1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCallingConv.h" 17 #include "PPCCCState.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCISelLowering.h" 21 #include "PPCMachineFunctionInfo.h" 22 #include "PPCPerfectShuffle.h" 23 #include "PPCRegisterInfo.h" 24 #include "PPCSubtarget.h" 25 #include "PPCTargetMachine.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/None.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/StringSwitch.h" 38 #include "llvm/CodeGen/CallingConvLower.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineLoopInfo.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/MachineValueType.h" 51 #include "llvm/CodeGen/RuntimeLibcalls.h" 52 #include "llvm/CodeGen/SelectionDAG.h" 53 #include "llvm/CodeGen/SelectionDAGNodes.h" 54 #include "llvm/CodeGen/ValueTypes.h" 55 #include "llvm/IR/CallingConv.h" 56 #include "llvm/IR/CallSite.h" 57 #include "llvm/IR/Constant.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/DebugLoc.h" 61 #include "llvm/IR/DerivedTypes.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/IR/GlobalValue.h" 64 #include "llvm/IR/Instructions.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/MC/MCExpr.h" 72 #include "llvm/MC/MCRegisterInfo.h" 73 #include "llvm/Support/AtomicOrdering.h" 74 #include "llvm/Support/BranchProbability.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CodeGen.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/Format.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Target/TargetInstrInfo.h" 85 #include "llvm/Target/TargetLowering.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Target/TargetRegisterInfo.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <list> 94 #include <utility> 95 #include <vector> 96 97 using namespace llvm; 98 99 #define DEBUG_TYPE "ppc-lowering" 100 101 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 102 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 103 104 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 105 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 106 107 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 108 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 109 110 static cl::opt<bool> DisableSCO("disable-ppc-sco", 111 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 112 113 STATISTIC(NumTailCalls, "Number of tail calls"); 114 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 115 116 // FIXME: Remove this once the bug has been fixed! 117 extern cl::opt<bool> ANDIGlueBug; 118 119 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 120 const PPCSubtarget &STI) 121 : TargetLowering(TM), Subtarget(STI) { 122 // Use _setjmp/_longjmp instead of setjmp/longjmp. 123 setUseUnderscoreSetJmp(true); 124 setUseUnderscoreLongJmp(true); 125 126 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 127 // arguments are at least 4/8 bytes aligned. 128 bool isPPC64 = Subtarget.isPPC64(); 129 setMinStackArgumentAlignment(isPPC64 ? 8:4); 130 131 // Set up the register classes. 132 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 133 if (!useSoftFloat()) { 134 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 135 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 136 } 137 138 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 139 for (MVT VT : MVT::integer_valuetypes()) { 140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 142 } 143 144 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 145 146 // PowerPC has pre-inc load and store's. 147 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 148 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 149 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 150 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 151 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 152 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 153 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 154 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 155 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 156 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 157 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 158 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 159 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 160 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 161 162 if (Subtarget.useCRBits()) { 163 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 164 165 if (isPPC64 || Subtarget.hasFPCVT()) { 166 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 167 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 168 isPPC64 ? MVT::i64 : MVT::i32); 169 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 170 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 171 isPPC64 ? MVT::i64 : MVT::i32); 172 } else { 173 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 174 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 175 } 176 177 // PowerPC does not support direct load / store of condition registers 178 setOperationAction(ISD::LOAD, MVT::i1, Custom); 179 setOperationAction(ISD::STORE, MVT::i1, Custom); 180 181 // FIXME: Remove this once the ANDI glue bug is fixed: 182 if (ANDIGlueBug) 183 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 184 185 for (MVT VT : MVT::integer_valuetypes()) { 186 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 187 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 188 setTruncStoreAction(VT, MVT::i1, Expand); 189 } 190 191 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 192 } 193 194 // This is used in the ppcf128->int sequence. Note it has different semantics 195 // from FP_ROUND: that rounds to nearest, this rounds to zero. 196 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 197 198 // We do not currently implement these libm ops for PowerPC. 199 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 200 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 201 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 202 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 203 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 204 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 205 206 // PowerPC has no SREM/UREM instructions 207 setOperationAction(ISD::SREM, MVT::i32, Expand); 208 setOperationAction(ISD::UREM, MVT::i32, Expand); 209 setOperationAction(ISD::SREM, MVT::i64, Expand); 210 setOperationAction(ISD::UREM, MVT::i64, Expand); 211 212 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 213 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 214 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 215 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 216 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 217 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 218 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 219 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 220 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 221 222 // We don't support sin/cos/sqrt/fmod/pow 223 setOperationAction(ISD::FSIN , MVT::f64, Expand); 224 setOperationAction(ISD::FCOS , MVT::f64, Expand); 225 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 226 setOperationAction(ISD::FREM , MVT::f64, Expand); 227 setOperationAction(ISD::FPOW , MVT::f64, Expand); 228 setOperationAction(ISD::FMA , MVT::f64, Legal); 229 setOperationAction(ISD::FSIN , MVT::f32, Expand); 230 setOperationAction(ISD::FCOS , MVT::f32, Expand); 231 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 232 setOperationAction(ISD::FREM , MVT::f32, Expand); 233 setOperationAction(ISD::FPOW , MVT::f32, Expand); 234 setOperationAction(ISD::FMA , MVT::f32, Legal); 235 236 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 237 238 // If we're enabling GP optimizations, use hardware square root 239 if (!Subtarget.hasFSQRT() && 240 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 241 Subtarget.hasFRE())) 242 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 243 244 if (!Subtarget.hasFSQRT() && 245 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 246 Subtarget.hasFRES())) 247 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 248 249 if (Subtarget.hasFCPSGN()) { 250 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 251 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 252 } else { 253 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 254 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 255 } 256 257 if (Subtarget.hasFPRND()) { 258 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 259 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 260 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 261 setOperationAction(ISD::FROUND, MVT::f64, Legal); 262 263 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 264 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 265 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 266 setOperationAction(ISD::FROUND, MVT::f32, Legal); 267 } 268 269 // PowerPC does not have BSWAP 270 // CTPOP or CTTZ were introduced in P8/P9 respectivelly 271 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 272 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 273 if (Subtarget.isISA3_0()) { 274 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 275 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 276 } else { 277 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 278 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 279 } 280 281 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 282 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 283 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 284 } else { 285 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 286 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 287 } 288 289 // PowerPC does not have ROTR 290 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 291 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 292 293 if (!Subtarget.useCRBits()) { 294 // PowerPC does not have Select 295 setOperationAction(ISD::SELECT, MVT::i32, Expand); 296 setOperationAction(ISD::SELECT, MVT::i64, Expand); 297 setOperationAction(ISD::SELECT, MVT::f32, Expand); 298 setOperationAction(ISD::SELECT, MVT::f64, Expand); 299 } 300 301 // PowerPC wants to turn select_cc of FP into fsel when possible. 302 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 303 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 304 305 // PowerPC wants to optimize integer setcc a bit 306 if (!Subtarget.useCRBits()) 307 setOperationAction(ISD::SETCC, MVT::i32, Custom); 308 309 // PowerPC does not have BRCOND which requires SetCC 310 if (!Subtarget.useCRBits()) 311 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 312 313 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 314 315 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 316 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 317 318 // PowerPC does not have [U|S]INT_TO_FP 319 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 320 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 321 322 if (Subtarget.hasDirectMove() && isPPC64) { 323 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 324 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 325 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 326 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 327 } else { 328 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 329 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 330 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 331 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 332 } 333 334 // We cannot sextinreg(i1). Expand to shifts. 335 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 336 337 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 338 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 339 // support continuation, user-level threading, and etc.. As a result, no 340 // other SjLj exception interfaces are implemented and please don't build 341 // your own exception handling based on them. 342 // LLVM/Clang supports zero-cost DWARF exception handling. 343 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 344 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 345 346 // We want to legalize GlobalAddress and ConstantPool nodes into the 347 // appropriate instructions to materialize the address. 348 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 349 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 350 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 351 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 352 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 353 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 354 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 355 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 356 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 357 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 358 359 // TRAP is legal. 360 setOperationAction(ISD::TRAP, MVT::Other, Legal); 361 362 // TRAMPOLINE is custom lowered. 363 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 364 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 365 366 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 367 setOperationAction(ISD::VASTART , MVT::Other, Custom); 368 369 if (Subtarget.isSVR4ABI()) { 370 if (isPPC64) { 371 // VAARG always uses double-word chunks, so promote anything smaller. 372 setOperationAction(ISD::VAARG, MVT::i1, Promote); 373 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 374 setOperationAction(ISD::VAARG, MVT::i8, Promote); 375 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 376 setOperationAction(ISD::VAARG, MVT::i16, Promote); 377 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 378 setOperationAction(ISD::VAARG, MVT::i32, Promote); 379 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 380 setOperationAction(ISD::VAARG, MVT::Other, Expand); 381 } else { 382 // VAARG is custom lowered with the 32-bit SVR4 ABI. 383 setOperationAction(ISD::VAARG, MVT::Other, Custom); 384 setOperationAction(ISD::VAARG, MVT::i64, Custom); 385 } 386 } else 387 setOperationAction(ISD::VAARG, MVT::Other, Expand); 388 389 if (Subtarget.isSVR4ABI() && !isPPC64) 390 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 391 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 392 else 393 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 394 395 // Use the default implementation. 396 setOperationAction(ISD::VAEND , MVT::Other, Expand); 397 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 398 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 399 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 400 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 401 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 402 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 403 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 404 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 405 406 // We want to custom lower some of our intrinsics. 407 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 408 409 // To handle counter-based loop conditions. 410 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 411 412 // Comparisons that require checking two conditions. 413 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 414 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 415 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 416 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 417 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 418 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 419 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 420 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 421 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 422 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 423 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 424 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 425 426 if (Subtarget.has64BitSupport()) { 427 // They also have instructions for converting between i64 and fp. 428 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 429 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 430 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 431 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 432 // This is just the low 32 bits of a (signed) fp->i64 conversion. 433 // We cannot do this with Promote because i64 is not a legal type. 434 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 435 436 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 437 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 438 } else { 439 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 440 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 441 } 442 443 // With the instructions enabled under FPCVT, we can do everything. 444 if (Subtarget.hasFPCVT()) { 445 if (Subtarget.has64BitSupport()) { 446 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 447 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 448 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 449 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 450 } 451 452 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 453 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 454 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 455 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 456 } 457 458 if (Subtarget.use64BitRegs()) { 459 // 64-bit PowerPC implementations can support i64 types directly 460 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 461 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 462 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 463 // 64-bit PowerPC wants to expand i128 shifts itself. 464 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 465 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 466 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 467 } else { 468 // 32-bit PowerPC wants to expand i64 shifts itself. 469 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 470 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 471 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 472 } 473 474 if (Subtarget.hasAltivec()) { 475 // First set operation action for all vector types to expand. Then we 476 // will selectively turn on ones that can be effectively codegen'd. 477 for (MVT VT : MVT::vector_valuetypes()) { 478 // add/sub are legal for all supported vector VT's. 479 setOperationAction(ISD::ADD, VT, Legal); 480 setOperationAction(ISD::SUB, VT, Legal); 481 482 // Vector instructions introduced in P8 483 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 484 setOperationAction(ISD::CTPOP, VT, Legal); 485 setOperationAction(ISD::CTLZ, VT, Legal); 486 } 487 else { 488 setOperationAction(ISD::CTPOP, VT, Expand); 489 setOperationAction(ISD::CTLZ, VT, Expand); 490 } 491 492 // Vector instructions introduced in P9 493 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 494 setOperationAction(ISD::CTTZ, VT, Legal); 495 else 496 setOperationAction(ISD::CTTZ, VT, Expand); 497 498 // We promote all shuffles to v16i8. 499 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 500 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 501 502 // We promote all non-typed operations to v4i32. 503 setOperationAction(ISD::AND , VT, Promote); 504 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 505 setOperationAction(ISD::OR , VT, Promote); 506 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 507 setOperationAction(ISD::XOR , VT, Promote); 508 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 509 setOperationAction(ISD::LOAD , VT, Promote); 510 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 511 setOperationAction(ISD::SELECT, VT, Promote); 512 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 513 setOperationAction(ISD::SELECT_CC, VT, Promote); 514 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 515 setOperationAction(ISD::STORE, VT, Promote); 516 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 517 518 // No other operations are legal. 519 setOperationAction(ISD::MUL , VT, Expand); 520 setOperationAction(ISD::SDIV, VT, Expand); 521 setOperationAction(ISD::SREM, VT, Expand); 522 setOperationAction(ISD::UDIV, VT, Expand); 523 setOperationAction(ISD::UREM, VT, Expand); 524 setOperationAction(ISD::FDIV, VT, Expand); 525 setOperationAction(ISD::FREM, VT, Expand); 526 setOperationAction(ISD::FNEG, VT, Expand); 527 setOperationAction(ISD::FSQRT, VT, Expand); 528 setOperationAction(ISD::FLOG, VT, Expand); 529 setOperationAction(ISD::FLOG10, VT, Expand); 530 setOperationAction(ISD::FLOG2, VT, Expand); 531 setOperationAction(ISD::FEXP, VT, Expand); 532 setOperationAction(ISD::FEXP2, VT, Expand); 533 setOperationAction(ISD::FSIN, VT, Expand); 534 setOperationAction(ISD::FCOS, VT, Expand); 535 setOperationAction(ISD::FABS, VT, Expand); 536 setOperationAction(ISD::FPOWI, VT, Expand); 537 setOperationAction(ISD::FFLOOR, VT, Expand); 538 setOperationAction(ISD::FCEIL, VT, Expand); 539 setOperationAction(ISD::FTRUNC, VT, Expand); 540 setOperationAction(ISD::FRINT, VT, Expand); 541 setOperationAction(ISD::FNEARBYINT, VT, Expand); 542 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 543 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 544 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 545 setOperationAction(ISD::MULHU, VT, Expand); 546 setOperationAction(ISD::MULHS, VT, Expand); 547 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 548 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 549 setOperationAction(ISD::UDIVREM, VT, Expand); 550 setOperationAction(ISD::SDIVREM, VT, Expand); 551 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 552 setOperationAction(ISD::FPOW, VT, Expand); 553 setOperationAction(ISD::BSWAP, VT, Expand); 554 setOperationAction(ISD::VSELECT, VT, Expand); 555 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 556 setOperationAction(ISD::ROTL, VT, Expand); 557 setOperationAction(ISD::ROTR, VT, Expand); 558 559 for (MVT InnerVT : MVT::vector_valuetypes()) { 560 setTruncStoreAction(VT, InnerVT, Expand); 561 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 562 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 563 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 564 } 565 } 566 567 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 568 // with merges, splats, etc. 569 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 570 571 setOperationAction(ISD::AND , MVT::v4i32, Legal); 572 setOperationAction(ISD::OR , MVT::v4i32, Legal); 573 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 574 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 575 setOperationAction(ISD::SELECT, MVT::v4i32, 576 Subtarget.useCRBits() ? Legal : Expand); 577 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 578 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 579 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 580 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 581 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 582 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 583 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 584 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 585 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 586 587 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 588 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 589 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 590 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 591 592 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 593 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 594 595 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 596 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 597 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 598 } 599 600 if (Subtarget.hasP8Altivec()) 601 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 602 else 603 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 604 605 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 606 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 607 608 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 609 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 610 611 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 612 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 613 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 614 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 615 616 // Altivec does not contain unordered floating-point compare instructions 617 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 618 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 619 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 620 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 621 622 if (Subtarget.hasVSX()) { 623 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 624 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 625 if (Subtarget.hasP8Vector()) { 626 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 627 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 628 } 629 if (Subtarget.hasDirectMove() && isPPC64) { 630 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 631 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 632 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 633 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 634 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 635 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 636 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 637 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 638 } 639 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 640 641 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 642 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 643 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 644 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 645 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 646 647 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 648 649 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 650 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 651 652 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 653 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 654 655 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 656 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 657 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 658 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 659 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 660 661 // Share the Altivec comparison restrictions. 662 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 663 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 664 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 665 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 666 667 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 668 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 669 670 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 671 672 if (Subtarget.hasP8Vector()) 673 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 674 675 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 676 677 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 678 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 679 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 680 681 if (Subtarget.hasP8Altivec()) { 682 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 683 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 684 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 685 686 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 687 } 688 else { 689 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 690 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 691 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 692 693 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 694 695 // VSX v2i64 only supports non-arithmetic operations. 696 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 697 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 698 } 699 700 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 701 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 702 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 703 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 704 705 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 706 707 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 708 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 709 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 710 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 711 712 // Vector operation legalization checks the result type of 713 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 714 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 715 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 716 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 717 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 718 719 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 720 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 721 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 722 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 723 724 if (Subtarget.hasDirectMove()) 725 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 726 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 727 728 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 729 } 730 731 if (Subtarget.hasP8Altivec()) { 732 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 733 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 734 } 735 736 if (Subtarget.hasP9Vector()) { 737 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 738 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 739 } 740 } 741 742 if (Subtarget.hasQPX()) { 743 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 744 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 745 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 746 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 747 748 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 749 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 750 751 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 752 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 753 754 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 755 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 756 757 if (!Subtarget.useCRBits()) 758 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 759 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 760 761 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 762 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 763 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 764 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 765 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 766 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 767 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 768 769 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 770 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 771 772 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 773 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 774 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 775 776 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 777 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 778 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 779 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 780 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 781 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 782 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 783 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 784 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 785 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 786 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 787 788 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 789 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 790 791 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 792 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 793 794 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 795 796 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 797 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 798 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 799 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 800 801 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 802 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 803 804 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 805 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 806 807 if (!Subtarget.useCRBits()) 808 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 809 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 810 811 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 812 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 813 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 814 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 815 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 816 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 817 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 818 819 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 820 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 821 822 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 823 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 824 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 825 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 826 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 827 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 828 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 829 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 830 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 831 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 832 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 833 834 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 835 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 836 837 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 838 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 839 840 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 841 842 setOperationAction(ISD::AND , MVT::v4i1, Legal); 843 setOperationAction(ISD::OR , MVT::v4i1, Legal); 844 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 845 846 if (!Subtarget.useCRBits()) 847 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 848 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 849 850 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 851 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 852 853 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 854 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 855 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 856 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 857 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 858 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 859 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 860 861 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 862 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 863 864 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 865 866 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 867 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 868 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 869 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 870 871 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 872 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 873 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 874 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 875 876 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 877 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 878 879 // These need to set FE_INEXACT, and so cannot be vectorized here. 880 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 881 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 882 883 if (TM.Options.UnsafeFPMath) { 884 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 885 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 886 887 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 888 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 889 } else { 890 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 891 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 892 893 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 894 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 895 } 896 } 897 898 if (Subtarget.has64BitSupport()) 899 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 900 901 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 902 903 if (!isPPC64) { 904 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 905 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 906 } 907 908 setBooleanContents(ZeroOrOneBooleanContent); 909 910 if (Subtarget.hasAltivec()) { 911 // Altivec instructions set fields to all zeros or all ones. 912 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 913 } 914 915 if (!isPPC64) { 916 // These libcalls are not available in 32-bit. 917 setLibcallName(RTLIB::SHL_I128, nullptr); 918 setLibcallName(RTLIB::SRL_I128, nullptr); 919 setLibcallName(RTLIB::SRA_I128, nullptr); 920 } 921 922 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 923 924 // We have target-specific dag combine patterns for the following nodes: 925 setTargetDAGCombine(ISD::SINT_TO_FP); 926 setTargetDAGCombine(ISD::BUILD_VECTOR); 927 if (Subtarget.hasFPCVT()) 928 setTargetDAGCombine(ISD::UINT_TO_FP); 929 setTargetDAGCombine(ISD::LOAD); 930 setTargetDAGCombine(ISD::STORE); 931 setTargetDAGCombine(ISD::BR_CC); 932 if (Subtarget.useCRBits()) 933 setTargetDAGCombine(ISD::BRCOND); 934 setTargetDAGCombine(ISD::BSWAP); 935 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 936 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 937 setTargetDAGCombine(ISD::INTRINSIC_VOID); 938 939 setTargetDAGCombine(ISD::SIGN_EXTEND); 940 setTargetDAGCombine(ISD::ZERO_EXTEND); 941 setTargetDAGCombine(ISD::ANY_EXTEND); 942 943 if (Subtarget.useCRBits()) { 944 setTargetDAGCombine(ISD::TRUNCATE); 945 setTargetDAGCombine(ISD::SETCC); 946 setTargetDAGCombine(ISD::SELECT_CC); 947 } 948 949 // Use reciprocal estimates. 950 if (TM.Options.UnsafeFPMath) { 951 setTargetDAGCombine(ISD::FDIV); 952 setTargetDAGCombine(ISD::FSQRT); 953 } 954 955 // Darwin long double math library functions have $LDBL128 appended. 956 if (Subtarget.isDarwin()) { 957 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 958 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 959 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 960 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 961 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 962 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 963 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 964 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 965 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 966 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 967 } 968 969 // With 32 condition bits, we don't need to sink (and duplicate) compares 970 // aggressively in CodeGenPrep. 971 if (Subtarget.useCRBits()) { 972 setHasMultipleConditionRegisters(); 973 setJumpIsExpensive(); 974 } 975 976 setMinFunctionAlignment(2); 977 if (Subtarget.isDarwin()) 978 setPrefFunctionAlignment(4); 979 980 switch (Subtarget.getDarwinDirective()) { 981 default: break; 982 case PPC::DIR_970: 983 case PPC::DIR_A2: 984 case PPC::DIR_E500mc: 985 case PPC::DIR_E5500: 986 case PPC::DIR_PWR4: 987 case PPC::DIR_PWR5: 988 case PPC::DIR_PWR5X: 989 case PPC::DIR_PWR6: 990 case PPC::DIR_PWR6X: 991 case PPC::DIR_PWR7: 992 case PPC::DIR_PWR8: 993 case PPC::DIR_PWR9: 994 setPrefFunctionAlignment(4); 995 setPrefLoopAlignment(4); 996 break; 997 } 998 999 if (Subtarget.enableMachineScheduler()) 1000 setSchedulingPreference(Sched::Source); 1001 else 1002 setSchedulingPreference(Sched::Hybrid); 1003 1004 computeRegisterProperties(STI.getRegisterInfo()); 1005 1006 // The Freescale cores do better with aggressive inlining of memcpy and 1007 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1008 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1009 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1010 MaxStoresPerMemset = 32; 1011 MaxStoresPerMemsetOptSize = 16; 1012 MaxStoresPerMemcpy = 32; 1013 MaxStoresPerMemcpyOptSize = 8; 1014 MaxStoresPerMemmove = 32; 1015 MaxStoresPerMemmoveOptSize = 8; 1016 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1017 // The A2 also benefits from (very) aggressive inlining of memcpy and 1018 // friends. The overhead of a the function call, even when warm, can be 1019 // over one hundred cycles. 1020 MaxStoresPerMemset = 128; 1021 MaxStoresPerMemcpy = 128; 1022 MaxStoresPerMemmove = 128; 1023 } 1024 } 1025 1026 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1027 /// the desired ByVal argument alignment. 1028 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1029 unsigned MaxMaxAlign) { 1030 if (MaxAlign == MaxMaxAlign) 1031 return; 1032 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1033 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1034 MaxAlign = 32; 1035 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1036 MaxAlign = 16; 1037 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1038 unsigned EltAlign = 0; 1039 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1040 if (EltAlign > MaxAlign) 1041 MaxAlign = EltAlign; 1042 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1043 for (auto *EltTy : STy->elements()) { 1044 unsigned EltAlign = 0; 1045 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1046 if (EltAlign > MaxAlign) 1047 MaxAlign = EltAlign; 1048 if (MaxAlign == MaxMaxAlign) 1049 break; 1050 } 1051 } 1052 } 1053 1054 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1055 /// function arguments in the caller parameter area. 1056 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1057 const DataLayout &DL) const { 1058 // Darwin passes everything on 4 byte boundary. 1059 if (Subtarget.isDarwin()) 1060 return 4; 1061 1062 // 16byte and wider vectors are passed on 16byte boundary. 1063 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1064 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1065 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1066 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1067 return Align; 1068 } 1069 1070 bool PPCTargetLowering::useSoftFloat() const { 1071 return Subtarget.useSoftFloat(); 1072 } 1073 1074 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1075 switch ((PPCISD::NodeType)Opcode) { 1076 case PPCISD::FIRST_NUMBER: break; 1077 case PPCISD::FSEL: return "PPCISD::FSEL"; 1078 case PPCISD::FCFID: return "PPCISD::FCFID"; 1079 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1080 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1081 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1082 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1083 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1084 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1085 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1086 case PPCISD::FRE: return "PPCISD::FRE"; 1087 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1088 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1089 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1090 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1091 case PPCISD::VPERM: return "PPCISD::VPERM"; 1092 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1093 case PPCISD::XXINSERT: return "PPCISD::XXINSERT"; 1094 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1095 case PPCISD::CMPB: return "PPCISD::CMPB"; 1096 case PPCISD::Hi: return "PPCISD::Hi"; 1097 case PPCISD::Lo: return "PPCISD::Lo"; 1098 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1099 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1100 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1101 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1102 case PPCISD::SRL: return "PPCISD::SRL"; 1103 case PPCISD::SRA: return "PPCISD::SRA"; 1104 case PPCISD::SHL: return "PPCISD::SHL"; 1105 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1106 case PPCISD::CALL: return "PPCISD::CALL"; 1107 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1108 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1109 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1110 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1111 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1112 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1113 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1114 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1115 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1116 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1117 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1118 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1119 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1120 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1121 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1122 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1123 case PPCISD::VCMP: return "PPCISD::VCMP"; 1124 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1125 case PPCISD::LBRX: return "PPCISD::LBRX"; 1126 case PPCISD::STBRX: return "PPCISD::STBRX"; 1127 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1128 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1129 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1130 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1131 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1132 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1133 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1134 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1135 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1136 case PPCISD::BDZ: return "PPCISD::BDZ"; 1137 case PPCISD::MFFS: return "PPCISD::MFFS"; 1138 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1139 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1140 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1141 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1142 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1143 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1144 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1145 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1146 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1147 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1148 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1149 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1150 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1151 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1152 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1153 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1154 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1155 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1156 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1157 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1158 case PPCISD::SC: return "PPCISD::SC"; 1159 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1160 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1161 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1162 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1163 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1164 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1165 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1166 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1167 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1168 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1169 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1170 } 1171 return nullptr; 1172 } 1173 1174 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1175 EVT VT) const { 1176 if (!VT.isVector()) 1177 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1178 1179 if (Subtarget.hasQPX()) 1180 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1181 1182 return VT.changeVectorElementTypeToInteger(); 1183 } 1184 1185 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1186 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1187 return true; 1188 } 1189 1190 //===----------------------------------------------------------------------===// 1191 // Node matching predicates, for use by the tblgen matching code. 1192 //===----------------------------------------------------------------------===// 1193 1194 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1195 static bool isFloatingPointZero(SDValue Op) { 1196 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1197 return CFP->getValueAPF().isZero(); 1198 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1199 // Maybe this has already been legalized into the constant pool? 1200 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1201 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1202 return CFP->getValueAPF().isZero(); 1203 } 1204 return false; 1205 } 1206 1207 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1208 /// true if Op is undef or if it matches the specified value. 1209 static bool isConstantOrUndef(int Op, int Val) { 1210 return Op < 0 || Op == Val; 1211 } 1212 1213 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1214 /// VPKUHUM instruction. 1215 /// The ShuffleKind distinguishes between big-endian operations with 1216 /// two different inputs (0), either-endian operations with two identical 1217 /// inputs (1), and little-endian operations with two different inputs (2). 1218 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1219 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1220 SelectionDAG &DAG) { 1221 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1222 if (ShuffleKind == 0) { 1223 if (IsLE) 1224 return false; 1225 for (unsigned i = 0; i != 16; ++i) 1226 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1227 return false; 1228 } else if (ShuffleKind == 2) { 1229 if (!IsLE) 1230 return false; 1231 for (unsigned i = 0; i != 16; ++i) 1232 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1233 return false; 1234 } else if (ShuffleKind == 1) { 1235 unsigned j = IsLE ? 0 : 1; 1236 for (unsigned i = 0; i != 8; ++i) 1237 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1238 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1239 return false; 1240 } 1241 return true; 1242 } 1243 1244 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1245 /// VPKUWUM instruction. 1246 /// The ShuffleKind distinguishes between big-endian operations with 1247 /// two different inputs (0), either-endian operations with two identical 1248 /// inputs (1), and little-endian operations with two different inputs (2). 1249 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1250 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1251 SelectionDAG &DAG) { 1252 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1253 if (ShuffleKind == 0) { 1254 if (IsLE) 1255 return false; 1256 for (unsigned i = 0; i != 16; i += 2) 1257 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1258 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1259 return false; 1260 } else if (ShuffleKind == 2) { 1261 if (!IsLE) 1262 return false; 1263 for (unsigned i = 0; i != 16; i += 2) 1264 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1265 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1266 return false; 1267 } else if (ShuffleKind == 1) { 1268 unsigned j = IsLE ? 0 : 2; 1269 for (unsigned i = 0; i != 8; i += 2) 1270 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1271 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1272 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1273 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1274 return false; 1275 } 1276 return true; 1277 } 1278 1279 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1280 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1281 /// current subtarget. 1282 /// 1283 /// The ShuffleKind distinguishes between big-endian operations with 1284 /// two different inputs (0), either-endian operations with two identical 1285 /// inputs (1), and little-endian operations with two different inputs (2). 1286 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1287 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1288 SelectionDAG &DAG) { 1289 const PPCSubtarget& Subtarget = 1290 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1291 if (!Subtarget.hasP8Vector()) 1292 return false; 1293 1294 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1295 if (ShuffleKind == 0) { 1296 if (IsLE) 1297 return false; 1298 for (unsigned i = 0; i != 16; i += 4) 1299 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1300 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1301 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1302 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1303 return false; 1304 } else if (ShuffleKind == 2) { 1305 if (!IsLE) 1306 return false; 1307 for (unsigned i = 0; i != 16; i += 4) 1308 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1309 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1310 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1311 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1312 return false; 1313 } else if (ShuffleKind == 1) { 1314 unsigned j = IsLE ? 0 : 4; 1315 for (unsigned i = 0; i != 8; i += 4) 1316 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1317 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1318 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1319 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1320 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1321 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1322 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1323 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1324 return false; 1325 } 1326 return true; 1327 } 1328 1329 /// isVMerge - Common function, used to match vmrg* shuffles. 1330 /// 1331 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1332 unsigned LHSStart, unsigned RHSStart) { 1333 if (N->getValueType(0) != MVT::v16i8) 1334 return false; 1335 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1336 "Unsupported merge size!"); 1337 1338 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1339 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1340 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1341 LHSStart+j+i*UnitSize) || 1342 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1343 RHSStart+j+i*UnitSize)) 1344 return false; 1345 } 1346 return true; 1347 } 1348 1349 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1350 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1351 /// The ShuffleKind distinguishes between big-endian merges with two 1352 /// different inputs (0), either-endian merges with two identical inputs (1), 1353 /// and little-endian merges with two different inputs (2). For the latter, 1354 /// the input operands are swapped (see PPCInstrAltivec.td). 1355 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1356 unsigned ShuffleKind, SelectionDAG &DAG) { 1357 if (DAG.getDataLayout().isLittleEndian()) { 1358 if (ShuffleKind == 1) // unary 1359 return isVMerge(N, UnitSize, 0, 0); 1360 else if (ShuffleKind == 2) // swapped 1361 return isVMerge(N, UnitSize, 0, 16); 1362 else 1363 return false; 1364 } else { 1365 if (ShuffleKind == 1) // unary 1366 return isVMerge(N, UnitSize, 8, 8); 1367 else if (ShuffleKind == 0) // normal 1368 return isVMerge(N, UnitSize, 8, 24); 1369 else 1370 return false; 1371 } 1372 } 1373 1374 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1375 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1376 /// The ShuffleKind distinguishes between big-endian merges with two 1377 /// different inputs (0), either-endian merges with two identical inputs (1), 1378 /// and little-endian merges with two different inputs (2). For the latter, 1379 /// the input operands are swapped (see PPCInstrAltivec.td). 1380 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1381 unsigned ShuffleKind, SelectionDAG &DAG) { 1382 if (DAG.getDataLayout().isLittleEndian()) { 1383 if (ShuffleKind == 1) // unary 1384 return isVMerge(N, UnitSize, 8, 8); 1385 else if (ShuffleKind == 2) // swapped 1386 return isVMerge(N, UnitSize, 8, 24); 1387 else 1388 return false; 1389 } else { 1390 if (ShuffleKind == 1) // unary 1391 return isVMerge(N, UnitSize, 0, 0); 1392 else if (ShuffleKind == 0) // normal 1393 return isVMerge(N, UnitSize, 0, 16); 1394 else 1395 return false; 1396 } 1397 } 1398 1399 /** 1400 * \brief Common function used to match vmrgew and vmrgow shuffles 1401 * 1402 * The indexOffset determines whether to look for even or odd words in 1403 * the shuffle mask. This is based on the of the endianness of the target 1404 * machine. 1405 * - Little Endian: 1406 * - Use offset of 0 to check for odd elements 1407 * - Use offset of 4 to check for even elements 1408 * - Big Endian: 1409 * - Use offset of 0 to check for even elements 1410 * - Use offset of 4 to check for odd elements 1411 * A detailed description of the vector element ordering for little endian and 1412 * big endian can be found at 1413 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1414 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1415 * compiler differences mean to you 1416 * 1417 * The mask to the shuffle vector instruction specifies the indices of the 1418 * elements from the two input vectors to place in the result. The elements are 1419 * numbered in array-access order, starting with the first vector. These vectors 1420 * are always of type v16i8, thus each vector will contain 16 elements of size 1421 * 8. More info on the shuffle vector can be found in the 1422 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1423 * Language Reference. 1424 * 1425 * The RHSStartValue indicates whether the same input vectors are used (unary) 1426 * or two different input vectors are used, based on the following: 1427 * - If the instruction uses the same vector for both inputs, the range of the 1428 * indices will be 0 to 15. In this case, the RHSStart value passed should 1429 * be 0. 1430 * - If the instruction has two different vectors then the range of the 1431 * indices will be 0 to 31. In this case, the RHSStart value passed should 1432 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1433 * to 31 specify elements in the second vector). 1434 * 1435 * \param[in] N The shuffle vector SD Node to analyze 1436 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1437 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1438 * vector to the shuffle_vector instruction 1439 * \return true iff this shuffle vector represents an even or odd word merge 1440 */ 1441 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1442 unsigned RHSStartValue) { 1443 if (N->getValueType(0) != MVT::v16i8) 1444 return false; 1445 1446 for (unsigned i = 0; i < 2; ++i) 1447 for (unsigned j = 0; j < 4; ++j) 1448 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1449 i*RHSStartValue+j+IndexOffset) || 1450 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1451 i*RHSStartValue+j+IndexOffset+8)) 1452 return false; 1453 return true; 1454 } 1455 1456 /** 1457 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1458 * vmrgow instructions. 1459 * 1460 * \param[in] N The shuffle vector SD Node to analyze 1461 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1462 * \param[in] ShuffleKind Identify the type of merge: 1463 * - 0 = big-endian merge with two different inputs; 1464 * - 1 = either-endian merge with two identical inputs; 1465 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1466 * little-endian merges). 1467 * \param[in] DAG The current SelectionDAG 1468 * \return true iff this shuffle mask 1469 */ 1470 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1471 unsigned ShuffleKind, SelectionDAG &DAG) { 1472 if (DAG.getDataLayout().isLittleEndian()) { 1473 unsigned indexOffset = CheckEven ? 4 : 0; 1474 if (ShuffleKind == 1) // Unary 1475 return isVMerge(N, indexOffset, 0); 1476 else if (ShuffleKind == 2) // swapped 1477 return isVMerge(N, indexOffset, 16); 1478 else 1479 return false; 1480 } 1481 else { 1482 unsigned indexOffset = CheckEven ? 0 : 4; 1483 if (ShuffleKind == 1) // Unary 1484 return isVMerge(N, indexOffset, 0); 1485 else if (ShuffleKind == 0) // Normal 1486 return isVMerge(N, indexOffset, 16); 1487 else 1488 return false; 1489 } 1490 return false; 1491 } 1492 1493 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1494 /// amount, otherwise return -1. 1495 /// The ShuffleKind distinguishes between big-endian operations with two 1496 /// different inputs (0), either-endian operations with two identical inputs 1497 /// (1), and little-endian operations with two different inputs (2). For the 1498 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1499 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1500 SelectionDAG &DAG) { 1501 if (N->getValueType(0) != MVT::v16i8) 1502 return -1; 1503 1504 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1505 1506 // Find the first non-undef value in the shuffle mask. 1507 unsigned i; 1508 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1509 /*search*/; 1510 1511 if (i == 16) return -1; // all undef. 