (Op1VT == MVT::i32) ||
12228       (Subtarget.hasP9Vector() && (Op1VT == MVT::i8 || Op1VT == MVT::i16));
12229 
12230     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
12231     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
12232         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
12233         ValidTypeForStoreFltAsInt &&
12234         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
12235       SDValue Val = N->getOperand(1).getOperand(0);
12236       if (Val.getValueType() == MVT::f32) {
12237         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12238         DCI.AddToWorklist(Val.getNode());
12239       }
12240       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
12241       DCI.AddToWorklist(Val.getNode());
12242 
12243       if (Op1VT == MVT::i32) {
12244         SDValue Ops[] = {
12245           N->getOperand(0), Val, N->getOperand(2),
12246           DAG.getValueType(N->getOperand(1).getValueType())
12247         };
12248 
12249         Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
12250                 DAG.getVTList(MVT::Other), Ops,
12251                 cast<StoreSDNode>(N)->getMemoryVT(),
12252                 cast<StoreSDNode>(N)->getMemOperand());
12253       } else {
12254         unsigned WidthInBytes =
12255           N->getOperand(1).getValueType() == MVT::i8 ? 1 : 2;
12256         SDValue WidthConst = DAG.getIntPtrConstant(WidthInBytes, dl, false);
12257 
12258         SDValue Ops[] = {
12259           N->getOperand(0), Val, N->getOperand(2), WidthConst,
12260           DAG.getValueType(N->getOperand(1).getValueType())
12261         };
12262         Val = DAG.getMemIntrinsicNode(PPCISD::STXSIX, dl,
12263                                       DAG.getVTList(MVT::Other), Ops,
12264                                       cast<StoreSDNode>(N)->getMemoryVT(),
12265                                       cast<StoreSDNode>(N)->getMemOperand());
12266       }
12267 
12268       DCI.AddToWorklist(Val.getNode());
12269       return Val;
12270     }
12271 
12272     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12273     if (cast<StoreSDNode>(N)->isUnindexed() &&
12274         N->getOperand(1).getOpcode() == ISD::BSWAP &&
12275         N->getOperand(1).getNode()->hasOneUse() &&
12276         (N->getOperand(1).getValueType() == MVT::i32 ||
12277          N->getOperand(1).getValueType() == MVT::i16 ||
12278          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
12279           N->getOperand(1).getValueType() == MVT::i64))) {
12280       SDValue BSwapOp = N->getOperand(1).getOperand(0);
12281       // Do an any-extend to 32-bits if this is a half-word input.
12282       if (BSwapOp.getValueType() == MVT::i16)
12283         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12284 
12285       // If the type of BSWAP operand is wider than stored memory width
12286       // it need to be shifted to the right side before STBRX.
12287       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12288       if (Op1VT.bitsGT(mVT)) {
12289         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12290         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12291                               DAG.getConstant(Shift, dl, MVT::i32));
12292         // Need to truncate if this is a bswap of i64 stored as i32/i16.
12293         if (Op1VT == MVT::i64)
12294           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12295       }
12296 
12297       SDValue Ops[] = {
12298         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12299       };
12300       return
12301         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12302                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12303                                 cast<StoreSDNode>(N)->getMemOperand());
12304     }
12305 
12306     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
12307     // So it can increase the chance of CSE constant construction.
12308     EVT VT = N->getOperand(1).getValueType();
12309     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
12310         isa<ConstantSDNode>(N->getOperand(1)) && VT == MVT::i32) {
12311       // Need to sign-extended to 64-bits to handle negative values.
12312       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
12313       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
12314                                     MemVT.getSizeInBits());
12315       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
12316 
12317       // DAG.getTruncStore() can't be used here because it doesn't accept
12318       // the general (base + offset) addressing mode.
12319       // So we use UpdateNodeOperands and setTruncatingStore instead.
12320       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
12321                              N->getOperand(3));
12322       cast<StoreSDNode>(N)->setTruncatingStore(true);
12323       return SDValue(N, 0);
12324     }
12325 
12326     // For little endian, VSX stores require generating xxswapd/lxvd2x.
12327     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12328     if (VT.isSimple()) {
12329       MVT StoreVT = VT.getSimpleVT();
12330       if (Subtarget.needsSwapsForVSXMemOps() &&
12331           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12332            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12333         return expandVSXStoreForLE(N, DCI);
12334     }
12335     break;
12336   }
12337   case ISD::LOAD: {
12338     LoadSDNode *LD = cast<LoadSDNode>(N);
12339     EVT VT = LD->getValueType(0);
12340 
12341     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12342     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12343     if (VT.isSimple()) {
12344       MVT LoadVT = VT.getSimpleVT();
12345       if (Subtarget.needsSwapsForVSXMemOps() &&
12346           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12347            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12348         return expandVSXLoadForLE(N, DCI);
12349     }
12350 
12351     // We sometimes end up with a 64-bit integer load, from which we extract
12352     // two single-precision floating-point numbers. This happens with
12353     // std::complex<float>, and other similar structures, because of the way we
12354     // canonicalize structure copies. However, if we lack direct moves,
12355     // then the final bitcasts from the extracted integer values to the
12356     // floating-point numbers turn into store/load pairs. Even with direct moves,
12357     // just loading the two floating-point numbers is likely better.
12358     auto ReplaceTwoFloatLoad = [&]() {
12359       if (VT != MVT::i64)
12360         return false;
12361 
12362       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12363           LD->isVolatile())
12364         return false;
12365 
12366       //  We're looking for a sequence like this:
12367       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12368       //      t16: i64 = srl t13, Constant:i32<32>
12369       //    t17: i32 = truncate t16
12370       //  t18: f32 = bitcast t17
12371       //    t19: i32 = truncate t13
12372       //  t20: f32 = bitcast t19
12373 
12374       if (!LD->hasNUsesOfValue(2, 0))
12375         return false;
12376 
12377       auto UI = LD->use_begin();
12378       while (UI.getUse().getResNo() != 0) ++UI;
12379       SDNode *Trunc = *UI++;
12380       while (UI.getUse().getResNo() != 0) ++UI;
12381       SDNode *RightShift = *UI;
12382       if (Trunc->getOpcode() != ISD::TRUNCATE)
12383         std::swap(Trunc, RightShift);
12384 
12385       if (Trunc->getOpcode() != ISD::TRUNCATE ||
12386           Trunc->getValueType(0) != MVT::i32 ||
12387           !Trunc->hasOneUse())
12388         return false;
12389       if (RightShift->getOpcode() != ISD::SRL ||
12390           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12391           RightShift->getConstantOperandVal(1) != 32 ||
12392           !RightShift->hasOneUse())
12393         return false;
12394 
12395       SDNode *Trunc2 = *RightShift->use_begin();
12396       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12397           Trunc2->getValueType(0) != MVT::i32 ||
12398           !Trunc2->hasOneUse())
12399         return false;
12400 
12401       SDNode *Bitcast = *Trunc->use_begin();
12402       SDNode *Bitcast2 = *Trunc2->use_begin();
12403 
12404       if (Bitcast->getOpcode() != ISD::BITCAST ||
12405           Bitcast->getValueType(0) != MVT::f32)
12406         return false;
12407       if (Bitcast2->getOpcode() != ISD::BITCAST ||
12408           Bitcast2->getValueType(0) != MVT::f32)
12409         return false;
12410 
12411       if (Subtarget.isLittleEndian())
12412         std::swap(Bitcast, Bitcast2);
12413 
12414       // Bitcast has the second float (in memory-layout order) and Bitcast2
12415       // has the first one.
