1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/RuntimeLibcalls.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGNodes.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetLowering.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/CallingConv.h"
58 #include "llvm/IR/Constant.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/DebugLoc.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/GlobalValue.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/Intrinsics.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/MC/MCExpr.h"
73 #include "llvm/MC/MCRegisterInfo.h"
74 #include "llvm/Support/AtomicOrdering.h"
75 #include "llvm/Support/BranchProbability.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CodeGen.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/Format.h"
83 #include "llvm/Support/KnownBits.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstdint>
92 #include <iterator>
93 #include <list>
94 #include <utility>
95 #include <vector>
96 
97 using namespace llvm;
98 
99 #define DEBUG_TYPE "ppc-lowering"
100 
101 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
102 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
103 
104 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
105 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
106 
107 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
108 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
109 
110 static cl::opt<bool> DisableSCO("disable-ppc-sco",
111 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
112 
113 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
114 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
115 
116 STATISTIC(NumTailCalls, "Number of tail calls");
117 STATISTIC(NumSiblingCalls, "Number of sibling calls");
118 
119 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
120 
121 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
122 
123 // FIXME: Remove this once the bug has been fixed!
124 extern cl::opt<bool> ANDIGlueBug;
125 
126 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
127                                      const PPCSubtarget &STI)
128     : TargetLowering(TM), Subtarget(STI) {
129   // Use _setjmp/_longjmp instead of setjmp/longjmp.
130   setUseUnderscoreSetJmp(true);
131   setUseUnderscoreLongJmp(true);
132 
133   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
134   // arguments are at least 4/8 bytes aligned.
135   bool isPPC64 = Subtarget.isPPC64();
136   setMinStackArgumentAlignment(isPPC64 ? 8:4);
137 
138   // Set up the register classes.
139   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
140   if (!useSoftFloat()) {
141     if (hasSPE()) {
142       addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
143       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
144     } else {
145       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
146       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
147     }
148   }
149 
150   // Match BITREVERSE to customized fast code sequence in the td file.
151   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
152   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
153 
154   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
155   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
156 
157   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
158   for (MVT VT : MVT::integer_valuetypes()) {
159     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
160     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
161   }
162 
163   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
164 
165   // PowerPC has pre-inc load and store's.
166   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
167   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
168   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
169   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
170   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
171   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
172   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
173   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
174   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
175   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
176   if (!Subtarget.hasSPE()) {
177     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
178     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
179     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
180     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
181   }
182 
183   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
184   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
185   for (MVT VT : ScalarIntVTs) {
186     setOperationAction(ISD::ADDC, VT, Legal);
187     setOperationAction(ISD::ADDE, VT, Legal);
188     setOperationAction(ISD::SUBC, VT, Legal);
189     setOperationAction(ISD::SUBE, VT, Legal);
190   }
191 
192   if (Subtarget.useCRBits()) {
193     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
194 
195     if (isPPC64 || Subtarget.hasFPCVT()) {
196       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
197       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
198                          isPPC64 ? MVT::i64 : MVT::i32);
199       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
200       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
201                         isPPC64 ? MVT::i64 : MVT::i32);
202     } else {
203       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
204       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
205     }
206 
207     // PowerPC does not support direct load/store of condition registers.
208     setOperationAction(ISD::LOAD, MVT::i1, Custom);
209     setOperationAction(ISD::STORE, MVT::i1, Custom);
210 
211     // FIXME: Remove this once the ANDI glue bug is fixed:
212     if (ANDIGlueBug)
213       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
214 
215     for (MVT VT : MVT::integer_valuetypes()) {
216       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
217       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
218       setTruncStoreAction(VT, MVT::i1, Expand);
219     }
220 
221     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
222   }
223 
224   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
225   // PPC (the libcall is not available).
226   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
227   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
228 
229   // We do not currently implement these libm ops for PowerPC.
230   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
231   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
232   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
233   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
234   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
235   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
236 
237   // PowerPC has no SREM/UREM instructions unless we are on P9
238   // On P9 we may use a hardware instruction to compute the remainder.
239   // The instructions are not legalized directly because in the cases where the
240   // result of both the remainder and the division is required it is more
241   // efficient to compute the remainder from the result of the division rather
242   // than use the remainder instruction.
243   if (Subtarget.isISA3_0()) {
244     setOperationAction(ISD::SREM, MVT::i32, Custom);
245     setOperationAction(ISD::UREM, MVT::i32, Custom);
246     setOperationAction(ISD::SREM, MVT::i64, Custom);
247     setOperationAction(ISD::UREM, MVT::i64, Custom);
248   } else {
249     setOperationAction(ISD::SREM, MVT::i32, Expand);
250     setOperationAction(ISD::UREM, MVT::i32, Expand);
251     setOperationAction(ISD::SREM, MVT::i64, Expand);
252     setOperationAction(ISD::UREM, MVT::i64, Expand);
253   }
254 
255   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
256   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
257   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
258   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
259   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
260   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
261   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
262   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
263   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
264 
265   // We don't support sin/cos/sqrt/fmod/pow
266   setOperationAction(ISD::FSIN , MVT::f64, Expand);
267   setOperationAction(ISD::FCOS , MVT::f64, Expand);
268   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
269   setOperationAction(ISD::FREM , MVT::f64, Expand);
270   setOperationAction(ISD::FPOW , MVT::f64, Expand);
271   setOperationAction(ISD::FSIN , MVT::f32, Expand);
272   setOperationAction(ISD::FCOS , MVT::f32, Expand);
273   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
274   setOperationAction(ISD::FREM , MVT::f32, Expand);
275   setOperationAction(ISD::FPOW , MVT::f32, Expand);
276   if (Subtarget.hasSPE()) {
277     setOperationAction(ISD::FMA  , MVT::f64, Expand);
278     setOperationAction(ISD::FMA  , MVT::f32, Expand);
279   } else {
280     setOperationAction(ISD::FMA  , MVT::f64, Legal);
281     setOperationAction(ISD::FMA  , MVT::f32, Legal);
282   }
283 
284   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
285 
286   // If we're enabling GP optimizations, use hardware square root
287   if (!Subtarget.hasFSQRT() &&
288       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
289         Subtarget.hasFRE()))
290     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
291 
292   if (!Subtarget.hasFSQRT() &&
293       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
294         Subtarget.hasFRES()))
295     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
296 
297   if (Subtarget.hasFCPSGN()) {
298     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
299     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
300   } else {
301     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
302     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
303   }
304 
305   if (Subtarget.hasFPRND()) {
306     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
307     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
308     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
309     setOperationAction(ISD::FROUND, MVT::f64, Legal);
310 
311     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
312     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
313     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
314     setOperationAction(ISD::FROUND, MVT::f32, Legal);
315   }
316 
317   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
318   // to speed up scalar BSWAP64.
319   // CTPOP or CTTZ were introduced in P8/P9 respectively
320   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
321   if (Subtarget.hasP9Vector())
322     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
323   else
324     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
325   if (Subtarget.isISA3_0()) {
326     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
327     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
328   } else {
329     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
330     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
331   }
332 
333   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
334     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
335     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
336   } else {
337     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
338     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
339   }
340 
341   // PowerPC does not have ROTR
342   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
343   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
344 
345   if (!Subtarget.useCRBits()) {
346     // PowerPC does not have Select
347     setOperationAction(ISD::SELECT, MVT::i32, Expand);
348     setOperationAction(ISD::SELECT, MVT::i64, Expand);
349     setOperationAction(ISD::SELECT, MVT::f32, Expand);
350     setOperationAction(ISD::SELECT, MVT::f64, Expand);
351   }
352 
353   // PowerPC wants to turn select_cc of FP into fsel when possible.
354   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
355   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
356 
357   // PowerPC wants to optimize integer setcc a bit
358   if (!Subtarget.useCRBits())
359     setOperationAction(ISD::SETCC, MVT::i32, Custom);
360 
361   // PowerPC does not have BRCOND which requires SetCC
362   if (!Subtarget.useCRBits())
363     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
364 
365   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
366 
367   if (Subtarget.hasSPE()) {
368     // SPE has built-in conversions
369     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
370     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
371     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
372   } else {
373     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
374     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
375 
376     // PowerPC does not have [U|S]INT_TO_FP
377     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
378     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
379   }
380 
381   if (Subtarget.hasDirectMove() && isPPC64) {
382     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
383     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
384     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
385     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
386   } else {
387     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
388     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
389     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
390     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
391   }
392 
393   // We cannot sextinreg(i1).  Expand to shifts.
394   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
395 
396   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
397   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
398   // support continuation, user-level threading, and etc.. As a result, no
399   // other SjLj exception interfaces are implemented and please don't build
400   // your own exception handling based on them.
401   // LLVM/Clang supports zero-cost DWARF exception handling.
402   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
403   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
404 
405   // We want to legalize GlobalAddress and ConstantPool nodes into the
406   // appropriate instructions to materialize the address.
407   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
408   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
409   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
410   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
411   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
412   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
413   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
414   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
415   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
416   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
417 
418   // TRAP is legal.
419   setOperationAction(ISD::TRAP, MVT::Other, Legal);
420 
421   // TRAMPOLINE is custom lowered.
422   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
423   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
424 
425   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
426   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
427 
428   if (Subtarget.isSVR4ABI()) {
429     if (isPPC64) {
430       // VAARG always uses double-word chunks, so promote anything smaller.
431       setOperationAction(ISD::VAARG, MVT::i1, Promote);
432       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
433       setOperationAction(ISD::VAARG, MVT::i8, Promote);
434       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
435       setOperationAction(ISD::VAARG, MVT::i16, Promote);
436       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
437       setOperationAction(ISD::VAARG, MVT::i32, Promote);
438       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
439       setOperationAction(ISD::VAARG, MVT::Other, Expand);
440     } else {
441       // VAARG is custom lowered with the 32-bit SVR4 ABI.
442       setOperationAction(ISD::VAARG, MVT::Other, Custom);
443       setOperationAction(ISD::VAARG, MVT::i64, Custom);
444     }
445   } else
446     setOperationAction(ISD::VAARG, MVT::Other, Expand);
447 
448   if (Subtarget.isSVR4ABI() && !isPPC64)
449     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
450     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
451   else
452     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
453 
454   // Use the default implementation.
455   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
456   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
457   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
458   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
459   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
460   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
461   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
462   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
463   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
464 
465   // We want to custom lower some of our intrinsics.
466   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
467 
468   // To handle counter-based loop conditions.
469   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
470 
471   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
472   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
473   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
474   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
475 
476   // Comparisons that require checking two conditions.
477   if (Subtarget.hasSPE()) {
478     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
479     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
480     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
481     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
482   }
483   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
484   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
485   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
486   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
487   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
488   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
489   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
490   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
491   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
492   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
493   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
494   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
495 
496   if (Subtarget.has64BitSupport()) {
497     // They also have instructions for converting between i64 and fp.
498     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
499     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
500     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
501     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
502     // This is just the low 32 bits of a (signed) fp->i64 conversion.
503     // We cannot do this with Promote because i64 is not a legal type.
504     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
505 
506     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
507       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
508   } else {
509     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
510     if (Subtarget.hasSPE())
511       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
512     else
513       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
514   }
515 
516   // With the instructions enabled under FPCVT, we can do everything.
517   if (Subtarget.hasFPCVT()) {
518     if (Subtarget.has64BitSupport()) {
519       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
520       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
521       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
522       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
523     }
524 
525     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
526     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
527     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
528     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
529   }
530 
531   if (Subtarget.use64BitRegs()) {
532     // 64-bit PowerPC implementations can support i64 types directly
533     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
534     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
535     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
536     // 64-bit PowerPC wants to expand i128 shifts itself.
537     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
538     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
539     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
540   } else {
541     // 32-bit PowerPC wants to expand i64 shifts itself.
542     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
543     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
544     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
545   }
546 
547   if (Subtarget.hasAltivec()) {
548     // First set operation action for all vector types to expand. Then we
549     // will selectively turn on ones that can be effectively codegen'd.
550     for (MVT VT : MVT::vector_valuetypes()) {
551       // add/sub are legal for all supported vector VT's.
552       setOperationAction(ISD::ADD, VT, Legal);
553       setOperationAction(ISD::SUB, VT, Legal);
554       setOperationAction(ISD::ABS, VT, Custom);
555 
556       // Vector instructions introduced in P8
557       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
558         setOperationAction(ISD::CTPOP, VT, Legal);
559         setOperationAction(ISD::CTLZ, VT, Legal);
560       }
561       else {
562         setOperationAction(ISD::CTPOP, VT, Expand);
563         setOperationAction(ISD::CTLZ, VT, Expand);
564       }
565 
566       // Vector instructions introduced in P9
567       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
568         setOperationAction(ISD::CTTZ, VT, Legal);
569       else
570         setOperationAction(ISD::CTTZ, VT, Expand);
571 
572       // We promote all shuffles to v16i8.
573       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
574       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
575 
576       // We promote all non-typed operations to v4i32.
577       setOperationAction(ISD::AND   , VT, Promote);
578       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
579       setOperationAction(ISD::OR    , VT, Promote);
580       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
581       setOperationAction(ISD::XOR   , VT, Promote);
582       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
583       setOperationAction(ISD::LOAD  , VT, Promote);
584       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
585       setOperationAction(ISD::SELECT, VT, Promote);
586       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
587       setOperationAction(ISD::VSELECT, VT, Legal);
588       setOperationAction(ISD::SELECT_CC, VT, Promote);
589       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
590       setOperationAction(ISD::STORE, VT, Promote);
591       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
592 
593       // No other operations are legal.
594       setOperationAction(ISD::MUL , VT, Expand);
595       setOperationAction(ISD::SDIV, VT, Expand);
596       setOperationAction(ISD::SREM, VT, Expand);
597       setOperationAction(ISD::UDIV, VT, Expand);
598       setOperationAction(ISD::UREM, VT, Expand);
599       setOperationAction(ISD::FDIV, VT, Expand);
600       setOperationAction(ISD::FREM, VT, Expand);
601       setOperationAction(ISD::FNEG, VT, Expand);
602       setOperationAction(ISD::FSQRT, VT, Expand);
603       setOperationAction(ISD::FLOG, VT, Expand);
604       setOperationAction(ISD::FLOG10, VT, Expand);
605       setOperationAction(ISD::FLOG2, VT, Expand);
606       setOperationAction(ISD::FEXP, VT, Expand);
607       setOperationAction(ISD::FEXP2, VT, Expand);
608       setOperationAction(ISD::FSIN, VT, Expand);
609       setOperationAction(ISD::FCOS, VT, Expand);
610       setOperationAction(ISD::FABS, VT, Expand);
611       setOperationAction(ISD::FFLOOR, VT, Expand);
612       setOperationAction(ISD::FCEIL,  VT, Expand);
613       setOperationAction(ISD::FTRUNC, VT, Expand);
614       setOperationAction(ISD::FRINT,  VT, Expand);
615       setOperationAction(ISD::FNEARBYINT, VT, Expand);
616       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
617       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
618       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
619       setOperationAction(ISD::MULHU, VT, Expand);
620       setOperationAction(ISD::MULHS, VT, Expand);
621       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
622       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
623       setOperationAction(ISD::UDIVREM, VT, Expand);
624       setOperationAction(ISD::SDIVREM, VT, Expand);
625       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
626       setOperationAction(ISD::FPOW, VT, Expand);
627       setOperationAction(ISD::BSWAP, VT, Expand);
628       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
629       setOperationAction(ISD::ROTL, VT, Expand);
630       setOperationAction(ISD::ROTR, VT, Expand);
631 
632       for (MVT InnerVT : MVT::vector_valuetypes()) {
633         setTruncStoreAction(VT, InnerVT, Expand);
634         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
635         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
636         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
637       }
638     }
639 
640     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
641     // with merges, splats, etc.
642     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
643 
644     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
645     // are cheap, so handle them before they get expanded to scalar.
646     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
647     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
648     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
649     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
650     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
651 
652     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
653     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
654     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
655     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
656     setOperationAction(ISD::SELECT, MVT::v4i32,
657                        Subtarget.useCRBits() ? Legal : Expand);
658     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
659     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
660     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
661     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
662     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
663     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
664     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
665     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
666     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
667 
668     // Without hasP8Altivec set, v2i64 SMAX isn't available.
669     // But ABS custom lowering requires SMAX support.
670     if (!Subtarget.hasP8Altivec())
671       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
672 
673     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
674     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
675     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
676     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
677 
678     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
679     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
680 
681     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
682       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
683       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
684     }
685 
686     if (Subtarget.hasP8Altivec())
687       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
688     else
689       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
690 
691     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
692     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
693 
694     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
695     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
696 
697     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
698     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
699     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
700     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
701 
702     // Altivec does not contain unordered floating-point compare instructions
703     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
704     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
705     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
706     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
707 
708     if (Subtarget.hasVSX()) {
709       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
710       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
711       if (Subtarget.hasP8Vector()) {
712         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
713         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
714       }
715       if (Subtarget.hasDirectMove() && isPPC64) {
716         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
717         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
718         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
719         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
720         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
721         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
722         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
723         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
724       }
725       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
726 
727       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
728       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
729       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
730       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
731       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
732 
733       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
734 
735       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
736       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
737 
738       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
739       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
740 
741       // Share the Altivec comparison restrictions.
742       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
743       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
744       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
745       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
746 
747       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
748       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
749 
750       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
751 
752       if (Subtarget.hasP8Vector())
753         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
754 
755       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
756 
757       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
758       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
759       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
760 
761       if (Subtarget.hasP8Altivec()) {
762         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
763         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
764         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
765 
766         // 128 bit shifts can be accomplished via 3 instructions for SHL and
767         // SRL, but not for SRA because of the instructions available:
768         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
769         // doing
770         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
771         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
772         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
773 
774         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
775       }
776       else {
777         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
778         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
779         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
780 
781         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
782 
783         // VSX v2i64 only supports non-arithmetic operations.
784         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
785         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
786       }
787 
788       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
789       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
790       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
791       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
792 
793       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
794 
795       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
796       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
797       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
798       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
799 
800       // Custom handling for partial vectors of integers converted to
801       // floating point. We already have optimal handling for v2i32 through
802       // the DAG combine, so those aren't necessary.
803       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
804       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
805       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
806       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
807       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
808       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
809       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
810       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
811 
812       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
813       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
814       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
815       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
816 
817       if (Subtarget.hasDirectMove())
818         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
819       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
820 
821       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
822     }
823 
824     if (Subtarget.hasP8Altivec()) {
825       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
826       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
827     }
828 
829     if (Subtarget.hasP9Vector()) {
830       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
831       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
832 
833       // 128 bit shifts can be accomplished via 3 instructions for SHL and
834       // SRL, but not for SRA because of the instructions available:
835       // VS{RL} and VS{RL}O.
836       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
837       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
838       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
839 
840       if (EnableQuadPrecision) {
841         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
842         setOperationAction(ISD::FADD, MVT::f128, Legal);
843         setOperationAction(ISD::FSUB, MVT::f128, Legal);
844         setOperationAction(ISD::FDIV, MVT::f128, Legal);
845         setOperationAction(ISD::FMUL, MVT::f128, Legal);
846         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
847         // No extending loads to f128 on PPC.
848         for (MVT FPT : MVT::fp_valuetypes())
849           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
850         setOperationAction(ISD::FMA, MVT::f128, Legal);
851         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
852         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
853         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
854         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
855         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
856         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
857 
858         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
859         setOperationAction(ISD::FRINT, MVT::f128, Legal);
860         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
861         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
862         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
863         setOperationAction(ISD::FROUND, MVT::f128, Legal);
864 
865         setOperationAction(ISD::SELECT, MVT::f128, Expand);
866         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
867         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
868         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
869         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
870         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
871         // No implementation for these ops for PowerPC.
872         setOperationAction(ISD::FSIN , MVT::f128, Expand);
873         setOperationAction(ISD::FCOS , MVT::f128, Expand);
874         setOperationAction(ISD::FPOW, MVT::f128, Expand);
875         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
876         setOperationAction(ISD::FREM, MVT::f128, Expand);
877       }
878 
879     }
880 
881     if (Subtarget.hasP9Altivec()) {
882       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
883       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
884     }
885   }
886 
887   if (Subtarget.hasQPX()) {
888     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
889     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
890     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
891     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
892 
893     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
894     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
895 
896     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
897     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
898 
899     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
900     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
901 
902     if (!Subtarget.useCRBits())
903       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
904     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
905 
906     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
907     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
908     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
909     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
910     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
911     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
912     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
913 
914     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
915     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
916 
917     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
918     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
919     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
920 
921     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
922     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
923     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
924     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
925     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
926     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
927     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
928     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
929     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
930     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
931 
932     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
933     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
934 
935     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
936     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
937 
938     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
939 
940     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
941     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
942     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
943     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
944 
945     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
946     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
947 
948     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
949     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
950 
951     if (!Subtarget.useCRBits())
952       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
953     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
954 
955     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
956     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
957     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
958     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
959     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
960     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
961     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
962 
963     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
964     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
965 
966     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
967     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
968     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
969     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
970     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
971     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
972     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
973     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
974     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
975     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
976 
977     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
978     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
979 
980     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
981     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
982 
983     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
984 
985     setOperationAction(ISD::AND , MVT::v4i1, Legal);
986     setOperationAction(ISD::OR , MVT::v4i1, Legal);
987     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
988 
989     if (!Subtarget.useCRBits())
990       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
991     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
992 
993     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
994     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
995 
996     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
997     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
998     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
999     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1000     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1001     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1002     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1003 
1004     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1005     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1006 
1007     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1008 
1009     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1010     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1011     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1012     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1013 
1014     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1015     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1016     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1017     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1018 
1019     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1020     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1021 
1022     // These need to set FE_INEXACT, and so cannot be vectorized here.
1023     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1024     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1025 
1026     if (TM.Options.UnsafeFPMath) {
1027       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1028       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1029 
1030       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1031       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1032     } else {
1033       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1034       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1035 
1036       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1037       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1038     }
1039   }
1040 
1041   if (Subtarget.has64BitSupport())
1042     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1043 
1044   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1045 
1046   if (!isPPC64) {
1047     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1048     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1049   }
1050 
1051   setBooleanContents(ZeroOrOneBooleanContent);
1052 
1053   if (Subtarget.hasAltivec()) {
1054     // Altivec instructions set fields to all zeros or all ones.
1055     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1056   }
1057 
1058   if (!isPPC64) {
1059     // These libcalls are not available in 32-bit.
1060     setLibcallName(RTLIB::SHL_I128, nullptr);
1061     setLibcallName(RTLIB::SRL_I128, nullptr);
1062     setLibcallName(RTLIB::SRA_I128, nullptr);
1063   }
1064 
1065   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1066 
1067   // We have target-specific dag combine patterns for the following nodes:
1068   setTargetDAGCombine(ISD::ADD);
1069   setTargetDAGCombine(ISD::SHL);
1070   setTargetDAGCombine(ISD::SRA);
1071   setTargetDAGCombine(ISD::SRL);
1072   setTargetDAGCombine(ISD::SINT_TO_FP);
1073   setTargetDAGCombine(ISD::BUILD_VECTOR);
1074   if (Subtarget.hasFPCVT())
1075     setTargetDAGCombine(ISD::UINT_TO_FP);
1076   setTargetDAGCombine(ISD::LOAD);
1077   setTargetDAGCombine(ISD::STORE);
1078   setTargetDAGCombine(ISD::BR_CC);
1079   if (Subtarget.useCRBits())
1080     setTargetDAGCombine(ISD::BRCOND);
1081   setTargetDAGCombine(ISD::BSWAP);
1082   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1083   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1084   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1085 
1086   setTargetDAGCombine(ISD::SIGN_EXTEND);
1087   setTargetDAGCombine(ISD::ZERO_EXTEND);
1088   setTargetDAGCombine(ISD::ANY_EXTEND);
1089 
1090   setTargetDAGCombine(ISD::TRUNCATE);
1091 
1092   if (Subtarget.useCRBits()) {
1093     setTargetDAGCombine(ISD::TRUNCATE);
1094     setTargetDAGCombine(ISD::SETCC);
1095     setTargetDAGCombine(ISD::SELECT_CC);
1096   }
1097 
1098   // Use reciprocal estimates.
1099   if (TM.Options.UnsafeFPMath) {
1100     setTargetDAGCombine(ISD::FDIV);
1101     setTargetDAGCombine(ISD::FSQRT);
1102   }
1103 
1104   if (Subtarget.hasP9Altivec()) {
1105     setTargetDAGCombine(ISD::ABS);
1106     setTargetDAGCombine(ISD::VSELECT);
1107   }
1108 
1109   // Darwin long double math library functions have $LDBL128 appended.
1110   if (Subtarget.isDarwin()) {
1111     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1112     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1113     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1114     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1115     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1116     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1117     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1118     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1119     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1120     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1121   }
1122 
1123   if (EnableQuadPrecision) {
1124     setLibcallName(RTLIB::LOG_F128, "logf128");
1125     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1126     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1127     setLibcallName(RTLIB::EXP_F128, "expf128");
1128     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1129     setLibcallName(RTLIB::SIN_F128, "sinf128");
1130     setLibcallName(RTLIB::COS_F128, "cosf128");
1131     setLibcallName(RTLIB::POW_F128, "powf128");
1132     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1133     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1134     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1135     setLibcallName(RTLIB::REM_F128, "fmodf128");
1136   }
1137 
1138   // With 32 condition bits, we don't need to sink (and duplicate) compares
1139   // aggressively in CodeGenPrep.
1140   if (Subtarget.useCRBits()) {
1141     setHasMultipleConditionRegisters();
1142     setJumpIsExpensive();
1143   }
1144 
1145   setMinFunctionAlignment(2);
1146   if (Subtarget.isDarwin())
1147     setPrefFunctionAlignment(4);
1148 
1149   switch (Subtarget.getDarwinDirective()) {
1150   default: break;
1151   case PPC::DIR_970:
1152   case PPC::DIR_A2:
1153   case PPC::DIR_E500:
1154   case PPC::DIR_E500mc:
1155   case PPC::DIR_E5500:
1156   case PPC::DIR_PWR4:
1157   case PPC::DIR_PWR5:
1158   case PPC::DIR_PWR5X:
1159   case PPC::DIR_PWR6:
1160   case PPC::DIR_PWR6X:
1161   case PPC::DIR_PWR7:
1162   case PPC::DIR_PWR8:
1163   case PPC::DIR_PWR9:
1164     setPrefFunctionAlignment(4);
1165     setPrefLoopAlignment(4);
1166     break;
1167   }
1168 
1169   if (Subtarget.enableMachineScheduler())
1170     setSchedulingPreference(Sched::Source);
1171   else
1172     setSchedulingPreference(Sched::Hybrid);
1173 
1174   computeRegisterProperties(STI.getRegisterInfo());
1175 
1176   // The Freescale cores do better with aggressive inlining of memcpy and
1177   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1178   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1179       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1180     MaxStoresPerMemset = 32;
1181     MaxStoresPerMemsetOptSize = 16;
1182     MaxStoresPerMemcpy = 32;
1183     MaxStoresPerMemcpyOptSize = 8;
1184     MaxStoresPerMemmove = 32;
1185     MaxStoresPerMemmoveOptSize = 8;
1186   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1187     // The A2 also benefits from (very) aggressive inlining of memcpy and
1188     // friends. The overhead of a the function call, even when warm, can be
1189     // over one hundred cycles.
1190     MaxStoresPerMemset = 128;
1191     MaxStoresPerMemcpy = 128;
1192     MaxStoresPerMemmove = 128;
1193     MaxLoadsPerMemcmp = 128;
1194   } else {
1195     MaxLoadsPerMemcmp = 8;
1196     MaxLoadsPerMemcmpOptSize = 4;
1197   }
1198 }
1199 
1200 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1201 /// the desired ByVal argument alignment.
1202 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1203                              unsigned MaxMaxAlign) {
1204   if (MaxAlign == MaxMaxAlign)
1205     return;
1206   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1207     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1208       MaxAlign = 32;
1209     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1210       MaxAlign = 16;
1211   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1212     unsigned EltAlign = 0;
1213     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1214     if (EltAlign > MaxAlign)
1215       MaxAlign = EltAlign;
1216   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1217     for (auto *EltTy : STy->elements()) {
1218       unsigned EltAlign = 0;
1219       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1220       if (EltAlign > MaxAlign)
1221         MaxAlign = EltAlign;
1222       if (MaxAlign == MaxMaxAlign)
1223         break;
1224     }
1225   }
1226 }
1227 
1228 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1229 /// function arguments in the caller parameter area.
1230 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1231                                                   const DataLayout &DL) const {
1232   // Darwin passes everything on 4 byte boundary.
1233   if (Subtarget.isDarwin())
1234     return 4;
1235 
1236   // 16byte and wider vectors are passed on 16byte boundary.
1237   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1238   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1239   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1240     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1241   return Align;
1242 }
1243 
1244 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1245                                                           CallingConv:: ID CC,
1246                                                           EVT VT) const {
1247   if (Subtarget.hasSPE() && VT == MVT::f64)
1248     return 2;
1249   return PPCTargetLowering::getNumRegisters(Context, VT);
1250 }
1251 
1252 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1253                                                      CallingConv:: ID CC,
1254                                                      EVT VT) const {
1255   if (Subtarget.hasSPE() && VT == MVT::f64)
1256     return MVT::i32;
1257   return PPCTargetLowering::getRegisterType(Context, VT);
1258 }
1259 
1260 bool PPCTargetLowering::useSoftFloat() const {
1261   return Subtarget.useSoftFloat();
1262 }
1263 
1264 bool PPCTargetLowering::hasSPE() const {
1265   return Subtarget.hasSPE();
1266 }
1267 
1268 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1269   switch ((PPCISD::NodeType)Opcode) {
1270   case PPCISD::FIRST_NUMBER:    break;
1271   case PPCISD::FSEL:            return "PPCISD::FSEL";
1272   case PPCISD::FCFID:           return "PPCISD::FCFID";
1273   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1274   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1275   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1276   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1277   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1278   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1279   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1280   case PPCISD::FP_TO_UINT_IN_VSR:
1281                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1282   case PPCISD::FP_TO_SINT_IN_VSR:
1283                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1284   case PPCISD::FRE:             return "PPCISD::FRE";
1285   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1286   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1287   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1288   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1289   case PPCISD::VPERM:           return "PPCISD::VPERM";
1290   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1291   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1292   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1293   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1294   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1295   case PPCISD::CMPB:            return "PPCISD::CMPB";
1296   case PPCISD::Hi:              return "PPCISD::Hi";
1297   case PPCISD::Lo:              return "PPCISD::Lo";
1298   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1299   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1300   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1301   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1302   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1303   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1304   case PPCISD::SRL:             return "PPCISD::SRL";
1305   case PPCISD::SRA:             return "PPCISD::SRA";
1306   case PPCISD::SHL:             return "PPCISD::SHL";
1307   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1308   case PPCISD::CALL:            return "PPCISD::CALL";
1309   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1310   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1311   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1312   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1313   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1314   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1315   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1316   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1317   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1318   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1319   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1320   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1321   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1322   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1323   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1324   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1325   case PPCISD::VCMP:            return "PPCISD::VCMP";
1326   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1327   case PPCISD::LBRX:            return "PPCISD::LBRX";
1328   case PPCISD::STBRX:           return "PPCISD::STBRX";
1329   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1330   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1331   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1332   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1333   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1334   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1335   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1336   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1337   case PPCISD::ST_VSR_SCAL_INT:
1338                                 return "PPCISD::ST_VSR_SCAL_INT";
1339   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1340   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1341   case PPCISD::BDZ:             return "PPCISD::BDZ";
1342   case PPCISD::MFFS:            return "PPCISD::MFFS";
1343   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1344   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1345   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1346   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1347   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1348   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1349   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1350   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1351   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1352   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1353   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1354   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1355   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1356   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1357   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1358   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1359   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1360   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1361   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1362   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1363   case PPCISD::SC:              return "PPCISD::SC";
1364   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1365   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1366   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1367   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1368   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1369   case PPCISD::VABSD:           return "PPCISD::VABSD";
1370   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1371   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1372   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1373   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1374   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1375   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1376   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1377   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1378   }
1379   return nullptr;
1380 }
1381 
1382 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1383                                           EVT VT) const {
1384   if (!VT.isVector())
1385     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1386 
1387   if (Subtarget.hasQPX())
1388     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1389 
1390   return VT.changeVectorElementTypeToInteger();
1391 }
1392 
1393 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1394   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1395   return true;
1396 }
1397 
1398 //===----------------------------------------------------------------------===//
1399 // Node matching predicates, for use by the tblgen matching code.
1400 //===----------------------------------------------------------------------===//
1401 
1402 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1403 static bool isFloatingPointZero(SDValue Op) {
1404   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1405     return CFP->getValueAPF().isZero();
1406   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1407     // Maybe this has already been legalized into the constant pool?
1408     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1409       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1410         return CFP->getValueAPF().isZero();
1411   }
1412   return false;
1413 }
1414 
1415 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1416 /// true if Op is undef or if it matches the specified value.
1417 static bool isConstantOrUndef(int Op, int Val) {
1418   return Op < 0 || Op == Val;
1419 }
1420 
1421 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1422 /// VPKUHUM instruction.