1512 1513 // Otherwise, check to see if the rest of the elements are consecutively 1514 // numbered from this value. 1515 unsigned ShiftAmt = SVOp->getMaskElt(i); 1516 if (ShiftAmt < i) return -1; 1517 1518 ShiftAmt -= i; 1519 bool isLE = DAG.getDataLayout().isLittleEndian(); 1520 1521 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1522 // Check the rest of the elements to see if they are consecutive. 1523 for (++i; i != 16; ++i) 1524 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1525 return -1; 1526 } else if (ShuffleKind == 1) { 1527 // Check the rest of the elements to see if they are consecutive. 1528 for (++i; i != 16; ++i) 1529 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1530 return -1; 1531 } else 1532 return -1; 1533 1534 if (isLE) 1535 ShiftAmt = 16 - ShiftAmt; 1536 1537 return ShiftAmt; 1538 } 1539 1540 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1541 /// specifies a splat of a single element that is suitable for input to 1542 /// VSPLTB/VSPLTH/VSPLTW. 1543 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1544 assert(N->getValueType(0) == MVT::v16i8 && 1545 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1546 1547 // The consecutive indices need to specify an element, not part of two 1548 // different elements. So abandon ship early if this isn't the case. 1549 if (N->getMaskElt(0) % EltSize != 0) 1550 return false; 1551 1552 // This is a splat operation if each element of the permute is the same, and 1553 // if the value doesn't reference the second vector. 1554 unsigned ElementBase = N->getMaskElt(0); 1555 1556 // FIXME: Handle UNDEF elements too! 1557 if (ElementBase >= 16) 1558 return false; 1559 1560 // Check that the indices are consecutive, in the case of a multi-byte element 1561 // splatted with a v16i8 mask. 1562 for (unsigned i = 1; i != EltSize; ++i) 1563 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1564 return false; 1565 1566 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1567 if (N->getMaskElt(i) < 0) continue; 1568 for (unsigned j = 0; j != EltSize; ++j) 1569 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1570 return false; 1571 } 1572 return true; 1573 } 1574 1575 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1576 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1577 // Check that the mask is shuffling words 1578 for (unsigned i = 0; i < 4; ++i) { 1579 unsigned B0 = N->getMaskElt(i*4); 1580 unsigned B1 = N->getMaskElt(i*4+1); 1581 unsigned B2 = N->getMaskElt(i*4+2); 1582 unsigned B3 = N->getMaskElt(i*4+3); 1583 if (B0 % 4) 1584 return false; 1585 if (B1 != B0+1 || B2 != B1+1 || B3 != B2+1) 1586 return false; 1587 } 1588 1589 // Now we look at mask elements 0,4,8,12 1590 unsigned M0 = N->getMaskElt(0) / 4; 1591 unsigned M1 = N->getMaskElt(4) / 4; 1592 unsigned M2 = N->getMaskElt(8) / 4; 1593 unsigned M3 = N->getMaskElt(12) / 4; 1594 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1595 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1596 1597 // Below, let H and L be arbitrary elements of the shuffle mask 1598 // where H is in the range [4,7] and L is in the range [0,3]. 1599 // H, 1, 2, 3 or L, 5, 6, 7 1600 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1601 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1602 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1603 InsertAtByte = IsLE ? 12 : 0; 1604 Swap = M0 < 4; 1605 return true; 1606 } 1607 // 0, H, 2, 3 or 4, L, 6, 7 1608 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1609 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1610 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1611 InsertAtByte = IsLE ? 8 : 4; 1612 Swap = M1 < 4; 1613 return true; 1614 } 1615 // 0, 1, H, 3 or 4, 5, L, 7 1616 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1617 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1618 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1619 InsertAtByte = IsLE ? 4 : 8; 1620 Swap = M2 < 4; 1621 return true; 1622 } 1623 // 0, 1, 2, H or 4, 5, 6, L 1624 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1625 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1626 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1627 InsertAtByte = IsLE ? 0 : 12; 1628 Swap = M3 < 4; 1629 return true; 1630 } 1631 1632 // If both vector operands for the shuffle are the same vector, the mask will 1633 // contain only elements from the first one and the second one will be undef. 1634 if (N->getOperand(1).isUndef()) { 1635 ShiftElts = 0; 1636 Swap = true; 1637 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1638 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1639 InsertAtByte = IsLE ? 12 : 0; 1640 return true; 1641 } 1642 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1643 InsertAtByte = IsLE ? 8 : 4; 1644 return true; 1645 } 1646 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1647 InsertAtByte = IsLE ? 4 : 8; 1648 return true; 1649 } 1650 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1651 InsertAtByte = IsLE ? 0 : 12; 1652 return true; 1653 } 1654 } 1655 1656 return false; 1657 } 1658 1659 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1660 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1661 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1662 SelectionDAG &DAG) { 1663 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1664 assert(isSplatShuffleMask(SVOp, EltSize)); 1665 if (DAG.getDataLayout().isLittleEndian()) 1666 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1667 else 1668 return SVOp->getMaskElt(0) / EltSize; 1669 } 1670 1671 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1672 /// by using a vspltis[bhw] instruction of the specified element size, return 1673 /// the constant being splatted. The ByteSize field indicates the number of 1674 /// bytes of each element [124] -> [bhw]. 1675 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1676 SDValue OpVal(nullptr, 0); 1677 1678 // If ByteSize of the splat is bigger than the element size of the 1679 // build_vector, then we have a case where we are checking for a splat where 1680 // multiple elements of the buildvector are folded together into a single 1681 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1682 unsigned EltSize = 16/N->getNumOperands(); 1683 if (EltSize < ByteSize) { 1684 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1685 SDValue UniquedVals[4]; 1686 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1687 1688 // See if all of the elements in the buildvector agree across. 1689 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1690 if (N->getOperand(i).isUndef()) continue; 1691 // If the element isn't a constant, bail fully out. 1692 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1693 1694 if (!UniquedVals[i&(Multiple-1)].getNode()) 1695 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1696 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1697 return SDValue(); // no match. 1698 } 1699 1700 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1701 // either constant or undef values that are identical for each chunk. See 1702 // if these chunks can form into a larger vspltis*. 1703 1704 // Check to see if all of the leading entries are either 0 or -1. If 1705 // neither, then this won't fit into the immediate field. 1706 bool LeadingZero = true; 1707 bool LeadingOnes = true; 1708 for (unsigned i = 0; i != Multiple-1; ++i) { 1709 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1710 1711 LeadingZero &= isNullConstant(UniquedVals[i]); 1712 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 1713 } 1714 // Finally, check the least significant entry. 1715 if (LeadingZero) { 1716 if (!UniquedVals[Multiple-1].getNode()) 1717 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1718 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1719 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1720 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1721 } 1722 if (LeadingOnes) { 1723 if (!UniquedVals[Multiple-1].getNode()) 1724 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1725 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1726 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1727 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1728 } 1729 1730 return SDValue(); 1731 } 1732 1733 // Check to see if this buildvec has a single non-undef value in its elements. 1734 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1735 if (N->getOperand(i).isUndef()) continue; 1736 if (!OpVal.getNode()) 1737 OpVal = N->getOperand(i); 1738 else if (OpVal != N->getOperand(i)) 1739 return SDValue(); 1740 } 1741 1742 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1743 1744 unsigned ValSizeInBytes = EltSize; 1745 uint64_t Value = 0; 1746 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1747 Value = CN->getZExtValue(); 1748 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1749 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1750 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1751 } 1752 1753 // If the splat value is larger than the element value, then we can never do 1754 // this splat. The only case that we could fit the replicated bits into our 1755 // immediate field for would be zero, and we prefer to use vxor for it. 1756 if (ValSizeInBytes < ByteSize) return SDValue(); 1757 1758 // If the element value is larger than the splat value, check if it consists 1759 // of a repeated bit pattern of size ByteSize. 1760 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1761 return SDValue(); 1762 1763 // Properly sign extend the value. 1764 int MaskVal = SignExtend32(Value, ByteSize * 8); 1765 1766 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1767 if (MaskVal == 0) return SDValue(); 1768 1769 // Finally, if this value fits in a 5 bit sext field, return it 1770 if (SignExtend32<5>(MaskVal) == MaskVal) 1771 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1772 return SDValue(); 1773 } 1774 1775 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1776 /// amount, otherwise return -1. 1777 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1778 EVT VT = N->getValueType(0); 1779 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1780 return -1; 1781 1782 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1783 1784 // Find the first non-undef value in the shuffle mask. 1785 unsigned i; 1786 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1787 /*search*/; 1788 1789 if (i == 4) return -1; // all undef. 1790 1791 // Otherwise, check to see if the rest of the elements are consecutively 1792 // numbered from this value. 1793 unsigned ShiftAmt = SVOp->getMaskElt(i); 1794 if (ShiftAmt < i) return -1; 1795 ShiftAmt -= i; 1796 1797 // Check the rest of the elements to see if they are consecutive. 1798 for (++i; i != 4; ++i) 1799 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1800 return -1; 1801 1802 return ShiftAmt; 1803 } 1804 1805 //===----------------------------------------------------------------------===// 1806 // Addressing Mode Selection 1807 //===----------------------------------------------------------------------===// 1808 1809 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1810 /// or 64-bit immediate, and if the value can be accurately represented as a 1811 /// sign extension from a 16-bit value. If so, this returns true and the 1812 /// immediate. 1813 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1814 if (!isa<ConstantSDNode>(N)) 1815 return false; 1816 1817 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1818 if (N->getValueType(0) == MVT::i32) 1819 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1820 else 1821 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1822 } 1823 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1824 return isIntS16Immediate(Op.getNode(), Imm); 1825 } 1826 1827 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1828 /// can be represented as an indexed [r+r] operation. Returns false if it 1829 /// can be more efficiently represented with [r+imm]. 1830 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1831 SDValue &Index, 1832 SelectionDAG &DAG) const { 1833 short imm = 0; 1834 if (N.getOpcode() == ISD::ADD) { 1835 if (isIntS16Immediate(N.getOperand(1), imm)) 1836 return false; // r+i 1837 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1838 return false; // r+i 1839 1840 Base = N.getOperand(0); 1841 Index = N.getOperand(1); 1842 return true; 1843 } else if (N.getOpcode() == ISD::OR) { 1844 if (isIntS16Immediate(N.getOperand(1), imm)) 1845 return false; // r+i can fold it if we can. 1846 1847 // If this is an or of disjoint bitfields, we can codegen this as an add 1848 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1849 // disjoint. 1850 APInt LHSKnownZero, LHSKnownOne; 1851 APInt RHSKnownZero, RHSKnownOne; 1852 DAG.computeKnownBits(N.getOperand(0), 1853 LHSKnownZero, LHSKnownOne); 1854 1855 if (LHSKnownZero.getBoolValue()) { 1856 DAG.computeKnownBits(N.getOperand(1), 1857 RHSKnownZero, RHSKnownOne); 1858 // If all of the bits are known zero on the LHS or RHS, the add won't 1859 // carry. 1860 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1861 Base = N.getOperand(0); 1862 Index = N.getOperand(1); 1863 return true; 1864 } 1865 } 1866 } 1867 1868 return false; 1869 } 1870 1871 // If we happen to be doing an i64 load or store into a stack slot that has 1872 // less than a 4-byte alignment, then the frame-index elimination may need to 1873 // use an indexed load or store instruction (because the offset may not be a 1874 // multiple of 4). The extra register needed to hold the offset comes from the 1875 // register scavenger, and it is possible that the scavenger will need to use 1876 // an emergency spill slot. As a result, we need to make sure that a spill slot 1877 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1878 // stack slot. 1879 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1880 // FIXME: This does not handle the LWA case. 1881 if (VT != MVT::i64) 1882 return; 1883 1884 // NOTE: We'll exclude negative FIs here, which come from argument 1885 // lowering, because there are no known test cases triggering this problem 1886 // using packed structures (or similar). We can remove this exclusion if 1887 // we find such a test case. The reason why this is so test-case driven is 1888 // because this entire 'fixup' is only to prevent crashes (from the 1889 // register scavenger) on not-really-valid inputs. For example, if we have: 1890 // %a = alloca i1 1891 // %b = bitcast i1* %a to i64* 1892 // store i64* a, i64 b 1893 // then the store should really be marked as 'align 1', but is not. If it 1894 // were marked as 'align 1' then the indexed form would have been 1895 // instruction-selected initially, and the problem this 'fixup' is preventing 1896 // won't happen regardless. 1897 if (FrameIdx < 0) 1898 return; 1899 1900 MachineFunction &MF = DAG.getMachineFunction(); 1901 MachineFrameInfo &MFI = MF.getFrameInfo(); 1902 1903 unsigned Align = MFI.getObjectAlignment(FrameIdx); 1904 if (Align >= 4) 1905 return; 1906 1907 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1908 FuncInfo->setHasNonRISpills(); 1909 } 1910 1911 /// Returns true if the address N can be represented by a base register plus 1912 /// a signed 16-bit displacement [r+imm], and if it is not better 1913 /// represented as reg+reg. If Aligned is true, only accept displacements 1914 /// suitable for STD and friends, i.e. multiples of 4. 1915 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1916 SDValue &Base, 1917 SelectionDAG &DAG, 1918 bool Aligned) const { 1919 // FIXME dl should come from parent load or store, not from address 1920 SDLoc dl(N); 1921 // If this can be more profitably realized as r+r, fail. 1922 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1923 return false; 1924 1925 if (N.getOpcode() == ISD::ADD) { 1926 short imm = 0; 1927 if (isIntS16Immediate(N.getOperand(1), imm) && 1928 (!Aligned || (imm & 3) == 0)) { 1929 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1930 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1931 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1932 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1933 } else { 1934 Base = N.getOperand(0); 1935 } 1936 return true; // [r+i] 1937 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1938 // Match LOAD (ADD (X, Lo(G))). 1939 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1940 && "Cannot handle constant offsets yet!"); 1941 Disp = N.getOperand(1).getOperand(0); // The global address. 1942 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1943 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1944 Disp.getOpcode() == ISD::TargetConstantPool || 1945 Disp.getOpcode() == ISD::TargetJumpTable); 1946 Base = N.getOperand(0); 1947 return true; // [&g+r] 1948 } 1949 } else if (N.getOpcode() == ISD::OR) { 1950 short imm = 0; 1951 if (isIntS16Immediate(N.getOperand(1), imm) && 1952 (!Aligned || (imm & 3) == 0)) { 1953 // If this is an or of disjoint bitfields, we can codegen this as an add 1954 // (for better address arithmetic) if the LHS and RHS of the OR are 1955 // provably disjoint. 1956 APInt LHSKnownZero, LHSKnownOne; 1957 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1958 1959 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1960 // If all of the bits are known zero on the LHS or RHS, the add won't 1961 // carry. 1962 if (FrameIndexSDNode *FI = 1963 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1964 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1965 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1966 } else { 1967 Base = N.getOperand(0); 1968 } 1969 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1970 return true; 1971 } 1972 } 1973 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1974 // Loading from a constant address. 1975 1976 // If this address fits entirely in a 16-bit sext immediate field, codegen 1977 // this as "d, 0" 1978 short Imm; 1979 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1980 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1981 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1982 CN->getValueType(0)); 1983 return true; 1984 } 1985 1986 // Handle 32-bit sext immediates with LIS + addr mode. 1987 if ((CN->getValueType(0) == MVT::i32 || 1988 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1989 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1990 int Addr = (int)CN->getZExtValue(); 1991 1992 // Otherwise, break this down into an LIS + disp. 1993 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1994 1995 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1996 MVT::i32); 1997 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1998 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1999 return true; 2000 } 2001 } 2002 2003 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2004 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2005 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2006 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2007 } else 2008 Base = N; 2009 return true; // [r+0] 2010 } 2011 2012 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2013 /// represented as an indexed [r+r] operation. 2014 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2015 SDValue &Index, 2016 SelectionDAG &DAG) const { 2017 // Check to see if we can easily represent this as an [r+r] address. This 2018 // will fail if it thinks that the address is more profitably represented as 2019 // reg+imm, e.g. where imm = 0. 2020 if (SelectAddressRegReg(N, Base, Index, DAG)) 2021 return true; 2022 2023 // If the operand is an addition, always emit this as [r+r], since this is 2024 // better (for code size, and execution, as the memop does the add for free) 2025 // than emitting an explicit add. 2026 if (N.getOpcode() == ISD::ADD) { 2027 Base = N.getOperand(0); 2028 Index = N.getOperand(1); 2029 return true; 2030 } 2031 2032 // Otherwise, do it the hard way, using R0 as the base register. 2033 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2034 N.getValueType()); 2035 Index = N; 2036 return true; 2037 } 2038 2039 /// getPreIndexedAddressParts - returns true by value, base pointer and 2040 /// offset pointer and addressing mode by reference if the node's address 2041 /// can be legally represented as pre-indexed load / store address. 2042 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2043 SDValue &Offset, 2044 ISD::MemIndexedMode &AM, 2045 SelectionDAG &DAG) const { 2046 if (DisablePPCPreinc) return false; 2047 2048 bool isLoad = true; 2049 SDValue Ptr; 2050 EVT VT; 2051 unsigned Alignment; 2052 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2053 Ptr = LD->getBasePtr(); 2054 VT = LD->getMemoryVT(); 2055 Alignment = LD->getAlignment(); 2056 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2057 Ptr = ST->getBasePtr(); 2058 VT = ST->getMemoryVT(); 2059 Alignment = ST->getAlignment(); 2060 isLoad = false; 2061 } else 2062 return false; 2063 2064 // PowerPC doesn't have preinc load/store instructions for vectors (except 2065 // for QPX, which does have preinc r+r forms). 2066 if (VT.isVector()) { 2067 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2068 return false; 2069 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2070 AM = ISD::PRE_INC; 2071 return true; 2072 } 2073 } 2074 2075 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2076 // Common code will reject creating a pre-inc form if the base pointer 2077 // is a frame index, or if N is a store and the base pointer is either 2078 // the same as or a predecessor of the value being stored. Check for 2079 // those situations here, and try with swapped Base/Offset instead. 2080 bool Swap = false; 2081 2082 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2083 Swap = true; 2084 else if (!isLoad) { 2085 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2086 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2087 Swap = true; 2088 } 2089 2090 if (Swap) 2091 std::swap(Base, Offset); 2092 2093 AM = ISD::PRE_INC; 2094 return true; 2095 } 2096 2097 // LDU/STU can only handle immediates that are a multiple of 4. 2098 if (VT != MVT::i64) { 2099 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 2100 return false; 2101 } else { 2102 // LDU/STU need an address with at least 4-byte alignment. 2103 if (Alignment < 4) 2104 return false; 2105 2106 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 2107 return false; 2108 } 2109 2110 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2111 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2112 // sext i32 to i64 when addr mode is r+i. 2113 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2114 LD->getExtensionType() == ISD::SEXTLOAD && 2115 isa<ConstantSDNode>(Offset)) 2116 return false; 2117 } 2118 2119 AM = ISD::PRE_INC; 2120 return true; 2121 } 2122 2123 //===----------------------------------------------------------------------===// 2124 // LowerOperation implementation 2125 //===----------------------------------------------------------------------===// 2126 2127 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2128 /// and LoOpFlags to the target MO flags. 2129 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2130 unsigned &HiOpFlags, unsigned &LoOpFlags, 2131 const GlobalValue *GV = nullptr) { 2132 HiOpFlags = PPCII::MO_HA; 2133 LoOpFlags = PPCII::MO_LO; 2134 2135 // Don't use the pic base if not in PIC relocation model. 2136 if (IsPIC) { 2137 HiOpFlags |= PPCII::MO_PIC_FLAG; 2138 LoOpFlags |= PPCII::MO_PIC_FLAG; 2139 } 2140 2141 // If this is a reference to a global value that requires a non-lazy-ptr, make 2142 // sure that instruction lowering adds it. 2143 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2144 HiOpFlags |= PPCII::MO_NLP_FLAG; 2145 LoOpFlags |= PPCII::MO_NLP_FLAG; 2146 2147 if (GV->hasHiddenVisibility()) { 2148 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2149 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2150 } 2151 } 2152 } 2153 2154 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2155 SelectionDAG &DAG) { 2156 SDLoc DL(HiPart); 2157 EVT PtrVT = HiPart.getValueType(); 2158 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2159 2160 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2161 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2162 2163 // With PIC, the first instruction is actually "GR+hi(&G)". 2164 if (isPIC) 2165 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2166 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2167 2168 // Generate non-pic code that has direct accesses to the constant pool. 2169 // The address of the global is just (hi(&g)+lo(&g)). 2170 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2171 } 2172 2173 static void setUsesTOCBasePtr(MachineFunction &MF) { 2174 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2175 FuncInfo->setUsesTOCBasePtr(); 2176 } 2177 2178 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2179 setUsesTOCBasePtr(DAG.getMachineFunction()); 2180 } 2181 2182 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2183 SDValue GA) { 2184 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2185 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2186 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2187 2188 SDValue Ops[] = { GA, Reg }; 2189 return DAG.getMemIntrinsicNode( 2190 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2191 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2192 false, 0); 2193 } 2194 2195 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2196 SelectionDAG &DAG) const { 2197 EVT PtrVT = Op.getValueType(); 2198 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2199 const Constant *C = CP->getConstVal(); 2200 2201 // 64-bit SVR4 ABI code is always position-independent. 2202 // The actual address of the GlobalValue is stored in the TOC. 2203 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2204 setUsesTOCBasePtr(DAG); 2205 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2206 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2207 } 2208 2209 unsigned MOHiFlag, MOLoFlag; 2210 bool IsPIC = isPositionIndependent(); 2211 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2212 2213 if (IsPIC && Subtarget.isSVR4ABI()) { 2214 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2215 PPCII::MO_PIC_FLAG); 2216 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2217 } 2218 2219 SDValue CPIHi = 2220 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2221 SDValue CPILo = 2222 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2223 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2224 } 2225 2226 // For 64-bit PowerPC, prefer the more compact relative encodings. 2227 // This trades 32 bits per jump table entry for one or two instructions 2228 // on the jump site. 2229 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2230 if (isJumpTableRelative()) 2231 return MachineJumpTableInfo::EK_LabelDifference32; 2232 2233 return TargetLowering::getJumpTableEncoding(); 2234 } 2235 2236 bool PPCTargetLowering::isJumpTableRelative() const { 2237 if (Subtarget.isPPC64()) 2238 return true; 2239 return TargetLowering::isJumpTableRelative(); 2240 } 2241 2242 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2243 SelectionDAG &DAG) const { 2244 if (!Subtarget.isPPC64()) 2245 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2246 2247 switch (getTargetMachine().getCodeModel()) { 2248 case CodeModel::Default: 2249 case CodeModel::Small: 2250 case CodeModel::Medium: 2251 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2252 default: 2253 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2254 getPointerTy(DAG.getDataLayout())); 2255 } 2256 } 2257 2258 const MCExpr * 2259 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2260 unsigned JTI, 2261 MCContext &Ctx) const { 2262 if (!Subtarget.isPPC64()) 2263 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2264 2265 switch (getTargetMachine().getCodeModel()) { 2266 case CodeModel::Default: 2267 case CodeModel::Small: 2268 case CodeModel::Medium: 2269 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2270 default: 2271 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2272 } 2273 } 2274 2275 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2276 EVT PtrVT = Op.getValueType(); 2277 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2278 2279 // 64-bit SVR4 ABI code is always position-independent. 2280 // The actual address of the GlobalValue is stored in the TOC. 2281 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2282 setUsesTOCBasePtr(DAG); 2283 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2284 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2285 } 2286 2287 unsigned MOHiFlag, MOLoFlag; 2288 bool IsPIC = isPositionIndependent(); 2289 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2290 2291 if (IsPIC && Subtarget.isSVR4ABI()) { 2292 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2293 PPCII::MO_PIC_FLAG); 2294 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2295 } 2296 2297 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2298 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2299 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2300 } 2301 2302 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2303 SelectionDAG &DAG) const { 2304 EVT PtrVT = Op.getValueType(); 2305 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2306 const BlockAddress *BA = BASDN->getBlockAddress(); 2307 2308 // 64-bit SVR4 ABI code is always position-independent. 2309 // The actual BlockAddress is stored in the TOC. 2310 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2311 setUsesTOCBasePtr(DAG); 2312 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2313 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2314 } 2315 2316 unsigned MOHiFlag, MOLoFlag; 2317 bool IsPIC = isPositionIndependent(); 2318 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2319 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2320 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2321 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2322 } 2323 2324 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2325 SelectionDAG &DAG) const { 2326 // FIXME: TLS addresses currently use medium model code sequences, 2327 // which is the most useful form. Eventually support for small and 2328 // large models could be added if users need it, at the cost of 2329 // additional complexity. 2330 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2331 if (DAG.getTarget().Options.EmulatedTLS) 2332 return LowerToTLSEmulatedModel(GA, DAG); 2333 2334 SDLoc dl(GA); 2335 const GlobalValue *GV = GA->getGlobal(); 2336 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2337 bool is64bit = Subtarget.isPPC64(); 2338 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2339 PICLevel::Level picLevel = M->getPICLevel(); 2340 2341 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2342 2343 if (Model == TLSModel::LocalExec) { 2344 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2345 PPCII::MO_TPREL_HA); 2346 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2347 PPCII::MO_TPREL_LO); 2348 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2349 is64bit ? MVT::i64 : MVT::i32); 2350 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2351 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2352 } 2353 2354 if (Model == TLSModel::InitialExec) { 2355 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2356 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2357 PPCII::MO_TLS); 2358 SDValue GOTPtr; 2359 if (is64bit) { 2360 setUsesTOCBasePtr(DAG); 2361 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2362 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2363 PtrVT, GOTReg, TGA); 2364 } else 2365 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2366 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2367 PtrVT, TGA, GOTPtr); 2368 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2369 } 2370 2371 if (Model == TLSModel::GeneralDynamic) { 2372 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2373 SDValue GOTPtr; 2374 if (is64bit) { 2375 setUsesTOCBasePtr(DAG); 2376 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2377 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2378 GOTReg, TGA); 2379 } else { 2380 if (picLevel == PICLevel::SmallPIC) 2381 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2382 else 2383 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2384 } 2385 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2386 GOTPtr, TGA, TGA); 2387 } 2388 2389 if (Model == TLSModel::LocalDynamic) { 2390 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2391 SDValue GOTPtr; 2392 if (is64bit) { 2393 setUsesTOCBasePtr(DAG); 2394 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2395 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2396 GOTReg, TGA); 2397 } else { 2398 if (picLevel == PICLevel::SmallPIC) 2399 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2400 else 2401 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2402 } 2403 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2404 PtrVT, GOTPtr, TGA, TGA); 2405 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2406 PtrVT, TLSAddr, TGA); 2407 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2408 } 2409 2410 llvm_unreachable("Unknown TLS model!"); 2411 } 2412 2413 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2414 SelectionDAG &DAG) const { 2415 EVT PtrVT = Op.getValueType(); 2416 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2417 SDLoc DL(GSDN); 2418 const GlobalValue *GV = GSDN->getGlobal(); 2419 2420 // 64-bit SVR4 ABI code is always position-independent. 2421 // The actual address of the GlobalValue is stored in the TOC. 2422 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2423 setUsesTOCBasePtr(DAG); 2424 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2425 return getTOCEntry(DAG, DL, true, GA); 2426 } 2427 2428 unsigned MOHiFlag, MOLoFlag; 2429 bool IsPIC = isPositionIndependent(); 2430 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2431 2432 if (IsPIC && Subtarget.isSVR4ABI()) { 2433 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2434 GSDN->getOffset(), 2435 PPCII::MO_PIC_FLAG); 2436 return getTOCEntry(DAG, DL, false, GA); 2437 } 2438 2439 SDValue GAHi = 2440 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2441 SDValue GALo = 2442 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2443 2444 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2445 2446 // If the global reference is actually to a non-lazy-pointer, we have to do an 2447 // extra load to get the address of the global. 2448 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2449 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2450 return Ptr; 2451 } 2452 2453 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2454 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2455 SDLoc dl(Op); 2456 2457 if (Op.getValueType() == MVT::v2i64) { 2458 // When the operands themselves are v2i64 values, we need to do something 2459 // special because VSX has no underlying comparison operations for these. 2460 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2461 // Equality can be handled by casting to the legal type for Altivec 2462 // comparisons, everything else needs to be expanded. 2463 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2464 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2465 DAG.getSetCC(dl, MVT::v4i32, 2466 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2467 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2468 CC)); 2469 } 2470 2471 return SDValue(); 2472 } 2473 2474 // We handle most of these in the usual way. 2475 return Op; 2476 } 2477 2478 // If we're comparing for equality to zero, expose the fact that this is 2479 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2480 // fold the new nodes. 2481 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2482 return V; 2483 2484 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2485 // Leave comparisons against 0 and -1 alone for now, since they're usually 2486 // optimized. FIXME: revisit this when we can custom lower all setcc 2487 // optimizations. 2488 if (C->isAllOnesValue() || C->isNullValue()) 2489 return SDValue(); 2490 } 2491 2492 // If we have an integer seteq/setne, turn it into a compare against zero 2493 // by xor'ing the rhs with the lhs, which is faster than setting a 2494 // condition register, reading it back out, and masking the correct bit. The 2495 // normal approach here uses sub to do this instead of xor. Using xor exposes 2496 // the result to other bit-twiddling opportunities. 2497 EVT LHSVT = Op.getOperand(0).getValueType(); 2498 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2499 EVT VT = Op.getValueType(); 2500 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2501 Op.getOperand(1)); 2502 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2503 } 2504 return SDValue(); 2505 } 2506 2507 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2508 SDNode *Node = Op.getNode(); 2509 EVT VT = Node->getValueType(0); 2510 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2511 SDValue InChain = Node->getOperand(0); 2512 SDValue VAListPtr = Node->getOperand(1); 2513 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2514 SDLoc dl(Node); 2515 2516 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2517 2518 // gpr_index 2519 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2520 VAListPtr, MachinePointerInfo(SV), MVT::i8); 2521 InChain = GprIndex.getValue(1); 2522 2523 if (VT == MVT::i64) { 2524 // Check if GprIndex is even 2525 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2526 DAG.getConstant(1, dl, MVT::i32)); 2527 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2528 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2529 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2530 DAG.getConstant(1, dl, MVT::i32)); 2531 // Align GprIndex to be even if it isn't 2532 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2533 GprIndex); 2534 } 2535 2536 // fpr index is 1 byte after gpr 2537 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2538 DAG.getConstant(1, dl, MVT::i32)); 2539 2540 // fpr 2541 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2542 FprPtr, MachinePointerInfo(SV), MVT::i8); 2543 InChain = FprIndex.getValue(1); 2544 2545 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2546 DAG.getConstant(8, dl, MVT::i32)); 2547 2548 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2549 DAG.getConstant(4, dl, MVT::i32)); 2550 2551 // areas 2552 SDValue OverflowArea = 2553 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 2554 InChain = OverflowArea.getValue(1); 2555 2556 SDValue RegSaveArea = 2557 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 2558 InChain = RegSaveArea.getValue(1); 2559 2560 // select overflow_area if index > 8 2561 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2562 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2563 2564 // adjustment constant gpr_index * 4/8 2565 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2566 VT.isInteger() ? GprIndex : FprIndex, 2567 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2568 MVT::i32)); 2569 2570 // OurReg = RegSaveArea + RegConstant 2571 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2572 RegConstant); 2573 2574 // Floating types are 32 bytes into RegSaveArea 2575 if (VT.isFloatingPoint()) 2576 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2577 DAG.getConstant(32, dl, MVT::i32)); 2578 2579 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2580 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2581 VT.isInteger() ? GprIndex : FprIndex, 2582 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2583 MVT::i32)); 2584 2585 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2586 VT.isInteger() ? VAListPtr : FprPtr, 2587 MachinePointerInfo(SV), MVT::i8); 2588 2589 // determine if we should load from reg_save_area or overflow_area 2590 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2591 2592 // increase overflow_area by 4/8 if gpr/fpr > 8 2593 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2594 DAG.getConstant(VT.isInteger() ? 4 : 8, 2595 dl, MVT::i32)); 2596 2597 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2598 OverflowAreaPlusN); 2599 2600 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 2601 MachinePointerInfo(), MVT::i32); 2602 2603 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 2604 } 2605 2606 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 2607 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2608 2609 // We have to copy the entire va_list struct: 2610 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2611 return DAG.getMemcpy(Op.getOperand(0), Op, 2612 Op.getOperand(1), Op.getOperand(2), 2613 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2614 false, MachinePointerInfo(), MachinePointerInfo()); 2615 } 2616 2617 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2618 SelectionDAG &DAG) const { 2619 return Op.getOperand(0); 2620 } 2621 2622 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2623 SelectionDAG &DAG) const { 2624 SDValue Chain = Op.getOperand(0); 2625 SDValue Trmp = Op.getOperand(1); // trampoline 2626 SDValue FPtr = Op.getOperand(2); // nested function 2627 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2628 SDLoc dl(Op); 2629 2630 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2631 bool isPPC64 = (PtrVT == MVT::i64); 2632 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2633 2634 TargetLowering::ArgListTy Args; 2635 TargetLowering::ArgListEntry Entry; 2636 2637 Entry.Ty = IntPtrTy; 2638 Entry.Node = Trmp; Args.push_back(Entry); 2639 2640 // TrampSize == (isPPC64 ? 48 : 40); 2641 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2642 isPPC64 ? MVT::i64 : MVT::i32); 2643 Args.push_back(Entry); 2644 2645 Entry.Node = FPtr; Args.push_back(Entry); 2646 Entry.Node = Nest; Args.push_back(Entry); 2647 2648 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2649 TargetLowering::CallLoweringInfo CLI(DAG); 2650 CLI.setDebugLoc(dl).setChain(Chain) 2651 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2652 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2653 std::move(Args)); 2654 2655 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2656 return CallResult.second; 2657 } 2658 2659 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2660 MachineFunction &MF = DAG.getMachineFunction(); 2661 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2662 EVT PtrVT = getPointerTy(MF.getDataLayout()); 2663 2664 SDLoc dl(Op); 2665 2666 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2667 // vastart just stores the address of the VarArgsFrameIndex slot into the 2668 // memory location argument. 2669 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2670 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2671 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2672 MachinePointerInfo(SV)); 2673 } 2674 2675 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2676 // We suppose the given va_list is already allocated. 2677 // 2678 // typedef struct { 2679 // char gpr; /* index into the array of 8 GPRs 2680 // * stored in the register save area 2681 // * gpr=0 corresponds to r3, 2682 // * gpr=1 to r4, etc. 2683 // */ 2684 // char fpr; /* index into the array of 8 FPRs 2685 // * stored in the register save area 2686 // * fpr=0 corresponds to f1, 2687 // * fpr=1 to f2, etc. 2688 // */ 2689 // char *overflow_arg_area; 2690 // /* location on stack that holds 2691 // * the next overflow argument 2692 // */ 2693 // char *reg_save_area; 2694 // /* where r3:r10 and f1:f8 (if saved) 2695 // * are stored 2696 // */ 2697 // } va_list[1]; 2698 2699 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2700 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2701 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2702 PtrVT); 2703 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2704 PtrVT); 2705 2706 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2707 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2708 2709 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2710 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2711 2712 uint64_t FPROffset = 1; 2713 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2714 2715 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2716 2717 // Store first byte : number of int regs 2718 SDValue firstStore = 2719 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 2720 MachinePointerInfo(SV), MVT::i8); 2721 uint64_t nextOffset = FPROffset; 2722 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2723 ConstFPROffset); 2724 2725 // Store second byte : number of float regs 2726 SDValue secondStore = 2727 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2728 MachinePointerInfo(SV, nextOffset), MVT::i8); 2729 nextOffset += StackOffset; 2730 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2731 2732 // Store second word : arguments given on stack 2733 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2734 MachinePointerInfo(SV, nextOffset)); 2735 nextOffset += FrameOffset; 2736 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2737 2738 // Store third word : arguments given in registers 2739 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2740 MachinePointerInfo(SV, nextOffset)); 2741 } 2742 2743 #include "PPCGenCallingConv.inc" 2744 2745 // Function whose sole purpose is to kill compiler warnings 2746 // stemming from unused functions included from PPCGenCallingConv.inc. 2747 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2748 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2749 } 2750 2751 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2752 CCValAssign::LocInfo &LocInfo, 2753 ISD::ArgFlagsTy &ArgFlags, 2754 CCState &State) { 2755 return true; 2756 } 2757 2758 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2759 MVT &LocVT, 2760 CCValAssign::LocInfo &LocInfo, 2761 ISD::ArgFlagsTy &ArgFlags, 2762 CCState &State) { 2763 static const MCPhysReg ArgRegs[] = { 2764 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2765 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2766 }; 2767 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2768 2769 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2770 2771 // Skip one register if the first unallocated register has an even register 2772 // number and there are still argument registers available which have not been 2773 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2774 // need to skip a register if RegNum is odd. 2775 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2776 State.AllocateReg(ArgRegs[RegNum]); 2777 } 2778 2779 // Always return false here, as this function only makes sure that the first 2780 // unallocated register has an odd register number and does not actually 2781 // allocate a register for the current argument. 2782 return false; 2783 } 2784 2785 bool 2786 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT, 2787 MVT &LocVT, 2788 CCValAssign::LocInfo &LocInfo, 2789 ISD::ArgFlagsTy &ArgFlags, 2790 CCState &State) { 2791 static const MCPhysReg ArgRegs[] = { 2792 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2793 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2794 }; 2795 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2796 2797 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2798 int RegsLeft = NumArgRegs - RegNum; 2799 2800 // Skip if there is not enough registers left for long double type (4 gpr regs 2801 // in soft float mode) and put long double argument on the stack. 2802 if (RegNum != NumArgRegs && RegsLeft < 4) { 2803 for (int i = 0; i < RegsLeft; i++) { 2804 State.AllocateReg(ArgRegs[RegNum + i]); 2805 } 2806 } 2807 2808 return false; 2809 } 2810 2811 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2812 MVT &LocVT, 2813 CCValAssign::LocInfo &LocInfo, 2814 ISD::ArgFlagsTy &ArgFlags, 2815 CCState &State) { 2816 static const MCPhysReg ArgRegs[] = { 2817 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2818 PPC::F8 2819 }; 2820 2821 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2822 2823 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2824 2825 // If there is only one Floating-point register left we need to put both f64 2826 // values of a split ppc_fp128 value on the stack. 2827 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2828 State.AllocateReg(ArgRegs[RegNum]); 2829 } 2830 2831 // Always return false here, as this function only makes sure that the two f64 2832 // values a ppc_fp128 value is split into are both passed in registers or both 2833 // passed on the stack and does not actually allocate a register for the 2834 // current argument. 2835 return false; 2836 } 2837 2838 /// FPR - The set of FP registers that should be allocated for arguments, 2839 /// on Darwin. 2840 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2841 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2842 PPC::F11, PPC::F12, PPC::F13}; 2843 2844 /// QFPR - The set of QPX registers that should be allocated for arguments. 2845 static const MCPhysReg QFPR[] = { 2846 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2847 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2848 2849 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2850 /// the stack. 2851 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2852 unsigned PtrByteSize) { 2853 unsigned ArgSize = ArgVT.getStoreSize(); 2854 if (Flags.isByVal()) 2855 ArgSize = Flags.getByValSize(); 2856 2857 // Round up to multiples of the pointer size, except for array members, 2858 // which are always packed. 2859 if (!Flags.isInConsecutiveRegs()) 2860 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2861 2862 return ArgSize; 2863 } 2864 2865 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2866 /// on the stack. 2867 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2868 ISD::ArgFlagsTy Flags, 2869 unsigned PtrByteSize) { 2870 unsigned Align = PtrByteSize; 2871 2872 // Altivec parameters are padded to a 16 byte boundary. 2873 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2874 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2875 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2876 ArgVT == MVT::v1i128) 2877 Align = 16; 2878 // QPX vector types stored in double-precision are padded to a 32 byte 2879 // boundary. 2880 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2881 Align = 32; 2882 2883 // ByVal parameters are aligned as requested. 2884 if (Flags.isByVal()) { 2885 unsigned BVAlign = Flags.getByValAlign(); 2886 if (BVAlign > PtrByteSize) { 2887 if (BVAlign % PtrByteSize != 0) 2888 llvm_unreachable( 2889 "ByVal alignment is not a multiple of the pointer size"); 2890 2891 Align = BVAlign; 2892 } 2893 } 2894 2895 // Array members are always packed to their original alignment. 2896 if (Flags.isInConsecutiveRegs()) { 2897 // If the array member was split into multiple registers, the first 2898 // needs to be aligned to the size of the full type. (Except for 2899 // ppcf128, which is only aligned as its f64 components.) 2900 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2901 Align = OrigVT.getStoreSize(); 2902 else 2903 Align = ArgVT.getStoreSize(); 2904 } 2905 2906 return Align; 2907 } 2908 2909 /// CalculateStackSlotUsed - Return whether this argument will use its 2910 /// stack slot (instead of being passed in registers). ArgOffset, 2911 /// AvailableFPRs, and AvailableVRs must hold the current argument 2912 /// position, and will be updated to account for this argument. 2913 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2914 ISD::ArgFlagsTy Flags, 2915 unsigned PtrByteSize, 2916 unsigned LinkageSize, 2917 unsigned ParamAreaSize, 2918 unsigned &ArgOffset, 2919 unsigned &AvailableFPRs, 2920 unsigned &AvailableVRs, bool HasQPX) { 2921 bool UseMemory = false; 2922 2923 // Respect alignment of argument on the stack. 2924 unsigned Align = 2925 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2926 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2927 // If there's no space left in the argument save area, we must 2928 // use memory (this check also catches zero-sized arguments). 2929 if (ArgOffset >= LinkageSize + ParamAreaSize) 2930 UseMemory = true; 2931 2932 // Allocate argument on the stack. 2933 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2934 if (Flags.isInConsecutiveRegsLast()) 2935 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2936 // If we overran the argument save area, we must use memory 2937 // (this check catches arguments passed partially in memory) 2938 if (ArgOffset > LinkageSize + ParamAreaSize) 2939 UseMemory = true; 2940 2941 // However, if the argument is actually passed in an FPR or a VR, 2942 // we don't use memory after all. 2943 if (!Flags.isByVal()) { 2944 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2945 // QPX registers overlap with the scalar FP registers. 2946 (HasQPX && (ArgVT == MVT::v4f32 || 2947 ArgVT == MVT::v4f64 || 2948 ArgVT == MVT::v4i1))) 2949 if (AvailableFPRs > 0) { 2950 --AvailableFPRs; 2951 return false; 2952 } 2953 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2954 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2955 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2956 ArgVT == MVT::v1i128) 2957 if (AvailableVRs > 0) { 2958 --AvailableVRs; 2959 return false; 2960 } 2961 } 2962 2963 return UseMemory; 2964 } 2965 2966 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2967 /// ensure minimum alignment required for target. 2968 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2969 unsigned NumBytes) { 2970 unsigned TargetAlign = Lowering->getStackAlignment(); 2971 unsigned AlignMask = TargetAlign - 1; 2972 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2973 return NumBytes; 2974 } 2975 2976 SDValue PPCTargetLowering::LowerFormalArguments( 2977 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2978 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2979 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2980 if (Subtarget.isSVR4ABI()) { 2981 if (Subtarget.isPPC64()) 2982 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2983 dl, DAG, InVals); 2984 else 2985 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2986 dl, DAG, InVals); 2987 } else { 2988 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2989 dl, DAG, InVals); 2990 } 2991 } 2992 2993 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 2994 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2995 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2996 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2997 2998 // 32-bit SVR4 ABI Stack Frame Layout: 2999 // +-----------------------------------+ 3000 // +--> | Back chain | 3001 // | +-----------------------------------+ 3002 // | | Floating-point register save area | 3003 // | +-----------------------------------+ 3004 // | | General register save area | 3005 // | +-----------------------------------+ 3006 // | | CR save word | 3007 // | +-----------------------------------+ 3008 // | | VRSAVE save word | 3009 // | +-----------------------------------+ 3010 // | | Alignment padding | 3011 // | +-----------------------------------+ 3012 // | | Vector register save area | 3013 // | +-----------------------------------+ 3014 // | | Local variable space | 3015 // | +-----------------------------------+ 3016 // | | Parameter list area | 3017 // | +-----------------------------------+ 3018 // | | LR save word | 3019 // | +-----------------------------------+ 3020 // SP--> +--- | Back chain | 3021 // +-----------------------------------+ 3022 // 3023 // Specifications: 3024 // System V Application Binary Interface PowerPC Processor Supplement 3025 // AltiVec Technology Programming Interface Manual 3026 3027 MachineFunction &MF = DAG.getMachineFunction(); 3028 MachineFrameInfo &MFI = MF.getFrameInfo(); 3029 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3030 3031 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3032 // Potential tail calls could cause overwriting of argument stack slots. 3033 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3034 (CallConv == CallingConv::Fast)); 3035 unsigned PtrByteSize = 4; 3036 3037 // Assign locations to all of the incoming arguments. 3038 SmallVector<CCValAssign, 16> ArgLocs; 3039 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3040 *DAG.getContext()); 3041 3042 // Reserve space for the linkage area on the stack. 3043 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3044 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3045 if (useSoftFloat()) 3046 CCInfo.PreAnalyzeFormalArguments(Ins); 3047 3048 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3049 CCInfo.clearWasPPCF128(); 3050 3051 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3052 CCValAssign &VA = ArgLocs[i]; 3053 3054 // Arguments stored in registers. 3055 if (VA.isRegLoc()) { 3056 const TargetRegisterClass *RC; 3057 EVT ValVT = VA.getValVT(); 3058 3059 switch (ValVT.getSimpleVT().SimpleTy) { 3060 default: 3061 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3062 case MVT::i1: 3063 case MVT::i32: 3064 RC = &PPC::GPRCRegClass; 3065 break; 3066 case MVT::f32: 3067 if (Subtarget.hasP8Vector()) 3068 RC = &PPC::VSSRCRegClass; 3069 else 3070 RC = &PPC::F4RCRegClass; 3071 break; 3072 case MVT::f64: 3073 if (Subtarget.hasVSX()) 3074 RC = &PPC::VSFRCRegClass; 3075 else 3076 RC = &PPC::F8RCRegClass; 3077 break; 3078 case MVT::v16i8: 3079 case MVT::v8i16: 3080 case MVT::v4i32: 3081 RC = &PPC::VRRCRegClass; 3082 break; 3083 case MVT::v4f32: 3084 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3085 break; 3086 case MVT::v2f64: 3087 case MVT::v2i64: 3088 RC = &PPC::VRRCRegClass; 3089 break; 3090 case MVT::v4f64: 3091 RC = &PPC::QFRCRegClass; 3092 break; 3093 case MVT::v4i1: 3094 RC = &PPC::QBRCRegClass; 3095 break; 3096 } 3097 3098 // Transform the arguments stored in physical registers into virtual ones. 3099 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3100 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3101 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3102 3103 if (ValVT == MVT::i1) 3104 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3105 3106 InVals.push_back(ArgValue); 3107 } else { 3108 // Argument stored in memory. 3109 assert(VA.isMemLoc()); 3110 3111 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3112 int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(), 3113 isImmutable); 3114 3115 // Create load nodes to retrieve arguments from the stack. 3116 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3117 InVals.push_back( 3118 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3119 } 3120 } 3121 3122 // Assign locations to all of the incoming aggregate by value arguments. 3123 // Aggregates passed by value are stored in the local variable space of the 3124 // caller's stack frame, right above the parameter list area. 3125 SmallVector<CCValAssign, 16> ByValArgLocs; 3126 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3127 ByValArgLocs, *DAG.getContext()); 3128 3129 // Reserve stack space for the allocations in CCInfo. 3130 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3131 3132 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3133 3134 // Area that is at least reserved in the caller of this function. 3135 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3136 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3137 3138 // Set the size that is at least reserved in caller of this function. Tail 3139 // call optimized function's reserved stack space needs to be aligned so that 3140 // taking the difference between two stack areas will result in an aligned 3141 // stack. 3142 MinReservedArea = 3143 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3144 FuncInfo->setMinReservedArea(MinReservedArea); 3145 3146 SmallVector<SDValue, 8> MemOps; 3147 3148 // If the function takes variable number of arguments, make a frame index for 3149 // the start of the first vararg value... for expansion of llvm.va_start. 3150 if (isVarArg) { 3151 static const MCPhysReg GPArgRegs[] = { 3152 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3153 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3154 }; 3155 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3156 3157 static const MCPhysReg FPArgRegs[] = { 3158 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3159 PPC::F8 3160 }; 3161 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3162 3163 if (useSoftFloat()) 3164 NumFPArgRegs = 0; 3165 3166 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3167 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3168 3169 // Make room for NumGPArgRegs and NumFPArgRegs. 