12416 
12417       SDValue BasePtr = LD->getBasePtr();
12418       if (LD->isIndexed()) {
12419         assert(LD->getAddressingMode() == ISD::PRE_INC &&
12420                "Non-pre-inc AM on PPC?");
12421         BasePtr =
12422           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12423                       LD->getOffset());
12424       }
12425 
12426       auto MMOFlags =
12427           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12428       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12429                                       LD->getPointerInfo(), LD->getAlignment(),
12430                                       MMOFlags, LD->getAAInfo());
12431       SDValue AddPtr =
12432         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12433                     BasePtr, DAG.getIntPtrConstant(4, dl));
12434       SDValue FloatLoad2 = DAG.getLoad(
12435           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12436           LD->getPointerInfo().getWithOffset(4),
12437           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12438 
12439       if (LD->isIndexed()) {
12440         // Note that DAGCombine should re-form any pre-increment load(s) from
12441         // what is produced here if that makes sense.
12442         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
12443       }
12444 
12445       DCI.CombineTo(Bitcast2, FloatLoad);
12446       DCI.CombineTo(Bitcast, FloatLoad2);
12447 
12448       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
12449                                     SDValue(FloatLoad2.getNode(), 1));
12450       return true;
12451     };
12452 
12453     if (ReplaceTwoFloatLoad())
12454       return SDValue(N, 0);
12455 
12456     EVT MemVT = LD->getMemoryVT();
12457     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
12458     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
12459     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
12460     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
12461     if (LD->isUnindexed() && VT.isVector() &&
12462         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
12463           // P8 and later hardware should just use LOAD.
12464           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
12465                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
12466          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
12467           LD->getAlignment() >= ScalarABIAlignment)) &&
12468         LD->getAlignment() < ABIAlignment) {
12469       // This is a type-legal unaligned Altivec or QPX load.
12470       SDValue Chain = LD->getChain();
12471       SDValue Ptr = LD->getBasePtr();
12472       bool isLittleEndian = Subtarget.isLittleEndian();
12473 
12474       // This implements the loading of unaligned vectors as described in
12475       // the venerable Apple Velocity Engine overview. Specifically:
12476       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
12477       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
12478       //
12479       // The general idea is to expand a sequence of one or more unaligned
12480       // loads into an alignment-based permutation-control instruction (lvsl
12481       // or lvsr), a series of regular vector loads (which always truncate
12482       // their input address to an aligned address), and a series of
12483       // permutations.  The results of these permutations are the requested
12484       // loaded values.  The trick is that the last "extra" load is not taken
12485       // from the address you might suspect (sizeof(vector) bytes after the
12486       // last requested load), but rather sizeof(vector) - 1 bytes after the
12487       // last requested vector. The point of this is to avoid a page fault if
12488       // the base address happened to be aligned. This works because if the
12489       // base address is aligned, then adding less than a full vector length
12490       // will cause the last vector in the sequence to be (re)loaded.
12491       // Otherwise, the next vector will be fetched as you might suspect was
12492       // necessary.
12493 
12494       // We might be able to reuse the permutation generation from
12495       // a different base address offset from this one by an aligned amount.
12496       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
12497       // optimization later.
12498       Intrinsic::ID Intr, IntrLD, IntrPerm;
12499       MVT PermCntlTy, PermTy, LDTy;
12500       if (Subtarget.hasAltivec()) {
12501         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
12502                                  Intrinsic::ppc_altivec_lvsl;
12503         IntrLD = Intrinsic::ppc_altivec_lvx;
12504         IntrPerm = Intrinsic::ppc_altivec_vperm;
12505         PermCntlTy = MVT::v16i8;
12506         PermTy = MVT::v4i32;
12507         LDTy = MVT::v4i32;
12508       } else {
12509         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
12510                                        Intrinsic::ppc_qpx_qvlpcls;
12511         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
12512                                        Intrinsic::ppc_qpx_qvlfs;
12513         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
12514         PermCntlTy = MVT::v4f64;
12515         PermTy = MVT::v4f64;
12516         LDTy = MemVT.getSimpleVT();
12517       }
12518 
12519       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
12520 
12521       // Create the new MMO for the new base load. It is like the original MMO,
12522       // but represents an area in memory almost twice the vector size centered
12523       // on the original address. If the address is unaligned, we might start
12524       // reading up to (sizeof(vector)-1) bytes below the address of the
12525       // original unaligned load.
12526       MachineFunction &MF = DAG.getMachineFunction();
12527       MachineMemOperand *BaseMMO =
12528         MF.getMachineMemOperand(LD->getMemOperand(),
12529                                 -(long)MemVT.getStoreSize()+1,
12530                                 2*MemVT.getStoreSize()-1);
12531 
12532       // Create the new base load.
12533       SDValue LDXIntID =
12534           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
12535       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
12536       SDValue BaseLoad =
12537         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12538                                 DAG.getVTList(PermTy, MVT::Other),
12539                                 BaseLoadOps, LDTy, BaseMMO);
12540 
12541       // Note that the value of IncOffset (which is provided to the next
12542       // load's pointer info offset value, and thus used to calculate the
12543       // alignment), and the value of IncValue (which is actually used to
12544       // increment the pointer value) are different! This is because we
12545       // require the next load to appear to be aligned, even though it
12546       // is actually offset from the base pointer by a lesser amount.
12547       int IncOffset = VT.getSizeInBits() / 8;
12548       int IncValue = IncOffset;
12549 
12550       // Walk (both up and down) the chain looking for another load at the real
12551       // (aligned) offset (the alignment of the other load does not matter in
12552       // this case). If found, then do not use the offset reduction trick, as
12553       // that will prevent the loads from being later combined (as they would
12554       // otherwise be duplicates).
12555       if (!findConsecutiveLoad(LD, DAG))
12556         --IncValue;
12557 
12558       SDValue Increment =
12559           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
12560       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
12561 
12562       MachineMemOperand *ExtraMMO =
12563         MF.getMachineMemOperand(LD->getMemOperand(),
12564                                 1, 2*MemVT.getStoreSize()-1);
12565       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
12566       SDValue ExtraLoad =
12567         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12568                                 DAG.getVTList(PermTy, MVT::Other),
12569                                 ExtraLoadOps, LDTy, ExtraMMO);
12570 
12571       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
12572         BaseLoad.getValue(1), ExtraLoad.getValue(1));
12573 
12574       // Because vperm has a big-endian bias, we must reverse the order
12575       // of the input vectors and complement the permute control vector
12576       // when generating little endian code.  We have already handled the
12577       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
12578       // and ExtraLoad here.
12579       SDValue Perm;
12580       if (isLittleEndian)
12581         Perm = BuildIntrinsicOp(IntrPerm,
12582                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
12583       else
12584         Perm = BuildIntrinsicOp(IntrPerm,
12585                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
12586 
12587       if (VT != PermTy)
12588         Perm = Subtarget.hasAltivec() ?
12589                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
12590                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
12591                                DAG.getTargetConstant(1, dl, MVT::i64));
12592                                // second argument is 1 because this rounding
12593                                // is always exact.
12594 
12595       // The output of the permutation is our loaded result, the TokenFactor is
12596       // our new chain.