1423 /// The ShuffleKind distinguishes between big-endian operations with
1424 /// two different inputs (0), either-endian operations with two identical
1425 /// inputs (1), and little-endian operations with two different inputs (2).
1426 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1427 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1428                                SelectionDAG &DAG) {
1429   bool IsLE = DAG.getDataLayout().isLittleEndian();
1430   if (ShuffleKind == 0) {
1431     if (IsLE)
1432       return false;
1433     for (unsigned i = 0; i != 16; ++i)
1434       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1435         return false;
1436   } else if (ShuffleKind == 2) {
1437     if (!IsLE)
1438       return false;
1439     for (unsigned i = 0; i != 16; ++i)
1440       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1441         return false;
1442   } else if (ShuffleKind == 1) {
1443     unsigned j = IsLE ? 0 : 1;
1444     for (unsigned i = 0; i != 8; ++i)
1445       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1446           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1447         return false;
1448   }
1449   return true;
1450 }
1451 
1452 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1453 /// VPKUWUM instruction.
1454 /// The ShuffleKind distinguishes between big-endian operations with
1455 /// two different inputs (0), either-endian operations with two identical
1456 /// inputs (1), and little-endian operations with two different inputs (2).
1457 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1458 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1459                                SelectionDAG &DAG) {
1460   bool IsLE = DAG.getDataLayout().isLittleEndian();
1461   if (ShuffleKind == 0) {
1462     if (IsLE)
1463       return false;
1464     for (unsigned i = 0; i != 16; i += 2)
1465       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1466           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1467         return false;
1468   } else if (ShuffleKind == 2) {
1469     if (!IsLE)
1470       return false;
1471     for (unsigned i = 0; i != 16; i += 2)
1472       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1473           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1474         return false;
1475   } else if (ShuffleKind == 1) {
1476     unsigned j = IsLE ? 0 : 2;
1477     for (unsigned i = 0; i != 8; i += 2)
1478       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1479           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1480           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1481           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1482         return false;
1483   }
1484   return true;
1485 }
1486 
1487 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1488 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1489 /// current subtarget.
1490 ///
1491 /// The ShuffleKind distinguishes between big-endian operations with
1492 /// two different inputs (0), either-endian operations with two identical
1493 /// inputs (1), and little-endian operations with two different inputs (2).
1494 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1495 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1496                                SelectionDAG &DAG) {
1497   const PPCSubtarget& Subtarget =
1498     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1499   if (!Subtarget.hasP8Vector())
1500     return false;
1501 
1502   bool IsLE = DAG.getDataLayout().isLittleEndian();
1503   if (ShuffleKind == 0) {
1504     if (IsLE)
1505       return false;
1506     for (unsigned i = 0; i != 16; i += 4)
1507       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1508           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1509           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1510           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1511         return false;
1512   } else if (ShuffleKind == 2) {
1513     if (!IsLE)
1514       return false;
1515     for (unsigned i = 0; i != 16; i += 4)
1516       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1517           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1518           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1519           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1520         return false;
1521   } else if (ShuffleKind == 1) {
1522     unsigned j = IsLE ? 0 : 4;
1523     for (unsigned i = 0; i != 8; i += 4)
1524       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1525           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1526           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1527           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1528           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1529           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1530           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1531           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1532         return false;
1533   }
1534   return true;
1535 }
1536 
1537 /// isVMerge - Common function, used to match vmrg* shuffles.
1538 ///
1539 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1540                      unsigned LHSStart, unsigned RHSStart) {
1541   if (N->getValueType(0) != MVT::v16i8)
1542     return false;
1543   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1544          "Unsupported merge size!");
1545 
1546   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1547     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1548       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1549                              LHSStart+j+i*UnitSize) ||
1550           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1551                              RHSStart+j+i*UnitSize))
1552         return false;
1553     }
1554   return true;
1555 }
1556 
1557 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1558 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1559 /// The ShuffleKind distinguishes between big-endian merges with two
1560 /// different inputs (0), either-endian merges with two identical inputs (1),
1561 /// and little-endian merges with two different inputs (2).  For the latter,
1562 /// the input operands are swapped (see PPCInstrAltivec.td).
1563 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1564                              unsigned ShuffleKind, SelectionDAG &DAG) {
1565   if (DAG.getDataLayout().isLittleEndian()) {
1566     if (ShuffleKind == 1) // unary
1567       return isVMerge(N, UnitSize, 0, 0);
1568     else if (ShuffleKind == 2) // swapped
1569       return isVMerge(N, UnitSize, 0, 16);
1570     else
1571       return false;
1572   } else {
1573     if (ShuffleKind == 1) // unary
1574       return isVMerge(N, UnitSize, 8, 8);
1575     else if (ShuffleKind == 0) // normal
1576       return isVMerge(N, UnitSize, 8, 24);
1577     else
1578       return false;
1579   }
1580 }
1581 
1582 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1583 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1584 /// The ShuffleKind distinguishes between big-endian merges with two
1585 /// different inputs (0), either-endian merges with two identical inputs (1),
1586 /// and little-endian merges with two different inputs (2).  For the latter,
1587 /// the input operands are swapped (see PPCInstrAltivec.td).
1588 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1589                              unsigned ShuffleKind, SelectionDAG &DAG) {
1590   if (DAG.getDataLayout().isLittleEndian()) {
1591     if (ShuffleKind == 1) // unary
1592       return isVMerge(N, UnitSize, 8, 8);
1593     else if (ShuffleKind == 2) // swapped
1594       return isVMerge(N, UnitSize, 8, 24);
1595     else
1596       return false;
1597   } else {
1598     if (ShuffleKind == 1) // unary
1599       return isVMerge(N, UnitSize, 0, 0);
1600     else if (ShuffleKind == 0) // normal
1601       return isVMerge(N, UnitSize, 0, 16);
1602     else
1603       return false;
1604   }
1605 }
1606 
1607 /**
1608  * Common function used to match vmrgew and vmrgow shuffles
1609  *
1610  * The indexOffset determines whether to look for even or odd words in
1611  * the shuffle mask. This is based on the of the endianness of the target
1612  * machine.
1613  *   - Little Endian:
1614  *     - Use offset of 0 to check for odd elements
1615  *     - Use offset of 4 to check for even elements
1616  *   - Big Endian:
1617  *     - Use offset of 0 to check for even elements
1618  *     - Use offset of 4 to check for odd elements
1619  * A detailed description of the vector element ordering for little endian and
1620  * big endian can be found at
1621  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1622  * Targeting your applications - what little endian and big endian IBM XL C/C++
1623  * compiler differences mean to you
1624  *
1625  * The mask to the shuffle vector instruction specifies the indices of the
1626  * elements from the two input vectors to place in the result. The elements are
1627  * numbered in array-access order, starting with the first vector. These vectors
1628  * are always of type v16i8, thus each vector will contain 16 elements of size
1629  * 8. More info on the shuffle vector can be found in the
1630  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1631  * Language Reference.
1632  *
1633  * The RHSStartValue indicates whether the same input vectors are used (unary)
1634  * or two different input vectors are used, based on the following:
1635  *   - If the instruction uses the same vector for both inputs, the range of the
1636  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1637  *     be 0.
1638  *   - If the instruction has two different vectors then the range of the
1639  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1640  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1641  *     to 31 specify elements in the second vector).
1642  *
1643  * \param[in] N The shuffle vector SD Node to analyze
1644  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1645  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1646  * vector to the shuffle_vector instruction
1647  * \return true iff this shuffle vector represents an even or odd word merge
1648  */
1649 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1650                      unsigned RHSStartValue) {
1651   if (N->getValueType(0) != MVT::v16i8)
1652     return false;
1653 
1654   for (unsigned i = 0; i < 2; ++i)
1655     for (unsigned j = 0; j < 4; ++j)
1656       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1657                              i*RHSStartValue+j+IndexOffset) ||
1658           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1659                              i*RHSStartValue+j+IndexOffset+8))
1660         return false;
1661   return true;
1662 }
1663 
1664 /**
1665  * Determine if the specified shuffle mask is suitable for the vmrgew or
1666  * vmrgow instructions.
1667  *
1668  * \param[in] N The shuffle vector SD Node to analyze
1669  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1670  * \param[in] ShuffleKind Identify the type of merge:
1671  *   - 0 = big-endian merge with two different inputs;
1672  *   - 1 = either-endian merge with two identical inputs;
1673  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1674  *     little-endian merges).
1675  * \param[in] DAG The current SelectionDAG
1676  * \return true iff this shuffle mask
1677  */
1678 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1679                               unsigned ShuffleKind, SelectionDAG &DAG) {
1680   if (DAG.getDataLayout().isLittleEndian()) {
1681     unsigned indexOffset = CheckEven ? 4 : 0;
1682     if (ShuffleKind == 1) // Unary
1683       return isVMerge(N, indexOffset, 0);
1684     else if (ShuffleKind == 2) // swapped
1685       return isVMerge(N, indexOffset, 16);
1686     else
1687       return false;
1688   }
1689   else {
1690     unsigned indexOffset = CheckEven ? 0 : 4;
1691     if (ShuffleKind == 1) // Unary
1692       return isVMerge(N, indexOffset, 0);
1693     else if (ShuffleKind == 0) // Normal
1694       return isVMerge(N, indexOffset, 16);
1695     else
1696       return false;
1697   }
1698   return false;
1699 }
1700 
1701 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1702 /// amount, otherwise return -1.
1703 /// The ShuffleKind distinguishes between big-endian operations with two
1704 /// different inputs (0), either-endian operations with two identical inputs
1705 /// (1), and little-endian operations with two different inputs (2).  For the
1706 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1707 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1708                              SelectionDAG &DAG) {
1709   if (N->getValueType(0) != MVT::v16i8)
1710     return -1;
1711 
1712   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1713 
1714   // Find the first non-undef value in the shuffle mask.
1715   unsigned i;
1716   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1717     /*search*/;
1718 
1719   if (i == 16) return -1;  // all undef.
1720 
1721   // Otherwise, check to see if the rest of the elements are consecutively
1722   // numbered from this value.
1723   unsigned ShiftAmt = SVOp->getMaskElt(i);
1724   if (ShiftAmt < i) return -1;
1725 
1726   ShiftAmt -= i;
1727   bool isLE = DAG.getDataLayout().isLittleEndian();
1728 
1729   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1730     // Check the rest of the elements to see if they are consecutive.
1731     for (++i; i != 16; ++i)
1732       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1733         return -1;
1734   } else if (ShuffleKind == 1) {
1735     // Check the rest of the elements to see if they are consecutive.
1736     for (++i; i != 16; ++i)
1737       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1738         return -1;
1739   } else
1740     return -1;
1741 
1742   if (isLE)
1743     ShiftAmt = 16 - ShiftAmt;
1744 
1745   return ShiftAmt;
1746 }
1747 
1748 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1749 /// specifies a splat of a single element that is suitable for input to
1750 /// VSPLTB/VSPLTH/VSPLTW.
1751 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1752   assert(N->getValueType(0) == MVT::v16i8 &&
1753          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1754 
1755   // The consecutive indices need to specify an element, not part of two
1756   // different elements.  So abandon ship early if this isn't the case.
1757   if (N->getMaskElt(0) % EltSize != 0)
1758     return false;
1759 
1760   // This is a splat operation if each element of the permute is the same, and
1761   // if the value doesn't reference the second vector.
1762   unsigned ElementBase = N->getMaskElt(0);
1763 
1764   // FIXME: Handle UNDEF elements too!
1765   if (ElementBase >= 16)
1766     return false;
1767 
1768   // Check that the indices are consecutive, in the case of a multi-byte element
1769   // splatted with a v16i8 mask.
1770   for (unsigned i = 1; i != EltSize; ++i)
1771     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1772       return false;
1773 
1774   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1775     if (N->getMaskElt(i) < 0) continue;
1776     for (unsigned j = 0; j != EltSize; ++j)
1777       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1778         return false;
1779   }
1780   return true;
1781 }
1782 
1783 /// Check that the mask is shuffling N byte elements. Within each N byte
1784 /// element of the mask, the indices could be either in increasing or
1785 /// decreasing order as long as they are consecutive.
1786 /// \param[in] N the shuffle vector SD Node to analyze
1787 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1788 /// Word/DoubleWord/QuadWord).
1789 /// \param[in] StepLen the delta indices number among the N byte element, if
1790 /// the mask is in increasing/decreasing order then it is 1/-1.
1791 /// \return true iff the mask is shuffling N byte elements.
1792 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1793                                    int StepLen) {
1794   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1795          "Unexpected element width.");
1796   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1797 
1798   unsigned NumOfElem = 16 / Width;
1799   unsigned MaskVal[16]; //  Width is never greater than 16
1800   for (unsigned i = 0; i < NumOfElem; ++i) {
1801     MaskVal[0] = N->getMaskElt(i * Width);
1802     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1803       return false;
1804     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1805       return false;
1806     }
1807 
1808     for (unsigned int j = 1; j < Width; ++j) {
1809       MaskVal[j] = N->getMaskElt(i * Width + j);
1810       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1811         return false;
1812       }
1813     }
1814   }
1815 
1816   return true;
1817 }
1818 
1819 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1820                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1821   if (!isNByteElemShuffleMask(N, 4, 1))
1822     return false;
1823 
1824   // Now we look at mask elements 0,4,8,12
1825   unsigned M0 = N->getMaskElt(0) / 4;
1826   unsigned M1 = N->getMaskElt(4) / 4;
1827   unsigned M2 = N->getMaskElt(8) / 4;
1828   unsigned M3 = N->getMaskElt(12) / 4;
1829   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1830   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1831 
1832   // Below, let H and L be arbitrary elements of the shuffle mask
1833   // where H is in the range [4,7] and L is in the range [0,3].
1834   // H, 1, 2, 3 or L, 5, 6, 7
1835   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1836       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1837     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1838     InsertAtByte = IsLE ? 12 : 0;
1839     Swap = M0 < 4;
1840     return true;
1841   }
1842   // 0, H, 2, 3 or 4, L, 6, 7
1843   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1844       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1845     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1846     InsertAtByte = IsLE ? 8 : 4;
1847     Swap = M1 < 4;
1848     return true;
1849   }
1850   // 0, 1, H, 3 or 4, 5, L, 7
1851   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1852       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1853     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1854     InsertAtByte = IsLE ? 4 : 8;
1855     Swap = M2 < 4;
1856     return true;
1857   }
1858   // 0, 1, 2, H or 4, 5, 6, L
1859   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1860       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1861     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1862     InsertAtByte = IsLE ? 0 : 12;
1863     Swap = M3 < 4;
1864     return true;
1865   }
1866 
1867   // If both vector operands for the shuffle are the same vector, the mask will
1868   // contain only elements from the first one and the second one will be undef.
1869   if (N->getOperand(1).isUndef()) {
1870     ShiftElts = 0;
1871     Swap = true;
1872     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1873     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1874       InsertAtByte = IsLE ? 12 : 0;
1875       return true;
1876     }
1877     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1878       InsertAtByte = IsLE ? 8 : 4;
1879       return true;
1880     }
1881     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1882       InsertAtByte = IsLE ? 4 : 8;
1883       return true;
1884     }
1885     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1886       InsertAtByte = IsLE ? 0 : 12;
1887       return true;
1888     }
1889   }
1890 
1891   return false;
1892 }
1893 
1894 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1895                                bool &Swap, bool IsLE) {
1896   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1897   // Ensure each byte index of the word is consecutive.
1898   if (!isNByteElemShuffleMask(N, 4, 1))
1899     return false;
1900 
1901   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1902   unsigned M0 = N->getMaskElt(0) / 4;
1903   unsigned M1 = N->getMaskElt(4) / 4;
1904   unsigned M2 = N->getMaskElt(8) / 4;
1905   unsigned M3 = N->getMaskElt(12) / 4;
1906 
1907   // If both vector operands for the shuffle are the same vector, the mask will
1908   // contain only elements from the first one and the second one will be undef.
1909   if (N->getOperand(1).isUndef()) {
1910     assert(M0 < 4 && "Indexing into an undef vector?");
1911     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1912       return false;
1913 
1914     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1915     Swap = false;
1916     return true;
1917   }
1918 
1919   // Ensure each word index of the ShuffleVector Mask is consecutive.
1920   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1921     return false;
1922 
1923   if (IsLE) {
1924     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1925       // Input vectors don't need to be swapped if the leading element
1926       // of the result is one of the 3 left elements of the second vector
1927       // (or if there is no shift to be done at all).
1928       Swap = false;
1929       ShiftElts = (8 - M0) % 8;
1930     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1931       // Input vectors need to be swapped if the leading element
1932       // of the result is one of the 3 left elements of the first vector
1933       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1934       Swap = true;
1935       ShiftElts = (4 - M0) % 4;
1936     }
1937 
1938     return true;
1939   } else {                                          // BE
1940     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1941       // Input vectors don't need to be swapped if the leading element
1942       // of the result is one of the 4 elements of the first vector.
1943       Swap = false;
1944       ShiftElts = M0;
1945     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1946       // Input vectors need to be swapped if the leading element
1947       // of the result is one of the 4 elements of the right vector.
1948       Swap = true;
1949       ShiftElts = M0 - 4;
1950     }
1951 
1952     return true;
1953   }
1954 }
1955 
1956 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1957   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1958 
1959   if (!isNByteElemShuffleMask(N, Width, -1))
1960     return false;
1961 
1962   for (int i = 0; i < 16; i += Width)
1963     if (N->getMaskElt(i) != i + Width - 1)
1964       return false;
1965 
1966   return true;
1967 }
1968 
1969 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1970   return isXXBRShuffleMaskHelper(N, 2);
1971 }
1972 
1973 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1974   return isXXBRShuffleMaskHelper(N, 4);
1975 }
1976 
1977 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1978   return isXXBRShuffleMaskHelper(N, 8);
1979 }
1980 
1981 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1982   return isXXBRShuffleMaskHelper(N, 16);
1983 }
1984 
1985 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1986 /// if the inputs to the instruction should be swapped and set \p DM to the
1987 /// value for the immediate.
1988 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1989 /// AND element 0 of the result comes from the first input (LE) or second input
1990 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1991 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1992 /// mask.
1993 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1994                                bool &Swap, bool IsLE) {
1995   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1996 
1997   // Ensure each byte index of the double word is consecutive.
1998   if (!isNByteElemShuffleMask(N, 8, 1))
1999     return false;
2000 
2001   unsigned M0 = N->getMaskElt(0) / 8;
2002   unsigned M1 = N->getMaskElt(8) / 8;
2003   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2004 
2005   // If both vector operands for the shuffle are the same vector, the mask will
2006   // contain only elements from the first one and the second one will be undef.
2007   if (N->getOperand(1).isUndef()) {
2008     if ((M0 | M1) < 2) {
2009       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2010       Swap = false;
2011       return true;
2012     } else
2013       return false;
2014   }
2015 
2016   if (IsLE) {
2017     if (M0 > 1 && M1 < 2) {
2018       Swap = false;
2019     } else if (M0 < 2 && M1 > 1) {
2020       M0 = (M0 + 2) % 4;
2021       M1 = (M1 + 2) % 4;
2022       Swap = true;
2023     } else
2024       return false;
2025 
2026     // Note: if control flow comes here that means Swap is already set above
2027     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2028     return true;
2029   } else { // BE
2030     if (M0 < 2 && M1 > 1) {
2031       Swap = false;
2032     } else if (M0 > 1 && M1 < 2) {
2033       M0 = (M0 + 2) % 4;
2034       M1 = (M1 + 2) % 4;
2035       Swap = true;
2036     } else
2037       return false;
2038 
2039     // Note: if control flow comes here that means Swap is already set above
2040     DM = (M0 << 1) + (M1 & 1);
2041     return true;
2042   }
2043 }
2044 
2045 
2046 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
2047 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
2048 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
2049                                 SelectionDAG &DAG) {
2050   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2051   assert(isSplatShuffleMask(SVOp, EltSize));
2052   if (DAG.getDataLayout().isLittleEndian())
2053     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2054   else
2055     return SVOp->getMaskElt(0) / EltSize;
2056 }
2057 
2058 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2059 /// by using a vspltis[bhw] instruction of the specified element size, return
2060 /// the constant being splatted.  The ByteSize field indicates the number of
2061 /// bytes of each element [124] -> [bhw].
2062 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2063   SDValue OpVal(nullptr, 0);
2064 
2065   // If ByteSize of the splat is bigger than the element size of the
2066   // build_vector, then we have a case where we are checking for a splat where
2067   // multiple elements of the buildvector are folded together into a single
2068   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2069   unsigned EltSize = 16/N->getNumOperands();
2070   if (EltSize < ByteSize) {
2071     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2072     SDValue UniquedVals[4];
2073     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2074 
2075     // See if all of the elements in the buildvector agree across.
2076     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2077       if (N->getOperand(i).isUndef()) continue;
2078       // If the element isn't a constant, bail fully out.
2079       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2080 
2081       if (!UniquedVals[i&(Multiple-1)].getNode())
2082         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2083       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2084         return SDValue();  // no match.
2085     }
2086 
2087     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2088     // either constant or undef values that are identical for each chunk.  See
2089     // if these chunks can form into a larger vspltis*.
2090 
2091     // Check to see if all of the leading entries are either 0 or -1.  If
2092     // neither, then this won't fit into the immediate field.
2093     bool LeadingZero = true;
2094     bool LeadingOnes = true;
2095     for (unsigned i = 0; i != Multiple-1; ++i) {
2096       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2097 
2098       LeadingZero &= isNullConstant(UniquedVals[i]);
2099       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2100     }
2101     // Finally, check the least significant entry.
2102     if (LeadingZero) {
2103       if (!UniquedVals[Multiple-1].getNode())
2104         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2105       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2106       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2107         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2108     }
2109     if (LeadingOnes) {
2110       if (!UniquedVals[Multiple-1].getNode())
2111         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2112       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2113       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2114         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2115     }
2116 
2117     return SDValue();
2118   }
2119 
2120   // Check to see if this buildvec has a single non-undef value in its elements.
2121   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2122     if (N->getOperand(i).isUndef()) continue;
2123     if (!OpVal.getNode())
2124       OpVal = N->getOperand(i);
2125     else if (OpVal != N->getOperand(i))
2126       return SDValue();
2127   }
2128 
2129   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2130 
2131   unsigned ValSizeInBytes = EltSize;
2132   uint64_t Value = 0;
2133   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2134     Value = CN->getZExtValue();
2135   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2136     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2137     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2138   }
2139 
2140   // If the splat value is larger than the element value, then we can never do
2141   // this splat.  The only case that we could fit the replicated bits into our
2142   // immediate field for would be zero, and we prefer to use vxor for it.
2143   if (ValSizeInBytes < ByteSize) return SDValue();
2144 
2145   // If the element value is larger than the splat value, check if it consists
2146   // of a repeated bit pattern of size ByteSize.
2147   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2148     return SDValue();
2149 
2150   // Properly sign extend the value.
2151   int MaskVal = SignExtend32(Value, ByteSize * 8);
2152 
2153   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2154   if (MaskVal == 0) return SDValue();
2155 
2156   // Finally, if this value fits in a 5 bit sext field, return it
2157   if (SignExtend32<5>(MaskVal) == MaskVal)
2158     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2159   return SDValue();
2160 }
2161 
2162 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2163 /// amount, otherwise return -1.
2164 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2165   EVT VT = N->getValueType(0);
2166   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2167     return -1;
2168 
2169   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2170 
2171   // Find the first non-undef value in the shuffle mask.
2172   unsigned i;
2173   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2174     /*search*/;
2175 
2176   if (i == 4) return -1;  // all undef.
2177 
2178   // Otherwise, check to see if the rest of the elements are consecutively
2179   // numbered from this value.
2180   unsigned ShiftAmt = SVOp->getMaskElt(i);
2181   if (ShiftAmt < i) return -1;
2182   ShiftAmt -= i;
2183 
2184   // Check the rest of the elements to see if they are consecutive.
2185   for (++i; i != 4; ++i)
2186     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2187       return -1;
2188 
2189   return ShiftAmt;
2190 }
2191 
2192 //===----------------------------------------------------------------------===//
2193 //  Addressing Mode Selection
2194 //===----------------------------------------------------------------------===//
2195 
2196 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2197 /// or 64-bit immediate, and if the value can be accurately represented as a
2198 /// sign extension from a 16-bit value.  If so, this returns true and the
2199 /// immediate.
2200 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2201   if (!isa<ConstantSDNode>(N))
2202     return false;
2203 
2204   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2205   if (N->getValueType(0) == MVT::i32)
2206     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2207   else
2208     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2209 }
2210 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2211   return isIntS16Immediate(Op.getNode(), Imm);
2212 }
2213 
2214 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2215 /// can be represented as an indexed [r+r] operation.  Returns false if it
2216 /// can be more efficiently represented with [r+imm].
2217 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2218                                             SDValue &Index,
2219                                             SelectionDAG &DAG) const {
2220   int16_t imm = 0;
2221   if (N.getOpcode() == ISD::ADD) {
2222     if (isIntS16Immediate(N.getOperand(1), imm))
2223       return false;    // r+i
2224     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2225       return false;    // r+i
2226 
2227     Base = N.getOperand(0);
2228     Index = N.getOperand(1);
2229     return true;
2230   } else if (N.getOpcode() == ISD::OR) {
2231     if (isIntS16Immediate(N.getOperand(1), imm))
2232       return false;    // r+i can fold it if we can.
2233 
2234     // If this is an or of disjoint bitfields, we can codegen this as an add
2235     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2236     // disjoint.
2237     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2238 
2239     if (LHSKnown.Zero.getBoolValue()) {
2240       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2241       // If all of the bits are known zero on the LHS or RHS, the add won't
2242       // carry.
2243       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2244         Base = N.getOperand(0);
2245         Index = N.getOperand(1);
2246         return true;
2247       }
2248     }
2249   }
2250 
2251   return false;
2252 }
2253 
2254 // If we happen to be doing an i64 load or store into a stack slot that has
2255 // less than a 4-byte alignment, then the frame-index elimination may need to
2256 // use an indexed load or store instruction (because the offset may not be a
2257 // multiple of 4). The extra register needed to hold the offset comes from the
2258 // register scavenger, and it is possible that the scavenger will need to use
2259 // an emergency spill slot. As a result, we need to make sure that a spill slot
2260 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2261 // stack slot.
2262 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2263   // FIXME: This does not handle the LWA case.
2264   if (VT != MVT::i64)
2265     return;
2266 
2267   // NOTE: We'll exclude negative FIs here, which come from argument
2268   // lowering, because there are no known test cases triggering this problem
2269   // using packed structures (or similar). We can remove this exclusion if
2270   // we find such a test case. The reason why this is so test-case driven is
2271   // because this entire 'fixup' is only to prevent crashes (from the
2272   // register scavenger) on not-really-valid inputs. For example, if we have:
2273   //   %a = alloca i1
2274   //   %b = bitcast i1* %a to i64*
2275   //   store i64* a, i64 b
2276   // then the store should really be marked as 'align 1', but is not. If it
2277   // were marked as 'align 1' then the indexed form would have been
2278   // instruction-selected initially, and the problem this 'fixup' is preventing
2279   // won't happen regardless.
2280   if (FrameIdx < 0)
2281     return;
2282 
2283   MachineFunction &MF = DAG.getMachineFunction();
2284   MachineFrameInfo &MFI = MF.getFrameInfo();
2285 
2286   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2287   if (Align >= 4)
2288     return;
2289 
2290   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2291   FuncInfo->setHasNonRISpills();
2292 }
2293 
2294 /// Returns true if the address N can be represented by a base register plus
2295 /// a signed 16-bit displacement [r+imm], and if it is not better
2296 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
2297 /// displacements that are multiples of that value.
2298 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2299                                             SDValue &Base,
2300                                             SelectionDAG &DAG,
2301                                             unsigned Alignment) const {
2302   // FIXME dl should come from parent load or store, not from address
2303   SDLoc dl(N);
2304   // If this can be more profitably realized as r+r, fail.
2305   if (SelectAddressRegReg(N, Disp, Base, DAG))
2306     return false;
2307 
2308   if (N.getOpcode() == ISD::ADD) {
2309     int16_t imm = 0;
2310     if (isIntS16Immediate(N.getOperand(1), imm) &&
2311         (!Alignment || (imm % Alignment) == 0)) {
2312       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2313       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2314         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2315         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2316       } else {
2317         Base = N.getOperand(0);
2318       }
2319       return true; // [r+i]
2320     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2321       // Match LOAD (ADD (X, Lo(G))).
2322       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2323              && "Cannot handle constant offsets yet!");
2324       Disp = N.getOperand(1).getOperand(0);  // The global address.
2325       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2326              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2327              Disp.getOpcode() == ISD::TargetConstantPool ||
2328              Disp.getOpcode() == ISD::TargetJumpTable);
2329       Base = N.getOperand(0);
2330       return true;  // [&g+r]
2331     }
2332   } else if (N.getOpcode() == ISD::OR) {
2333     int16_t imm = 0;
2334     if (isIntS16Immediate(N.getOperand(1), imm) &&
2335         (!Alignment || (imm % Alignment) == 0)) {
2336       // If this is an or of disjoint bitfields, we can codegen this as an add
2337       // (for better address arithmetic) if the LHS and RHS of the OR are
2338       // provably disjoint.
2339       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2340 
2341       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2342         // If all of the bits are known zero on the LHS or RHS, the add won't
2343         // carry.
2344         if (FrameIndexSDNode *FI =
2345               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2346           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2347           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2348         } else {
2349           Base = N.getOperand(0);
2350         }
2351         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2352         return true;
2353       }
2354     }
2355   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2356     // Loading from a constant address.
2357 
2358     // If this address fits entirely in a 16-bit sext immediate field, codegen
2359     // this as "d, 0"
2360     int16_t Imm;
2361     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2362       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2363       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2364                              CN->getValueType(0));
2365       return true;
2366     }
2367 
2368     // Handle 32-bit sext immediates with LIS + addr mode.
2369     if ((CN->getValueType(0) == MVT::i32 ||
2370          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2371         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2372       int Addr = (int)CN->getZExtValue();
2373 
2374       // Otherwise, break this down into an LIS + disp.
2375       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2376 
2377       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2378                                    MVT::i32);
2379       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2380       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2381       return true;
2382     }
2383   }
2384 
2385   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2386   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2387     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2388     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2389   } else
2390     Base = N;
2391   return true;      // [r+0]
2392 }
2393 
2394 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2395 /// represented as an indexed [r+r] operation.
2396 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2397                                                 SDValue &Index,
2398                                                 SelectionDAG &DAG) const {
2399   // Check to see if we can easily represent this as an [r+r] address.  This
2400   // will fail if it thinks that the address is more profitably represented as
2401   // reg+imm, e.g. where imm = 0.
2402   if (SelectAddressRegReg(N, Base, Index, DAG))
2403     return true;
2404 
2405   // If the address is the result of an add, we will utilize the fact that the
2406   // address calculation includes an implicit add.  However, we can reduce
2407   // register pressure if we do not materialize a constant just for use as the
2408   // index register.  We only get rid of the add if it is not an add of a
2409   // value and a 16-bit signed constant and both have a single use.
2410   int16_t imm = 0;
2411   if (N.getOpcode() == ISD::ADD &&
2412       (!isIntS16Immediate(N.getOperand(1), imm) ||
2413        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2414     Base = N.getOperand(0);
2415     Index = N.getOperand(1);
2416     return true;
2417   }
2418 
2419   // Otherwise, do it the hard way, using R0 as the base register.
2420   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2421                          N.getValueType());
2422   Index = N;
2423   return true;
2424 }
2425 
2426 /// Returns true if we should use a direct load into vector instruction
2427 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2428 static bool usePartialVectorLoads(SDNode *N) {
2429   if (!N->hasOneUse())
2430     return false;
2431 
2432   // If there are any other uses other than scalar to vector, then we should
2433   // keep it as a scalar load -> direct move pattern to prevent multiple
2434   // loads.  Currently, only check for i64 since we have lxsd/lfd to do this
2435   // efficiently, but no update equivalent.
2436   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2437     EVT MemVT = LD->getMemoryVT();
2438     if (MemVT.isSimple() && MemVT.getSimpleVT().SimpleTy == MVT::i64) {
2439       SDNode *User = *(LD->use_begin());
2440       if (User->getOpcode() == ISD::SCALAR_TO_VECTOR)
2441         return true;
2442     }
2443   }
2444 
2445   return false;
2446 }
2447 
2448 /// getPreIndexedAddressParts - returns true by value, base pointer and
2449 /// offset pointer and addressing mode by reference if the node's address
2450 /// can be legally represented as pre-indexed load / store address.
2451 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2452                                                   SDValue &Offset,
2453                                                   ISD::MemIndexedMode &AM,
2454                                                   SelectionDAG &DAG) const {
2455   if (DisablePPCPreinc) return false;
2456 
2457   bool isLoad = true;
2458   SDValue Ptr;
2459   EVT VT;
2460   unsigned Alignment;
2461   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2462     Ptr = LD->getBasePtr();
2463     VT = LD->getMemoryVT();
2464     Alignment = LD->getAlignment();
2465   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2466     Ptr = ST->getBasePtr();
2467     VT  = ST->getMemoryVT();
2468     Alignment = ST->getAlignment();
2469     isLoad = false;
2470   } else
2471     return false;
2472 
2473   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2474   // instructions because we can fold these into a more efficient instruction
2475   // instead, (such as LXSD).