3170 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3171 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3172 3173 FuncInfo->setVarArgsStackOffset( 3174 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3175 CCInfo.getNextStackOffset(), true)); 3176 3177 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3178 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3179 3180 // The fixed integer arguments of a variadic function are stored to the 3181 // VarArgsFrameIndex on the stack so that they may be loaded by 3182 // dereferencing the result of va_next. 3183 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3184 // Get an existing live-in vreg, or add a new one. 3185 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3186 if (!VReg) 3187 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3188 3189 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3190 SDValue Store = 3191 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3192 MemOps.push_back(Store); 3193 // Increment the address by four for the next argument to store 3194 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3195 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3196 } 3197 3198 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3199 // is set. 3200 // The double arguments are stored to the VarArgsFrameIndex 3201 // on the stack. 3202 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3203 // Get an existing live-in vreg, or add a new one. 3204 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3205 if (!VReg) 3206 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3207 3208 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3209 SDValue Store = 3210 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3211 MemOps.push_back(Store); 3212 // Increment the address by eight for the next argument to store 3213 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3214 PtrVT); 3215 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3216 } 3217 } 3218 3219 if (!MemOps.empty()) 3220 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3221 3222 return Chain; 3223 } 3224 3225 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3226 // value to MVT::i64 and then truncate to the correct register size. 3227 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3228 EVT ObjectVT, SelectionDAG &DAG, 3229 SDValue ArgVal, 3230 const SDLoc &dl) const { 3231 if (Flags.isSExt()) 3232 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3233 DAG.getValueType(ObjectVT)); 3234 else if (Flags.isZExt()) 3235 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3236 DAG.getValueType(ObjectVT)); 3237 3238 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3239 } 3240 3241 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3242 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3243 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3244 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3245 // TODO: add description of PPC stack frame format, or at least some docs. 3246 // 3247 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3248 bool isLittleEndian = Subtarget.isLittleEndian(); 3249 MachineFunction &MF = DAG.getMachineFunction(); 3250 MachineFrameInfo &MFI = MF.getFrameInfo(); 3251 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3252 3253 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3254 "fastcc not supported on varargs functions"); 3255 3256 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3257 // Potential tail calls could cause overwriting of argument stack slots. 3258 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3259 (CallConv == CallingConv::Fast)); 3260 unsigned PtrByteSize = 8; 3261 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3262 3263 static const MCPhysReg GPR[] = { 3264 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3265 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3266 }; 3267 static const MCPhysReg VR[] = { 3268 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3269 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3270 }; 3271 3272 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3273 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3274 const unsigned Num_VR_Regs = array_lengthof(VR); 3275 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3276 3277 // Do a first pass over the arguments to determine whether the ABI 3278 // guarantees that our caller has allocated the parameter save area 3279 // on its stack frame. In the ELFv1 ABI, this is always the case; 3280 // in the ELFv2 ABI, it is true if this is a vararg function or if 3281 // any parameter is located in a stack slot. 3282 3283 bool HasParameterArea = !isELFv2ABI || isVarArg; 3284 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3285 unsigned NumBytes = LinkageSize; 3286 unsigned AvailableFPRs = Num_FPR_Regs; 3287 unsigned AvailableVRs = Num_VR_Regs; 3288 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3289 if (Ins[i].Flags.isNest()) 3290 continue; 3291 3292 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3293 PtrByteSize, LinkageSize, ParamAreaSize, 3294 NumBytes, AvailableFPRs, AvailableVRs, 3295 Subtarget.hasQPX())) 3296 HasParameterArea = true; 3297 } 3298 3299 // Add DAG nodes to load the arguments or copy them out of registers. On 3300 // entry to a function on PPC, the arguments start after the linkage area, 3301 // although the first ones are often in registers. 3302 3303 unsigned ArgOffset = LinkageSize; 3304 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3305 unsigned &QFPR_idx = FPR_idx; 3306 SmallVector<SDValue, 8> MemOps; 3307 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3308 unsigned CurArgIdx = 0; 3309 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3310 SDValue ArgVal; 3311 bool needsLoad = false; 3312 EVT ObjectVT = Ins[ArgNo].VT; 3313 EVT OrigVT = Ins[ArgNo].ArgVT; 3314 unsigned ObjSize = ObjectVT.getStoreSize(); 3315 unsigned ArgSize = ObjSize; 3316 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3317 if (Ins[ArgNo].isOrigArg()) { 3318 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3319 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3320 } 3321 // We re-align the argument offset for each argument, except when using the 3322 // fast calling convention, when we need to make sure we do that only when 3323 // we'll actually use a stack slot. 3324 unsigned CurArgOffset, Align; 3325 auto ComputeArgOffset = [&]() { 3326 /* Respect alignment of argument on the stack. */ 3327 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3328 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3329 CurArgOffset = ArgOffset; 3330 }; 3331 3332 if (CallConv != CallingConv::Fast) { 3333 ComputeArgOffset(); 3334 3335 /* Compute GPR index associated with argument offset. */ 3336 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3337 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3338 } 3339 3340 // FIXME the codegen can be much improved in some cases. 3341 // We do not have to keep everything in memory. 3342 if (Flags.isByVal()) { 3343 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3344 3345 if (CallConv == CallingConv::Fast) 3346 ComputeArgOffset(); 3347 3348 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3349 ObjSize = Flags.getByValSize(); 3350 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3351 // Empty aggregate parameters do not take up registers. Examples: 3352 // struct { } a; 3353 // union { } b; 3354 // int c[0]; 3355 // etc. However, we have to provide a place-holder in InVals, so 3356 // pretend we have an 8-byte item at the current address for that 3357 // purpose. 3358 if (!ObjSize) { 3359 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3360 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3361 InVals.push_back(FIN); 3362 continue; 3363 } 3364 3365 // Create a stack object covering all stack doublewords occupied 3366 // by the argument. If the argument is (fully or partially) on 3367 // the stack, or if the argument is fully in registers but the 3368 // caller has allocated the parameter save anyway, we can refer 3369 // directly to the caller's stack frame. Otherwise, create a 3370 // local copy in our own frame. 3371 int FI; 3372 if (HasParameterArea || 3373 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3374 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3375 else 3376 FI = MFI.CreateStackObject(ArgSize, Align, false); 3377 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3378 3379 // Handle aggregates smaller than 8 bytes. 3380 if (ObjSize < PtrByteSize) { 3381 // The value of the object is its address, which differs from the 3382 // address of the enclosing doubleword on big-endian systems. 3383 SDValue Arg = FIN; 3384 if (!isLittleEndian) { 3385 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3386 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3387 } 3388 InVals.push_back(Arg); 3389 3390 if (GPR_idx != Num_GPR_Regs) { 3391 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3392 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3393 SDValue Store; 3394 3395 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3396 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3397 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3398 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3399 MachinePointerInfo(&*FuncArg), ObjType); 3400 } else { 3401 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3402 // store the whole register as-is to the parameter save area 3403 // slot. 3404 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3405 MachinePointerInfo(&*FuncArg)); 3406 } 3407 3408 MemOps.push_back(Store); 3409 } 3410 // Whether we copied from a register or not, advance the offset 3411 // into the parameter save area by a full doubleword. 3412 ArgOffset += PtrByteSize; 3413 continue; 3414 } 3415 3416 // The value of the object is its address, which is the address of 3417 // its first stack doubleword. 3418 InVals.push_back(FIN); 3419 3420 // Store whatever pieces of the object are in registers to memory. 3421 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3422 if (GPR_idx == Num_GPR_Regs) 3423 break; 3424 3425 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3426 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3427 SDValue Addr = FIN; 3428 if (j) { 3429 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3430 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3431 } 3432 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3433 MachinePointerInfo(&*FuncArg, j)); 3434 MemOps.push_back(Store); 3435 ++GPR_idx; 3436 } 3437 ArgOffset += ArgSize; 3438 continue; 3439 } 3440 3441 switch (ObjectVT.getSimpleVT().SimpleTy) { 3442 default: llvm_unreachable("Unhandled argument type!"); 3443 case MVT::i1: 3444 case MVT::i32: 3445 case MVT::i64: 3446 if (Flags.isNest()) { 3447 // The 'nest' parameter, if any, is passed in R11. 3448 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3449 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3450 3451 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3452 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3453 3454 break; 3455 } 3456 3457 // These can be scalar arguments or elements of an integer array type 3458 // passed directly. Clang may use those instead of "byval" aggregate 3459 // types to avoid forcing arguments to memory unnecessarily. 3460 if (GPR_idx != Num_GPR_Regs) { 3461 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3462 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3463 3464 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3465 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3466 // value to MVT::i64 and then truncate to the correct register size. 3467 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3468 } else { 3469 if (CallConv == CallingConv::Fast) 3470 ComputeArgOffset(); 3471 3472 needsLoad = true; 3473 ArgSize = PtrByteSize; 3474 } 3475 if (CallConv != CallingConv::Fast || needsLoad) 3476 ArgOffset += 8; 3477 break; 3478 3479 case MVT::f32: 3480 case MVT::f64: 3481 // These can be scalar arguments or elements of a float array type 3482 // passed directly. The latter are used to implement ELFv2 homogenous 3483 // float aggregates. 3484 if (FPR_idx != Num_FPR_Regs) { 3485 unsigned VReg; 3486 3487 if (ObjectVT == MVT::f32) 3488 VReg = MF.addLiveIn(FPR[FPR_idx], 3489 Subtarget.hasP8Vector() 3490 ? &PPC::VSSRCRegClass 3491 : &PPC::F4RCRegClass); 3492 else 3493 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3494 ? &PPC::VSFRCRegClass 3495 : &PPC::F8RCRegClass); 3496 3497 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3498 ++FPR_idx; 3499 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3500 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3501 // once we support fp <-> gpr moves. 3502 3503 // This can only ever happen in the presence of f32 array types, 3504 // since otherwise we never run out of FPRs before running out 3505 // of GPRs. 3506 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3507 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3508 3509 if (ObjectVT == MVT::f32) { 3510 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3511 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3512 DAG.getConstant(32, dl, MVT::i32)); 3513 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3514 } 3515 3516 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3517 } else { 3518 if (CallConv == CallingConv::Fast) 3519 ComputeArgOffset(); 3520 3521 needsLoad = true; 3522 } 3523 3524 // When passing an array of floats, the array occupies consecutive 3525 // space in the argument area; only round up to the next doubleword 3526 // at the end of the array. Otherwise, each float takes 8 bytes. 3527 if (CallConv != CallingConv::Fast || needsLoad) { 3528 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3529 ArgOffset += ArgSize; 3530 if (Flags.isInConsecutiveRegsLast()) 3531 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3532 } 3533 break; 3534 case MVT::v4f32: 3535 case MVT::v4i32: 3536 case MVT::v8i16: 3537 case MVT::v16i8: 3538 case MVT::v2f64: 3539 case MVT::v2i64: 3540 case MVT::v1i128: 3541 if (!Subtarget.hasQPX()) { 3542 // These can be scalar arguments or elements of a vector array type 3543 // passed directly. The latter are used to implement ELFv2 homogenous 3544 // vector aggregates. 3545 if (VR_idx != Num_VR_Regs) { 3546 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3547 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3548 ++VR_idx; 3549 } else { 3550 if (CallConv == CallingConv::Fast) 3551 ComputeArgOffset(); 3552 3553 needsLoad = true; 3554 } 3555 if (CallConv != CallingConv::Fast || needsLoad) 3556 ArgOffset += 16; 3557 break; 3558 } // not QPX 3559 3560 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3561 "Invalid QPX parameter type"); 3562 /* fall through */ 3563 3564 case MVT::v4f64: 3565 case MVT::v4i1: 3566 // QPX vectors are treated like their scalar floating-point subregisters 3567 // (except that they're larger). 3568 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3569 if (QFPR_idx != Num_QFPR_Regs) { 3570 const TargetRegisterClass *RC; 3571 switch (ObjectVT.getSimpleVT().SimpleTy) { 3572 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3573 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3574 default: RC = &PPC::QBRCRegClass; break; 3575 } 3576 3577 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3578 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3579 ++QFPR_idx; 3580 } else { 3581 if (CallConv == CallingConv::Fast) 3582 ComputeArgOffset(); 3583 needsLoad = true; 3584 } 3585 if (CallConv != CallingConv::Fast || needsLoad) 3586 ArgOffset += Sz; 3587 break; 3588 } 3589 3590 // We need to load the argument to a virtual register if we determined 3591 // above that we ran out of physical registers of the appropriate type. 3592 if (needsLoad) { 3593 if (ObjSize < ArgSize && !isLittleEndian) 3594 CurArgOffset += ArgSize - ObjSize; 3595 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3596 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3597 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 3598 } 3599 3600 InVals.push_back(ArgVal); 3601 } 3602 3603 // Area that is at least reserved in the caller of this function. 3604 unsigned MinReservedArea; 3605 if (HasParameterArea) 3606 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3607 else 3608 MinReservedArea = LinkageSize; 3609 3610 // Set the size that is at least reserved in caller of this function. Tail 3611 // call optimized functions' reserved stack space needs to be aligned so that 3612 // taking the difference between two stack areas will result in an aligned 3613 // stack. 3614 MinReservedArea = 3615 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3616 FuncInfo->setMinReservedArea(MinReservedArea); 3617 3618 // If the function takes variable number of arguments, make a frame index for 3619 // the start of the first vararg value... for expansion of llvm.va_start. 3620 if (isVarArg) { 3621 int Depth = ArgOffset; 3622 3623 FuncInfo->setVarArgsFrameIndex( 3624 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 3625 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3626 3627 // If this function is vararg, store any remaining integer argument regs 3628 // to their spots on the stack so that they may be loaded by dereferencing 3629 // the result of va_next. 3630 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3631 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3632 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3633 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3634 SDValue Store = 3635 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3636 MemOps.push_back(Store); 3637 // Increment the address by four for the next argument to store 3638 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3639 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3640 } 3641 } 3642 3643 if (!MemOps.empty()) 3644 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3645 3646 return Chain; 3647 } 3648 3649 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 3650 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3651 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3652 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3653 // TODO: add description of PPC stack frame format, or at least some docs. 3654 // 3655 MachineFunction &MF = DAG.getMachineFunction(); 3656 MachineFrameInfo &MFI = MF.getFrameInfo(); 3657 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3658 3659 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3660 bool isPPC64 = PtrVT == MVT::i64; 3661 // Potential tail calls could cause overwriting of argument stack slots. 3662 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3663 (CallConv == CallingConv::Fast)); 3664 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3665 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3666 unsigned ArgOffset = LinkageSize; 3667 // Area that is at least reserved in caller of this function. 3668 unsigned MinReservedArea = ArgOffset; 3669 3670 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3671 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3672 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3673 }; 3674 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3675 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3676 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3677 }; 3678 static const MCPhysReg VR[] = { 3679 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3680 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3681 }; 3682 3683 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3684 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3685 const unsigned Num_VR_Regs = array_lengthof( VR); 3686 3687 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3688 3689 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3690 3691 // In 32-bit non-varargs functions, the stack space for vectors is after the 3692 // stack space for non-vectors. We do not use this space unless we have 3693 // too many vectors to fit in registers, something that only occurs in 3694 // constructed examples:), but we have to walk the arglist to figure 3695 // that out...for the pathological case, compute VecArgOffset as the 3696 // start of the vector parameter area. Computing VecArgOffset is the 3697 // entire point of the following loop. 3698 unsigned VecArgOffset = ArgOffset; 3699 if (!isVarArg && !isPPC64) { 3700 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3701 ++ArgNo) { 3702 EVT ObjectVT = Ins[ArgNo].VT; 3703 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3704 3705 if (Flags.isByVal()) { 3706 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3707 unsigned ObjSize = Flags.getByValSize(); 3708 unsigned ArgSize = 3709 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3710 VecArgOffset += ArgSize; 3711 continue; 3712 } 3713 3714 switch(ObjectVT.getSimpleVT().SimpleTy) { 3715 default: llvm_unreachable("Unhandled argument type!"); 3716 case MVT::i1: 3717 case MVT::i32: 3718 case MVT::f32: 3719 VecArgOffset += 4; 3720 break; 3721 case MVT::i64: // PPC64 3722 case MVT::f64: 3723 // FIXME: We are guaranteed to be !isPPC64 at this point. 3724 // Does MVT::i64 apply? 3725 VecArgOffset += 8; 3726 break; 3727 case MVT::v4f32: 3728 case MVT::v4i32: 3729 case MVT::v8i16: 3730 case MVT::v16i8: 3731 // Nothing to do, we're only looking at Nonvector args here. 3732 break; 3733 } 3734 } 3735 } 3736 // We've found where the vector parameter area in memory is. Skip the 3737 // first 12 parameters; these don't use that memory. 3738 VecArgOffset = ((VecArgOffset+15)/16)*16; 3739 VecArgOffset += 12*16; 3740 3741 // Add DAG nodes to load the arguments or copy them out of registers. On 3742 // entry to a function on PPC, the arguments start after the linkage area, 3743 // although the first ones are often in registers. 3744 3745 SmallVector<SDValue, 8> MemOps; 3746 unsigned nAltivecParamsAtEnd = 0; 3747 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3748 unsigned CurArgIdx = 0; 3749 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3750 SDValue ArgVal; 3751 bool needsLoad = false; 3752 EVT ObjectVT = Ins[ArgNo].VT; 3753 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3754 unsigned ArgSize = ObjSize; 3755 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3756 if (Ins[ArgNo].isOrigArg()) { 3757 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3758 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3759 } 3760 unsigned CurArgOffset = ArgOffset; 3761 3762 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3763 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3764 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3765 if (isVarArg || isPPC64) { 3766 MinReservedArea = ((MinReservedArea+15)/16)*16; 3767 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3768 Flags, 3769 PtrByteSize); 3770 } else nAltivecParamsAtEnd++; 3771 } else 3772 // Calculate min reserved area. 3773 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3774 Flags, 3775 PtrByteSize); 3776 3777 // FIXME the codegen can be much improved in some cases. 3778 // We do not have to keep everything in memory. 3779 if (Flags.isByVal()) { 3780 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3781 3782 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3783 ObjSize = Flags.getByValSize(); 3784 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3785 // Objects of size 1 and 2 are right justified, everything else is 3786 // left justified. This means the memory address is adjusted forwards. 3787 if (ObjSize==1 || ObjSize==2) { 3788 CurArgOffset = CurArgOffset + (4 - ObjSize); 3789 } 3790 // The value of the object is its address. 3791 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 3792 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3793 InVals.push_back(FIN); 3794 if (ObjSize==1 || ObjSize==2) { 3795 if (GPR_idx != Num_GPR_Regs) { 3796 unsigned VReg; 3797 if (isPPC64) 3798 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3799 else 3800 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3801 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3802 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3803 SDValue Store = 3804 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3805 MachinePointerInfo(&*FuncArg), ObjType); 3806 MemOps.push_back(Store); 3807 ++GPR_idx; 3808 } 3809 3810 ArgOffset += PtrByteSize; 3811 3812 continue; 3813 } 3814 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3815 // Store whatever pieces of the object are in registers 3816 // to memory. ArgOffset will be the address of the beginning 3817 // of the object. 3818 if (GPR_idx != Num_GPR_Regs) { 3819 unsigned VReg; 3820 if (isPPC64) 3821 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3822 else 3823 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3824 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3825 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3826 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3827 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3828 MachinePointerInfo(&*FuncArg, j)); 3829 MemOps.push_back(Store); 3830 ++GPR_idx; 3831 ArgOffset += PtrByteSize; 3832 } else { 3833 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3834 break; 3835 } 3836 } 3837 continue; 3838 } 3839 3840 switch (ObjectVT.getSimpleVT().SimpleTy) { 3841 default: llvm_unreachable("Unhandled argument type!"); 3842 case MVT::i1: 3843 case MVT::i32: 3844 if (!isPPC64) { 3845 if (GPR_idx != Num_GPR_Regs) { 3846 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3847 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3848 3849 if (ObjectVT == MVT::i1) 3850 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3851 3852 ++GPR_idx; 3853 } else { 3854 needsLoad = true; 3855 ArgSize = PtrByteSize; 3856 } 3857 // All int arguments reserve stack space in the Darwin ABI. 3858 ArgOffset += PtrByteSize; 3859 break; 3860 } 3861 LLVM_FALLTHROUGH; 3862 case MVT::i64: // PPC64 3863 if (GPR_idx != Num_GPR_Regs) { 3864 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3865 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3866 3867 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3868 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3869 // value to MVT::i64 and then truncate to the correct register size. 3870 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3871 3872 ++GPR_idx; 3873 } else { 3874 needsLoad = true; 3875 ArgSize = PtrByteSize; 3876 } 3877 // All int arguments reserve stack space in the Darwin ABI. 3878 ArgOffset += 8; 3879 break; 3880 3881 case MVT::f32: 3882 case MVT::f64: 3883 // Every 4 bytes of argument space consumes one of the GPRs available for 3884 // argument passing. 3885 if (GPR_idx != Num_GPR_Regs) { 3886 ++GPR_idx; 3887 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3888 ++GPR_idx; 3889 } 3890 if (FPR_idx != Num_FPR_Regs) { 3891 unsigned VReg; 3892 3893 if (ObjectVT == MVT::f32) 3894 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3895 else 3896 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3897 3898 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3899 ++FPR_idx; 3900 } else { 3901 needsLoad = true; 3902 } 3903 3904 // All FP arguments reserve stack space in the Darwin ABI. 3905 ArgOffset += isPPC64 ? 8 : ObjSize; 3906 break; 3907 case MVT::v4f32: 3908 case MVT::v4i32: 3909 case MVT::v8i16: 3910 case MVT::v16i8: 3911 // Note that vector arguments in registers don't reserve stack space, 3912 // except in varargs functions. 3913 if (VR_idx != Num_VR_Regs) { 3914 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3915 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3916 if (isVarArg) { 3917 while ((ArgOffset % 16) != 0) { 3918 ArgOffset += PtrByteSize; 3919 if (GPR_idx != Num_GPR_Regs) 3920 GPR_idx++; 3921 } 3922 ArgOffset += 16; 3923 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3924 } 3925 ++VR_idx; 3926 } else { 3927 if (!isVarArg && !isPPC64) { 3928 // Vectors go after all the nonvectors. 3929 CurArgOffset = VecArgOffset; 3930 VecArgOffset += 16; 3931 } else { 3932 // Vectors are aligned. 3933 ArgOffset = ((ArgOffset+15)/16)*16; 3934 CurArgOffset = ArgOffset; 3935 ArgOffset += 16; 3936 } 3937 needsLoad = true; 3938 } 3939 break; 3940 } 3941 3942 // We need to load the argument to a virtual register if we determined above 3943 // that we ran out of physical registers of the appropriate type. 3944 if (needsLoad) { 3945 int FI = MFI.CreateFixedObject(ObjSize, 3946 CurArgOffset + (ArgSize - ObjSize), 3947 isImmutable); 3948 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3949 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 3950 } 3951 3952 InVals.push_back(ArgVal); 3953 } 3954 3955 // Allow for Altivec parameters at the end, if needed. 3956 if (nAltivecParamsAtEnd) { 3957 MinReservedArea = ((MinReservedArea+15)/16)*16; 3958 MinReservedArea += 16*nAltivecParamsAtEnd; 3959 } 3960 3961 // Area that is at least reserved in the caller of this function. 3962 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3963 3964 // Set the size that is at least reserved in caller of this function. Tail 3965 // call optimized functions' reserved stack space needs to be aligned so that 3966 // taking the difference between two stack areas will result in an aligned 3967 // stack. 3968 MinReservedArea = 3969 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3970 FuncInfo->setMinReservedArea(MinReservedArea); 3971 3972 // If the function takes variable number of arguments, make a frame index for 3973 // the start of the first vararg value... for expansion of llvm.va_start. 3974 if (isVarArg) { 3975 int Depth = ArgOffset; 3976 3977 FuncInfo->setVarArgsFrameIndex( 3978 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3979 Depth, true)); 3980 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3981 3982 // If this function is vararg, store any remaining integer argument regs 3983 // to their spots on the stack so that they may be loaded by dereferencing 3984 // the result of va_next. 3985 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3986 unsigned VReg; 3987 3988 if (isPPC64) 3989 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3990 else 3991 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3992 3993 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3994 SDValue Store = 3995 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3996 MemOps.push_back(Store); 3997 // Increment the address by four for the next argument to store 3998 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3999 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4000 } 4001 } 4002 4003 if (!MemOps.empty()) 4004 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4005 4006 return Chain; 4007 } 4008 4009 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4010 /// adjusted to accommodate the arguments for the tailcall. 4011 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4012 unsigned ParamSize) { 4013 4014 if (!isTailCall) return 0; 4015 4016 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4017 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4018 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4019 // Remember only if the new adjustement is bigger. 4020 if (SPDiff < FI->getTailCallSPDelta()) 4021 FI->setTailCallSPDelta(SPDiff); 4022 4023 return SPDiff; 4024 } 4025 4026 static bool isFunctionGlobalAddress(SDValue Callee); 4027 4028 static bool 4029 resideInSameSection(const Function *Caller, SDValue Callee, 4030 const TargetMachine &TM) { 4031 // If !G, Callee can be an external symbol. 4032 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4033 if (!G) 4034 return false; 4035 4036 const GlobalValue *GV = G->getGlobal(); 4037 if (!GV->isStrongDefinitionForLinker()) 4038 return false; 4039 4040 // Any explicitly-specified sections and section prefixes must also match. 4041 // Also, if we're using -ffunction-sections, then each function is always in 4042 // a different section (the same is true for COMDAT functions). 4043 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4044 GV->getSection() != Caller->getSection()) 4045 return false; 4046 if (const auto *F = dyn_cast<Function>(GV)) { 4047 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4048 return false; 4049 } 4050 4051 // If the callee might be interposed, then we can't assume the ultimate call 4052 // target will be in the same section. Even in cases where we can assume that 4053 // interposition won't happen, in any case where the linker might insert a 4054 // stub to allow for interposition, we must generate code as though 4055 // interposition might occur. To understand why this matters, consider a 4056 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4057 // in the same section, but a is in a different module (i.e. has a different 4058 // TOC base pointer). If the linker allows for interposition between b and c, 4059 // then it will generate a stub for the call edge between b and c which will 4060 // save the TOC pointer into the designated stack slot allocated by b. If we 4061 // return true here, and therefore allow a tail call between b and c, that 4062 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4063 // pointer into the stack slot allocated by a (where the a -> b stub saved 4064 // a's TOC base pointer). If we're not considering a tail call, but rather, 4065 // whether a nop is needed after the call instruction in b, because the linker 4066 // will insert a stub, it might complain about a missing nop if we omit it 4067 // (although many don't complain in this case). 4068 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4069 return false; 4070 4071 return true; 4072 } 4073 4074 static bool 4075 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4076 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4077 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 4078 4079 const unsigned PtrByteSize = 8; 4080 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4081 4082 static const MCPhysReg GPR[] = { 4083 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4084 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4085 }; 4086 static const MCPhysReg VR[] = { 4087 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4088 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4089 }; 4090 4091 const unsigned NumGPRs = array_lengthof(GPR); 4092 const unsigned NumFPRs = 13; 4093 const unsigned NumVRs = array_lengthof(VR); 4094 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4095 4096 unsigned NumBytes = LinkageSize; 4097 unsigned AvailableFPRs = NumFPRs; 4098 unsigned AvailableVRs = NumVRs; 4099 4100 for (const ISD::OutputArg& Param : Outs) { 4101 if (Param.Flags.isNest()) continue; 4102 4103 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4104 PtrByteSize, LinkageSize, ParamAreaSize, 4105 NumBytes, AvailableFPRs, AvailableVRs, 4106 Subtarget.hasQPX())) 4107 return true; 4108 } 4109 return false; 4110 } 4111 4112 static bool 4113 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) { 4114 if (CS->arg_size() != CallerFn->getArgumentList().size()) 4115 return false; 4116 4117 ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin(); 4118 ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end(); 4119 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4120 4121 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4122 const Value* CalleeArg = *CalleeArgIter; 4123 const Value* CallerArg = &(*CallerArgIter); 4124 if (CalleeArg == CallerArg) 4125 continue; 4126 4127 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4128 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4129 // } 4130 // 1st argument of callee is undef and has the same type as caller. 4131 if (CalleeArg->getType() == CallerArg->getType() && 4132 isa<UndefValue>(CalleeArg)) 4133 continue; 4134 4135 return false; 4136 } 4137 4138 return true; 4139 } 4140 4141 bool 4142 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4143 SDValue Callee, 4144 CallingConv::ID CalleeCC, 4145 ImmutableCallSite *CS, 4146 bool isVarArg, 4147 const SmallVectorImpl<ISD::OutputArg> &Outs, 4148 const SmallVectorImpl<ISD::InputArg> &Ins, 4149 SelectionDAG& DAG) const { 4150 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4151 4152 if (DisableSCO && !TailCallOpt) return false; 4153 4154 // Variadic argument functions are not supported. 4155 if (isVarArg) return false; 4156 4157 MachineFunction &MF = DAG.getMachineFunction(); 4158 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4159 4160 // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has 4161 // the same calling convention 4162 if (CallerCC != CalleeCC) return false; 4163 4164 // SCO support C calling convention 4165 if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C) 4166 return false; 4167 4168 // Caller contains any byval parameter is not supported. 4169 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4170 return false; 4171 4172 // Callee contains any byval parameter is not supported, too. 4173 // Note: This is a quick work around, because in some cases, e.g. 4174 // caller's stack size > callee's stack size, we are still able to apply 4175 // sibling call optimization. See: https://reviews.llvm.org/D23441#513574 4176 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4177 return false; 4178 4179 // No TCO/SCO on indirect call because Caller have to restore its TOC 4180 if (!isFunctionGlobalAddress(Callee) && 4181 !isa<ExternalSymbolSDNode>(Callee)) 4182 return false; 4183 4184 // Check if Callee resides in the same section, because for now, PPC64 SVR4 4185 // ABI (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another 4186 // section. 4187 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4188 if (!resideInSameSection(MF.getFunction(), Callee, getTargetMachine())) 4189 return false; 4190 4191 // TCO allows altering callee ABI, so we don't have to check further. 4192 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4193 return true; 4194 4195 if (DisableSCO) return false; 4196 4197 // If callee use the same argument list that caller is using, then we can 4198 // apply SCO on this case. If it is not, then we need to check if callee needs 4199 // stack for passing arguments. 4200 if (!hasSameArgumentList(MF.getFunction(), CS) && 4201 needStackSlotPassParameters(Subtarget, Outs)) { 4202 return false; 4203 } 4204 4205 return true; 4206 } 4207 4208 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4209 /// for tail call optimization. Targets which want to do tail call 4210 /// optimization should implement this function. 4211 bool 4212 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4213 CallingConv::ID CalleeCC, 4214 bool isVarArg, 4215 const SmallVectorImpl<ISD::InputArg> &Ins, 4216 SelectionDAG& DAG) const { 4217 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4218 return false; 4219 4220 // Variable argument functions are not supported. 4221 if (isVarArg) 4222 return false; 4223 4224 MachineFunction &MF = DAG.getMachineFunction(); 4225 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4226 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4227 // Functions containing by val parameters are not supported. 4228 for (unsigned i = 0; i != Ins.size(); i++) { 4229 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4230 if (Flags.isByVal()) return false; 4231 } 4232 4233 // Non-PIC/GOT tail calls are supported. 4234 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4235 return true; 4236 4237 // At the moment we can only do local tail calls (in same module, hidden 4238 // or protected) if we are generating PIC. 4239 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4240 return G->getGlobal()->hasHiddenVisibility() 4241 || G->getGlobal()->hasProtectedVisibility(); 4242 } 4243 4244 return false; 4245 } 4246 4247 /// isCallCompatibleAddress - Return the immediate to use if the specified 4248 /// 32-bit value is representable in the immediate field of a BxA instruction. 4249 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4250 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4251 if (!C) return nullptr; 4252 4253 int Addr = C->getZExtValue(); 4254 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4255 SignExtend32<26>(Addr) != Addr) 4256 return nullptr; // Top 6 bits have to be sext of immediate. 4257 4258 return DAG 4259 .getConstant( 4260 (int)C->getZExtValue() >> 2, SDLoc(Op), 4261 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4262 .getNode(); 4263 } 4264 4265 namespace { 4266 4267 struct TailCallArgumentInfo { 4268 SDValue Arg; 4269 SDValue FrameIdxOp; 4270 int FrameIdx = 0; 4271 4272 TailCallArgumentInfo() = default; 4273 }; 4274 4275 } // end anonymous namespace 4276 4277 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4278 static void StoreTailCallArgumentsToStackSlot( 4279 SelectionDAG &DAG, SDValue Chain, 4280 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4281 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4282 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4283 SDValue Arg = TailCallArgs[i].Arg; 4284 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4285 int FI = TailCallArgs[i].FrameIdx; 4286 // Store relative to framepointer. 4287 MemOpChains.push_back(DAG.getStore( 4288 Chain, dl, Arg, FIN, 4289 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4290 } 4291 } 4292 4293 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4294 /// the appropriate stack slot for the tail call optimized function call. 4295 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4296 SDValue OldRetAddr, SDValue OldFP, 4297 int SPDiff, const SDLoc &dl) { 4298 if (SPDiff) { 4299 // Calculate the new stack slot for the return address. 4300 MachineFunction &MF = DAG.getMachineFunction(); 4301 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4302 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4303 bool isPPC64 = Subtarget.isPPC64(); 4304 int SlotSize = isPPC64 ? 8 : 4; 4305 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4306 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4307 NewRetAddrLoc, true); 4308 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4309 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4310 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4311 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4312 4313 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4314 // slot as the FP is never overwritten. 4315 if (Subtarget.isDarwinABI()) { 4316 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4317 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4318 true); 4319 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4320 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4321 MachinePointerInfo::getFixedStack( 4322 DAG.getMachineFunction(), NewFPIdx)); 4323 } 4324 } 4325 return Chain; 4326 } 4327 4328 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4329 /// the position of the argument. 4330 static void 4331 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4332 SDValue Arg, int SPDiff, unsigned ArgOffset, 4333 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4334 int Offset = ArgOffset + SPDiff; 4335 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4336 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4337 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4338 SDValue FIN = DAG.getFrameIndex(FI, VT); 4339 TailCallArgumentInfo Info; 4340 Info.Arg = Arg; 4341 Info.FrameIdxOp = FIN; 4342 Info.FrameIdx = FI; 4343 TailCallArguments.push_back(Info); 4344 } 4345 4346 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4347 /// stack slot. Returns the chain as result and the loaded frame pointers in 4348 /// LROpOut/FPOpout. Used when tail calling. 4349 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4350 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4351 SDValue &FPOpOut, const SDLoc &dl) const { 4352 if (SPDiff) { 4353 // Load the LR and FP stack slot for later adjusting. 4354 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4355 LROpOut = getReturnAddrFrameIndex(DAG); 4356 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4357 Chain = SDValue(LROpOut.getNode(), 1); 4358 4359 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4360 // slot as the FP is never overwritten. 4361 if (Subtarget.isDarwinABI()) { 4362 FPOpOut = getFramePointerFrameIndex(DAG); 4363 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4364 Chain = SDValue(FPOpOut.getNode(), 1); 4365 } 4366 } 4367 return Chain; 4368 } 4369 4370 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4371 /// by "Src" to address "Dst" of size "Size". Alignment information is 4372 /// specified by the specific parameter attribute. The copy will be passed as 4373 /// a byval function parameter. 4374 /// Sometimes what we are copying is the end of a larger object, the part that 4375 /// does not fit in registers. 4376 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4377 SDValue Chain, ISD::ArgFlagsTy Flags, 4378 SelectionDAG &DAG, const SDLoc &dl) { 4379 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4380 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4381 false, false, false, MachinePointerInfo(), 4382 MachinePointerInfo()); 4383 } 4384 4385 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4386 /// tail calls. 4387 static void LowerMemOpCallTo( 4388 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4389 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4390 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4391 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4392 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4393 if (!isTailCall) { 4394 if (isVector) { 4395 SDValue StackPtr; 4396 if (isPPC64) 4397 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4398 else 4399 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4400 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4401 DAG.getConstant(ArgOffset, dl, PtrVT)); 4402 } 4403 MemOpChains.push_back( 4404 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4405 // Calculate and remember argument location. 4406 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4407 TailCallArguments); 4408 } 4409 4410 static void 4411 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4412 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4413 SDValue FPOp, 4414 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4415 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4416 // might overwrite each other in case of tail call optimization. 4417 SmallVector<SDValue, 8> MemOpChains2; 4418 // Do not flag preceding copytoreg stuff together with the following stuff. 4419 InFlag = SDValue(); 4420 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4421 MemOpChains2, dl); 4422 if (!MemOpChains2.empty()) 4423 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4424 4425 // Store the return address to the appropriate stack slot. 4426 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4427 4428 // Emit callseq_end just before tailcall node. 4429 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4430 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4431 InFlag = Chain.getValue(1); 4432 } 4433 4434 // Is this global address that of a function that can be called by name? (as 4435 // opposed to something that must hold a descriptor for an indirect call). 4436 static bool isFunctionGlobalAddress(SDValue Callee) { 4437 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4438 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4439 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4440 return false; 4441 4442 return G->getGlobal()->getValueType()->isFunctionTy(); 4443 } 4444 4445 return false; 4446 } 4447 4448 static unsigned 4449 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4450 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4451 bool isPatchPoint, bool hasNest, 4452 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4453 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4454 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4455 bool isPPC64 = Subtarget.isPPC64(); 4456 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4457 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4458 4459 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4460 NodeTys.push_back(MVT::Other); // Returns a chain 4461 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4462 4463 unsigned CallOpc = PPCISD::CALL; 4464 4465 bool needIndirectCall = true; 4466 if (!isSVR4ABI || !isPPC64) 4467 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4468 // If this is an absolute destination address, use the munged value. 4469 Callee = SDValue(Dest, 0); 4470 needIndirectCall = false; 4471 } 4472 4473 // PC-relative references to external symbols should go through $stub, unless 4474 // we're building with the leopard linker or later, which automatically 4475 // synthesizes these stubs. 4476 const TargetMachine &TM = DAG.getTarget(); 4477 const Module *Mod = DAG.getMachineFunction().getFunction()->getParent(); 4478 const GlobalValue *GV = nullptr; 4479 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4480 GV = G->getGlobal(); 4481 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4482 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4483 4484 if (isFunctionGlobalAddress(Callee)) { 4485 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4486 // A call to a TLS address is actually an indirect call to a 4487 // thread-specific pointer. 4488 unsigned OpFlags = 0; 4489 if (UsePlt) 4490 OpFlags = PPCII::MO_PLT; 4491 4492 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4493 // every direct call is) turn it into a TargetGlobalAddress / 4494 // TargetExternalSymbol node so that legalize doesn't hack it. 4495 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4496 Callee.getValueType(), 0, OpFlags); 4497 needIndirectCall = false; 4498 } 4499 4500 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4501 unsigned char OpFlags = 0; 4502 4503 if (UsePlt) 4504 OpFlags = PPCII::MO_PLT; 4505 4506 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4507 OpFlags); 4508 needIndirectCall = false; 4509 } 4510 4511 if (isPatchPoint) { 4512 // We'll form an invalid direct call when lowering a patchpoint; the full 4513 // sequence for an indirect call is complicated, and many of the 4514 // instructions introduced might have side effects (and, thus, can't be 4515 // removed later). The call itself will be removed as soon as the 4516 // argument/return lowering is complete, so the fact that it has the wrong 4517 // kind of operands should not really matter. 4518 needIndirectCall = false; 4519 } 4520 4521 if (needIndirectCall) { 4522 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4523 // to do the call, we can't use PPCISD::CALL. 4524 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4525 4526 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4527 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4528 // entry point, but to the function descriptor (the function entry point 4529 // address is part of the function descriptor though). 4530 // The function descriptor is a three doubleword structure with the 4531 // following fields: function entry point, TOC base address and 4532 // environment pointer. 4533 // Thus for a call through a function pointer, the following actions need 4534 // to be performed: 4535 // 1. Save the TOC of the caller in the TOC save area of its stack 4536 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4537 // 2. Load the address of the function entry point from the function 4538 // descriptor. 4539 // 3. Load the TOC of the callee from the function descriptor into r2. 4540 // 4. Load the environment pointer from the function descriptor into 4541 // r11. 4542 // 5. Branch to the function entry point address. 4543 // 6. On return of the callee, the TOC of the caller needs to be 4544 // restored (this is done in FinishCall()). 4545 // 4546 // The loads are scheduled at the beginning of the call sequence, and the 4547 // register copies are flagged together to ensure that no other 4548 // operations can be scheduled in between. E.g. without flagging the 4549 // copies together, a TOC access in the caller could be scheduled between 4550 // the assignment of the callee TOC and the branch to the callee, which 4551 // results in the TOC access going through the TOC of the callee instead 4552 // of going through the TOC of the caller, which leads to incorrect code. 4553 4554 // Load the address of the function entry point from the function 4555 // descriptor. 4556 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4557 if (LDChain.getValueType() == MVT::Glue) 4558 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4559 4560 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 4561 ? (MachineMemOperand::MODereferenceable | 4562 MachineMemOperand::MOInvariant) 4563 : MachineMemOperand::MONone; 4564 4565 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4566 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4567 /* Alignment = */ 8, MMOFlags); 4568 4569 // Load environment pointer into r11. 4570 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4571 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4572 SDValue LoadEnvPtr = 4573 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 4574 /* Alignment = */ 8, MMOFlags); 4575 4576 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4577 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4578 SDValue TOCPtr = 4579 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 4580 /* Alignment = */ 8, MMOFlags); 4581 4582 setUsesTOCBasePtr(DAG); 4583 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4584 InFlag); 4585 Chain = TOCVal.getValue(0); 4586 InFlag = TOCVal.getValue(1); 4587 4588 // If the function call has an explicit 'nest' parameter, it takes the 4589 // place of the environment pointer. 4590 if (!hasNest) { 4591 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4592 InFlag); 4593 4594 Chain = EnvVal.getValue(0); 4595 InFlag = EnvVal.getValue(1); 4596 } 4597 4598 MTCTROps[0] = Chain; 4599 MTCTROps[1] = LoadFuncPtr; 4600 MTCTROps[2] = InFlag; 4601 } 4602 4603 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4604 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4605 InFlag = Chain.getValue(1); 4606 4607 NodeTys.clear(); 4608 NodeTys.push_back(MVT::Other); 4609 NodeTys.push_back(MVT::Glue); 4610 Ops.push_back(Chain); 4611 CallOpc = PPCISD::BCTRL; 4612 Callee.setNode(nullptr); 4613 // Add use of X11 (holding environment pointer) 4614 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4615 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4616 // Add CTR register as callee so a bctr can be emitted later. 4617 if (isTailCall) 4618 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4619 } 4620 4621 // If this is a direct call, pass the chain and the callee. 4622 if (Callee.getNode()) { 4623 Ops.push_back(Chain); 4624 Ops.push_back(Callee); 4625 } 4626 // If this is a tail call add stack pointer delta. 4627 if (isTailCall) 4628 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4629 4630 // Add argument registers to the end of the list so that they are known live 4631 // into the call. 4632 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4633 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4634 RegsToPass[i].second.getValueType())); 4635 4636 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4637 // into the call. 4638 if (isSVR4ABI && isPPC64 && !isPatchPoint) { 4639 setUsesTOCBasePtr(DAG); 4640 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4641 } 4642 4643 return CallOpc; 4644 } 4645 4646 SDValue PPCTargetLowering::LowerCallResult( 4647 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4648 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4649 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4650 SmallVector<CCValAssign, 16> RVLocs; 4651 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4652 *DAG.getContext()); 4653 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4654 4655 // Copy all of the result registers out of their specified physreg. 4656 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4657 CCValAssign &VA = RVLocs[i]; 4658 assert(VA.isRegLoc() && "Can only return in registers!"); 4659 4660 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4661 VA.getLocReg(), VA.getLocVT(), InFlag); 4662 Chain = Val.getValue(1); 4663 InFlag = Val.getValue(2); 4664 4665 switch (VA.getLocInfo()) { 4666 default: llvm_unreachable("Unknown loc info!"); 4667 case CCValAssign::Full: break; 4668 case CCValAssign::AExt: 4669 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4670 break; 4671 case CCValAssign::ZExt: 4672 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4673 DAG.getValueType(VA.getValVT())); 4674 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4675 break; 4676 case CCValAssign::SExt: 4677 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4678 DAG.getValueType(VA.getValVT())); 4679 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4680 break; 4681 } 4682 4683 InVals.push_back(Val); 4684 } 4685 4686 return Chain; 4687 } 4688 4689 SDValue PPCTargetLowering::FinishCall( 4690 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 4691 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 4692 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 4693 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 4694 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 4695 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const { 4696 std::vector<EVT> NodeTys; 4697 SmallVector<SDValue, 8> Ops; 4698 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4699 SPDiff, isTailCall, isPatchPoint, hasNest, 4700 RegsToPass, Ops, NodeTys, CS, Subtarget); 4701 4702 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4703 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4704 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4705 4706 // When performing tail call optimization the callee pops its arguments off 4707 // the stack. Account for this here so these bytes can be pushed back on in 4708 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4709 int BytesCalleePops = 4710 (CallConv == CallingConv::Fast && 4711 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4712 4713 // Add a register mask operand representing the call-preserved registers. 4714 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4715 const uint32_t *Mask = 4716 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4717 assert(Mask && "Missing call preserved mask for calling convention"); 4718 Ops.push_back(DAG.getRegisterMask(Mask)); 4719 4720 if (InFlag.getNode()) 4721 Ops.push_back(InFlag); 4722 4723 // Emit tail call. 4724 if (isTailCall) { 4725 assert(((Callee.getOpcode() == ISD::Register && 4726 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4727 Callee.getOpcode() == ISD::TargetExternalSymbol || 4728 Callee.getOpcode() == ISD::TargetGlobalAddress || 4729 isa<ConstantSDNode>(Callee)) && 4730 "Expecting an global address, external symbol, absolute value or register"); 4731 4732 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 4733 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4734 } 4735 4736 // Add a NOP immediately after the branch instruction when using the 64-bit 4737 // SVR4 ABI. At link time, if caller and callee are in a different module and 4738 // thus have a different TOC, the call will be replaced with a call to a stub 4739 // function which saves the current TOC, loads the TOC of the callee and 4740 // branches to the callee. The NOP will be replaced with a load instruction 4741 // which restores the TOC of the caller from the TOC save slot of the current 4742 // stack frame. If caller and callee belong to the same module (and have the 4743 // same TOC), the NOP will remain unchanged. 4744 4745 MachineFunction &MF = DAG.getMachineFunction(); 4746 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4747 !isPatchPoint) { 4748 if (CallOpc == PPCISD::BCTRL) { 4749 // This is a call through a function pointer. 4750 // Restore the caller TOC from the save area into R2. 4751 // See PrepareCall() for more information about calls through function 4752 // pointers in the 64-bit SVR4 ABI. 4753 // We are using a target-specific load with r2 hard coded, because the 4754 // result of a target-independent load would never go directly into r2, 4755 // since r2 is a reserved register (which prevents the register allocator 4756 // from allocating it), resulting in an additional register being 4757 // allocated and an unnecessary move instruction being generated. 4758 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4759 4760 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4761 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4762 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4763 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4764 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4765 4766 // The address needs to go after the chain input but before the flag (or 4767 // any other variadic arguments). 