12597       DCI.CombineTo(N, Perm, TF);
12598       return SDValue(N, 0);
12599     }
12600     }
12601     break;
12602     case ISD::INTRINSIC_WO_CHAIN: {
12603       bool isLittleEndian = Subtarget.isLittleEndian();
12604       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12605       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
12606                                            : Intrinsic::ppc_altivec_lvsl);
12607       if ((IID == Intr ||
12608            IID == Intrinsic::ppc_qpx_qvlpcld  ||
12609            IID == Intrinsic::ppc_qpx_qvlpcls) &&
12610         N->getOperand(1)->getOpcode() == ISD::ADD) {
12611         SDValue Add = N->getOperand(1);
12612 
12613         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
12614                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
12615 
12616         if (DAG.MaskedValueIsZero(Add->getOperand(1),
12617                                   APInt::getAllOnesValue(Bits /* alignment */)
12618                                       .zext(Add.getScalarValueSizeInBits()))) {
12619           SDNode *BasePtr = Add->getOperand(0).getNode();
12620           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12621                                     UE = BasePtr->use_end();
12622                UI != UE; ++UI) {
12623             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12624                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
12625               // We've found another LVSL/LVSR, and this address is an aligned
12626               // multiple of that one. The results will be the same, so use the
12627               // one we've just found instead.
12628 
12629               return SDValue(*UI, 0);
12630             }
12631           }
12632         }
12633 
12634         if (isa<ConstantSDNode>(Add->getOperand(1))) {
12635           SDNode *BasePtr = Add->getOperand(0).getNode();
12636           for (SDNode::use_iterator UI = BasePtr->use_begin(),
12637                UE = BasePtr->use_end(); UI != UE; ++UI) {
12638             if (UI->getOpcode() == ISD::ADD &&
12639                 isa<ConstantSDNode>(UI->getOperand(1)) &&
12640                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
12641                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
12642                 (1ULL << Bits) == 0) {
12643               SDNode *OtherAdd = *UI;
12644               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
12645                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
12646                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12647                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
12648                   return SDValue(*VI, 0);
12649                 }
12650               }
12651             }
12652           }
12653         }
12654       }
12655     }
12656 
12657     break;
12658   case ISD::INTRINSIC_W_CHAIN:
12659     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12660     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12661     if (Subtarget.needsSwapsForVSXMemOps()) {
12662       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12663       default:
12664         break;
12665       case Intrinsic::ppc_vsx_lxvw4x:
12666       case Intrinsic::ppc_vsx_lxvd2x:
12667         return expandVSXLoadForLE(N, DCI);
12668       }
12669     }
12670     break;
12671   case ISD::INTRINSIC_VOID:
12672     // For little endian, VSX stores require generating xxswapd/stxvd2x.
12673     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12674     if (Subtarget.needsSwapsForVSXMemOps()) {
12675       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12676       default:
12677         break;
12678       case Intrinsic::ppc_vsx_stxvw4x:
12679       case Intrinsic::ppc_vsx_stxvd2x:
12680         return expandVSXStoreForLE(N, DCI);
12681       }
12682     }
12683     break;
12684   case ISD::BSWAP:
12685     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
12686     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
12687         N->getOperand(0).hasOneUse() &&
12688         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
12689          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
12690           N->getValueType(0) == MVT::i64))) {
12691       SDValue Load = N->getOperand(0);
12692       LoadSDNode *LD = cast<LoadSDNode>(Load);
12693       // Create the byte-swapping load.
12694       SDValue Ops[] = {
12695         LD->getChain(),    // Chain
12696         LD->getBasePtr(),  // Ptr
12697         DAG.getValueType(N->getValueType(0)) // VT
12698       };
12699       SDValue BSLoad =
12700         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
12701                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
12702                                               MVT::i64 : MVT::i32, MVT::Other),
12703                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
12704 
12705       // If this is an i16 load, insert the truncate.
12706       SDValue ResVal = BSLoad;
12707       if (N->getValueType(0) == MVT::i16)
12708         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
12709 
12710       // First, combine the bswap away.  This makes the value produced by the
12711       // load dead.
12712       DCI.CombineTo(N, ResVal);
12713 
12714       // Next, combine the load away, we give it a bogus result value but a real
12715       // chain result.  The result value is dead because the bswap is dead.
12716       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
12717 
12718       // Return N so it doesn't get rechecked!
12719       return SDValue(N, 0);
12720     }
12721     break;
12722   case PPCISD::VCMP:
12723     // If a VCMPo node already exists with exactly the same operands as this
12724     // node, use its result instead of this node (VCMPo computes both a CR6 and
12725     // a normal output).
12726     //
12727     if (!N->getOperand(0).hasOneUse() &&
12728         !N->getOperand(1).hasOneUse() &&
12729         !N->getOperand(2).hasOneUse()) {
12730 
12731       // Scan all of the users of the LHS, looking for VCMPo's that match.
12732       SDNode *VCMPoNode = nullptr;
12733 
12734       SDNode *LHSN = N->getOperand(0).getNode();
12735       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
12736            UI != E; ++UI)
12737         if (UI->getOpcode() == PPCISD::VCMPo &&
12738             UI->getOperand(1) == N->getOperand(1) &&
12739             UI->getOperand(2) == N->getOperand(2) &&
12740             UI->getOperand(0) == N->getOperand(0)) {
12741           VCMPoNode = *UI;
12742           break;
12743         }
12744 
12745       // If there is no VCMPo node, or if the flag value has a single use, don't
12746       // transform this.
12747       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
12748         break;
12749 
12750       // Look at the (necessarily single) use of the flag value.  If it has a
12751       // chain, this transformation is more complex.  Note that multiple things
12752       // could use the value result, which we should ignore.
12753       SDNode *FlagUser = nullptr;
12754       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
12755            FlagUser == nullptr; ++UI) {
12756         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
12757         SDNode *User = *UI;
12758         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
12759           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
12760             FlagUser = User;
12761             break;
12762           }
12763         }
12764       }
12765 
12766       // If the user is a MFOCRF instruction, we know this is safe.
12767       // Otherwise we give up for right now.
12768       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
12769         return SDValue(VCMPoNode, 0);
12770     }
12771     break;
12772   case ISD::BRCOND: {
12773     SDValue Cond = N->getOperand(1);
12774     SDValue Target = N->getOperand(2);
12775 
12776     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12777         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
12778           Intrinsic::ppc_is_decremented_ctr_nonzero) {
12779 
12780       // We now need to make the intrinsic dead (it cannot be instruction
12781       // selected).
12782       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
12783       assert(Cond.getNode()->hasOneUse() &&
12784              "Counter decrement has more than one use");
12785 
12786       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
12787                          N->getOperand(0), Target);
12788     }
12789   }
12790   break;
12791   case ISD::BR_CC: {
12792     // If this is a branch on an altivec predicate comparison, lower this so
12793     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
12794     // lowering is done pre-legalize, because the legalizer lowers the predicate
12795     // compare down to code that is difficult to reassemble.
12796     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
12797     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
12798 
12799     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
12800     // value. If so, pass-through the AND to get to the intrinsic.
12801     if (LHS.getOpcode() == ISD::AND &&
12802         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12803         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
12804           Intrinsic::ppc_is_decremented_ctr_nonzero &&
12805         isa<ConstantSDNode>(LHS.getOperand(1)) &&
12806         !isNullConstant(LHS.getOperand(1)))
12807       LHS = LHS.getOperand(0);
12808 
12809     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
12810         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
12811           Intrinsic::ppc_is_decremented_ctr_nonzero &&
12812         isa<ConstantSDNode>(RHS)) {
12813       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
12814              "Counter decrement comparison is not EQ or NE");
12815 
12816       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
12817       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
12818                     (CC == ISD::SETNE && !Val);
12819 
12820       // We now need to make the intrinsic dead (it cannot be instruction
12821       // selected).