2476   if (isLoad && usePartialVectorLoads(N)) {
2477     return false;
2478   }
2479 
2480   // PowerPC doesn't have preinc load/store instructions for vectors (except
2481   // for QPX, which does have preinc r+r forms).
2482   if (VT.isVector()) {
2483     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2484       return false;
2485     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2486       AM = ISD::PRE_INC;
2487       return true;
2488     }
2489   }
2490 
2491   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2492     // Common code will reject creating a pre-inc form if the base pointer
2493     // is a frame index, or if N is a store and the base pointer is either
2494     // the same as or a predecessor of the value being stored.  Check for
2495     // those situations here, and try with swapped Base/Offset instead.
2496     bool Swap = false;
2497 
2498     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2499       Swap = true;
2500     else if (!isLoad) {
2501       SDValue Val = cast<StoreSDNode>(N)->getValue();
2502       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2503         Swap = true;
2504     }
2505 
2506     if (Swap)
2507       std::swap(Base, Offset);
2508 
2509     AM = ISD::PRE_INC;
2510     return true;
2511   }
2512 
2513   // LDU/STU can only handle immediates that are a multiple of 4.
2514   if (VT != MVT::i64) {
2515     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2516       return false;
2517   } else {
2518     // LDU/STU need an address with at least 4-byte alignment.
2519     if (Alignment < 4)
2520       return false;
2521 
2522     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2523       return false;
2524   }
2525 
2526   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2527     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2528     // sext i32 to i64 when addr mode is r+i.
2529     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2530         LD->getExtensionType() == ISD::SEXTLOAD &&
2531         isa<ConstantSDNode>(Offset))
2532       return false;
2533   }
2534 
2535   AM = ISD::PRE_INC;
2536   return true;
2537 }
2538 
2539 //===----------------------------------------------------------------------===//
2540 //  LowerOperation implementation
2541 //===----------------------------------------------------------------------===//
2542 
2543 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2544 /// and LoOpFlags to the target MO flags.
2545 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2546                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2547                                const GlobalValue *GV = nullptr) {
2548   HiOpFlags = PPCII::MO_HA;
2549   LoOpFlags = PPCII::MO_LO;
2550 
2551   // Don't use the pic base if not in PIC relocation model.
2552   if (IsPIC) {
2553     HiOpFlags |= PPCII::MO_PIC_FLAG;
2554     LoOpFlags |= PPCII::MO_PIC_FLAG;
2555   }
2556 
2557   // If this is a reference to a global value that requires a non-lazy-ptr, make
2558   // sure that instruction lowering adds it.
2559   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2560     HiOpFlags |= PPCII::MO_NLP_FLAG;
2561     LoOpFlags |= PPCII::MO_NLP_FLAG;
2562 
2563     if (GV->hasHiddenVisibility()) {
2564       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2565       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2566     }
2567   }
2568 }
2569 
2570 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2571                              SelectionDAG &DAG) {
2572   SDLoc DL(HiPart);
2573   EVT PtrVT = HiPart.getValueType();
2574   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2575 
2576   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2577   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2578 
2579   // With PIC, the first instruction is actually "GR+hi(&G)".
2580   if (isPIC)
2581     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2582                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2583 
2584   // Generate non-pic code that has direct accesses to the constant pool.
2585   // The address of the global is just (hi(&g)+lo(&g)).
2586   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2587 }
2588 
2589 static void setUsesTOCBasePtr(MachineFunction &MF) {
2590   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2591   FuncInfo->setUsesTOCBasePtr();
2592 }
2593 
2594 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2595   setUsesTOCBasePtr(DAG.getMachineFunction());
2596 }
2597 
2598 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2599                            SDValue GA) {
2600   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2601   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2602                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2603 
2604   SDValue Ops[] = { GA, Reg };
2605   return DAG.getMemIntrinsicNode(
2606       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2607       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2608       MachineMemOperand::MOLoad);
2609 }
2610 
2611 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2612                                              SelectionDAG &DAG) const {
2613   EVT PtrVT = Op.getValueType();
2614   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2615   const Constant *C = CP->getConstVal();
2616 
2617   // 64-bit SVR4 ABI code is always position-independent.
2618   // The actual address of the GlobalValue is stored in the TOC.
2619   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2620     setUsesTOCBasePtr(DAG);
2621     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2622     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2623   }
2624 
2625   unsigned MOHiFlag, MOLoFlag;
2626   bool IsPIC = isPositionIndependent();
2627   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2628 
2629   if (IsPIC && Subtarget.isSVR4ABI()) {
2630     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2631                                            PPCII::MO_PIC_FLAG);
2632     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2633   }
2634 
2635   SDValue CPIHi =
2636     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2637   SDValue CPILo =
2638     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2639   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2640 }
2641 
2642 // For 64-bit PowerPC, prefer the more compact relative encodings.
2643 // This trades 32 bits per jump table entry for one or two instructions
2644 // on the jump site.
2645 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2646   if (isJumpTableRelative())
2647     return MachineJumpTableInfo::EK_LabelDifference32;
2648 
2649   return TargetLowering::getJumpTableEncoding();
2650 }
2651 
2652 bool PPCTargetLowering::isJumpTableRelative() const {
2653   if (Subtarget.isPPC64())
2654     return true;
2655   return TargetLowering::isJumpTableRelative();
2656 }
2657 
2658 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2659                                                     SelectionDAG &DAG) const {
2660   if (!Subtarget.isPPC64())
2661     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2662 
2663   switch (getTargetMachine().getCodeModel()) {
2664   case CodeModel::Small:
2665   case CodeModel::Medium:
2666     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2667   default:
2668     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2669                        getPointerTy(DAG.getDataLayout()));
2670   }
2671 }
2672 
2673 const MCExpr *
2674 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2675                                                 unsigned JTI,
2676                                                 MCContext &Ctx) const {
2677   if (!Subtarget.isPPC64())
2678     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2679 
2680   switch (getTargetMachine().getCodeModel()) {
2681   case CodeModel::Small:
2682   case CodeModel::Medium:
2683     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2684   default:
2685     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2686   }
2687 }
2688 
2689 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2690   EVT PtrVT = Op.getValueType();
2691   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2692 
2693   // 64-bit SVR4 ABI code is always position-independent.
2694   // The actual address of the GlobalValue is stored in the TOC.
2695   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2696     setUsesTOCBasePtr(DAG);
2697     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2698     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2699   }
2700 
2701   unsigned MOHiFlag, MOLoFlag;
2702   bool IsPIC = isPositionIndependent();
2703   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2704 
2705   if (IsPIC && Subtarget.isSVR4ABI()) {
2706     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2707                                         PPCII::MO_PIC_FLAG);
2708     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2709   }
2710 
2711   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2712   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2713   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2714 }
2715 
2716 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2717                                              SelectionDAG &DAG) const {
2718   EVT PtrVT = Op.getValueType();
2719   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2720   const BlockAddress *BA = BASDN->getBlockAddress();
2721 
2722   // 64-bit SVR4 ABI code is always position-independent.
2723   // The actual BlockAddress is stored in the TOC.
2724   if (Subtarget.isSVR4ABI() &&
2725       (Subtarget.isPPC64() || isPositionIndependent())) {
2726     if (Subtarget.isPPC64())
2727       setUsesTOCBasePtr(DAG);
2728     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2729     return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
2730   }
2731 
2732   unsigned MOHiFlag, MOLoFlag;
2733   bool IsPIC = isPositionIndependent();
2734   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2735   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2736   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2737   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2738 }
2739 
2740 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2741                                               SelectionDAG &DAG) const {
2742   // FIXME: TLS addresses currently use medium model code sequences,
2743   // which is the most useful form.  Eventually support for small and
2744   // large models could be added if users need it, at the cost of
2745   // additional complexity.
2746   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2747   if (DAG.getTarget().useEmulatedTLS())
2748     return LowerToTLSEmulatedModel(GA, DAG);
2749 
2750   SDLoc dl(GA);
2751   const GlobalValue *GV = GA->getGlobal();
2752   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2753   bool is64bit = Subtarget.isPPC64();
2754   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2755   PICLevel::Level picLevel = M->getPICLevel();
2756 
2757   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2758 
2759   if (Model == TLSModel::LocalExec) {
2760     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2761                                                PPCII::MO_TPREL_HA);
2762     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2763                                                PPCII::MO_TPREL_LO);
2764     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2765                              : DAG.getRegister(PPC::R2, MVT::i32);
2766 
2767     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2768     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2769   }
2770 
2771   if (Model == TLSModel::InitialExec) {
2772     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2773     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2774                                                 PPCII::MO_TLS);
2775     SDValue GOTPtr;
2776     if (is64bit) {
2777       setUsesTOCBasePtr(DAG);
2778       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2779       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2780                            PtrVT, GOTReg, TGA);
2781     } else
2782       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2783     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2784                                    PtrVT, TGA, GOTPtr);
2785     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2786   }
2787 
2788   if (Model == TLSModel::GeneralDynamic) {
2789     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2790     SDValue GOTPtr;
2791     if (is64bit) {
2792       setUsesTOCBasePtr(DAG);
2793       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2794       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2795                                    GOTReg, TGA);
2796     } else {
2797       if (picLevel == PICLevel::SmallPIC)
2798         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2799       else
2800         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2801     }
2802     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2803                        GOTPtr, TGA, TGA);
2804   }
2805 
2806   if (Model == TLSModel::LocalDynamic) {
2807     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2808     SDValue GOTPtr;
2809     if (is64bit) {
2810       setUsesTOCBasePtr(DAG);
2811       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2812       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2813                            GOTReg, TGA);
2814     } else {
2815       if (picLevel == PICLevel::SmallPIC)
2816         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2817       else
2818         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2819     }
2820     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2821                                   PtrVT, GOTPtr, TGA, TGA);
2822     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2823                                       PtrVT, TLSAddr, TGA);
2824     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2825   }
2826 
2827   llvm_unreachable("Unknown TLS model!");
2828 }
2829 
2830 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2831                                               SelectionDAG &DAG) const {
2832   EVT PtrVT = Op.getValueType();
2833   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2834   SDLoc DL(GSDN);
2835   const GlobalValue *GV = GSDN->getGlobal();
2836 
2837   // 64-bit SVR4 ABI code is always position-independent.
2838   // The actual address of the GlobalValue is stored in the TOC.
2839   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2840     setUsesTOCBasePtr(DAG);
2841     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2842     return getTOCEntry(DAG, DL, true, GA);
2843   }
2844 
2845   unsigned MOHiFlag, MOLoFlag;
2846   bool IsPIC = isPositionIndependent();
2847   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2848 
2849   if (IsPIC && Subtarget.isSVR4ABI()) {
2850     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2851                                             GSDN->getOffset(),
2852                                             PPCII::MO_PIC_FLAG);
2853     return getTOCEntry(DAG, DL, false, GA);
2854   }
2855 
2856   SDValue GAHi =
2857     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2858   SDValue GALo =
2859     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2860 
2861   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2862 
2863   // If the global reference is actually to a non-lazy-pointer, we have to do an
2864   // extra load to get the address of the global.
2865   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2866     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2867   return Ptr;
2868 }
2869 
2870 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2871   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2872   SDLoc dl(Op);
2873 
2874   if (Op.getValueType() == MVT::v2i64) {
2875     // When the operands themselves are v2i64 values, we need to do something
2876     // special because VSX has no underlying comparison operations for these.
2877     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2878       // Equality can be handled by casting to the legal type for Altivec
2879       // comparisons, everything else needs to be expanded.
2880       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2881         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2882                  DAG.getSetCC(dl, MVT::v4i32,
2883                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2884                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2885                    CC));
2886       }
2887 
2888       return SDValue();
2889     }
2890 
2891     // We handle most of these in the usual way.
2892     return Op;
2893   }
2894 
2895   // If we're comparing for equality to zero, expose the fact that this is
2896   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2897   // fold the new nodes.
2898   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2899     return V;
2900 
2901   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2902     // Leave comparisons against 0 and -1 alone for now, since they're usually
2903     // optimized.  FIXME: revisit this when we can custom lower all setcc
2904     // optimizations.
2905     if (C->isAllOnesValue() || C->isNullValue())
2906       return SDValue();
2907   }
2908 
2909   // If we have an integer seteq/setne, turn it into a compare against zero
2910   // by xor'ing the rhs with the lhs, which is faster than setting a
2911   // condition register, reading it back out, and masking the correct bit.  The
2912   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2913   // the result to other bit-twiddling opportunities.
2914   EVT LHSVT = Op.getOperand(0).getValueType();
2915   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2916     EVT VT = Op.getValueType();
2917     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2918                                 Op.getOperand(1));
2919     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2920   }
2921   return SDValue();
2922 }
2923 
2924 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2925   SDNode *Node = Op.getNode();
2926   EVT VT = Node->getValueType(0);
2927   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2928   SDValue InChain = Node->getOperand(0);
2929   SDValue VAListPtr = Node->getOperand(1);
2930   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2931   SDLoc dl(Node);
2932 
2933   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2934 
2935   // gpr_index
2936   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2937                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2938   InChain = GprIndex.getValue(1);
2939 
2940   if (VT == MVT::i64) {
2941     // Check if GprIndex is even
2942     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2943                                  DAG.getConstant(1, dl, MVT::i32));
2944     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2945                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2946     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2947                                           DAG.getConstant(1, dl, MVT::i32));
2948     // Align GprIndex to be even if it isn't
2949     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2950                            GprIndex);
2951   }
2952 
2953   // fpr index is 1 byte after gpr
2954   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2955                                DAG.getConstant(1, dl, MVT::i32));
2956 
2957   // fpr
2958   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2959                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2960   InChain = FprIndex.getValue(1);
2961 
2962   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2963                                        DAG.getConstant(8, dl, MVT::i32));
2964 
2965   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2966                                         DAG.getConstant(4, dl, MVT::i32));
2967 
2968   // areas
2969   SDValue OverflowArea =
2970       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2971   InChain = OverflowArea.getValue(1);
2972 
2973   SDValue RegSaveArea =
2974       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2975   InChain = RegSaveArea.getValue(1);
2976 
2977   // select overflow_area if index > 8
2978   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2979                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2980 
2981   // adjustment constant gpr_index * 4/8
2982   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2983                                     VT.isInteger() ? GprIndex : FprIndex,
2984                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2985                                                     MVT::i32));
2986 
2987   // OurReg = RegSaveArea + RegConstant
2988   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2989                                RegConstant);
2990 
2991   // Floating types are 32 bytes into RegSaveArea
2992   if (VT.isFloatingPoint())
2993     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2994                          DAG.getConstant(32, dl, MVT::i32));
2995 
2996   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2997   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2998                                    VT.isInteger() ? GprIndex : FprIndex,
2999                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3000                                                    MVT::i32));
3001 
3002   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3003                               VT.isInteger() ? VAListPtr : FprPtr,
3004                               MachinePointerInfo(SV), MVT::i8);
3005 
3006   // determine if we should load from reg_save_area or overflow_area
3007   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3008 
3009   // increase overflow_area by 4/8 if gpr/fpr > 8
3010   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3011                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3012                                           dl, MVT::i32));
3013 
3014   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3015                              OverflowAreaPlusN);
3016 
3017   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3018                               MachinePointerInfo(), MVT::i32);
3019 
3020   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3021 }
3022 
3023 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3024   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3025 
3026   // We have to copy the entire va_list struct:
3027   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3028   return DAG.getMemcpy(Op.getOperand(0), Op,
3029                        Op.getOperand(1), Op.getOperand(2),
3030                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3031                        false, MachinePointerInfo(), MachinePointerInfo());
3032 }
3033 
3034 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3035                                                   SelectionDAG &DAG) const {
3036   return Op.getOperand(0);
3037 }
3038 
3039 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3040                                                 SelectionDAG &DAG) const {
3041   SDValue Chain = Op.getOperand(0);
3042   SDValue Trmp = Op.getOperand(1); // trampoline
3043   SDValue FPtr = Op.getOperand(2); // nested function
3044   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3045   SDLoc dl(Op);
3046 
3047   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3048   bool isPPC64 = (PtrVT == MVT::i64);
3049   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3050 
3051   TargetLowering::ArgListTy Args;
3052   TargetLowering::ArgListEntry Entry;
3053 
3054   Entry.Ty = IntPtrTy;
3055   Entry.Node = Trmp; Args.push_back(Entry);
3056 
3057   // TrampSize == (isPPC64 ? 48 : 40);
3058   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3059                                isPPC64 ? MVT::i64 : MVT::i32);
3060   Args.push_back(Entry);
3061 
3062   Entry.Node = FPtr; Args.push_back(Entry);
3063   Entry.Node = Nest; Args.push_back(Entry);
3064 
3065   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3066   TargetLowering::CallLoweringInfo CLI(DAG);
3067   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3068       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3069       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3070 
3071   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3072   return CallResult.second;
3073 }
3074 
3075 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3076   MachineFunction &MF = DAG.getMachineFunction();
3077   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3078   EVT PtrVT = getPointerTy(MF.getDataLayout());
3079 
3080   SDLoc dl(Op);
3081 
3082   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3083     // vastart just stores the address of the VarArgsFrameIndex slot into the
3084     // memory location argument.
3085     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3086     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3087     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3088                         MachinePointerInfo(SV));
3089   }
3090 
3091   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3092   // We suppose the given va_list is already allocated.
3093   //
3094   // typedef struct {
3095   //  char gpr;     /* index into the array of 8 GPRs
3096   //                 * stored in the register save area
3097   //                 * gpr=0 corresponds to r3,
3098   //                 * gpr=1 to r4, etc.
3099   //                 */
3100   //  char fpr;     /* index into the array of 8 FPRs
3101   //                 * stored in the register save area
3102   //                 * fpr=0 corresponds to f1,
3103   //                 * fpr=1 to f2, etc.
3104   //                 */
3105   //  char *overflow_arg_area;
3106   //                /* location on stack that holds
3107   //                 * the next overflow argument
3108   //                 */
3109   //  char *reg_save_area;
3110   //               /* where r3:r10 and f1:f8 (if saved)
3111   //                * are stored
3112   //                */
3113   // } va_list[1];
3114 
3115   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3116   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3117   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3118                                             PtrVT);
3119   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3120                                  PtrVT);
3121 
3122   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3123   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3124 
3125   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3126   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3127 
3128   uint64_t FPROffset = 1;
3129   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3130 
3131   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3132 
3133   // Store first byte : number of int regs
3134   SDValue firstStore =
3135       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3136                         MachinePointerInfo(SV), MVT::i8);
3137   uint64_t nextOffset = FPROffset;
3138   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3139                                   ConstFPROffset);
3140 
3141   // Store second byte : number of float regs
3142   SDValue secondStore =
3143       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3144                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3145   nextOffset += StackOffset;
3146   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3147 
3148   // Store second word : arguments given on stack
3149   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3150                                     MachinePointerInfo(SV, nextOffset));
3151   nextOffset += FrameOffset;
3152   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3153 
3154   // Store third word : arguments given in registers
3155   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3156                       MachinePointerInfo(SV, nextOffset));
3157 }
3158 
3159 /// FPR - The set of FP registers that should be allocated for arguments,
3160 /// on Darwin.
3161 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3162                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3163                                 PPC::F11, PPC::F12, PPC::F13};
3164 
3165 /// QFPR - The set of QPX registers that should be allocated for arguments.
3166 static const MCPhysReg QFPR[] = {
3167     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3168     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3169 
3170 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3171 /// the stack.
3172 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3173                                        unsigned PtrByteSize) {
3174   unsigned ArgSize = ArgVT.getStoreSize();
3175   if (Flags.isByVal())
3176     ArgSize = Flags.getByValSize();
3177 
3178   // Round up to multiples of the pointer size, except for array members,
3179   // which are always packed.
3180   if (!Flags.isInConsecutiveRegs())
3181     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3182 
3183   return ArgSize;
3184 }
3185 
3186 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3187 /// on the stack.
3188 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3189                                             ISD::ArgFlagsTy Flags,
3190                                             unsigned PtrByteSize) {
3191   unsigned Align = PtrByteSize;
3192 
3193   // Altivec parameters are padded to a 16 byte boundary.
3194   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3195       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3196       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3197       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3198     Align = 16;
3199   // QPX vector types stored in double-precision are padded to a 32 byte
3200   // boundary.
3201   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3202     Align = 32;
3203 
3204   // ByVal parameters are aligned as requested.
3205   if (Flags.isByVal()) {
3206     unsigned BVAlign = Flags.getByValAlign();
3207     if (BVAlign > PtrByteSize) {
3208       if (BVAlign % PtrByteSize != 0)
3209           llvm_unreachable(
3210             "ByVal alignment is not a multiple of the pointer size");
3211 
3212       Align = BVAlign;
3213     }
3214   }
3215 
3216   // Array members are always packed to their original alignment.
3217   if (Flags.isInConsecutiveRegs()) {
3218     // If the array member was split into multiple registers, the first
3219     // needs to be aligned to the size of the full type.  (Except for
3220     // ppcf128, which is only aligned as its f64 components.)
3221     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3222       Align = OrigVT.getStoreSize();
3223     else
3224       Align = ArgVT.getStoreSize();
3225   }
3226 
3227   return Align;
3228 }
3229 
3230 /// CalculateStackSlotUsed - Return whether this argument will use its
3231 /// stack slot (instead of being passed in registers).  ArgOffset,
3232 /// AvailableFPRs, and AvailableVRs must hold the current argument
3233 /// position, and will be updated to account for this argument.
3234 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3235                                    ISD::ArgFlagsTy Flags,
3236                                    unsigned PtrByteSize,
3237                                    unsigned LinkageSize,
3238                                    unsigned ParamAreaSize,
3239                                    unsigned &ArgOffset,
3240                                    unsigned &AvailableFPRs,
3241                                    unsigned &AvailableVRs, bool HasQPX) {
3242   bool UseMemory = false;
3243 
3244   // Respect alignment of argument on the stack.
3245   unsigned Align =
3246     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3247   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3248   // If there's no space left in the argument save area, we must
3249   // use memory (this check also catches zero-sized arguments).
3250   if (ArgOffset >= LinkageSize + ParamAreaSize)
3251     UseMemory = true;
3252 
3253   // Allocate argument on the stack.
3254   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3255   if (Flags.isInConsecutiveRegsLast())
3256     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3257   // If we overran the argument save area, we must use memory
3258   // (this check catches arguments passed partially in memory)
3259   if (ArgOffset > LinkageSize + ParamAreaSize)
3260     UseMemory = true;
3261 
3262   // However, if the argument is actually passed in an FPR or a VR,
3263   // we don't use memory after all.
3264   if (!Flags.isByVal()) {
3265     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3266         // QPX registers overlap with the scalar FP registers.
3267         (HasQPX && (ArgVT == MVT::v4f32 ||
3268                     ArgVT == MVT::v4f64 ||
3269                     ArgVT == MVT::v4i1)))
3270       if (AvailableFPRs > 0) {
3271         --AvailableFPRs;
3272         return false;
3273       }
3274     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3275         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3276         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3277         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3278       if (AvailableVRs > 0) {
3279         --AvailableVRs;
3280         return false;
3281       }
3282   }
3283 
3284   return UseMemory;
3285 }
3286 
3287 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3288 /// ensure minimum alignment required for target.
3289 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3290                                      unsigned NumBytes) {
3291   unsigned TargetAlign = Lowering->getStackAlignment();
3292   unsigned AlignMask = TargetAlign - 1;
3293   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3294   return NumBytes;
3295 }
3296 
3297 SDValue PPCTargetLowering::LowerFormalArguments(
3298     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3299     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3300     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3301   if (Subtarget.isSVR4ABI()) {
3302     if (Subtarget.isPPC64())
3303       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3304                                          dl, DAG, InVals);
3305     else
3306       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3307                                          dl, DAG, InVals);
3308   } else {
3309     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3310                                        dl, DAG, InVals);
3311   }
3312 }
3313 
3314 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3315     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3316     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3317     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3318 
3319   // 32-bit SVR4 ABI Stack Frame Layout:
3320   //              +-----------------------------------+
3321   //        +-->  |            Back chain             |
3322   //        |     +-----------------------------------+
3323   //        |     | Floating-point register save area |
3324   //        |     +-----------------------------------+
3325   //        |     |    General register save area     |
3326   //        |     +-----------------------------------+
3327   //        |     |          CR save word             |
3328   //        |     +-----------------------------------+
3329   //        |     |         VRSAVE save word          |
3330   //        |     +-----------------------------------+
3331   //        |     |         Alignment padding         |
3332   //        |     +-----------------------------------+
3333   //        |     |     Vector register save area     |
3334   //        |     +-----------------------------------+
3335   //        |     |       Local variable space        |
3336   //        |     +-----------------------------------+
3337   //        |     |        Parameter list area        |
3338   //        |     +-----------------------------------+
3339   //        |     |           LR save word            |
3340   //        |     +-----------------------------------+
3341   // SP-->  +---  |            Back chain             |
3342   //              +-----------------------------------+
3343   //
3344   // Specifications:
3345   //   System V Application Binary Interface PowerPC Processor Supplement
3346   //   AltiVec Technology Programming Interface Manual
3347 
3348   MachineFunction &MF = DAG.getMachineFunction();
3349   MachineFrameInfo &MFI = MF.getFrameInfo();
3350   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3351 
3352   EVT PtrVT = getPointerTy(MF.getDataLayout());
3353   // Potential tail calls could cause overwriting of argument stack slots.
3354   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3355                        (CallConv == CallingConv::Fast));
3356   unsigned PtrByteSize = 4;
3357 
3358   // Assign locations to all of the incoming arguments.
3359   SmallVector<CCValAssign, 16> ArgLocs;
3360   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3361                  *DAG.getContext());
3362 
3363   // Reserve space for the linkage area on the stack.
3364   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3365   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3366   if (useSoftFloat() || hasSPE())
3367     CCInfo.PreAnalyzeFormalArguments(Ins);
3368 
3369   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3370   CCInfo.clearWasPPCF128();
3371 
3372   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3373     CCValAssign &VA = ArgLocs[i];
3374 
3375     // Arguments stored in registers.
3376     if (VA.isRegLoc()) {
3377       const TargetRegisterClass *RC;
3378       EVT ValVT = VA.getValVT();
3379 
3380       switch (ValVT.getSimpleVT().SimpleTy) {
3381         default:
3382           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3383         case MVT::i1:
3384         case MVT::i32:
3385           RC = &PPC::GPRCRegClass;
3386           break;
3387         case MVT::f32:
3388           if (Subtarget.hasP8Vector())
3389             RC = &PPC::VSSRCRegClass;
3390           else if (Subtarget.hasSPE())
3391             RC = &PPC::SPE4RCRegClass;
3392           else
3393             RC = &PPC::F4RCRegClass;
3394           break;
3395         case MVT::f64:
3396           if (Subtarget.hasVSX())
3397             RC = &PPC::VSFRCRegClass;
3398           else if (Subtarget.hasSPE())
3399             RC = &PPC::SPERCRegClass;
3400           else
3401             RC = &PPC::F8RCRegClass;
3402           break;
3403         case MVT::v16i8:
3404         case MVT::v8i16:
3405         case MVT::v4i32:
3406           RC = &PPC::VRRCRegClass;
3407           break;
3408         case MVT::v4f32:
3409           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3410           break;
3411         case MVT::v2f64:
3412         case MVT::v2i64:
3413           RC = &PPC::VRRCRegClass;
3414           break;
3415         case MVT::v4f64:
3416           RC = &PPC::QFRCRegClass;
3417           break;
3418         case MVT::v4i1:
3419           RC = &PPC::QBRCRegClass;
3420           break;
3421       }
3422 
3423       // Transform the arguments stored in physical registers into virtual ones.
3424       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3425       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3426                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3427 
3428       if (ValVT == MVT::i1)
3429         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3430 
3431       InVals.push_back(ArgValue);
3432     } else {
3433       // Argument stored in memory.
3434       assert(VA.isMemLoc());
3435 
3436       // Get the extended size of the argument type in stack
3437       unsigned ArgSize = VA.getLocVT().getStoreSize();
3438       // Get the actual size of the argument type
3439       unsigned ObjSize = VA.getValVT().getStoreSize();
3440       unsigned ArgOffset = VA.getLocMemOffset();
3441       // Stack objects in PPC32 are right justified.
3442       ArgOffset += ArgSize - ObjSize;
3443       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3444 
3445       // Create load nodes to retrieve arguments from the stack.
3446       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3447       InVals.push_back(
3448           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3449     }
3450   }
3451 
3452   // Assign locations to all of the incoming aggregate by value arguments.
3453   // Aggregates passed by value are stored in the local variable space of the
3454   // caller's stack frame, right above the parameter list area.
3455   SmallVector<CCValAssign, 16> ByValArgLocs;
3456   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3457                       ByValArgLocs, *DAG.getContext());
3458 
3459   // Reserve stack space for the allocations in CCInfo.
3460   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3461 
3462   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3463 
3464   // Area that is at least reserved in the caller of this function.
3465   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3466   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3467 
3468   // Set the size that is at least reserved in caller of this function.  Tail
3469   // call optimized function's reserved stack space needs to be aligned so that
3470   // taking the difference between two stack areas will result in an aligned
3471   // stack.
3472   MinReservedArea =
3473       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3474   FuncInfo->setMinReservedArea(MinReservedArea);
3475 
3476   SmallVector<SDValue, 8> MemOps;
3477 
3478   // If the function takes variable number of arguments, make a frame index for
3479   // the start of the first vararg value... for expansion of llvm.va_start.
3480   if (isVarArg) {
3481     static const MCPhysReg GPArgRegs[] = {
3482       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3483       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3484     };
3485     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3486 
3487     static const MCPhysReg FPArgRegs[] = {
3488       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3489       PPC::F8
3490     };
3491     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3492 
3493     if (useSoftFloat() || hasSPE())
3494        NumFPArgRegs = 0;
3495 
3496     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3497     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3498 
3499     // Make room for NumGPArgRegs and NumFPArgRegs.
3500     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3501                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3502 
3503     FuncInfo->setVarArgsStackOffset(
3504       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3505                             CCInfo.getNextStackOffset(), true));
3506 
3507     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3508     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3509 
3510     // The fixed integer arguments of a variadic function are stored to the
3511     // VarArgsFrameIndex on the stack so that they may be loaded by
3512     // dereferencing the result of va_next.
3513     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3514       // Get an existing live-in vreg, or add a new one.
3515       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3516       if (!VReg)
3517         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3518 
3519       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3520       SDValue Store =
3521           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3522       MemOps.push_back(Store);
3523       // Increment the address by four for the next argument to store
3524       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3525       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3526     }
3527 
3528     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3529     // is set.
3530     // The double arguments are stored to the VarArgsFrameIndex
3531     // on the stack.
3532     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3533       // Get an existing live-in vreg, or add a new one.
3534       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3535       if (!VReg)
3536         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3537 
3538       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3539       SDValue Store =
3540           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3541       MemOps.push_back(Store);
3542       // Increment the address by eight for the next argument to store
3543       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3544                                          PtrVT);
3545       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3546     }
3547   }
3548 
3549   if (!MemOps.empty())
3550     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3551 
3552   return Chain;
3553 }
3554 
3555 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3556 // value to MVT::i64 and then truncate to the correct register size.
3557 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3558                                              EVT ObjectVT, SelectionDAG &DAG,
3559                                              SDValue ArgVal,
3560                                              const SDLoc &dl) const {
3561   if (Flags.isSExt())
3562     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3563                          DAG.getValueType(ObjectVT));
3564   else if (Flags.isZExt())
3565     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3566                          DAG.getValueType(ObjectVT));
3567 
3568   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3569 }
3570 
3571 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3572     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3573     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3574     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3575   // TODO: add description of PPC stack frame format, or at least some docs.
3576   //
3577   bool isELFv2ABI = Subtarget.isELFv2ABI();
3578   bool isLittleEndian = Subtarget.isLittleEndian();
3579   MachineFunction &MF = DAG.getMachineFunction();
3580   MachineFrameInfo &MFI = MF.getFrameInfo();
3581   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3582 
3583   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3584          "fastcc not supported on varargs functions");
3585 
3586   EVT PtrVT = getPointerTy(MF.getDataLayout());
3587   // Potential tail calls could cause overwriting of argument stack slots.
3588   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3589                        (CallConv == CallingConv::Fast));
3590   unsigned PtrByteSize = 8;
3591   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3592 
3593   static const MCPhysReg GPR[] = {
3594     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3595     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3596   };
3597   static const MCPhysReg VR[] = {
3598     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3599     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3600   };
3601 
3602   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3603   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3604   const unsigned Num_VR_Regs  = array_lengthof(VR);
3605   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3606 
3607   // Do a first pass over the arguments to determine whether the ABI
3608   // guarantees that our caller has allocated the parameter save area
3609   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3610   // in the ELFv2 ABI, it is true if this is a vararg function or if
3611   // any parameter is located in a stack slot.