4768 Ops.insert(std::next(Ops.begin()), AddTOC); 4769 } else if (CallOpc == PPCISD::CALL && 4770 !resideInSameSection(MF.getFunction(), Callee, DAG.getTarget())) { 4771 // Otherwise insert NOP for non-local calls. 4772 CallOpc = PPCISD::CALL_NOP; 4773 } 4774 } 4775 4776 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4777 InFlag = Chain.getValue(1); 4778 4779 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4780 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4781 InFlag, dl); 4782 if (!Ins.empty()) 4783 InFlag = Chain.getValue(1); 4784 4785 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4786 Ins, dl, DAG, InVals); 4787 } 4788 4789 SDValue 4790 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4791 SmallVectorImpl<SDValue> &InVals) const { 4792 SelectionDAG &DAG = CLI.DAG; 4793 SDLoc &dl = CLI.DL; 4794 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4795 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4796 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4797 SDValue Chain = CLI.Chain; 4798 SDValue Callee = CLI.Callee; 4799 bool &isTailCall = CLI.IsTailCall; 4800 CallingConv::ID CallConv = CLI.CallConv; 4801 bool isVarArg = CLI.IsVarArg; 4802 bool isPatchPoint = CLI.IsPatchPoint; 4803 ImmutableCallSite *CS = CLI.CS; 4804 4805 if (isTailCall) { 4806 if (Subtarget.useLongCalls() && !(CS && CS->isMustTailCall())) 4807 isTailCall = false; 4808 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 4809 isTailCall = 4810 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 4811 isVarArg, Outs, Ins, DAG); 4812 else 4813 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4814 Ins, DAG); 4815 if (isTailCall) { 4816 ++NumTailCalls; 4817 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4818 ++NumSiblingCalls; 4819 4820 assert(isa<GlobalAddressSDNode>(Callee) && 4821 "Callee should be an llvm::Function object."); 4822 DEBUG( 4823 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 4824 const unsigned Width = 80 - strlen("TCO caller: ") 4825 - strlen(", callee linkage: 0, 0"); 4826 dbgs() << "TCO caller: " 4827 << left_justify(DAG.getMachineFunction().getName(), Width) 4828 << ", callee linkage: " 4829 << GV->getVisibility() << ", " << GV->getLinkage() << "\n" 4830 ); 4831 } 4832 } 4833 4834 if (!isTailCall && CS && CS->isMustTailCall()) 4835 report_fatal_error("failed to perform tail call elimination on a call " 4836 "site marked musttail"); 4837 4838 // When long calls (i.e. indirect calls) are always used, calls are always 4839 // made via function pointer. If we have a function name, first translate it 4840 // into a pointer. 4841 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 4842 !isTailCall) 4843 Callee = LowerGlobalAddress(Callee, DAG); 4844 4845 if (Subtarget.isSVR4ABI()) { 4846 if (Subtarget.isPPC64()) 4847 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4848 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4849 dl, DAG, InVals, CS); 4850 else 4851 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4852 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4853 dl, DAG, InVals, CS); 4854 } 4855 4856 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4857 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4858 dl, DAG, InVals, CS); 4859 } 4860 4861 SDValue PPCTargetLowering::LowerCall_32SVR4( 4862 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 4863 bool isTailCall, bool isPatchPoint, 4864 const SmallVectorImpl<ISD::OutputArg> &Outs, 4865 const SmallVectorImpl<SDValue> &OutVals, 4866 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4867 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 4868 ImmutableCallSite *CS) const { 4869 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4870 // of the 32-bit SVR4 ABI stack frame layout. 4871 4872 assert((CallConv == CallingConv::C || 4873 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4874 4875 unsigned PtrByteSize = 4; 4876 4877 MachineFunction &MF = DAG.getMachineFunction(); 4878 4879 // Mark this function as potentially containing a function that contains a 4880 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4881 // and restoring the callers stack pointer in this functions epilog. This is 4882 // done because by tail calling the called function might overwrite the value 4883 // in this function's (MF) stack pointer stack slot 0(SP). 4884 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4885 CallConv == CallingConv::Fast) 4886 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4887 4888 // Count how many bytes are to be pushed on the stack, including the linkage 4889 // area, parameter list area and the part of the local variable space which 4890 // contains copies of aggregates which are passed by value. 4891 4892 // Assign locations to all of the outgoing arguments. 4893 SmallVector<CCValAssign, 16> ArgLocs; 4894 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 4895 4896 // Reserve space for the linkage area on the stack. 4897 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4898 PtrByteSize); 4899 if (useSoftFloat()) 4900 CCInfo.PreAnalyzeCallOperands(Outs); 4901 4902 if (isVarArg) { 4903 // Handle fixed and variable vector arguments differently. 4904 // Fixed vector arguments go into registers as long as registers are 4905 // available. Variable vector arguments always go into memory. 4906 unsigned NumArgs = Outs.size(); 4907 4908 for (unsigned i = 0; i != NumArgs; ++i) { 4909 MVT ArgVT = Outs[i].VT; 4910 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4911 bool Result; 4912 4913 if (Outs[i].IsFixed) { 4914 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4915 CCInfo); 4916 } else { 4917 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4918 ArgFlags, CCInfo); 4919 } 4920 4921 if (Result) { 4922 #ifndef NDEBUG 4923 errs() << "Call operand #" << i << " has unhandled type " 4924 << EVT(ArgVT).getEVTString() << "\n"; 4925 #endif 4926 llvm_unreachable(nullptr); 4927 } 4928 } 4929 } else { 4930 // All arguments are treated the same. 4931 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4932 } 4933 CCInfo.clearWasPPCF128(); 4934 4935 // Assign locations to all of the outgoing aggregate by value arguments. 4936 SmallVector<CCValAssign, 16> ByValArgLocs; 4937 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 4938 4939 // Reserve stack space for the allocations in CCInfo. 4940 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4941 4942 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4943 4944 // Size of the linkage area, parameter list area and the part of the local 4945 // space variable where copies of aggregates which are passed by value are 4946 // stored. 4947 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4948 4949 // Calculate by how many bytes the stack has to be adjusted in case of tail 4950 // call optimization. 4951 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4952 4953 // Adjust the stack pointer for the new arguments... 4954 // These operations are automatically eliminated by the prolog/epilog pass 4955 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4956 dl); 4957 SDValue CallSeqStart = Chain; 4958 4959 // Load the return address and frame pointer so it can be moved somewhere else 4960 // later. 4961 SDValue LROp, FPOp; 4962 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 4963 4964 // Set up a copy of the stack pointer for use loading and storing any 4965 // arguments that may not fit in the registers available for argument 4966 // passing. 4967 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4968 4969 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4970 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4971 SmallVector<SDValue, 8> MemOpChains; 4972 4973 bool seenFloatArg = false; 4974 // Walk the register/memloc assignments, inserting copies/loads. 4975 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4976 i != e; 4977 ++i) { 4978 CCValAssign &VA = ArgLocs[i]; 4979 SDValue Arg = OutVals[i]; 4980 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4981 4982 if (Flags.isByVal()) { 4983 // Argument is an aggregate which is passed by value, thus we need to 4984 // create a copy of it in the local variable space of the current stack 4985 // frame (which is the stack frame of the caller) and pass the address of 4986 // this copy to the callee. 4987 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4988 CCValAssign &ByValVA = ByValArgLocs[j++]; 4989 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4990 4991 // Memory reserved in the local variable space of the callers stack frame. 4992 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4993 4994 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4995 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4996 StackPtr, PtrOff); 4997 4998 // Create a copy of the argument in the local area of the current 4999 // stack frame. 5000 SDValue MemcpyCall = 5001 CreateCopyOfByValArgument(Arg, PtrOff, 5002 CallSeqStart.getNode()->getOperand(0), 5003 Flags, DAG, dl); 5004 5005 // This must go outside the CALLSEQ_START..END. 5006 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 5007 CallSeqStart.getNode()->getOperand(1), 5008 SDLoc(MemcpyCall)); 5009 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5010 NewCallSeqStart.getNode()); 5011 Chain = CallSeqStart = NewCallSeqStart; 5012 5013 // Pass the address of the aggregate copy on the stack either in a 5014 // physical register or in the parameter list area of the current stack 5015 // frame to the callee. 5016 Arg = PtrOff; 5017 } 5018 5019 if (VA.isRegLoc()) { 5020 if (Arg.getValueType() == MVT::i1) 5021 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 5022 5023 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5024 // Put argument in a physical register. 5025 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5026 } else { 5027 // Put argument in the parameter list area of the current stack frame. 5028 assert(VA.isMemLoc()); 5029 unsigned LocMemOffset = VA.getLocMemOffset(); 5030 5031 if (!isTailCall) { 5032 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5033 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5034 StackPtr, PtrOff); 5035 5036 MemOpChains.push_back( 5037 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5038 } else { 5039 // Calculate and remember argument location. 5040 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5041 TailCallArguments); 5042 } 5043 } 5044 } 5045 5046 if (!MemOpChains.empty()) 5047 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5048 5049 // Build a sequence of copy-to-reg nodes chained together with token chain 5050 // and flag operands which copy the outgoing args into the appropriate regs. 5051 SDValue InFlag; 5052 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5053 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5054 RegsToPass[i].second, InFlag); 5055 InFlag = Chain.getValue(1); 5056 } 5057 5058 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5059 // registers. 5060 if (isVarArg) { 5061 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5062 SDValue Ops[] = { Chain, InFlag }; 5063 5064 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5065 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5066 5067 InFlag = Chain.getValue(1); 5068 } 5069 5070 if (isTailCall) 5071 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5072 TailCallArguments); 5073 5074 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5075 /* unused except on PPC64 ELFv1 */ false, DAG, 5076 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5077 NumBytes, Ins, InVals, CS); 5078 } 5079 5080 // Copy an argument into memory, being careful to do this outside the 5081 // call sequence for the call to which the argument belongs. 5082 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5083 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5084 SelectionDAG &DAG, const SDLoc &dl) const { 5085 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5086 CallSeqStart.getNode()->getOperand(0), 5087 Flags, DAG, dl); 5088 // The MEMCPY must go outside the CALLSEQ_START..END. 5089 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 5090 CallSeqStart.getNode()->getOperand(1), 5091 SDLoc(MemcpyCall)); 5092 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5093 NewCallSeqStart.getNode()); 5094 return NewCallSeqStart; 5095 } 5096 5097 SDValue PPCTargetLowering::LowerCall_64SVR4( 5098 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5099 bool isTailCall, bool isPatchPoint, 5100 const SmallVectorImpl<ISD::OutputArg> &Outs, 5101 const SmallVectorImpl<SDValue> &OutVals, 5102 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5103 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5104 ImmutableCallSite *CS) const { 5105 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5106 bool isLittleEndian = Subtarget.isLittleEndian(); 5107 unsigned NumOps = Outs.size(); 5108 bool hasNest = false; 5109 bool IsSibCall = false; 5110 5111 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5112 unsigned PtrByteSize = 8; 5113 5114 MachineFunction &MF = DAG.getMachineFunction(); 5115 5116 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5117 IsSibCall = true; 5118 5119 // Mark this function as potentially containing a function that contains a 5120 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5121 // and restoring the callers stack pointer in this functions epilog. This is 5122 // done because by tail calling the called function might overwrite the value 5123 // in this function's (MF) stack pointer stack slot 0(SP). 5124 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5125 CallConv == CallingConv::Fast) 5126 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5127 5128 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5129 "fastcc not supported on varargs functions"); 5130 5131 // Count how many bytes are to be pushed on the stack, including the linkage 5132 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5133 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5134 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5135 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5136 unsigned NumBytes = LinkageSize; 5137 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5138 unsigned &QFPR_idx = FPR_idx; 5139 5140 static const MCPhysReg GPR[] = { 5141 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5142 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5143 }; 5144 static const MCPhysReg VR[] = { 5145 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5146 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5147 }; 5148 5149 const unsigned NumGPRs = array_lengthof(GPR); 5150 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5151 const unsigned NumVRs = array_lengthof(VR); 5152 const unsigned NumQFPRs = NumFPRs; 5153 5154 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5155 // can be passed to the callee in registers. 5156 // For the fast calling convention, there is another check below. 5157 // Note: keep consistent with LowerFormalArguments_64SVR4() 5158 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5159 if (!HasParameterArea) { 5160 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5161 unsigned AvailableFPRs = NumFPRs; 5162 unsigned AvailableVRs = NumVRs; 5163 unsigned NumBytesTmp = NumBytes; 5164 for (unsigned i = 0; i != NumOps; ++i) { 5165 if (Outs[i].Flags.isNest()) continue; 5166 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5167 PtrByteSize, LinkageSize, ParamAreaSize, 5168 NumBytesTmp, AvailableFPRs, AvailableVRs, 5169 Subtarget.hasQPX())) 5170 HasParameterArea = true; 5171 } 5172 } 5173 5174 // When using the fast calling convention, we don't provide backing for 5175 // arguments that will be in registers. 5176 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5177 5178 // Add up all the space actually used. 5179 for (unsigned i = 0; i != NumOps; ++i) { 5180 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5181 EVT ArgVT = Outs[i].VT; 5182 EVT OrigVT = Outs[i].ArgVT; 5183 5184 if (Flags.isNest()) 5185 continue; 5186 5187 if (CallConv == CallingConv::Fast) { 5188 if (Flags.isByVal()) 5189 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5190 else 5191 switch (ArgVT.getSimpleVT().SimpleTy) { 5192 default: llvm_unreachable("Unexpected ValueType for argument!"); 5193 case MVT::i1: 5194 case MVT::i32: 5195 case MVT::i64: 5196 if (++NumGPRsUsed <= NumGPRs) 5197 continue; 5198 break; 5199 case MVT::v4i32: 5200 case MVT::v8i16: 5201 case MVT::v16i8: 5202 case MVT::v2f64: 5203 case MVT::v2i64: 5204 case MVT::v1i128: 5205 if (++NumVRsUsed <= NumVRs) 5206 continue; 5207 break; 5208 case MVT::v4f32: 5209 // When using QPX, this is handled like a FP register, otherwise, it 5210 // is an Altivec register. 5211 if (Subtarget.hasQPX()) { 5212 if (++NumFPRsUsed <= NumFPRs) 5213 continue; 5214 } else { 5215 if (++NumVRsUsed <= NumVRs) 5216 continue; 5217 } 5218 break; 5219 case MVT::f32: 5220 case MVT::f64: 5221 case MVT::v4f64: // QPX 5222 case MVT::v4i1: // QPX 5223 if (++NumFPRsUsed <= NumFPRs) 5224 continue; 5225 break; 5226 } 5227 } 5228 5229 /* Respect alignment of argument on the stack. */ 5230 unsigned Align = 5231 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5232 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5233 5234 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5235 if (Flags.isInConsecutiveRegsLast()) 5236 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5237 } 5238 5239 unsigned NumBytesActuallyUsed = NumBytes; 5240 5241 // In the old ELFv1 ABI, 5242 // the prolog code of the callee may store up to 8 GPR argument registers to 5243 // the stack, allowing va_start to index over them in memory if its varargs. 5244 // Because we cannot tell if this is needed on the caller side, we have to 5245 // conservatively assume that it is needed. As such, make sure we have at 5246 // least enough stack space for the caller to store the 8 GPRs. 5247 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5248 // really requires memory operands, e.g. a vararg function. 5249 if (HasParameterArea) 5250 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5251 else 5252 NumBytes = LinkageSize; 5253 5254 // Tail call needs the stack to be aligned. 5255 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5256 CallConv == CallingConv::Fast) 5257 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5258 5259 int SPDiff = 0; 5260 5261 // Calculate by how many bytes the stack has to be adjusted in case of tail 5262 // call optimization. 5263 if (!IsSibCall) 5264 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5265 5266 // To protect arguments on the stack from being clobbered in a tail call, 5267 // force all the loads to happen before doing any other lowering. 5268 if (isTailCall) 5269 Chain = DAG.getStackArgumentTokenFactor(Chain); 5270 5271 // Adjust the stack pointer for the new arguments... 5272 // These operations are automatically eliminated by the prolog/epilog pass 5273 if (!IsSibCall) 5274 Chain = DAG.getCALLSEQ_START(Chain, 5275 DAG.getIntPtrConstant(NumBytes, dl, true), dl); 5276 SDValue CallSeqStart = Chain; 5277 5278 // Load the return address and frame pointer so it can be move somewhere else 5279 // later. 5280 SDValue LROp, FPOp; 5281 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5282 5283 // Set up a copy of the stack pointer for use loading and storing any 5284 // arguments that may not fit in the registers available for argument 5285 // passing. 5286 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5287 5288 // Figure out which arguments are going to go in registers, and which in 5289 // memory. Also, if this is a vararg function, floating point operations 5290 // must be stored to our stack, and loaded into integer regs as well, if 5291 // any integer regs are available for argument passing. 5292 unsigned ArgOffset = LinkageSize; 5293 5294 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5295 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5296 5297 SmallVector<SDValue, 8> MemOpChains; 5298 for (unsigned i = 0; i != NumOps; ++i) { 5299 SDValue Arg = OutVals[i]; 5300 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5301 EVT ArgVT = Outs[i].VT; 5302 EVT OrigVT = Outs[i].ArgVT; 5303 5304 // PtrOff will be used to store the current argument to the stack if a 5305 // register cannot be found for it. 5306 SDValue PtrOff; 5307 5308 // We re-align the argument offset for each argument, except when using the 5309 // fast calling convention, when we need to make sure we do that only when 5310 // we'll actually use a stack slot. 5311 auto ComputePtrOff = [&]() { 5312 /* Respect alignment of argument on the stack. */ 5313 unsigned Align = 5314 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5315 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5316 5317 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5318 5319 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5320 }; 5321 5322 if (CallConv != CallingConv::Fast) { 5323 ComputePtrOff(); 5324 5325 /* Compute GPR index associated with argument offset. */ 5326 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5327 GPR_idx = std::min(GPR_idx, NumGPRs); 5328 } 5329 5330 // Promote integers to 64-bit values. 5331 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5332 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5333 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5334 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5335 } 5336 5337 // FIXME memcpy is used way more than necessary. Correctness first. 5338 // Note: "by value" is code for passing a structure by value, not 5339 // basic types. 5340 if (Flags.isByVal()) { 5341 // Note: Size includes alignment padding, so 5342 // struct x { short a; char b; } 5343 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5344 // These are the proper values we need for right-justifying the 5345 // aggregate in a parameter register. 5346 unsigned Size = Flags.getByValSize(); 5347 5348 // An empty aggregate parameter takes up no storage and no 5349 // registers. 5350 if (Size == 0) 5351 continue; 5352 5353 if (CallConv == CallingConv::Fast) 5354 ComputePtrOff(); 5355 5356 // All aggregates smaller than 8 bytes must be passed right-justified. 5357 if (Size==1 || Size==2 || Size==4) { 5358 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5359 if (GPR_idx != NumGPRs) { 5360 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5361 MachinePointerInfo(), VT); 5362 MemOpChains.push_back(Load.getValue(1)); 5363 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5364 5365 ArgOffset += PtrByteSize; 5366 continue; 5367 } 5368 } 5369 5370 if (GPR_idx == NumGPRs && Size < 8) { 5371 SDValue AddPtr = PtrOff; 5372 if (!isLittleEndian) { 5373 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5374 PtrOff.getValueType()); 5375 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5376 } 5377 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5378 CallSeqStart, 5379 Flags, DAG, dl); 5380 ArgOffset += PtrByteSize; 5381 continue; 5382 } 5383 // Copy entire object into memory. There are cases where gcc-generated 5384 // code assumes it is there, even if it could be put entirely into 5385 // registers. (This is not what the doc says.) 5386 5387 // FIXME: The above statement is likely due to a misunderstanding of the 5388 // documents. All arguments must be copied into the parameter area BY 5389 // THE CALLEE in the event that the callee takes the address of any 5390 // formal argument. That has not yet been implemented. However, it is 5391 // reasonable to use the stack area as a staging area for the register 5392 // load. 5393 5394 // Skip this for small aggregates, as we will use the same slot for a 5395 // right-justified copy, below. 5396 if (Size >= 8) 5397 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5398 CallSeqStart, 5399 Flags, DAG, dl); 5400 5401 // When a register is available, pass a small aggregate right-justified. 5402 if (Size < 8 && GPR_idx != NumGPRs) { 5403 // The easiest way to get this right-justified in a register 5404 // is to copy the structure into the rightmost portion of a 5405 // local variable slot, then load the whole slot into the 5406 // register. 5407 // FIXME: The memcpy seems to produce pretty awful code for 5408 // small aggregates, particularly for packed ones. 5409 // FIXME: It would be preferable to use the slot in the 5410 // parameter save area instead of a new local variable. 5411 SDValue AddPtr = PtrOff; 5412 if (!isLittleEndian) { 5413 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5414 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5415 } 5416 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5417 CallSeqStart, 5418 Flags, DAG, dl); 5419 5420 // Load the slot into the register. 5421 SDValue Load = 5422 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5423 MemOpChains.push_back(Load.getValue(1)); 5424 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5425 5426 // Done with this argument. 5427 ArgOffset += PtrByteSize; 5428 continue; 5429 } 5430 5431 // For aggregates larger than PtrByteSize, copy the pieces of the 5432 // object that fit into registers from the parameter save area. 5433 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5434 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5435 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5436 if (GPR_idx != NumGPRs) { 5437 SDValue Load = 5438 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5439 MemOpChains.push_back(Load.getValue(1)); 5440 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5441 ArgOffset += PtrByteSize; 5442 } else { 5443 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5444 break; 5445 } 5446 } 5447 continue; 5448 } 5449 5450 switch (Arg.getSimpleValueType().SimpleTy) { 5451 default: llvm_unreachable("Unexpected ValueType for argument!"); 5452 case MVT::i1: 5453 case MVT::i32: 5454 case MVT::i64: 5455 if (Flags.isNest()) { 5456 // The 'nest' parameter, if any, is passed in R11. 5457 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5458 hasNest = true; 5459 break; 5460 } 5461 5462 // These can be scalar arguments or elements of an integer array type 5463 // passed directly. Clang may use those instead of "byval" aggregate 5464 // types to avoid forcing arguments to memory unnecessarily. 5465 if (GPR_idx != NumGPRs) { 5466 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5467 } else { 5468 if (CallConv == CallingConv::Fast) 5469 ComputePtrOff(); 5470 5471 assert(HasParameterArea && 5472 "Parameter area must exist to pass an argument in memory."); 5473 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5474 true, isTailCall, false, MemOpChains, 5475 TailCallArguments, dl); 5476 if (CallConv == CallingConv::Fast) 5477 ArgOffset += PtrByteSize; 5478 } 5479 if (CallConv != CallingConv::Fast) 5480 ArgOffset += PtrByteSize; 5481 break; 5482 case MVT::f32: 5483 case MVT::f64: { 5484 // These can be scalar arguments or elements of a float array type 5485 // passed directly. The latter are used to implement ELFv2 homogenous 5486 // float aggregates. 5487 5488 // Named arguments go into FPRs first, and once they overflow, the 5489 // remaining arguments go into GPRs and then the parameter save area. 5490 // Unnamed arguments for vararg functions always go to GPRs and 5491 // then the parameter save area. For now, put all arguments to vararg 5492 // routines always in both locations (FPR *and* GPR or stack slot). 5493 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5494 bool NeededLoad = false; 5495 5496 // First load the argument into the next available FPR. 5497 if (FPR_idx != NumFPRs) 5498 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5499 5500 // Next, load the argument into GPR or stack slot if needed. 5501 if (!NeedGPROrStack) 5502 ; 5503 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5504 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5505 // once we support fp <-> gpr moves. 5506 5507 // In the non-vararg case, this can only ever happen in the 5508 // presence of f32 array types, since otherwise we never run 5509 // out of FPRs before running out of GPRs. 5510 SDValue ArgVal; 5511 5512 // Double values are always passed in a single GPR. 5513 if (Arg.getValueType() != MVT::f32) { 5514 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5515 5516 // Non-array float values are extended and passed in a GPR. 5517 } else if (!Flags.isInConsecutiveRegs()) { 5518 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5519 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5520 5521 // If we have an array of floats, we collect every odd element 5522 // together with its predecessor into one GPR. 5523 } else if (ArgOffset % PtrByteSize != 0) { 5524 SDValue Lo, Hi; 5525 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5526 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5527 if (!isLittleEndian) 5528 std::swap(Lo, Hi); 5529 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5530 5531 // The final element, if even, goes into the first half of a GPR. 5532 } else if (Flags.isInConsecutiveRegsLast()) { 5533 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5534 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5535 if (!isLittleEndian) 5536 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5537 DAG.getConstant(32, dl, MVT::i32)); 5538 5539 // Non-final even elements are skipped; they will be handled 5540 // together the with subsequent argument on the next go-around. 5541 } else 5542 ArgVal = SDValue(); 5543 5544 if (ArgVal.getNode()) 5545 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5546 } else { 5547 if (CallConv == CallingConv::Fast) 5548 ComputePtrOff(); 5549 5550 // Single-precision floating-point values are mapped to the 5551 // second (rightmost) word of the stack doubleword. 5552 if (Arg.getValueType() == MVT::f32 && 5553 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5554 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5555 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5556 } 5557 5558 assert(HasParameterArea && 5559 "Parameter area must exist to pass an argument in memory."); 5560 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5561 true, isTailCall, false, MemOpChains, 5562 TailCallArguments, dl); 5563 5564 NeededLoad = true; 5565 } 5566 // When passing an array of floats, the array occupies consecutive 5567 // space in the argument area; only round up to the next doubleword 5568 // at the end of the array. Otherwise, each float takes 8 bytes. 5569 if (CallConv != CallingConv::Fast || NeededLoad) { 5570 ArgOffset += (Arg.getValueType() == MVT::f32 && 5571 Flags.isInConsecutiveRegs()) ? 4 : 8; 5572 if (Flags.isInConsecutiveRegsLast()) 5573 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5574 } 5575 break; 5576 } 5577 case MVT::v4f32: 5578 case MVT::v4i32: 5579 case MVT::v8i16: 5580 case MVT::v16i8: 5581 case MVT::v2f64: 5582 case MVT::v2i64: 5583 case MVT::v1i128: 5584 if (!Subtarget.hasQPX()) { 5585 // These can be scalar arguments or elements of a vector array type 5586 // passed directly. The latter are used to implement ELFv2 homogenous 5587 // vector aggregates. 5588 5589 // For a varargs call, named arguments go into VRs or on the stack as 5590 // usual; unnamed arguments always go to the stack or the corresponding 5591 // GPRs when within range. For now, we always put the value in both 5592 // locations (or even all three). 5593 if (isVarArg) { 5594 assert(HasParameterArea && 5595 "Parameter area must exist if we have a varargs call."); 5596 // We could elide this store in the case where the object fits 5597 // entirely in R registers. Maybe later. 5598 SDValue Store = 5599 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5600 MemOpChains.push_back(Store); 5601 if (VR_idx != NumVRs) { 5602 SDValue Load = 5603 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 5604 MemOpChains.push_back(Load.getValue(1)); 5605 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5606 } 5607 ArgOffset += 16; 5608 for (unsigned i=0; i<16; i+=PtrByteSize) { 5609 if (GPR_idx == NumGPRs) 5610 break; 5611 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5612 DAG.getConstant(i, dl, PtrVT)); 5613 SDValue Load = 5614 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5615 MemOpChains.push_back(Load.getValue(1)); 5616 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5617 } 5618 break; 5619 } 5620 5621 // Non-varargs Altivec params go into VRs or on the stack. 5622 if (VR_idx != NumVRs) { 5623 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5624 } else { 5625 if (CallConv == CallingConv::Fast) 5626 ComputePtrOff(); 5627 5628 assert(HasParameterArea && 5629 "Parameter area must exist to pass an argument in memory."); 5630 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5631 true, isTailCall, true, MemOpChains, 5632 TailCallArguments, dl); 5633 if (CallConv == CallingConv::Fast) 5634 ArgOffset += 16; 5635 } 5636 5637 if (CallConv != CallingConv::Fast) 5638 ArgOffset += 16; 5639 break; 5640 } // not QPX 5641 5642 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5643 "Invalid QPX parameter type"); 5644 5645 /* fall through */ 5646 case MVT::v4f64: 5647 case MVT::v4i1: { 5648 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5649 if (isVarArg) { 5650 assert(HasParameterArea && 5651 "Parameter area must exist if we have a varargs call."); 5652 // We could elide this store in the case where the object fits 5653 // entirely in R registers. Maybe later. 5654 SDValue Store = 5655 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5656 MemOpChains.push_back(Store); 5657 if (QFPR_idx != NumQFPRs) { 5658 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 5659 PtrOff, MachinePointerInfo()); 5660 MemOpChains.push_back(Load.getValue(1)); 5661 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5662 } 5663 ArgOffset += (IsF32 ? 16 : 32); 5664 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5665 if (GPR_idx == NumGPRs) 5666 break; 5667 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5668 DAG.getConstant(i, dl, PtrVT)); 5669 SDValue Load = 5670 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5671 MemOpChains.push_back(Load.getValue(1)); 5672 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5673 } 5674 break; 5675 } 5676 5677 // Non-varargs QPX params go into registers or on the stack. 5678 if (QFPR_idx != NumQFPRs) { 5679 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5680 } else { 5681 if (CallConv == CallingConv::Fast) 5682 ComputePtrOff(); 5683 5684 assert(HasParameterArea && 5685 "Parameter area must exist to pass an argument in memory."); 5686 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5687 true, isTailCall, true, MemOpChains, 5688 TailCallArguments, dl); 5689 if (CallConv == CallingConv::Fast) 5690 ArgOffset += (IsF32 ? 16 : 32); 5691 } 5692 5693 if (CallConv != CallingConv::Fast) 5694 ArgOffset += (IsF32 ? 16 : 32); 5695 break; 5696 } 5697 } 5698 } 5699 5700 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 5701 "mismatch in size of parameter area"); 5702 (void)NumBytesActuallyUsed; 5703 5704 if (!MemOpChains.empty()) 5705 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5706 5707 // Check if this is an indirect call (MTCTR/BCTRL). 5708 // See PrepareCall() for more information about calls through function 5709 // pointers in the 64-bit SVR4 ABI. 5710 if (!isTailCall && !isPatchPoint && 5711 !isFunctionGlobalAddress(Callee) && 5712 !isa<ExternalSymbolSDNode>(Callee)) { 5713 // Load r2 into a virtual register and store it to the TOC save area. 5714 setUsesTOCBasePtr(DAG); 5715 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5716 // TOC save area offset. 5717 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5718 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5719 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5720 Chain = DAG.getStore( 5721 Val.getValue(1), dl, Val, AddPtr, 5722 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 5723 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5724 // This does not mean the MTCTR instruction must use R12; it's easier 5725 // to model this as an extra parameter, so do that. 5726 if (isELFv2ABI && !isPatchPoint) 5727 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5728 } 5729 5730 // Build a sequence of copy-to-reg nodes chained together with token chain 5731 // and flag operands which copy the outgoing args into the appropriate regs. 5732 SDValue InFlag; 5733 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5734 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5735 RegsToPass[i].second, InFlag); 5736 InFlag = Chain.getValue(1); 5737 } 5738 5739 if (isTailCall && !IsSibCall) 5740 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5741 TailCallArguments); 5742 5743 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 5744 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5745 SPDiff, NumBytes, Ins, InVals, CS); 5746 } 5747 5748 SDValue PPCTargetLowering::LowerCall_Darwin( 5749 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5750 bool isTailCall, bool isPatchPoint, 5751 const SmallVectorImpl<ISD::OutputArg> &Outs, 5752 const SmallVectorImpl<SDValue> &OutVals, 5753 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5754 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5755 ImmutableCallSite *CS) const { 5756 unsigned NumOps = Outs.size(); 5757 5758 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5759 bool isPPC64 = PtrVT == MVT::i64; 5760 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5761 5762 MachineFunction &MF = DAG.getMachineFunction(); 5763 5764 // Mark this function as potentially containing a function that contains a 5765 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5766 // and restoring the callers stack pointer in this functions epilog. This is 5767 // done because by tail calling the called function might overwrite the value 5768 // in this function's (MF) stack pointer stack slot 0(SP). 5769 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5770 CallConv == CallingConv::Fast) 5771 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5772 5773 // Count how many bytes are to be pushed on the stack, including the linkage 5774 // area, and parameter passing area. We start with 24/48 bytes, which is 5775 // prereserved space for [SP][CR][LR][3 x unused]. 5776 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5777 unsigned NumBytes = LinkageSize; 5778 5779 // Add up all the space actually used. 5780 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5781 // they all go in registers, but we must reserve stack space for them for 5782 // possible use by the caller. In varargs or 64-bit calls, parameters are 5783 // assigned stack space in order, with padding so Altivec parameters are 5784 // 16-byte aligned. 5785 unsigned nAltivecParamsAtEnd = 0; 5786 for (unsigned i = 0; i != NumOps; ++i) { 5787 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5788 EVT ArgVT = Outs[i].VT; 5789 // Varargs Altivec parameters are padded to a 16 byte boundary. 5790 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5791 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5792 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5793 if (!isVarArg && !isPPC64) { 5794 // Non-varargs Altivec parameters go after all the non-Altivec 5795 // parameters; handle those later so we know how much padding we need. 5796 nAltivecParamsAtEnd++; 5797 continue; 5798 } 5799 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5800 NumBytes = ((NumBytes+15)/16)*16; 5801 } 5802 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5803 } 5804 5805 // Allow for Altivec parameters at the end, if needed. 5806 if (nAltivecParamsAtEnd) { 5807 NumBytes = ((NumBytes+15)/16)*16; 5808 NumBytes += 16*nAltivecParamsAtEnd; 5809 } 5810 5811 // The prolog code of the callee may store up to 8 GPR argument registers to 5812 // the stack, allowing va_start to index over them in memory if its varargs. 5813 // Because we cannot tell if this is needed on the caller side, we have to 5814 // conservatively assume that it is needed. As such, make sure we have at 5815 // least enough stack space for the caller to store the 8 GPRs. 5816 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5817 5818 // Tail call needs the stack to be aligned. 5819 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5820 CallConv == CallingConv::Fast) 5821 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5822 5823 // Calculate by how many bytes the stack has to be adjusted in case of tail 5824 // call optimization. 5825 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5826 5827 // To protect arguments on the stack from being clobbered in a tail call, 5828 // force all the loads to happen before doing any other lowering. 5829 if (isTailCall) 5830 Chain = DAG.getStackArgumentTokenFactor(Chain); 5831 5832 // Adjust the stack pointer for the new arguments... 5833 // These operations are automatically eliminated by the prolog/epilog pass 5834 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5835 dl); 5836 SDValue CallSeqStart = Chain; 5837 5838 // Load the return address and frame pointer so it can be move somewhere else 5839 // later. 5840 SDValue LROp, FPOp; 5841 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5842 5843 // Set up a copy of the stack pointer for use loading and storing any 5844 // arguments that may not fit in the registers available for argument 5845 // passing. 5846 SDValue StackPtr; 5847 if (isPPC64) 5848 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5849 else 5850 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5851 5852 // Figure out which arguments are going to go in registers, and which in 5853 // memory. Also, if this is a vararg function, floating point operations 5854 // must be stored to our stack, and loaded into integer regs as well, if 5855 // any integer regs are available for argument passing. 5856 unsigned ArgOffset = LinkageSize; 5857 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5858 5859 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5860 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5861 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5862 }; 5863 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5864 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5865 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5866 }; 5867 static const MCPhysReg VR[] = { 5868 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5869 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5870 }; 5871 const unsigned NumGPRs = array_lengthof(GPR_32); 5872 const unsigned NumFPRs = 13; 5873 const unsigned NumVRs = array_lengthof(VR); 5874 5875 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5876 5877 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5878 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5879 5880 SmallVector<SDValue, 8> MemOpChains; 5881 for (unsigned i = 0; i != NumOps; ++i) { 5882 SDValue Arg = OutVals[i]; 5883 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5884 5885 // PtrOff will be used to store the current argument to the stack if a 5886 // register cannot be found for it. 5887 SDValue PtrOff; 5888 5889 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5890 5891 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5892 5893 // On PPC64, promote integers to 64-bit values. 5894 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5895 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5896 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5897 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5898 } 5899 5900 // FIXME memcpy is used way more than necessary. Correctness first. 5901 // Note: "by value" is code for passing a structure by value, not 5902 // basic types. 5903 if (Flags.isByVal()) { 5904 unsigned Size = Flags.getByValSize(); 5905 // Very small objects are passed right-justified. Everything else is 5906 // passed left-justified. 5907 if (Size==1 || Size==2) { 5908 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5909 if (GPR_idx != NumGPRs) { 5910 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5911 MachinePointerInfo(), VT); 5912 MemOpChains.push_back(Load.getValue(1)); 5913 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5914 5915 ArgOffset += PtrByteSize; 5916 } else { 5917 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5918 PtrOff.getValueType()); 5919 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5920 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5921 CallSeqStart, 5922 Flags, DAG, dl); 5923 ArgOffset += PtrByteSize; 5924 } 5925 continue; 5926 } 5927 // Copy entire object into memory. There are cases where gcc-generated 5928 // code assumes it is there, even if it could be put entirely into 5929 // registers. (This is not what the doc says.) 5930 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5931 CallSeqStart, 5932 Flags, DAG, dl); 5933 5934 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5935 // copy the pieces of the object that fit into registers from the 5936 // parameter save area. 5937 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5938 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5939 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5940 if (GPR_idx != NumGPRs) { 5941 SDValue Load = 5942 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5943 MemOpChains.push_back(Load.getValue(1)); 5944 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5945 ArgOffset += PtrByteSize; 5946 } else { 5947 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5948 break; 5949 } 5950 } 5951 continue; 5952 } 5953 5954 switch (Arg.getSimpleValueType().SimpleTy) { 5955 default: llvm_unreachable("Unexpected ValueType for argument!"); 5956 case MVT::i1: 5957 case MVT::i32: 5958 case MVT::i64: 5959 if (GPR_idx != NumGPRs) { 5960 if (Arg.getValueType() == MVT::i1) 5961 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5962 5963 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5964 } else { 5965 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5966 isPPC64, isTailCall, false, MemOpChains, 5967 TailCallArguments, dl); 5968 } 5969 ArgOffset += PtrByteSize; 5970 break; 5971 case MVT::f32: 5972 case MVT::f64: 5973 if (FPR_idx != NumFPRs) { 5974 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5975 5976 if (isVarArg) { 5977 SDValue Store = 5978 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5979 MemOpChains.push_back(Store); 5980 5981 // Float varargs are always shadowed in available integer registers 5982 if (GPR_idx != NumGPRs) { 5983 SDValue Load = 5984 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 5985 MemOpChains.push_back(Load.getValue(1)); 5986 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5987 } 5988 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5989 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5990 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5991 SDValue Load = 5992 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 5993 MemOpChains.push_back(Load.getValue(1)); 5994 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5995 } 5996 } else { 5997 // If we have any FPRs remaining, we may also have GPRs remaining. 5998 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5999 // GPRs. 6000 if (GPR_idx != NumGPRs) 6001 ++GPR_idx; 6002 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6003 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6004 ++GPR_idx; 6005 } 6006 } else 6007 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6008 isPPC64, isTailCall, false, MemOpChains, 6009 TailCallArguments, dl); 6010 if (isPPC64) 6011 ArgOffset += 8; 6012 else 6013 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6014 break; 6015 case MVT::v4f32: 6016 case MVT::v4i32: 6017 case MVT::v8i16: 6018 case MVT::v16i8: 6019 if (isVarArg) { 6020 // These go aligned on the stack, or in the corresponding R registers 6021 // when within range. The Darwin PPC ABI doc claims they also go in 6022 // V registers; in fact gcc does this only for arguments that are 6023 // prototyped, not for those that match the ... We do it for all 6024 // arguments, seems to work. 6025 while (ArgOffset % 16 !=0) { 6026 ArgOffset += PtrByteSize; 6027 if (GPR_idx != NumGPRs) 6028 GPR_idx++; 6029 } 6030 // We could elide this store in the case where the object fits 6031 // entirely in R registers. Maybe later. 6032 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6033 DAG.getConstant(ArgOffset, dl, PtrVT)); 6034 SDValue Store = 6035 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6036 MemOpChains.push_back(Store); 6037 if (VR_idx != NumVRs) { 6038 SDValue Load = 6039 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6040 MemOpChains.push_back(Load.getValue(1)); 6041 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6042 } 6043 ArgOffset += 16; 6044 for (unsigned i=0; i<16; i+=PtrByteSize) { 6045 if (GPR_idx == NumGPRs) 6046 break; 6047 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6048 DAG.getConstant(i, dl, PtrVT)); 6049 SDValue Load = 6050 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6051 MemOpChains.push_back(Load.getValue(1)); 6052 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6053 } 6054 break; 6055 } 6056 6057 // Non-varargs Altivec params generally go in registers, but have 6058 // stack space allocated at the end. 6059 if (VR_idx != NumVRs) { 6060 // Doesn't have GPR space allocated. 6061 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6062 } else if (nAltivecParamsAtEnd==0) { 6063 // We are emitting Altivec params in order. 6064 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6065 isPPC64, isTailCall, true, MemOpChains, 6066 TailCallArguments, dl); 6067 ArgOffset += 16; 6068 } 6069 break; 6070 } 6071 } 6072 // If all Altivec parameters fit in registers, as they usually do, 6073 // they get stack space following the non-Altivec parameters. We 6074 // don't track this here because nobody below needs it. 6075 // If there are more Altivec parameters than fit in registers emit 6076 // the stores here. 6077 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6078 unsigned j = 0; 6079 // Offset is aligned; skip 1st 12 params which go in V registers. 6080 ArgOffset = ((ArgOffset+15)/16)*16; 6081 ArgOffset += 12*16; 6082 for (unsigned i = 0; i != NumOps; ++i) { 6083 SDValue Arg = OutVals[i]; 6084 EVT ArgType = Outs[i].VT; 6085 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6086 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6087 if (++j > NumVRs) { 6088 SDValue PtrOff; 6089 // We are emitting Altivec params in order. 6090 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6091 isPPC64, isTailCall, true, MemOpChains, 6092 TailCallArguments, dl); 6093 ArgOffset += 16; 6094 } 6095 } 6096 } 6097 } 6098 6099 if (!MemOpChains.empty()) 6100 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6101 6102 // On Darwin, R12 must contain the address of an indirect callee. This does 6103 // not mean the MTCTR instruction must use R12; it's easier to model this as 6104 // an extra parameter, so do that. 6105 if (!isTailCall && 6106 !isFunctionGlobalAddress(Callee) && 6107 !isa<ExternalSymbolSDNode>(Callee) && 6108 !isBLACompatibleAddress(Callee, DAG)) 6109 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6110 PPC::R12), Callee)); 6111 6112 // Build a sequence of copy-to-reg nodes chained together with token chain 6113 // and flag operands which copy the outgoing args into the appropriate regs. 6114 SDValue InFlag; 6115 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6116 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6117 RegsToPass[i].second, InFlag); 6118 InFlag = Chain.getValue(1); 6119 } 6120 6121 if (isTailCall) 6122 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6123 TailCallArguments); 6124 6125 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6126 /* unused except on PPC64 ELFv1 */ false, DAG, 6127 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6128 NumBytes, Ins, InVals, CS); 6129 } 6130 6131 bool 6132 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6133 MachineFunction &MF, bool isVarArg, 6134 const SmallVectorImpl<ISD::OutputArg> &Outs, 6135 LLVMContext &Context) const { 6136 SmallVector<CCValAssign, 16> RVLocs; 6137 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6138 return CCInfo.CheckReturn(Outs, RetCC_PPC); 6139 } 6140 6141 SDValue 6142 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6143 bool isVarArg, 6144 const SmallVectorImpl<ISD::OutputArg> &Outs, 6145 const SmallVectorImpl<SDValue> &OutVals, 6146 const SDLoc &dl, SelectionDAG &DAG) const { 6147 SmallVector<CCValAssign, 16> RVLocs; 6148 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6149 *DAG.getContext()); 6150 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 6151 6152 SDValue Flag; 6153 SmallVector<SDValue, 4> RetOps(1, Chain); 6154 6155 // Copy the result values into the output registers. 6156 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6157 CCValAssign &VA = RVLocs[i]; 6158 assert(VA.isRegLoc() && "Can only return in registers!"); 6159 6160 SDValue Arg = OutVals[i]; 6161 6162 switch (VA.getLocInfo()) { 6163 default: llvm_unreachable("Unknown loc info!"); 6164 case CCValAssign::Full: break; 6165 case CCValAssign::AExt: 6166 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6167 break; 6168 case CCValAssign::ZExt: 6169 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6170 break; 6171 case CCValAssign::SExt: 6172 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6173 break; 6174 } 6175 6176 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6177 Flag = Chain.getValue(1); 6178 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6179 } 6180 6181 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6182 const MCPhysReg *I = 6183 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6184 if (I) { 6185 for (; *I; ++I) { 6186 6187 if (PPC::G8RCRegClass.contains(*I)) 6188 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6189 else if (PPC::F8RCRegClass.contains(*I)) 6190 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6191 else if (PPC::CRRCRegClass.contains(*I)) 6192 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6193 else if (PPC::VRRCRegClass.contains(*I)) 6194 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6195 else 6196 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6197 } 6198 } 6199 6200 RetOps[0] = Chain; // Update chain. 6201 6202 // Add the flag if we have it. 6203 if (Flag.getNode()) 6204 RetOps.push_back(Flag); 6205 6206 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6207 } 6208 6209 SDValue 6210 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6211 SelectionDAG &DAG) const { 6212 SDLoc dl(Op); 6213 6214 // Get the corect type for integers. 6215 EVT IntVT = Op.getValueType(); 6216 6217 // Get the inputs. 6218 SDValue Chain = Op.getOperand(0); 6219 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6220 // Build a DYNAREAOFFSET node. 6221 SDValue Ops[2] = {Chain, FPSIdx}; 6222 SDVTList VTs = DAG.getVTList(IntVT); 6223 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6224 } 6225 6226 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6227 SelectionDAG &DAG) const { 6228 // When we pop the dynamic allocation we need to restore the SP link. 6229 SDLoc dl(Op); 6230 6231 // Get the corect type for pointers. 6232 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6233 6234 // Construct the stack pointer operand. 6235 bool isPPC64 = Subtarget.isPPC64(); 6236 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6237 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6238 6239 // Get the operands for the STACKRESTORE. 6240 SDValue Chain = Op.getOperand(0); 6241 SDValue SaveSP = Op.getOperand(1); 6242 6243 // Load the old link SP. 6244 SDValue LoadLinkSP = 6245 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6246 6247 // Restore the stack pointer. 6248 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6249 6250 // Store the old link SP. 6251 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6252 } 6253 6254 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6255 MachineFunction &MF = DAG.getMachineFunction(); 6256 bool isPPC64 = Subtarget.isPPC64(); 6257 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6258 6259 // Get current frame pointer save index. The users of this index will be 6260 // primarily DYNALLOC instructions. 6261 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6262 int RASI = FI->getReturnAddrSaveIndex(); 6263 6264 // If the frame pointer save index hasn't been defined yet. 6265 if (!RASI) { 6266 // Find out what the fix offset of the frame pointer save area. 6267 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6268 // Allocate the frame index for frame pointer save area. 6269 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6270 // Save the result. 6271 FI->setReturnAddrSaveIndex(RASI); 6272 } 6273 return DAG.getFrameIndex(RASI, PtrVT); 6274 } 6275 6276 SDValue 6277 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6278 MachineFunction &MF = DAG.getMachineFunction(); 6279 bool isPPC64 = Subtarget.isPPC64(); 6280 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6281 6282 // Get current frame pointer save index. The users of this index will be 6283 // primarily DYNALLOC instructions. 6284 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6285 int FPSI = FI->getFramePointerSaveIndex(); 6286 6287 // If the frame pointer save index hasn't been defined yet. 6288 if (!FPSI) { 6289 // Find out what the fix offset of the frame pointer save area. 6290 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6291 // Allocate the frame index for frame pointer save area. 6292 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6293 // Save the result. 6294 FI->setFramePointerSaveIndex(FPSI); 6295 } 6296 return DAG.getFrameIndex(FPSI, PtrVT); 6297 } 6298 6299 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6300 SelectionDAG &DAG) const { 6301 // Get the inputs. 6302 SDValue Chain = Op.getOperand(0); 6303 SDValue Size = Op.getOperand(1); 6304 SDLoc dl(Op); 6305 6306 // Get the corect type for pointers. 6307 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6308 // Negate the size. 6309 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6310 DAG.getConstant(0, dl, PtrVT), Size); 6311 // Construct a node for the frame pointer save index. 6312 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6313 // Build a DYNALLOC node. 6314 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6315 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6316 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6317 } 6318 6319 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 6320 SelectionDAG &DAG) const { 6321 MachineFunction &MF = DAG.getMachineFunction(); 6322 6323 bool isPPC64 = Subtarget.isPPC64(); 6324 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6325 6326 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 6327 return DAG.getFrameIndex(FI, PtrVT); 6328 } 6329 6330 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6331 SelectionDAG &DAG) const { 6332 SDLoc DL(Op); 6333 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6334 DAG.getVTList(MVT::i32, MVT::Other), 6335 Op.getOperand(0), Op.getOperand(1)); 6336 } 6337 6338 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6339 SelectionDAG &DAG) const { 6340 SDLoc DL(Op); 6341 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6342 Op.getOperand(0), Op.getOperand(1)); 6343 } 6344 6345 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6346 if (Op.getValueType().isVector()) 6347 return LowerVectorLoad(Op, DAG); 6348 6349 assert(Op.getValueType() == MVT::i1 && 6350 "Custom lowering only for i1 loads"); 6351 6352 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6353 6354 SDLoc dl(Op); 6355 LoadSDNode *LD = cast<LoadSDNode>(Op); 6356 6357 SDValue Chain = LD->getChain(); 6358 SDValue BasePtr = LD->getBasePtr(); 6359 MachineMemOperand *MMO = LD->getMemOperand(); 6360 6361 SDValue NewLD = 6362 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6363 BasePtr, MVT::i8, MMO); 6364 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6365 6366 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6367 return DAG.getMergeValues(Ops, dl); 6368 } 6369 6370 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6371 if (Op.getOperand(1).getValueType().isVector()) 6372 return LowerVectorStore(Op, DAG); 6373 6374 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6375 "Custom lowering only for i1 stores"); 6376 6377 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6378 6379 SDLoc dl(Op); 6380 StoreSDNode *ST = cast<StoreSDNode>(Op); 6381 6382 SDValue Chain = ST->getChain(); 6383 SDValue BasePtr = ST->getBasePtr(); 6384 SDValue Value = ST->getValue(); 6385 MachineMemOperand *MMO = ST->getMemOperand(); 6386 6387 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6388 Value); 6389 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6390 } 6391 6392 // FIXME: Remove this once the ANDI glue bug is fixed: 6393 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6394 assert(Op.getValueType() == MVT::i1 && 6395 "Custom lowering only for i1 results"); 6396 6397 SDLoc DL(Op); 6398 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6399 Op.getOperand(0)); 6400 } 6401 6402 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6403 /// possible. 