12822       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
12823       assert(LHS.getNode()->hasOneUse() &&
12824              "Counter decrement has more than one use");
12825 
12826       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
12827                          N->getOperand(0), N->getOperand(4));
12828     }
12829 
12830     int CompareOpc;
12831     bool isDot;
12832 
12833     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12834         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
12835         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
12836       assert(isDot && "Can't compare against a vector result!");
12837 
12838       // If this is a comparison against something other than 0/1, then we know
12839       // that the condition is never/always true.
12840       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
12841       if (Val != 0 && Val != 1) {
12842         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
12843           return N->getOperand(0);
12844         // Always !=, turn it into an unconditional branch.
12845         return DAG.getNode(ISD::BR, dl, MVT::Other,
12846                            N->getOperand(0), N->getOperand(4));
12847       }
12848 
12849       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
12850 
12851       // Create the PPCISD altivec 'dot' comparison node.
12852       SDValue Ops[] = {
12853         LHS.getOperand(2),  // LHS of compare
12854         LHS.getOperand(3),  // RHS of compare
12855         DAG.getConstant(CompareOpc, dl, MVT::i32)
12856       };
12857       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
12858       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
12859 
12860       // Unpack the result based on how the target uses it.
12861       PPC::Predicate CompOpc;
12862       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
12863       default:  // Can't happen, don't crash on invalid number though.
12864       case 0:   // Branch on the value of the EQ bit of CR6.
12865         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
12866         break;
12867       case 1:   // Branch on the inverted value of the EQ bit of CR6.
12868         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
12869         break;
12870       case 2:   // Branch on the value of the LT bit of CR6.
12871         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
12872         break;
12873       case 3:   // Branch on the inverted value of the LT bit of CR6.
12874         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
12875         break;
12876       }
12877 
12878       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
12879                          DAG.getConstant(CompOpc, dl, MVT::i32),
12880                          DAG.getRegister(PPC::CR6, MVT::i32),
12881                          N->getOperand(4), CompNode.getValue(1));
12882     }
12883     break;
12884   }
12885   case ISD::BUILD_VECTOR:
12886     return DAGCombineBuildVector(N, DCI);
12887   }
12888 
12889   return SDValue();
12890 }
12891 
12892 SDValue
12893 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
12894                                   SelectionDAG &DAG,
12895                                   std::vector<SDNode *> *Created) const {
12896   // fold (sdiv X, pow2)
12897   EVT VT = N->getValueType(0);
12898   if (VT == MVT::i64 && !Subtarget.isPPC64())
12899     return SDValue();
12900   if ((VT != MVT::i32 && VT != MVT::i64) ||
12901       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
12902     return SDValue();
12903 
12904   SDLoc DL(N);
12905   SDValue N0 = N->getOperand(0);
12906 
12907   bool IsNegPow2 = (-Divisor).isPowerOf2();
12908   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
12909   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
12910 
12911   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
12912   if (Created)
12913     Created->push_back(Op.getNode());
12914 
12915   if (IsNegPow2) {
12916     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
12917     if (Created)
12918       Created->push_back(Op.getNode());
12919   }
12920 
12921   return Op;
12922 }
12923 
12924 //===----------------------------------------------------------------------===//
12925 // Inline Assembly Support
12926 //===----------------------------------------------------------------------===//
12927 
12928 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
12929                                                       KnownBits &Known,
12930                                                       const APInt &DemandedElts,
12931                                                       const SelectionDAG &DAG,
12932                                                       unsigned Depth) const {
12933   Known.resetAll();
12934   switch (Op.getOpcode()) {
12935   default: break;
12936   case PPCISD::LBRX: {
12937     // lhbrx is known to have the top bits cleared out.
12938     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
12939       Known.Zero = 0xFFFF0000;
12940     break;
12941   }
12942   case ISD::INTRINSIC_WO_CHAIN: {
12943     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
12944     default: break;
12945     case Intrinsic::ppc_altivec_vcmpbfp_p:
12946     case Intrinsic::ppc_altivec_vcmpeqfp_p:
12947     case Intrinsic::ppc_altivec_vcmpequb_p:
12948     case Intrinsic::ppc_altivec_vcmpequh_p:
12949     case Intrinsic::ppc_altivec_vcmpequw_p:
12950     case Intrinsic::ppc_altivec_vcmpequd_p:
12951     case Intrinsic::ppc_altivec_vcmpgefp_p:
12952     case Intrinsic::ppc_altivec_vcmpgtfp_p:
12953     case Intrinsic::ppc_altivec_vcmpgtsb_p:
12954     case Intrinsic::ppc_altivec_vcmpgtsh_p:
12955     case Intrinsic::ppc_altivec_vcmpgtsw_p:
12956     case Intrinsic::ppc_altivec_vcmpgtsd_p:
12957     case Intrinsic::ppc_altivec_vcmpgtub_p:
12958     case Intrinsic::ppc_altivec_vcmpgtuh_p:
12959     case Intrinsic::ppc_altivec_vcmpgtuw_p:
12960     case Intrinsic::ppc_altivec_vcmpgtud_p:
12961       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
12962       break;
12963     }
12964   }
12965   }
12966 }
12967 
12968 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
12969   switch (Subtarget.getDarwinDirective()) {
12970   default: break;
12971   case PPC::DIR_970:
12972   case PPC::DIR_PWR4:
12973   case PPC::DIR_PWR5:
12974   case PPC::DIR_PWR5X:
12975   case PPC::DIR_PWR6:
12976   case PPC::DIR_PWR6X:
12977   case PPC::DIR_PWR7:
12978   case PPC::DIR_PWR8:
12979   case PPC::DIR_PWR9: {
12980     if (!ML)
12981       break;
12982 
12983     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
12984 
12985     // For small loops (between 5 and 8 instructions), align to a 32-byte
12986     // boundary so that the entire loop fits in one instruction-cache line.
12987     uint64_t LoopSize = 0;
12988     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
12989       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
12990         LoopSize += TII->getInstSizeInBytes(*J);
12991         if (LoopSize > 32)
12992           break;
12993       }
12994 
12995     if (LoopSize > 16 && LoopSize <= 32)
12996       return 5;
12997 
12998     break;
12999   }
13000   }
13001 
13002   return TargetLowering::getPrefLoopAlignment(ML);
13003 }
13004 
13005 /// getConstraintType - Given a constraint, return the type of
13006 /// constraint it is for this target.
13007 PPCTargetLowering::ConstraintType
13008 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13009   if (Constraint.size() == 1) {
13010     switch (Constraint[0]) {
13011     default: break;
13012     case 'b':
13013     case 'r':
13014     case 'f':
13015     case 'd':
13016     case 'v':
13017     case 'y':
13018       return C_RegisterClass;
13019     case 'Z':
13020       // FIXME: While Z does indicate a memory constraint, it specifically
13021       // indicates an r+r address (used in conjunction with the 'y' modifier
13022       // in the replacement string). Currently, we're forcing the base
13023       // register to be r0 in the asm printer (which is interpreted as zero)
13024       // and forming the complete address in the second register. This is
13025       // suboptimal.
13026       return C_Memory;
13027     }
13028   } else if (Constraint == "wc") { // individual CR bits.
13029     return C_RegisterClass;
13030   } else if (Constraint == "wa" || Constraint == "wd" ||
13031              Constraint == "wf" || Constraint == "ws") {
13032     return C_RegisterClass; // VSX registers.
13033   }
13034   return TargetLowering::getConstraintType(Constraint);
13035 }
13036 
13037 /// Examine constraint type and operand type and determine a weight value.
13038 /// This object must already have been set up with the operand type
13039 /// and the current alternative constraint selected.