3612 
3613   bool HasParameterArea = !isELFv2ABI || isVarArg;
3614   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3615   unsigned NumBytes = LinkageSize;
3616   unsigned AvailableFPRs = Num_FPR_Regs;
3617   unsigned AvailableVRs = Num_VR_Regs;
3618   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3619     if (Ins[i].Flags.isNest())
3620       continue;
3621 
3622     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3623                                PtrByteSize, LinkageSize, ParamAreaSize,
3624                                NumBytes, AvailableFPRs, AvailableVRs,
3625                                Subtarget.hasQPX()))
3626       HasParameterArea = true;
3627   }
3628 
3629   // Add DAG nodes to load the arguments or copy them out of registers.  On
3630   // entry to a function on PPC, the arguments start after the linkage area,
3631   // although the first ones are often in registers.
3632 
3633   unsigned ArgOffset = LinkageSize;
3634   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3635   unsigned &QFPR_idx = FPR_idx;
3636   SmallVector<SDValue, 8> MemOps;
3637   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3638   unsigned CurArgIdx = 0;
3639   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3640     SDValue ArgVal;
3641     bool needsLoad = false;
3642     EVT ObjectVT = Ins[ArgNo].VT;
3643     EVT OrigVT = Ins[ArgNo].ArgVT;
3644     unsigned ObjSize = ObjectVT.getStoreSize();
3645     unsigned ArgSize = ObjSize;
3646     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3647     if (Ins[ArgNo].isOrigArg()) {
3648       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3649       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3650     }
3651     // We re-align the argument offset for each argument, except when using the
3652     // fast calling convention, when we need to make sure we do that only when
3653     // we'll actually use a stack slot.
3654     unsigned CurArgOffset, Align;
3655     auto ComputeArgOffset = [&]() {
3656       /* Respect alignment of argument on the stack.  */
3657       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3658       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3659       CurArgOffset = ArgOffset;
3660     };
3661 
3662     if (CallConv != CallingConv::Fast) {
3663       ComputeArgOffset();
3664 
3665       /* Compute GPR index associated with argument offset.  */
3666       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3667       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3668     }
3669 
3670     // FIXME the codegen can be much improved in some cases.
3671     // We do not have to keep everything in memory.
3672     if (Flags.isByVal()) {
3673       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3674 
3675       if (CallConv == CallingConv::Fast)
3676         ComputeArgOffset();
3677 
3678       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3679       ObjSize = Flags.getByValSize();
3680       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3681       // Empty aggregate parameters do not take up registers.  Examples:
3682       //   struct { } a;
3683       //   union  { } b;
3684       //   int c[0];
3685       // etc.  However, we have to provide a place-holder in InVals, so
3686       // pretend we have an 8-byte item at the current address for that
3687       // purpose.
3688       if (!ObjSize) {
3689         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3690         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3691         InVals.push_back(FIN);
3692         continue;
3693       }
3694 
3695       // Create a stack object covering all stack doublewords occupied
3696       // by the argument.  If the argument is (fully or partially) on
3697       // the stack, or if the argument is fully in registers but the
3698       // caller has allocated the parameter save anyway, we can refer
3699       // directly to the caller's stack frame.  Otherwise, create a
3700       // local copy in our own frame.
3701       int FI;
3702       if (HasParameterArea ||
3703           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3704         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3705       else
3706         FI = MFI.CreateStackObject(ArgSize, Align, false);
3707       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3708 
3709       // Handle aggregates smaller than 8 bytes.
3710       if (ObjSize < PtrByteSize) {
3711         // The value of the object is its address, which differs from the
3712         // address of the enclosing doubleword on big-endian systems.
3713         SDValue Arg = FIN;
3714         if (!isLittleEndian) {
3715           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3716           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3717         }
3718         InVals.push_back(Arg);
3719 
3720         if (GPR_idx != Num_GPR_Regs) {
3721           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3722           FuncInfo->addLiveInAttr(VReg, Flags);
3723           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3724           SDValue Store;
3725 
3726           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3727             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3728                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3729             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3730                                       MachinePointerInfo(&*FuncArg), ObjType);
3731           } else {
3732             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3733             // store the whole register as-is to the parameter save area
3734             // slot.
3735             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3736                                  MachinePointerInfo(&*FuncArg));
3737           }
3738 
3739           MemOps.push_back(Store);
3740         }
3741         // Whether we copied from a register or not, advance the offset
3742         // into the parameter save area by a full doubleword.
3743         ArgOffset += PtrByteSize;
3744         continue;
3745       }
3746 
3747       // The value of the object is its address, which is the address of
3748       // its first stack doubleword.
3749       InVals.push_back(FIN);
3750 
3751       // Store whatever pieces of the object are in registers to memory.
3752       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3753         if (GPR_idx == Num_GPR_Regs)
3754           break;
3755 
3756         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3757         FuncInfo->addLiveInAttr(VReg, Flags);
3758         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3759         SDValue Addr = FIN;
3760         if (j) {
3761           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3762           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3763         }
3764         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3765                                      MachinePointerInfo(&*FuncArg, j));
3766         MemOps.push_back(Store);
3767         ++GPR_idx;
3768       }
3769       ArgOffset += ArgSize;
3770       continue;
3771     }
3772 
3773     switch (ObjectVT.getSimpleVT().SimpleTy) {
3774     default: llvm_unreachable("Unhandled argument type!");
3775     case MVT::i1:
3776     case MVT::i32:
3777     case MVT::i64:
3778       if (Flags.isNest()) {
3779         // The 'nest' parameter, if any, is passed in R11.
3780         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3781         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3782 
3783         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3784           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3785 
3786         break;
3787       }
3788 
3789       // These can be scalar arguments or elements of an integer array type
3790       // passed directly.  Clang may use those instead of "byval" aggregate
3791       // types to avoid forcing arguments to memory unnecessarily.
3792       if (GPR_idx != Num_GPR_Regs) {
3793         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3794         FuncInfo->addLiveInAttr(VReg, Flags);
3795         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3796 
3797         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3798           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3799           // value to MVT::i64 and then truncate to the correct register size.
3800           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3801       } else {
3802         if (CallConv == CallingConv::Fast)
3803           ComputeArgOffset();
3804 
3805         needsLoad = true;
3806         ArgSize = PtrByteSize;
3807       }
3808       if (CallConv != CallingConv::Fast || needsLoad)
3809         ArgOffset += 8;
3810       break;
3811 
3812     case MVT::f32:
3813     case MVT::f64:
3814       // These can be scalar arguments or elements of a float array type
3815       // passed directly.  The latter are used to implement ELFv2 homogenous
3816       // float aggregates.
3817       if (FPR_idx != Num_FPR_Regs) {
3818         unsigned VReg;
3819 
3820         if (ObjectVT == MVT::f32)
3821           VReg = MF.addLiveIn(FPR[FPR_idx],
3822                               Subtarget.hasP8Vector()
3823                                   ? &PPC::VSSRCRegClass
3824                                   : &PPC::F4RCRegClass);
3825         else
3826           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3827                                                 ? &PPC::VSFRCRegClass
3828                                                 : &PPC::F8RCRegClass);
3829 
3830         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3831         ++FPR_idx;
3832       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3833         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3834         // once we support fp <-> gpr moves.
3835 
3836         // This can only ever happen in the presence of f32 array types,
3837         // since otherwise we never run out of FPRs before running out
3838         // of GPRs.
3839         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3840         FuncInfo->addLiveInAttr(VReg, Flags);
3841         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3842 
3843         if (ObjectVT == MVT::f32) {
3844           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3845             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3846                                  DAG.getConstant(32, dl, MVT::i32));
3847           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3848         }
3849 
3850         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3851       } else {
3852         if (CallConv == CallingConv::Fast)
3853           ComputeArgOffset();
3854 
3855         needsLoad = true;
3856       }
3857 
3858       // When passing an array of floats, the array occupies consecutive
3859       // space in the argument area; only round up to the next doubleword
3860       // at the end of the array.  Otherwise, each float takes 8 bytes.
3861       if (CallConv != CallingConv::Fast || needsLoad) {
3862         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3863         ArgOffset += ArgSize;
3864         if (Flags.isInConsecutiveRegsLast())
3865           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3866       }
3867       break;
3868     case MVT::v4f32:
3869     case MVT::v4i32:
3870     case MVT::v8i16:
3871     case MVT::v16i8:
3872     case MVT::v2f64:
3873     case MVT::v2i64:
3874     case MVT::v1i128:
3875     case MVT::f128:
3876       if (!Subtarget.hasQPX()) {
3877         // These can be scalar arguments or elements of a vector array type
3878         // passed directly.  The latter are used to implement ELFv2 homogenous
3879         // vector aggregates.
3880         if (VR_idx != Num_VR_Regs) {
3881           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3882           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3883           ++VR_idx;
3884         } else {
3885           if (CallConv == CallingConv::Fast)
3886             ComputeArgOffset();
3887           needsLoad = true;
3888         }
3889         if (CallConv != CallingConv::Fast || needsLoad)
3890           ArgOffset += 16;
3891         break;
3892       } // not QPX
3893 
3894       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3895              "Invalid QPX parameter type");
3896       LLVM_FALLTHROUGH;
3897 
3898     case MVT::v4f64:
3899     case MVT::v4i1:
3900       // QPX vectors are treated like their scalar floating-point subregisters
3901       // (except that they're larger).
3902       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3903       if (QFPR_idx != Num_QFPR_Regs) {
3904         const TargetRegisterClass *RC;
3905         switch (ObjectVT.getSimpleVT().SimpleTy) {
3906         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3907         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3908         default:         RC = &PPC::QBRCRegClass; break;
3909         }
3910 
3911         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3912         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3913         ++QFPR_idx;
3914       } else {
3915         if (CallConv == CallingConv::Fast)
3916           ComputeArgOffset();
3917         needsLoad = true;
3918       }
3919       if (CallConv != CallingConv::Fast || needsLoad)
3920         ArgOffset += Sz;
3921       break;
3922     }
3923 
3924     // We need to load the argument to a virtual register if we determined
3925     // above that we ran out of physical registers of the appropriate type.
3926     if (needsLoad) {
3927       if (ObjSize < ArgSize && !isLittleEndian)
3928         CurArgOffset += ArgSize - ObjSize;
3929       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3930       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3931       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3932     }
3933 
3934     InVals.push_back(ArgVal);
3935   }
3936 
3937   // Area that is at least reserved in the caller of this function.
3938   unsigned MinReservedArea;
3939   if (HasParameterArea)
3940     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3941   else
3942     MinReservedArea = LinkageSize;
3943 
3944   // Set the size that is at least reserved in caller of this function.  Tail
3945   // call optimized functions' reserved stack space needs to be aligned so that
3946   // taking the difference between two stack areas will result in an aligned
3947   // stack.
3948   MinReservedArea =
3949       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3950   FuncInfo->setMinReservedArea(MinReservedArea);
3951 
3952   // If the function takes variable number of arguments, make a frame index for
3953   // the start of the first vararg value... for expansion of llvm.va_start.
3954   if (isVarArg) {
3955     int Depth = ArgOffset;
3956 
3957     FuncInfo->setVarArgsFrameIndex(
3958       MFI.CreateFixedObject(PtrByteSize, Depth, true));
3959     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3960 
3961     // If this function is vararg, store any remaining integer argument regs
3962     // to their spots on the stack so that they may be loaded by dereferencing
3963     // the result of va_next.
3964     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3965          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3966       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3967       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3968       SDValue Store =
3969           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3970       MemOps.push_back(Store);
3971       // Increment the address by four for the next argument to store
3972       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3973       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3974     }
3975   }
3976 
3977   if (!MemOps.empty())
3978     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3979 
3980   return Chain;
3981 }
3982 
3983 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3984     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3985     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3986     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3987   // TODO: add description of PPC stack frame format, or at least some docs.
3988   //
3989   MachineFunction &MF = DAG.getMachineFunction();
3990   MachineFrameInfo &MFI = MF.getFrameInfo();
3991   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3992 
3993   EVT PtrVT = getPointerTy(MF.getDataLayout());
3994   bool isPPC64 = PtrVT == MVT::i64;
3995   // Potential tail calls could cause overwriting of argument stack slots.
3996   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3997                        (CallConv == CallingConv::Fast));
3998   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3999   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4000   unsigned ArgOffset = LinkageSize;
4001   // Area that is at least reserved in caller of this function.
4002   unsigned MinReservedArea = ArgOffset;
4003 
4004   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4005     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4006     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4007   };
4008   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4009     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4010     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4011   };
4012   static const MCPhysReg VR[] = {
4013     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4014     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4015   };
4016 
4017   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4018   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4019   const unsigned Num_VR_Regs  = array_lengthof( VR);
4020 
4021   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4022 
4023   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4024 
4025   // In 32-bit non-varargs functions, the stack space for vectors is after the
4026   // stack space for non-vectors.  We do not use this space unless we have
4027   // too many vectors to fit in registers, something that only occurs in
4028   // constructed examples:), but we have to walk the arglist to figure
4029   // that out...for the pathological case, compute VecArgOffset as the
4030   // start of the vector parameter area.  Computing VecArgOffset is the
4031   // entire point of the following loop.
4032   unsigned VecArgOffset = ArgOffset;
4033   if (!isVarArg && !isPPC64) {
4034     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4035          ++ArgNo) {
4036       EVT ObjectVT = Ins[ArgNo].VT;
4037       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4038 
4039       if (Flags.isByVal()) {
4040         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4041         unsigned ObjSize = Flags.getByValSize();
4042         unsigned ArgSize =
4043                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4044         VecArgOffset += ArgSize;
4045         continue;
4046       }
4047 
4048       switch(ObjectVT.getSimpleVT().SimpleTy) {
4049       default: llvm_unreachable("Unhandled argument type!");
4050       case MVT::i1:
4051       case MVT::i32:
4052       case MVT::f32:
4053         VecArgOffset += 4;
4054         break;
4055       case MVT::i64:  // PPC64
4056       case MVT::f64:
4057         // FIXME: We are guaranteed to be !isPPC64 at this point.
4058         // Does MVT::i64 apply?
4059         VecArgOffset += 8;
4060         break;
4061       case MVT::v4f32:
4062       case MVT::v4i32:
4063       case MVT::v8i16:
4064       case MVT::v16i8:
4065         // Nothing to do, we're only looking at Nonvector args here.
4066         break;
4067       }
4068     }
4069   }
4070   // We've found where the vector parameter area in memory is.  Skip the
4071   // first 12 parameters; these don't use that memory.
4072   VecArgOffset = ((VecArgOffset+15)/16)*16;
4073   VecArgOffset += 12*16;
4074 
4075   // Add DAG nodes to load the arguments or copy them out of registers.  On
4076   // entry to a function on PPC, the arguments start after the linkage area,
4077   // although the first ones are often in registers.
4078 
4079   SmallVector<SDValue, 8> MemOps;
4080   unsigned nAltivecParamsAtEnd = 0;
4081   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4082   unsigned CurArgIdx = 0;
4083   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4084     SDValue ArgVal;
4085     bool needsLoad = false;
4086     EVT ObjectVT = Ins[ArgNo].VT;
4087     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4088     unsigned ArgSize = ObjSize;
4089     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4090     if (Ins[ArgNo].isOrigArg()) {
4091       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4092       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4093     }
4094     unsigned CurArgOffset = ArgOffset;
4095 
4096     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4097     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4098         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4099       if (isVarArg || isPPC64) {
4100         MinReservedArea = ((MinReservedArea+15)/16)*16;
4101         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4102                                                   Flags,
4103                                                   PtrByteSize);
4104       } else  nAltivecParamsAtEnd++;
4105     } else
4106       // Calculate min reserved area.
4107       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4108                                                 Flags,
4109                                                 PtrByteSize);
4110 
4111     // FIXME the codegen can be much improved in some cases.
4112     // We do not have to keep everything in memory.
4113     if (Flags.isByVal()) {
4114       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4115 
4116       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4117       ObjSize = Flags.getByValSize();
4118       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4119       // Objects of size 1 and 2 are right justified, everything else is
4120       // left justified.  This means the memory address is adjusted forwards.
4121       if (ObjSize==1 || ObjSize==2) {
4122         CurArgOffset = CurArgOffset + (4 - ObjSize);
4123       }
4124       // The value of the object is its address.
4125       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4126       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4127       InVals.push_back(FIN);
4128       if (ObjSize==1 || ObjSize==2) {
4129         if (GPR_idx != Num_GPR_Regs) {
4130           unsigned VReg;
4131           if (isPPC64)
4132             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4133           else
4134             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4135           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4136           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4137           SDValue Store =
4138               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4139                                 MachinePointerInfo(&*FuncArg), ObjType);
4140           MemOps.push_back(Store);
4141           ++GPR_idx;
4142         }
4143 
4144         ArgOffset += PtrByteSize;
4145 
4146         continue;
4147       }
4148       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4149         // Store whatever pieces of the object are in registers
4150         // to memory.  ArgOffset will be the address of the beginning
4151         // of the object.
4152         if (GPR_idx != Num_GPR_Regs) {
4153           unsigned VReg;
4154           if (isPPC64)
4155             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4156           else
4157             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4158           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4159           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4160           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4161           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4162                                        MachinePointerInfo(&*FuncArg, j));
4163           MemOps.push_back(Store);
4164           ++GPR_idx;
4165           ArgOffset += PtrByteSize;
4166         } else {
4167           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4168           break;
4169         }
4170       }
4171       continue;
4172     }
4173 
4174     switch (ObjectVT.getSimpleVT().SimpleTy) {
4175     default: llvm_unreachable("Unhandled argument type!");
4176     case MVT::i1:
4177     case MVT::i32:
4178       if (!isPPC64) {
4179         if (GPR_idx != Num_GPR_Regs) {
4180           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4181           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4182 
4183           if (ObjectVT == MVT::i1)
4184             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4185 
4186           ++GPR_idx;
4187         } else {
4188           needsLoad = true;
4189           ArgSize = PtrByteSize;
4190         }
4191         // All int arguments reserve stack space in the Darwin ABI.
4192         ArgOffset += PtrByteSize;
4193         break;
4194       }
4195       LLVM_FALLTHROUGH;
4196     case MVT::i64:  // PPC64
4197       if (GPR_idx != Num_GPR_Regs) {
4198         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4199         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4200 
4201         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4202           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4203           // value to MVT::i64 and then truncate to the correct register size.
4204           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4205 
4206         ++GPR_idx;
4207       } else {
4208         needsLoad = true;
4209         ArgSize = PtrByteSize;
4210       }
4211       // All int arguments reserve stack space in the Darwin ABI.
4212       ArgOffset += 8;
4213       break;
4214 
4215     case MVT::f32:
4216     case MVT::f64:
4217       // Every 4 bytes of argument space consumes one of the GPRs available for
4218       // argument passing.
4219       if (GPR_idx != Num_GPR_Regs) {
4220         ++GPR_idx;
4221         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4222           ++GPR_idx;
4223       }
4224       if (FPR_idx != Num_FPR_Regs) {
4225         unsigned VReg;
4226 
4227         if (ObjectVT == MVT::f32)
4228           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4229         else
4230           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4231 
4232         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4233         ++FPR_idx;
4234       } else {
4235         needsLoad = true;
4236       }
4237 
4238       // All FP arguments reserve stack space in the Darwin ABI.
4239       ArgOffset += isPPC64 ? 8 : ObjSize;
4240       break;
4241     case MVT::v4f32:
4242     case MVT::v4i32:
4243     case MVT::v8i16:
4244     case MVT::v16i8:
4245       // Note that vector arguments in registers don't reserve stack space,
4246       // except in varargs functions.
4247       if (VR_idx != Num_VR_Regs) {
4248         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4249         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4250         if (isVarArg) {
4251           while ((ArgOffset % 16) != 0) {
4252             ArgOffset += PtrByteSize;
4253             if (GPR_idx != Num_GPR_Regs)
4254               GPR_idx++;
4255           }
4256           ArgOffset += 16;
4257           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4258         }
4259         ++VR_idx;
4260       } else {
4261         if (!isVarArg && !isPPC64) {
4262           // Vectors go after all the nonvectors.
4263           CurArgOffset = VecArgOffset;
4264           VecArgOffset += 16;
4265         } else {
4266           // Vectors are aligned.
4267           ArgOffset = ((ArgOffset+15)/16)*16;
4268           CurArgOffset = ArgOffset;
4269           ArgOffset += 16;
4270         }
4271         needsLoad = true;
4272       }
4273       break;
4274     }
4275 
4276     // We need to load the argument to a virtual register if we determined above
4277     // that we ran out of physical registers of the appropriate type.
4278     if (needsLoad) {
4279       int FI = MFI.CreateFixedObject(ObjSize,
4280                                      CurArgOffset + (ArgSize - ObjSize),
4281                                      isImmutable);
4282       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4283       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4284     }
4285 
4286     InVals.push_back(ArgVal);
4287   }
4288 
4289   // Allow for Altivec parameters at the end, if needed.
4290   if (nAltivecParamsAtEnd) {
4291     MinReservedArea = ((MinReservedArea+15)/16)*16;
4292     MinReservedArea += 16*nAltivecParamsAtEnd;
4293   }
4294 
4295   // Area that is at least reserved in the caller of this function.
4296   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4297 
4298   // Set the size that is at least reserved in caller of this function.  Tail
4299   // call optimized functions' reserved stack space needs to be aligned so that
4300   // taking the difference between two stack areas will result in an aligned
4301   // stack.
4302   MinReservedArea =
4303       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4304   FuncInfo->setMinReservedArea(MinReservedArea);
4305 
4306   // If the function takes variable number of arguments, make a frame index for
4307   // the start of the first vararg value... for expansion of llvm.va_start.
4308   if (isVarArg) {
4309     int Depth = ArgOffset;
4310 
4311     FuncInfo->setVarArgsFrameIndex(
4312       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4313                             Depth, true));
4314     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4315 
4316     // If this function is vararg, store any remaining integer argument regs
4317     // to their spots on the stack so that they may be loaded by dereferencing
4318     // the result of va_next.
4319     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4320       unsigned VReg;
4321 
4322       if (isPPC64)
4323         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4324       else
4325         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4326 
4327       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4328       SDValue Store =
4329           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4330       MemOps.push_back(Store);
4331       // Increment the address by four for the next argument to store
4332       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4333       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4334     }
4335   }
4336 
4337   if (!MemOps.empty())
4338     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4339 
4340   return Chain;
4341 }
4342 
4343 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4344 /// adjusted to accommodate the arguments for the tailcall.
4345 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4346                                    unsigned ParamSize) {
4347 
4348   if (!isTailCall) return 0;
4349 
4350   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4351   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4352   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4353   // Remember only if the new adjustment is bigger.
4354   if (SPDiff < FI->getTailCallSPDelta())
4355     FI->setTailCallSPDelta(SPDiff);
4356 
4357   return SPDiff;
4358 }
4359 
4360 static bool isFunctionGlobalAddress(SDValue Callee);
4361 
4362 static bool
4363 callsShareTOCBase(const Function *Caller, SDValue Callee,
4364                     const TargetMachine &TM) {
4365   // If !G, Callee can be an external symbol.
4366   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4367   if (!G)
4368     return false;
4369 
4370   // The medium and large code models are expected to provide a sufficiently
4371   // large TOC to provide all data addressing needs of a module with a
4372   // single TOC. Since each module will be addressed with a single TOC then we
4373   // only need to check that caller and callee don't cross dso boundaries.
4374   if (CodeModel::Medium == TM.getCodeModel() ||
4375       CodeModel::Large == TM.getCodeModel())
4376     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4377 
4378   // Otherwise we need to ensure callee and caller are in the same section,
4379   // since the linker may allocate multiple TOCs, and we don't know which
4380   // sections will belong to the same TOC base.
4381 
4382   const GlobalValue *GV = G->getGlobal();
4383   if (!GV->isStrongDefinitionForLinker())
4384     return false;
4385 
4386   // Any explicitly-specified sections and section prefixes must also match.
4387   // Also, if we're using -ffunction-sections, then each function is always in
4388   // a different section (the same is true for COMDAT functions).
4389   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4390       GV->getSection() != Caller->getSection())
4391     return false;
4392   if (const auto *F = dyn_cast<Function>(GV)) {
4393     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4394       return false;
4395   }
4396 
4397   // If the callee might be interposed, then we can't assume the ultimate call
4398   // target will be in the same section. Even in cases where we can assume that
4399   // interposition won't happen, in any case where the linker might insert a
4400   // stub to allow for interposition, we must generate code as though
4401   // interposition might occur. To understand why this matters, consider a
4402   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4403   // in the same section, but a is in a different module (i.e. has a different
4404   // TOC base pointer). If the linker allows for interposition between b and c,
4405   // then it will generate a stub for the call edge between b and c which will
4406   // save the TOC pointer into the designated stack slot allocated by b. If we
4407   // return true here, and therefore allow a tail call between b and c, that
4408   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4409   // pointer into the stack slot allocated by a (where the a -> b stub saved
4410   // a's TOC base pointer). If we're not considering a tail call, but rather,
4411   // whether a nop is needed after the call instruction in b, because the linker
4412   // will insert a stub, it might complain about a missing nop if we omit it
4413   // (although many don't complain in this case).
4414   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4415     return false;
4416 
4417   return true;
4418 }
4419 
4420 static bool
4421 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4422                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4423   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4424 
4425   const unsigned PtrByteSize = 8;
4426   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4427 
4428   static const MCPhysReg GPR[] = {
4429     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4430     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4431   };
4432   static const MCPhysReg VR[] = {
4433     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4434     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4435   };
4436 
4437   const unsigned NumGPRs = array_lengthof(GPR);
4438   const unsigned NumFPRs = 13;
4439   const unsigned NumVRs = array_lengthof(VR);
4440   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4441 
4442   unsigned NumBytes = LinkageSize;
4443   unsigned AvailableFPRs = NumFPRs;
4444   unsigned AvailableVRs = NumVRs;
4445 
4446   for (const ISD::OutputArg& Param : Outs) {
4447     if (Param.Flags.isNest()) continue;
4448 
4449     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4450                                PtrByteSize, LinkageSize, ParamAreaSize,
4451                                NumBytes, AvailableFPRs, AvailableVRs,
4452                                Subtarget.hasQPX()))
4453       return true;
4454   }
4455   return false;
4456 }
4457 
4458 static bool
4459 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4460   if (CS.arg_size() != CallerFn->arg_size())
4461     return false;
4462 
4463   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4464   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4465   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4466 
4467   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4468     const Value* CalleeArg = *CalleeArgIter;
4469     const Value* CallerArg = &(*CallerArgIter);
4470     if (CalleeArg == CallerArg)
4471       continue;
4472 
4473     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4474     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4475     //      }
4476     // 1st argument of callee is undef and has the same type as caller.
4477     if (CalleeArg->getType() == CallerArg->getType() &&
4478         isa<UndefValue>(CalleeArg))
4479       continue;
4480 
4481     return false;
4482   }
4483 
4484   return true;
4485 }
4486 
4487 // Returns true if TCO is possible between the callers and callees
4488 // calling conventions.
4489 static bool
4490 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4491                                     CallingConv::ID CalleeCC) {
4492   // Tail calls are possible with fastcc and ccc.
4493   auto isTailCallableCC  = [] (CallingConv::ID CC){
4494       return  CC == CallingConv::C || CC == CallingConv::Fast;
4495   };
4496   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4497     return false;
4498 
4499   // We can safely tail call both fastcc and ccc callees from a c calling
4500   // convention caller. If the caller is fastcc, we may have less stack space
4501   // than a non-fastcc caller with the same signature so disable tail-calls in
4502   // that case.
4503   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4504 }
4505 
4506 bool
4507 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4508                                     SDValue Callee,
4509                                     CallingConv::ID CalleeCC,
4510                                     ImmutableCallSite CS,
4511                                     bool isVarArg,
4512                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4513                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4514                                     SelectionDAG& DAG) const {
4515   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4516 
4517   if (DisableSCO && !TailCallOpt) return false;
4518 
4519   // Variadic argument functions are not supported.
4520   if (isVarArg) return false;
4521 
4522   auto &Caller = DAG.getMachineFunction().getFunction();
4523   // Check that the calling conventions are compatible for tco.
4524   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4525     return false;
4526 
4527   // Caller contains any byval parameter is not supported.
4528   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4529     return false;
4530 
4531   // Callee contains any byval parameter is not supported, too.
4532   // Note: This is a quick work around, because in some cases, e.g.
4533   // caller's stack size > callee's stack size, we are still able to apply
4534   // sibling call optimization. For example, gcc is able to do SCO for caller1
4535   // in the following example, but not for caller2.
4536   //   struct test {
4537   //     long int a;
4538   //     char ary[56];
4539   //   } gTest;
4540   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4541   //     b->a = v.a;
4542   //     return 0;
4543   //   }
4544   //   void caller1(struct test a, struct test c, struct test *b) {
4545   //     callee(gTest, b); }
4546   //   void caller2(struct test *b) { callee(gTest, b); }
4547   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4548     return false;
4549 
4550   // If callee and caller use different calling conventions, we cannot pass
4551   // parameters on stack since offsets for the parameter area may be different.
4552   if (Caller.getCallingConv() != CalleeCC &&
4553       needStackSlotPassParameters(Subtarget, Outs))
4554     return false;
4555 
4556   // No TCO/SCO on indirect call because Caller have to restore its TOC
4557   if (!isFunctionGlobalAddress(Callee) &&
4558       !isa<ExternalSymbolSDNode>(Callee))
4559     return false;
4560 
4561   // If the caller and callee potentially have different TOC bases then we
4562   // cannot tail call since we need to restore the TOC pointer after the call.
4563   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4564   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4565     return false;
4566 
4567   // TCO allows altering callee ABI, so we don't have to check further.
4568   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4569     return true;
4570 
4571   if (DisableSCO) return false;
4572 
4573   // If callee use the same argument list that caller is using, then we can
4574   // apply SCO on this case. If it is not, then we need to check if callee needs
4575   // stack for passing arguments.
4576   if (!hasSameArgumentList(&Caller, CS) &&
4577       needStackSlotPassParameters(Subtarget, Outs)) {
4578     return false;
4579   }
4580 
4581   return true;
4582 }
4583 
4584 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4585 /// for tail call optimization. Targets which want to do tail call
4586 /// optimization should implement this function.
4587 bool
4588 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4589                                                      CallingConv::ID CalleeCC,
4590                                                      bool isVarArg,
4591                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4592                                                      SelectionDAG& DAG) const {
4593   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4594     return false;
4595 
4596   // Variable argument functions are not supported.
4597   if (isVarArg)
4598     return false;
4599 
4600   MachineFunction &MF = DAG.getMachineFunction();
4601   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4602   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4603     // Functions containing by val parameters are not supported.
4604     for (unsigned i = 0; i != Ins.size(); i++) {
4605        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4606        if (Flags.isByVal()) return false;
4607     }
4608 
4609     // Non-PIC/GOT tail calls are supported.
4610     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4611       return true;
4612 
4613     // At the moment we can only do local tail calls (in same module, hidden
4614     // or protected) if we are generating PIC.
4615     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4616       return G->getGlobal()->hasHiddenVisibility()
4617           || G->getGlobal()->hasProtectedVisibility();
4618   }
4619 
4620   return false;
4621 }
4622 
4623 /// isCallCompatibleAddress - Return the immediate to use if the specified
4624 /// 32-bit value is representable in the immediate field of a BxA instruction.
4625 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4626   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4627   if (!C) return nullptr;
4628 
4629   int Addr = C->getZExtValue();
4630   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4631       SignExtend32<26>(Addr) != Addr)
4632     return nullptr;  // Top 6 bits have to be sext of immediate.
4633 
4634   return DAG
4635       .getConstant(
4636           (int)C->getZExtValue() >> 2, SDLoc(Op),
4637           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4638       .getNode();
4639 }
4640 
4641 namespace {
4642 
4643 struct TailCallArgumentInfo {
4644   SDValue Arg;
4645   SDValue FrameIdxOp;
4646   int FrameIdx = 0;
4647 
4648   TailCallArgumentInfo() = default;
4649 };
4650 
4651 } // end anonymous namespace
4652 
4653 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4654 static void StoreTailCallArgumentsToStackSlot(
4655     SelectionDAG &DAG, SDValue Chain,
4656     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4657     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4658   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4659     SDValue Arg = TailCallArgs[i].Arg;
4660     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4661     int FI = TailCallArgs[i].FrameIdx;
4662     // Store relative to framepointer.
4663     MemOpChains.push_back(DAG.getStore(
4664         Chain, dl, Arg, FIN,
4665         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4666   }
4667 }
4668 
4669 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4670 /// the appropriate stack slot for the tail call optimized function call.
4671 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4672                                              SDValue OldRetAddr, SDValue OldFP,
4673                                              int SPDiff, const SDLoc &dl) {
4674   if (SPDiff) {
4675     // Calculate the new stack slot for the return address.