6404 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6405 // Not FP? Not a fsel. 6406 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6407 !Op.getOperand(2).getValueType().isFloatingPoint()) 6408 return Op; 6409 6410 // We might be able to do better than this under some circumstances, but in 6411 // general, fsel-based lowering of select is a finite-math-only optimization. 6412 // For more information, see section F.3 of the 2.06 ISA specification. 6413 if (!DAG.getTarget().Options.NoInfsFPMath || 6414 !DAG.getTarget().Options.NoNaNsFPMath) 6415 return Op; 6416 // TODO: Propagate flags from the select rather than global settings. 6417 SDNodeFlags Flags; 6418 Flags.setNoInfs(true); 6419 Flags.setNoNaNs(true); 6420 6421 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6422 6423 EVT ResVT = Op.getValueType(); 6424 EVT CmpVT = Op.getOperand(0).getValueType(); 6425 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6426 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6427 SDLoc dl(Op); 6428 6429 // If the RHS of the comparison is a 0.0, we don't need to do the 6430 // subtraction at all. 6431 SDValue Sel1; 6432 if (isFloatingPointZero(RHS)) 6433 switch (CC) { 6434 default: break; // SETUO etc aren't handled by fsel. 6435 case ISD::SETNE: 6436 std::swap(TV, FV); 6437 case ISD::SETEQ: 6438 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6439 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6440 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6441 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6442 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6443 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6444 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6445 case ISD::SETULT: 6446 case ISD::SETLT: 6447 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6448 case ISD::SETOGE: 6449 case ISD::SETGE: 6450 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6451 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6452 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6453 case ISD::SETUGT: 6454 case ISD::SETGT: 6455 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6456 case ISD::SETOLE: 6457 case ISD::SETLE: 6458 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6459 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6460 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6461 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6462 } 6463 6464 SDValue Cmp; 6465 switch (CC) { 6466 default: break; // SETUO etc aren't handled by fsel. 6467 case ISD::SETNE: 6468 std::swap(TV, FV); 6469 case ISD::SETEQ: 6470 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6471 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6472 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6473 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6474 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6475 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6476 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6477 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6478 case ISD::SETULT: 6479 case ISD::SETLT: 6480 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6481 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6482 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6483 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6484 case ISD::SETOGE: 6485 case ISD::SETGE: 6486 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6487 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6488 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6489 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6490 case ISD::SETUGT: 6491 case ISD::SETGT: 6492 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6493 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6494 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6495 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6496 case ISD::SETOLE: 6497 case ISD::SETLE: 6498 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6499 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6500 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6501 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6502 } 6503 return Op; 6504 } 6505 6506 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6507 SelectionDAG &DAG, 6508 const SDLoc &dl) const { 6509 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6510 SDValue Src = Op.getOperand(0); 6511 if (Src.getValueType() == MVT::f32) 6512 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6513 6514 SDValue Tmp; 6515 switch (Op.getSimpleValueType().SimpleTy) { 6516 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6517 case MVT::i32: 6518 Tmp = DAG.getNode( 6519 Op.getOpcode() == ISD::FP_TO_SINT 6520 ? PPCISD::FCTIWZ 6521 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6522 dl, MVT::f64, Src); 6523 break; 6524 case MVT::i64: 6525 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6526 "i64 FP_TO_UINT is supported only with FPCVT"); 6527 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6528 PPCISD::FCTIDUZ, 6529 dl, MVT::f64, Src); 6530 break; 6531 } 6532 6533 // Convert the FP value to an int value through memory. 6534 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6535 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6536 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6537 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6538 MachinePointerInfo MPI = 6539 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6540 6541 // Emit a store to the stack slot. 6542 SDValue Chain; 6543 if (i32Stack) { 6544 MachineFunction &MF = DAG.getMachineFunction(); 6545 MachineMemOperand *MMO = 6546 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6547 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6548 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6549 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6550 } else 6551 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 6552 6553 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6554 // add in a bias on big endian. 6555 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6556 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6557 DAG.getConstant(4, dl, FIPtr.getValueType())); 6558 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 6559 } 6560 6561 RLI.Chain = Chain; 6562 RLI.Ptr = FIPtr; 6563 RLI.MPI = MPI; 6564 } 6565 6566 /// \brief Custom lowers floating point to integer conversions to use 6567 /// the direct move instructions available in ISA 2.07 to avoid the 6568 /// need for load/store combinations. 6569 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6570 SelectionDAG &DAG, 6571 const SDLoc &dl) const { 6572 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6573 SDValue Src = Op.getOperand(0); 6574 6575 if (Src.getValueType() == MVT::f32) 6576 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6577 6578 SDValue Tmp; 6579 switch (Op.getSimpleValueType().SimpleTy) { 6580 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6581 case MVT::i32: 6582 Tmp = DAG.getNode( 6583 Op.getOpcode() == ISD::FP_TO_SINT 6584 ? PPCISD::FCTIWZ 6585 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6586 dl, MVT::f64, Src); 6587 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6588 break; 6589 case MVT::i64: 6590 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6591 "i64 FP_TO_UINT is supported only with FPCVT"); 6592 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6593 PPCISD::FCTIDUZ, 6594 dl, MVT::f64, Src); 6595 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6596 break; 6597 } 6598 return Tmp; 6599 } 6600 6601 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6602 const SDLoc &dl) const { 6603 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6604 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6605 6606 ReuseLoadInfo RLI; 6607 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6608 6609 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 6610 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 6611 } 6612 6613 // We're trying to insert a regular store, S, and then a load, L. If the 6614 // incoming value, O, is a load, we might just be able to have our load use the 6615 // address used by O. However, we don't know if anything else will store to 6616 // that address before we can load from it. To prevent this situation, we need 6617 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6618 // the same chain operand as O, we create a token factor from the chain results 6619 // of O and L, and we replace all uses of O's chain result with that token 6620 // factor (see spliceIntoChain below for this last part). 6621 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6622 ReuseLoadInfo &RLI, 6623 SelectionDAG &DAG, 6624 ISD::LoadExtType ET) const { 6625 SDLoc dl(Op); 6626 if (ET == ISD::NON_EXTLOAD && 6627 (Op.getOpcode() == ISD::FP_TO_UINT || 6628 Op.getOpcode() == ISD::FP_TO_SINT) && 6629 isOperationLegalOrCustom(Op.getOpcode(), 6630 Op.getOperand(0).getValueType())) { 6631 6632 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6633 return true; 6634 } 6635 6636 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6637 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6638 LD->isNonTemporal()) 6639 return false; 6640 if (LD->getMemoryVT() != MemVT) 6641 return false; 6642 6643 RLI.Ptr = LD->getBasePtr(); 6644 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 6645 assert(LD->getAddressingMode() == ISD::PRE_INC && 6646 "Non-pre-inc AM on PPC?"); 6647 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6648 LD->getOffset()); 6649 } 6650 6651 RLI.Chain = LD->getChain(); 6652 RLI.MPI = LD->getPointerInfo(); 6653 RLI.IsDereferenceable = LD->isDereferenceable(); 6654 RLI.IsInvariant = LD->isInvariant(); 6655 RLI.Alignment = LD->getAlignment(); 6656 RLI.AAInfo = LD->getAAInfo(); 6657 RLI.Ranges = LD->getRanges(); 6658 6659 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6660 return true; 6661 } 6662 6663 // Given the head of the old chain, ResChain, insert a token factor containing 6664 // it and NewResChain, and make users of ResChain now be users of that token 6665 // factor. 6666 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6667 SDValue NewResChain, 6668 SelectionDAG &DAG) const { 6669 if (!ResChain) 6670 return; 6671 6672 SDLoc dl(NewResChain); 6673 6674 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6675 NewResChain, DAG.getUNDEF(MVT::Other)); 6676 assert(TF.getNode() != NewResChain.getNode() && 6677 "A new TF really is required here"); 6678 6679 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6680 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6681 } 6682 6683 /// \brief Analyze profitability of direct move 6684 /// prefer float load to int load plus direct move 6685 /// when there is no integer use of int load 6686 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 6687 SDNode *Origin = Op.getOperand(0).getNode(); 6688 if (Origin->getOpcode() != ISD::LOAD) 6689 return true; 6690 6691 // If there is no LXSIBZX/LXSIHZX, like Power8, 6692 // prefer direct move if the memory size is 1 or 2 bytes. 6693 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 6694 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 6695 return true; 6696 6697 for (SDNode::use_iterator UI = Origin->use_begin(), 6698 UE = Origin->use_end(); 6699 UI != UE; ++UI) { 6700 6701 // Only look at the users of the loaded value. 6702 if (UI.getUse().get().getResNo() != 0) 6703 continue; 6704 6705 if (UI->getOpcode() != ISD::SINT_TO_FP && 6706 UI->getOpcode() != ISD::UINT_TO_FP) 6707 return true; 6708 } 6709 6710 return false; 6711 } 6712 6713 /// \brief Custom lowers integer to floating point conversions to use 6714 /// the direct move instructions available in ISA 2.07 to avoid the 6715 /// need for load/store combinations. 6716 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6717 SelectionDAG &DAG, 6718 const SDLoc &dl) const { 6719 assert((Op.getValueType() == MVT::f32 || 6720 Op.getValueType() == MVT::f64) && 6721 "Invalid floating point type as target of conversion"); 6722 assert(Subtarget.hasFPCVT() && 6723 "Int to FP conversions with direct moves require FPCVT"); 6724 SDValue FP; 6725 SDValue Src = Op.getOperand(0); 6726 bool SinglePrec = Op.getValueType() == MVT::f32; 6727 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6728 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6729 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6730 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6731 6732 if (WordInt) { 6733 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6734 dl, MVT::f64, Src); 6735 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6736 } 6737 else { 6738 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6739 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6740 } 6741 6742 return FP; 6743 } 6744 6745 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6746 SelectionDAG &DAG) const { 6747 SDLoc dl(Op); 6748 6749 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6750 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6751 return SDValue(); 6752 6753 SDValue Value = Op.getOperand(0); 6754 // The values are now known to be -1 (false) or 1 (true). To convert this 6755 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6756 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6757 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6758 6759 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 6760 6761 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6762 6763 if (Op.getValueType() != MVT::v4f64) 6764 Value = DAG.getNode(ISD::FP_ROUND, dl, 6765 Op.getValueType(), Value, 6766 DAG.getIntPtrConstant(1, dl)); 6767 return Value; 6768 } 6769 6770 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6771 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6772 return SDValue(); 6773 6774 if (Op.getOperand(0).getValueType() == MVT::i1) 6775 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6776 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6777 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6778 6779 // If we have direct moves, we can do all the conversion, skip the store/load 6780 // however, without FPCVT we can't do most conversions. 6781 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 6782 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6783 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6784 6785 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6786 "UINT_TO_FP is supported only with FPCVT"); 6787 6788 // If we have FCFIDS, then use it when converting to single-precision. 6789 // Otherwise, convert to double-precision and then round. 6790 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6791 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6792 : PPCISD::FCFIDS) 6793 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6794 : PPCISD::FCFID); 6795 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6796 ? MVT::f32 6797 : MVT::f64; 6798 6799 if (Op.getOperand(0).getValueType() == MVT::i64) { 6800 SDValue SINT = Op.getOperand(0); 6801 // When converting to single-precision, we actually need to convert 6802 // to double-precision first and then round to single-precision. 6803 // To avoid double-rounding effects during that operation, we have 6804 // to prepare the input operand. Bits that might be truncated when 6805 // converting to double-precision are replaced by a bit that won't 6806 // be lost at this stage, but is below the single-precision rounding 6807 // position. 6808 // 6809 // However, if -enable-unsafe-fp-math is in effect, accept double 6810 // rounding to avoid the extra overhead. 6811 if (Op.getValueType() == MVT::f32 && 6812 !Subtarget.hasFPCVT() && 6813 !DAG.getTarget().Options.UnsafeFPMath) { 6814 6815 // Twiddle input to make sure the low 11 bits are zero. (If this 6816 // is the case, we are guaranteed the value will fit into the 53 bit 6817 // mantissa of an IEEE double-precision value without rounding.) 6818 // If any of those low 11 bits were not zero originally, make sure 6819 // bit 12 (value 2048) is set instead, so that the final rounding 6820 // to single-precision gets the correct result. 6821 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6822 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6823 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6824 Round, DAG.getConstant(2047, dl, MVT::i64)); 6825 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6826 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6827 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6828 6829 // However, we cannot use that value unconditionally: if the magnitude 6830 // of the input value is small, the bit-twiddling we did above might 6831 // end up visibly changing the output. Fortunately, in that case, we 6832 // don't need to twiddle bits since the original input will convert 6833 // exactly to double-precision floating-point already. Therefore, 6834 // construct a conditional to use the original value if the top 11 6835 // bits are all sign-bit copies, and use the rounded value computed 6836 // above otherwise. 6837 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6838 SINT, DAG.getConstant(53, dl, MVT::i32)); 6839 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6840 Cond, DAG.getConstant(1, dl, MVT::i64)); 6841 Cond = DAG.getSetCC(dl, MVT::i32, 6842 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6843 6844 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6845 } 6846 6847 ReuseLoadInfo RLI; 6848 SDValue Bits; 6849 6850 MachineFunction &MF = DAG.getMachineFunction(); 6851 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6852 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 6853 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 6854 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6855 } else if (Subtarget.hasLFIWAX() && 6856 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6857 MachineMemOperand *MMO = 6858 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6859 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6860 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6861 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6862 DAG.getVTList(MVT::f64, MVT::Other), 6863 Ops, MVT::i32, MMO); 6864 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6865 } else if (Subtarget.hasFPCVT() && 6866 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6867 MachineMemOperand *MMO = 6868 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6869 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6870 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6871 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6872 DAG.getVTList(MVT::f64, MVT::Other), 6873 Ops, MVT::i32, MMO); 6874 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6875 } else if (((Subtarget.hasLFIWAX() && 6876 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6877 (Subtarget.hasFPCVT() && 6878 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6879 SINT.getOperand(0).getValueType() == MVT::i32) { 6880 MachineFrameInfo &MFI = MF.getFrameInfo(); 6881 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6882 6883 int FrameIdx = MFI.CreateStackObject(4, 4, false); 6884 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6885 6886 SDValue Store = 6887 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6888 MachinePointerInfo::getFixedStack( 6889 DAG.getMachineFunction(), FrameIdx)); 6890 6891 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6892 "Expected an i32 store"); 6893 6894 RLI.Ptr = FIdx; 6895 RLI.Chain = Store; 6896 RLI.MPI = 6897 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6898 RLI.Alignment = 4; 6899 6900 MachineMemOperand *MMO = 6901 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6902 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6903 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6904 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6905 PPCISD::LFIWZX : PPCISD::LFIWAX, 6906 dl, DAG.getVTList(MVT::f64, MVT::Other), 6907 Ops, MVT::i32, MMO); 6908 } else 6909 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6910 6911 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6912 6913 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6914 FP = DAG.getNode(ISD::FP_ROUND, dl, 6915 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6916 return FP; 6917 } 6918 6919 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6920 "Unhandled INT_TO_FP type in custom expander!"); 6921 // Since we only generate this in 64-bit mode, we can take advantage of 6922 // 64-bit registers. In particular, sign extend the input value into the 6923 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6924 // then lfd it and fcfid it. 6925 MachineFunction &MF = DAG.getMachineFunction(); 6926 MachineFrameInfo &MFI = MF.getFrameInfo(); 6927 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6928 6929 SDValue Ld; 6930 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6931 ReuseLoadInfo RLI; 6932 bool ReusingLoad; 6933 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6934 DAG))) { 6935 int FrameIdx = MFI.CreateStackObject(4, 4, false); 6936 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6937 6938 SDValue Store = 6939 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6940 MachinePointerInfo::getFixedStack( 6941 DAG.getMachineFunction(), FrameIdx)); 6942 6943 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6944 "Expected an i32 store"); 6945 6946 RLI.Ptr = FIdx; 6947 RLI.Chain = Store; 6948 RLI.MPI = 6949 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6950 RLI.Alignment = 4; 6951 } 6952 6953 MachineMemOperand *MMO = 6954 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6955 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6956 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6957 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6958 PPCISD::LFIWZX : PPCISD::LFIWAX, 6959 dl, DAG.getVTList(MVT::f64, MVT::Other), 6960 Ops, MVT::i32, MMO); 6961 if (ReusingLoad) 6962 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6963 } else { 6964 assert(Subtarget.isPPC64() && 6965 "i32->FP without LFIWAX supported only on PPC64"); 6966 6967 int FrameIdx = MFI.CreateStackObject(8, 8, false); 6968 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6969 6970 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6971 Op.getOperand(0)); 6972 6973 // STD the extended value into the stack slot. 6974 SDValue Store = DAG.getStore( 6975 DAG.getEntryNode(), dl, Ext64, FIdx, 6976 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 6977 6978 // Load the value as a double. 6979 Ld = DAG.getLoad( 6980 MVT::f64, dl, Store, FIdx, 6981 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 6982 } 6983 6984 // FCFID it and return it. 6985 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6986 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6987 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6988 DAG.getIntPtrConstant(0, dl)); 6989 return FP; 6990 } 6991 6992 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6993 SelectionDAG &DAG) const { 6994 SDLoc dl(Op); 6995 /* 6996 The rounding mode is in bits 30:31 of FPSR, and has the following 6997 settings: 6998 00 Round to nearest 6999 01 Round to 0 7000 10 Round to +inf 7001 11 Round to -inf 7002 7003 FLT_ROUNDS, on the other hand, expects the following: 7004 -1 Undefined 7005 0 Round to 0 7006 1 Round to nearest 7007 2 Round to +inf 7008 3 Round to -inf 7009 7010 To perform the conversion, we do: 7011 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7012 */ 7013 7014 MachineFunction &MF = DAG.getMachineFunction(); 7015 EVT VT = Op.getValueType(); 7016 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7017 7018 // Save FP Control Word to register 7019 EVT NodeTys[] = { 7020 MVT::f64, // return register 7021 MVT::Glue // unused in this context 7022 }; 7023 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7024 7025 // Save FP register to stack slot 7026 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7027 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7028 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7029 MachinePointerInfo()); 7030 7031 // Load FP Control Word from low 32 bits of stack slot. 7032 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7033 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7034 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7035 7036 // Transform as necessary 7037 SDValue CWD1 = 7038 DAG.getNode(ISD::AND, dl, MVT::i32, 7039 CWD, DAG.getConstant(3, dl, MVT::i32)); 7040 SDValue CWD2 = 7041 DAG.getNode(ISD::SRL, dl, MVT::i32, 7042 DAG.getNode(ISD::AND, dl, MVT::i32, 7043 DAG.getNode(ISD::XOR, dl, MVT::i32, 7044 CWD, DAG.getConstant(3, dl, MVT::i32)), 7045 DAG.getConstant(3, dl, MVT::i32)), 7046 DAG.getConstant(1, dl, MVT::i32)); 7047 7048 SDValue RetVal = 7049 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7050 7051 return DAG.getNode((VT.getSizeInBits() < 16 ? 7052 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7053 } 7054 7055 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7056 EVT VT = Op.getValueType(); 7057 unsigned BitWidth = VT.getSizeInBits(); 7058 SDLoc dl(Op); 7059 assert(Op.getNumOperands() == 3 && 7060 VT == Op.getOperand(1).getValueType() && 7061 "Unexpected SHL!"); 7062 7063 // Expand into a bunch of logical ops. Note that these ops 7064 // depend on the PPC behavior for oversized shift amounts. 7065 SDValue Lo = Op.getOperand(0); 7066 SDValue Hi = Op.getOperand(1); 7067 SDValue Amt = Op.getOperand(2); 7068 EVT AmtVT = Amt.getValueType(); 7069 7070 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7071 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7072 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7073 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7074 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7075 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7076 DAG.getConstant(-BitWidth, dl, AmtVT)); 7077 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7078 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7079 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7080 SDValue OutOps[] = { OutLo, OutHi }; 7081 return DAG.getMergeValues(OutOps, dl); 7082 } 7083 7084 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7085 EVT VT = Op.getValueType(); 7086 SDLoc dl(Op); 7087 unsigned BitWidth = VT.getSizeInBits(); 7088 assert(Op.getNumOperands() == 3 && 7089 VT == Op.getOperand(1).getValueType() && 7090 "Unexpected SRL!"); 7091 7092 // Expand into a bunch of logical ops. Note that these ops 7093 // depend on the PPC behavior for oversized shift amounts. 7094 SDValue Lo = Op.getOperand(0); 7095 SDValue Hi = Op.getOperand(1); 7096 SDValue Amt = Op.getOperand(2); 7097 EVT AmtVT = Amt.getValueType(); 7098 7099 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7100 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7101 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7102 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7103 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7104 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7105 DAG.getConstant(-BitWidth, dl, AmtVT)); 7106 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 7107 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7108 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 7109 SDValue OutOps[] = { OutLo, OutHi }; 7110 return DAG.getMergeValues(OutOps, dl); 7111 } 7112 7113 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 7114 SDLoc dl(Op); 7115 EVT VT = Op.getValueType(); 7116 unsigned BitWidth = VT.getSizeInBits(); 7117 assert(Op.getNumOperands() == 3 && 7118 VT == Op.getOperand(1).getValueType() && 7119 "Unexpected SRA!"); 7120 7121 // Expand into a bunch of logical ops, followed by a select_cc. 7122 SDValue Lo = Op.getOperand(0); 7123 SDValue Hi = Op.getOperand(1); 7124 SDValue Amt = Op.getOperand(2); 7125 EVT AmtVT = Amt.getValueType(); 7126 7127 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7128 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7129 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7130 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7131 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7132 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7133 DAG.getConstant(-BitWidth, dl, AmtVT)); 7134 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7135 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7136 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7137 Tmp4, Tmp6, ISD::SETLE); 7138 SDValue OutOps[] = { OutLo, OutHi }; 7139 return DAG.getMergeValues(OutOps, dl); 7140 } 7141 7142 //===----------------------------------------------------------------------===// 7143 // Vector related lowering. 7144 // 7145 7146 /// BuildSplatI - Build a canonical splati of Val with an element size of 7147 /// SplatSize. Cast the result to VT. 7148 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 7149 SelectionDAG &DAG, const SDLoc &dl) { 7150 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 7151 7152 static const MVT VTys[] = { // canonical VT to use for each size. 7153 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 7154 }; 7155 7156 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7157 7158 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7159 if (Val == -1) 7160 SplatSize = 1; 7161 7162 EVT CanonicalVT = VTys[SplatSize-1]; 7163 7164 // Build a canonical splat for this value. 7165 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7166 } 7167 7168 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7169 /// specified intrinsic ID. 7170 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 7171 const SDLoc &dl, EVT DestVT = MVT::Other) { 7172 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7173 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7174 DAG.getConstant(IID, dl, MVT::i32), Op); 7175 } 7176 7177 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7178 /// specified intrinsic ID. 7179 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7180 SelectionDAG &DAG, const SDLoc &dl, 7181 EVT DestVT = MVT::Other) { 7182 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7183 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7184 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7185 } 7186 7187 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7188 /// specified intrinsic ID. 7189 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7190 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 7191 EVT DestVT = MVT::Other) { 7192 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7193 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7194 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7195 } 7196 7197 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7198 /// amount. The result has the specified value type. 7199 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7200 SelectionDAG &DAG, const SDLoc &dl) { 7201 // Force LHS/RHS to be the right type. 7202 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7203 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7204 7205 int Ops[16]; 7206 for (unsigned i = 0; i != 16; ++i) 7207 Ops[i] = i + Amt; 7208 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7209 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7210 } 7211 7212 /// Do we have an efficient pattern in a .td file for this node? 7213 /// 7214 /// \param V - pointer to the BuildVectorSDNode being matched 7215 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 7216 /// 7217 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 7218 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 7219 /// the opposite is true (expansion is beneficial) are: 7220 /// - The node builds a vector out of integers that are not 32 or 64-bits 7221 /// - The node builds a vector out of constants 7222 /// - The node is a "load-and-splat" 7223 /// In all other cases, we will choose to keep the BUILD_VECTOR. 7224 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 7225 bool HasDirectMove) { 7226 EVT VecVT = V->getValueType(0); 7227 bool RightType = VecVT == MVT::v2f64 || VecVT == MVT::v4f32 || 7228 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 7229 if (!RightType) 7230 return false; 7231 7232 bool IsSplat = true; 7233 bool IsLoad = false; 7234 SDValue Op0 = V->getOperand(0); 7235 7236 // This function is called in a block that confirms the node is not a constant 7237 // splat. So a constant BUILD_VECTOR here means the vector is built out of 7238 // different constants. 7239 if (V->isConstant()) 7240 return false; 7241 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 7242 if (V->getOperand(i).isUndef()) 7243 return false; 7244 // We want to expand nodes that represent load-and-splat even if the 7245 // loaded value is a floating point truncation or conversion to int. 7246 if (V->getOperand(i).getOpcode() == ISD::LOAD || 7247 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 7248 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7249 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 7250 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7251 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 7252 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 7253 IsLoad = true; 7254 // If the operands are different or the input is not a load and has more 7255 // uses than just this BV node, then it isn't a splat. 7256 if (V->getOperand(i) != Op0 || 7257 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 7258 IsSplat = false; 7259 } 7260 return !(IsSplat && IsLoad); 7261 } 7262 7263 // If this is a case we can't handle, return null and let the default 7264 // expansion code take care of it. If we CAN select this case, and if it 7265 // selects to a single instruction, return Op. Otherwise, if we can codegen 7266 // this case more efficiently than a constant pool load, lower it to the 7267 // sequence of ops that should be used. 7268 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7269 SelectionDAG &DAG) const { 7270 SDLoc dl(Op); 7271 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7272 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7273 7274 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7275 // We first build an i32 vector, load it into a QPX register, 7276 // then convert it to a floating-point vector and compare it 7277 // to a zero vector to get the boolean result. 7278 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7279 int FrameIdx = MFI.CreateStackObject(16, 16, false); 7280 MachinePointerInfo PtrInfo = 7281 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7282 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7283 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7284 7285 assert(BVN->getNumOperands() == 4 && 7286 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7287 7288 bool IsConst = true; 7289 for (unsigned i = 0; i < 4; ++i) { 7290 if (BVN->getOperand(i).isUndef()) continue; 7291 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7292 IsConst = false; 7293 break; 7294 } 7295 } 7296 7297 if (IsConst) { 7298 Constant *One = 7299 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7300 Constant *NegOne = 7301 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7302 7303 Constant *CV[4]; 7304 for (unsigned i = 0; i < 4; ++i) { 7305 if (BVN->getOperand(i).isUndef()) 7306 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7307 else if (isNullConstant(BVN->getOperand(i))) 7308 CV[i] = NegOne; 7309 else 7310 CV[i] = One; 7311 } 7312 7313 Constant *CP = ConstantVector::get(CV); 7314 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7315 16 /* alignment */); 7316 7317 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7318 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7319 return DAG.getMemIntrinsicNode( 7320 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7321 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7322 } 7323 7324 SmallVector<SDValue, 4> Stores; 7325 for (unsigned i = 0; i < 4; ++i) { 7326 if (BVN->getOperand(i).isUndef()) continue; 7327 7328 unsigned Offset = 4*i; 7329 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7330 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7331 7332 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7333 if (StoreSize > 4) { 7334 Stores.push_back( 7335 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 7336 PtrInfo.getWithOffset(Offset), MVT::i32)); 7337 } else { 7338 SDValue StoreValue = BVN->getOperand(i); 7339 if (StoreSize < 4) 7340 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7341 7342 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 7343 PtrInfo.getWithOffset(Offset))); 7344 } 7345 } 7346 7347 SDValue StoreChain; 7348 if (!Stores.empty()) 7349 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7350 else 7351 StoreChain = DAG.getEntryNode(); 7352 7353 // Now load from v4i32 into the QPX register; this will extend it to 7354 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7355 // is typed as v4f64 because the QPX register integer states are not 7356 // explicitly represented. 7357 7358 SDValue Ops[] = {StoreChain, 7359 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 7360 FIdx}; 7361 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 7362 7363 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 7364 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7365 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7366 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 7367 LoadedVect); 7368 7369 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 7370 7371 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 7372 } 7373 7374 // All other QPX vectors are handled by generic code. 7375 if (Subtarget.hasQPX()) 7376 return SDValue(); 7377 7378 // Check if this is a splat of a constant value. 7379 APInt APSplatBits, APSplatUndef; 7380 unsigned SplatBitSize; 7381 bool HasAnyUndefs; 7382 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 7383 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 7384 SplatBitSize > 32) { 7385 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 7386 // lowered to VSX instructions under certain conditions. 7387 // Without VSX, there is no pattern more efficient than expanding the node. 7388 if (Subtarget.hasVSX() && 7389 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove())) 7390 return Op; 7391 return SDValue(); 7392 } 7393 7394 unsigned SplatBits = APSplatBits.getZExtValue(); 7395 unsigned SplatUndef = APSplatUndef.getZExtValue(); 7396 unsigned SplatSize = SplatBitSize / 8; 7397 7398 // First, handle single instruction cases. 7399 7400 // All zeros? 7401 if (SplatBits == 0) { 7402 // Canonicalize all zero vectors to be v4i32. 7403 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 7404 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 7405 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 7406 } 7407 return Op; 7408 } 7409 7410 // We have XXSPLTIB for constant splats one byte wide 7411 if (Subtarget.hasP9Vector() && SplatSize == 1) { 7412 // This is a splat of 1-byte elements with some elements potentially undef. 7413 // Rather than trying to match undef in the SDAG patterns, ensure that all 7414 // elements are the same constant. 7415 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 7416 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 7417 dl, MVT::i32)); 7418 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 7419 if (Op.getValueType() != MVT::v16i8) 7420 return DAG.getBitcast(Op.getValueType(), NewBV); 7421 return NewBV; 7422 } 7423 return Op; 7424 } 7425 7426 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 7427 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 7428 (32-SplatBitSize)); 7429 if (SextVal >= -16 && SextVal <= 15) 7430 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 7431 7432 // Two instruction sequences. 7433 7434 // If this value is in the range [-32,30] and is even, use: 7435 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 7436 // If this value is in the range [17,31] and is odd, use: 7437 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 7438 // If this value is in the range [-31,-17] and is odd, use: 7439 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 7440 // Note the last two are three-instruction sequences. 7441 if (SextVal >= -32 && SextVal <= 31) { 7442 // To avoid having these optimizations undone by constant folding, 7443 // we convert to a pseudo that will be expanded later into one of 7444 // the above forms. 7445 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 7446 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 7447 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 7448 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 7449 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 7450 if (VT == Op.getValueType()) 7451 return RetVal; 7452 else 7453 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 7454 } 7455 7456 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 7457 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 7458 // for fneg/fabs. 7459 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 7460 // Make -1 and vspltisw -1: 7461 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 7462 7463 // Make the VSLW intrinsic, computing 0x8000_0000. 7464 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 7465 OnesV, DAG, dl); 7466 7467 // xor by OnesV to invert it. 7468 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 7469 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7470 } 7471 7472 // Check to see if this is a wide variety of vsplti*, binop self cases. 7473 static const signed char SplatCsts[] = { 7474 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 7475 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 7476 }; 7477 7478 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 7479 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 7480 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 7481 int i = SplatCsts[idx]; 7482 7483 // Figure out what shift amount will be used by altivec if shifted by i in 7484 // this splat size. 7485 unsigned TypeShiftAmt = i & (SplatBitSize-1); 7486 7487 // vsplti + shl self. 7488 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7489 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7490 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7491 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7492 Intrinsic::ppc_altivec_vslw 7493 }; 7494 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7495 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7496 } 7497 7498 // vsplti + srl self. 7499 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7500 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7501 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7502 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7503 Intrinsic::ppc_altivec_vsrw 7504 }; 7505 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7506 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7507 } 7508 7509 // vsplti + sra self. 7510 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7511 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7512 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7513 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7514 Intrinsic::ppc_altivec_vsraw 7515 }; 7516 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7517 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7518 } 7519 7520 // vsplti + rol self. 7521 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7522 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7523 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7524 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7525 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7526 Intrinsic::ppc_altivec_vrlw 7527 }; 7528 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7529 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7530 } 7531 7532 // t = vsplti c, result = vsldoi t, t, 1 7533 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7534 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7535 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7536 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7537 } 7538 // t = vsplti c, result = vsldoi t, t, 2 7539 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7540 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7541 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7542 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7543 } 7544 // t = vsplti c, result = vsldoi t, t, 3 7545 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7546 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7547 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7548 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7549 } 7550 } 7551 7552 return SDValue(); 7553 } 7554 7555 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7556 /// the specified operations to build the shuffle. 7557 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7558 SDValue RHS, SelectionDAG &DAG, 7559 const SDLoc &dl) { 7560 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7561 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7562 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7563 7564 enum { 7565 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7566 OP_VMRGHW, 7567 OP_VMRGLW, 7568 OP_VSPLTISW0, 7569 OP_VSPLTISW1, 7570 OP_VSPLTISW2, 7571 OP_VSPLTISW3, 7572 OP_VSLDOI4, 7573 OP_VSLDOI8, 7574 OP_VSLDOI12 7575 }; 7576 7577 if (OpNum == OP_COPY) { 7578 if (LHSID == (1*9+2)*9+3) return LHS; 7579 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7580 return RHS; 7581 } 7582 7583 SDValue OpLHS, OpRHS; 7584 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7585 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7586 7587 int ShufIdxs[16]; 7588 switch (OpNum) { 7589 default: llvm_unreachable("Unknown i32 permute!"); 7590 case OP_VMRGHW: 7591 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7592 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7593 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7594 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7595 break; 7596 case OP_VMRGLW: 7597 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7598 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7599 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7600 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7601 break; 7602 case OP_VSPLTISW0: 7603 for (unsigned i = 0; i != 16; ++i) 7604 ShufIdxs[i] = (i&3)+0; 7605 break; 7606 case OP_VSPLTISW1: 7607 for (unsigned i = 0; i != 16; ++i) 7608 ShufIdxs[i] = (i&3)+4; 7609 break; 7610 case OP_VSPLTISW2: 7611 for (unsigned i = 0; i != 16; ++i) 7612 ShufIdxs[i] = (i&3)+8; 7613 break; 7614 case OP_VSPLTISW3: 7615 for (unsigned i = 0; i != 16; ++i) 7616 ShufIdxs[i] = (i&3)+12; 7617 break; 7618 case OP_VSLDOI4: 7619 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7620 case OP_VSLDOI8: 7621 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7622 case OP_VSLDOI12: 7623 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7624 } 7625 EVT VT = OpLHS.getValueType(); 7626 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7627 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7628 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7629 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7630 } 7631 7632 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7633 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7634 /// return the code it can be lowered into. Worst case, it can always be 7635 /// lowered into a vperm. 7636 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7637 SelectionDAG &DAG) const { 7638 SDLoc dl(Op); 7639 SDValue V1 = Op.getOperand(0); 7640 SDValue V2 = Op.getOperand(1); 7641 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7642 EVT VT = Op.getValueType(); 7643 bool isLittleEndian = Subtarget.isLittleEndian(); 7644 7645 unsigned ShiftElts, InsertAtByte; 7646 bool Swap; 7647 if (Subtarget.hasP9Vector() && 7648 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 7649 isLittleEndian)) { 7650 if (Swap) 7651 std::swap(V1, V2); 7652 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7653 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 7654 if (ShiftElts) { 7655 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 7656 DAG.getConstant(ShiftElts, dl, MVT::i32)); 7657 SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Shl, 7658 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 7659 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 7660 } 7661 SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Conv2, 7662 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 7663 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 7664 } 7665 7666 if (Subtarget.hasVSX()) { 7667 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 7668 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 7669 7670 // If the source for the shuffle is a scalar_to_vector that came from a 7671 // 32-bit load, it will have used LXVWSX so we don't need to splat again. 7672 if (Subtarget.hasP9Vector() && 7673 ((isLittleEndian && SplatIdx == 3) || 7674 (!isLittleEndian && SplatIdx == 0))) { 7675 SDValue Src = V1.getOperand(0); 7676 if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR && 7677 Src.getOperand(0).getOpcode() == ISD::LOAD && 7678 Src.getOperand(0).hasOneUse()) 7679 return V1; 7680 } 7681 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7682 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 7683 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7684 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 7685 } 7686 7687 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 7688 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 7689 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 7690 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 7691 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 7692 } 7693 } 7694 7695 if (Subtarget.hasQPX()) { 7696 if (VT.getVectorNumElements() != 4) 7697 return SDValue(); 7698 7699 if (V2.isUndef()) V2 = V1; 7700 7701 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7702 if (AlignIdx != -1) { 7703 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7704 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7705 } else if (SVOp->isSplat()) { 7706 int SplatIdx = SVOp->getSplatIndex(); 7707 if (SplatIdx >= 4) { 7708 std::swap(V1, V2); 7709 SplatIdx -= 4; 7710 } 7711 7712 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7713 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7714 } 7715 7716 // Lower this into a qvgpci/qvfperm pair. 7717 7718 // Compute the qvgpci literal 7719 unsigned idx = 0; 7720 for (unsigned i = 0; i < 4; ++i) { 7721 int m = SVOp->getMaskElt(i); 7722 unsigned mm = m >= 0 ? (unsigned) m : i; 7723 idx |= mm << (3-i)*3; 7724 } 7725 7726 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7727 DAG.getConstant(idx, dl, MVT::i32)); 7728 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7729 } 7730 7731 // Cases that are handled by instructions that take permute immediates 7732 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7733 // selected by the instruction selector. 7734 if (V2.isUndef()) { 7735 if (PPC::isSplatShuffleMask(SVOp, 1) || 7736 PPC::isSplatShuffleMask(SVOp, 2) || 7737 PPC::isSplatShuffleMask(SVOp, 4) || 7738 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7739 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7740 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7741 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7742 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7743 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7744 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7745 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7746 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7747 (Subtarget.hasP8Altivec() && ( 7748 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7749 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7750 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7751 return Op; 7752 } 7753 } 7754 7755 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7756 // and produce a fixed permutation. If any of these match, do not lower to 7757 // VPERM. 7758 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7759 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7760 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7761 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7762 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7763 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7764 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7765 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7766 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7767 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7768 (Subtarget.hasP8Altivec() && ( 7769 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7770 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7771 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7772 return Op; 7773 7774 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7775 // perfect shuffle table to emit an optimal matching sequence. 7776 ArrayRef<int> PermMask = SVOp->getMask(); 7777 7778 unsigned PFIndexes[4]; 7779 bool isFourElementShuffle = true; 7780 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7781 unsigned EltNo = 8; // Start out undef. 7782 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7783 if (PermMask[i*4+j] < 0) 7784 continue; // Undef, ignore it. 7785 7786 unsigned ByteSource = PermMask[i*4+j]; 7787 if ((ByteSource & 3) != j) { 7788 isFourElementShuffle = false; 7789 break; 7790 } 7791 7792 if (EltNo == 8) { 7793 EltNo = ByteSource/4; 7794 } else if (EltNo != ByteSource/4) { 7795 isFourElementShuffle = false; 7796 break; 7797 } 7798 } 7799 PFIndexes[i] = EltNo; 7800 } 7801 7802 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7803 // perfect shuffle vector to determine if it is cost effective to do this as 7804 // discrete instructions, or whether we should use a vperm. 7805 // For now, we skip this for little endian until such time as we have a 7806 // little-endian perfect shuffle table. 7807 if (isFourElementShuffle && !isLittleEndian) { 7808 // Compute the index in the perfect shuffle table. 7809 unsigned PFTableIndex = 7810 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7811 7812 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7813 unsigned Cost = (PFEntry >> 30); 7814 7815 // Determining when to avoid vperm is tricky. Many things affect the cost 7816 // of vperm, particularly how many times the perm mask needs to be computed. 7817 // For example, if the perm mask can be hoisted out of a loop or is already 7818 // used (perhaps because there are multiple permutes with the same shuffle 7819 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7820 // the loop requires an extra register. 7821 // 7822 // As a compromise, we only emit discrete instructions if the shuffle can be 7823 // generated in 3 or fewer operations. When we have loop information 7824 // available, if this block is within a loop, we should avoid using vperm 7825 // for 3-operation perms and use a constant pool load instead. 7826 if (Cost < 3) 7827 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7828 } 7829 7830 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7831 // vector that will get spilled to the constant pool. 7832 if (V2.isUndef()) V2 = V1; 7833 7834 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7835 // that it is in input element units, not in bytes. Convert now. 7836 7837 // For little endian, the order of the input vectors is reversed, and 7838 // the permutation mask is complemented with respect to 31. This is 7839 // necessary to produce proper semantics with the big-endian-biased vperm 7840 // instruction. 7841 EVT EltVT = V1.getValueType().getVectorElementType(); 7842 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7843 7844 SmallVector<SDValue, 16> ResultMask; 7845 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7846 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7847 7848 for (unsigned j = 0; j != BytesPerElement; ++j) 7849 if (isLittleEndian) 7850 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7851 dl, MVT::i32)); 7852 else 7853 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7854 MVT::i32)); 7855 } 7856 7857 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 7858 if (isLittleEndian) 7859 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7860 V2, V1, VPermMask); 7861 else 7862 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7863 V1, V2, VPermMask); 7864 } 7865 7866 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7867 /// vector comparison. If it is, return true and fill in Opc/isDot with 7868 /// information about the intrinsic. 7869 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7870 bool &isDot, const PPCSubtarget &Subtarget) { 7871 unsigned IntrinsicID = 7872 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7873 CompareOpc = -1; 7874 isDot = false; 7875 switch (IntrinsicID) { 7876 default: 7877 return false; 7878 // Comparison predicates. 7879 case Intrinsic::ppc_altivec_vcmpbfp_p: 7880 CompareOpc = 966; 7881 isDot = true; 7882 break; 7883 case Intrinsic::ppc_altivec_vcmpeqfp_p: 7884 CompareOpc = 198; 7885 isDot = true; 7886 break; 7887 case Intrinsic::ppc_altivec_vcmpequb_p: 7888 CompareOpc = 6; 7889 isDot = true; 7890 break; 7891 case Intrinsic::ppc_altivec_vcmpequh_p: 7892 CompareOpc = 70; 7893 isDot = true; 7894 break; 7895 case Intrinsic::ppc_altivec_vcmpequw_p: 7896 CompareOpc = 134; 7897 isDot = true; 7898 break; 7899 case Intrinsic::ppc_altivec_vcmpequd_p: 7900 if (Subtarget.hasP8Altivec()) { 7901 CompareOpc = 199; 7902 isDot = true; 7903 } else 7904 return false; 7905 break; 7906 case Intrinsic::ppc_altivec_vcmpneb_p: 7907 case Intrinsic::ppc_altivec_vcmpneh_p: 7908 case Intrinsic::ppc_altivec_vcmpnew_p: 7909 case Intrinsic::ppc_altivec_vcmpnezb_p: 7910 case Intrinsic::ppc_altivec_vcmpnezh_p: 7911 case Intrinsic::ppc_altivec_vcmpnezw_p: 7912 if (Subtarget.hasP9Altivec()) { 7913 switch (IntrinsicID) { 7914 default: 7915 llvm_unreachable("Unknown comparison intrinsic."); 7916 case Intrinsic::ppc_altivec_vcmpneb_p: 7917 CompareOpc = 7; 7918 break; 7919 case Intrinsic::ppc_altivec_vcmpneh_p: 7920 CompareOpc = 71; 7921 break; 7922 case Intrinsic::ppc_altivec_vcmpnew_p: 7923 CompareOpc = 135; 7924 break; 7925 case Intrinsic::ppc_altivec_vcmpnezb_p: 7926 CompareOpc = 263; 7927 break; 7928 case Intrinsic::ppc_altivec_vcmpnezh_p: 7929 CompareOpc = 327; 7930 break; 7931 case Intrinsic::ppc_altivec_vcmpnezw_p: 7932 CompareOpc = 391; 7933 break; 7934 } 7935 isDot = true; 7936 } else 7937 return false; 7938 break; 7939 case Intrinsic::ppc_altivec_vcmpgefp_p: 7940 CompareOpc = 454; 7941 isDot = true; 7942 break; 7943 case Intrinsic::ppc_altivec_vcmpgtfp_p: 7944 CompareOpc = 710; 7945 isDot = true; 7946 break; 7947 case Intrinsic::ppc_altivec_vcmpgtsb_p: 7948 CompareOpc = 774; 7949 isDot = true; 7950 break; 7951 case Intrinsic::ppc_altivec_vcmpgtsh_p: 7952 CompareOpc = 838; 7953 isDot = true; 7954 break; 7955 case Intrinsic::ppc_altivec_vcmpgtsw_p: 7956 CompareOpc = 902; 7957 isDot = true; 7958 break; 7959 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7960 if (Subtarget.hasP8Altivec()) { 7961 CompareOpc = 967; 7962 isDot = true; 7963 } else 7964 return false; 7965 break; 7966 case Intrinsic::ppc_altivec_vcmpgtub_p: 7967 CompareOpc = 518; 7968 isDot = true; 7969 break; 7970 case Intrinsic::ppc_altivec_vcmpgtuh_p: 7971 CompareOpc = 582; 7972 isDot = true; 7973 break; 7974 case Intrinsic::ppc_altivec_vcmpgtuw_p: 7975 CompareOpc = 646; 7976 isDot = true; 7977 break; 7978 case Intrinsic::ppc_altivec_vcmpgtud_p: 7979 if (Subtarget.hasP8Altivec()) { 7980 CompareOpc = 711; 7981 isDot = true; 7982 } else 7983 return false; 7984 break; 7985 7986 // VSX predicate comparisons use the same infrastructure 7987 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7988 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7989 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7990 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7991 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7992 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7993 if (Subtarget.hasVSX()) { 7994 switch (IntrinsicID) { 7995 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7996 CompareOpc = 99; 7997 break; 7998 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7999 CompareOpc = 115; 8000 break; 8001 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8002 CompareOpc = 107; 8003 break; 8004 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8005 CompareOpc = 67; 8006 break; 8007 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8008 CompareOpc = 83; 8009 break; 8010 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8011 CompareOpc = 75; 8012 break; 8013 } 8014 isDot = true; 8015 } else 8016 return false; 8017 break; 8018 8019 // Normal Comparisons. 