13040 TargetLowering::ConstraintWeight
13041 PPCTargetLowering::getSingleConstraintMatchWeight(
13042     AsmOperandInfo &info, const char *constraint) const {
13043   ConstraintWeight weight = CW_Invalid;
13044   Value *CallOperandVal = info.CallOperandVal;
13045     // If we don't have a value, we can't do a match,
13046     // but allow it at the lowest weight.
13047   if (!CallOperandVal)
13048     return CW_Default;
13049   Type *type = CallOperandVal->getType();
13050 
13051   // Look at the constraint type.
13052   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13053     return CW_Register; // an individual CR bit.
13054   else if ((StringRef(constraint) == "wa" ||
13055             StringRef(constraint) == "wd" ||
13056             StringRef(constraint) == "wf") &&
13057            type->isVectorTy())
13058     return CW_Register;
13059   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13060     return CW_Register;
13061 
13062   switch (*constraint) {
13063   default:
13064     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13065     break;
13066   case 'b':
13067     if (type->isIntegerTy())
13068       weight = CW_Register;
13069     break;
13070   case 'f':
13071     if (type->isFloatTy())
13072       weight = CW_Register;
13073     break;
13074   case 'd':
13075     if (type->isDoubleTy())
13076       weight = CW_Register;
13077     break;
13078   case 'v':
13079     if (type->isVectorTy())
13080       weight = CW_Register;
13081     break;
13082   case 'y':
13083     weight = CW_Register;
13084     break;
13085   case 'Z':
13086     weight = CW_Memory;
13087     break;
13088   }
13089   return weight;
13090 }
13091 
13092 std::pair<unsigned, const TargetRegisterClass *>
13093 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13094                                                 StringRef Constraint,
13095                                                 MVT VT) const {
13096   if (Constraint.size() == 1) {
13097     // GCC RS6000 Constraint Letters
13098     switch (Constraint[0]) {
13099     case 'b':   // R1-R31
13100       if (VT == MVT::i64 && Subtarget.isPPC64())
13101         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
13102       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
13103     case 'r':   // R0-R31
13104       if (VT == MVT::i64 && Subtarget.isPPC64())
13105         return std::make_pair(0U, &PPC::G8RCRegClass);
13106       return std::make_pair(0U, &PPC::GPRCRegClass);
13107     // 'd' and 'f' constraints are both defined to be "the floating point
13108     // registers", where one is for 32-bit and the other for 64-bit. We don't
13109     // really care overly much here so just give them all the same reg classes.
13110     case 'd':
13111     case 'f':
13112       if (VT == MVT::f32 || VT == MVT::i32)
13113         return std::make_pair(0U, &PPC::F4RCRegClass);
13114       if (VT == MVT::f64 || VT == MVT::i64)
13115         return std::make_pair(0U, &PPC::F8RCRegClass);
13116       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13117         return std::make_pair(0U, &PPC::QFRCRegClass);
13118       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13119         return std::make_pair(0U, &PPC::QSRCRegClass);
13120       break;
13121     case 'v':
13122       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13123         return std::make_pair(0U, &PPC::QFRCRegClass);
13124       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13125         return std::make_pair(0U, &PPC::QSRCRegClass);
13126       if (Subtarget.hasAltivec())
13127         return std::make_pair(0U, &PPC::VRRCRegClass);
13128       break;
13129     case 'y':   // crrc
13130       return std::make_pair(0U, &PPC::CRRCRegClass);
13131     }
13132   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13133     // An individual CR bit.
13134     return std::make_pair(0U, &PPC::CRBITRCRegClass);
13135   } else if ((Constraint == "wa" || Constraint == "wd" ||
13136              Constraint == "wf") && Subtarget.hasVSX()) {
13137     return std::make_pair(0U, &PPC::VSRCRegClass);
13138   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13139     if (VT == MVT::f32 && Subtarget.hasP8Vector())
13140       return std::make_pair(0U, &PPC::VSSRCRegClass);
13141     else
13142       return std::make_pair(0U, &PPC::VSFRCRegClass);
13143   }
13144 
13145   std::pair<unsigned, const TargetRegisterClass *> R =
13146       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13147 
13148   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13149   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13150   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13151   // register.
13152   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13153   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13154   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13155       PPC::GPRCRegClass.contains(R.first))
13156     return std::make_pair(TRI->getMatchingSuperReg(R.first,
13157                             PPC::sub_32, &PPC::G8RCRegClass),
13158                           &PPC::G8RCRegClass);
13159 
13160   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13161   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13162     R.first = PPC::CR0;
13163     R.second = &PPC::CRRCRegClass;
13164   }
13165 
13166   return R;
13167 }
13168 
13169 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13170 /// vector.  If it is invalid, don't add anything to Ops.
13171 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13172                                                      std::string &Constraint,
13173                                                      std::vector<SDValue>&Ops,
13174                                                      SelectionDAG &DAG) const {
13175   SDValue Result;
13176 
13177   // Only support length 1 constraints.
13178   if (Constraint.length() > 1) return;
13179 
13180   char Letter = Constraint[0];
13181   switch (Letter) {
13182   default: break;
13183   case 'I':
13184   case 'J':
13185   case 'K':
13186   case 'L':
13187   case 'M':
13188   case 'N':
13189   case 'O':
13190   case 'P': {
13191     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13192     if (!CST) return; // Must be an immediate to match.
13193     SDLoc dl(Op);
13194     int64_t Value = CST->getSExtValue();
13195     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13196                          // numbers are printed as such.
13197     switch (Letter) {
13198     default: llvm_unreachable("Unknown constraint letter!");
13199     case 'I':  // "I" is a signed 16-bit constant.
13200       if (isInt<16>(Value))
13201         Result = DAG.getTargetConstant(Value, dl, TCVT);
13202       break;
13203     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
13204       if (isShiftedUInt<16, 16>(Value))
13205         Result = DAG.getTargetConstant(Value, dl, TCVT);
13206       break;
13207     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
13208       if (isShiftedInt<16, 16>(Value))
13209         Result = DAG.getTargetConstant(Value, dl, TCVT);
13210       break;
13211     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
13212       if (isUInt<16>(Value))
13213         Result = DAG.getTargetConstant(Value, dl, TCVT);
13214       break;
13215     case 'M':  // "M" is a constant that is greater than 31.
13216       if (Value > 31)
13217         Result = DAG.getTargetConstant(Value, dl, TCVT);
13218       break;
13219     case 'N':  // "N" is a positive constant that is an exact power of two.
13220       if (Value > 0 && isPowerOf2_64(Value))
13221         Result = DAG.getTargetConstant(Value, dl, TCVT);
13222       break;
13223     case 'O':  // "O" is the constant zero.
13224       if (Value == 0)
13225         Result = DAG.getTargetConstant(Value, dl, TCVT);
13226       break;
13227     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
13228       if (isInt<16>(-Value))
13229         Result = DAG.getTargetConstant(Value, dl, TCVT);
13230       break;
13231     }
13232     break;
13233   }
13234   }
13235 
13236   if (Result.getNode()) {
13237     Ops.push_back(Result);
13238     return;
13239   }
13240 
13241   // Handle standard constraint letters.
13242   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13243 }
13244 
13245 // isLegalAddressingMode - Return true if the addressing mode represented
13246 // by AM is legal for this target, for a load/store of the specified type.
13247 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13248                                               const AddrMode &AM, Type *Ty,
13249                                               unsigned AS, Instruction *I) const {
13250   // PPC does not allow r+i addressing modes for vectors!
13251   if (Ty->isVectorTy() && AM.BaseOffs != 0)
13252     return false;
13253 
13254   // PPC allows a sign-extended 16-bit immediate field.
13255   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13256     return false;
13257 
13258   // No global is ever allowed as a base.