4676     MachineFunction &MF = DAG.getMachineFunction();
4677     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4678     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4679     bool isPPC64 = Subtarget.isPPC64();
4680     int SlotSize = isPPC64 ? 8 : 4;
4681     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4682     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4683                                                          NewRetAddrLoc, true);
4684     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4685     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4686     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4687                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4688 
4689     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4690     // slot as the FP is never overwritten.
4691     if (Subtarget.isDarwinABI()) {
4692       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4693       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4694                                                          true);
4695       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4696       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4697                            MachinePointerInfo::getFixedStack(
4698                                DAG.getMachineFunction(), NewFPIdx));
4699     }
4700   }
4701   return Chain;
4702 }
4703 
4704 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4705 /// the position of the argument.
4706 static void
4707 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4708                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4709                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4710   int Offset = ArgOffset + SPDiff;
4711   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4712   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4713   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4714   SDValue FIN = DAG.getFrameIndex(FI, VT);
4715   TailCallArgumentInfo Info;
4716   Info.Arg = Arg;
4717   Info.FrameIdxOp = FIN;
4718   Info.FrameIdx = FI;
4719   TailCallArguments.push_back(Info);
4720 }
4721 
4722 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4723 /// stack slot. Returns the chain as result and the loaded frame pointers in
4724 /// LROpOut/FPOpout. Used when tail calling.
4725 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4726     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4727     SDValue &FPOpOut, const SDLoc &dl) const {
4728   if (SPDiff) {
4729     // Load the LR and FP stack slot for later adjusting.
4730     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4731     LROpOut = getReturnAddrFrameIndex(DAG);
4732     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4733     Chain = SDValue(LROpOut.getNode(), 1);
4734 
4735     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4736     // slot as the FP is never overwritten.
4737     if (Subtarget.isDarwinABI()) {
4738       FPOpOut = getFramePointerFrameIndex(DAG);
4739       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4740       Chain = SDValue(FPOpOut.getNode(), 1);
4741     }
4742   }
4743   return Chain;
4744 }
4745 
4746 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4747 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4748 /// specified by the specific parameter attribute. The copy will be passed as
4749 /// a byval function parameter.
4750 /// Sometimes what we are copying is the end of a larger object, the part that
4751 /// does not fit in registers.
4752 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4753                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4754                                          SelectionDAG &DAG, const SDLoc &dl) {
4755   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4756   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4757                        false, false, false, MachinePointerInfo(),
4758                        MachinePointerInfo());
4759 }
4760 
4761 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4762 /// tail calls.
4763 static void LowerMemOpCallTo(
4764     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4765     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4766     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4767     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4768   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4769   if (!isTailCall) {
4770     if (isVector) {
4771       SDValue StackPtr;
4772       if (isPPC64)
4773         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4774       else
4775         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4776       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4777                            DAG.getConstant(ArgOffset, dl, PtrVT));
4778     }
4779     MemOpChains.push_back(
4780         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4781     // Calculate and remember argument location.
4782   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4783                                   TailCallArguments);
4784 }
4785 
4786 static void
4787 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4788                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4789                 SDValue FPOp,
4790                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4791   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4792   // might overwrite each other in case of tail call optimization.
4793   SmallVector<SDValue, 8> MemOpChains2;
4794   // Do not flag preceding copytoreg stuff together with the following stuff.
4795   InFlag = SDValue();
4796   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4797                                     MemOpChains2, dl);
4798   if (!MemOpChains2.empty())
4799     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4800 
4801   // Store the return address to the appropriate stack slot.
4802   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4803 
4804   // Emit callseq_end just before tailcall node.
4805   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4806                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4807   InFlag = Chain.getValue(1);
4808 }
4809 
4810 // Is this global address that of a function that can be called by name? (as
4811 // opposed to something that must hold a descriptor for an indirect call).
4812 static bool isFunctionGlobalAddress(SDValue Callee) {
4813   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4814     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4815         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4816       return false;
4817 
4818     return G->getGlobal()->getValueType()->isFunctionTy();
4819   }
4820 
4821   return false;
4822 }
4823 
4824 static unsigned
4825 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4826             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4827             bool isPatchPoint, bool hasNest,
4828             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4829             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4830             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4831   bool isPPC64 = Subtarget.isPPC64();
4832   bool isSVR4ABI = Subtarget.isSVR4ABI();
4833   bool isELFv2ABI = Subtarget.isELFv2ABI();
4834 
4835   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4836   NodeTys.push_back(MVT::Other);   // Returns a chain
4837   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4838 
4839   unsigned CallOpc = PPCISD::CALL;
4840 
4841   bool needIndirectCall = true;
4842   if (!isSVR4ABI || !isPPC64)
4843     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4844       // If this is an absolute destination address, use the munged value.
4845       Callee = SDValue(Dest, 0);
4846       needIndirectCall = false;
4847     }
4848 
4849   // PC-relative references to external symbols should go through $stub, unless
4850   // we're building with the leopard linker or later, which automatically
4851   // synthesizes these stubs.
4852   const TargetMachine &TM = DAG.getTarget();
4853   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4854   const GlobalValue *GV = nullptr;
4855   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4856     GV = G->getGlobal();
4857   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4858   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4859 
4860   if (isFunctionGlobalAddress(Callee)) {
4861     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4862     // A call to a TLS address is actually an indirect call to a
4863     // thread-specific pointer.
4864     unsigned OpFlags = 0;
4865     if (UsePlt)
4866       OpFlags = PPCII::MO_PLT;
4867 
4868     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4869     // every direct call is) turn it into a TargetGlobalAddress /
4870     // TargetExternalSymbol node so that legalize doesn't hack it.
4871     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4872                                         Callee.getValueType(), 0, OpFlags);
4873     needIndirectCall = false;
4874   }
4875 
4876   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4877     unsigned char OpFlags = 0;
4878 
4879     if (UsePlt)
4880       OpFlags = PPCII::MO_PLT;
4881 
4882     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4883                                          OpFlags);
4884     needIndirectCall = false;
4885   }
4886 
4887   if (isPatchPoint) {
4888     // We'll form an invalid direct call when lowering a patchpoint; the full
4889     // sequence for an indirect call is complicated, and many of the
4890     // instructions introduced might have side effects (and, thus, can't be
4891     // removed later). The call itself will be removed as soon as the
4892     // argument/return lowering is complete, so the fact that it has the wrong
4893     // kind of operands should not really matter.
4894     needIndirectCall = false;
4895   }
4896 
4897   if (needIndirectCall) {
4898     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4899     // to do the call, we can't use PPCISD::CALL.
4900     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4901 
4902     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4903       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4904       // entry point, but to the function descriptor (the function entry point
4905       // address is part of the function descriptor though).
4906       // The function descriptor is a three doubleword structure with the
4907       // following fields: function entry point, TOC base address and
4908       // environment pointer.
4909       // Thus for a call through a function pointer, the following actions need
4910       // to be performed:
4911       //   1. Save the TOC of the caller in the TOC save area of its stack
4912       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4913       //   2. Load the address of the function entry point from the function
4914       //      descriptor.
4915       //   3. Load the TOC of the callee from the function descriptor into r2.
4916       //   4. Load the environment pointer from the function descriptor into
4917       //      r11.
4918       //   5. Branch to the function entry point address.
4919       //   6. On return of the callee, the TOC of the caller needs to be
4920       //      restored (this is done in FinishCall()).
4921       //
4922       // The loads are scheduled at the beginning of the call sequence, and the
4923       // register copies are flagged together to ensure that no other
4924       // operations can be scheduled in between. E.g. without flagging the
4925       // copies together, a TOC access in the caller could be scheduled between
4926       // the assignment of the callee TOC and the branch to the callee, which
4927       // results in the TOC access going through the TOC of the callee instead
4928       // of going through the TOC of the caller, which leads to incorrect code.
4929 
4930       // Load the address of the function entry point from the function
4931       // descriptor.
4932       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4933       if (LDChain.getValueType() == MVT::Glue)
4934         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4935 
4936       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4937                           ? (MachineMemOperand::MODereferenceable |
4938                              MachineMemOperand::MOInvariant)
4939                           : MachineMemOperand::MONone;
4940 
4941       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
4942       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4943                                         /* Alignment = */ 8, MMOFlags);
4944 
4945       // Load environment pointer into r11.
4946       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4947       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4948       SDValue LoadEnvPtr =
4949           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4950                       /* Alignment = */ 8, MMOFlags);
4951 
4952       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4953       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4954       SDValue TOCPtr =
4955           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4956                       /* Alignment = */ 8, MMOFlags);
4957 
4958       setUsesTOCBasePtr(DAG);
4959       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4960                                         InFlag);
4961       Chain = TOCVal.getValue(0);
4962       InFlag = TOCVal.getValue(1);
4963 
4964       // If the function call has an explicit 'nest' parameter, it takes the
4965       // place of the environment pointer.
4966       if (!hasNest) {
4967         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4968                                           InFlag);
4969 
4970         Chain = EnvVal.getValue(0);
4971         InFlag = EnvVal.getValue(1);
4972       }
4973 
4974       MTCTROps[0] = Chain;
4975       MTCTROps[1] = LoadFuncPtr;
4976       MTCTROps[2] = InFlag;
4977     }
4978 
4979     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4980                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4981     InFlag = Chain.getValue(1);
4982 
4983     NodeTys.clear();
4984     NodeTys.push_back(MVT::Other);
4985     NodeTys.push_back(MVT::Glue);
4986     Ops.push_back(Chain);
4987     CallOpc = PPCISD::BCTRL;
4988     Callee.setNode(nullptr);
4989     // Add use of X11 (holding environment pointer)
4990     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4991       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4992     // Add CTR register as callee so a bctr can be emitted later.
4993     if (isTailCall)
4994       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4995   }
4996 
4997   // If this is a direct call, pass the chain and the callee.
4998   if (Callee.getNode()) {
4999     Ops.push_back(Chain);
5000     Ops.push_back(Callee);
5001   }
5002   // If this is a tail call add stack pointer delta.
5003   if (isTailCall)
5004     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5005 
5006   // Add argument registers to the end of the list so that they are known live
5007   // into the call.
5008   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5009     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5010                                   RegsToPass[i].second.getValueType()));
5011 
5012   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
5013   // into the call.
5014   // We do need to reserve X2 to appease the verifier for the PATCHPOINT.
5015   if (isSVR4ABI && isPPC64) {
5016     setUsesTOCBasePtr(DAG);
5017 
5018     // We cannot add X2 as an operand here for PATCHPOINT, because there is no
5019     // way to mark dependencies as implicit here. We will add the X2 dependency
5020     // in EmitInstrWithCustomInserter.
5021     if (!isPatchPoint)
5022       Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
5023   }
5024 
5025   return CallOpc;
5026 }
5027 
5028 SDValue PPCTargetLowering::LowerCallResult(
5029     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5030     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5031     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5032   SmallVector<CCValAssign, 16> RVLocs;
5033   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5034                     *DAG.getContext());
5035 
5036   CCRetInfo.AnalyzeCallResult(
5037       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5038                ? RetCC_PPC_Cold
5039                : RetCC_PPC);
5040 
5041   // Copy all of the result registers out of their specified physreg.
5042   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5043     CCValAssign &VA = RVLocs[i];
5044     assert(VA.isRegLoc() && "Can only return in registers!");
5045 
5046     SDValue Val = DAG.getCopyFromReg(Chain, dl,
5047                                      VA.getLocReg(), VA.getLocVT(), InFlag);
5048     Chain = Val.getValue(1);
5049     InFlag = Val.getValue(2);
5050 
5051     switch (VA.getLocInfo()) {
5052     default: llvm_unreachable("Unknown loc info!");
5053     case CCValAssign::Full: break;
5054     case CCValAssign::AExt:
5055       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5056       break;
5057     case CCValAssign::ZExt:
5058       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5059                         DAG.getValueType(VA.getValVT()));
5060       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5061       break;
5062     case CCValAssign::SExt:
5063       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5064                         DAG.getValueType(VA.getValVT()));
5065       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5066       break;
5067     }
5068 
5069     InVals.push_back(Val);
5070   }
5071 
5072   return Chain;
5073 }
5074 
5075 SDValue PPCTargetLowering::FinishCall(
5076     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5077     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5078     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5079     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5080     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5081     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5082   std::vector<EVT> NodeTys;
5083   SmallVector<SDValue, 8> Ops;
5084   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5085                                  SPDiff, isTailCall, isPatchPoint, hasNest,
5086                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
5087 
5088   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5089   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5090     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5091 
5092   // When performing tail call optimization the callee pops its arguments off
5093   // the stack. Account for this here so these bytes can be pushed back on in
5094   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5095   int BytesCalleePops =
5096     (CallConv == CallingConv::Fast &&
5097      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5098 
5099   // Add a register mask operand representing the call-preserved registers.
5100   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5101   const uint32_t *Mask =
5102       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5103   assert(Mask && "Missing call preserved mask for calling convention");
5104   Ops.push_back(DAG.getRegisterMask(Mask));
5105 
5106   if (InFlag.getNode())
5107     Ops.push_back(InFlag);
5108 
5109   // Emit tail call.
5110   if (isTailCall) {
5111     assert(((Callee.getOpcode() == ISD::Register &&
5112              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5113             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5114             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5115             isa<ConstantSDNode>(Callee)) &&
5116     "Expecting an global address, external symbol, absolute value or register");
5117 
5118     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5119     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5120   }
5121 
5122   // Add a NOP immediately after the branch instruction when using the 64-bit
5123   // SVR4 ABI. At link time, if caller and callee are in a different module and
5124   // thus have a different TOC, the call will be replaced with a call to a stub
5125   // function which saves the current TOC, loads the TOC of the callee and
5126   // branches to the callee. The NOP will be replaced with a load instruction
5127   // which restores the TOC of the caller from the TOC save slot of the current
5128   // stack frame. If caller and callee belong to the same module (and have the
5129   // same TOC), the NOP will remain unchanged.
5130 
5131   MachineFunction &MF = DAG.getMachineFunction();
5132   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5133       !isPatchPoint) {
5134     if (CallOpc == PPCISD::BCTRL) {
5135       // This is a call through a function pointer.
5136       // Restore the caller TOC from the save area into R2.
5137       // See PrepareCall() for more information about calls through function
5138       // pointers in the 64-bit SVR4 ABI.
5139       // We are using a target-specific load with r2 hard coded, because the
5140       // result of a target-independent load would never go directly into r2,
5141       // since r2 is a reserved register (which prevents the register allocator
5142       // from allocating it), resulting in an additional register being
5143       // allocated and an unnecessary move instruction being generated.
5144       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5145 
5146       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5147       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5148       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5149       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5150       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5151 
5152       // The address needs to go after the chain input but before the flag (or
5153       // any other variadic arguments).
5154       Ops.insert(std::next(Ops.begin()), AddTOC);
5155     } else if (CallOpc == PPCISD::CALL &&
5156       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5157       // Otherwise insert NOP for non-local calls.
5158       CallOpc = PPCISD::CALL_NOP;
5159     }
5160   }
5161 
5162   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5163   InFlag = Chain.getValue(1);
5164 
5165   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5166                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5167                              InFlag, dl);
5168   if (!Ins.empty())
5169     InFlag = Chain.getValue(1);
5170 
5171   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5172                          Ins, dl, DAG, InVals);
5173 }
5174 
5175 SDValue
5176 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5177                              SmallVectorImpl<SDValue> &InVals) const {
5178   SelectionDAG &DAG                     = CLI.DAG;
5179   SDLoc &dl                             = CLI.DL;
5180   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5181   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5182   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5183   SDValue Chain                         = CLI.Chain;
5184   SDValue Callee                        = CLI.Callee;
5185   bool &isTailCall                      = CLI.IsTailCall;
5186   CallingConv::ID CallConv              = CLI.CallConv;
5187   bool isVarArg                         = CLI.IsVarArg;
5188   bool isPatchPoint                     = CLI.IsPatchPoint;
5189   ImmutableCallSite CS                  = CLI.CS;
5190 
5191   if (isTailCall) {
5192     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5193       isTailCall = false;
5194     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5195       isTailCall =
5196         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5197                                                  isVarArg, Outs, Ins, DAG);
5198     else
5199       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5200                                                      Ins, DAG);
5201     if (isTailCall) {
5202       ++NumTailCalls;
5203       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5204         ++NumSiblingCalls;
5205 
5206       assert(isa<GlobalAddressSDNode>(Callee) &&
5207              "Callee should be an llvm::Function object.");
5208       LLVM_DEBUG(
5209           const GlobalValue *GV =
5210               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5211           const unsigned Width =
5212               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5213           dbgs() << "TCO caller: "
5214                  << left_justify(DAG.getMachineFunction().getName(), Width)
5215                  << ", callee linkage: " << GV->getVisibility() << ", "
5216                  << GV->getLinkage() << "\n");
5217     }
5218   }
5219 
5220   if (!isTailCall && CS && CS.isMustTailCall())
5221     report_fatal_error("failed to perform tail call elimination on a call "
5222                        "site marked musttail");
5223 
5224   // When long calls (i.e. indirect calls) are always used, calls are always
5225   // made via function pointer. If we have a function name, first translate it
5226   // into a pointer.
5227   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5228       !isTailCall)
5229     Callee = LowerGlobalAddress(Callee, DAG);
5230 
5231   if (Subtarget.isSVR4ABI()) {
5232     if (Subtarget.isPPC64())
5233       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5234                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5235                               dl, DAG, InVals, CS);
5236     else
5237       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5238                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5239                               dl, DAG, InVals, CS);
5240   }
5241 
5242   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5243                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5244                           dl, DAG, InVals, CS);
5245 }
5246 
5247 SDValue PPCTargetLowering::LowerCall_32SVR4(
5248     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5249     bool isTailCall, bool isPatchPoint,
5250     const SmallVectorImpl<ISD::OutputArg> &Outs,
5251     const SmallVectorImpl<SDValue> &OutVals,
5252     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5253     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5254     ImmutableCallSite CS) const {
5255   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5256   // of the 32-bit SVR4 ABI stack frame layout.
5257 
5258   assert((CallConv == CallingConv::C ||
5259           CallConv == CallingConv::Cold ||
5260           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5261 
5262   unsigned PtrByteSize = 4;
5263 
5264   MachineFunction &MF = DAG.getMachineFunction();
5265 
5266   // Mark this function as potentially containing a function that contains a
5267   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5268   // and restoring the callers stack pointer in this functions epilog. This is
5269   // done because by tail calling the called function might overwrite the value
5270   // in this function's (MF) stack pointer stack slot 0(SP).
5271   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5272       CallConv == CallingConv::Fast)
5273     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5274 
5275   // Count how many bytes are to be pushed on the stack, including the linkage
5276   // area, parameter list area and the part of the local variable space which
5277   // contains copies of aggregates which are passed by value.
5278 
5279   // Assign locations to all of the outgoing arguments.
5280   SmallVector<CCValAssign, 16> ArgLocs;
5281   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5282 
5283   // Reserve space for the linkage area on the stack.
5284   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5285                        PtrByteSize);
5286   if (useSoftFloat())
5287     CCInfo.PreAnalyzeCallOperands(Outs);
5288 
5289   if (isVarArg) {
5290     // Handle fixed and variable vector arguments differently.
5291     // Fixed vector arguments go into registers as long as registers are
5292     // available. Variable vector arguments always go into memory.
5293     unsigned NumArgs = Outs.size();
5294 
5295     for (unsigned i = 0; i != NumArgs; ++i) {
5296       MVT ArgVT = Outs[i].VT;
5297       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5298       bool Result;
5299 
5300       if (Outs[i].IsFixed) {
5301         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5302                                CCInfo);
5303       } else {
5304         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5305                                       ArgFlags, CCInfo);
5306       }
5307 
5308       if (Result) {
5309 #ifndef NDEBUG
5310         errs() << "Call operand #" << i << " has unhandled type "
5311              << EVT(ArgVT).getEVTString() << "\n";
5312 #endif
5313         llvm_unreachable(nullptr);
5314       }
5315     }
5316   } else {
5317     // All arguments are treated the same.
5318     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5319   }
5320   CCInfo.clearWasPPCF128();
5321 
5322   // Assign locations to all of the outgoing aggregate by value arguments.
5323   SmallVector<CCValAssign, 16> ByValArgLocs;
5324   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5325 
5326   // Reserve stack space for the allocations in CCInfo.
5327   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5328 
5329   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5330 
5331   // Size of the linkage area, parameter list area and the part of the local
5332   // space variable where copies of aggregates which are passed by value are
5333   // stored.
5334   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5335 
5336   // Calculate by how many bytes the stack has to be adjusted in case of tail
5337   // call optimization.
5338   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5339 
5340   // Adjust the stack pointer for the new arguments...
5341   // These operations are automatically eliminated by the prolog/epilog pass
5342   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5343   SDValue CallSeqStart = Chain;
5344 
5345   // Load the return address and frame pointer so it can be moved somewhere else
5346   // later.
5347   SDValue LROp, FPOp;
5348   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5349 
5350   // Set up a copy of the stack pointer for use loading and storing any
5351   // arguments that may not fit in the registers available for argument
5352   // passing.
5353   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5354 
5355   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5356   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5357   SmallVector<SDValue, 8> MemOpChains;
5358 
5359   bool seenFloatArg = false;
5360   // Walk the register/memloc assignments, inserting copies/loads.
5361   for (unsigned i = 0, j = 0, e = ArgLocs.size();
5362        i != e;
5363        ++i) {
5364     CCValAssign &VA = ArgLocs[i];
5365     SDValue Arg = OutVals[i];
5366     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5367 
5368     if (Flags.isByVal()) {
5369       // Argument is an aggregate which is passed by value, thus we need to
5370       // create a copy of it in the local variable space of the current stack
5371       // frame (which is the stack frame of the caller) and pass the address of
5372       // this copy to the callee.
5373       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5374       CCValAssign &ByValVA = ByValArgLocs[j++];
5375       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5376 
5377       // Memory reserved in the local variable space of the callers stack frame.
5378       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5379 
5380       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5381       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5382                            StackPtr, PtrOff);
5383 
5384       // Create a copy of the argument in the local area of the current
5385       // stack frame.
5386       SDValue MemcpyCall =
5387         CreateCopyOfByValArgument(Arg, PtrOff,
5388                                   CallSeqStart.getNode()->getOperand(0),
5389                                   Flags, DAG, dl);
5390 
5391       // This must go outside the CALLSEQ_START..END.
5392       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5393                                                      SDLoc(MemcpyCall));
5394       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5395                              NewCallSeqStart.getNode());
5396       Chain = CallSeqStart = NewCallSeqStart;
5397 
5398       // Pass the address of the aggregate copy on the stack either in a
5399       // physical register or in the parameter list area of the current stack
5400       // frame to the callee.
5401       Arg = PtrOff;
5402     }
5403 
5404     // When useCRBits() is true, there can be i1 arguments.
5405     // It is because getRegisterType(MVT::i1) => MVT::i1,
5406     // and for other integer types getRegisterType() => MVT::i32.
5407     // Extend i1 and ensure callee will get i32.
5408     if (Arg.getValueType() == MVT::i1)
5409       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5410                         dl, MVT::i32, Arg);
5411 
5412     if (VA.isRegLoc()) {
5413       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5414       // Put argument in a physical register.
5415       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5416     } else {
5417       // Put argument in the parameter list area of the current stack frame.
5418       assert(VA.isMemLoc());
5419       unsigned LocMemOffset = VA.getLocMemOffset();
5420 
5421       if (!isTailCall) {
5422         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5423         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5424                              StackPtr, PtrOff);
5425 
5426         MemOpChains.push_back(
5427             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5428       } else {
5429         // Calculate and remember argument location.
5430         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5431                                  TailCallArguments);
5432       }
5433     }
5434   }
5435 
5436   if (!MemOpChains.empty())
5437     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5438 
5439   // Build a sequence of copy-to-reg nodes chained together with token chain
5440   // and flag operands which copy the outgoing args into the appropriate regs.
5441   SDValue InFlag;
5442   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5443     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5444                              RegsToPass[i].second, InFlag);
5445     InFlag = Chain.getValue(1);
5446   }
5447 
5448   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5449   // registers.
5450   if (isVarArg) {
5451     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5452     SDValue Ops[] = { Chain, InFlag };
5453 
5454     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5455                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5456 
5457     InFlag = Chain.getValue(1);
5458   }
5459 
5460   if (isTailCall)
5461     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5462                     TailCallArguments);
5463 
5464   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5465                     /* unused except on PPC64 ELFv1 */ false, DAG,
5466                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5467                     NumBytes, Ins, InVals, CS);
5468 }
5469 
5470 // Copy an argument into memory, being careful to do this outside the
5471 // call sequence for the call to which the argument belongs.
5472 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5473     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5474     SelectionDAG &DAG, const SDLoc &dl) const {
5475   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5476                         CallSeqStart.getNode()->getOperand(0),
5477                         Flags, DAG, dl);
5478   // The MEMCPY must go outside the CALLSEQ_START..END.
5479   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5480   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5481                                                  SDLoc(MemcpyCall));
5482   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5483                          NewCallSeqStart.getNode());
5484   return NewCallSeqStart;
5485 }
5486 
5487 SDValue PPCTargetLowering::LowerCall_64SVR4(
5488     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5489     bool isTailCall, bool isPatchPoint,
5490     const SmallVectorImpl<ISD::OutputArg> &Outs,
5491     const SmallVectorImpl<SDValue> &OutVals,
5492     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5493     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5494     ImmutableCallSite CS) const {
5495   bool isELFv2ABI = Subtarget.isELFv2ABI();
5496   bool isLittleEndian = Subtarget.isLittleEndian();
5497   unsigned NumOps = Outs.size();
5498   bool hasNest = false;
5499   bool IsSibCall = false;
5500 
5501   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5502   unsigned PtrByteSize = 8;
5503 
5504   MachineFunction &MF = DAG.getMachineFunction();
5505 
5506   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5507     IsSibCall = true;
5508 
5509   // Mark this function as potentially containing a function that contains a
5510   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5511   // and restoring the callers stack pointer in this functions epilog. This is
5512   // done because by tail calling the called function might overwrite the value
5513   // in this function's (MF) stack pointer stack slot 0(SP).
5514   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5515       CallConv == CallingConv::Fast)
5516     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5517 
5518   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5519          "fastcc not supported on varargs functions");
5520 
5521   // Count how many bytes are to be pushed on the stack, including the linkage
5522   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5523   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5524   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5525   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5526   unsigned NumBytes = LinkageSize;
5527   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5528   unsigned &QFPR_idx = FPR_idx;
5529 
5530   static const MCPhysReg GPR[] = {
5531     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5532     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5533   };
5534   static const MCPhysReg VR[] = {
5535     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5536     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5537   };
5538 
5539   const unsigned NumGPRs = array_lengthof(GPR);
5540   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5541   const unsigned NumVRs  = array_lengthof(VR);
5542   const unsigned NumQFPRs = NumFPRs;
5543 
5544   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5545   // can be passed to the callee in registers.
5546   // For the fast calling convention, there is another check below.
5547   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5548   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5549   if (!HasParameterArea) {
5550     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5551     unsigned AvailableFPRs = NumFPRs;
5552     unsigned AvailableVRs = NumVRs;
5553     unsigned NumBytesTmp = NumBytes;
5554     for (unsigned i = 0; i != NumOps; ++i) {
5555       if (Outs[i].Flags.isNest()) continue;
5556       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5557                                 PtrByteSize, LinkageSize, ParamAreaSize,
5558                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5559                                 Subtarget.hasQPX()))
5560         HasParameterArea = true;
5561     }
5562   }
5563 
5564   // When using the fast calling convention, we don't provide backing for
5565   // arguments that will be in registers.
5566   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5567 
5568   // Avoid allocating parameter area for fastcc functions if all the arguments
5569   // can be passed in the registers.
5570   if (CallConv == CallingConv::Fast)
5571     HasParameterArea = false;
5572 
5573   // Add up all the space actually used.
5574   for (unsigned i = 0; i != NumOps; ++i) {
5575     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5576     EVT ArgVT = Outs[i].VT;
5577     EVT OrigVT = Outs[i].ArgVT;
5578 
5579     if (Flags.isNest())
5580       continue;
5581 
5582     if (CallConv == CallingConv::Fast) {
5583       if (Flags.isByVal()) {
5584         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5585         if (NumGPRsUsed > NumGPRs)
5586           HasParameterArea = true;
5587       } else {
5588         switch (ArgVT.getSimpleVT().SimpleTy) {
5589         default: llvm_unreachable("Unexpected ValueType for argument!");
5590         case MVT::i1:
5591         case MVT::i32:
5592         case MVT::i64:
5593           if (++NumGPRsUsed <= NumGPRs)
5594             continue;
5595           break;
5596         case MVT::v4i32:
5597         case MVT::v8i16:
5598         case MVT::v16i8:
5599         case MVT::v2f64:
5600         case MVT::v2i64:
5601         case MVT::v1i128:
5602         case MVT::f128:
5603           if (++NumVRsUsed <= NumVRs)
5604             continue;
5605           break;
5606         case MVT::v4f32:
5607           // When using QPX, this is handled like a FP register, otherwise, it
5608           // is an Altivec register.
5609           if (Subtarget.hasQPX()) {
5610             if (++NumFPRsUsed <= NumFPRs)
5611               continue;
5612           } else {
5613             if (++NumVRsUsed <= NumVRs)
5614               continue;
5615           }
5616           break;
5617         case MVT::f32:
5618         case MVT::f64:
5619         case MVT::v4f64: // QPX
5620         case MVT::v4i1:  // QPX
5621           if (++NumFPRsUsed <= NumFPRs)
5622             continue;
5623           break;
5624         }
5625         HasParameterArea = true;
5626       }
5627     }
5628 
5629     /* Respect alignment of argument on the stack.  */
5630     unsigned Align =
5631       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5632     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5633 
5634     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5635     if (Flags.isInConsecutiveRegsLast())
5636       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5637   }
5638 
5639   unsigned NumBytesActuallyUsed = NumBytes;
5640 
5641   // In the old ELFv1 ABI,
5642   // the prolog code of the callee may store up to 8 GPR argument registers to
5643   // the stack, allowing va_start to index over them in memory if its varargs.
5644   // Because we cannot tell if this is needed on the caller side, we have to
5645   // conservatively assume that it is needed.  As such, make sure we have at
5646   // least enough stack space for the caller to store the 8 GPRs.
5647   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5648   // really requires memory operands, e.g. a vararg function.
5649   if (HasParameterArea)
5650     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5651   else
5652     NumBytes = LinkageSize;
5653 
5654   // Tail call needs the stack to be aligned.
5655   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5656       CallConv == CallingConv::Fast)
5657     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5658 
5659   int SPDiff = 0;
5660 
5661   // Calculate by how many bytes the stack has to be adjusted in case of tail
5662   // call optimization.
5663   if (!IsSibCall)
5664     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5665 
5666   // To protect arguments on the stack from being clobbered in a tail call,
5667   // force all the loads to happen before doing any other lowering.
5668   if (isTailCall)
5669     Chain = DAG.getStackArgumentTokenFactor(Chain);
5670 
5671   // Adjust the stack pointer for the new arguments...
5672   // These operations are automatically eliminated by the prolog/epilog pass
5673   if (!IsSibCall)
5674     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5675   SDValue CallSeqStart = Chain;
5676 
5677   // Load the return address and frame pointer so it can be move somewhere else
5678   // later.
5679   SDValue LROp, FPOp;
5680   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5681 
5682   // Set up a copy of the stack pointer for use loading and storing any
5683   // arguments that may not fit in the registers available for argument
5684   // passing.
5685   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5686 
5687   // Figure out which arguments are going to go in registers, and which in
5688   // memory.  Also, if this is a vararg function, floating point operations
5689   // must be stored to our stack, and loaded into integer regs as well, if
5690   // any integer regs are available for argument passing.
5691   unsigned ArgOffset = LinkageSize;
5692 
5693   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5694   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5695 
5696   SmallVector<SDValue, 8> MemOpChains;
5697   for (unsigned i = 0; i != NumOps; ++i) {
5698     SDValue Arg = OutVals[i];
5699     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5700     EVT ArgVT = Outs[i].VT;
5701     EVT OrigVT = Outs[i].ArgVT;
5702 
5703     // PtrOff will be used to store the current argument to the stack if a
5704     // register cannot be found for it.
5705     SDValue PtrOff;
5706 
5707     // We re-align the argument offset for each argument, except when using the
5708     // fast calling convention, when we need to make sure we do that only when
5709     // we'll actually use a stack slot.
5710     auto ComputePtrOff = [&]() {
5711       /* Respect alignment of argument on the stack.  */
5712       unsigned Align =
5713         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5714       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5715 
5716       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5717 
5718       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5719     };
5720 
5721     if (CallConv != CallingConv::Fast) {
5722       ComputePtrOff();
5723 
5724       /* Compute GPR index associated with argument offset.  */
5725       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5726       GPR_idx = std::min(GPR_idx, NumGPRs);
5727     }
5728 
5729     // Promote integers to 64-bit values.
5730     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5731       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5732       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5733       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5734     }
5735 
5736     // FIXME memcpy is used way more than necessary.  Correctness first.
5737     // Note: "by value" is code for passing a structure by value, not
5738     // basic types.