8020 case Intrinsic::ppc_altivec_vcmpbfp: 8021 CompareOpc = 966; 8022 break; 8023 case Intrinsic::ppc_altivec_vcmpeqfp: 8024 CompareOpc = 198; 8025 break; 8026 case Intrinsic::ppc_altivec_vcmpequb: 8027 CompareOpc = 6; 8028 break; 8029 case Intrinsic::ppc_altivec_vcmpequh: 8030 CompareOpc = 70; 8031 break; 8032 case Intrinsic::ppc_altivec_vcmpequw: 8033 CompareOpc = 134; 8034 break; 8035 case Intrinsic::ppc_altivec_vcmpequd: 8036 if (Subtarget.hasP8Altivec()) 8037 CompareOpc = 199; 8038 else 8039 return false; 8040 break; 8041 case Intrinsic::ppc_altivec_vcmpneb: 8042 case Intrinsic::ppc_altivec_vcmpneh: 8043 case Intrinsic::ppc_altivec_vcmpnew: 8044 case Intrinsic::ppc_altivec_vcmpnezb: 8045 case Intrinsic::ppc_altivec_vcmpnezh: 8046 case Intrinsic::ppc_altivec_vcmpnezw: 8047 if (Subtarget.hasP9Altivec()) 8048 switch (IntrinsicID) { 8049 default: 8050 llvm_unreachable("Unknown comparison intrinsic."); 8051 case Intrinsic::ppc_altivec_vcmpneb: 8052 CompareOpc = 7; 8053 break; 8054 case Intrinsic::ppc_altivec_vcmpneh: 8055 CompareOpc = 71; 8056 break; 8057 case Intrinsic::ppc_altivec_vcmpnew: 8058 CompareOpc = 135; 8059 break; 8060 case Intrinsic::ppc_altivec_vcmpnezb: 8061 CompareOpc = 263; 8062 break; 8063 case Intrinsic::ppc_altivec_vcmpnezh: 8064 CompareOpc = 327; 8065 break; 8066 case Intrinsic::ppc_altivec_vcmpnezw: 8067 CompareOpc = 391; 8068 break; 8069 } 8070 else 8071 return false; 8072 break; 8073 case Intrinsic::ppc_altivec_vcmpgefp: 8074 CompareOpc = 454; 8075 break; 8076 case Intrinsic::ppc_altivec_vcmpgtfp: 8077 CompareOpc = 710; 8078 break; 8079 case Intrinsic::ppc_altivec_vcmpgtsb: 8080 CompareOpc = 774; 8081 break; 8082 case Intrinsic::ppc_altivec_vcmpgtsh: 8083 CompareOpc = 838; 8084 break; 8085 case Intrinsic::ppc_altivec_vcmpgtsw: 8086 CompareOpc = 902; 8087 break; 8088 case Intrinsic::ppc_altivec_vcmpgtsd: 8089 if (Subtarget.hasP8Altivec()) 8090 CompareOpc = 967; 8091 else 8092 return false; 8093 break; 8094 case Intrinsic::ppc_altivec_vcmpgtub: 8095 CompareOpc = 518; 8096 break; 8097 case Intrinsic::ppc_altivec_vcmpgtuh: 8098 CompareOpc = 582; 8099 break; 8100 case Intrinsic::ppc_altivec_vcmpgtuw: 8101 CompareOpc = 646; 8102 break; 8103 case Intrinsic::ppc_altivec_vcmpgtud: 8104 if (Subtarget.hasP8Altivec()) 8105 CompareOpc = 711; 8106 else 8107 return false; 8108 break; 8109 } 8110 return true; 8111 } 8112 8113 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 8114 /// lower, do it, otherwise return null. 8115 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 8116 SelectionDAG &DAG) const { 8117 unsigned IntrinsicID = 8118 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 8119 8120 if (IntrinsicID == Intrinsic::thread_pointer) { 8121 // Reads the thread pointer register, used for __builtin_thread_pointer. 8122 bool is64bit = Subtarget.isPPC64(); 8123 return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 8124 is64bit ? MVT::i64 : MVT::i32); 8125 } 8126 8127 // If this is a lowered altivec predicate compare, CompareOpc is set to the 8128 // opcode number of the comparison. 8129 SDLoc dl(Op); 8130 int CompareOpc; 8131 bool isDot; 8132 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 8133 return SDValue(); // Don't custom lower most intrinsics. 8134 8135 // If this is a non-dot comparison, make the VCMP node and we are done. 8136 if (!isDot) { 8137 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 8138 Op.getOperand(1), Op.getOperand(2), 8139 DAG.getConstant(CompareOpc, dl, MVT::i32)); 8140 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 8141 } 8142 8143 // Create the PPCISD altivec 'dot' comparison node. 8144 SDValue Ops[] = { 8145 Op.getOperand(2), // LHS 8146 Op.getOperand(3), // RHS 8147 DAG.getConstant(CompareOpc, dl, MVT::i32) 8148 }; 8149 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 8150 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 8151 8152 // Now that we have the comparison, emit a copy from the CR to a GPR. 8153 // This is flagged to the above dot comparison. 8154 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 8155 DAG.getRegister(PPC::CR6, MVT::i32), 8156 CompNode.getValue(1)); 8157 8158 // Unpack the result based on how the target uses it. 8159 unsigned BitNo; // Bit # of CR6. 8160 bool InvertBit; // Invert result? 8161 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 8162 default: // Can't happen, don't crash on invalid number though. 8163 case 0: // Return the value of the EQ bit of CR6. 8164 BitNo = 0; InvertBit = false; 8165 break; 8166 case 1: // Return the inverted value of the EQ bit of CR6. 8167 BitNo = 0; InvertBit = true; 8168 break; 8169 case 2: // Return the value of the LT bit of CR6. 8170 BitNo = 2; InvertBit = false; 8171 break; 8172 case 3: // Return the inverted value of the LT bit of CR6. 8173 BitNo = 2; InvertBit = true; 8174 break; 8175 } 8176 8177 // Shift the bit into the low position. 8178 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 8179 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 8180 // Isolate the bit. 8181 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 8182 DAG.getConstant(1, dl, MVT::i32)); 8183 8184 // If we are supposed to, toggle the bit. 8185 if (InvertBit) 8186 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 8187 DAG.getConstant(1, dl, MVT::i32)); 8188 return Flags; 8189 } 8190 8191 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 8192 SelectionDAG &DAG) const { 8193 SDLoc dl(Op); 8194 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 8195 // instructions), but for smaller types, we need to first extend up to v2i32 8196 // before doing going farther. 8197 if (Op.getValueType() == MVT::v2i64) { 8198 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 8199 if (ExtVT != MVT::v2i32) { 8200 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 8201 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 8202 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 8203 ExtVT.getVectorElementType(), 4))); 8204 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 8205 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 8206 DAG.getValueType(MVT::v2i32)); 8207 } 8208 8209 return Op; 8210 } 8211 8212 return SDValue(); 8213 } 8214 8215 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 8216 SelectionDAG &DAG) const { 8217 SDLoc dl(Op); 8218 // Create a stack slot that is 16-byte aligned. 8219 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8220 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8221 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8222 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8223 8224 // Store the input value into Value#0 of the stack slot. 8225 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8226 MachinePointerInfo()); 8227 // Load it out. 8228 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 8229 } 8230 8231 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 8232 SelectionDAG &DAG) const { 8233 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 8234 "Should only be called for ISD::INSERT_VECTOR_ELT"); 8235 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 8236 // We have legal lowering for constant indices but not for variable ones. 8237 if (C) 8238 return Op; 8239 return SDValue(); 8240 } 8241 8242 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 8243 SelectionDAG &DAG) const { 8244 SDLoc dl(Op); 8245 SDNode *N = Op.getNode(); 8246 8247 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 8248 "Unknown extract_vector_elt type"); 8249 8250 SDValue Value = N->getOperand(0); 8251 8252 // The first part of this is like the store lowering except that we don't 8253 // need to track the chain. 8254 8255 // The values are now known to be -1 (false) or 1 (true). To convert this 8256 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8257 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8258 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8259 8260 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 8261 // understand how to form the extending load. 8262 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8263 8264 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8265 8266 // Now convert to an integer and store. 8267 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8268 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 8269 Value); 8270 8271 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8272 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8273 MachinePointerInfo PtrInfo = 8274 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8275 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8276 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8277 8278 SDValue StoreChain = DAG.getEntryNode(); 8279 SDValue Ops[] = {StoreChain, 8280 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 8281 Value, FIdx}; 8282 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 8283 8284 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 8285 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8286 8287 // Extract the value requested. 8288 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 8289 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8290 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8291 8292 SDValue IntVal = 8293 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 8294 8295 if (!Subtarget.useCRBits()) 8296 return IntVal; 8297 8298 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 8299 } 8300 8301 /// Lowering for QPX v4i1 loads 8302 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 8303 SelectionDAG &DAG) const { 8304 SDLoc dl(Op); 8305 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 8306 SDValue LoadChain = LN->getChain(); 8307 SDValue BasePtr = LN->getBasePtr(); 8308 8309 if (Op.getValueType() == MVT::v4f64 || 8310 Op.getValueType() == MVT::v4f32) { 8311 EVT MemVT = LN->getMemoryVT(); 8312 unsigned Alignment = LN->getAlignment(); 8313 8314 // If this load is properly aligned, then it is legal. 8315 if (Alignment >= MemVT.getStoreSize()) 8316 return Op; 8317 8318 EVT ScalarVT = Op.getValueType().getScalarType(), 8319 ScalarMemVT = MemVT.getScalarType(); 8320 unsigned Stride = ScalarMemVT.getStoreSize(); 8321 8322 SDValue Vals[4], LoadChains[4]; 8323 for (unsigned Idx = 0; Idx < 4; ++Idx) { 8324 SDValue Load; 8325 if (ScalarVT != ScalarMemVT) 8326 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 8327 BasePtr, 8328 LN->getPointerInfo().getWithOffset(Idx * Stride), 8329 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 8330 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 8331 else 8332 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 8333 LN->getPointerInfo().getWithOffset(Idx * Stride), 8334 MinAlign(Alignment, Idx * Stride), 8335 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 8336 8337 if (Idx == 0 && LN->isIndexed()) { 8338 assert(LN->getAddressingMode() == ISD::PRE_INC && 8339 "Unknown addressing mode on vector load"); 8340 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 8341 LN->getAddressingMode()); 8342 } 8343 8344 Vals[Idx] = Load; 8345 LoadChains[Idx] = Load.getValue(1); 8346 8347 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8348 DAG.getConstant(Stride, dl, 8349 BasePtr.getValueType())); 8350 } 8351 8352 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8353 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 8354 8355 if (LN->isIndexed()) { 8356 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 8357 return DAG.getMergeValues(RetOps, dl); 8358 } 8359 8360 SDValue RetOps[] = { Value, TF }; 8361 return DAG.getMergeValues(RetOps, dl); 8362 } 8363 8364 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 8365 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 8366 8367 // To lower v4i1 from a byte array, we load the byte elements of the 8368 // vector and then reuse the BUILD_VECTOR logic. 8369 8370 SDValue VectElmts[4], VectElmtChains[4]; 8371 for (unsigned i = 0; i < 4; ++i) { 8372 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8373 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8374 8375 VectElmts[i] = DAG.getExtLoad( 8376 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 8377 LN->getPointerInfo().getWithOffset(i), MVT::i8, 8378 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 8379 VectElmtChains[i] = VectElmts[i].getValue(1); 8380 } 8381 8382 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 8383 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 8384 8385 SDValue RVals[] = { Value, LoadChain }; 8386 return DAG.getMergeValues(RVals, dl); 8387 } 8388 8389 /// Lowering for QPX v4i1 stores 8390 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 8391 SelectionDAG &DAG) const { 8392 SDLoc dl(Op); 8393 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 8394 SDValue StoreChain = SN->getChain(); 8395 SDValue BasePtr = SN->getBasePtr(); 8396 SDValue Value = SN->getValue(); 8397 8398 if (Value.getValueType() == MVT::v4f64 || 8399 Value.getValueType() == MVT::v4f32) { 8400 EVT MemVT = SN->getMemoryVT(); 8401 unsigned Alignment = SN->getAlignment(); 8402 8403 // If this store is properly aligned, then it is legal. 8404 if (Alignment >= MemVT.getStoreSize()) 8405 return Op; 8406 8407 EVT ScalarVT = Value.getValueType().getScalarType(), 8408 ScalarMemVT = MemVT.getScalarType(); 8409 unsigned Stride = ScalarMemVT.getStoreSize(); 8410 8411 SDValue Stores[4]; 8412 for (unsigned Idx = 0; Idx < 4; ++Idx) { 8413 SDValue Ex = DAG.getNode( 8414 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 8415 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 8416 SDValue Store; 8417 if (ScalarVT != ScalarMemVT) 8418 Store = 8419 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 8420 SN->getPointerInfo().getWithOffset(Idx * Stride), 8421 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 8422 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 8423 else 8424 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 8425 SN->getPointerInfo().getWithOffset(Idx * Stride), 8426 MinAlign(Alignment, Idx * Stride), 8427 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 8428 8429 if (Idx == 0 && SN->isIndexed()) { 8430 assert(SN->getAddressingMode() == ISD::PRE_INC && 8431 "Unknown addressing mode on vector store"); 8432 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 8433 SN->getAddressingMode()); 8434 } 8435 8436 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8437 DAG.getConstant(Stride, dl, 8438 BasePtr.getValueType())); 8439 Stores[Idx] = Store; 8440 } 8441 8442 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8443 8444 if (SN->isIndexed()) { 8445 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 8446 return DAG.getMergeValues(RetOps, dl); 8447 } 8448 8449 return TF; 8450 } 8451 8452 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 8453 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 8454 8455 // The values are now known to be -1 (false) or 1 (true). To convert this 8456 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8457 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8458 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8459 8460 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 8461 // understand how to form the extending load. 8462 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8463 8464 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8465 8466 // Now convert to an integer and store. 8467 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8468 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 8469 Value); 8470 8471 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8472 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8473 MachinePointerInfo PtrInfo = 8474 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8475 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8476 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8477 8478 SDValue Ops[] = {StoreChain, 8479 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 8480 Value, FIdx}; 8481 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 8482 8483 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 8484 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8485 8486 // Move data into the byte array. 8487 SDValue Loads[4], LoadChains[4]; 8488 for (unsigned i = 0; i < 4; ++i) { 8489 unsigned Offset = 4*i; 8490 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8491 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8492 8493 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 8494 PtrInfo.getWithOffset(Offset)); 8495 LoadChains[i] = Loads[i].getValue(1); 8496 } 8497 8498 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8499 8500 SDValue Stores[4]; 8501 for (unsigned i = 0; i < 4; ++i) { 8502 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8503 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8504 8505 Stores[i] = DAG.getTruncStore( 8506 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 8507 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 8508 SN->getAAInfo()); 8509 } 8510 8511 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8512 8513 return StoreChain; 8514 } 8515 8516 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 8517 SDLoc dl(Op); 8518 if (Op.getValueType() == MVT::v4i32) { 8519 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8520 8521 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 8522 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 8523 8524 SDValue RHSSwap = // = vrlw RHS, 16 8525 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 8526 8527 // Shrinkify inputs to v8i16. 8528 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 8529 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 8530 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 8531 8532 // Low parts multiplied together, generating 32-bit results (we ignore the 8533 // top parts). 8534 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 8535 LHS, RHS, DAG, dl, MVT::v4i32); 8536 8537 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 8538 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 8539 // Shift the high parts up 16 bits. 8540 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 8541 Neg16, DAG, dl); 8542 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 8543 } else if (Op.getValueType() == MVT::v8i16) { 8544 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8545 8546 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 8547 8548 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 8549 LHS, RHS, Zero, DAG, dl); 8550 } else if (Op.getValueType() == MVT::v16i8) { 8551 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8552 bool isLittleEndian = Subtarget.isLittleEndian(); 8553 8554 // Multiply the even 8-bit parts, producing 16-bit sums. 8555 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 8556 LHS, RHS, DAG, dl, MVT::v8i16); 8557 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 8558 8559 // Multiply the odd 8-bit parts, producing 16-bit sums. 8560 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 8561 LHS, RHS, DAG, dl, MVT::v8i16); 8562 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 8563 8564 // Merge the results together. Because vmuleub and vmuloub are 8565 // instructions with a big-endian bias, we must reverse the 8566 // element numbering and reverse the meaning of "odd" and "even" 8567 // when generating little endian code. 8568 int Ops[16]; 8569 for (unsigned i = 0; i != 8; ++i) { 8570 if (isLittleEndian) { 8571 Ops[i*2 ] = 2*i; 8572 Ops[i*2+1] = 2*i+16; 8573 } else { 8574 Ops[i*2 ] = 2*i+1; 8575 Ops[i*2+1] = 2*i+1+16; 8576 } 8577 } 8578 if (isLittleEndian) 8579 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 8580 else 8581 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 8582 } else { 8583 llvm_unreachable("Unknown mul to lower!"); 8584 } 8585 } 8586 8587 /// LowerOperation - Provide custom lowering hooks for some operations. 8588 /// 8589 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8590 switch (Op.getOpcode()) { 8591 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 8592 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 8593 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 8594 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 8595 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 8596 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 8597 case ISD::SETCC: return LowerSETCC(Op, DAG); 8598 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 8599 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 8600 case ISD::VASTART: 8601 return LowerVASTART(Op, DAG); 8602 8603 case ISD::VAARG: 8604 return LowerVAARG(Op, DAG); 8605 8606 case ISD::VACOPY: 8607 return LowerVACOPY(Op, DAG); 8608 8609 case ISD::STACKRESTORE: 8610 return LowerSTACKRESTORE(Op, DAG); 8611 8612 case ISD::DYNAMIC_STACKALLOC: 8613 return LowerDYNAMIC_STACKALLOC(Op, DAG); 8614 8615 case ISD::GET_DYNAMIC_AREA_OFFSET: 8616 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 8617 8618 case ISD::EH_DWARF_CFA: 8619 return LowerEH_DWARF_CFA(Op, DAG); 8620 8621 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 8622 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 8623 8624 case ISD::LOAD: return LowerLOAD(Op, DAG); 8625 case ISD::STORE: return LowerSTORE(Op, DAG); 8626 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 8627 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 8628 case ISD::FP_TO_UINT: 8629 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 8630 SDLoc(Op)); 8631 case ISD::UINT_TO_FP: 8632 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 8633 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 8634 8635 // Lower 64-bit shifts. 8636 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 8637 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 8638 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 8639 8640 // Vector-related lowering. 8641 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 8642 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 8643 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 8644 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 8645 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 8646 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 8647 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 8648 case ISD::MUL: return LowerMUL(Op, DAG); 8649 8650 // For counter-based loop handling. 8651 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 8652 8653 // Frame & Return address. 8654 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 8655 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 8656 } 8657 } 8658 8659 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 8660 SmallVectorImpl<SDValue>&Results, 8661 SelectionDAG &DAG) const { 8662 SDLoc dl(N); 8663 switch (N->getOpcode()) { 8664 default: 8665 llvm_unreachable("Do not know how to custom type legalize this operation!"); 8666 case ISD::READCYCLECOUNTER: { 8667 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 8668 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 8669 8670 Results.push_back(RTB); 8671 Results.push_back(RTB.getValue(1)); 8672 Results.push_back(RTB.getValue(2)); 8673 break; 8674 } 8675 case ISD::INTRINSIC_W_CHAIN: { 8676 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8677 Intrinsic::ppc_is_decremented_ctr_nonzero) 8678 break; 8679 8680 assert(N->getValueType(0) == MVT::i1 && 8681 "Unexpected result type for CTR decrement intrinsic"); 8682 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8683 N->getValueType(0)); 8684 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8685 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8686 N->getOperand(1)); 8687 8688 Results.push_back(NewInt); 8689 Results.push_back(NewInt.getValue(1)); 8690 break; 8691 } 8692 case ISD::VAARG: { 8693 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8694 return; 8695 8696 EVT VT = N->getValueType(0); 8697 8698 if (VT == MVT::i64) { 8699 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 8700 8701 Results.push_back(NewNode); 8702 Results.push_back(NewNode.getValue(1)); 8703 } 8704 return; 8705 } 8706 case ISD::FP_ROUND_INREG: { 8707 assert(N->getValueType(0) == MVT::ppcf128); 8708 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8709 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8710 MVT::f64, N->getOperand(0), 8711 DAG.getIntPtrConstant(0, dl)); 8712 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8713 MVT::f64, N->getOperand(0), 8714 DAG.getIntPtrConstant(1, dl)); 8715 8716 // Add the two halves of the long double in round-to-zero mode. 8717 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8718 8719 // We know the low half is about to be thrown away, so just use something 8720 // convenient. 8721 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8722 FPreg, FPreg)); 8723 return; 8724 } 8725 case ISD::FP_TO_SINT: 8726 case ISD::FP_TO_UINT: 8727 // LowerFP_TO_INT() can only handle f32 and f64. 8728 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8729 return; 8730 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8731 return; 8732 } 8733 } 8734 8735 //===----------------------------------------------------------------------===// 8736 // Other Lowering Code 8737 //===----------------------------------------------------------------------===// 8738 8739 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8740 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8741 Function *Func = Intrinsic::getDeclaration(M, Id); 8742 return Builder.CreateCall(Func, {}); 8743 } 8744 8745 // The mappings for emitLeading/TrailingFence is taken from 8746 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8747 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8748 AtomicOrdering Ord, bool IsStore, 8749 bool IsLoad) const { 8750 if (Ord == AtomicOrdering::SequentiallyConsistent) 8751 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8752 if (isReleaseOrStronger(Ord)) 8753 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8754 return nullptr; 8755 } 8756 8757 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8758 AtomicOrdering Ord, bool IsStore, 8759 bool IsLoad) const { 8760 if (IsLoad && isAcquireOrStronger(Ord)) 8761 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8762 // FIXME: this is too conservative, a dependent branch + isync is enough. 8763 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8764 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8765 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8766 return nullptr; 8767 } 8768 8769 MachineBasicBlock * 8770 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 8771 unsigned AtomicSize, 8772 unsigned BinOpcode, 8773 unsigned CmpOpcode, 8774 unsigned CmpPred) const { 8775 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8776 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8777 8778 auto LoadMnemonic = PPC::LDARX; 8779 auto StoreMnemonic = PPC::STDCX; 8780 switch (AtomicSize) { 8781 default: 8782 llvm_unreachable("Unexpected size of atomic entity"); 8783 case 1: 8784 LoadMnemonic = PPC::LBARX; 8785 StoreMnemonic = PPC::STBCX; 8786 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8787 break; 8788 case 2: 8789 LoadMnemonic = PPC::LHARX; 8790 StoreMnemonic = PPC::STHCX; 8791 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8792 break; 8793 case 4: 8794 LoadMnemonic = PPC::LWARX; 8795 StoreMnemonic = PPC::STWCX; 8796 break; 8797 case 8: 8798 LoadMnemonic = PPC::LDARX; 8799 StoreMnemonic = PPC::STDCX; 8800 break; 8801 } 8802 8803 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8804 MachineFunction *F = BB->getParent(); 8805 MachineFunction::iterator It = ++BB->getIterator(); 8806 8807 unsigned dest = MI.getOperand(0).getReg(); 8808 unsigned ptrA = MI.getOperand(1).getReg(); 8809 unsigned ptrB = MI.getOperand(2).getReg(); 8810 unsigned incr = MI.getOperand(3).getReg(); 8811 DebugLoc dl = MI.getDebugLoc(); 8812 8813 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8814 MachineBasicBlock *loop2MBB = 8815 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 8816 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8817 F->insert(It, loopMBB); 8818 if (CmpOpcode) 8819 F->insert(It, loop2MBB); 8820 F->insert(It, exitMBB); 8821 exitMBB->splice(exitMBB->begin(), BB, 8822 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8823 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8824 8825 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8826 unsigned TmpReg = (!BinOpcode) ? incr : 8827 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8828 : &PPC::GPRCRegClass); 8829 8830 // thisMBB: 8831 // ... 8832 // fallthrough --> loopMBB 8833 BB->addSuccessor(loopMBB); 8834 8835 // loopMBB: 8836 // l[wd]arx dest, ptr 8837 // add r0, dest, incr 8838 // st[wd]cx. r0, ptr 8839 // bne- loopMBB 8840 // fallthrough --> exitMBB 8841 8842 // For max/min... 8843 // loopMBB: 8844 // l[wd]arx dest, ptr 8845 // cmpl?[wd] incr, dest 8846 // bgt exitMBB 8847 // loop2MBB: 8848 // st[wd]cx. dest, ptr 8849 // bne- loopMBB 8850 // fallthrough --> exitMBB 8851 8852 BB = loopMBB; 8853 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8854 .addReg(ptrA).addReg(ptrB); 8855 if (BinOpcode) 8856 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8857 if (CmpOpcode) { 8858 // Signed comparisons of byte or halfword values must be sign-extended. 8859 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 8860 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8861 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 8862 ExtReg).addReg(dest); 8863 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 8864 .addReg(incr).addReg(ExtReg); 8865 } else 8866 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 8867 .addReg(incr).addReg(dest); 8868 8869 BuildMI(BB, dl, TII->get(PPC::BCC)) 8870 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 8871 BB->addSuccessor(loop2MBB); 8872 BB->addSuccessor(exitMBB); 8873 BB = loop2MBB; 8874 } 8875 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8876 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8877 BuildMI(BB, dl, TII->get(PPC::BCC)) 8878 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8879 BB->addSuccessor(loopMBB); 8880 BB->addSuccessor(exitMBB); 8881 8882 // exitMBB: 8883 // ... 8884 BB = exitMBB; 8885 return BB; 8886 } 8887 8888 MachineBasicBlock * 8889 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI, 8890 MachineBasicBlock *BB, 8891 bool is8bit, // operation 8892 unsigned BinOpcode, 8893 unsigned CmpOpcode, 8894 unsigned CmpPred) const { 8895 // If we support part-word atomic mnemonics, just use them 8896 if (Subtarget.hasPartwordAtomics()) 8897 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, 8898 CmpOpcode, CmpPred); 8899 8900 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8901 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8902 // In 64 bit mode we have to use 64 bits for addresses, even though the 8903 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8904 // registers without caring whether they're 32 or 64, but here we're 8905 // doing actual arithmetic on the addresses. 8906 bool is64bit = Subtarget.isPPC64(); 8907 bool isLittleEndian = Subtarget.isLittleEndian(); 8908 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8909 8910 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8911 MachineFunction *F = BB->getParent(); 8912 MachineFunction::iterator It = ++BB->getIterator(); 8913 8914 unsigned dest = MI.getOperand(0).getReg(); 8915 unsigned ptrA = MI.getOperand(1).getReg(); 8916 unsigned ptrB = MI.getOperand(2).getReg(); 8917 unsigned incr = MI.getOperand(3).getReg(); 8918 DebugLoc dl = MI.getDebugLoc(); 8919 8920 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8921 MachineBasicBlock *loop2MBB = 8922 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 8923 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8924 F->insert(It, loopMBB); 8925 if (CmpOpcode) 8926 F->insert(It, loop2MBB); 8927 F->insert(It, exitMBB); 8928 exitMBB->splice(exitMBB->begin(), BB, 8929 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8930 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8931 8932 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8933 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8934 : &PPC::GPRCRegClass; 8935 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8936 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8937 unsigned ShiftReg = 8938 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 8939 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8940 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8941 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8942 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8943 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8944 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8945 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8946 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8947 unsigned Ptr1Reg; 8948 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8949 8950 // thisMBB: 8951 // ... 8952 // fallthrough --> loopMBB 8953 BB->addSuccessor(loopMBB); 8954 8955 // The 4-byte load must be aligned, while a char or short may be 8956 // anywhere in the word. Hence all this nasty bookkeeping code. 8957 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8958 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8959 // xori shift, shift1, 24 [16] 8960 // rlwinm ptr, ptr1, 0, 0, 29 8961 // slw incr2, incr, shift 8962 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8963 // slw mask, mask2, shift 8964 // loopMBB: 8965 // lwarx tmpDest, ptr 8966 // add tmp, tmpDest, incr2 8967 // andc tmp2, tmpDest, mask 8968 // and tmp3, tmp, mask 8969 // or tmp4, tmp3, tmp2 8970 // stwcx. tmp4, ptr 8971 // bne- loopMBB 8972 // fallthrough --> exitMBB 8973 // srw dest, tmpDest, shift 8974 if (ptrA != ZeroReg) { 8975 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8976 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8977 .addReg(ptrA).addReg(ptrB); 8978 } else { 8979 Ptr1Reg = ptrB; 8980 } 8981 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8982 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8983 if (!isLittleEndian) 8984 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8985 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8986 if (is64bit) 8987 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8988 .addReg(Ptr1Reg).addImm(0).addImm(61); 8989 else 8990 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8991 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8992 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8993 .addReg(incr).addReg(ShiftReg); 8994 if (is8bit) 8995 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8996 else { 8997 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8998 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8999 } 9000 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9001 .addReg(Mask2Reg).addReg(ShiftReg); 9002 9003 BB = loopMBB; 9004 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9005 .addReg(ZeroReg).addReg(PtrReg); 9006 if (BinOpcode) 9007 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 9008 .addReg(Incr2Reg).addReg(TmpDestReg); 9009 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 9010 .addReg(TmpDestReg).addReg(MaskReg); 9011 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 9012 .addReg(TmpReg).addReg(MaskReg); 9013 if (CmpOpcode) { 9014 // For unsigned comparisons, we can directly compare the shifted values. 9015 // For signed comparisons we shift and sign extend. 9016 unsigned SReg = RegInfo.createVirtualRegister(RC); 9017 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg) 9018 .addReg(TmpDestReg).addReg(MaskReg); 9019 unsigned ValueReg = SReg; 9020 unsigned CmpReg = Incr2Reg; 9021 if (CmpOpcode == PPC::CMPW) { 9022 ValueReg = RegInfo.createVirtualRegister(RC); 9023 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 9024 .addReg(SReg).addReg(ShiftReg); 9025 unsigned ValueSReg = RegInfo.createVirtualRegister(RC); 9026 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 9027 .addReg(ValueReg); 9028 ValueReg = ValueSReg; 9029 CmpReg = incr; 9030 } 9031 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9032 .addReg(CmpReg).addReg(ValueReg); 9033 BuildMI(BB, dl, TII->get(PPC::BCC)) 9034 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 9035 BB->addSuccessor(loop2MBB); 9036 BB->addSuccessor(exitMBB); 9037 BB = loop2MBB; 9038 } 9039 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 9040 .addReg(Tmp3Reg).addReg(Tmp2Reg); 9041 BuildMI(BB, dl, TII->get(PPC::STWCX)) 9042 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 9043 BuildMI(BB, dl, TII->get(PPC::BCC)) 9044 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 9045 BB->addSuccessor(loopMBB); 9046 BB->addSuccessor(exitMBB); 9047 9048 // exitMBB: 9049 // ... 9050 BB = exitMBB; 9051 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 9052 .addReg(ShiftReg); 9053 return BB; 9054 } 9055 9056 llvm::MachineBasicBlock * 9057 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 9058 MachineBasicBlock *MBB) const { 9059 DebugLoc DL = MI.getDebugLoc(); 9060 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9061 9062 MachineFunction *MF = MBB->getParent(); 9063 MachineRegisterInfo &MRI = MF->getRegInfo(); 9064 9065 const BasicBlock *BB = MBB->getBasicBlock(); 9066 MachineFunction::iterator I = ++MBB->getIterator(); 9067 9068 // Memory Reference 9069 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 9070 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 9071 9072 unsigned DstReg = MI.getOperand(0).getReg(); 9073 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 9074 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 9075 unsigned mainDstReg = MRI.createVirtualRegister(RC); 9076 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 9077 9078 MVT PVT = getPointerTy(MF->getDataLayout()); 9079 assert((PVT == MVT::i64 || PVT == MVT::i32) && 9080 "Invalid Pointer Size!"); 9081 // For v = setjmp(buf), we generate 9082 // 9083 // thisMBB: 9084 // SjLjSetup mainMBB 9085 // bl mainMBB 9086 // v_restore = 1 9087 // b sinkMBB 9088 // 9089 // mainMBB: 9090 // buf[LabelOffset] = LR 9091 // v_main = 0 9092 // 9093 // sinkMBB: 9094 // v = phi(main, restore) 9095 // 9096 9097 MachineBasicBlock *thisMBB = MBB; 9098 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 9099 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 9100 MF->insert(I, mainMBB); 9101 MF->insert(I, sinkMBB); 9102 9103 MachineInstrBuilder MIB; 9104 9105 // Transfer the remainder of BB and its successor edges to sinkMBB. 9106 sinkMBB->splice(sinkMBB->begin(), MBB, 9107 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 9108 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 9109 9110 // Note that the structure of the jmp_buf used here is not compatible 9111 // with that used by libc, and is not designed to be. Specifically, it 9112 // stores only those 'reserved' registers that LLVM does not otherwise 9113 // understand how to spill. Also, by convention, by the time this 9114 // intrinsic is called, Clang has already stored the frame address in the 9115 // first slot of the buffer and stack address in the third. Following the 9116 // X86 target code, we'll store the jump address in the second slot. We also 9117 // need to save the TOC pointer (R2) to handle jumps between shared 9118 // libraries, and that will be stored in the fourth slot. The thread 9119 // identifier (R13) is not affected. 9120 9121 // thisMBB: 9122 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 9123 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 9124 const int64_t BPOffset = 4 * PVT.getStoreSize(); 9125 9126 // Prepare IP either in reg. 9127 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 9128 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 9129 unsigned BufReg = MI.getOperand(1).getReg(); 9130 9131 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 9132 setUsesTOCBasePtr(*MBB->getParent()); 9133 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 9134 .addReg(PPC::X2) 9135 .addImm(TOCOffset) 9136 .addReg(BufReg); 9137 MIB.setMemRefs(MMOBegin, MMOEnd); 9138 } 9139 9140 // Naked functions never have a base pointer, and so we use r1. For all 9141 // other functions, this decision must be delayed until during PEI. 9142 unsigned BaseReg; 9143 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 9144 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 9145 else 9146 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 9147 9148 MIB = BuildMI(*thisMBB, MI, DL, 9149 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 9150 .addReg(BaseReg) 9151 .addImm(BPOffset) 9152 .addReg(BufReg); 9153 MIB.setMemRefs(MMOBegin, MMOEnd); 9154 9155 // Setup 9156 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 9157 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9158 MIB.addRegMask(TRI->getNoPreservedMask()); 9159 9160 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 9161 9162 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 9163 .addMBB(mainMBB); 9164 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 9165 9166 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 9167 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 9168 9169 // mainMBB: 9170 // mainDstReg = 0 9171 MIB = 9172 BuildMI(mainMBB, DL, 9173 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 9174 9175 // Store IP 9176 if (Subtarget.isPPC64()) { 9177 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 9178 .addReg(LabelReg) 9179 .addImm(LabelOffset) 9180 .addReg(BufReg); 9181 } else { 9182 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 9183 .addReg(LabelReg) 9184 .addImm(LabelOffset) 9185 .addReg(BufReg); 9186 } 9187 9188 MIB.setMemRefs(MMOBegin, MMOEnd); 9189 9190 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 9191 mainMBB->addSuccessor(sinkMBB); 9192 9193 // sinkMBB: 9194 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 9195 TII->get(PPC::PHI), DstReg) 9196 .addReg(mainDstReg).addMBB(mainMBB) 9197 .addReg(restoreDstReg).addMBB(thisMBB); 9198 9199 MI.eraseFromParent(); 9200 return sinkMBB; 9201 } 9202 9203 MachineBasicBlock * 9204 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 9205 MachineBasicBlock *MBB) const { 9206 DebugLoc DL = MI.getDebugLoc(); 9207 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9208 9209 MachineFunction *MF = MBB->getParent(); 9210 MachineRegisterInfo &MRI = MF->getRegInfo(); 9211 9212 // Memory Reference 9213 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 9214 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 9215 9216 MVT PVT = getPointerTy(MF->getDataLayout()); 9217 assert((PVT == MVT::i64 || PVT == MVT::i32) && 9218 "Invalid Pointer Size!"); 9219 9220 const TargetRegisterClass *RC = 9221 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 9222 unsigned Tmp = MRI.createVirtualRegister(RC); 9223 // Since FP is only updated here but NOT referenced, it's treated as GPR. 9224 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 9225 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 9226 unsigned BP = 9227 (PVT == MVT::i64) 9228 ? PPC::X30 9229 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 9230 : PPC::R30); 9231 9232 MachineInstrBuilder MIB; 9233 9234 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 9235 const int64_t SPOffset = 2 * PVT.getStoreSize(); 9236 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 9237 const int64_t BPOffset = 4 * PVT.getStoreSize(); 9238 9239 unsigned BufReg = MI.getOperand(0).getReg(); 9240 9241 // Reload FP (the jumped-to function may not have had a 9242 // frame pointer, and if so, then its r31 will be restored 9243 // as necessary). 9244 if (PVT == MVT::i64) { 9245 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 9246 .addImm(0) 9247 .addReg(BufReg); 9248 } else { 9249 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 9250 .addImm(0) 9251 .addReg(BufReg); 9252 } 9253 MIB.setMemRefs(MMOBegin, MMOEnd); 9254 9255 // Reload IP 9256 if (PVT == MVT::i64) { 9257 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 9258 .addImm(LabelOffset) 9259 .addReg(BufReg); 9260 } else { 9261 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 9262 .addImm(LabelOffset) 9263 .addReg(BufReg); 9264 } 9265 MIB.setMemRefs(MMOBegin, MMOEnd); 9266 9267 // Reload SP 9268 if (PVT == MVT::i64) { 9269 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 9270 .addImm(SPOffset) 9271 .addReg(BufReg); 9272 } else { 9273 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 9274 .addImm(SPOffset) 9275 .addReg(BufReg); 9276 } 9277 MIB.setMemRefs(MMOBegin, MMOEnd); 9278 9279 // Reload BP 9280 if (PVT == MVT::i64) { 9281 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 9282 .addImm(BPOffset) 9283 .addReg(BufReg); 9284 } else { 9285 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 9286 .addImm(BPOffset) 9287 .addReg(BufReg); 9288 } 9289 MIB.setMemRefs(MMOBegin, MMOEnd); 9290 9291 // Reload TOC 9292 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 9293 setUsesTOCBasePtr(*MBB->getParent()); 9294 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 9295 .addImm(TOCOffset) 9296 .addReg(BufReg); 9297 9298 MIB.setMemRefs(MMOBegin, MMOEnd); 9299 } 9300 9301 // Jump 9302 BuildMI(*MBB, MI, DL, 9303 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 9304 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 9305 9306 MI.eraseFromParent(); 9307 return MBB; 9308 } 9309 9310 MachineBasicBlock * 9311 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9312 MachineBasicBlock *BB) const { 9313 if (MI.getOpcode() == TargetOpcode::STACKMAP || 9314 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 9315 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 9316 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 9317 // Call lowering should have added an r2 operand to indicate a dependence 9318 // on the TOC base pointer value. It can't however, because there is no 9319 // way to mark the dependence as implicit there, and so the stackmap code 9320 // will confuse it with a regular operand. Instead, add the dependence 9321 // here. 9322 setUsesTOCBasePtr(*BB->getParent()); 9323 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 9324 } 9325 9326 return emitPatchPoint(MI, BB); 9327 } 9328 9329 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 9330 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 9331 return emitEHSjLjSetJmp(MI, BB); 9332 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 9333 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 9334 return emitEHSjLjLongJmp(MI, BB); 9335 } 9336 9337 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9338 9339 // To "insert" these instructions we actually have to insert their 9340 // control-flow patterns. 9341 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9342 MachineFunction::iterator It = ++BB->getIterator(); 9343 9344 MachineFunction *F = BB->getParent(); 9345 9346 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 9347 MI.getOpcode() == PPC::SELECT_CC_I8 || 9348 MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) { 9349 SmallVector<MachineOperand, 2> Cond; 9350 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 9351 MI.getOpcode() == PPC::SELECT_CC_I8) 9352 Cond.push_back(MI.getOperand(4)); 9353 else 9354 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 9355 Cond.push_back(MI.getOperand(1)); 9356 9357 DebugLoc dl = MI.getDebugLoc(); 9358 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 9359 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 9360 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 9361 MI.getOpcode() == PPC::SELECT_CC_I8 || 9362 MI.getOpcode() == PPC::SELECT_CC_F4 || 9363 MI.getOpcode() == PPC::SELECT_CC_F8 || 9364 MI.getOpcode() == PPC::SELECT_CC_QFRC || 9365 MI.getOpcode() == PPC::SELECT_CC_QSRC || 9366 MI.getOpcode() == PPC::SELECT_CC_QBRC || 9367 MI.getOpcode() == PPC::SELECT_CC_VRRC || 9368 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 9369 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 9370 MI.getOpcode() == PPC::SELECT_CC_VSRC || 9371 MI.getOpcode() == PPC::SELECT_I4 || 9372 MI.getOpcode() == PPC::SELECT_I8 || 9373 MI.getOpcode() == PPC::SELECT_F4 || 9374 MI.getOpcode() == PPC::SELECT_F8 || 9375 MI.getOpcode() == PPC::SELECT_QFRC || 9376 MI.getOpcode() == PPC::SELECT_QSRC || 9377 MI.getOpcode() == PPC::SELECT_QBRC || 9378 MI.getOpcode() == PPC::SELECT_VRRC || 9379 MI.getOpcode() == PPC::SELECT_VSFRC || 9380 MI.getOpcode() == PPC::SELECT_VSSRC || 9381 MI.getOpcode() == PPC::SELECT_VSRC) { 9382 // The incoming instruction knows the destination vreg to set, the 9383 // condition code register to branch on, the true/false values to 9384 // select between, and a branch opcode to use. 9385 9386 // thisMBB: 9387 // ... 9388 // TrueVal = ... 9389 // cmpTY ccX, r1, r2 9390 // bCC copy1MBB 9391 // fallthrough --> copy0MBB 9392 MachineBasicBlock *thisMBB = BB; 9393 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 9394 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9395 DebugLoc dl = MI.getDebugLoc(); 9396 F->insert(It, copy0MBB); 9397 F->insert(It, sinkMBB); 9398 9399 // Transfer the remainder of BB and its successor edges to sinkMBB. 9400 sinkMBB->splice(sinkMBB->begin(), BB, 9401 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9402 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 9403 9404 // Next, add the true and fallthrough blocks as its successors. 9405 BB->addSuccessor(copy0MBB); 9406 BB->addSuccessor(sinkMBB); 9407 9408 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 9409 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 9410 MI.getOpcode() == PPC::SELECT_QFRC || 9411 MI.getOpcode() == PPC::SELECT_QSRC || 9412 MI.getOpcode() == PPC::SELECT_QBRC || 9413 MI.getOpcode() == PPC::SELECT_VRRC || 9414 MI.getOpcode() == PPC::SELECT_VSFRC || 9415 MI.getOpcode() == PPC::SELECT_VSSRC || 9416 MI.getOpcode() == PPC::SELECT_VSRC) { 9417 BuildMI(BB, dl, TII->get(PPC::BC)) 9418 .addReg(MI.getOperand(1).getReg()) 9419 .addMBB(sinkMBB); 9420 } else { 9421 unsigned SelectPred = MI.getOperand(4).getImm(); 9422 BuildMI(BB, dl, TII->get(PPC::BCC)) 9423 .addImm(SelectPred) 9424 .addReg(MI.getOperand(1).getReg()) 9425 .addMBB(sinkMBB); 9426 } 9427 9428 // copy0MBB: 9429 // %FalseValue = ... 9430 // # fallthrough to sinkMBB 9431 BB = copy0MBB; 9432 9433 // Update machine-CFG edges 9434 BB->addSuccessor(sinkMBB); 9435 9436 // sinkMBB: 9437 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 9438 // ... 9439 BB = sinkMBB; 9440 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 9441 .addReg(MI.getOperand(3).getReg()) 9442 .addMBB(copy0MBB) 9443 .addReg(MI.getOperand(2).getReg()) 9444 .addMBB(thisMBB); 9445 } else if (MI.getOpcode() == PPC::ReadTB) { 9446 // To read the 64-bit time-base register on a 32-bit target, we read the 9447 // two halves. Should the counter have wrapped while it was being read, we 9448 // need to try again. 9449 // ... 9450 // readLoop: 9451 // mfspr Rx,TBU # load from TBU 9452 // mfspr Ry,TB # load from TB 9453 // mfspr Rz,TBU # load from TBU 9454 // cmpw crX,Rx,Rz # check if 'old'='new' 9455 // bne readLoop # branch if they're not equal 9456 // ... 9457 9458 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 9459 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9460 DebugLoc dl = MI.getDebugLoc(); 9461 F->insert(It, readMBB); 9462 F->insert(It, sinkMBB); 9463 9464 // Transfer the remainder of BB and its successor edges to sinkMBB. 9465 sinkMBB->splice(sinkMBB->begin(), BB, 9466 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9467 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 9468 9469 BB->addSuccessor(readMBB); 9470 BB = readMBB; 9471 9472 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9473 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 9474 unsigned LoReg = MI.getOperand(0).getReg(); 9475 unsigned HiReg = MI.getOperand(1).getReg(); 9476 9477 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 9478 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 9479 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 9480 9481 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9482 9483 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 9484 .addReg(HiReg).addReg(ReadAgainReg); 9485 BuildMI(BB, dl, TII->get(PPC::BCC)) 9486 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 9487 9488 BB->addSuccessor(readMBB); 9489 BB->addSuccessor(sinkMBB); 9490 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 9491 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 9492 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 9493 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 9494 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 9495 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 9496 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 9497 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 9498 9499 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 9500 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 9501 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 9502 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 9503 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 9504 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 9505 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 9506 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 9507 9508 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 9509 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 9510 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 9511 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 9512 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 9513 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 9514 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 9515 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 9516 9517 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 9518 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 9519 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 9520 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 9521 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 9522 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 9523 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 9524 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 9525 9526 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 9527 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 9528 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 9529 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 9530 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 9531 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 9532 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 9533 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 9534 9535 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 9536 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 9537 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 9538 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 9539 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 9540 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 9541 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 9542 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 9543 9544 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 9545 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 9546 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 9547 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 9548 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 9549 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 9550 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 9551 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 9552 9553 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 9554 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 9555 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 9556 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 9557 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 9558 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 9559 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 9560 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 9561 9562 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 9563 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 9564 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 9565 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 9566 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 9567 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 9568 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 9569 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 9570 9571 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 9572 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 9573 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 9574 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 9575 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 9576 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 9577 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 9578 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 9579 9580 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 9581 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 9582 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 9583 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 9584 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 9585 BB = EmitAtomicBinary(MI, BB, 4, 0); 9586 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 9587 BB = EmitAtomicBinary(MI, BB, 8, 0); 9588 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 9589 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 9590 (Subtarget.hasPartwordAtomics() && 9591 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 9592 (Subtarget.hasPartwordAtomics() && 9593 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 9594 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 9595 9596 auto LoadMnemonic = PPC::LDARX; 9597 auto StoreMnemonic = PPC::STDCX; 9598 switch (MI.getOpcode()) { 9599 default: 9600 llvm_unreachable("Compare and swap of unknown size"); 9601 case PPC::ATOMIC_CMP_SWAP_I8: 9602 LoadMnemonic = PPC::LBARX; 9603 StoreMnemonic = PPC::STBCX; 9604 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9605 break; 9606 case PPC::ATOMIC_CMP_SWAP_I16: 9607 LoadMnemonic = PPC::LHARX; 9608 StoreMnemonic = PPC::STHCX; 9609 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9610 break; 9611 case PPC::ATOMIC_CMP_SWAP_I32: 9612 LoadMnemonic = PPC::LWARX; 9613 StoreMnemonic = PPC::STWCX; 9614 break; 9615 case PPC::ATOMIC_CMP_SWAP_I64: 9616 LoadMnemonic = PPC::LDARX; 9617 StoreMnemonic = PPC::STDCX; 9618 break; 9619 } 9620 unsigned dest = MI.getOperand(0).getReg(); 9621 unsigned ptrA = MI.getOperand(1).getReg(); 9622 unsigned ptrB = MI.getOperand(2).getReg(); 9623 unsigned oldval = MI.getOperand(3).getReg(); 9624 unsigned newval = MI.getOperand(4).getReg(); 9625 DebugLoc dl = MI.getDebugLoc(); 9626 9627 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9628 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9629 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9630 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9631 F->insert(It, loop1MBB); 9632 F->insert(It, loop2MBB); 9633 F->insert(It, midMBB); 9634 F->insert(It, exitMBB); 9635 exitMBB->splice(exitMBB->begin(), BB, 9636 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9637 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9638 9639 // thisMBB: 9640 // ... 9641 // fallthrough --> loopMBB 9642 BB->addSuccessor(loop1MBB); 9643 9644 // loop1MBB: 9645 // l[bhwd]arx dest, ptr 9646 // cmp[wd] dest, oldval 9647 // bne- midMBB 9648 // loop2MBB: 9649 // st[bhwd]cx. newval, ptr 9650 // bne- loopMBB 9651 // b exitBB 9652 // midMBB: 9653 // st[bhwd]cx. dest, ptr 9654 // exitBB: 9655 BB = loop1MBB; 9656 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9657 .addReg(ptrA).addReg(ptrB); 9658 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 9659 .addReg(oldval).addReg(dest); 9660 BuildMI(BB, dl, TII->get(PPC::BCC)) 9661 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9662 BB->addSuccessor(loop2MBB); 9663 BB->addSuccessor(midMBB); 9664 9665 BB = loop2MBB; 9666 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9667 .addReg(newval).addReg(ptrA).addReg(ptrB); 9668 BuildMI(BB, dl, TII->get(PPC::BCC)) 9669 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9670 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9671 BB->addSuccessor(loop1MBB); 9672 BB->addSuccessor(exitMBB); 9673 9674 BB = midMBB; 9675 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9676 .addReg(dest).addReg(ptrA).addReg(ptrB); 9677 BB->addSuccessor(exitMBB); 9678 9679 // exitMBB: 9680 // ... 