13259   if (AM.BaseGV)
13260     return false;
13261 
13262   // PPC only support r+r,
13263   switch (AM.Scale) {
13264   case 0:  // "r+i" or just "i", depending on HasBaseReg.
13265     break;
13266   case 1:
13267     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
13268       return false;
13269     // Otherwise we have r+r or r+i.
13270     break;
13271   case 2:
13272     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
13273       return false;
13274     // Allow 2*r as r+r.
13275     break;
13276   default:
13277     // No other scales are supported.
13278     return false;
13279   }
13280 
13281   return true;
13282 }
13283 
13284 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13285                                            SelectionDAG &DAG) const {
13286   MachineFunction &MF = DAG.getMachineFunction();
13287   MachineFrameInfo &MFI = MF.getFrameInfo();
13288   MFI.setReturnAddressIsTaken(true);
13289 
13290   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13291     return SDValue();
13292 
13293   SDLoc dl(Op);
13294   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13295 
13296   // Make sure the function does not optimize away the store of the RA to
13297   // the stack.
13298   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13299   FuncInfo->setLRStoreRequired();
13300   bool isPPC64 = Subtarget.isPPC64();
13301   auto PtrVT = getPointerTy(MF.getDataLayout());
13302 
13303   if (Depth > 0) {
13304     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13305     SDValue Offset =
13306         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13307                         isPPC64 ? MVT::i64 : MVT::i32);
13308     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13309                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13310                        MachinePointerInfo());
13311   }
13312 
13313   // Just load the return address off the stack.
13314   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13315   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13316                      MachinePointerInfo());
13317 }
13318 
13319 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13320                                           SelectionDAG &DAG) const {
13321   SDLoc dl(Op);
13322   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13323 
13324   MachineFunction &MF = DAG.getMachineFunction();
13325   MachineFrameInfo &MFI = MF.getFrameInfo();
13326   MFI.setFrameAddressIsTaken(true);
13327 
13328   EVT PtrVT = getPointerTy(MF.getDataLayout());
13329   bool isPPC64 = PtrVT == MVT::i64;
13330 
13331   // Naked functions never have a frame pointer, and so we use r1. For all
13332   // other functions, this decision must be delayed until during PEI.
13333   unsigned FrameReg;
13334   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
13335     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13336   else
13337     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13338 
13339   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13340                                          PtrVT);
13341   while (Depth--)
13342     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13343                             FrameAddr, MachinePointerInfo());
13344   return FrameAddr;
13345 }
13346 
13347 // FIXME? Maybe this could be a TableGen attribute on some registers and
13348 // this table could be generated automatically from RegInfo.
13349 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13350                                               SelectionDAG &DAG) const {
13351   bool isPPC64 = Subtarget.isPPC64();
13352   bool isDarwinABI = Subtarget.isDarwinABI();
13353 
13354   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13355       (!isPPC64 && VT != MVT::i32))
13356     report_fatal_error("Invalid register global variable type");
13357 
13358   bool is64Bit = isPPC64 && VT == MVT::i64;
13359   unsigned Reg = StringSwitch<unsigned>(RegName)
13360                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13361                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13362                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13363                                   (is64Bit ? PPC::X13 : PPC::R13))
13364                    .Default(0);
13365 
13366   if (Reg)
13367     return Reg;
13368   report_fatal_error("Invalid register name global variable");
13369 }
13370 
13371 bool
13372 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
13373   // The PowerPC target isn't yet aware of offsets.
13374   return false;
13375 }
13376 
13377 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
13378                                            const CallInst &I,
13379                                            MachineFunction &MF,
13380                                            unsigned Intrinsic) const {
13381   switch (Intrinsic) {
13382   case Intrinsic::ppc_qpx_qvlfd:
13383   case Intrinsic::ppc_qpx_qvlfs:
13384   case Intrinsic::ppc_qpx_qvlfcd:
13385   case Intrinsic::ppc_qpx_qvlfcs:
13386   case Intrinsic::ppc_qpx_qvlfiwa:
13387   case Intrinsic::ppc_qpx_qvlfiwz:
13388   case Intrinsic::ppc_altivec_lvx:
13389   case Intrinsic::ppc_altivec_lvxl:
13390   case Intrinsic::ppc_altivec_lvebx:
13391   case Intrinsic::ppc_altivec_lvehx:
13392   case Intrinsic::ppc_altivec_lvewx:
13393   case Intrinsic::ppc_vsx_lxvd2x:
13394   case Intrinsic::ppc_vsx_lxvw4x: {
13395     EVT VT;
13396     switch (Intrinsic) {
13397     case Intrinsic::ppc_altivec_lvebx:
13398       VT = MVT::i8;
13399       break;
13400     case Intrinsic::ppc_altivec_lvehx:
13401       VT = MVT::i16;
13402       break;
13403     case Intrinsic::ppc_altivec_lvewx:
13404       VT = MVT::i32;
13405       break;
13406     case Intrinsic::ppc_vsx_lxvd2x:
13407       VT = MVT::v2f64;
13408       break;
13409     case Intrinsic::ppc_qpx_qvlfd:
13410       VT = MVT::v4f64;
13411       break;
13412     case Intrinsic::ppc_qpx_qvlfs:
13413       VT = MVT::v4f32;
13414       break;
13415     case Intrinsic::ppc_qpx_qvlfcd:
13416       VT = MVT::v2f64;
13417       break;
13418     case Intrinsic::ppc_qpx_qvlfcs:
13419       VT = MVT::v2f32;
13420       break;
13421     default:
13422       VT = MVT::v4i32;
13423       break;
13424     }
13425 
13426     Info.opc = ISD::INTRINSIC_W_CHAIN;
13427     Info.memVT = VT;
13428     Info.ptrVal = I.getArgOperand(0);
13429     Info.offset = -VT.getStoreSize()+1;
13430     Info.size = 2*VT.getStoreSize()-1;
13431     Info.align = 1;
13432     Info.flags = MachineMemOperand::MOLoad;
13433     return true;
13434   }
13435   case Intrinsic::ppc_qpx_qvlfda:
13436   case Intrinsic::ppc_qpx_qvlfsa:
13437   case Intrinsic::ppc_qpx_qvlfcda:
13438   case Intrinsic::ppc_qpx_qvlfcsa:
13439   case Intrinsic::ppc_qpx_qvlfiwaa:
13440   case Intrinsic::ppc_qpx_qvlfiwza: {
13441     EVT VT;
13442     switch (Intrinsic) {
13443     case Intrinsic::ppc_qpx_qvlfda:
13444       VT = MVT::v4f64;
13445       break;
13446     case Intrinsic::ppc_qpx_qvlfsa:
13447       VT = MVT::v4f32;
13448       break;
13449     case Intrinsic::ppc_qpx_qvlfcda:
13450       VT = MVT::v2f64;
13451       break;
13452     case Intrinsic::ppc_qpx_qvlfcsa:
13453       VT = MVT::v2f32;
13454       break;
13455     default:
13456       VT = MVT::v4i32;
13457       break;
13458     }
13459 
13460     Info.opc = ISD::INTRINSIC_W_CHAIN;
13461     Info.memVT = VT;
13462     Info.ptrVal = I.getArgOperand(0);
13463     Info.offset = 0;
13464     Info.size = VT.getStoreSize();
13465     Info.align = 1;
13466     Info.flags = MachineMemOperand::MOLoad;
13467     return true;
13468   }
13469   case Intrinsic::ppc_qpx_qvstfd:
13470   case Intrinsic::ppc_qpx_qvstfs:
13471   case Intrinsic::ppc_qpx_qvstfcd:
13472   case Intrinsic::ppc_qpx_qvstfcs:
13473   case Intrinsic::ppc_qpx_qvstfiw:
13474   case Intrinsic::ppc_altivec_stvx:
13475   case Intrinsic::ppc_altivec_stvxl:
13476   case Intrinsic::ppc_altivec_stvebx:
13477   case Intrinsic::ppc_altivec_stvehx:
13478   case Intrinsic::ppc_altivec_stvewx:
13479   case Intrinsic::ppc_vsx_stxvd2x:
13480   case Intrinsic::ppc_vsx_stxvw4x: {
13481     EVT VT;
13482     switch (Intrinsic) {
13483     case Intrinsic::ppc_altivec_stvebx:
13484       VT = MVT::i8;
13485       break;
13486     case Intrinsic::ppc_altivec_stvehx:
13487       VT = MVT::i16;
13488       break;
13489     case Intrinsic::ppc_altivec_stvewx:
13490       VT = MVT::i32;
13491       break;
13492     case Intrinsic::ppc_vsx_stxvd2x:
13493       VT = MVT::v2f64;
13494       break;
13495     case Intrinsic::ppc_qpx_qvstfd:
13496       VT = MVT::v4f64;
13497       break;
13498     case Intrinsic::ppc_qpx_qvstfs:
13499       VT = MVT::v4f32;
13500       break;
13501     case Intrinsic::ppc_qpx_qvstfcd:
13502       VT = MVT::v2f64;
13503       break;
13504     case Intrinsic::ppc_qpx_qvstfcs:
13505       VT = MVT::v2f32;
13506       break;
13507     default:
13508       VT = MVT::v4i32;
13509       break;
13510     }
13511 
13512     Info.opc = ISD::INTRINSIC_VOID;
13513     Info.memVT = VT;
13514     Info.ptrVal = I.getArgOperand(1);
13515     Info.offset = -VT.getStoreSize()+1;
13516     Info.size = 2*VT.getStoreSize()-1;
13517     Info.align = 1;
13518     Info.flags = MachineMemOperand::MOStore;
13519     return true;
13520   }
13521   case Intrinsic::ppc_qpx_qvstfda:
13522   case Intrinsic::ppc_qpx_qvstfsa:
13523   case Intrinsic::ppc_qpx_qvstfcda:
13524   case Intrinsic::ppc_qpx_qvstfcsa:
13525   case Intrinsic::ppc_qpx_qvstfiwa: {
13526     EVT VT;
13527     switch (Intrinsic) {
13528     case Intrinsic::ppc_qpx_qvstfda:
13529       VT = MVT::v4f64;
13530       break;
13531     case Intrinsic::ppc_qpx_qvstfsa:
13532       VT = MVT::v4f32;
13533       break;
13534     case Intrinsic::ppc_qpx_qvstfcda:
13535       VT = MVT::v2f64;
13536       break;
13537     case Intrinsic::ppc_qpx_qvstfcsa:
13538       VT = MVT::v2f32;
13539       break;
13540     default:
13541       VT = MVT::v4i32;
13542       break;
13543     }
13544 
13545     Info.opc = ISD::INTRINSIC_VOID;
13546     Info.memVT = VT;
13547     Info.ptrVal = I.getArgOperand(1);
13548     Info.offset = 0;
13549     Info.size = VT.getStoreSize();
13550     Info.align = 1;
13551     Info.flags = MachineMemOperand::MOStore;
13552     return true;
13553   }
13554   default:
13555     break;
13556   }
13557 
13558   return false;
13559 }
13560 
13561 /// getOptimalMemOpType - Returns the target specific optimal type for load
13562 /// and store operations as a result of memset, memcpy, and memmove
13563 /// lowering. If DstAlign is zero that means it's safe to destination
13564 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
13565 /// means there isn't a need to check it against alignment requirement,
13566 /// probably because the source does not need to be loaded. If 'IsMemset' is
13567 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
13568 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
13569 /// source is constant so it does not need to be loaded.
13570 /// It returns EVT::Other if the type should be determined using generic
13571 /// target-independent logic.
13572 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
13573                                            unsigned DstAlign, unsigned SrcAlign,
13574                                            bool IsMemset, bool ZeroMemset,
13575                                            bool MemcpyStrSrc,
13576                                            MachineFunction &MF) const {
13577   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
13578     const Function &F = MF.getFunction();
13579     // When expanding a memset, require at least two QPX instructions to cover
13580     // the cost of loading the value to be stored from the constant pool.
13581     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
13582        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
13583         !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
13584       return MVT::v4f64;
13585     }
13586 
13587     // We should use Altivec/VSX loads and stores when available. For unaligned
13588     // addresses, unaligned VSX loads are only fast starting with the P8.
13589     if (Subtarget.hasAltivec() && Size >= 16 &&
13590         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
13591          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
13592       return MVT::v4i32;
13593   }
13594 
13595   if (Subtarget.isPPC64()) {
13596     return MVT::i64;
13597   }
13598 
13599   return MVT::i32;
13600 }
13601 
13602 /// \brief Returns true if it is beneficial to convert a load of a constant
13603 /// to just the constant itself.
13604 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
13605                                                           Type *Ty) const {
13606   assert(Ty->isIntegerTy());
13607 
13608   unsigned BitSize = Ty->getPrimitiveSizeInBits();
13609   return !(BitSize == 0 || BitSize > 64);
13610 }
13611 
13612 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13613   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13614     return false;
13615   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13616   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13617   return NumBits1 == 64 && NumBits2 == 32;
13618 }
13619 
13620 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13621   if (!VT1.isInteger() || !VT2.isInteger())
13622     return false;
13623   unsigned NumBits1 = VT1.getSizeInBits();
13624   unsigned NumBits2 = VT2.getSizeInBits();
13625   return NumBits1 == 64 && NumBits2 == 32;
13626 }
13627 
13628 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13629   // Generally speaking, zexts are not free, but they are free when they can be
13630   // folded with other operations.
13631   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
13632     EVT MemVT = LD->getMemoryVT();
13633     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
13634          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
13635         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
13636          LD->getExtensionType() == ISD::ZEXTLOAD))
13637       return true;
13638   }
13639 
13640   // FIXME: Add other cases...
13641   //  - 32-bit shifts with a zext to i64
13642   //  - zext after ctlz, bswap, etc.
13643   //  - zext after and by a constant mask
13644 
13645   return TargetLowering::isZExtFree(Val, VT2);
13646 }
13647 
13648 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
13649   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
13650          "invalid fpext types");
13651   return true;
13652 }
13653 
13654 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13655   return isInt<16>(Imm) || isUInt<16>(Imm);
13656 }
13657 
13658 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13659   return isInt<16>(Imm) || isUInt<16>(Imm);
13660 }
13661 
13662 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
13663                                                        unsigned,
13664                                                        unsigned,
13665                                                        bool *Fast) const {
13666   if (DisablePPCUnaligned)
13667     return false;
13668 
13669   // PowerPC supports unaligned memory access for simple non-vector types.
13670   // Although accessing unaligned addresses is not as efficient as accessing
13671   // aligned addresses, it is generally more efficient than manual expansion,
13672   // and generally only traps for software emulation when crossing page
13673   // boundaries.