5739     if (Flags.isByVal()) {
5740       // Note: Size includes alignment padding, so
5741       //   struct x { short a; char b; }
5742       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5743       // These are the proper values we need for right-justifying the
5744       // aggregate in a parameter register.
5745       unsigned Size = Flags.getByValSize();
5746 
5747       // An empty aggregate parameter takes up no storage and no
5748       // registers.
5749       if (Size == 0)
5750         continue;
5751 
5752       if (CallConv == CallingConv::Fast)
5753         ComputePtrOff();
5754 
5755       // All aggregates smaller than 8 bytes must be passed right-justified.
5756       if (Size==1 || Size==2 || Size==4) {
5757         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5758         if (GPR_idx != NumGPRs) {
5759           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5760                                         MachinePointerInfo(), VT);
5761           MemOpChains.push_back(Load.getValue(1));
5762           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5763 
5764           ArgOffset += PtrByteSize;
5765           continue;
5766         }
5767       }
5768 
5769       if (GPR_idx == NumGPRs && Size < 8) {
5770         SDValue AddPtr = PtrOff;
5771         if (!isLittleEndian) {
5772           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5773                                           PtrOff.getValueType());
5774           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5775         }
5776         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5777                                                           CallSeqStart,
5778                                                           Flags, DAG, dl);
5779         ArgOffset += PtrByteSize;
5780         continue;
5781       }
5782       // Copy entire object into memory.  There are cases where gcc-generated
5783       // code assumes it is there, even if it could be put entirely into
5784       // registers.  (This is not what the doc says.)
5785 
5786       // FIXME: The above statement is likely due to a misunderstanding of the
5787       // documents.  All arguments must be copied into the parameter area BY
5788       // THE CALLEE in the event that the callee takes the address of any
5789       // formal argument.  That has not yet been implemented.  However, it is
5790       // reasonable to use the stack area as a staging area for the register
5791       // load.
5792 
5793       // Skip this for small aggregates, as we will use the same slot for a
5794       // right-justified copy, below.
5795       if (Size >= 8)
5796         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5797                                                           CallSeqStart,
5798                                                           Flags, DAG, dl);
5799 
5800       // When a register is available, pass a small aggregate right-justified.
5801       if (Size < 8 && GPR_idx != NumGPRs) {
5802         // The easiest way to get this right-justified in a register
5803         // is to copy the structure into the rightmost portion of a
5804         // local variable slot, then load the whole slot into the
5805         // register.
5806         // FIXME: The memcpy seems to produce pretty awful code for
5807         // small aggregates, particularly for packed ones.
5808         // FIXME: It would be preferable to use the slot in the
5809         // parameter save area instead of a new local variable.
5810         SDValue AddPtr = PtrOff;
5811         if (!isLittleEndian) {
5812           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5813           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5814         }
5815         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5816                                                           CallSeqStart,
5817                                                           Flags, DAG, dl);
5818 
5819         // Load the slot into the register.
5820         SDValue Load =
5821             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5822         MemOpChains.push_back(Load.getValue(1));
5823         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5824 
5825         // Done with this argument.
5826         ArgOffset += PtrByteSize;
5827         continue;
5828       }
5829 
5830       // For aggregates larger than PtrByteSize, copy the pieces of the
5831       // object that fit into registers from the parameter save area.
5832       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5833         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5834         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5835         if (GPR_idx != NumGPRs) {
5836           SDValue Load =
5837               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5838           MemOpChains.push_back(Load.getValue(1));
5839           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5840           ArgOffset += PtrByteSize;
5841         } else {
5842           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5843           break;
5844         }
5845       }
5846       continue;
5847     }
5848 
5849     switch (Arg.getSimpleValueType().SimpleTy) {
5850     default: llvm_unreachable("Unexpected ValueType for argument!");
5851     case MVT::i1:
5852     case MVT::i32:
5853     case MVT::i64:
5854       if (Flags.isNest()) {
5855         // The 'nest' parameter, if any, is passed in R11.
5856         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5857         hasNest = true;
5858         break;
5859       }
5860 
5861       // These can be scalar arguments or elements of an integer array type
5862       // passed directly.  Clang may use those instead of "byval" aggregate
5863       // types to avoid forcing arguments to memory unnecessarily.
5864       if (GPR_idx != NumGPRs) {
5865         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5866       } else {
5867         if (CallConv == CallingConv::Fast)
5868           ComputePtrOff();
5869 
5870         assert(HasParameterArea &&
5871                "Parameter area must exist to pass an argument in memory.");
5872         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5873                          true, isTailCall, false, MemOpChains,
5874                          TailCallArguments, dl);
5875         if (CallConv == CallingConv::Fast)
5876           ArgOffset += PtrByteSize;
5877       }
5878       if (CallConv != CallingConv::Fast)
5879         ArgOffset += PtrByteSize;
5880       break;
5881     case MVT::f32:
5882     case MVT::f64: {
5883       // These can be scalar arguments or elements of a float array type
5884       // passed directly.  The latter are used to implement ELFv2 homogenous
5885       // float aggregates.
5886 
5887       // Named arguments go into FPRs first, and once they overflow, the
5888       // remaining arguments go into GPRs and then the parameter save area.
5889       // Unnamed arguments for vararg functions always go to GPRs and
5890       // then the parameter save area.  For now, put all arguments to vararg
5891       // routines always in both locations (FPR *and* GPR or stack slot).
5892       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5893       bool NeededLoad = false;
5894 
5895       // First load the argument into the next available FPR.
5896       if (FPR_idx != NumFPRs)
5897         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5898 
5899       // Next, load the argument into GPR or stack slot if needed.
5900       if (!NeedGPROrStack)
5901         ;
5902       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5903         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5904         // once we support fp <-> gpr moves.
5905 
5906         // In the non-vararg case, this can only ever happen in the
5907         // presence of f32 array types, since otherwise we never run
5908         // out of FPRs before running out of GPRs.
5909         SDValue ArgVal;
5910 
5911         // Double values are always passed in a single GPR.
5912         if (Arg.getValueType() != MVT::f32) {
5913           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5914 
5915         // Non-array float values are extended and passed in a GPR.
5916         } else if (!Flags.isInConsecutiveRegs()) {
5917           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5918           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5919 
5920         // If we have an array of floats, we collect every odd element
5921         // together with its predecessor into one GPR.
5922         } else if (ArgOffset % PtrByteSize != 0) {
5923           SDValue Lo, Hi;
5924           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5925           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5926           if (!isLittleEndian)
5927             std::swap(Lo, Hi);
5928           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5929 
5930         // The final element, if even, goes into the first half of a GPR.
5931         } else if (Flags.isInConsecutiveRegsLast()) {
5932           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5933           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5934           if (!isLittleEndian)
5935             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5936                                  DAG.getConstant(32, dl, MVT::i32));
5937 
5938         // Non-final even elements are skipped; they will be handled
5939         // together the with subsequent argument on the next go-around.
5940         } else
5941           ArgVal = SDValue();
5942 
5943         if (ArgVal.getNode())
5944           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5945       } else {
5946         if (CallConv == CallingConv::Fast)
5947           ComputePtrOff();
5948 
5949         // Single-precision floating-point values are mapped to the
5950         // second (rightmost) word of the stack doubleword.
5951         if (Arg.getValueType() == MVT::f32 &&
5952             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5953           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5954           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5955         }
5956 
5957         assert(HasParameterArea &&
5958                "Parameter area must exist to pass an argument in memory.");
5959         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5960                          true, isTailCall, false, MemOpChains,
5961                          TailCallArguments, dl);
5962 
5963         NeededLoad = true;
5964       }
5965       // When passing an array of floats, the array occupies consecutive
5966       // space in the argument area; only round up to the next doubleword
5967       // at the end of the array.  Otherwise, each float takes 8 bytes.
5968       if (CallConv != CallingConv::Fast || NeededLoad) {
5969         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5970                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5971         if (Flags.isInConsecutiveRegsLast())
5972           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5973       }
5974       break;
5975     }
5976     case MVT::v4f32:
5977     case MVT::v4i32:
5978     case MVT::v8i16:
5979     case MVT::v16i8:
5980     case MVT::v2f64:
5981     case MVT::v2i64:
5982     case MVT::v1i128:
5983     case MVT::f128:
5984       if (!Subtarget.hasQPX()) {
5985       // These can be scalar arguments or elements of a vector array type
5986       // passed directly.  The latter are used to implement ELFv2 homogenous
5987       // vector aggregates.
5988 
5989       // For a varargs call, named arguments go into VRs or on the stack as
5990       // usual; unnamed arguments always go to the stack or the corresponding
5991       // GPRs when within range.  For now, we always put the value in both
5992       // locations (or even all three).
5993       if (isVarArg) {
5994         assert(HasParameterArea &&
5995                "Parameter area must exist if we have a varargs call.");
5996         // We could elide this store in the case where the object fits
5997         // entirely in R registers.  Maybe later.
5998         SDValue Store =
5999             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6000         MemOpChains.push_back(Store);
6001         if (VR_idx != NumVRs) {
6002           SDValue Load =
6003               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6004           MemOpChains.push_back(Load.getValue(1));
6005           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6006         }
6007         ArgOffset += 16;
6008         for (unsigned i=0; i<16; i+=PtrByteSize) {
6009           if (GPR_idx == NumGPRs)
6010             break;
6011           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6012                                    DAG.getConstant(i, dl, PtrVT));
6013           SDValue Load =
6014               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6015           MemOpChains.push_back(Load.getValue(1));
6016           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6017         }
6018         break;
6019       }
6020 
6021       // Non-varargs Altivec params go into VRs or on the stack.
6022       if (VR_idx != NumVRs) {
6023         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6024       } else {
6025         if (CallConv == CallingConv::Fast)
6026           ComputePtrOff();
6027 
6028         assert(HasParameterArea &&
6029                "Parameter area must exist to pass an argument in memory.");
6030         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6031                          true, isTailCall, true, MemOpChains,
6032                          TailCallArguments, dl);
6033         if (CallConv == CallingConv::Fast)
6034           ArgOffset += 16;
6035       }
6036 
6037       if (CallConv != CallingConv::Fast)
6038         ArgOffset += 16;
6039       break;
6040       } // not QPX
6041 
6042       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6043              "Invalid QPX parameter type");
6044 
6045       LLVM_FALLTHROUGH;
6046     case MVT::v4f64:
6047     case MVT::v4i1: {
6048       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6049       if (isVarArg) {
6050         assert(HasParameterArea &&
6051                "Parameter area must exist if we have a varargs call.");
6052         // We could elide this store in the case where the object fits
6053         // entirely in R registers.  Maybe later.
6054         SDValue Store =
6055             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6056         MemOpChains.push_back(Store);
6057         if (QFPR_idx != NumQFPRs) {
6058           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6059                                      PtrOff, MachinePointerInfo());
6060           MemOpChains.push_back(Load.getValue(1));
6061           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6062         }
6063         ArgOffset += (IsF32 ? 16 : 32);
6064         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6065           if (GPR_idx == NumGPRs)
6066             break;
6067           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6068                                    DAG.getConstant(i, dl, PtrVT));
6069           SDValue Load =
6070               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6071           MemOpChains.push_back(Load.getValue(1));
6072           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6073         }
6074         break;
6075       }
6076 
6077       // Non-varargs QPX params go into registers or on the stack.
6078       if (QFPR_idx != NumQFPRs) {
6079         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6080       } else {
6081         if (CallConv == CallingConv::Fast)
6082           ComputePtrOff();
6083 
6084         assert(HasParameterArea &&
6085                "Parameter area must exist to pass an argument in memory.");
6086         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6087                          true, isTailCall, true, MemOpChains,
6088                          TailCallArguments, dl);
6089         if (CallConv == CallingConv::Fast)
6090           ArgOffset += (IsF32 ? 16 : 32);
6091       }
6092 
6093       if (CallConv != CallingConv::Fast)
6094         ArgOffset += (IsF32 ? 16 : 32);
6095       break;
6096       }
6097     }
6098   }
6099 
6100   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6101          "mismatch in size of parameter area");
6102   (void)NumBytesActuallyUsed;
6103 
6104   if (!MemOpChains.empty())
6105     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6106 
6107   // Check if this is an indirect call (MTCTR/BCTRL).
6108   // See PrepareCall() for more information about calls through function
6109   // pointers in the 64-bit SVR4 ABI.
6110   if (!isTailCall && !isPatchPoint &&
6111       !isFunctionGlobalAddress(Callee) &&
6112       !isa<ExternalSymbolSDNode>(Callee)) {
6113     // Load r2 into a virtual register and store it to the TOC save area.
6114     setUsesTOCBasePtr(DAG);
6115     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6116     // TOC save area offset.
6117     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6118     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6119     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6120     Chain = DAG.getStore(
6121         Val.getValue(1), dl, Val, AddPtr,
6122         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6123     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6124     // This does not mean the MTCTR instruction must use R12; it's easier
6125     // to model this as an extra parameter, so do that.
6126     if (isELFv2ABI && !isPatchPoint)
6127       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6128   }
6129 
6130   // Build a sequence of copy-to-reg nodes chained together with token chain
6131   // and flag operands which copy the outgoing args into the appropriate regs.
6132   SDValue InFlag;
6133   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6134     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6135                              RegsToPass[i].second, InFlag);
6136     InFlag = Chain.getValue(1);
6137   }
6138 
6139   if (isTailCall && !IsSibCall)
6140     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6141                     TailCallArguments);
6142 
6143   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6144                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6145                     SPDiff, NumBytes, Ins, InVals, CS);
6146 }
6147 
6148 SDValue PPCTargetLowering::LowerCall_Darwin(
6149     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6150     bool isTailCall, bool isPatchPoint,
6151     const SmallVectorImpl<ISD::OutputArg> &Outs,
6152     const SmallVectorImpl<SDValue> &OutVals,
6153     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6154     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6155     ImmutableCallSite CS) const {
6156   unsigned NumOps = Outs.size();
6157 
6158   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6159   bool isPPC64 = PtrVT == MVT::i64;
6160   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6161 
6162   MachineFunction &MF = DAG.getMachineFunction();
6163 
6164   // Mark this function as potentially containing a function that contains a
6165   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6166   // and restoring the callers stack pointer in this functions epilog. This is
6167   // done because by tail calling the called function might overwrite the value
6168   // in this function's (MF) stack pointer stack slot 0(SP).
6169   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6170       CallConv == CallingConv::Fast)
6171     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6172 
6173   // Count how many bytes are to be pushed on the stack, including the linkage
6174   // area, and parameter passing area.  We start with 24/48 bytes, which is
6175   // prereserved space for [SP][CR][LR][3 x unused].
6176   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6177   unsigned NumBytes = LinkageSize;
6178 
6179   // Add up all the space actually used.
6180   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6181   // they all go in registers, but we must reserve stack space for them for
6182   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6183   // assigned stack space in order, with padding so Altivec parameters are
6184   // 16-byte aligned.
6185   unsigned nAltivecParamsAtEnd = 0;
6186   for (unsigned i = 0; i != NumOps; ++i) {
6187     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6188     EVT ArgVT = Outs[i].VT;
6189     // Varargs Altivec parameters are padded to a 16 byte boundary.
6190     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6191         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6192         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6193       if (!isVarArg && !isPPC64) {
6194         // Non-varargs Altivec parameters go after all the non-Altivec
6195         // parameters; handle those later so we know how much padding we need.
6196         nAltivecParamsAtEnd++;
6197         continue;
6198       }
6199       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6200       NumBytes = ((NumBytes+15)/16)*16;
6201     }
6202     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6203   }
6204 
6205   // Allow for Altivec parameters at the end, if needed.
6206   if (nAltivecParamsAtEnd) {
6207     NumBytes = ((NumBytes+15)/16)*16;
6208     NumBytes += 16*nAltivecParamsAtEnd;
6209   }
6210 
6211   // The prolog code of the callee may store up to 8 GPR argument registers to
6212   // the stack, allowing va_start to index over them in memory if its varargs.
6213   // Because we cannot tell if this is needed on the caller side, we have to
6214   // conservatively assume that it is needed.  As such, make sure we have at
6215   // least enough stack space for the caller to store the 8 GPRs.
6216   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6217 
6218   // Tail call needs the stack to be aligned.
6219   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6220       CallConv == CallingConv::Fast)
6221     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6222 
6223   // Calculate by how many bytes the stack has to be adjusted in case of tail
6224   // call optimization.
6225   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6226 
6227   // To protect arguments on the stack from being clobbered in a tail call,
6228   // force all the loads to happen before doing any other lowering.
6229   if (isTailCall)
6230     Chain = DAG.getStackArgumentTokenFactor(Chain);
6231 
6232   // Adjust the stack pointer for the new arguments...
6233   // These operations are automatically eliminated by the prolog/epilog pass
6234   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6235   SDValue CallSeqStart = Chain;
6236 
6237   // Load the return address and frame pointer so it can be move somewhere else
6238   // later.
6239   SDValue LROp, FPOp;
6240   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6241 
6242   // Set up a copy of the stack pointer for use loading and storing any
6243   // arguments that may not fit in the registers available for argument
6244   // passing.
6245   SDValue StackPtr;
6246   if (isPPC64)
6247     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6248   else
6249     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6250 
6251   // Figure out which arguments are going to go in registers, and which in
6252   // memory.  Also, if this is a vararg function, floating point operations
6253   // must be stored to our stack, and loaded into integer regs as well, if
6254   // any integer regs are available for argument passing.
6255   unsigned ArgOffset = LinkageSize;
6256   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6257 
6258   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6259     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6260     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6261   };
6262   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6263     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6264     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6265   };
6266   static const MCPhysReg VR[] = {
6267     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6268     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6269   };
6270   const unsigned NumGPRs = array_lengthof(GPR_32);
6271   const unsigned NumFPRs = 13;
6272   const unsigned NumVRs  = array_lengthof(VR);
6273 
6274   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6275 
6276   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6277   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6278 
6279   SmallVector<SDValue, 8> MemOpChains;
6280   for (unsigned i = 0; i != NumOps; ++i) {
6281     SDValue Arg = OutVals[i];
6282     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6283 
6284     // PtrOff will be used to store the current argument to the stack if a
6285     // register cannot be found for it.
6286     SDValue PtrOff;
6287 
6288     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6289 
6290     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6291 
6292     // On PPC64, promote integers to 64-bit values.
6293     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6294       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6295       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6296       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6297     }
6298 
6299     // FIXME memcpy is used way more than necessary.  Correctness first.
6300     // Note: "by value" is code for passing a structure by value, not
6301     // basic types.
6302     if (Flags.isByVal()) {
6303       unsigned Size = Flags.getByValSize();
6304       // Very small objects are passed right-justified.  Everything else is
6305       // passed left-justified.
6306       if (Size==1 || Size==2) {
6307         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6308         if (GPR_idx != NumGPRs) {
6309           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6310                                         MachinePointerInfo(), VT);
6311           MemOpChains.push_back(Load.getValue(1));
6312           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6313 
6314           ArgOffset += PtrByteSize;
6315         } else {
6316           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6317                                           PtrOff.getValueType());
6318           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6319           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6320                                                             CallSeqStart,
6321                                                             Flags, DAG, dl);
6322           ArgOffset += PtrByteSize;
6323         }
6324         continue;
6325       }
6326       // Copy entire object into memory.  There are cases where gcc-generated
6327       // code assumes it is there, even if it could be put entirely into
6328       // registers.  (This is not what the doc says.)
6329       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6330                                                         CallSeqStart,
6331                                                         Flags, DAG, dl);
6332 
6333       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6334       // copy the pieces of the object that fit into registers from the
6335       // parameter save area.
6336       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6337         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6338         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6339         if (GPR_idx != NumGPRs) {
6340           SDValue Load =
6341               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6342           MemOpChains.push_back(Load.getValue(1));
6343           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6344           ArgOffset += PtrByteSize;
6345         } else {
6346           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6347           break;
6348         }
6349       }
6350       continue;
6351     }
6352 
6353     switch (Arg.getSimpleValueType().SimpleTy) {
6354     default: llvm_unreachable("Unexpected ValueType for argument!");
6355     case MVT::i1:
6356     case MVT::i32:
6357     case MVT::i64:
6358       if (GPR_idx != NumGPRs) {
6359         if (Arg.getValueType() == MVT::i1)
6360           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6361 
6362         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6363       } else {
6364         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6365                          isPPC64, isTailCall, false, MemOpChains,
6366                          TailCallArguments, dl);
6367       }
6368       ArgOffset += PtrByteSize;
6369       break;
6370     case MVT::f32:
6371     case MVT::f64:
6372       if (FPR_idx != NumFPRs) {
6373         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6374 
6375         if (isVarArg) {
6376           SDValue Store =
6377               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6378           MemOpChains.push_back(Store);
6379 
6380           // Float varargs are always shadowed in available integer registers
6381           if (GPR_idx != NumGPRs) {
6382             SDValue Load =
6383                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6384             MemOpChains.push_back(Load.getValue(1));
6385             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6386           }
6387           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6388             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6389             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6390             SDValue Load =
6391                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6392             MemOpChains.push_back(Load.getValue(1));
6393             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6394           }
6395         } else {
6396           // If we have any FPRs remaining, we may also have GPRs remaining.
6397           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6398           // GPRs.
6399           if (GPR_idx != NumGPRs)
6400             ++GPR_idx;
6401           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6402               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6403             ++GPR_idx;
6404         }
6405       } else
6406         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6407                          isPPC64, isTailCall, false, MemOpChains,
6408                          TailCallArguments, dl);
6409       if (isPPC64)
6410         ArgOffset += 8;
6411       else
6412         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6413       break;
6414     case MVT::v4f32:
6415     case MVT::v4i32:
6416     case MVT::v8i16:
6417     case MVT::v16i8:
6418       if (isVarArg) {
6419         // These go aligned on the stack, or in the corresponding R registers
6420         // when within range.  The Darwin PPC ABI doc claims they also go in
6421         // V registers; in fact gcc does this only for arguments that are
6422         // prototyped, not for those that match the ...  We do it for all
6423         // arguments, seems to work.
6424         while (ArgOffset % 16 !=0) {
6425           ArgOffset += PtrByteSize;
6426           if (GPR_idx != NumGPRs)
6427             GPR_idx++;
6428         }
6429         // We could elide this store in the case where the object fits
6430         // entirely in R registers.  Maybe later.
6431         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6432                              DAG.getConstant(ArgOffset, dl, PtrVT));
6433         SDValue Store =
6434             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6435         MemOpChains.push_back(Store);
6436         if (VR_idx != NumVRs) {
6437           SDValue Load =
6438               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6439           MemOpChains.push_back(Load.getValue(1));
6440           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6441         }
6442         ArgOffset += 16;
6443         for (unsigned i=0; i<16; i+=PtrByteSize) {
6444           if (GPR_idx == NumGPRs)
6445             break;
6446           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6447                                    DAG.getConstant(i, dl, PtrVT));
6448           SDValue Load =
6449               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6450           MemOpChains.push_back(Load.getValue(1));
6451           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6452         }
6453         break;
6454       }
6455 
6456       // Non-varargs Altivec params generally go in registers, but have
6457       // stack space allocated at the end.
6458       if (VR_idx != NumVRs) {
6459         // Doesn't have GPR space allocated.
6460         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6461       } else if (nAltivecParamsAtEnd==0) {
6462         // We are emitting Altivec params in order.
6463         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6464                          isPPC64, isTailCall, true, MemOpChains,
6465                          TailCallArguments, dl);
6466         ArgOffset += 16;
6467       }
6468       break;
6469     }
6470   }
6471   // If all Altivec parameters fit in registers, as they usually do,
6472   // they get stack space following the non-Altivec parameters.  We
6473   // don't track this here because nobody below needs it.
6474   // If there are more Altivec parameters than fit in registers emit
6475   // the stores here.
6476   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6477     unsigned j = 0;
6478     // Offset is aligned; skip 1st 12 params which go in V registers.
6479     ArgOffset = ((ArgOffset+15)/16)*16;
6480     ArgOffset += 12*16;
6481     for (unsigned i = 0; i != NumOps; ++i) {
6482       SDValue Arg = OutVals[i];
6483       EVT ArgType = Outs[i].VT;
6484       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6485           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6486         if (++j > NumVRs) {
6487           SDValue PtrOff;
6488           // We are emitting Altivec params in order.
6489           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6490                            isPPC64, isTailCall, true, MemOpChains,
6491                            TailCallArguments, dl);
6492           ArgOffset += 16;
6493         }
6494       }
6495     }
6496   }
6497 
6498   if (!MemOpChains.empty())
6499     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6500 
6501   // On Darwin, R12 must contain the address of an indirect callee.  This does
6502   // not mean the MTCTR instruction must use R12; it's easier to model this as
6503   // an extra parameter, so do that.
6504   if (!isTailCall &&
6505       !isFunctionGlobalAddress(Callee) &&
6506       !isa<ExternalSymbolSDNode>(Callee) &&
6507       !isBLACompatibleAddress(Callee, DAG))
6508     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6509                                                    PPC::R12), Callee));
6510 
6511   // Build a sequence of copy-to-reg nodes chained together with token chain
6512   // and flag operands which copy the outgoing args into the appropriate regs.
6513   SDValue InFlag;
6514   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6515     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6516                              RegsToPass[i].second, InFlag);
6517     InFlag = Chain.getValue(1);
6518   }
6519 
6520   if (isTailCall)
6521     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6522                     TailCallArguments);
6523 
6524   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6525                     /* unused except on PPC64 ELFv1 */ false, DAG,
6526                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6527                     NumBytes, Ins, InVals, CS);
6528 }
6529 
6530 bool
6531 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6532                                   MachineFunction &MF, bool isVarArg,
6533                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6534                                   LLVMContext &Context) const {
6535   SmallVector<CCValAssign, 16> RVLocs;
6536   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6537   return CCInfo.CheckReturn(
6538       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6539                 ? RetCC_PPC_Cold
6540                 : RetCC_PPC);
6541 }
6542 
6543 SDValue
6544 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6545                                bool isVarArg,
6546                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6547                                const SmallVectorImpl<SDValue> &OutVals,
6548                                const SDLoc &dl, SelectionDAG &DAG) const {
6549   SmallVector<CCValAssign, 16> RVLocs;
6550   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6551                  *DAG.getContext());
6552   CCInfo.AnalyzeReturn(Outs,
6553                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6554                            ? RetCC_PPC_Cold
6555                            : RetCC_PPC);
6556 
6557   SDValue Flag;
6558   SmallVector<SDValue, 4> RetOps(1, Chain);
6559 
6560   // Copy the result values into the output registers.
6561   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6562     CCValAssign &VA = RVLocs[i];
6563     assert(VA.isRegLoc() && "Can only return in registers!");
6564 
6565     SDValue Arg = OutVals[i];
6566 
6567     switch (VA.getLocInfo()) {
6568     default: llvm_unreachable("Unknown loc info!");
6569     case CCValAssign::Full: break;
6570     case CCValAssign::AExt:
6571       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6572       break;
6573     case CCValAssign::ZExt:
6574       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6575       break;
6576     case CCValAssign::SExt:
6577       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6578       break;
6579     }
6580 
6581     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6582     Flag = Chain.getValue(1);
6583     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6584   }
6585 
6586   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6587   const MCPhysReg *I =
6588     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6589   if (I) {
6590     for (; *I; ++I) {
6591 
6592       if (PPC::G8RCRegClass.contains(*I))
6593         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6594       else if (PPC::F8RCRegClass.contains(*I))
6595         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6596       else if (PPC::CRRCRegClass.contains(*I))
6597         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6598       else if (PPC::VRRCRegClass.contains(*I))
6599         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6600       else
6601         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6602     }
6603   }
6604 
6605   RetOps[0] = Chain;  // Update chain.
6606 
6607   // Add the flag if we have it.
6608   if (Flag.getNode())
6609     RetOps.push_back(Flag);
6610 
6611   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6612 }
6613 
6614 SDValue
6615 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6616                                                 SelectionDAG &DAG) const {
6617   SDLoc dl(Op);
6618 
6619   // Get the correct type for integers.
6620   EVT IntVT = Op.getValueType();
6621 
6622   // Get the inputs.
6623   SDValue Chain = Op.getOperand(0);
6624   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6625   // Build a DYNAREAOFFSET node.
6626   SDValue Ops[2] = {Chain, FPSIdx};
6627   SDVTList VTs = DAG.getVTList(IntVT);
6628   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6629 }
6630 
6631 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6632                                              SelectionDAG &DAG) const {
6633   // When we pop the dynamic allocation we need to restore the SP link.
6634   SDLoc dl(Op);
6635 
6636   // Get the correct type for pointers.
6637   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6638 
6639   // Construct the stack pointer operand.
6640   bool isPPC64 = Subtarget.isPPC64();
6641   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6642   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6643 
6644   // Get the operands for the STACKRESTORE.
6645   SDValue Chain = Op.getOperand(0);
6646   SDValue SaveSP = Op.getOperand(1);
6647 
6648   // Load the old link SP.
6649   SDValue LoadLinkSP =
6650       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6651 
6652   // Restore the stack pointer.
6653   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6654 
6655   // Store the old link SP.
6656   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6657 }
6658 
6659 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6660   MachineFunction &MF = DAG.getMachineFunction();
6661   bool isPPC64 = Subtarget.isPPC64();
6662   EVT PtrVT = getPointerTy(MF.getDataLayout());
6663 
6664   // Get current frame pointer save index.  The users of this index will be
6665   // primarily DYNALLOC instructions.
6666   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6667   int RASI = FI->getReturnAddrSaveIndex();
6668 
6669   // If the frame pointer save index hasn't been defined yet.
6670   if (!RASI) {
6671     // Find out what the fix offset of the frame pointer save area.
6672     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6673     // Allocate the frame index for frame pointer save area.
6674     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6675     // Save the result.
6676     FI->setReturnAddrSaveIndex(RASI);
6677   }
6678   return DAG.getFrameIndex(RASI, PtrVT);
6679 }
6680 
6681 SDValue
6682 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6683   MachineFunction &MF = DAG.getMachineFunction();
6684   bool isPPC64 = Subtarget.isPPC64();
6685   EVT PtrVT = getPointerTy(MF.getDataLayout());
6686 
6687   // Get current frame pointer save index.  The users of this index will be
6688   // primarily DYNALLOC instructions.
6689   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6690   int FPSI = FI->getFramePointerSaveIndex();
6691 
6692   // If the frame pointer save index hasn't been defined yet.
6693   if (!FPSI) {
6694     // Find out what the fix offset of the frame pointer save area.
6695     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6696     // Allocate the frame index for frame pointer save area.
6697     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6698     // Save the result.
6699     FI->setFramePointerSaveIndex(FPSI);
6700   }
6701   return DAG.getFrameIndex(FPSI, PtrVT);
6702 }
6703 
6704 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6705                                                    SelectionDAG &DAG) const {
6706   // Get the inputs.
6707   SDValue Chain = Op.getOperand(0);
6708   SDValue Size  = Op.getOperand(1);
6709   SDLoc dl(Op);
6710 
6711   // Get the correct type for pointers.
6712   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6713   // Negate the size.
6714   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6715                                 DAG.getConstant(0, dl, PtrVT), Size);
6716   // Construct a node for the frame pointer save index.
6717   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6718   // Build a DYNALLOC node.
6719   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6720   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6721   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6722 }
6723 
6724 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6725                                                      SelectionDAG &DAG) const {
6726   MachineFunction &MF = DAG.getMachineFunction();
6727 
6728   bool isPPC64 = Subtarget.isPPC64();
6729   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6730 
6731   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6732   return DAG.getFrameIndex(FI, PtrVT);
6733 }
6734 
6735 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6736                                                SelectionDAG &DAG) const {
6737   SDLoc DL(Op);
6738   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6739                      DAG.getVTList(MVT::i32, MVT::Other),
6740                      Op.getOperand(0), Op.getOperand(1));
6741 }
6742 
6743 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6744                                                 SelectionDAG &DAG) const {
6745   SDLoc DL(Op);
6746   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6747                      Op.getOperand(0), Op.getOperand(1));
6748 }
6749 
6750 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6751   if (Op.getValueType().isVector())
6752     return LowerVectorLoad(Op, DAG);
6753 
6754   assert(Op.getValueType() == MVT::i1 &&
6755          "Custom lowering only for i1 loads");
6756 
6757   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6758 
6759   SDLoc dl(Op);
6760   LoadSDNode *LD = cast<LoadSDNode>(Op);
6761 
6762   SDValue Chain = LD->getChain();
6763   SDValue BasePtr = LD->getBasePtr();
6764   MachineMemOperand *MMO = LD->getMemOperand();
6765 
6766   SDValue NewLD =
6767       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6768                      BasePtr, MVT::i8, MMO);
6769   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6770 
6771   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6772   return DAG.getMergeValues(Ops, dl);
6773 }
6774 
6775 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6776   if (Op.getOperand(1).getValueType().isVector())
6777     return LowerVectorStore(Op, DAG);
6778 
6779   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6780          "Custom lowering only for i1 stores");
6781 
6782   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6783 
6784   SDLoc dl(Op);
6785   StoreSDNode *ST = cast<StoreSDNode>(Op);
6786 
6787   SDValue Chain = ST->getChain();
6788   SDValue BasePtr = ST->getBasePtr();
6789   SDValue Value = ST->getValue();
6790   MachineMemOperand *MMO = ST->getMemOperand();
6791 
6792   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6793                       Value);
6794   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6795 }
6796 
6797 // FIXME: Remove this once the ANDI glue bug is fixed:
6798 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6799   assert(Op.getValueType() == MVT::i1 &&
6800          "Custom lowering only for i1 results");
6801 
6802   SDLoc DL(Op);
6803   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6804                      Op.getOperand(0));
6805 }
6806 
6807 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
6808                                                SelectionDAG &DAG) const {
6809 
6810   // Implements a vector truncate that fits in a vector register as a shuffle.