9681 BB = exitMBB; 9682 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 9683 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 9684 // We must use 64-bit registers for addresses when targeting 64-bit, 9685 // since we're actually doing arithmetic on them. Other registers 9686 // can be 32-bit. 9687 bool is64bit = Subtarget.isPPC64(); 9688 bool isLittleEndian = Subtarget.isLittleEndian(); 9689 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 9690 9691 unsigned dest = MI.getOperand(0).getReg(); 9692 unsigned ptrA = MI.getOperand(1).getReg(); 9693 unsigned ptrB = MI.getOperand(2).getReg(); 9694 unsigned oldval = MI.getOperand(3).getReg(); 9695 unsigned newval = MI.getOperand(4).getReg(); 9696 DebugLoc dl = MI.getDebugLoc(); 9697 9698 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9699 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9700 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9701 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9702 F->insert(It, loop1MBB); 9703 F->insert(It, loop2MBB); 9704 F->insert(It, midMBB); 9705 F->insert(It, exitMBB); 9706 exitMBB->splice(exitMBB->begin(), BB, 9707 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9708 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9709 9710 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9711 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 9712 : &PPC::GPRCRegClass; 9713 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9714 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 9715 unsigned ShiftReg = 9716 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 9717 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 9718 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 9719 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 9720 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 9721 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 9722 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 9723 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 9724 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 9725 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 9726 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 9727 unsigned Ptr1Reg; 9728 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 9729 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9730 // thisMBB: 9731 // ... 9732 // fallthrough --> loopMBB 9733 BB->addSuccessor(loop1MBB); 9734 9735 // The 4-byte load must be aligned, while a char or short may be 9736 // anywhere in the word. Hence all this nasty bookkeeping code. 9737 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9738 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9739 // xori shift, shift1, 24 [16] 9740 // rlwinm ptr, ptr1, 0, 0, 29 9741 // slw newval2, newval, shift 9742 // slw oldval2, oldval,shift 9743 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9744 // slw mask, mask2, shift 9745 // and newval3, newval2, mask 9746 // and oldval3, oldval2, mask 9747 // loop1MBB: 9748 // lwarx tmpDest, ptr 9749 // and tmp, tmpDest, mask 9750 // cmpw tmp, oldval3 9751 // bne- midMBB 9752 // loop2MBB: 9753 // andc tmp2, tmpDest, mask 9754 // or tmp4, tmp2, newval3 9755 // stwcx. tmp4, ptr 9756 // bne- loop1MBB 9757 // b exitBB 9758 // midMBB: 9759 // stwcx. tmpDest, ptr 9760 // exitBB: 9761 // srw dest, tmpDest, shift 9762 if (ptrA != ZeroReg) { 9763 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9764 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9765 .addReg(ptrA).addReg(ptrB); 9766 } else { 9767 Ptr1Reg = ptrB; 9768 } 9769 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9770 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9771 if (!isLittleEndian) 9772 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9773 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9774 if (is64bit) 9775 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9776 .addReg(Ptr1Reg).addImm(0).addImm(61); 9777 else 9778 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9779 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9780 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9781 .addReg(newval).addReg(ShiftReg); 9782 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9783 .addReg(oldval).addReg(ShiftReg); 9784 if (is8bit) 9785 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9786 else { 9787 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9788 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9789 .addReg(Mask3Reg).addImm(65535); 9790 } 9791 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9792 .addReg(Mask2Reg).addReg(ShiftReg); 9793 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9794 .addReg(NewVal2Reg).addReg(MaskReg); 9795 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9796 .addReg(OldVal2Reg).addReg(MaskReg); 9797 9798 BB = loop1MBB; 9799 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9800 .addReg(ZeroReg).addReg(PtrReg); 9801 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9802 .addReg(TmpDestReg).addReg(MaskReg); 9803 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9804 .addReg(TmpReg).addReg(OldVal3Reg); 9805 BuildMI(BB, dl, TII->get(PPC::BCC)) 9806 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9807 BB->addSuccessor(loop2MBB); 9808 BB->addSuccessor(midMBB); 9809 9810 BB = loop2MBB; 9811 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9812 .addReg(TmpDestReg).addReg(MaskReg); 9813 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9814 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9815 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9816 .addReg(ZeroReg).addReg(PtrReg); 9817 BuildMI(BB, dl, TII->get(PPC::BCC)) 9818 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9819 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9820 BB->addSuccessor(loop1MBB); 9821 BB->addSuccessor(exitMBB); 9822 9823 BB = midMBB; 9824 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9825 .addReg(ZeroReg).addReg(PtrReg); 9826 BB->addSuccessor(exitMBB); 9827 9828 // exitMBB: 9829 // ... 9830 BB = exitMBB; 9831 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9832 .addReg(ShiftReg); 9833 } else if (MI.getOpcode() == PPC::FADDrtz) { 9834 // This pseudo performs an FADD with rounding mode temporarily forced 9835 // to round-to-zero. We emit this via custom inserter since the FPSCR 9836 // is not modeled at the SelectionDAG level. 9837 unsigned Dest = MI.getOperand(0).getReg(); 9838 unsigned Src1 = MI.getOperand(1).getReg(); 9839 unsigned Src2 = MI.getOperand(2).getReg(); 9840 DebugLoc dl = MI.getDebugLoc(); 9841 9842 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9843 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9844 9845 // Save FPSCR value. 9846 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9847 9848 // Set rounding mode to round-to-zero. 9849 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9850 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9851 9852 // Perform addition. 9853 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9854 9855 // Restore FPSCR value. 9856 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9857 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 9858 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 9859 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9860 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9861 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9862 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 9863 ? PPC::ANDIo8 9864 : PPC::ANDIo; 9865 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 9866 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9867 9868 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9869 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9870 &PPC::GPRCRegClass : 9871 &PPC::G8RCRegClass); 9872 9873 DebugLoc dl = MI.getDebugLoc(); 9874 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9875 .addReg(MI.getOperand(1).getReg()) 9876 .addImm(1); 9877 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9878 MI.getOperand(0).getReg()) 9879 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9880 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 9881 DebugLoc Dl = MI.getDebugLoc(); 9882 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9883 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9884 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9885 return BB; 9886 } else { 9887 llvm_unreachable("Unexpected instr type to insert"); 9888 } 9889 9890 MI.eraseFromParent(); // The pseudo instruction is gone now. 9891 return BB; 9892 } 9893 9894 //===----------------------------------------------------------------------===// 9895 // Target Optimization Hooks 9896 //===----------------------------------------------------------------------===// 9897 9898 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 9899 // For the estimates, convergence is quadratic, so we essentially double the 9900 // number of digits correct after every iteration. For both FRE and FRSQRTE, 9901 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 9902 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 9903 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 9904 if (VT.getScalarType() == MVT::f64) 9905 RefinementSteps++; 9906 return RefinementSteps; 9907 } 9908 9909 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 9910 int Enabled, int &RefinementSteps, 9911 bool &UseOneConstNR, 9912 bool Reciprocal) const { 9913 EVT VT = Operand.getValueType(); 9914 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9915 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9916 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9917 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9918 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9919 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9920 if (RefinementSteps == ReciprocalEstimate::Unspecified) 9921 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 9922 9923 UseOneConstNR = true; 9924 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9925 } 9926 return SDValue(); 9927 } 9928 9929 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 9930 int Enabled, 9931 int &RefinementSteps) const { 9932 EVT VT = Operand.getValueType(); 9933 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9934 (VT == MVT::f64 && Subtarget.hasFRE()) || 9935 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9936 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9937 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9938 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9939 if (RefinementSteps == ReciprocalEstimate::Unspecified) 9940 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 9941 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9942 } 9943 return SDValue(); 9944 } 9945 9946 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9947 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9948 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9949 // enabled for division), this functionality is redundant with the default 9950 // combiner logic (once the division -> reciprocal/multiply transformation 9951 // has taken place). As a result, this matters more for older cores than for 9952 // newer ones. 9953 9954 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9955 // reciprocal if there are two or more FDIVs (for embedded cores with only 9956 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9957 switch (Subtarget.getDarwinDirective()) { 9958 default: 9959 return 3; 9960 case PPC::DIR_440: 9961 case PPC::DIR_A2: 9962 case PPC::DIR_E500mc: 9963 case PPC::DIR_E5500: 9964 return 2; 9965 } 9966 } 9967 9968 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9969 // collapsed, and so we need to look through chains of them. 9970 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9971 int64_t& Offset, SelectionDAG &DAG) { 9972 if (DAG.isBaseWithConstantOffset(Loc)) { 9973 Base = Loc.getOperand(0); 9974 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9975 9976 // The base might itself be a base plus an offset, and if so, accumulate 9977 // that as well. 9978 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9979 } 9980 } 9981 9982 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9983 unsigned Bytes, int Dist, 9984 SelectionDAG &DAG) { 9985 if (VT.getSizeInBits() / 8 != Bytes) 9986 return false; 9987 9988 SDValue BaseLoc = Base->getBasePtr(); 9989 if (Loc.getOpcode() == ISD::FrameIndex) { 9990 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9991 return false; 9992 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9993 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9994 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9995 int FS = MFI.getObjectSize(FI); 9996 int BFS = MFI.getObjectSize(BFI); 9997 if (FS != BFS || FS != (int)Bytes) return false; 9998 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 9999 } 10000 10001 SDValue Base1 = Loc, Base2 = BaseLoc; 10002 int64_t Offset1 = 0, Offset2 = 0; 10003 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 10004 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 10005 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 10006 return true; 10007 10008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10009 const GlobalValue *GV1 = nullptr; 10010 const GlobalValue *GV2 = nullptr; 10011 Offset1 = 0; 10012 Offset2 = 0; 10013 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 10014 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 10015 if (isGA1 && isGA2 && GV1 == GV2) 10016 return Offset1 == (Offset2 + Dist*Bytes); 10017 return false; 10018 } 10019 10020 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 10021 // not enforce equality of the chain operands. 10022 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 10023 unsigned Bytes, int Dist, 10024 SelectionDAG &DAG) { 10025 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 10026 EVT VT = LS->getMemoryVT(); 10027 SDValue Loc = LS->getBasePtr(); 10028 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 10029 } 10030 10031 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 10032 EVT VT; 10033 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10034 default: return false; 10035 case Intrinsic::ppc_qpx_qvlfd: 10036 case Intrinsic::ppc_qpx_qvlfda: 10037 VT = MVT::v4f64; 10038 break; 10039 case Intrinsic::ppc_qpx_qvlfs: 10040 case Intrinsic::ppc_qpx_qvlfsa: 10041 VT = MVT::v4f32; 10042 break; 10043 case Intrinsic::ppc_qpx_qvlfcd: 10044 case Intrinsic::ppc_qpx_qvlfcda: 10045 VT = MVT::v2f64; 10046 break; 10047 case Intrinsic::ppc_qpx_qvlfcs: 10048 case Intrinsic::ppc_qpx_qvlfcsa: 10049 VT = MVT::v2f32; 10050 break; 10051 case Intrinsic::ppc_qpx_qvlfiwa: 10052 case Intrinsic::ppc_qpx_qvlfiwz: 10053 case Intrinsic::ppc_altivec_lvx: 10054 case Intrinsic::ppc_altivec_lvxl: 10055 case Intrinsic::ppc_vsx_lxvw4x: 10056 case Intrinsic::ppc_vsx_lxvw4x_be: 10057 VT = MVT::v4i32; 10058 break; 10059 case Intrinsic::ppc_vsx_lxvd2x: 10060 case Intrinsic::ppc_vsx_lxvd2x_be: 10061 VT = MVT::v2f64; 10062 break; 10063 case Intrinsic::ppc_altivec_lvebx: 10064 VT = MVT::i8; 10065 break; 10066 case Intrinsic::ppc_altivec_lvehx: 10067 VT = MVT::i16; 10068 break; 10069 case Intrinsic::ppc_altivec_lvewx: 10070 VT = MVT::i32; 10071 break; 10072 } 10073 10074 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 10075 } 10076 10077 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 10078 EVT VT; 10079 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10080 default: return false; 10081 case Intrinsic::ppc_qpx_qvstfd: 10082 case Intrinsic::ppc_qpx_qvstfda: 10083 VT = MVT::v4f64; 10084 break; 10085 case Intrinsic::ppc_qpx_qvstfs: 10086 case Intrinsic::ppc_qpx_qvstfsa: 10087 VT = MVT::v4f32; 10088 break; 10089 case Intrinsic::ppc_qpx_qvstfcd: 10090 case Intrinsic::ppc_qpx_qvstfcda: 10091 VT = MVT::v2f64; 10092 break; 10093 case Intrinsic::ppc_qpx_qvstfcs: 10094 case Intrinsic::ppc_qpx_qvstfcsa: 10095 VT = MVT::v2f32; 10096 break; 10097 case Intrinsic::ppc_qpx_qvstfiw: 10098 case Intrinsic::ppc_qpx_qvstfiwa: 10099 case Intrinsic::ppc_altivec_stvx: 10100 case Intrinsic::ppc_altivec_stvxl: 10101 case Intrinsic::ppc_vsx_stxvw4x: 10102 VT = MVT::v4i32; 10103 break; 10104 case Intrinsic::ppc_vsx_stxvd2x: 10105 VT = MVT::v2f64; 10106 break; 10107 case Intrinsic::ppc_vsx_stxvw4x_be: 10108 VT = MVT::v4i32; 10109 break; 10110 case Intrinsic::ppc_vsx_stxvd2x_be: 10111 VT = MVT::v2f64; 10112 break; 10113 case Intrinsic::ppc_altivec_stvebx: 10114 VT = MVT::i8; 10115 break; 10116 case Intrinsic::ppc_altivec_stvehx: 10117 VT = MVT::i16; 10118 break; 10119 case Intrinsic::ppc_altivec_stvewx: 10120 VT = MVT::i32; 10121 break; 10122 } 10123 10124 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 10125 } 10126 10127 return false; 10128 } 10129 10130 // Return true is there is a nearyby consecutive load to the one provided 10131 // (regardless of alignment). We search up and down the chain, looking though 10132 // token factors and other loads (but nothing else). As a result, a true result 10133 // indicates that it is safe to create a new consecutive load adjacent to the 10134 // load provided. 10135 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 10136 SDValue Chain = LD->getChain(); 10137 EVT VT = LD->getMemoryVT(); 10138 10139 SmallSet<SDNode *, 16> LoadRoots; 10140 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 10141 SmallSet<SDNode *, 16> Visited; 10142 10143 // First, search up the chain, branching to follow all token-factor operands. 10144 // If we find a consecutive load, then we're done, otherwise, record all 10145 // nodes just above the top-level loads and token factors. 10146 while (!Queue.empty()) { 10147 SDNode *ChainNext = Queue.pop_back_val(); 10148 if (!Visited.insert(ChainNext).second) 10149 continue; 10150 10151 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 10152 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 10153 return true; 10154 10155 if (!Visited.count(ChainLD->getChain().getNode())) 10156 Queue.push_back(ChainLD->getChain().getNode()); 10157 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 10158 for (const SDUse &O : ChainNext->ops()) 10159 if (!Visited.count(O.getNode())) 10160 Queue.push_back(O.getNode()); 10161 } else 10162 LoadRoots.insert(ChainNext); 10163 } 10164 10165 // Second, search down the chain, starting from the top-level nodes recorded 10166 // in the first phase. These top-level nodes are the nodes just above all 10167 // loads and token factors. Starting with their uses, recursively look though 10168 // all loads (just the chain uses) and token factors to find a consecutive 10169 // load. 10170 Visited.clear(); 10171 Queue.clear(); 10172 10173 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 10174 IE = LoadRoots.end(); I != IE; ++I) { 10175 Queue.push_back(*I); 10176 10177 while (!Queue.empty()) { 10178 SDNode *LoadRoot = Queue.pop_back_val(); 10179 if (!Visited.insert(LoadRoot).second) 10180 continue; 10181 10182 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 10183 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 10184 return true; 10185 10186 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 10187 UE = LoadRoot->use_end(); UI != UE; ++UI) 10188 if (((isa<MemSDNode>(*UI) && 10189 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 10190 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 10191 Queue.push_back(*UI); 10192 } 10193 } 10194 10195 return false; 10196 } 10197 10198 /// This function is called when we have proved that a SETCC node can be replaced 10199 /// by subtraction (and other supporting instructions) so that the result of 10200 /// comparison is kept in a GPR instead of CR. This function is purely for 10201 /// codegen purposes and has some flags to guide the codegen process. 10202 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 10203 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 10204 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 10205 10206 // Zero extend the operands to the largest legal integer. Originally, they 10207 // must be of a strictly smaller size. 10208 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 10209 DAG.getConstant(Size, DL, MVT::i32)); 10210 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 10211 DAG.getConstant(Size, DL, MVT::i32)); 10212 10213 // Swap if needed. Depends on the condition code. 10214 if (Swap) 10215 std::swap(Op0, Op1); 10216 10217 // Subtract extended integers. 10218 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 10219 10220 // Move the sign bit to the least significant position and zero out the rest. 10221 // Now the least significant bit carries the result of original comparison. 10222 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 10223 DAG.getConstant(Size - 1, DL, MVT::i32)); 10224 auto Final = Shifted; 10225 10226 // Complement the result if needed. Based on the condition code. 10227 if (Complement) 10228 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 10229 DAG.getConstant(1, DL, MVT::i64)); 10230 10231 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 10232 } 10233 10234 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 10235 DAGCombinerInfo &DCI) const { 10236 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 10237 10238 SelectionDAG &DAG = DCI.DAG; 10239 SDLoc DL(N); 10240 10241 // Size of integers being compared has a critical role in the following 10242 // analysis, so we prefer to do this when all types are legal. 10243 if (!DCI.isAfterLegalizeVectorOps()) 10244 return SDValue(); 10245 10246 // If all users of SETCC extend its value to a legal integer type 10247 // then we replace SETCC with a subtraction 10248 for (SDNode::use_iterator UI = N->use_begin(), 10249 UE = N->use_end(); UI != UE; ++UI) { 10250 if (UI->getOpcode() != ISD::ZERO_EXTEND) 10251 return SDValue(); 10252 } 10253 10254 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 10255 auto OpSize = N->getOperand(0).getValueSizeInBits(); 10256 10257 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 10258 10259 if (OpSize < Size) { 10260 switch (CC) { 10261 default: break; 10262 case ISD::SETULT: 10263 return generateEquivalentSub(N, Size, false, false, DL, DAG); 10264 case ISD::SETULE: 10265 return generateEquivalentSub(N, Size, true, true, DL, DAG); 10266 case ISD::SETUGT: 10267 return generateEquivalentSub(N, Size, false, true, DL, DAG); 10268 case ISD::SETUGE: 10269 return generateEquivalentSub(N, Size, true, false, DL, DAG); 10270 } 10271 } 10272 10273 return SDValue(); 10274 } 10275 10276 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 10277 DAGCombinerInfo &DCI) const { 10278 SelectionDAG &DAG = DCI.DAG; 10279 SDLoc dl(N); 10280 10281 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 10282 // If we're tracking CR bits, we need to be careful that we don't have: 10283 // trunc(binary-ops(zext(x), zext(y))) 10284 // or 10285 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 10286 // such that we're unnecessarily moving things into GPRs when it would be 10287 // better to keep them in CR bits. 10288 10289 // Note that trunc here can be an actual i1 trunc, or can be the effective 10290 // truncation that comes from a setcc or select_cc. 10291 if (N->getOpcode() == ISD::TRUNCATE && 10292 N->getValueType(0) != MVT::i1) 10293 return SDValue(); 10294 10295 if (N->getOperand(0).getValueType() != MVT::i32 && 10296 N->getOperand(0).getValueType() != MVT::i64) 10297 return SDValue(); 10298 10299 if (N->getOpcode() == ISD::SETCC || 10300 N->getOpcode() == ISD::SELECT_CC) { 10301 // If we're looking at a comparison, then we need to make sure that the 10302 // high bits (all except for the first) don't matter the result. 10303 ISD::CondCode CC = 10304 cast<CondCodeSDNode>(N->getOperand( 10305 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 10306 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 10307 10308 if (ISD::isSignedIntSetCC(CC)) { 10309 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 10310 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 10311 return SDValue(); 10312 } else if (ISD::isUnsignedIntSetCC(CC)) { 10313 if (!DAG.MaskedValueIsZero(N->getOperand(0), 10314 APInt::getHighBitsSet(OpBits, OpBits-1)) || 10315 !DAG.MaskedValueIsZero(N->getOperand(1), 10316 APInt::getHighBitsSet(OpBits, OpBits-1))) 10317 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 10318 : SDValue()); 10319 } else { 10320 // This is neither a signed nor an unsigned comparison, just make sure 10321 // that the high bits are equal. 10322 APInt Op1Zero, Op1One; 10323 APInt Op2Zero, Op2One; 10324 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 10325 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 10326 10327 // We don't really care about what is known about the first bit (if 10328 // anything), so clear it in all masks prior to comparing them. 10329 Op1Zero.clearBit(0); Op1One.clearBit(0); 10330 Op2Zero.clearBit(0); Op2One.clearBit(0); 10331 10332 if (Op1Zero != Op2Zero || Op1One != Op2One) 10333 return SDValue(); 10334 } 10335 } 10336 10337 // We now know that the higher-order bits are irrelevant, we just need to 10338 // make sure that all of the intermediate operations are bit operations, and 10339 // all inputs are extensions. 10340 if (N->getOperand(0).getOpcode() != ISD::AND && 10341 N->getOperand(0).getOpcode() != ISD::OR && 10342 N->getOperand(0).getOpcode() != ISD::XOR && 10343 N->getOperand(0).getOpcode() != ISD::SELECT && 10344 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 10345 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 10346 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 10347 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 10348 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 10349 return SDValue(); 10350 10351 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 10352 N->getOperand(1).getOpcode() != ISD::AND && 10353 N->getOperand(1).getOpcode() != ISD::OR && 10354 N->getOperand(1).getOpcode() != ISD::XOR && 10355 N->getOperand(1).getOpcode() != ISD::SELECT && 10356 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 10357 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 10358 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 10359 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 10360 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 10361 return SDValue(); 10362 10363 SmallVector<SDValue, 4> Inputs; 10364 SmallVector<SDValue, 8> BinOps, PromOps; 10365 SmallPtrSet<SDNode *, 16> Visited; 10366 10367 for (unsigned i = 0; i < 2; ++i) { 10368 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 10369 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 10370 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 10371 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 10372 isa<ConstantSDNode>(N->getOperand(i))) 10373 Inputs.push_back(N->getOperand(i)); 10374 else 10375 BinOps.push_back(N->getOperand(i)); 10376 10377 if (N->getOpcode() == ISD::TRUNCATE) 10378 break; 10379 } 10380 10381 // Visit all inputs, collect all binary operations (and, or, xor and 10382 // select) that are all fed by extensions. 10383 while (!BinOps.empty()) { 10384 SDValue BinOp = BinOps.back(); 10385 BinOps.pop_back(); 10386 10387 if (!Visited.insert(BinOp.getNode()).second) 10388 continue; 10389 10390 PromOps.push_back(BinOp); 10391 10392 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 10393 // The condition of the select is not promoted. 10394 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 10395 continue; 10396 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 10397 continue; 10398 10399 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 10400 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 10401 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 10402 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 10403 isa<ConstantSDNode>(BinOp.getOperand(i))) { 10404 Inputs.push_back(BinOp.getOperand(i)); 10405 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 10406 BinOp.getOperand(i).getOpcode() == ISD::OR || 10407 BinOp.getOperand(i).getOpcode() == ISD::XOR || 10408 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 10409 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 10410 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 10411 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 10412 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 10413 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 10414 BinOps.push_back(BinOp.getOperand(i)); 10415 } else { 10416 // We have an input that is not an extension or another binary 10417 // operation; we'll abort this transformation. 10418 return SDValue(); 10419 } 10420 } 10421 } 10422 10423 // Make sure that this is a self-contained cluster of operations (which 10424 // is not quite the same thing as saying that everything has only one 10425 // use). 10426 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10427 if (isa<ConstantSDNode>(Inputs[i])) 10428 continue; 10429 10430 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 10431 UE = Inputs[i].getNode()->use_end(); 10432 UI != UE; ++UI) { 10433 SDNode *User = *UI; 10434 if (User != N && !Visited.count(User)) 10435 return SDValue(); 10436 10437 // Make sure that we're not going to promote the non-output-value 10438 // operand(s) or SELECT or SELECT_CC. 10439 // FIXME: Although we could sometimes handle this, and it does occur in 10440 // practice that one of the condition inputs to the select is also one of 10441 // the outputs, we currently can't deal with this. 10442 if (User->getOpcode() == ISD::SELECT) { 10443 if (User->getOperand(0) == Inputs[i]) 10444 return SDValue(); 10445 } else if (User->getOpcode() == ISD::SELECT_CC) { 10446 if (User->getOperand(0) == Inputs[i] || 10447 User->getOperand(1) == Inputs[i]) 10448 return SDValue(); 10449 } 10450 } 10451 } 10452 10453 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 10454 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 10455 UE = PromOps[i].getNode()->use_end(); 10456 UI != UE; ++UI) { 10457 SDNode *User = *UI; 10458 if (User != N && !Visited.count(User)) 10459 return SDValue(); 10460 10461 // Make sure that we're not going to promote the non-output-value 10462 // operand(s) or SELECT or SELECT_CC. 10463 // FIXME: Although we could sometimes handle this, and it does occur in 10464 // practice that one of the condition inputs to the select is also one of 10465 // the outputs, we currently can't deal with this. 10466 if (User->getOpcode() == ISD::SELECT) { 10467 if (User->getOperand(0) == PromOps[i]) 10468 return SDValue(); 10469 } else if (User->getOpcode() == ISD::SELECT_CC) { 10470 if (User->getOperand(0) == PromOps[i] || 10471 User->getOperand(1) == PromOps[i]) 10472 return SDValue(); 10473 } 10474 } 10475 } 10476 10477 // Replace all inputs with the extension operand. 10478 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10479 // Constants may have users outside the cluster of to-be-promoted nodes, 10480 // and so we need to replace those as we do the promotions. 10481 if (isa<ConstantSDNode>(Inputs[i])) 10482 continue; 10483 else 10484 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 10485 } 10486 10487 std::list<HandleSDNode> PromOpHandles; 10488 for (auto &PromOp : PromOps) 10489 PromOpHandles.emplace_back(PromOp); 10490 10491 // Replace all operations (these are all the same, but have a different 10492 // (i1) return type). DAG.getNode will validate that the types of 10493 // a binary operator match, so go through the list in reverse so that 10494 // we've likely promoted both operands first. Any intermediate truncations or 10495 // extensions disappear. 10496 while (!PromOpHandles.empty()) { 10497 SDValue PromOp = PromOpHandles.back().getValue(); 10498 PromOpHandles.pop_back(); 10499 10500 if (PromOp.getOpcode() == ISD::TRUNCATE || 10501 PromOp.getOpcode() == ISD::SIGN_EXTEND || 10502 PromOp.getOpcode() == ISD::ZERO_EXTEND || 10503 PromOp.getOpcode() == ISD::ANY_EXTEND) { 10504 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 10505 PromOp.getOperand(0).getValueType() != MVT::i1) { 10506 // The operand is not yet ready (see comment below). 10507 PromOpHandles.emplace_front(PromOp); 10508 continue; 10509 } 10510 10511 SDValue RepValue = PromOp.getOperand(0); 10512 if (isa<ConstantSDNode>(RepValue)) 10513 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 10514 10515 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 10516 continue; 10517 } 10518 10519 unsigned C; 10520 switch (PromOp.getOpcode()) { 10521 default: C = 0; break; 10522 case ISD::SELECT: C = 1; break; 10523 case ISD::SELECT_CC: C = 2; break; 10524 } 10525 10526 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 10527 PromOp.getOperand(C).getValueType() != MVT::i1) || 10528 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 10529 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 10530 // The to-be-promoted operands of this node have not yet been 10531 // promoted (this should be rare because we're going through the 10532 // list backward, but if one of the operands has several users in 10533 // this cluster of to-be-promoted nodes, it is possible). 10534 PromOpHandles.emplace_front(PromOp); 10535 continue; 10536 } 10537 10538 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10539 PromOp.getNode()->op_end()); 10540 10541 // If there are any constant inputs, make sure they're replaced now. 10542 for (unsigned i = 0; i < 2; ++i) 10543 if (isa<ConstantSDNode>(Ops[C+i])) 10544 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 10545 10546 DAG.ReplaceAllUsesOfValueWith(PromOp, 10547 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 10548 } 10549 10550 // Now we're left with the initial truncation itself. 10551 if (N->getOpcode() == ISD::TRUNCATE) 10552 return N->getOperand(0); 10553 10554 // Otherwise, this is a comparison. The operands to be compared have just 10555 // changed type (to i1), but everything else is the same. 10556 return SDValue(N, 0); 10557 } 10558 10559 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 10560 DAGCombinerInfo &DCI) const { 10561 SelectionDAG &DAG = DCI.DAG; 10562 SDLoc dl(N); 10563 10564 // If we're tracking CR bits, we need to be careful that we don't have: 10565 // zext(binary-ops(trunc(x), trunc(y))) 10566 // or 10567 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 10568 // such that we're unnecessarily moving things into CR bits that can more 10569 // efficiently stay in GPRs. Note that if we're not certain that the high 10570 // bits are set as required by the final extension, we still may need to do 10571 // some masking to get the proper behavior. 10572 10573 // This same functionality is important on PPC64 when dealing with 10574 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 10575 // the return values of functions. Because it is so similar, it is handled 10576 // here as well. 10577 10578 if (N->getValueType(0) != MVT::i32 && 10579 N->getValueType(0) != MVT::i64) 10580 return SDValue(); 10581 10582 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 10583 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 10584 return SDValue(); 10585 10586 if (N->getOperand(0).getOpcode() != ISD::AND && 10587 N->getOperand(0).getOpcode() != ISD::OR && 10588 N->getOperand(0).getOpcode() != ISD::XOR && 10589 N->getOperand(0).getOpcode() != ISD::SELECT && 10590 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 10591 return SDValue(); 10592 10593 SmallVector<SDValue, 4> Inputs; 10594 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 10595 SmallPtrSet<SDNode *, 16> Visited; 10596 10597 // Visit all inputs, collect all binary operations (and, or, xor and 10598 // select) that are all fed by truncations. 10599 while (!BinOps.empty()) { 10600 SDValue BinOp = BinOps.back(); 10601 BinOps.pop_back(); 10602 10603 if (!Visited.insert(BinOp.getNode()).second) 10604 continue; 10605 10606 PromOps.push_back(BinOp); 10607 10608 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 10609 // The condition of the select is not promoted. 10610 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 10611 continue; 10612 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 10613 continue; 10614 10615 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 10616 isa<ConstantSDNode>(BinOp.getOperand(i))) { 10617 Inputs.push_back(BinOp.getOperand(i)); 10618 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 10619 BinOp.getOperand(i).getOpcode() == ISD::OR || 10620 BinOp.getOperand(i).getOpcode() == ISD::XOR || 10621 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 10622 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 10623 BinOps.push_back(BinOp.getOperand(i)); 10624 } else { 10625 // We have an input that is not a truncation or another binary 10626 // operation; we'll abort this transformation. 10627 return SDValue(); 10628 } 10629 } 10630 } 10631 10632 // The operands of a select that must be truncated when the select is 10633 // promoted because the operand is actually part of the to-be-promoted set. 10634 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 10635 10636 // Make sure that this is a self-contained cluster of operations (which 10637 // is not quite the same thing as saying that everything has only one 10638 // use). 10639 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10640 if (isa<ConstantSDNode>(Inputs[i])) 10641 continue; 10642 10643 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 10644 UE = Inputs[i].getNode()->use_end(); 10645 UI != UE; ++UI) { 10646 SDNode *User = *UI; 10647 if (User != N && !Visited.count(User)) 10648 return SDValue(); 10649 10650 // If we're going to promote the non-output-value operand(s) or SELECT or 10651 // SELECT_CC, record them for truncation. 10652 if (User->getOpcode() == ISD::SELECT) { 10653 if (User->getOperand(0) == Inputs[i]) 10654 SelectTruncOp[0].insert(std::make_pair(User, 10655 User->getOperand(0).getValueType())); 10656 } else if (User->getOpcode() == ISD::SELECT_CC) { 10657 if (User->getOperand(0) == Inputs[i]) 10658 SelectTruncOp[0].insert(std::make_pair(User, 10659 User->getOperand(0).getValueType())); 10660 if (User->getOperand(1) == Inputs[i]) 10661 SelectTruncOp[1].insert(std::make_pair(User, 10662 User->getOperand(1).getValueType())); 10663 } 10664 } 10665 } 10666 10667 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 10668 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 10669 UE = PromOps[i].getNode()->use_end(); 10670 UI != UE; ++UI) { 10671 SDNode *User = *UI; 10672 if (User != N && !Visited.count(User)) 10673 return SDValue(); 10674 10675 // If we're going to promote the non-output-value operand(s) or SELECT or 10676 // SELECT_CC, record them for truncation. 10677 if (User->getOpcode() == ISD::SELECT) { 10678 if (User->getOperand(0) == PromOps[i]) 10679 SelectTruncOp[0].insert(std::make_pair(User, 10680 User->getOperand(0).getValueType())); 10681 } else if (User->getOpcode() == ISD::SELECT_CC) { 10682 if (User->getOperand(0) == PromOps[i]) 10683 SelectTruncOp[0].insert(std::make_pair(User, 10684 User->getOperand(0).getValueType())); 10685 if (User->getOperand(1) == PromOps[i]) 10686 SelectTruncOp[1].insert(std::make_pair(User, 10687 User->getOperand(1).getValueType())); 10688 } 10689 } 10690 } 10691 10692 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 10693 bool ReallyNeedsExt = false; 10694 if (N->getOpcode() != ISD::ANY_EXTEND) { 10695 // If all of the inputs are not already sign/zero extended, then 10696 // we'll still need to do that at the end. 10697 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10698 if (isa<ConstantSDNode>(Inputs[i])) 10699 continue; 10700 10701 unsigned OpBits = 10702 Inputs[i].getOperand(0).getValueSizeInBits(); 10703 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 10704 10705 if ((N->getOpcode() == ISD::ZERO_EXTEND && 10706 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 10707 APInt::getHighBitsSet(OpBits, 10708 OpBits-PromBits))) || 10709 (N->getOpcode() == ISD::SIGN_EXTEND && 10710 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 10711 (OpBits-(PromBits-1)))) { 10712 ReallyNeedsExt = true; 10713 break; 10714 } 10715 } 10716 } 10717 10718 // Replace all inputs, either with the truncation operand, or a 10719 // truncation or extension to the final output type. 10720 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10721 // Constant inputs need to be replaced with the to-be-promoted nodes that 10722 // use them because they might have users outside of the cluster of 10723 // promoted nodes. 10724 if (isa<ConstantSDNode>(Inputs[i])) 10725 continue; 10726 10727 SDValue InSrc = Inputs[i].getOperand(0); 10728 if (Inputs[i].getValueType() == N->getValueType(0)) 10729 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 10730 else if (N->getOpcode() == ISD::SIGN_EXTEND) 10731 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10732 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 10733 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10734 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10735 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 10736 else 10737 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10738 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 10739 } 10740 10741 std::list<HandleSDNode> PromOpHandles; 10742 for (auto &PromOp : PromOps) 10743 PromOpHandles.emplace_back(PromOp); 10744 10745 // Replace all operations (these are all the same, but have a different 10746 // (promoted) return type). DAG.getNode will validate that the types of 10747 // a binary operator match, so go through the list in reverse so that 10748 // we've likely promoted both operands first. 10749 while (!PromOpHandles.empty()) { 10750 SDValue PromOp = PromOpHandles.back().getValue(); 10751 PromOpHandles.pop_back(); 10752 10753 unsigned C; 10754 switch (PromOp.getOpcode()) { 10755 default: C = 0; break; 10756 case ISD::SELECT: C = 1; break; 10757 case ISD::SELECT_CC: C = 2; break; 10758 } 10759 10760 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 10761 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 10762 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 10763 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 10764 // The to-be-promoted operands of this node have not yet been 10765 // promoted (this should be rare because we're going through the 10766 // list backward, but if one of the operands has several users in 10767 // this cluster of to-be-promoted nodes, it is possible). 10768 PromOpHandles.emplace_front(PromOp); 10769 continue; 10770 } 10771 10772 // For SELECT and SELECT_CC nodes, we do a similar check for any 10773 // to-be-promoted comparison inputs. 10774 if (PromOp.getOpcode() == ISD::SELECT || 10775 PromOp.getOpcode() == ISD::SELECT_CC) { 10776 if ((SelectTruncOp[0].count(PromOp.getNode()) && 10777 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 10778 (SelectTruncOp[1].count(PromOp.getNode()) && 10779 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 10780 PromOpHandles.emplace_front(PromOp); 10781 continue; 10782 } 10783 } 10784 10785 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10786 PromOp.getNode()->op_end()); 10787 10788 // If this node has constant inputs, then they'll need to be promoted here. 10789 for (unsigned i = 0; i < 2; ++i) { 10790 if (!isa<ConstantSDNode>(Ops[C+i])) 10791 continue; 10792 if (Ops[C+i].getValueType() == N->getValueType(0)) 10793 continue; 10794 10795 if (N->getOpcode() == ISD::SIGN_EXTEND) 10796 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10797 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10798 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10799 else 10800 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10801 } 10802 10803 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 10804 // truncate them again to the original value type. 10805 if (PromOp.getOpcode() == ISD::SELECT || 10806 PromOp.getOpcode() == ISD::SELECT_CC) { 10807 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 10808 if (SI0 != SelectTruncOp[0].end()) 10809 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 10810 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 10811 if (SI1 != SelectTruncOp[1].end()) 10812 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 10813 } 10814 10815 DAG.ReplaceAllUsesOfValueWith(PromOp, 10816 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 10817 } 10818 10819 // Now we're left with the initial extension itself. 10820 if (!ReallyNeedsExt) 10821 return N->getOperand(0); 10822 10823 // To zero extend, just mask off everything except for the first bit (in the 10824 // i1 case). 10825 if (N->getOpcode() == ISD::ZERO_EXTEND) 10826 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 10827 DAG.getConstant(APInt::getLowBitsSet( 10828 N->getValueSizeInBits(0), PromBits), 10829 dl, N->getValueType(0))); 10830 10831 assert(N->getOpcode() == ISD::SIGN_EXTEND && 10832 "Invalid extension type"); 10833 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 10834 SDValue ShiftCst = 10835 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 10836 return DAG.getNode( 10837 ISD::SRA, dl, N->getValueType(0), 10838 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 10839 ShiftCst); 10840 } 10841 10842 /// \brief Reduces the number of fp-to-int conversion when building a vector. 10843 /// 10844 /// If this vector is built out of floating to integer conversions, 10845 /// transform it to a vector built out of floating point values followed by a 10846 /// single floating to integer conversion of the vector. 10847 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 10848 /// becomes (fptosi (build_vector ($A, $B, ...))) 10849 SDValue PPCTargetLowering:: 10850 combineElementTruncationToVectorTruncation(SDNode *N, 10851 DAGCombinerInfo &DCI) const { 10852 assert(N->getOpcode() == ISD::BUILD_VECTOR && 10853 "Should be called with a BUILD_VECTOR node"); 10854 10855 SelectionDAG &DAG = DCI.DAG; 10856 SDLoc dl(N); 10857 10858 SDValue FirstInput = N->getOperand(0); 10859 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 10860 "The input operand must be an fp-to-int conversion."); 10861 10862 // This combine happens after legalization so the fp_to_[su]i nodes are 10863 // already converted to PPCSISD nodes. 10864 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 10865 if (FirstConversion == PPCISD::FCTIDZ || 10866 FirstConversion == PPCISD::FCTIDUZ || 10867 FirstConversion == PPCISD::FCTIWZ || 10868 FirstConversion == PPCISD::FCTIWUZ) { 10869 bool IsSplat = true; 10870 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 10871 FirstConversion == PPCISD::FCTIWUZ; 10872 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 10873 SmallVector<SDValue, 4> Ops; 10874 EVT TargetVT = N->getValueType(0); 10875 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 10876 if (N->getOperand(i).getOpcode() != PPCISD::MFVSR) 10877 return SDValue(); 10878 unsigned NextConversion = N->getOperand(i).getOperand(0).getOpcode(); 10879 if (NextConversion != FirstConversion) 10880 return SDValue(); 10881 if (N->getOperand(i) != FirstInput) 10882 IsSplat = false; 10883 } 10884 10885 // If this is a splat, we leave it as-is since there will be only a single 10886 // fp-to-int conversion followed by a splat of the integer. This is better 10887 // for 32-bit and smaller ints and neutral for 64-bit ints. 10888 if (IsSplat) 10889 return SDValue(); 10890 10891 // Now that we know we have the right type of node, get its operands 10892 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 10893 SDValue In = N->getOperand(i).getOperand(0); 10894 // For 32-bit values, we need to add an FP_ROUND node. 10895 if (Is32Bit) { 10896 if (In.isUndef()) 10897 Ops.push_back(DAG.getUNDEF(SrcVT)); 10898 else { 10899 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 10900 MVT::f32, In.getOperand(0), 10901 DAG.getIntPtrConstant(1, dl)); 10902 Ops.push_back(Trunc); 10903 } 10904 } else 10905 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 10906 } 10907 10908 unsigned Opcode; 10909 if (FirstConversion == PPCISD::FCTIDZ || 10910 FirstConversion == PPCISD::FCTIWZ) 10911 Opcode = ISD::FP_TO_SINT; 10912 else 10913 Opcode = ISD::FP_TO_UINT; 10914 10915 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 10916 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 10917 return DAG.getNode(Opcode, dl, TargetVT, BV); 10918 } 10919 return SDValue(); 10920 } 10921 10922 /// \brief Reduce the number of loads when building a vector. 10923 /// 10924 /// Building a vector out of multiple loads can be converted to a load 10925 /// of the vector type if the loads are consecutive. If the loads are 10926 /// consecutive but in descending order, a shuffle is added at the end 10927 /// to reorder the vector. 10928 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 10929 assert(N->getOpcode() == ISD::BUILD_VECTOR && 10930 "Should be called with a BUILD_VECTOR node"); 10931 10932 SDLoc dl(N); 10933 bool InputsAreConsecutiveLoads = true; 10934 bool InputsAreReverseConsecutive = true; 10935 unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8; 10936 SDValue FirstInput = N->getOperand(0); 10937 bool IsRoundOfExtLoad = false; 10938 10939 if (FirstInput.getOpcode() == ISD::FP_ROUND && 10940 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 10941 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 10942 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 10943 } 10944 // Not a build vector of (possibly fp_rounded) loads. 10945 if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) 10946 return SDValue(); 10947 10948 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 10949 // If any inputs are fp_round(extload), they all must be. 10950 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 10951 return SDValue(); 10952 10953 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 10954 N->getOperand(i); 10955 if (NextInput.getOpcode() != ISD::LOAD) 10956 return SDValue(); 10957 10958 SDValue PreviousInput = 10959 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 10960 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 10961 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 10962 10963 // If any inputs are fp_round(extload), they all must be. 10964 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 10965 return SDValue(); 10966 10967 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 10968 InputsAreConsecutiveLoads = false; 10969 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 10970 InputsAreReverseConsecutive = false; 10971 10972 // Exit early if the loads are neither consecutive nor reverse consecutive. 10973 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 10974 return SDValue(); 10975 } 10976 10977 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 10978 "The loads cannot be both consecutive and reverse consecutive."); 10979 10980 SDValue FirstLoadOp = 10981 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 10982 SDValue LastLoadOp = 10983 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 10984 N->getOperand(N->getNumOperands()-1); 10985 10986 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 10987 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 10988 if (InputsAreConsecutiveLoads) { 10989 assert(LD1 && "Input needs to be a LoadSDNode."); 10990 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 10991 LD1->getBasePtr(), LD1->getPointerInfo(), 10992 LD1->getAlignment()); 10993 } 10994 if (InputsAreReverseConsecutive) { 10995 assert(LDL && "Input needs to be a LoadSDNode."); 10996 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 10997 LDL->getBasePtr(), LDL->getPointerInfo(), 10998 LDL->getAlignment()); 10999 SmallVector<int, 16> Ops; 11000 for (int i = N->getNumOperands() - 1; i >= 0; i--) 11001 Ops.push_back(i); 11002 11003 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 11004 DAG.getUNDEF(N->getValueType(0)), Ops); 11005 } 11006 return SDValue(); 11007 } 11008 11009 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 11010 DAGCombinerInfo &DCI) const { 11011 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11012 "Should be called with a BUILD_VECTOR node"); 11013 11014 SelectionDAG &DAG = DCI.DAG; 11015 SDLoc dl(N); 11016 11017 if (!Subtarget.hasVSX()) 11018 return SDValue(); 11019 11020 // The target independent DAG combiner will leave a build_vector of 11021 // float-to-int conversions intact. We can generate MUCH better code for 11022 // a float-to-int conversion of a vector of floats. 11023 SDValue FirstInput = N->getOperand(0); 11024 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 11025 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 11026 if (Reduced) 11027 return Reduced; 11028 } 11029 11030 // If we're building a vector out of consecutive loads, just load that 11031 // vector type. 11032 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 11033 if (Reduced) 11034 return Reduced; 11035 11036 if (N->getValueType(0) != MVT::v2f64) 11037 return SDValue(); 11038 11039 // Looking for: 11040 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 11041 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 11042 FirstInput.getOpcode() != ISD::UINT_TO_FP) 11043 return SDValue(); 11044 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 11045 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 11046 return SDValue(); 11047 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 11048 return SDValue(); 11049 11050 SDValue Ext1 = FirstInput.getOperand(0); 11051 SDValue Ext2 = N->getOperand(1).getOperand(0); 11052 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 11053 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 11054 return SDValue(); 11055 11056 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 11057 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 11058 if (!Ext1Op || !Ext2Op) 11059 return SDValue(); 11060 if (Ext1.getValueType() != MVT::i32 || 11061 Ext2.getValueType() != MVT::i32) 11062 if (Ext1.getOperand(0) != Ext2.getOperand(0)) 11063 return SDValue(); 11064 11065 int FirstElem = Ext1Op->getZExtValue(); 11066 int SecondElem = Ext2Op->getZExtValue(); 11067 int SubvecIdx; 11068 if (FirstElem == 0 && SecondElem == 1) 11069 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 11070 else if (FirstElem == 2 && SecondElem == 3) 11071 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 11072 else 11073 return SDValue(); 11074 11075 SDValue SrcVec = Ext1.getOperand(0); 11076 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 11077 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 11078 return DAG.getNode(NodeType, dl, MVT::v2f64, 11079 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 11080 } 11081 11082 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 11083 DAGCombinerInfo &DCI) const { 11084 assert((N->getOpcode() == ISD::SINT_TO_FP || 11085 N->getOpcode() == ISD::UINT_TO_FP) && 11086 "Need an int -> FP conversion node here"); 11087 11088 if (useSoftFloat() || !Subtarget.has64BitSupport()) 11089 return SDValue(); 11090 11091 SelectionDAG &DAG = DCI.DAG; 11092 SDLoc dl(N); 11093 SDValue Op(N, 0); 11094 11095 SDValue FirstOperand(Op.getOperand(0)); 11096 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 11097 (FirstOperand.getValueType() == MVT::i8 || 11098 FirstOperand.getValueType() == MVT::i16); 11099 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 11100 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 11101 bool DstDouble = Op.getValueType() == MVT::f64; 11102 unsigned ConvOp = Signed ? 11103 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 11104 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 11105 SDValue WidthConst = 11106 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 11107 dl, false); 11108 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 11109 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 11110 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 11111 DAG.getVTList(MVT::f64, MVT::Other), 11112 Ops, MVT::i8, LDN->getMemOperand()); 11113 11114 // For signed conversion, we need to sign-extend the value in the VSR 11115 if (Signed) { 11116 SDValue ExtOps[] = { Ld, WidthConst }; 11117 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 11118 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 11119 } else 11120 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 11121 } 11122 11123 // Don't handle ppc_fp128 here or i1 conversions. 11124 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 11125 return SDValue(); 11126 if (Op.getOperand(0).getValueType() == MVT::i1) 11127 return SDValue(); 11128 11129 // For i32 intermediate values, unfortunately, the conversion functions 11130 // leave the upper 32 bits of the value are undefined. Within the set of 11131 // scalar instructions, we have no method for zero- or sign-extending the 11132 // value. Thus, we cannot handle i32 intermediate values here. 11133 if (Op.getOperand(0).getValueType() == MVT::i32) 11134 return SDValue(); 11135 11136 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 11137 "UINT_TO_FP is supported only with FPCVT"); 11138 11139 // If we have FCFIDS, then use it when converting to single-precision. 11140 // Otherwise, convert to double-precision and then round. 11141 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 11142 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 11143 : PPCISD::FCFIDS) 11144 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 11145 : PPCISD::FCFID); 11146 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 11147 ? MVT::f32 11148 : MVT::f64; 11149 11150 // If we're converting from a float, to an int, and back to a float again, 11151 // then we don't need the store/load pair at all. 11152 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 11153 Subtarget.hasFPCVT()) || 11154 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 11155 SDValue Src = Op.getOperand(0).getOperand(0); 11156 if (Src.getValueType() == MVT::f32) { 11157 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 11158 DCI.AddToWorklist(Src.getNode()); 11159 } else if (Src.getValueType() != MVT::f64) { 11160 // Make sure that we don't pick up a ppc_fp128 source value. 11161 return SDValue(); 11162 } 11163 11164 unsigned FCTOp = 11165 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 11166 PPCISD::FCTIDUZ; 11167 11168 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 11169 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 11170 11171 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 11172 FP = DAG.getNode(ISD::FP_ROUND, dl, 11173 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 11174 DCI.AddToWorklist(FP.getNode()); 11175 } 11176 11177 return FP; 11178 } 11179 11180 return SDValue(); 11181 } 11182 11183 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 11184 // builtins) into loads with swaps. 11185 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 11186 DAGCombinerInfo &DCI) const { 11187 SelectionDAG &DAG = DCI.DAG; 11188 SDLoc dl(N); 11189 SDValue Chain; 11190 SDValue Base; 11191 MachineMemOperand *MMO; 11192 11193 switch (N->getOpcode()) { 11194 default: 11195 llvm_unreachable("Unexpected opcode for little endian VSX load"); 11196 case ISD::LOAD: { 11197 LoadSDNode *LD = cast<LoadSDNode>(N); 11198 Chain = LD->getChain(); 11199 Base = LD->getBasePtr(); 11200 MMO = LD->getMemOperand(); 11201 // If the MMO suggests this isn't a load of a full vector, leave 11202 // things alone. For a built-in, we have to make the change for 11203 // correctness, so if there is a size problem that will be a bug. 11204 if (MMO->getSize() < 16) 11205 return SDValue(); 11206 break; 11207 } 11208 case ISD::INTRINSIC_W_CHAIN: { 11209 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 11210 Chain = Intrin->getChain(); 11211 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 11212 // us what we want. Get operand 2 instead. 11213 Base = Intrin->getOperand(2); 11214 MMO = Intrin->getMemOperand(); 11215 break; 11216 } 11217 } 11218 11219 MVT VecTy = N->getValueType(0).getSimpleVT(); 11220 SDValue LoadOps[] = { Chain, Base }; 11221 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 11222 DAG.getVTList(MVT::v2f64, MVT::Other), 11223 LoadOps, MVT::v2f64, MMO); 11224 11225 DCI.AddToWorklist(Load.getNode()); 11226 Chain = Load.getValue(1); 11227 SDValue Swap = DAG.getNode( 11228 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 11229 DCI.AddToWorklist(Swap.getNode()); 11230 11231 // Add a bitcast if the resulting load type doesn't match v2f64. 11232 if (VecTy != MVT::v2f64) { 11233 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 11234 DCI.AddToWorklist(N.getNode()); 11235 // Package {bitcast value, swap's chain} to match Load's shape. 11236 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 11237 N, Swap.getValue(1)); 11238 } 11239 11240 return Swap; 11241 } 11242 11243 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 11244 // builtins) into stores with swaps. 