13674 
13675   if (!VT.isSimple())
13676     return false;
13677 
13678   if (VT.getSimpleVT().isVector()) {
13679     if (Subtarget.hasVSX()) {
13680       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
13681           VT != MVT::v4f32 && VT != MVT::v4i32)
13682         return false;
13683     } else {
13684       return false;
13685     }
13686   }
13687 
13688   if (VT == MVT::ppcf128)
13689     return false;
13690 
13691   if (Fast)
13692     *Fast = true;
13693 
13694   return true;
13695 }
13696 
13697 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
13698   VT = VT.getScalarType();
13699 
13700   if (!VT.isSimple())
13701     return false;
13702 
13703   switch (VT.getSimpleVT().SimpleTy) {
13704   case MVT::f32:
13705   case MVT::f64:
13706     return true;
13707   default:
13708     break;
13709   }
13710 
13711   return false;
13712 }
13713 
13714 const MCPhysReg *
13715 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
13716   // LR is a callee-save register, but we must treat it as clobbered by any call
13717   // site. Hence we include LR in the scratch registers, which are in turn added
13718   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
13719   // to CTR, which is used by any indirect call.
13720   static const MCPhysReg ScratchRegs[] = {
13721     PPC::X12, PPC::LR8, PPC::CTR8, 0
13722   };
13723 
13724   return ScratchRegs;
13725 }
13726 
13727 unsigned PPCTargetLowering::getExceptionPointerRegister(
13728     const Constant *PersonalityFn) const {
13729   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
13730 }
13731 
13732 unsigned PPCTargetLowering::getExceptionSelectorRegister(
13733     const Constant *PersonalityFn) const {
13734   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
13735 }
13736 
13737 bool
13738 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
13739                      EVT VT , unsigned DefinedValues) const {
13740   if (VT == MVT::v2i64)
13741     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
13742 
13743   if (Subtarget.hasVSX() || Subtarget.hasQPX())
13744     return true;
13745 
13746   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
13747 }
13748 
13749 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
13750   if (DisableILPPref || Subtarget.enableMachineScheduler())
13751     return TargetLowering::getSchedulingPreference(N);
13752 
13753   return Sched::ILP;
13754 }
13755 
13756 // Create a fast isel object.
13757 FastISel *
13758 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
13759                                   const TargetLibraryInfo *LibInfo) const {
13760   return PPC::createFastISel(FuncInfo, LibInfo);
13761 }
13762 
13763 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
13764   if (Subtarget.isDarwinABI()) return;
13765   if (!Subtarget.isPPC64()) return;
13766 
13767   // Update IsSplitCSR in PPCFunctionInfo
13768   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
13769   PFI->setIsSplitCSR(true);
13770 }
13771 
13772 void PPCTargetLowering::insertCopiesSplitCSR(
13773   MachineBasicBlock *Entry,
13774   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
13775   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
13776   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
13777   if (!IStart)
13778     return;
13779 
13780   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
13781   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
13782   MachineBasicBlock::iterator MBBI = Entry->begin();
13783   for (const MCPhysReg *I = IStart; *I; ++I) {
13784     const TargetRegisterClass *RC = nullptr;
13785     if (PPC::G8RCRegClass.contains(*I))
13786       RC = &PPC::G8RCRegClass;
13787     else if (PPC::F8RCRegClass.contains(*I))
13788       RC = &PPC::F8RCRegClass;
13789     else if (PPC::CRRCRegClass.contains(*I))
13790       RC = &PPC::CRRCRegClass;
13791     else if (PPC::VRRCRegClass.contains(*I))
13792       RC = &PPC::VRRCRegClass;
13793     else
13794       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
13795 
13796     unsigned NewVR = MRI->createVirtualRegister(RC);
13797     // Create copy from CSR to a virtual register.
13798     // FIXME: this currently does not emit CFI pseudo-instructions, it works
13799     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
13800     // nounwind. If we want to generalize this later, we may need to emit
13801     // CFI pseudo-instructions.
13802     assert(Entry->getParent()->getFunction().hasFnAttribute(
13803              Attribute::NoUnwind) &&
13804            "Function should be nounwind in insertCopiesSplitCSR!");
13805     Entry->addLiveIn(*I);
13806     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
13807       .addReg(*I);
13808 
13809     // Insert the copy-back instructions right before the terminator
13810     for (auto *Exit : Exits)
13811       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
13812               TII->get(TargetOpcode::COPY), *I)
13813         .addReg(NewVR);
13814   }
13815 }
13816 
13817 // Override to enable LOAD_STACK_GUARD lowering on Linux.
13818 bool PPCTargetLowering::useLoadStackGuardNode() const {
13819   if (!Subtarget.isTargetLinux())
13820     return TargetLowering::useLoadStackGuardNode();
13821   return true;
13822 }
13823 
13824 // Override to disable global variable loading on Linux.
13825 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
13826   if (!Subtarget.isTargetLinux())
13827     return TargetLowering::insertSSPDeclarations(M);
13828 }
13829 
13830 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
13831   if (!VT.isSimple() || !Subtarget.hasVSX())
13832     return false;
13833 
13834   switch(VT.getSimpleVT().SimpleTy) {
13835   default:
13836     // For FP types that are currently not supported by PPC backend, return
13837     // false. Examples: f16, f80.
13838     return false;
13839   case MVT::f32:
13840   case MVT::f64:
13841   case MVT::ppcf128:
13842     return Imm.isPosZero();
13843   }
13844 }
13845 
13846 // For vector shift operation op, fold
13847 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
13848 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
13849                                   SelectionDAG &DAG) {
13850   SDValue N0 = N->getOperand(0);
13851   SDValue N1 = N->getOperand(1);
13852   EVT VT = N0.getValueType();
13853   unsigned OpSizeInBits = VT.getScalarSizeInBits();
13854   unsigned Opcode = N->getOpcode();
13855   unsigned TargetOpcode;
13856 
13857   switch (Opcode) {
13858   default:
13859     llvm_unreachable("Unexpected shift operation");
13860   case ISD::SHL:
13861     TargetOpcode = PPCISD::SHL;
13862     break;
13863   case ISD::SRL:
13864     TargetOpcode = PPCISD::SRL;
13865     break;
13866   case ISD::SRA:
13867     TargetOpcode = PPCISD::SRA;
13868     break;
13869   }
13870 
13871   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
13872       N1->getOpcode() == ISD::AND)
13873     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
13874       if (Mask->getZExtValue() == OpSizeInBits - 1)
13875         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
13876 
13877   return SDValue();
13878 }
13879 
13880 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
13881   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13882     return Value;
13883 
13884   return SDValue();
13885 }
13886 
13887 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
13888   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13889     return Value;
13890 
13891   return SDValue();
13892 }
13893 
13894 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
13895   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
13896     return Value;
13897 
13898   return SDValue();
13899 }
13900 
13901 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
13902   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
13903   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
13904     return false;
13905 
13906   // If not a tail call then no need to proceed.
13907   if (!CI->isTailCall())
13908     return false;
13909 
13910   // If tail calls are disabled for the caller then we are done.
13911   const Function *Caller = CI->getParent()->getParent();
13912   auto Attr = Caller->getFnAttribute("disable-tail-calls");
13913   if (Attr.getValueAsString() == "true")
13914     return false;
13915 
13916   // If sibling calls have been disabled and tail-calls aren't guaranteed
13917   // there is no reason to duplicate.
13918   auto &TM = getTargetMachine();
13919   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
13920     return false;
13921 
13922   // Can't tail call a function called indirectly, or if it has variadic args.
13923   const Function *Callee = CI->getCalledFunction();
13924   if (!Callee || Callee->isVarArg())
13925     return false;
13926 
13927   // Make sure the callee and caller calling conventions are eligible for tco.
13928   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
13929                                            CI->getCallingConv()))
13930       return false;
13931 
13932   // If the function is local then we have a good chance at tail-calling it
13933   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
13934 }
13935