6811   // We want to legalize vector truncates down to where the source fits in
6812   // a vector register (and target is therefore smaller than vector register
6813   // size).  At that point legalization will try to custom lower the sub-legal
6814   // result and get here - where we can contain the truncate as a single target
6815   // operation.
6816 
6817   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
6818   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
6819   //
6820   // We will implement it for big-endian ordering as this (where x denotes
6821   // undefined):
6822   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
6823   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
6824   //
6825   // The same operation in little-endian ordering will be:
6826   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
6827   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
6828 
6829   assert(Op.getValueType().isVector() && "Vector type expected.");
6830 
6831   SDLoc DL(Op);
6832   SDValue N1 = Op.getOperand(0);
6833   unsigned SrcSize = N1.getValueType().getSizeInBits();
6834   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
6835   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
6836 
6837   EVT TrgVT = Op.getValueType();
6838   unsigned TrgNumElts = TrgVT.getVectorNumElements();
6839   EVT EltVT = TrgVT.getVectorElementType();
6840   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
6841   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
6842 
6843   // First list the elements we want to keep.
6844   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
6845   SmallVector<int, 16> ShuffV;
6846   if (Subtarget.isLittleEndian())
6847     for (unsigned i = 0; i < TrgNumElts; ++i)
6848       ShuffV.push_back(i * SizeMult);
6849   else
6850     for (unsigned i = 1; i <= TrgNumElts; ++i)
6851       ShuffV.push_back(i * SizeMult - 1);
6852 
6853   // Populate the remaining elements with undefs.
6854   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
6855     // ShuffV.push_back(i + WideNumElts);
6856     ShuffV.push_back(WideNumElts + 1);
6857 
6858   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
6859   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
6860 }
6861 
6862 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6863 /// possible.
6864 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6865   // Not FP? Not a fsel.
6866   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6867       !Op.getOperand(2).getValueType().isFloatingPoint())
6868     return Op;
6869 
6870   // We might be able to do better than this under some circumstances, but in
6871   // general, fsel-based lowering of select is a finite-math-only optimization.
6872   // For more information, see section F.3 of the 2.06 ISA specification.
6873   if (!DAG.getTarget().Options.NoInfsFPMath ||
6874       !DAG.getTarget().Options.NoNaNsFPMath)
6875     return Op;
6876   // TODO: Propagate flags from the select rather than global settings.
6877   SDNodeFlags Flags;
6878   Flags.setNoInfs(true);
6879   Flags.setNoNaNs(true);
6880 
6881   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6882 
6883   EVT ResVT = Op.getValueType();
6884   EVT CmpVT = Op.getOperand(0).getValueType();
6885   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6886   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6887   SDLoc dl(Op);
6888 
6889   // If the RHS of the comparison is a 0.0, we don't need to do the
6890   // subtraction at all.
6891   SDValue Sel1;
6892   if (isFloatingPointZero(RHS))
6893     switch (CC) {
6894     default: break;       // SETUO etc aren't handled by fsel.
6895     case ISD::SETNE:
6896       std::swap(TV, FV);
6897       LLVM_FALLTHROUGH;
6898     case ISD::SETEQ:
6899       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6900         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6901       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6902       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6903         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6904       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6905                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6906     case ISD::SETULT:
6907     case ISD::SETLT:
6908       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6909       LLVM_FALLTHROUGH;
6910     case ISD::SETOGE:
6911     case ISD::SETGE:
6912       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6913         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6914       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6915     case ISD::SETUGT:
6916     case ISD::SETGT:
6917       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6918       LLVM_FALLTHROUGH;
6919     case ISD::SETOLE:
6920     case ISD::SETLE:
6921       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6922         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6923       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6924                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6925     }
6926 
6927   SDValue Cmp;
6928   switch (CC) {
6929   default: break;       // SETUO etc aren't handled by fsel.
6930   case ISD::SETNE:
6931     std::swap(TV, FV);
6932     LLVM_FALLTHROUGH;
6933   case ISD::SETEQ:
6934     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6935     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6936       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6937     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6938     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6939       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6940     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6941                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6942   case ISD::SETULT:
6943   case ISD::SETLT:
6944     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6945     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6946       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6947     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6948   case ISD::SETOGE:
6949   case ISD::SETGE:
6950     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6951     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6952       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6953     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6954   case ISD::SETUGT:
6955   case ISD::SETGT:
6956     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6957     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6958       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6959     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6960   case ISD::SETOLE:
6961   case ISD::SETLE:
6962     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6963     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6964       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6965     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6966   }
6967   return Op;
6968 }
6969 
6970 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6971                                                SelectionDAG &DAG,
6972                                                const SDLoc &dl) const {
6973   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6974   SDValue Src = Op.getOperand(0);
6975   if (Src.getValueType() == MVT::f32)
6976     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6977 
6978   SDValue Tmp;
6979   switch (Op.getSimpleValueType().SimpleTy) {
6980   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6981   case MVT::i32:
6982     Tmp = DAG.getNode(
6983         Op.getOpcode() == ISD::FP_TO_SINT
6984             ? PPCISD::FCTIWZ
6985             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6986         dl, MVT::f64, Src);
6987     break;
6988   case MVT::i64:
6989     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6990            "i64 FP_TO_UINT is supported only with FPCVT");
6991     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6992                                                         PPCISD::FCTIDUZ,
6993                       dl, MVT::f64, Src);
6994     break;
6995   }
6996 
6997   // Convert the FP value to an int value through memory.
6998   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6999     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7000   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7001   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7002   MachinePointerInfo MPI =
7003       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7004 
7005   // Emit a store to the stack slot.
7006   SDValue Chain;
7007   if (i32Stack) {
7008     MachineFunction &MF = DAG.getMachineFunction();
7009     MachineMemOperand *MMO =
7010       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7011     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7012     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7013               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7014   } else
7015     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7016 
7017   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7018   // add in a bias on big endian.
7019   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7020     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7021                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7022     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7023   }
7024 
7025   RLI.Chain = Chain;
7026   RLI.Ptr = FIPtr;
7027   RLI.MPI = MPI;
7028 }
7029 
7030 /// Custom lowers floating point to integer conversions to use
7031 /// the direct move instructions available in ISA 2.07 to avoid the
7032 /// need for load/store combinations.
7033 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7034                                                     SelectionDAG &DAG,
7035                                                     const SDLoc &dl) const {
7036   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7037   SDValue Src = Op.getOperand(0);
7038 
7039   if (Src.getValueType() == MVT::f32)
7040     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7041 
7042   SDValue Tmp;
7043   switch (Op.getSimpleValueType().SimpleTy) {
7044   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7045   case MVT::i32:
7046     Tmp = DAG.getNode(
7047         Op.getOpcode() == ISD::FP_TO_SINT
7048             ? PPCISD::FCTIWZ
7049             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7050         dl, MVT::f64, Src);
7051     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7052     break;
7053   case MVT::i64:
7054     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7055            "i64 FP_TO_UINT is supported only with FPCVT");
7056     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7057                                                         PPCISD::FCTIDUZ,
7058                       dl, MVT::f64, Src);
7059     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7060     break;
7061   }
7062   return Tmp;
7063 }
7064 
7065 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7066                                           const SDLoc &dl) const {
7067 
7068   // FP to INT conversions are legal for f128.
7069   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7070     return Op;
7071 
7072   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7073   // PPC (the libcall is not available).
7074   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7075     if (Op.getValueType() == MVT::i32) {
7076       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7077         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7078                                  MVT::f64, Op.getOperand(0),
7079                                  DAG.getIntPtrConstant(0, dl));
7080         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7081                                  MVT::f64, Op.getOperand(0),
7082                                  DAG.getIntPtrConstant(1, dl));
7083 
7084         // Add the two halves of the long double in round-to-zero mode.
7085         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7086 
7087         // Now use a smaller FP_TO_SINT.
7088         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7089       }
7090       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7091         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7092         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7093         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7094         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7095         // FIXME: generated code sucks.
7096         // TODO: Are there fast-math-flags to propagate to this FSUB?
7097         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7098                                    Op.getOperand(0), Tmp);
7099         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7100         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7101                            DAG.getConstant(0x80000000, dl, MVT::i32));
7102         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7103                                     Op.getOperand(0));
7104         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7105                                ISD::SETGE);
7106       }
7107     }
7108 
7109     return SDValue();
7110   }
7111 
7112   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7113     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7114 
7115   ReuseLoadInfo RLI;
7116   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7117 
7118   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7119                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7120 }
7121 
7122 // We're trying to insert a regular store, S, and then a load, L. If the
7123 // incoming value, O, is a load, we might just be able to have our load use the
7124 // address used by O. However, we don't know if anything else will store to
7125 // that address before we can load from it. To prevent this situation, we need
7126 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7127 // the same chain operand as O, we create a token factor from the chain results
7128 // of O and L, and we replace all uses of O's chain result with that token
7129 // factor (see spliceIntoChain below for this last part).
7130 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7131                                             ReuseLoadInfo &RLI,
7132                                             SelectionDAG &DAG,
7133                                             ISD::LoadExtType ET) const {
7134   SDLoc dl(Op);
7135   if (ET == ISD::NON_EXTLOAD &&
7136       (Op.getOpcode() == ISD::FP_TO_UINT ||
7137        Op.getOpcode() == ISD::FP_TO_SINT) &&
7138       isOperationLegalOrCustom(Op.getOpcode(),
7139                                Op.getOperand(0).getValueType())) {
7140 
7141     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7142     return true;
7143   }
7144 
7145   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7146   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7147       LD->isNonTemporal())
7148     return false;
7149   if (LD->getMemoryVT() != MemVT)
7150     return false;
7151 
7152   RLI.Ptr = LD->getBasePtr();
7153   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7154     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7155            "Non-pre-inc AM on PPC?");
7156     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7157                           LD->getOffset());
7158   }
7159 
7160   RLI.Chain = LD->getChain();
7161   RLI.MPI = LD->getPointerInfo();
7162   RLI.IsDereferenceable = LD->isDereferenceable();
7163   RLI.IsInvariant = LD->isInvariant();
7164   RLI.Alignment = LD->getAlignment();
7165   RLI.AAInfo = LD->getAAInfo();
7166   RLI.Ranges = LD->getRanges();
7167 
7168   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7169   return true;
7170 }
7171 
7172 // Given the head of the old chain, ResChain, insert a token factor containing
7173 // it and NewResChain, and make users of ResChain now be users of that token
7174 // factor.
7175 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7176 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7177                                         SDValue NewResChain,
7178                                         SelectionDAG &DAG) const {
7179   if (!ResChain)
7180     return;
7181 
7182   SDLoc dl(NewResChain);
7183 
7184   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7185                            NewResChain, DAG.getUNDEF(MVT::Other));
7186   assert(TF.getNode() != NewResChain.getNode() &&
7187          "A new TF really is required here");
7188 
7189   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7190   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7191 }
7192 
7193 /// Analyze profitability of direct move
7194 /// prefer float load to int load plus direct move
7195 /// when there is no integer use of int load
7196 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7197   SDNode *Origin = Op.getOperand(0).getNode();
7198   if (Origin->getOpcode() != ISD::LOAD)
7199     return true;
7200 
7201   // If there is no LXSIBZX/LXSIHZX, like Power8,
7202   // prefer direct move if the memory size is 1 or 2 bytes.
7203   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7204   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7205     return true;
7206 
7207   for (SDNode::use_iterator UI = Origin->use_begin(),
7208                             UE = Origin->use_end();
7209        UI != UE; ++UI) {
7210 
7211     // Only look at the users of the loaded value.
7212     if (UI.getUse().get().getResNo() != 0)
7213       continue;
7214 
7215     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7216         UI->getOpcode() != ISD::UINT_TO_FP)
7217       return true;
7218   }
7219 
7220   return false;
7221 }
7222 
7223 /// Custom lowers integer to floating point conversions to use
7224 /// the direct move instructions available in ISA 2.07 to avoid the
7225 /// need for load/store combinations.
7226 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7227                                                     SelectionDAG &DAG,
7228                                                     const SDLoc &dl) const {
7229   assert((Op.getValueType() == MVT::f32 ||
7230           Op.getValueType() == MVT::f64) &&
7231          "Invalid floating point type as target of conversion");
7232   assert(Subtarget.hasFPCVT() &&
7233          "Int to FP conversions with direct moves require FPCVT");
7234   SDValue FP;
7235   SDValue Src = Op.getOperand(0);
7236   bool SinglePrec = Op.getValueType() == MVT::f32;
7237   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7238   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7239   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7240                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7241 
7242   if (WordInt) {
7243     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7244                      dl, MVT::f64, Src);
7245     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7246   }
7247   else {
7248     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7249     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7250   }
7251 
7252   return FP;
7253 }
7254 
7255 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7256 
7257   EVT VecVT = Vec.getValueType();
7258   assert(VecVT.isVector() && "Expected a vector type.");
7259   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7260 
7261   EVT EltVT = VecVT.getVectorElementType();
7262   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7263   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7264 
7265   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7266   SmallVector<SDValue, 16> Ops(NumConcat);
7267   Ops[0] = Vec;
7268   SDValue UndefVec = DAG.getUNDEF(VecVT);
7269   for (unsigned i = 1; i < NumConcat; ++i)
7270     Ops[i] = UndefVec;
7271 
7272   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7273 }
7274 
7275 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7276                                                 const SDLoc &dl) const {
7277 
7278   unsigned Opc = Op.getOpcode();
7279   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7280          "Unexpected conversion type");
7281   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7282          "Supports conversions to v2f64/v4f32 only.");
7283 
7284   bool SignedConv = Opc == ISD::SINT_TO_FP;
7285   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7286 
7287   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7288   EVT WideVT = Wide.getValueType();
7289   unsigned WideNumElts = WideVT.getVectorNumElements();
7290   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7291 
7292   SmallVector<int, 16> ShuffV;
7293   for (unsigned i = 0; i < WideNumElts; ++i)
7294     ShuffV.push_back(i + WideNumElts);
7295 
7296   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7297   int SaveElts = FourEltRes ? 4 : 2;
7298   if (Subtarget.isLittleEndian())
7299     for (int i = 0; i < SaveElts; i++)
7300       ShuffV[i * Stride] = i;
7301   else
7302     for (int i = 1; i <= SaveElts; i++)
7303       ShuffV[i * Stride - 1] = i - 1;
7304 
7305   SDValue ShuffleSrc2 =
7306       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7307   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7308   unsigned ExtendOp =
7309       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
7310 
7311   SDValue Extend;
7312   if (!Subtarget.hasP9Altivec() && SignedConv) {
7313     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7314     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7315                          DAG.getValueType(Op.getOperand(0).getValueType()));
7316   } else
7317     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
7318 
7319   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7320 }
7321 
7322 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7323                                           SelectionDAG &DAG) const {
7324   SDLoc dl(Op);
7325 
7326   EVT InVT = Op.getOperand(0).getValueType();
7327   EVT OutVT = Op.getValueType();
7328   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7329       isOperationCustom(Op.getOpcode(), InVT))
7330     return LowerINT_TO_FPVector(Op, DAG, dl);
7331 
7332   // Conversions to f128 are legal.
7333   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7334     return Op;
7335 
7336   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7337     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7338       return SDValue();
7339 
7340     SDValue Value = Op.getOperand(0);
7341     // The values are now known to be -1 (false) or 1 (true). To convert this
7342     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7343     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7344     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7345 
7346     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7347 
7348     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7349 
7350     if (Op.getValueType() != MVT::v4f64)
7351       Value = DAG.getNode(ISD::FP_ROUND, dl,
7352                           Op.getValueType(), Value,
7353                           DAG.getIntPtrConstant(1, dl));
7354     return Value;
7355   }
7356 
7357   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7358   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7359     return SDValue();
7360 
7361   if (Op.getOperand(0).getValueType() == MVT::i1)
7362     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7363                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7364                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7365 
7366   // If we have direct moves, we can do all the conversion, skip the store/load
7367   // however, without FPCVT we can't do most conversions.
7368   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7369       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7370     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7371 
7372   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7373          "UINT_TO_FP is supported only with FPCVT");
7374 
7375   // If we have FCFIDS, then use it when converting to single-precision.
7376   // Otherwise, convert to double-precision and then round.
7377   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7378                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7379                                                             : PPCISD::FCFIDS)
7380                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7381                                                             : PPCISD::FCFID);
7382   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7383                   ? MVT::f32
7384                   : MVT::f64;
7385 
7386   if (Op.getOperand(0).getValueType() == MVT::i64) {
7387     SDValue SINT = Op.getOperand(0);
7388     // When converting to single-precision, we actually need to convert
7389     // to double-precision first and then round to single-precision.
7390     // To avoid double-rounding effects during that operation, we have
7391     // to prepare the input operand.  Bits that might be truncated when
7392     // converting to double-precision are replaced by a bit that won't
7393     // be lost at this stage, but is below the single-precision rounding
7394     // position.
7395     //
7396     // However, if -enable-unsafe-fp-math is in effect, accept double
7397     // rounding to avoid the extra overhead.
7398     if (Op.getValueType() == MVT::f32 &&
7399         !Subtarget.hasFPCVT() &&
7400         !DAG.getTarget().Options.UnsafeFPMath) {
7401 
7402       // Twiddle input to make sure the low 11 bits are zero.  (If this
7403       // is the case, we are guaranteed the value will fit into the 53 bit
7404       // mantissa of an IEEE double-precision value without rounding.)
7405       // If any of those low 11 bits were not zero originally, make sure
7406       // bit 12 (value 2048) is set instead, so that the final rounding
7407       // to single-precision gets the correct result.
7408       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7409                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7410       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7411                           Round, DAG.getConstant(2047, dl, MVT::i64));
7412       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7413       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7414                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7415 
7416       // However, we cannot use that value unconditionally: if the magnitude
7417       // of the input value is small, the bit-twiddling we did above might
7418       // end up visibly changing the output.  Fortunately, in that case, we
7419       // don't need to twiddle bits since the original input will convert
7420       // exactly to double-precision floating-point already.  Therefore,
7421       // construct a conditional to use the original value if the top 11
7422       // bits are all sign-bit copies, and use the rounded value computed
7423       // above otherwise.
7424       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7425                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7426       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7427                          Cond, DAG.getConstant(1, dl, MVT::i64));
7428       Cond = DAG.getSetCC(dl, MVT::i32,
7429                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7430 
7431       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7432     }
7433 
7434     ReuseLoadInfo RLI;
7435     SDValue Bits;
7436 
7437     MachineFunction &MF = DAG.getMachineFunction();
7438     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7439       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7440                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7441       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7442     } else if (Subtarget.hasLFIWAX() &&
7443                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7444       MachineMemOperand *MMO =
7445         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7446                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7447       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7448       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7449                                      DAG.getVTList(MVT::f64, MVT::Other),
7450                                      Ops, MVT::i32, MMO);
7451       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7452     } else if (Subtarget.hasFPCVT() &&
7453                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7454       MachineMemOperand *MMO =
7455         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7456                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7457       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7458       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7459                                      DAG.getVTList(MVT::f64, MVT::Other),
7460                                      Ops, MVT::i32, MMO);
7461       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7462     } else if (((Subtarget.hasLFIWAX() &&
7463                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7464                 (Subtarget.hasFPCVT() &&
7465                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7466                SINT.getOperand(0).getValueType() == MVT::i32) {
7467       MachineFrameInfo &MFI = MF.getFrameInfo();
7468       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7469 
7470       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7471       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7472 
7473       SDValue Store =
7474           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7475                        MachinePointerInfo::getFixedStack(
7476                            DAG.getMachineFunction(), FrameIdx));
7477 
7478       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7479              "Expected an i32 store");
7480 
7481       RLI.Ptr = FIdx;
7482       RLI.Chain = Store;
7483       RLI.MPI =
7484           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7485       RLI.Alignment = 4;
7486 
7487       MachineMemOperand *MMO =
7488         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7489                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7490       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7491       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7492                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7493                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7494                                      Ops, MVT::i32, MMO);
7495     } else
7496       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7497 
7498     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7499 
7500     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7501       FP = DAG.getNode(ISD::FP_ROUND, dl,
7502                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7503     return FP;
7504   }
7505 
7506   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7507          "Unhandled INT_TO_FP type in custom expander!");
7508   // Since we only generate this in 64-bit mode, we can take advantage of
7509   // 64-bit registers.  In particular, sign extend the input value into the
7510   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7511   // then lfd it and fcfid it.
7512   MachineFunction &MF = DAG.getMachineFunction();
7513   MachineFrameInfo &MFI = MF.getFrameInfo();
7514   EVT PtrVT = getPointerTy(MF.getDataLayout());
7515 
7516   SDValue Ld;
7517   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7518     ReuseLoadInfo RLI;
7519     bool ReusingLoad;
7520     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7521                                             DAG))) {
7522       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7523       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7524 
7525       SDValue Store =
7526           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7527                        MachinePointerInfo::getFixedStack(
7528                            DAG.getMachineFunction(), FrameIdx));
7529 
7530       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7531              "Expected an i32 store");
7532 
7533       RLI.Ptr = FIdx;
7534       RLI.Chain = Store;
7535       RLI.MPI =
7536           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7537       RLI.Alignment = 4;
7538     }
7539 
7540     MachineMemOperand *MMO =
7541       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7542                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7543     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7544     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7545                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7546                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7547                                  Ops, MVT::i32, MMO);
7548     if (ReusingLoad)
7549       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7550   } else {
7551     assert(Subtarget.isPPC64() &&
7552            "i32->FP without LFIWAX supported only on PPC64");
7553 
7554     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7555     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7556 
7557     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7558                                 Op.getOperand(0));
7559 
7560     // STD the extended value into the stack slot.
7561     SDValue Store = DAG.getStore(
7562         DAG.getEntryNode(), dl, Ext64, FIdx,
7563         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7564 
7565     // Load the value as a double.
7566     Ld = DAG.getLoad(
7567         MVT::f64, dl, Store, FIdx,
7568         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7569   }
7570 
7571   // FCFID it and return it.
7572   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7573   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7574     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7575                      DAG.getIntPtrConstant(0, dl));
7576   return FP;
7577 }
7578 
7579 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7580                                             SelectionDAG &DAG) const {
7581   SDLoc dl(Op);
7582   /*
7583    The rounding mode is in bits 30:31 of FPSR, and has the following
7584    settings:
7585      00 Round to nearest
7586      01 Round to 0
7587      10 Round to +inf
7588      11 Round to -inf
7589 
7590   FLT_ROUNDS, on the other hand, expects the following:
7591     -1 Undefined
7592      0 Round to 0
7593      1 Round to nearest
7594      2 Round to +inf
7595      3 Round to -inf
7596 
7597   To perform the conversion, we do:
7598     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7599   */
7600 
7601   MachineFunction &MF = DAG.getMachineFunction();
7602   EVT VT = Op.getValueType();
7603   EVT PtrVT = getPointerTy(MF.getDataLayout());
7604 
7605   // Save FP Control Word to register
7606   EVT NodeTys[] = {
7607     MVT::f64,    // return register
7608     MVT::Glue    // unused in this context
7609   };
7610   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7611 
7612   // Save FP register to stack slot
7613   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7614   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7615   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7616                                MachinePointerInfo());
7617 
7618   // Load FP Control Word from low 32 bits of stack slot.
7619   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7620   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7621   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7622 
7623   // Transform as necessary
7624   SDValue CWD1 =
7625     DAG.getNode(ISD::AND, dl, MVT::i32,
7626                 CWD, DAG.getConstant(3, dl, MVT::i32));
7627   SDValue CWD2 =
7628     DAG.getNode(ISD::SRL, dl, MVT::i32,
7629                 DAG.getNode(ISD::AND, dl, MVT::i32,
7630                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7631                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7632                             DAG.getConstant(3, dl, MVT::i32)),
7633                 DAG.getConstant(1, dl, MVT::i32));
7634 
7635   SDValue RetVal =
7636     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7637 
7638   return DAG.getNode((VT.getSizeInBits() < 16 ?
7639                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7640 }
7641 
7642 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7643   EVT VT = Op.getValueType();
7644   unsigned BitWidth = VT.getSizeInBits();
7645   SDLoc dl(Op);
7646   assert(Op.getNumOperands() == 3 &&
7647          VT == Op.getOperand(1).getValueType() &&
7648          "Unexpected SHL!");
7649 
7650   // Expand into a bunch of logical ops.  Note that these ops
7651   // depend on the PPC behavior for oversized shift amounts.
7652   SDValue Lo = Op.getOperand(0);
7653   SDValue Hi = Op.getOperand(1);
7654   SDValue Amt = Op.getOperand(2);
7655   EVT AmtVT = Amt.getValueType();
7656 
7657   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7658                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7659   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7660   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7661   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7662   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7663                              DAG.getConstant(-BitWidth, dl, AmtVT));
7664   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7665   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7666   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7667   SDValue OutOps[] = { OutLo, OutHi };
7668   return DAG.getMergeValues(OutOps, dl);
7669 }
7670 
7671 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7672   EVT VT = Op.getValueType();
7673   SDLoc dl(Op);
7674   unsigned BitWidth = VT.getSizeInBits();
7675   assert(Op.getNumOperands() == 3 &&
7676          VT == Op.getOperand(1).getValueType() &&
7677          "Unexpected SRL!");
7678 
7679   // Expand into a bunch of logical ops.  Note that these ops
7680   // depend on the PPC behavior for oversized shift amounts.
7681   SDValue Lo = Op.getOperand(0);
7682   SDValue Hi = Op.getOperand(1);
7683   SDValue Amt = Op.getOperand(2);
7684   EVT AmtVT = Amt.getValueType();
7685 
7686   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7687                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7688   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7689   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7690   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7691   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7692                              DAG.getConstant(-BitWidth, dl, AmtVT));
7693   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7694   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7695   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7696   SDValue OutOps[] = { OutLo, OutHi };
7697   return DAG.getMergeValues(OutOps, dl);
7698 }
7699 
7700 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7701   SDLoc dl(Op);
7702   EVT VT = Op.getValueType();
7703   unsigned BitWidth = VT.getSizeInBits();
7704   assert(Op.getNumOperands() == 3 &&
7705          VT == Op.getOperand(1).getValueType() &&
7706          "Unexpected SRA!");
7707 
7708   // Expand into a bunch of logical ops, followed by a select_cc.
7709   SDValue Lo = Op.getOperand(0);
7710   SDValue Hi = Op.getOperand(1);
7711   SDValue Amt = Op.getOperand(2);
7712   EVT AmtVT = Amt.getValueType();
7713 
7714   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7715                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7716   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7717   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7718   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7719   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7720                              DAG.getConstant(-BitWidth, dl, AmtVT));
7721   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7722   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7723   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7724                                   Tmp4, Tmp6, ISD::SETLE);
7725   SDValue OutOps[] = { OutLo, OutHi };
7726   return DAG.getMergeValues(OutOps, dl);
7727 }
7728 
7729 //===----------------------------------------------------------------------===//
7730 // Vector related lowering.
7731 //
7732 
7733 /// BuildSplatI - Build a canonical splati of Val with an element size of
7734 /// SplatSize.  Cast the result to VT.
7735 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7736                            SelectionDAG &DAG, const SDLoc &dl) {
7737   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7738 
7739   static const MVT VTys[] = { // canonical VT to use for each size.
7740     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7741   };
7742 
7743   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7744 
7745   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7746   if (Val == -1)
7747     SplatSize = 1;
7748 
7749   EVT CanonicalVT = VTys[SplatSize-1];
7750 
7751   // Build a canonical splat for this value.
7752   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7753 }
7754 
7755 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7756 /// specified intrinsic ID.
7757 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7758                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7759   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7760   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7761                      DAG.getConstant(IID, dl, MVT::i32), Op);
7762 }
7763 
7764 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7765 /// specified intrinsic ID.
7766 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7767                                 SelectionDAG &DAG, const SDLoc &dl,
7768                                 EVT DestVT = MVT::Other) {
7769   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7770   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7771                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7772 }
7773 
7774 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7775 /// specified intrinsic ID.
7776 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7777                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7778                                 EVT DestVT = MVT::Other) {
7779   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7780   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7781                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7782 }
7783 
7784 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7785 /// amount.  The result has the specified value type.
7786 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7787                            SelectionDAG &DAG, const SDLoc &dl) {
7788   // Force LHS/RHS to be the right type.
7789   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7790   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7791 
7792   int Ops[16];
7793   for (unsigned i = 0; i != 16; ++i)
7794     Ops[i] = i + Amt;
7795   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7796   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7797 }
7798 
7799 /// Do we have an efficient pattern in a .td file for this node?
7800 ///
7801 /// \param V - pointer to the BuildVectorSDNode being matched
7802 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7803 ///
7804 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7805 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7806 /// the opposite is true (expansion is beneficial) are:
7807 /// - The node builds a vector out of integers that are not 32 or 64-bits
7808 /// - The node builds a vector out of constants
7809 /// - The node is a "load-and-splat"
7810 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7811 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7812                                             bool HasDirectMove,
7813                                             bool HasP8Vector) {
7814   EVT VecVT = V->getValueType(0);
7815   bool RightType = VecVT == MVT::v2f64 ||
7816     (HasP8Vector && VecVT == MVT::v4f32) ||
7817     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7818   if (!RightType)
7819     return false;
7820 
7821   bool IsSplat = true;
7822   bool IsLoad = false;
7823   SDValue Op0 = V->getOperand(0);
7824 
7825   // This function is called in a block that confirms the node is not a constant
7826   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7827   // different constants.
7828   if (V->isConstant())
7829     return false;
7830   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7831     if (V->getOperand(i).isUndef())
7832       return false;
7833     // We want to expand nodes that represent load-and-splat even if the
7834     // loaded value is a floating point truncation or conversion to int.
7835     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7836         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7837          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7838         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7839          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7840         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7841          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7842       IsLoad = true;
7843     // If the operands are different or the input is not a load and has more
7844     // uses than just this BV node, then it isn't a splat.
7845     if (V->getOperand(i) != Op0 ||
7846         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7847       IsSplat = false;
7848   }
7849   return !(IsSplat && IsLoad);
7850 }
7851 
7852 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
7853 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
7854 
7855   SDLoc dl(Op);
7856   SDValue Op0 = Op->getOperand(0);
7857 
7858   if (!EnableQuadPrecision ||
7859       (Op.getValueType() != MVT::f128 ) ||
7860       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
7861       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
7862       (Op0.getOperand(1).getValueType() != MVT::i64))
7863     return SDValue();
7864 
7865   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
7866                      Op0.getOperand(1));
7867 }
7868 
7869 // If this is a case we can't handle, return null and let the default
7870 // expansion code take care of it.  If we CAN select this case, and if it
7871 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7872 // this case more efficiently than a constant pool load, lower it to the
7873 // sequence of ops that should be used.
7874 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7875                                              SelectionDAG &DAG) const {
7876   SDLoc dl(Op);
7877   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7878   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7879 
7880   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7881     // We first build an i32 vector, load it into a QPX register,
7882     // then convert it to a floating-point vector and compare it
7883     // to a zero vector to get the boolean result.
7884     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7885     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7886     MachinePointerInfo PtrInfo =
7887         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7888     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7889     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7890 
7891     assert(BVN->getNumOperands() == 4 &&
7892       "BUILD_VECTOR for v4i1 does not have 4 operands");
7893 
7894     bool IsConst = true;
7895     for (unsigned i = 0; i < 4; ++i) {
7896       if (BVN->getOperand(i).isUndef()) continue;
7897       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7898         IsConst = false;
7899         break;
7900       }
7901     }
7902 
7903     if (IsConst) {
7904       Constant *One =
7905         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7906       Constant *NegOne =
7907         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7908 
7909       Constant *CV[4];
7910       for (unsigned i = 0; i < 4; ++i) {
7911         if (BVN->getOperand(i).isUndef())
7912           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7913         else if (isNullConstant(BVN->getOperand(i)))
7914           CV[i] = NegOne;
7915         else
7916           CV[i] = One;
7917       }
7918 
7919       Constant *CP = ConstantVector::get(CV);
7920       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7921                                           16 /* alignment */);
7922 
7923       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7924       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7925       return DAG.getMemIntrinsicNode(
7926           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7927           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7928     }
7929 
7930     SmallVector<SDValue, 4> Stores;
7931     for (unsigned i = 0; i < 4; ++i) {
7932       if (BVN->getOperand(i).isUndef()) continue;
7933 
7934       unsigned Offset = 4*i;
7935       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7936       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7937 
7938       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7939       if (StoreSize > 4) {
7940         Stores.push_back(
7941             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7942                               PtrInfo.getWithOffset(Offset), MVT::i32));
7943       } else {
7944         SDValue StoreValue = BVN->getOperand(i);
7945         if (StoreSize < 4)
7946           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7947 
7948         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7949                                       PtrInfo.getWithOffset(Offset)));
7950       }
7951     }
7952 
7953     SDValue StoreChain;
7954     if (!Stores.empty())
7955       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7956     else
7957       StoreChain = DAG.getEntryNode();
7958 
7959     // Now load from v4i32 into the QPX register; this will extend it to
7960     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7961     // is typed as v4f64 because the QPX register integer states are not
7962     // explicitly represented.