11245 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 11246 DAGCombinerInfo &DCI) const { 11247 SelectionDAG &DAG = DCI.DAG; 11248 SDLoc dl(N); 11249 SDValue Chain; 11250 SDValue Base; 11251 unsigned SrcOpnd; 11252 MachineMemOperand *MMO; 11253 11254 switch (N->getOpcode()) { 11255 default: 11256 llvm_unreachable("Unexpected opcode for little endian VSX store"); 11257 case ISD::STORE: { 11258 StoreSDNode *ST = cast<StoreSDNode>(N); 11259 Chain = ST->getChain(); 11260 Base = ST->getBasePtr(); 11261 MMO = ST->getMemOperand(); 11262 SrcOpnd = 1; 11263 // If the MMO suggests this isn't a store of a full vector, leave 11264 // things alone. For a built-in, we have to make the change for 11265 // correctness, so if there is a size problem that will be a bug. 11266 if (MMO->getSize() < 16) 11267 return SDValue(); 11268 break; 11269 } 11270 case ISD::INTRINSIC_VOID: { 11271 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 11272 Chain = Intrin->getChain(); 11273 // Intrin->getBasePtr() oddly does not get what we want. 11274 Base = Intrin->getOperand(3); 11275 MMO = Intrin->getMemOperand(); 11276 SrcOpnd = 2; 11277 break; 11278 } 11279 } 11280 11281 SDValue Src = N->getOperand(SrcOpnd); 11282 MVT VecTy = Src.getValueType().getSimpleVT(); 11283 11284 // All stores are done as v2f64 and possible bit cast. 11285 if (VecTy != MVT::v2f64) { 11286 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 11287 DCI.AddToWorklist(Src.getNode()); 11288 } 11289 11290 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 11291 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 11292 DCI.AddToWorklist(Swap.getNode()); 11293 Chain = Swap.getValue(1); 11294 SDValue StoreOps[] = { Chain, Swap, Base }; 11295 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 11296 DAG.getVTList(MVT::Other), 11297 StoreOps, VecTy, MMO); 11298 DCI.AddToWorklist(Store.getNode()); 11299 return Store; 11300 } 11301 11302 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 11303 DAGCombinerInfo &DCI) const { 11304 SelectionDAG &DAG = DCI.DAG; 11305 SDLoc dl(N); 11306 switch (N->getOpcode()) { 11307 default: break; 11308 case PPCISD::SHL: 11309 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 11310 return N->getOperand(0); 11311 break; 11312 case PPCISD::SRL: 11313 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 11314 return N->getOperand(0); 11315 break; 11316 case PPCISD::SRA: 11317 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 11318 if (C->isNullValue() || // 0 >>s V -> 0. 11319 C->isAllOnesValue()) // -1 >>s V -> -1. 11320 return N->getOperand(0); 11321 } 11322 break; 11323 case ISD::SIGN_EXTEND: 11324 case ISD::ZERO_EXTEND: 11325 case ISD::ANY_EXTEND: 11326 return DAGCombineExtBoolTrunc(N, DCI); 11327 case ISD::TRUNCATE: 11328 case ISD::SETCC: 11329 case ISD::SELECT_CC: 11330 return DAGCombineTruncBoolExt(N, DCI); 11331 case ISD::SINT_TO_FP: 11332 case ISD::UINT_TO_FP: 11333 return combineFPToIntToFP(N, DCI); 11334 case ISD::STORE: { 11335 EVT Op1VT = N->getOperand(1).getValueType(); 11336 bool ValidTypeForStoreFltAsInt = (Op1VT == MVT::i32) || 11337 (Subtarget.hasP9Vector() && (Op1VT == MVT::i8 || Op1VT == MVT::i16)); 11338 11339 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 11340 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 11341 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 11342 ValidTypeForStoreFltAsInt && 11343 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 11344 SDValue Val = N->getOperand(1).getOperand(0); 11345 if (Val.getValueType() == MVT::f32) { 11346 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 11347 DCI.AddToWorklist(Val.getNode()); 11348 } 11349 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 11350 DCI.AddToWorklist(Val.getNode()); 11351 11352 if (Op1VT == MVT::i32) { 11353 SDValue Ops[] = { 11354 N->getOperand(0), Val, N->getOperand(2), 11355 DAG.getValueType(N->getOperand(1).getValueType()) 11356 }; 11357 11358 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 11359 DAG.getVTList(MVT::Other), Ops, 11360 cast<StoreSDNode>(N)->getMemoryVT(), 11361 cast<StoreSDNode>(N)->getMemOperand()); 11362 } else { 11363 unsigned WidthInBytes = 11364 N->getOperand(1).getValueType() == MVT::i8 ? 1 : 2; 11365 SDValue WidthConst = DAG.getIntPtrConstant(WidthInBytes, dl, false); 11366 11367 SDValue Ops[] = { 11368 N->getOperand(0), Val, N->getOperand(2), WidthConst, 11369 DAG.getValueType(N->getOperand(1).getValueType()) 11370 }; 11371 Val = DAG.getMemIntrinsicNode(PPCISD::STXSIX, dl, 11372 DAG.getVTList(MVT::Other), Ops, 11373 cast<StoreSDNode>(N)->getMemoryVT(), 11374 cast<StoreSDNode>(N)->getMemOperand()); 11375 } 11376 11377 DCI.AddToWorklist(Val.getNode()); 11378 return Val; 11379 } 11380 11381 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 11382 if (cast<StoreSDNode>(N)->isUnindexed() && 11383 N->getOperand(1).getOpcode() == ISD::BSWAP && 11384 N->getOperand(1).getNode()->hasOneUse() && 11385 (N->getOperand(1).getValueType() == MVT::i32 || 11386 N->getOperand(1).getValueType() == MVT::i16 || 11387 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 11388 N->getOperand(1).getValueType() == MVT::i64))) { 11389 SDValue BSwapOp = N->getOperand(1).getOperand(0); 11390 // Do an any-extend to 32-bits if this is a half-word input. 11391 if (BSwapOp.getValueType() == MVT::i16) 11392 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 11393 11394 // If the type of BSWAP operand is wider than stored memory width 11395 // it need to be shifted to the right side before STBRX. 11396 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 11397 if (Op1VT.bitsGT(mVT)) { 11398 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 11399 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 11400 DAG.getConstant(Shift, dl, MVT::i32)); 11401 // Need to truncate if this is a bswap of i64 stored as i32/i16. 11402 if (Op1VT == MVT::i64) 11403 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 11404 } 11405 11406 SDValue Ops[] = { 11407 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 11408 }; 11409 return 11410 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 11411 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 11412 cast<StoreSDNode>(N)->getMemOperand()); 11413 } 11414 11415 // For little endian, VSX stores require generating xxswapd/lxvd2x. 11416 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 11417 EVT VT = N->getOperand(1).getValueType(); 11418 if (VT.isSimple()) { 11419 MVT StoreVT = VT.getSimpleVT(); 11420 if (Subtarget.needsSwapsForVSXMemOps() && 11421 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 11422 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 11423 return expandVSXStoreForLE(N, DCI); 11424 } 11425 break; 11426 } 11427 case ISD::LOAD: { 11428 LoadSDNode *LD = cast<LoadSDNode>(N); 11429 EVT VT = LD->getValueType(0); 11430 11431 // For little endian, VSX loads require generating lxvd2x/xxswapd. 11432 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 11433 if (VT.isSimple()) { 11434 MVT LoadVT = VT.getSimpleVT(); 11435 if (Subtarget.needsSwapsForVSXMemOps() && 11436 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 11437 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 11438 return expandVSXLoadForLE(N, DCI); 11439 } 11440 11441 // We sometimes end up with a 64-bit integer load, from which we extract 11442 // two single-precision floating-point numbers. This happens with 11443 // std::complex<float>, and other similar structures, because of the way we 11444 // canonicalize structure copies. However, if we lack direct moves, 11445 // then the final bitcasts from the extracted integer values to the 11446 // floating-point numbers turn into store/load pairs. Even with direct moves, 11447 // just loading the two floating-point numbers is likely better. 11448 auto ReplaceTwoFloatLoad = [&]() { 11449 if (VT != MVT::i64) 11450 return false; 11451 11452 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 11453 LD->isVolatile()) 11454 return false; 11455 11456 // We're looking for a sequence like this: 11457 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 11458 // t16: i64 = srl t13, Constant:i32<32> 11459 // t17: i32 = truncate t16 11460 // t18: f32 = bitcast t17 11461 // t19: i32 = truncate t13 11462 // t20: f32 = bitcast t19 11463 11464 if (!LD->hasNUsesOfValue(2, 0)) 11465 return false; 11466 11467 auto UI = LD->use_begin(); 11468 while (UI.getUse().getResNo() != 0) ++UI; 11469 SDNode *Trunc = *UI++; 11470 while (UI.getUse().getResNo() != 0) ++UI; 11471 SDNode *RightShift = *UI; 11472 if (Trunc->getOpcode() != ISD::TRUNCATE) 11473 std::swap(Trunc, RightShift); 11474 11475 if (Trunc->getOpcode() != ISD::TRUNCATE || 11476 Trunc->getValueType(0) != MVT::i32 || 11477 !Trunc->hasOneUse()) 11478 return false; 11479 if (RightShift->getOpcode() != ISD::SRL || 11480 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 11481 RightShift->getConstantOperandVal(1) != 32 || 11482 !RightShift->hasOneUse()) 11483 return false; 11484 11485 SDNode *Trunc2 = *RightShift->use_begin(); 11486 if (Trunc2->getOpcode() != ISD::TRUNCATE || 11487 Trunc2->getValueType(0) != MVT::i32 || 11488 !Trunc2->hasOneUse()) 11489 return false; 11490 11491 SDNode *Bitcast = *Trunc->use_begin(); 11492 SDNode *Bitcast2 = *Trunc2->use_begin(); 11493 11494 if (Bitcast->getOpcode() != ISD::BITCAST || 11495 Bitcast->getValueType(0) != MVT::f32) 11496 return false; 11497 if (Bitcast2->getOpcode() != ISD::BITCAST || 11498 Bitcast2->getValueType(0) != MVT::f32) 11499 return false; 11500 11501 if (Subtarget.isLittleEndian()) 11502 std::swap(Bitcast, Bitcast2); 11503 11504 // Bitcast has the second float (in memory-layout order) and Bitcast2 11505 // has the first one. 11506 11507 SDValue BasePtr = LD->getBasePtr(); 11508 if (LD->isIndexed()) { 11509 assert(LD->getAddressingMode() == ISD::PRE_INC && 11510 "Non-pre-inc AM on PPC?"); 11511 BasePtr = 11512 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 11513 LD->getOffset()); 11514 } 11515 11516 auto MMOFlags = 11517 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 11518 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 11519 LD->getPointerInfo(), LD->getAlignment(), 11520 MMOFlags, LD->getAAInfo()); 11521 SDValue AddPtr = 11522 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 11523 BasePtr, DAG.getIntPtrConstant(4, dl)); 11524 SDValue FloatLoad2 = DAG.getLoad( 11525 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 11526 LD->getPointerInfo().getWithOffset(4), 11527 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 11528 11529 if (LD->isIndexed()) { 11530 // Note that DAGCombine should re-form any pre-increment load(s) from 11531 // what is produced here if that makes sense. 11532 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 11533 } 11534 11535 DCI.CombineTo(Bitcast2, FloatLoad); 11536 DCI.CombineTo(Bitcast, FloatLoad2); 11537 11538 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 11539 SDValue(FloatLoad2.getNode(), 1)); 11540 return true; 11541 }; 11542 11543 if (ReplaceTwoFloatLoad()) 11544 return SDValue(N, 0); 11545 11546 EVT MemVT = LD->getMemoryVT(); 11547 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 11548 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 11549 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 11550 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 11551 if (LD->isUnindexed() && VT.isVector() && 11552 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 11553 // P8 and later hardware should just use LOAD. 11554 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 11555 VT == MVT::v4i32 || VT == MVT::v4f32)) || 11556 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 11557 LD->getAlignment() >= ScalarABIAlignment)) && 11558 LD->getAlignment() < ABIAlignment) { 11559 // This is a type-legal unaligned Altivec or QPX load. 11560 SDValue Chain = LD->getChain(); 11561 SDValue Ptr = LD->getBasePtr(); 11562 bool isLittleEndian = Subtarget.isLittleEndian(); 11563 11564 // This implements the loading of unaligned vectors as described in 11565 // the venerable Apple Velocity Engine overview. Specifically: 11566 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 11567 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 11568 // 11569 // The general idea is to expand a sequence of one or more unaligned 11570 // loads into an alignment-based permutation-control instruction (lvsl 11571 // or lvsr), a series of regular vector loads (which always truncate 11572 // their input address to an aligned address), and a series of 11573 // permutations. The results of these permutations are the requested 11574 // loaded values. The trick is that the last "extra" load is not taken 11575 // from the address you might suspect (sizeof(vector) bytes after the 11576 // last requested load), but rather sizeof(vector) - 1 bytes after the 11577 // last requested vector. The point of this is to avoid a page fault if 11578 // the base address happened to be aligned. This works because if the 11579 // base address is aligned, then adding less than a full vector length 11580 // will cause the last vector in the sequence to be (re)loaded. 11581 // Otherwise, the next vector will be fetched as you might suspect was 11582 // necessary. 11583 11584 // We might be able to reuse the permutation generation from 11585 // a different base address offset from this one by an aligned amount. 11586 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 11587 // optimization later. 11588 Intrinsic::ID Intr, IntrLD, IntrPerm; 11589 MVT PermCntlTy, PermTy, LDTy; 11590 if (Subtarget.hasAltivec()) { 11591 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 11592 Intrinsic::ppc_altivec_lvsl; 11593 IntrLD = Intrinsic::ppc_altivec_lvx; 11594 IntrPerm = Intrinsic::ppc_altivec_vperm; 11595 PermCntlTy = MVT::v16i8; 11596 PermTy = MVT::v4i32; 11597 LDTy = MVT::v4i32; 11598 } else { 11599 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 11600 Intrinsic::ppc_qpx_qvlpcls; 11601 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 11602 Intrinsic::ppc_qpx_qvlfs; 11603 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 11604 PermCntlTy = MVT::v4f64; 11605 PermTy = MVT::v4f64; 11606 LDTy = MemVT.getSimpleVT(); 11607 } 11608 11609 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 11610 11611 // Create the new MMO for the new base load. It is like the original MMO, 11612 // but represents an area in memory almost twice the vector size centered 11613 // on the original address. If the address is unaligned, we might start 11614 // reading up to (sizeof(vector)-1) bytes below the address of the 11615 // original unaligned load. 11616 MachineFunction &MF = DAG.getMachineFunction(); 11617 MachineMemOperand *BaseMMO = 11618 MF.getMachineMemOperand(LD->getMemOperand(), 11619 -(long)MemVT.getStoreSize()+1, 11620 2*MemVT.getStoreSize()-1); 11621 11622 // Create the new base load. 11623 SDValue LDXIntID = 11624 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 11625 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 11626 SDValue BaseLoad = 11627 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 11628 DAG.getVTList(PermTy, MVT::Other), 11629 BaseLoadOps, LDTy, BaseMMO); 11630 11631 // Note that the value of IncOffset (which is provided to the next 11632 // load's pointer info offset value, and thus used to calculate the 11633 // alignment), and the value of IncValue (which is actually used to 11634 // increment the pointer value) are different! This is because we 11635 // require the next load to appear to be aligned, even though it 11636 // is actually offset from the base pointer by a lesser amount. 11637 int IncOffset = VT.getSizeInBits() / 8; 11638 int IncValue = IncOffset; 11639 11640 // Walk (both up and down) the chain looking for another load at the real 11641 // (aligned) offset (the alignment of the other load does not matter in 11642 // this case). If found, then do not use the offset reduction trick, as 11643 // that will prevent the loads from being later combined (as they would 11644 // otherwise be duplicates). 11645 if (!findConsecutiveLoad(LD, DAG)) 11646 --IncValue; 11647 11648 SDValue Increment = 11649 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 11650 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 11651 11652 MachineMemOperand *ExtraMMO = 11653 MF.getMachineMemOperand(LD->getMemOperand(), 11654 1, 2*MemVT.getStoreSize()-1); 11655 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 11656 SDValue ExtraLoad = 11657 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 11658 DAG.getVTList(PermTy, MVT::Other), 11659 ExtraLoadOps, LDTy, ExtraMMO); 11660 11661 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 11662 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 11663 11664 // Because vperm has a big-endian bias, we must reverse the order 11665 // of the input vectors and complement the permute control vector 11666 // when generating little endian code. We have already handled the 11667 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 11668 // and ExtraLoad here. 11669 SDValue Perm; 11670 if (isLittleEndian) 11671 Perm = BuildIntrinsicOp(IntrPerm, 11672 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 11673 else 11674 Perm = BuildIntrinsicOp(IntrPerm, 11675 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 11676 11677 if (VT != PermTy) 11678 Perm = Subtarget.hasAltivec() ? 11679 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 11680 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 11681 DAG.getTargetConstant(1, dl, MVT::i64)); 11682 // second argument is 1 because this rounding 11683 // is always exact. 11684 11685 // The output of the permutation is our loaded result, the TokenFactor is 11686 // our new chain. 11687 DCI.CombineTo(N, Perm, TF); 11688 return SDValue(N, 0); 11689 } 11690 } 11691 break; 11692 case ISD::INTRINSIC_WO_CHAIN: { 11693 bool isLittleEndian = Subtarget.isLittleEndian(); 11694 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 11695 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 11696 : Intrinsic::ppc_altivec_lvsl); 11697 if ((IID == Intr || 11698 IID == Intrinsic::ppc_qpx_qvlpcld || 11699 IID == Intrinsic::ppc_qpx_qvlpcls) && 11700 N->getOperand(1)->getOpcode() == ISD::ADD) { 11701 SDValue Add = N->getOperand(1); 11702 11703 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 11704 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 11705 11706 if (DAG.MaskedValueIsZero(Add->getOperand(1), 11707 APInt::getAllOnesValue(Bits /* alignment */) 11708 .zext(Add.getScalarValueSizeInBits()))) { 11709 SDNode *BasePtr = Add->getOperand(0).getNode(); 11710 for (SDNode::use_iterator UI = BasePtr->use_begin(), 11711 UE = BasePtr->use_end(); 11712 UI != UE; ++UI) { 11713 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11714 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 11715 // We've found another LVSL/LVSR, and this address is an aligned 11716 // multiple of that one. The results will be the same, so use the 11717 // one we've just found instead. 11718 11719 return SDValue(*UI, 0); 11720 } 11721 } 11722 } 11723 11724 if (isa<ConstantSDNode>(Add->getOperand(1))) { 11725 SDNode *BasePtr = Add->getOperand(0).getNode(); 11726 for (SDNode::use_iterator UI = BasePtr->use_begin(), 11727 UE = BasePtr->use_end(); UI != UE; ++UI) { 11728 if (UI->getOpcode() == ISD::ADD && 11729 isa<ConstantSDNode>(UI->getOperand(1)) && 11730 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 11731 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 11732 (1ULL << Bits) == 0) { 11733 SDNode *OtherAdd = *UI; 11734 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 11735 VE = OtherAdd->use_end(); VI != VE; ++VI) { 11736 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11737 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 11738 return SDValue(*VI, 0); 11739 } 11740 } 11741 } 11742 } 11743 } 11744 } 11745 } 11746 11747 break; 11748 case ISD::INTRINSIC_W_CHAIN: 11749 // For little endian, VSX loads require generating lxvd2x/xxswapd. 11750 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 11751 if (Subtarget.needsSwapsForVSXMemOps()) { 11752 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11753 default: 11754 break; 11755 case Intrinsic::ppc_vsx_lxvw4x: 11756 case Intrinsic::ppc_vsx_lxvd2x: 11757 return expandVSXLoadForLE(N, DCI); 11758 } 11759 } 11760 break; 11761 case ISD::INTRINSIC_VOID: 11762 // For little endian, VSX stores require generating xxswapd/stxvd2x. 11763 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 11764 if (Subtarget.needsSwapsForVSXMemOps()) { 11765 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11766 default: 11767 break; 11768 case Intrinsic::ppc_vsx_stxvw4x: 11769 case Intrinsic::ppc_vsx_stxvd2x: 11770 return expandVSXStoreForLE(N, DCI); 11771 } 11772 } 11773 break; 11774 case ISD::BSWAP: 11775 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 11776 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 11777 N->getOperand(0).hasOneUse() && 11778 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 11779 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 11780 N->getValueType(0) == MVT::i64))) { 11781 SDValue Load = N->getOperand(0); 11782 LoadSDNode *LD = cast<LoadSDNode>(Load); 11783 // Create the byte-swapping load. 11784 SDValue Ops[] = { 11785 LD->getChain(), // Chain 11786 LD->getBasePtr(), // Ptr 11787 DAG.getValueType(N->getValueType(0)) // VT 11788 }; 11789 SDValue BSLoad = 11790 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 11791 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 11792 MVT::i64 : MVT::i32, MVT::Other), 11793 Ops, LD->getMemoryVT(), LD->getMemOperand()); 11794 11795 // If this is an i16 load, insert the truncate. 11796 SDValue ResVal = BSLoad; 11797 if (N->getValueType(0) == MVT::i16) 11798 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 11799 11800 // First, combine the bswap away. This makes the value produced by the 11801 // load dead. 11802 DCI.CombineTo(N, ResVal); 11803 11804 // Next, combine the load away, we give it a bogus result value but a real 11805 // chain result. The result value is dead because the bswap is dead. 11806 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 11807 11808 // Return N so it doesn't get rechecked! 11809 return SDValue(N, 0); 11810 } 11811 break; 11812 case PPCISD::VCMP: 11813 // If a VCMPo node already exists with exactly the same operands as this 11814 // node, use its result instead of this node (VCMPo computes both a CR6 and 11815 // a normal output). 11816 // 11817 if (!N->getOperand(0).hasOneUse() && 11818 !N->getOperand(1).hasOneUse() && 11819 !N->getOperand(2).hasOneUse()) { 11820 11821 // Scan all of the users of the LHS, looking for VCMPo's that match. 11822 SDNode *VCMPoNode = nullptr; 11823 11824 SDNode *LHSN = N->getOperand(0).getNode(); 11825 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 11826 UI != E; ++UI) 11827 if (UI->getOpcode() == PPCISD::VCMPo && 11828 UI->getOperand(1) == N->getOperand(1) && 11829 UI->getOperand(2) == N->getOperand(2) && 11830 UI->getOperand(0) == N->getOperand(0)) { 11831 VCMPoNode = *UI; 11832 break; 11833 } 11834 11835 // If there is no VCMPo node, or if the flag value has a single use, don't 11836 // transform this. 11837 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 11838 break; 11839 11840 // Look at the (necessarily single) use of the flag value. If it has a 11841 // chain, this transformation is more complex. Note that multiple things 11842 // could use the value result, which we should ignore. 11843 SDNode *FlagUser = nullptr; 11844 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 11845 FlagUser == nullptr; ++UI) { 11846 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 11847 SDNode *User = *UI; 11848 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 11849 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 11850 FlagUser = User; 11851 break; 11852 } 11853 } 11854 } 11855 11856 // If the user is a MFOCRF instruction, we know this is safe. 11857 // Otherwise we give up for right now. 11858 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 11859 return SDValue(VCMPoNode, 0); 11860 } 11861 break; 11862 case ISD::BRCOND: { 11863 SDValue Cond = N->getOperand(1); 11864 SDValue Target = N->getOperand(2); 11865 11866 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 11867 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 11868 Intrinsic::ppc_is_decremented_ctr_nonzero) { 11869 11870 // We now need to make the intrinsic dead (it cannot be instruction 11871 // selected). 11872 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 11873 assert(Cond.getNode()->hasOneUse() && 11874 "Counter decrement has more than one use"); 11875 11876 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 11877 N->getOperand(0), Target); 11878 } 11879 } 11880 break; 11881 case ISD::BR_CC: { 11882 // If this is a branch on an altivec predicate comparison, lower this so 11883 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 11884 // lowering is done pre-legalize, because the legalizer lowers the predicate 11885 // compare down to code that is difficult to reassemble. 11886 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 11887 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 11888 11889 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 11890 // value. If so, pass-through the AND to get to the intrinsic. 11891 if (LHS.getOpcode() == ISD::AND && 11892 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 11893 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 11894 Intrinsic::ppc_is_decremented_ctr_nonzero && 11895 isa<ConstantSDNode>(LHS.getOperand(1)) && 11896 !isNullConstant(LHS.getOperand(1))) 11897 LHS = LHS.getOperand(0); 11898 11899 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 11900 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 11901 Intrinsic::ppc_is_decremented_ctr_nonzero && 11902 isa<ConstantSDNode>(RHS)) { 11903 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 11904 "Counter decrement comparison is not EQ or NE"); 11905 11906 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 11907 bool isBDNZ = (CC == ISD::SETEQ && Val) || 11908 (CC == ISD::SETNE && !Val); 11909 11910 // We now need to make the intrinsic dead (it cannot be instruction 11911 // selected). 11912 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 11913 assert(LHS.getNode()->hasOneUse() && 11914 "Counter decrement has more than one use"); 11915 11916 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 11917 N->getOperand(0), N->getOperand(4)); 11918 } 11919 11920 int CompareOpc; 11921 bool isDot; 11922 11923 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11924 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 11925 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 11926 assert(isDot && "Can't compare against a vector result!"); 11927 11928 // If this is a comparison against something other than 0/1, then we know 11929 // that the condition is never/always true. 11930 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 11931 if (Val != 0 && Val != 1) { 11932 if (CC == ISD::SETEQ) // Cond never true, remove branch. 11933 return N->getOperand(0); 11934 // Always !=, turn it into an unconditional branch. 11935 return DAG.getNode(ISD::BR, dl, MVT::Other, 11936 N->getOperand(0), N->getOperand(4)); 11937 } 11938 11939 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 11940 11941 // Create the PPCISD altivec 'dot' comparison node. 11942 SDValue Ops[] = { 11943 LHS.getOperand(2), // LHS of compare 11944 LHS.getOperand(3), // RHS of compare 11945 DAG.getConstant(CompareOpc, dl, MVT::i32) 11946 }; 11947 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 11948 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 11949 11950 // Unpack the result based on how the target uses it. 11951 PPC::Predicate CompOpc; 11952 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 11953 default: // Can't happen, don't crash on invalid number though. 11954 case 0: // Branch on the value of the EQ bit of CR6. 11955 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 11956 break; 11957 case 1: // Branch on the inverted value of the EQ bit of CR6. 11958 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 11959 break; 11960 case 2: // Branch on the value of the LT bit of CR6. 11961 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 11962 break; 11963 case 3: // Branch on the inverted value of the LT bit of CR6. 11964 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 11965 break; 11966 } 11967 11968 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 11969 DAG.getConstant(CompOpc, dl, MVT::i32), 11970 DAG.getRegister(PPC::CR6, MVT::i32), 11971 N->getOperand(4), CompNode.getValue(1)); 11972 } 11973 break; 11974 } 11975 case ISD::BUILD_VECTOR: 11976 return DAGCombineBuildVector(N, DCI); 11977 } 11978 11979 return SDValue(); 11980 } 11981 11982 SDValue 11983 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11984 SelectionDAG &DAG, 11985 std::vector<SDNode *> *Created) const { 11986 // fold (sdiv X, pow2) 11987 EVT VT = N->getValueType(0); 11988 if (VT == MVT::i64 && !Subtarget.isPPC64()) 11989 return SDValue(); 11990 if ((VT != MVT::i32 && VT != MVT::i64) || 11991 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 11992 return SDValue(); 11993 11994 SDLoc DL(N); 11995 SDValue N0 = N->getOperand(0); 11996 11997 bool IsNegPow2 = (-Divisor).isPowerOf2(); 11998 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 11999 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 12000 12001 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 12002 if (Created) 12003 Created->push_back(Op.getNode()); 12004 12005 if (IsNegPow2) { 12006 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 12007 if (Created) 12008 Created->push_back(Op.getNode()); 12009 } 12010 12011 return Op; 12012 } 12013 12014 //===----------------------------------------------------------------------===// 12015 // Inline Assembly Support 12016 //===----------------------------------------------------------------------===// 12017 12018 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 12019 APInt &KnownZero, 12020 APInt &KnownOne, 12021 const SelectionDAG &DAG, 12022 unsigned Depth) const { 12023 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 12024 switch (Op.getOpcode()) { 12025 default: break; 12026 case PPCISD::LBRX: { 12027 // lhbrx is known to have the top bits cleared out. 12028 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 12029 KnownZero = 0xFFFF0000; 12030 break; 12031 } 12032 case ISD::INTRINSIC_WO_CHAIN: { 12033 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 12034 default: break; 12035 case Intrinsic::ppc_altivec_vcmpbfp_p: 12036 case Intrinsic::ppc_altivec_vcmpeqfp_p: 12037 case Intrinsic::ppc_altivec_vcmpequb_p: 12038 case Intrinsic::ppc_altivec_vcmpequh_p: 12039 case Intrinsic::ppc_altivec_vcmpequw_p: 12040 case Intrinsic::ppc_altivec_vcmpequd_p: 12041 case Intrinsic::ppc_altivec_vcmpgefp_p: 12042 case Intrinsic::ppc_altivec_vcmpgtfp_p: 12043 case Intrinsic::ppc_altivec_vcmpgtsb_p: 12044 case Intrinsic::ppc_altivec_vcmpgtsh_p: 12045 case Intrinsic::ppc_altivec_vcmpgtsw_p: 12046 case Intrinsic::ppc_altivec_vcmpgtsd_p: 12047 case Intrinsic::ppc_altivec_vcmpgtub_p: 12048 case Intrinsic::ppc_altivec_vcmpgtuh_p: 12049 case Intrinsic::ppc_altivec_vcmpgtuw_p: 12050 case Intrinsic::ppc_altivec_vcmpgtud_p: 12051 KnownZero = ~1U; // All bits but the low one are known to be zero. 12052 break; 12053 } 12054 } 12055 } 12056 } 12057 12058 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 12059 switch (Subtarget.getDarwinDirective()) { 12060 default: break; 12061 case PPC::DIR_970: 12062 case PPC::DIR_PWR4: 12063 case PPC::DIR_PWR5: 12064 case PPC::DIR_PWR5X: 12065 case PPC::DIR_PWR6: 12066 case PPC::DIR_PWR6X: 12067 case PPC::DIR_PWR7: 12068 case PPC::DIR_PWR8: 12069 case PPC::DIR_PWR9: { 12070 if (!ML) 12071 break; 12072 12073 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 12074 12075 // For small loops (between 5 and 8 instructions), align to a 32-byte 12076 // boundary so that the entire loop fits in one instruction-cache line. 12077 uint64_t LoopSize = 0; 12078 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 12079 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 12080 LoopSize += TII->getInstSizeInBytes(*J); 12081 if (LoopSize > 32) 12082 break; 12083 } 12084 12085 if (LoopSize > 16 && LoopSize <= 32) 12086 return 5; 12087 12088 break; 12089 } 12090 } 12091 12092 return TargetLowering::getPrefLoopAlignment(ML); 12093 } 12094 12095 /// getConstraintType - Given a constraint, return the type of 12096 /// constraint it is for this target. 12097 PPCTargetLowering::ConstraintType 12098 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 12099 if (Constraint.size() == 1) { 12100 switch (Constraint[0]) { 12101 default: break; 12102 case 'b': 12103 case 'r': 12104 case 'f': 12105 case 'd': 12106 case 'v': 12107 case 'y': 12108 return C_RegisterClass; 12109 case 'Z': 12110 // FIXME: While Z does indicate a memory constraint, it specifically 12111 // indicates an r+r address (used in conjunction with the 'y' modifier 12112 // in the replacement string). Currently, we're forcing the base 12113 // register to be r0 in the asm printer (which is interpreted as zero) 12114 // and forming the complete address in the second register. This is 12115 // suboptimal. 12116 return C_Memory; 12117 } 12118 } else if (Constraint == "wc") { // individual CR bits. 12119 return C_RegisterClass; 12120 } else if (Constraint == "wa" || Constraint == "wd" || 12121 Constraint == "wf" || Constraint == "ws") { 12122 return C_RegisterClass; // VSX registers. 12123 } 12124 return TargetLowering::getConstraintType(Constraint); 12125 } 12126 12127 /// Examine constraint type and operand type and determine a weight value. 12128 /// This object must already have been set up with the operand type 12129 /// and the current alternative constraint selected. 12130 TargetLowering::ConstraintWeight 12131 PPCTargetLowering::getSingleConstraintMatchWeight( 12132 AsmOperandInfo &info, const char *constraint) const { 12133 ConstraintWeight weight = CW_Invalid; 12134 Value *CallOperandVal = info.CallOperandVal; 12135 // If we don't have a value, we can't do a match, 12136 // but allow it at the lowest weight. 12137 if (!CallOperandVal) 12138 return CW_Default; 12139 Type *type = CallOperandVal->getType(); 12140 12141 // Look at the constraint type. 12142 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 12143 return CW_Register; // an individual CR bit. 12144 else if ((StringRef(constraint) == "wa" || 12145 StringRef(constraint) == "wd" || 12146 StringRef(constraint) == "wf") && 12147 type->isVectorTy()) 12148 return CW_Register; 12149 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 12150 return CW_Register; 12151 12152 switch (*constraint) { 12153 default: 12154 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 12155 break; 12156 case 'b': 12157 if (type->isIntegerTy()) 12158 weight = CW_Register; 12159 break; 12160 case 'f': 12161 if (type->isFloatTy()) 12162 weight = CW_Register; 12163 break; 12164 case 'd': 12165 if (type->isDoubleTy()) 12166 weight = CW_Register; 12167 break; 12168 case 'v': 12169 if (type->isVectorTy()) 12170 weight = CW_Register; 12171 break; 12172 case 'y': 12173 weight = CW_Register; 12174 break; 12175 case 'Z': 12176 weight = CW_Memory; 12177 break; 12178 } 12179 return weight; 12180 } 12181 12182 std::pair<unsigned, const TargetRegisterClass *> 12183 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 12184 StringRef Constraint, 12185 MVT VT) const { 12186 if (Constraint.size() == 1) { 12187 // GCC RS6000 Constraint Letters 12188 switch (Constraint[0]) { 12189 case 'b': // R1-R31 12190 if (VT == MVT::i64 && Subtarget.isPPC64()) 12191 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 12192 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 12193 case 'r': // R0-R31 12194 if (VT == MVT::i64 && Subtarget.isPPC64()) 12195 return std::make_pair(0U, &PPC::G8RCRegClass); 12196 return std::make_pair(0U, &PPC::GPRCRegClass); 12197 // 'd' and 'f' constraints are both defined to be "the floating point 12198 // registers", where one is for 32-bit and the other for 64-bit. We don't 12199 // really care overly much here so just give them all the same reg classes. 12200 case 'd': 12201 case 'f': 12202 if (VT == MVT::f32 || VT == MVT::i32) 12203 return std::make_pair(0U, &PPC::F4RCRegClass); 12204 if (VT == MVT::f64 || VT == MVT::i64) 12205 return std::make_pair(0U, &PPC::F8RCRegClass); 12206 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 12207 return std::make_pair(0U, &PPC::QFRCRegClass); 12208 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 12209 return std::make_pair(0U, &PPC::QSRCRegClass); 12210 break; 12211 case 'v': 12212 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 12213 return std::make_pair(0U, &PPC::QFRCRegClass); 12214 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 12215 return std::make_pair(0U, &PPC::QSRCRegClass); 12216 if (Subtarget.hasAltivec()) 12217 return std::make_pair(0U, &PPC::VRRCRegClass); 12218 case 'y': // crrc 12219 return std::make_pair(0U, &PPC::CRRCRegClass); 12220 } 12221 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 12222 // An individual CR bit. 12223 return std::make_pair(0U, &PPC::CRBITRCRegClass); 12224 } else if ((Constraint == "wa" || Constraint == "wd" || 12225 Constraint == "wf") && Subtarget.hasVSX()) { 12226 return std::make_pair(0U, &PPC::VSRCRegClass); 12227 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 12228 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 12229 return std::make_pair(0U, &PPC::VSSRCRegClass); 12230 else 12231 return std::make_pair(0U, &PPC::VSFRCRegClass); 12232 } 12233 12234 std::pair<unsigned, const TargetRegisterClass *> R = 12235 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 12236 12237 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 12238 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 12239 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 12240 // register. 12241 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 12242 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 12243 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 12244 PPC::GPRCRegClass.contains(R.first)) 12245 return std::make_pair(TRI->getMatchingSuperReg(R.first, 12246 PPC::sub_32, &PPC::G8RCRegClass), 12247 &PPC::G8RCRegClass); 12248 12249 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 12250 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 12251 R.first = PPC::CR0; 12252 R.second = &PPC::CRRCRegClass; 12253 } 12254 12255 return R; 12256 } 12257 12258 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 12259 /// vector. If it is invalid, don't add anything to Ops. 12260 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 12261 std::string &Constraint, 12262 std::vector<SDValue>&Ops, 12263 SelectionDAG &DAG) const { 12264 SDValue Result; 12265 12266 // Only support length 1 constraints. 12267 if (Constraint.length() > 1) return; 12268 12269 char Letter = Constraint[0]; 12270 switch (Letter) { 12271 default: break; 12272 case 'I': 12273 case 'J': 12274 case 'K': 12275 case 'L': 12276 case 'M': 12277 case 'N': 12278 case 'O': 12279 case 'P': { 12280 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 12281 if (!CST) return; // Must be an immediate to match. 12282 SDLoc dl(Op); 12283 int64_t Value = CST->getSExtValue(); 12284 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 12285 // numbers are printed as such. 12286 switch (Letter) { 12287 default: llvm_unreachable("Unknown constraint letter!"); 12288 case 'I': // "I" is a signed 16-bit constant. 12289 if (isInt<16>(Value)) 12290 Result = DAG.getTargetConstant(Value, dl, TCVT); 12291 break; 12292 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 12293 if (isShiftedUInt<16, 16>(Value)) 12294 Result = DAG.getTargetConstant(Value, dl, TCVT); 12295 break; 12296 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 12297 if (isShiftedInt<16, 16>(Value)) 12298 Result = DAG.getTargetConstant(Value, dl, TCVT); 12299 break; 12300 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 12301 if (isUInt<16>(Value)) 12302 Result = DAG.getTargetConstant(Value, dl, TCVT); 12303 break; 12304 case 'M': // "M" is a constant that is greater than 31. 12305 if (Value > 31) 12306 Result = DAG.getTargetConstant(Value, dl, TCVT); 12307 break; 12308 case 'N': // "N" is a positive constant that is an exact power of two. 12309 if (Value > 0 && isPowerOf2_64(Value)) 12310 Result = DAG.getTargetConstant(Value, dl, TCVT); 12311 break; 12312 case 'O': // "O" is the constant zero. 12313 if (Value == 0) 12314 Result = DAG.getTargetConstant(Value, dl, TCVT); 12315 break; 12316 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 12317 if (isInt<16>(-Value)) 12318 Result = DAG.getTargetConstant(Value, dl, TCVT); 12319 break; 12320 } 12321 break; 12322 } 12323 } 12324 12325 if (Result.getNode()) { 12326 Ops.push_back(Result); 12327 return; 12328 } 12329 12330 // Handle standard constraint letters. 12331 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 12332 } 12333 12334 // isLegalAddressingMode - Return true if the addressing mode represented 12335 // by AM is legal for this target, for a load/store of the specified type. 12336 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 12337 const AddrMode &AM, Type *Ty, 12338 unsigned AS) const { 12339 // PPC does not allow r+i addressing modes for vectors! 12340 if (Ty->isVectorTy() && AM.BaseOffs != 0) 12341 return false; 12342 12343 // PPC allows a sign-extended 16-bit immediate field. 12344 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 12345 return false; 12346 12347 // No global is ever allowed as a base. 12348 if (AM.BaseGV) 12349 return false; 12350 12351 // PPC only support r+r, 12352 switch (AM.Scale) { 12353 case 0: // "r+i" or just "i", depending on HasBaseReg. 12354 break; 12355 case 1: 12356 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 12357 return false; 12358 // Otherwise we have r+r or r+i. 12359 break; 12360 case 2: 12361 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 12362 return false; 12363 // Allow 2*r as r+r. 12364 break; 12365 default: 12366 // No other scales are supported. 12367 return false; 12368 } 12369 12370 return true; 12371 } 12372 12373 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 12374 SelectionDAG &DAG) const { 12375 MachineFunction &MF = DAG.getMachineFunction(); 12376 MachineFrameInfo &MFI = MF.getFrameInfo(); 12377 MFI.setReturnAddressIsTaken(true); 12378 12379 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 12380 return SDValue(); 12381 12382 SDLoc dl(Op); 12383 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 12384 12385 // Make sure the function does not optimize away the store of the RA to 12386 // the stack. 12387 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 12388 FuncInfo->setLRStoreRequired(); 12389 bool isPPC64 = Subtarget.isPPC64(); 12390 auto PtrVT = getPointerTy(MF.getDataLayout()); 12391 12392 if (Depth > 0) { 12393 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 12394 SDValue Offset = 12395 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 12396 isPPC64 ? MVT::i64 : MVT::i32); 12397 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 12398 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 12399 MachinePointerInfo()); 12400 } 12401 12402 // Just load the return address off the stack. 12403 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 12404 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 12405 MachinePointerInfo()); 12406 } 12407 12408 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 12409 SelectionDAG &DAG) const { 12410 SDLoc dl(Op); 12411 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 12412 12413 MachineFunction &MF = DAG.getMachineFunction(); 12414 MachineFrameInfo &MFI = MF.getFrameInfo(); 12415 MFI.setFrameAddressIsTaken(true); 12416 12417 EVT PtrVT = getPointerTy(MF.getDataLayout()); 12418 bool isPPC64 = PtrVT == MVT::i64; 12419 12420 // Naked functions never have a frame pointer, and so we use r1. For all 12421 // other functions, this decision must be delayed until during PEI. 12422 unsigned FrameReg; 12423 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 12424 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 12425 else 12426 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 12427 12428 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 12429 PtrVT); 12430 while (Depth--) 12431 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 12432 FrameAddr, MachinePointerInfo()); 12433 return FrameAddr; 12434 } 12435 12436 // FIXME? Maybe this could be a TableGen attribute on some registers and 12437 // this table could be generated automatically from RegInfo. 12438 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 12439 SelectionDAG &DAG) const { 12440 bool isPPC64 = Subtarget.isPPC64(); 12441 bool isDarwinABI = Subtarget.isDarwinABI(); 12442 12443 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 12444 (!isPPC64 && VT != MVT::i32)) 12445 report_fatal_error("Invalid register global variable type"); 12446 12447 bool is64Bit = isPPC64 && VT == MVT::i64; 12448 unsigned Reg = StringSwitch<unsigned>(RegName) 12449 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 12450 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 12451 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 12452 (is64Bit ? PPC::X13 : PPC::R13)) 12453 .Default(0); 12454 12455 if (Reg) 12456 return Reg; 12457 report_fatal_error("Invalid register name global variable"); 12458 } 12459 12460 bool 12461 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 12462 // The PowerPC target isn't yet aware of offsets. 12463 return false; 12464 } 12465 12466 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 12467 const CallInst &I, 12468 unsigned Intrinsic) const { 12469 switch (Intrinsic) { 12470 case Intrinsic::ppc_qpx_qvlfd: 12471 case Intrinsic::ppc_qpx_qvlfs: 12472 case Intrinsic::ppc_qpx_qvlfcd: 12473 case Intrinsic::ppc_qpx_qvlfcs: 12474 case Intrinsic::ppc_qpx_qvlfiwa: 12475 case Intrinsic::ppc_qpx_qvlfiwz: 12476 case Intrinsic::ppc_altivec_lvx: 12477 case Intrinsic::ppc_altivec_lvxl: 12478 case Intrinsic::ppc_altivec_lvebx: 12479 case Intrinsic::ppc_altivec_lvehx: 12480 case Intrinsic::ppc_altivec_lvewx: 12481 case Intrinsic::ppc_vsx_lxvd2x: 12482 case Intrinsic::ppc_vsx_lxvw4x: { 12483 EVT VT; 12484 switch (Intrinsic) { 12485 case Intrinsic::ppc_altivec_lvebx: 12486 VT = MVT::i8; 12487 break; 12488 case Intrinsic::ppc_altivec_lvehx: 12489 VT = MVT::i16; 12490 break; 12491 case Intrinsic::ppc_altivec_lvewx: 12492 VT = MVT::i32; 12493 break; 12494 case Intrinsic::ppc_vsx_lxvd2x: 12495 VT = MVT::v2f64; 12496 break; 12497 case Intrinsic::ppc_qpx_qvlfd: 12498 VT = MVT::v4f64; 12499 break; 12500 case Intrinsic::ppc_qpx_qvlfs: 12501 VT = MVT::v4f32; 12502 break; 12503 case Intrinsic::ppc_qpx_qvlfcd: 12504 VT = MVT::v2f64; 12505 break; 12506 case Intrinsic::ppc_qpx_qvlfcs: 12507 VT = MVT::v2f32; 12508 break; 12509 default: 12510 VT = MVT::v4i32; 12511 break; 12512 } 12513 12514 Info.opc = ISD::INTRINSIC_W_CHAIN; 12515 Info.memVT = VT; 12516 Info.ptrVal = I.getArgOperand(0); 12517 Info.offset = -VT.getStoreSize()+1; 12518 Info.size = 2*VT.getStoreSize()-1; 12519 Info.align = 1; 12520 Info.vol = false; 12521 Info.readMem = true; 12522 Info.writeMem = false; 12523 return true; 12524 } 12525 case Intrinsic::ppc_qpx_qvlfda: 12526 case Intrinsic::ppc_qpx_qvlfsa: 12527 case Intrinsic::ppc_qpx_qvlfcda: 12528 case Intrinsic::ppc_qpx_qvlfcsa: 12529 case Intrinsic::ppc_qpx_qvlfiwaa: 12530 case Intrinsic::ppc_qpx_qvlfiwza: { 12531 EVT VT; 12532 switch (Intrinsic) { 12533 case Intrinsic::ppc_qpx_qvlfda: 12534 VT = MVT::v4f64; 12535 break; 12536 case Intrinsic::ppc_qpx_qvlfsa: 12537 VT = MVT::v4f32; 12538 break; 12539 case Intrinsic::ppc_qpx_qvlfcda: 12540 VT = MVT::v2f64; 12541 break; 12542 case Intrinsic::ppc_qpx_qvlfcsa: 12543 VT = MVT::v2f32; 12544 break; 12545 default: 12546 VT = MVT::v4i32; 12547 break; 12548 } 12549 12550 Info.opc = ISD::INTRINSIC_W_CHAIN; 12551 Info.memVT = VT; 12552 Info.ptrVal = I.getArgOperand(0); 12553 Info.offset = 0; 12554 Info.size = VT.getStoreSize(); 12555 Info.align = 1; 12556 Info.vol = false; 12557 Info.readMem = true; 12558 Info.writeMem = false; 12559 return true; 12560 } 12561 case Intrinsic::ppc_qpx_qvstfd: 12562 case Intrinsic::ppc_qpx_qvstfs: 12563 case Intrinsic::ppc_qpx_qvstfcd: 12564 case Intrinsic::ppc_qpx_qvstfcs: 12565 case Intrinsic::ppc_qpx_qvstfiw: 12566 case Intrinsic::ppc_altivec_stvx: 12567 case Intrinsic::ppc_altivec_stvxl: 12568 case Intrinsic::ppc_altivec_stvebx: 12569 case Intrinsic::ppc_altivec_stvehx: 12570 case Intrinsic::ppc_altivec_stvewx: 12571 case Intrinsic::ppc_vsx_stxvd2x: 12572 case Intrinsic::ppc_vsx_stxvw4x: { 12573 EVT VT; 12574 switch (Intrinsic) { 12575 case Intrinsic::ppc_altivec_stvebx: 12576 VT = MVT::i8; 12577 break; 12578 case Intrinsic::ppc_altivec_stvehx: 12579 VT = MVT::i16; 12580 break; 12581 case Intrinsic::ppc_altivec_stvewx: 12582 VT = MVT::i32; 12583 break; 12584 case Intrinsic::ppc_vsx_stxvd2x: 12585 VT = MVT::v2f64; 12586 break; 12587 case Intrinsic::ppc_qpx_qvstfd: 12588 VT = MVT::v4f64; 12589 break; 12590 case Intrinsic::ppc_qpx_qvstfs: 12591 VT = MVT::v4f32; 12592 break; 12593 case Intrinsic::ppc_qpx_qvstfcd: 12594 VT = MVT::v2f64; 12595 break; 12596 case Intrinsic::ppc_qpx_qvstfcs: 12597 VT = MVT::v2f32; 12598 break; 12599 default: 12600 VT = MVT::v4i32; 12601 break; 12602 } 12603 12604 Info.opc = ISD::INTRINSIC_VOID; 12605 Info.memVT = VT; 12606 Info.ptrVal = I.getArgOperand(1); 12607 Info.offset = -VT.getStoreSize()+1; 12608 Info.size = 2*VT.getStoreSize()-1; 12609 Info.align = 1; 12610 Info.vol = false; 12611 Info.readMem = false; 12612 Info.writeMem = true; 12613 return true; 12614 } 12615 case Intrinsic::ppc_qpx_qvstfda: 12616 case Intrinsic::ppc_qpx_qvstfsa: 12617 case Intrinsic::ppc_qpx_qvstfcda: 12618 case Intrinsic::ppc_qpx_qvstfcsa: 12619 case Intrinsic::ppc_qpx_qvstfiwa: { 12620 EVT VT; 12621 switch (Intrinsic) { 12622 case Intrinsic::ppc_qpx_qvstfda: 12623 VT = MVT::v4f64; 12624 break; 12625 case Intrinsic::ppc_qpx_qvstfsa: 12626 VT = MVT::v4f32; 12627 break; 12628 case Intrinsic::ppc_qpx_qvstfcda: 12629 VT = MVT::v2f64; 12630 break; 12631 case Intrinsic::ppc_qpx_qvstfcsa: 12632 VT = MVT::v2f32; 12633 break; 12634 default: 12635 VT = MVT::v4i32; 12636 break; 12637 } 12638 12639 Info.opc = ISD::INTRINSIC_VOID; 12640 Info.memVT = VT; 12641 Info.ptrVal = I.getArgOperand(1); 12642 Info.offset = 0; 12643 Info.size = VT.getStoreSize(); 12644 Info.align = 1; 12645 Info.vol = false; 12646 Info.readMem = false; 12647 Info.writeMem = true; 12648 return true; 12649 } 12650 default: 12651 break; 12652 } 12653 12654 return false; 12655 } 12656 12657 /// getOptimalMemOpType - Returns the target specific optimal type for load 12658 /// and store operations as a result of memset, memcpy, and memmove 12659 /// lowering. If DstAlign is zero that means it's safe to destination 12660 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 12661 /// means there isn't a need to check it against alignment requirement, 12662 /// probably because the source does not need to be loaded. If 'IsMemset' is 12663 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 12664 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 12665 /// source is constant so it does not need to be loaded. 12666 /// It returns EVT::Other if the type should be determined using generic 12667 /// target-independent logic. 12668 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 12669 unsigned DstAlign, unsigned SrcAlign, 12670 bool IsMemset, bool ZeroMemset, 12671 bool MemcpyStrSrc, 12672 MachineFunction &MF) const { 12673 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 12674 const Function *F = MF.getFunction(); 12675 // When expanding a memset, require at least two QPX instructions to cover 12676 // the cost of loading the value to be stored from the constant pool. 12677 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 12678 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 12679 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 12680 return MVT::v4f64; 12681 } 12682 12683 // We should use Altivec/VSX loads and stores when available. For unaligned 12684 // addresses, unaligned VSX loads are only fast starting with the P8. 12685 if (Subtarget.hasAltivec() && Size >= 16 && 12686 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 12687 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 12688 return MVT::v4i32; 12689 } 12690 12691 if (Subtarget.isPPC64()) { 12692 return MVT::i64; 12693 } 12694 12695 return MVT::i32; 12696 } 12697 12698 /// \brief Returns true if it is beneficial to convert a load of a constant 12699 /// to just the constant itself. 12700 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 12701 Type *Ty) const { 12702 assert(Ty->isIntegerTy()); 12703 12704 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 12705 return !(BitSize == 0 || BitSize > 64); 12706 } 12707 12708 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 12709 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 12710 return false; 12711 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 12712 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 12713 return NumBits1 == 64 && NumBits2 == 32; 12714 } 12715 12716 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 12717 if (!VT1.isInteger() || !VT2.isInteger()) 12718 return false; 12719 unsigned NumBits1 = VT1.getSizeInBits(); 12720 unsigned NumBits2 = VT2.getSizeInBits(); 12721 return NumBits1 == 64 && NumBits2 == 32; 12722 } 12723 12724 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 12725 // Generally speaking, zexts are not free, but they are free when they can be 12726 // folded with other operations. 12727 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 12728 EVT MemVT = LD->getMemoryVT(); 12729 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 12730 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 12731 (LD->getExtensionType() == ISD::NON_EXTLOAD || 12732 LD->getExtensionType() == ISD::ZEXTLOAD)) 12733 return true; 12734 } 12735 12736 // FIXME: Add other cases... 12737 // - 32-bit shifts with a zext to i64 12738 // - zext after ctlz, bswap, etc. 12739 // - zext after and by a constant mask 12740 12741 return TargetLowering::isZExtFree(Val, VT2); 12742 } 12743 12744 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 12745 assert(VT.isFloatingPoint()); 12746 return true; 12747 } 12748 12749 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 12750 return isInt<16>(Imm) || isUInt<16>(Imm); 12751 } 12752 12753 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 12754 return isInt<16>(Imm) || isUInt<16>(Imm); 12755 } 12756 12757 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 12758 unsigned, 12759 unsigned, 12760 bool *Fast) const { 12761 if (DisablePPCUnaligned) 12762 return false; 12763 12764 // PowerPC supports unaligned memory access for simple non-vector types. 12765 // Although accessing unaligned addresses is not as efficient as accessing 12766 // aligned addresses, it is generally more efficient than manual expansion, 12767 // and generally only traps for software emulation when crossing page 12768 // boundaries. 12769 12770 if (!VT.isSimple()) 12771 return false; 12772 12773 if (VT.getSimpleVT().isVector()) { 12774 if (Subtarget.hasVSX()) { 12775 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 12776 VT != MVT::v4f32 && VT != MVT::v4i32) 12777 return false; 12778 } else { 12779 return false; 12780 } 12781 } 12782 12783 if (VT == MVT::ppcf128) 12784 return false; 12785 12786 if (Fast) 12787 *Fast = true; 12788 12789 return true; 12790 } 12791 12792 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 12793 VT = VT.getScalarType(); 12794 12795 if (!VT.isSimple()) 12796 return false; 12797 12798 switch (VT.getSimpleVT().SimpleTy) { 12799 case MVT::f32: 12800 case MVT::f64: 12801 return true; 12802 default: 12803 break; 12804 } 12805 12806 return false; 12807 } 12808 12809 const MCPhysReg * 12810 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 12811 // LR is a callee-save register, but we must treat it as clobbered by any call 12812 // site. Hence we include LR in the scratch registers, which are in turn added 12813 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 12814 // to CTR, which is used by any indirect call. 12815 static const MCPhysReg ScratchRegs[] = { 12816 PPC::X12, PPC::LR8, PPC::CTR8, 0 12817 }; 12818 12819 return ScratchRegs; 12820 } 12821 12822 unsigned PPCTargetLowering::getExceptionPointerRegister( 12823 const Constant *PersonalityFn) const { 12824 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 12825 } 12826 12827 unsigned PPCTargetLowering::getExceptionSelectorRegister( 12828 const Constant *PersonalityFn) const { 12829 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 12830 } 12831 12832 bool 12833 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 12834 EVT VT , unsigned DefinedValues) const { 12835 if (VT == MVT::v2i64) 12836 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 12837 12838 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 12839 return true; 12840 12841 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 12842 } 12843 12844 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 12845 if (DisableILPPref || Subtarget.enableMachineScheduler()) 12846 return TargetLowering::getSchedulingPreference(N); 12847 12848 return Sched::ILP; 12849 } 12850 12851 // Create a fast isel object. 12852 FastISel * 12853 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 12854 const TargetLibraryInfo *LibInfo) const { 12855 return PPC::createFastISel(FuncInfo, LibInfo); 12856 } 12857 12858 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 12859 if (Subtarget.isDarwinABI()) return; 12860 if (!Subtarget.isPPC64()) return; 12861 12862 // Update IsSplitCSR in PPCFunctionInfo 12863 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 12864 PFI->setIsSplitCSR(true); 12865 } 12866 12867 void PPCTargetLowering::insertCopiesSplitCSR( 12868 MachineBasicBlock *Entry, 12869 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 12870 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 12871 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 12872 if (!IStart) 12873 return; 12874 12875 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12876 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 12877 MachineBasicBlock::iterator MBBI = Entry->begin(); 12878 for (const MCPhysReg *I = IStart; *I; ++I) { 12879 const TargetRegisterClass *RC = nullptr; 12880 if (PPC::G8RCRegClass.contains(*I)) 12881 RC = &PPC::G8RCRegClass; 12882 else if (PPC::F8RCRegClass.contains(*I)) 12883 RC = &PPC::F8RCRegClass; 12884 else if (PPC::CRRCRegClass.contains(*I)) 12885 RC = &PPC::CRRCRegClass; 12886 else if (PPC::VRRCRegClass.contains(*I)) 12887 RC = &PPC::VRRCRegClass; 12888 else 12889 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 12890 12891 unsigned NewVR = MRI->createVirtualRegister(RC); 12892 // Create copy from CSR to a virtual register. 12893 // FIXME: this currently does not emit CFI pseudo-instructions, it works 12894 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 12895 // nounwind. If we want to generalize this later, we may need to emit 12896 // CFI pseudo-instructions. 12897 assert(Entry->getParent()->getFunction()->hasFnAttribute( 12898 Attribute::NoUnwind) && 12899 "Function should be nounwind in insertCopiesSplitCSR!"); 12900 Entry->addLiveIn(*I); 12901 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 12902 .addReg(*I); 12903 12904 // Insert the copy-back instructions right before the terminator 12905 for (auto *Exit : Exits) 12906 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 12907 TII->get(TargetOpcode::COPY), *I) 12908 .addReg(NewVR); 12909 } 12910 } 12911 12912 // Override to enable LOAD_STACK_GUARD lowering on Linux. 12913 bool PPCTargetLowering::useLoadStackGuardNode() const { 12914 if (!Subtarget.isTargetLinux()) 12915 return TargetLowering::useLoadStackGuardNode(); 12916 return true; 12917 } 12918 12919 // Override to disable global variable loading on Linux. 12920 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 12921 if (!Subtarget.isTargetLinux()) 12922 return TargetLowering::insertSSPDeclarations(M); 12923 } 12924 12925 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 12926 if (!VT.isSimple() || !Subtarget.hasVSX()) 12927 return false; 12928 12929 switch(VT.getSimpleVT().SimpleTy) { 12930 default: 12931 // For FP types that are currently not supported by PPC backend, return 12932 // false. Examples: f16, f80. 12933 return false; 12934 case MVT::f32: 12935 case MVT::f64: 12936 case MVT::ppcf128: 12937 return Imm.isPosZero(); 12938 } 12939 } 12940