7963 
7964     SDValue Ops[] = {StoreChain,
7965                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7966                      FIdx};
7967     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7968 
7969     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7970       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7971     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7972       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7973       LoadedVect);
7974 
7975     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7976 
7977     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7978   }
7979 
7980   // All other QPX vectors are handled by generic code.
7981   if (Subtarget.hasQPX())
7982     return SDValue();
7983 
7984   // Check if this is a splat of a constant value.
7985   APInt APSplatBits, APSplatUndef;
7986   unsigned SplatBitSize;
7987   bool HasAnyUndefs;
7988   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7989                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7990       SplatBitSize > 32) {
7991     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
7992     // lowered to VSX instructions under certain conditions.
7993     // Without VSX, there is no pattern more efficient than expanding the node.
7994     if (Subtarget.hasVSX() &&
7995         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
7996                                         Subtarget.hasP8Vector()))
7997       return Op;
7998     return SDValue();
7999   }
8000 
8001   unsigned SplatBits = APSplatBits.getZExtValue();
8002   unsigned SplatUndef = APSplatUndef.getZExtValue();
8003   unsigned SplatSize = SplatBitSize / 8;
8004 
8005   // First, handle single instruction cases.
8006 
8007   // All zeros?
8008   if (SplatBits == 0) {
8009     // Canonicalize all zero vectors to be v4i32.
8010     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8011       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8012       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8013     }
8014     return Op;
8015   }
8016 
8017   // We have XXSPLTIB for constant splats one byte wide
8018   if (Subtarget.hasP9Vector() && SplatSize == 1) {
8019     // This is a splat of 1-byte elements with some elements potentially undef.
8020     // Rather than trying to match undef in the SDAG patterns, ensure that all
8021     // elements are the same constant.
8022     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
8023       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
8024                                                        dl, MVT::i32));
8025       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
8026       if (Op.getValueType() != MVT::v16i8)
8027         return DAG.getBitcast(Op.getValueType(), NewBV);
8028       return NewBV;
8029     }
8030 
8031     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
8032     // detect that constant splats like v8i16: 0xABAB are really just splats
8033     // of a 1-byte constant. In this case, we need to convert the node to a
8034     // splat of v16i8 and a bitcast.
8035     if (Op.getValueType() != MVT::v16i8)
8036       return DAG.getBitcast(Op.getValueType(),
8037                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
8038 
8039     return Op;
8040   }
8041 
8042   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8043   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8044                     (32-SplatBitSize));
8045   if (SextVal >= -16 && SextVal <= 15)
8046     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8047 
8048   // Two instruction sequences.
8049 
8050   // If this value is in the range [-32,30] and is even, use:
8051   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8052   // If this value is in the range [17,31] and is odd, use:
8053   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8054   // If this value is in the range [-31,-17] and is odd, use:
8055   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8056   // Note the last two are three-instruction sequences.
8057   if (SextVal >= -32 && SextVal <= 31) {
8058     // To avoid having these optimizations undone by constant folding,
8059     // we convert to a pseudo that will be expanded later into one of
8060     // the above forms.
8061     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8062     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8063               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8064     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8065     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8066     if (VT == Op.getValueType())
8067       return RetVal;
8068     else
8069       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8070   }
8071 
8072   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8073   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8074   // for fneg/fabs.
8075   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8076     // Make -1 and vspltisw -1:
8077     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8078 
8079     // Make the VSLW intrinsic, computing 0x8000_0000.
8080     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8081                                    OnesV, DAG, dl);
8082 
8083     // xor by OnesV to invert it.
8084     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8085     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8086   }
8087 
8088   // Check to see if this is a wide variety of vsplti*, binop self cases.
8089   static const signed char SplatCsts[] = {
8090     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8091     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8092   };
8093 
8094   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8095     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8096     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8097     int i = SplatCsts[idx];
8098 
8099     // Figure out what shift amount will be used by altivec if shifted by i in
8100     // this splat size.
8101     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8102 
8103     // vsplti + shl self.
8104     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8105       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8106       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8107         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8108         Intrinsic::ppc_altivec_vslw
8109       };
8110       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8111       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8112     }
8113 
8114     // vsplti + srl self.
8115     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8116       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8117       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8118         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8119         Intrinsic::ppc_altivec_vsrw
8120       };
8121       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8122       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8123     }
8124 
8125     // vsplti + sra self.
8126     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8127       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8128       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8129         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8130         Intrinsic::ppc_altivec_vsraw
8131       };
8132       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8133       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8134     }
8135 
8136     // vsplti + rol self.
8137     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8138                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8139       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8140       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8141         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8142         Intrinsic::ppc_altivec_vrlw
8143       };
8144       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8145       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8146     }
8147 
8148     // t = vsplti c, result = vsldoi t, t, 1
8149     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8150       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8151       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8152       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8153     }
8154     // t = vsplti c, result = vsldoi t, t, 2
8155     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8156       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8157       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8158       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8159     }
8160     // t = vsplti c, result = vsldoi t, t, 3
8161     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8162       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8163       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8164       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8165     }
8166   }
8167 
8168   return SDValue();
8169 }
8170 
8171 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8172 /// the specified operations to build the shuffle.
8173 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8174                                       SDValue RHS, SelectionDAG &DAG,
8175                                       const SDLoc &dl) {
8176   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8177   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8178   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8179 
8180   enum {
8181     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8182     OP_VMRGHW,
8183     OP_VMRGLW,
8184     OP_VSPLTISW0,
8185     OP_VSPLTISW1,
8186     OP_VSPLTISW2,
8187     OP_VSPLTISW3,
8188     OP_VSLDOI4,
8189     OP_VSLDOI8,
8190     OP_VSLDOI12
8191   };
8192 
8193   if (OpNum == OP_COPY) {
8194     if (LHSID == (1*9+2)*9+3) return LHS;
8195     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8196     return RHS;
8197   }
8198 
8199   SDValue OpLHS, OpRHS;
8200   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8201   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8202 
8203   int ShufIdxs[16];
8204   switch (OpNum) {
8205   default: llvm_unreachable("Unknown i32 permute!");
8206   case OP_VMRGHW:
8207     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8208     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8209     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8210     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8211     break;
8212   case OP_VMRGLW:
8213     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8214     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8215     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8216     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8217     break;
8218   case OP_VSPLTISW0:
8219     for (unsigned i = 0; i != 16; ++i)
8220       ShufIdxs[i] = (i&3)+0;
8221     break;
8222   case OP_VSPLTISW1:
8223     for (unsigned i = 0; i != 16; ++i)
8224       ShufIdxs[i] = (i&3)+4;
8225     break;
8226   case OP_VSPLTISW2:
8227     for (unsigned i = 0; i != 16; ++i)
8228       ShufIdxs[i] = (i&3)+8;
8229     break;
8230   case OP_VSPLTISW3:
8231     for (unsigned i = 0; i != 16; ++i)
8232       ShufIdxs[i] = (i&3)+12;
8233     break;
8234   case OP_VSLDOI4:
8235     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8236   case OP_VSLDOI8:
8237     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8238   case OP_VSLDOI12:
8239     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8240   }
8241   EVT VT = OpLHS.getValueType();
8242   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8243   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8244   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8245   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8246 }
8247 
8248 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8249 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8250 /// SDValue.
8251 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8252                                            SelectionDAG &DAG) const {
8253   const unsigned BytesInVector = 16;
8254   bool IsLE = Subtarget.isLittleEndian();
8255   SDLoc dl(N);
8256   SDValue V1 = N->getOperand(0);
8257   SDValue V2 = N->getOperand(1);
8258   unsigned ShiftElts = 0, InsertAtByte = 0;
8259   bool Swap = false;
8260 
8261   // Shifts required to get the byte we want at element 7.
8262   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8263                                    0, 15, 14, 13, 12, 11, 10, 9};
8264   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8265                                 1, 2,  3,  4,  5,  6,  7,  8};
8266 
8267   ArrayRef<int> Mask = N->getMask();
8268   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8269 
8270   // For each mask element, find out if we're just inserting something
8271   // from V2 into V1 or vice versa.
8272   // Possible permutations inserting an element from V2 into V1:
8273   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8274   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8275   //   ...
8276   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8277   // Inserting from V1 into V2 will be similar, except mask range will be
8278   // [16,31].
8279 
8280   bool FoundCandidate = false;
8281   // If both vector operands for the shuffle are the same vector, the mask
8282   // will contain only elements from the first one and the second one will be
8283   // undef.
8284   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8285   // Go through the mask of half-words to find an element that's being moved
8286   // from one vector to the other.
8287   for (unsigned i = 0; i < BytesInVector; ++i) {
8288     unsigned CurrentElement = Mask[i];
8289     // If 2nd operand is undefined, we should only look for element 7 in the
8290     // Mask.
8291     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8292       continue;
8293 
8294     bool OtherElementsInOrder = true;
8295     // Examine the other elements in the Mask to see if they're in original
8296     // order.
8297     for (unsigned j = 0; j < BytesInVector; ++j) {
8298       if (j == i)
8299         continue;
8300       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8301       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8302       // in which we always assume we're always picking from the 1st operand.
8303       int MaskOffset =
8304           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8305       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8306         OtherElementsInOrder = false;
8307         break;
8308       }
8309     }
8310     // If other elements are in original order, we record the number of shifts
8311     // we need to get the element we want into element 7. Also record which byte
8312     // in the vector we should insert into.
8313     if (OtherElementsInOrder) {
8314       // If 2nd operand is undefined, we assume no shifts and no swapping.
8315       if (V2.isUndef()) {
8316         ShiftElts = 0;
8317         Swap = false;
8318       } else {
8319         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8320         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8321                          : BigEndianShifts[CurrentElement & 0xF];
8322         Swap = CurrentElement < BytesInVector;
8323       }
8324       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8325       FoundCandidate = true;
8326       break;
8327     }
8328   }
8329 
8330   if (!FoundCandidate)
8331     return SDValue();
8332 
8333   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8334   // optionally with VECSHL if shift is required.
8335   if (Swap)
8336     std::swap(V1, V2);
8337   if (V2.isUndef())
8338     V2 = V1;
8339   if (ShiftElts) {
8340     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8341                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8342     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8343                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8344   }
8345   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8346                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8347 }
8348 
8349 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8350 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8351 /// SDValue.
8352 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8353                                            SelectionDAG &DAG) const {
8354   const unsigned NumHalfWords = 8;
8355   const unsigned BytesInVector = NumHalfWords * 2;
8356   // Check that the shuffle is on half-words.
8357   if (!isNByteElemShuffleMask(N, 2, 1))
8358     return SDValue();
8359 
8360   bool IsLE = Subtarget.isLittleEndian();
8361   SDLoc dl(N);
8362   SDValue V1 = N->getOperand(0);
8363   SDValue V2 = N->getOperand(1);
8364   unsigned ShiftElts = 0, InsertAtByte = 0;
8365   bool Swap = false;
8366 
8367   // Shifts required to get the half-word we want at element 3.
8368   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8369   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8370 
8371   uint32_t Mask = 0;
8372   uint32_t OriginalOrderLow = 0x1234567;
8373   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8374   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8375   // 32-bit space, only need 4-bit nibbles per element.
8376   for (unsigned i = 0; i < NumHalfWords; ++i) {
8377     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8378     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8379   }
8380 
8381   // For each mask element, find out if we're just inserting something
8382   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8383   // from V2 into V1:
8384   //   X, 1, 2, 3, 4, 5, 6, 7
8385   //   0, X, 2, 3, 4, 5, 6, 7
8386   //   0, 1, X, 3, 4, 5, 6, 7
8387   //   0, 1, 2, X, 4, 5, 6, 7
8388   //   0, 1, 2, 3, X, 5, 6, 7
8389   //   0, 1, 2, 3, 4, X, 6, 7
8390   //   0, 1, 2, 3, 4, 5, X, 7
8391   //   0, 1, 2, 3, 4, 5, 6, X
8392   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8393 
8394   bool FoundCandidate = false;
8395   // Go through the mask of half-words to find an element that's being moved
8396   // from one vector to the other.
8397   for (unsigned i = 0; i < NumHalfWords; ++i) {
8398     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8399     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8400     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8401     uint32_t TargetOrder = 0x0;
8402 
8403     // If both vector operands for the shuffle are the same vector, the mask
8404     // will contain only elements from the first one and the second one will be
8405     // undef.
8406     if (V2.isUndef()) {
8407       ShiftElts = 0;
8408       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8409       TargetOrder = OriginalOrderLow;
8410       Swap = false;
8411       // Skip if not the correct element or mask of other elements don't equal
8412       // to our expected order.
8413       if (MaskOneElt == VINSERTHSrcElem &&
8414           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8415         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8416         FoundCandidate = true;
8417         break;
8418       }
8419     } else { // If both operands are defined.
8420       // Target order is [8,15] if the current mask is between [0,7].
8421       TargetOrder =
8422           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8423       // Skip if mask of other elements don't equal our expected order.
8424       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8425         // We only need the last 3 bits for the number of shifts.
8426         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8427                          : BigEndianShifts[MaskOneElt & 0x7];
8428         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8429         Swap = MaskOneElt < NumHalfWords;
8430         FoundCandidate = true;
8431         break;
8432       }
8433     }
8434   }
8435 
8436   if (!FoundCandidate)
8437     return SDValue();
8438 
8439   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8440   // optionally with VECSHL if shift is required.
8441   if (Swap)
8442     std::swap(V1, V2);
8443   if (V2.isUndef())
8444     V2 = V1;
8445   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8446   if (ShiftElts) {
8447     // Double ShiftElts because we're left shifting on v16i8 type.
8448     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8449                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8450     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8451     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8452                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8453     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8454   }
8455   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8456   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8457                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8458   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8459 }
8460 
8461 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8462 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8463 /// return the code it can be lowered into.  Worst case, it can always be
8464 /// lowered into a vperm.
8465 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8466                                                SelectionDAG &DAG) const {
8467   SDLoc dl(Op);
8468   SDValue V1 = Op.getOperand(0);
8469   SDValue V2 = Op.getOperand(1);
8470   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8471   EVT VT = Op.getValueType();
8472   bool isLittleEndian = Subtarget.isLittleEndian();
8473 
8474   unsigned ShiftElts, InsertAtByte;
8475   bool Swap = false;
8476   if (Subtarget.hasP9Vector() &&
8477       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8478                            isLittleEndian)) {
8479     if (Swap)
8480       std::swap(V1, V2);
8481     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8482     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8483     if (ShiftElts) {
8484       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8485                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8486       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8487                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8488       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8489     }
8490     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8491                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8492     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8493   }
8494 
8495   if (Subtarget.hasP9Altivec()) {
8496     SDValue NewISDNode;
8497     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8498       return NewISDNode;
8499 
8500     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8501       return NewISDNode;
8502   }
8503 
8504   if (Subtarget.hasVSX() &&
8505       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8506     if (Swap)
8507       std::swap(V1, V2);
8508     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8509     SDValue Conv2 =
8510         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8511 
8512     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8513                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8514     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8515   }
8516 
8517   if (Subtarget.hasVSX() &&
8518     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8519     if (Swap)
8520       std::swap(V1, V2);
8521     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8522     SDValue Conv2 =
8523         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8524 
8525     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8526                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8527     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8528   }
8529 
8530   if (Subtarget.hasP9Vector()) {
8531      if (PPC::isXXBRHShuffleMask(SVOp)) {
8532       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8533       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8534       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8535     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8536       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8537       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8538       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8539     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8540       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8541       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8542       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8543     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8544       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8545       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8546       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8547     }
8548   }
8549 
8550   if (Subtarget.hasVSX()) {
8551     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8552       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8553 
8554       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8555       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8556                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8557       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8558     }
8559 
8560     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8561     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8562       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8563       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8564       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8565     }
8566   }
8567 
8568   if (Subtarget.hasQPX()) {
8569     if (VT.getVectorNumElements() != 4)
8570       return SDValue();
8571 
8572     if (V2.isUndef()) V2 = V1;
8573 
8574     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8575     if (AlignIdx != -1) {
8576       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8577                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8578     } else if (SVOp->isSplat()) {
8579       int SplatIdx = SVOp->getSplatIndex();
8580       if (SplatIdx >= 4) {
8581         std::swap(V1, V2);
8582         SplatIdx -= 4;
8583       }
8584 
8585       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8586                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8587     }
8588 
8589     // Lower this into a qvgpci/qvfperm pair.
8590 
8591     // Compute the qvgpci literal
8592     unsigned idx = 0;
8593     for (unsigned i = 0; i < 4; ++i) {
8594       int m = SVOp->getMaskElt(i);
8595       unsigned mm = m >= 0 ? (unsigned) m : i;
8596       idx |= mm << (3-i)*3;
8597     }
8598 
8599     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8600                              DAG.getConstant(idx, dl, MVT::i32));
8601     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8602   }
8603 
8604   // Cases that are handled by instructions that take permute immediates
8605   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8606   // selected by the instruction selector.
8607   if (V2.isUndef()) {
8608     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8609         PPC::isSplatShuffleMask(SVOp, 2) ||
8610         PPC::isSplatShuffleMask(SVOp, 4) ||
8611         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8612         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8613         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8614         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8615         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8616         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8617         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8618         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8619         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8620         (Subtarget.hasP8Altivec() && (
8621          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8622          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8623          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8624       return Op;
8625     }
8626   }
8627 
8628   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8629   // and produce a fixed permutation.  If any of these match, do not lower to
8630   // VPERM.
8631   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8632   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8633       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8634       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8635       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8636       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8637       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8638       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8639       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8640       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8641       (Subtarget.hasP8Altivec() && (
8642        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8643        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8644        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8645     return Op;
8646 
8647   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8648   // perfect shuffle table to emit an optimal matching sequence.
8649   ArrayRef<int> PermMask = SVOp->getMask();
8650 
8651   unsigned PFIndexes[4];
8652   bool isFourElementShuffle = true;
8653   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8654     unsigned EltNo = 8;   // Start out undef.
8655     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8656       if (PermMask[i*4+j] < 0)
8657         continue;   // Undef, ignore it.
8658 
8659       unsigned ByteSource = PermMask[i*4+j];
8660       if ((ByteSource & 3) != j) {
8661         isFourElementShuffle = false;
8662         break;
8663       }
8664 
8665       if (EltNo == 8) {
8666         EltNo = ByteSource/4;
8667       } else if (EltNo != ByteSource/4) {
8668         isFourElementShuffle = false;
8669         break;
8670       }
8671     }
8672     PFIndexes[i] = EltNo;
8673   }
8674 
8675   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8676   // perfect shuffle vector to determine if it is cost effective to do this as
8677   // discrete instructions, or whether we should use a vperm.
8678   // For now, we skip this for little endian until such time as we have a
8679   // little-endian perfect shuffle table.
8680   if (isFourElementShuffle && !isLittleEndian) {
8681     // Compute the index in the perfect shuffle table.
8682     unsigned PFTableIndex =
8683       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8684 
8685     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8686     unsigned Cost  = (PFEntry >> 30);
8687 
8688     // Determining when to avoid vperm is tricky.  Many things affect the cost
8689     // of vperm, particularly how many times the perm mask needs to be computed.
8690     // For example, if the perm mask can be hoisted out of a loop or is already
8691     // used (perhaps because there are multiple permutes with the same shuffle
8692     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8693     // the loop requires an extra register.
8694     //
8695     // As a compromise, we only emit discrete instructions if the shuffle can be
8696     // generated in 3 or fewer operations.  When we have loop information
8697     // available, if this block is within a loop, we should avoid using vperm
8698     // for 3-operation perms and use a constant pool load instead.
8699     if (Cost < 3)
8700       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8701   }
8702 
8703   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8704   // vector that will get spilled to the constant pool.
8705   if (V2.isUndef()) V2 = V1;
8706 
8707   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8708   // that it is in input element units, not in bytes.  Convert now.
8709 
8710   // For little endian, the order of the input vectors is reversed, and
8711   // the permutation mask is complemented with respect to 31.  This is
8712   // necessary to produce proper semantics with the big-endian-biased vperm
8713   // instruction.
8714   EVT EltVT = V1.getValueType().getVectorElementType();
8715   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8716 
8717   SmallVector<SDValue, 16> ResultMask;
8718   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8719     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8720 
8721     for (unsigned j = 0; j != BytesPerElement; ++j)
8722       if (isLittleEndian)
8723         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8724                                              dl, MVT::i32));
8725       else
8726         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8727                                              MVT::i32));
8728   }
8729 
8730   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8731   if (isLittleEndian)
8732     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8733                        V2, V1, VPermMask);
8734   else
8735     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8736                        V1, V2, VPermMask);
8737 }
8738 
8739 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8740 /// vector comparison.  If it is, return true and fill in Opc/isDot with
8741 /// information about the intrinsic.
8742 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8743                                  bool &isDot, const PPCSubtarget &Subtarget) {
8744   unsigned IntrinsicID =
8745       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8746   CompareOpc = -1;
8747   isDot = false;
8748   switch (IntrinsicID) {
8749   default:
8750     return false;
8751   // Comparison predicates.
8752   case Intrinsic::ppc_altivec_vcmpbfp_p:
8753     CompareOpc = 966;
8754     isDot = true;
8755     break;
8756   case Intrinsic::ppc_altivec_vcmpeqfp_p:
8757     CompareOpc = 198;
8758     isDot = true;
8759     break;
8760   case Intrinsic::ppc_altivec_vcmpequb_p:
8761     CompareOpc = 6;
8762     isDot = true;
8763     break;
8764   case Intrinsic::ppc_altivec_vcmpequh_p:
8765     CompareOpc = 70;
8766     isDot = true;
8767     break;
8768   case Intrinsic::ppc_altivec_vcmpequw_p:
8769     CompareOpc = 134;
8770     isDot = true;
8771     break;
8772   case Intrinsic::ppc_altivec_vcmpequd_p:
8773     if (Subtarget.hasP8Altivec()) {
8774       CompareOpc = 199;
8775       isDot = true;
8776     } else
8777       return false;
8778     break;
8779   case Intrinsic::ppc_altivec_vcmpneb_p:
8780   case Intrinsic::ppc_altivec_vcmpneh_p:
8781   case Intrinsic::ppc_altivec_vcmpnew_p:
8782   case Intrinsic::ppc_altivec_vcmpnezb_p:
8783   case Intrinsic::ppc_altivec_vcmpnezh_p:
8784   case Intrinsic::ppc_altivec_vcmpnezw_p:
8785     if (Subtarget.hasP9Altivec()) {
8786       switch (IntrinsicID) {
8787       default:
8788         llvm_unreachable("Unknown comparison intrinsic.");
8789       case Intrinsic::ppc_altivec_vcmpneb_p:
8790         CompareOpc = 7;
8791         break;
8792       case Intrinsic::ppc_altivec_vcmpneh_p:
8793         CompareOpc = 71;
8794         break;
8795       case Intrinsic::ppc_altivec_vcmpnew_p:
8796         CompareOpc = 135;
8797         break;
8798       case Intrinsic::ppc_altivec_vcmpnezb_p:
8799         CompareOpc = 263;
8800         break;
8801       case Intrinsic::ppc_altivec_vcmpnezh_p:
8802         CompareOpc = 327;
8803         break;
8804       case Intrinsic::ppc_altivec_vcmpnezw_p:
8805         CompareOpc = 391;
8806         break;
8807       }
8808       isDot = true;
8809     } else
8810       return false;
8811     break;
8812   case Intrinsic::ppc_altivec_vcmpgefp_p:
8813     CompareOpc = 454;
8814     isDot = true;
8815     break;
8816   case Intrinsic::ppc_altivec_vcmpgtfp_p:
8817     CompareOpc = 710;
8818     isDot = true;
8819     break;
8820   case Intrinsic::ppc_altivec_vcmpgtsb_p:
8821     CompareOpc = 774;
8822     isDot = true;
8823     break;
8824   case Intrinsic::ppc_altivec_vcmpgtsh_p:
8825     CompareOpc = 838;
8826     isDot = true;
8827     break;
8828   case Intrinsic::ppc_altivec_vcmpgtsw_p:
8829     CompareOpc = 902;
8830     isDot = true;
8831     break;
8832   case Intrinsic::ppc_altivec_vcmpgtsd_p:
8833     if (Subtarget.hasP8Altivec()) {
8834       CompareOpc = 967;
8835       isDot = true;
8836     } else
8837       return false;
8838     break;
8839   case Intrinsic::ppc_altivec_vcmpgtub_p:
8840     CompareOpc = 518;
8841     isDot = true;
8842     break;
8843   case Intrinsic::ppc_altivec_vcmpgtuh_p:
8844     CompareOpc = 582;
8845     isDot = true;
8846     break;
8847   case Intrinsic::ppc_altivec_vcmpgtuw_p:
8848     CompareOpc = 646;
8849     isDot = true;
8850     break;
8851   case Intrinsic::ppc_altivec_vcmpgtud_p:
8852     if (Subtarget.hasP8Altivec()) {
8853       CompareOpc = 711;
8854       isDot = true;
8855     } else
8856       return false;
8857     break;
8858 
8859   // VSX predicate comparisons use the same infrastructure
8860   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8861   case Intrinsic::ppc_vsx_xvcmpgedp_p:
8862   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8863   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8864   case Intrinsic::ppc_vsx_xvcmpgesp_p:
8865   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8866     if (Subtarget.hasVSX()) {
8867       switch (IntrinsicID) {
8868       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8869         CompareOpc = 99;
8870         break;
8871       case Intrinsic::ppc_vsx_xvcmpgedp_p:
8872         CompareOpc = 115;
8873         break;
8874       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8875         CompareOpc = 107;
8876         break;
8877       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8878         CompareOpc = 67;
8879         break;
8880       case Intrinsic::ppc_vsx_xvcmpgesp_p:
8881         CompareOpc = 83;
8882         break;
8883       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8884         CompareOpc = 75;
8885         break;
8886       }
8887       isDot = true;
8888     } else
8889       return false;
8890     break;
8891 
8892   // Normal Comparisons.
8893   case Intrinsic::ppc_altivec_vcmpbfp:
8894     CompareOpc = 966;
8895     break;
8896   case Intrinsic::ppc_altivec_vcmpeqfp:
8897     CompareOpc = 198;
8898     break;
8899   case Intrinsic::ppc_altivec_vcmpequb:
8900     CompareOpc = 6;
8901     break;
8902   case Intrinsic::ppc_altivec_vcmpequh:
8903     CompareOpc = 70;
8904     break;
8905   case Intrinsic::ppc_altivec_vcmpequw:
8906     CompareOpc = 134;
8907     break;
8908   case Intrinsic::ppc_altivec_vcmpequd:
8909     if (Subtarget.hasP8Altivec())
8910       CompareOpc = 199;
8911     else
8912       return false;
8913     break;
8914   case Intrinsic::ppc_altivec_vcmpneb:
8915   case Intrinsic::ppc_altivec_vcmpneh:
8916   case Intrinsic::ppc_altivec_vcmpnew:
8917   case Intrinsic::ppc_altivec_vcmpnezb:
8918   case Intrinsic::ppc_altivec_vcmpnezh:
8919   case Intrinsic::ppc_altivec_vcmpnezw:
8920     if (Subtarget.hasP9Altivec())
8921       switch (IntrinsicID) {
8922       default:
8923         llvm_unreachable("Unknown comparison intrinsic.");
8924       case Intrinsic::ppc_altivec_vcmpneb:
8925         CompareOpc = 7;
8926         break;
8927       case Intrinsic::ppc_altivec_vcmpneh:
8928         CompareOpc = 71;
8929         break;
8930       case Intrinsic::ppc_altivec_vcmpnew:
8931         CompareOpc = 135;
8932         break;
8933       case Intrinsic::ppc_altivec_vcmpnezb:
8934         CompareOpc = 263;
8935         break;
8936       case Intrinsic::ppc_altivec_vcmpnezh:
8937         CompareOpc = 327;
8938         break;
8939       case Intrinsic::ppc_altivec_vcmpnezw:
8940         CompareOpc = 391;
8941         break;
8942       }
8943     else
8944       return false;
8945     break;
8946   case Intrinsic::ppc_altivec_vcmpgefp:
8947     CompareOpc = 454;
8948     break;
8949   case Intrinsic::ppc_altivec_vcmpgtfp:
8950     CompareOpc = 710;
8951     break;
8952   case Intrinsic::ppc_altivec_vcmpgtsb:
8953     CompareOpc = 774;
8954     break;
8955   case Intrinsic::ppc_altivec_vcmpgtsh:
8956     CompareOpc = 838;
8957     break;
8958   case Intrinsic::ppc_altivec_vcmpgtsw:
8959     CompareOpc = 902;
8960     break;
8961   case Intrinsic::ppc_altivec_vcmpgtsd:
8962     if (Subtarget.hasP8Altivec())
8963       CompareOpc = 967;
8964     else
8965       return false;
8966     break;
8967   case Intrinsic::ppc_altivec_vcmpgtub:
8968     CompareOpc = 518;
8969     break;
8970   case Intrinsic::ppc_altivec_vcmpgtuh:
8971     CompareOpc = 582;
8972     break;
8973   case Intrinsic::ppc_altivec_vcmpgtuw:
8974     CompareOpc = 646;
8975     break;
8976   case Intrinsic::ppc_altivec_vcmpgtud:
8977     if (Subtarget.hasP8Altivec())
8978       CompareOpc = 711;
8979     else
8980       return false;
8981     break;
8982   }
8983   return true;
8984 }
8985 
8986 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8987 /// lower, do it, otherwise return null.
8988 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8989                                                    SelectionDAG &DAG) const {
8990   unsigned IntrinsicID =
8991     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8992 
8993   SDLoc dl(Op);
8994 
8995   if (IntrinsicID == Intrinsic::thread_pointer) {
8996     // Reads the thread pointer register, used for __builtin_thread_pointer.
8997     if (Subtarget.isPPC64())
8998       return DAG.getRegister(PPC::X13, MVT::i64);
8999     return DAG.getRegister(PPC::R2, MVT::i32);
9000   }
9001 
9002   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9003   // opcode number of the comparison.
9004   int CompareOpc;
9005   bool isDot;
9006   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9007     return SDValue();    // Don't custom lower most intrinsics.
9008 
9009   // If this is a non-dot comparison, make the VCMP node and we are done.
9010   if (!isDot) {
9011     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9012                               Op.getOperand(1), Op.getOperand(2),
9013                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9014     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9015   }
9016 
9017   // Create the PPCISD altivec 'dot' comparison node.
9018   SDValue Ops[] = {
9019     Op.getOperand(2),  // LHS
9020     Op.getOperand(3),  // RHS
9021     DAG.getConstant(CompareOpc, dl, MVT::i32)
9022   };
9023   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9024   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9025 
9026   // Now that we have the comparison, emit a copy from the CR to a GPR.
9027   // This is flagged to the above dot comparison.
9028   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9029                                 DAG.getRegister(PPC::CR6, MVT::i32),
9030                                 CompNode.getValue(1));
9031 
9032   // Unpack the result based on how the target uses it.
9033   unsigned BitNo;   // Bit # of CR6.
9034   bool InvertBit;   // Invert result?
9035   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9036   default:  // Can't happen, don't crash on invalid number though.
9037   case 0:   // Return the value of the EQ bit of CR6.
9038     BitNo = 0; InvertBit = false;
9039     break;
9040   case 1:   // Return the inverted value of the EQ bit of CR6.
9041     BitNo = 0; InvertBit = true;
9042     break;
9043   case 2:   // Return the value of the LT bit of CR6.
9044     BitNo = 2; InvertBit = false;
9045     break;
9046   case 3:   // Return the inverted value of the LT bit of CR6.
9047     BitNo = 2; InvertBit = true;
9048     break;
9049   }
9050 
9051   // Shift the bit into the low position.
9052   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9053                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9054   // Isolate the bit.
9055   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9056                       DAG.getConstant(1, dl, MVT::i32));
9057 
9058   // If we are supposed to, toggle the bit.
9059   if (InvertBit)
9060     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9061                         DAG.getConstant(1, dl, MVT::i32));
9062   return Flags;
9063 }
9064 
9065 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9066                                                SelectionDAG &DAG) const {
9067   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9068   // the beginning of the argument list.
9069   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9070   SDLoc DL(Op);
9071   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9072   case Intrinsic::ppc_cfence: {
9073     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9074     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9075     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9076                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9077                                                   Op.getOperand(ArgStart + 1)),
9078                                       Op.getOperand(0)),
9079                    0);
9080   }
9081   default:
9082     break;
9083   }
9084   return SDValue();
9085 }
9086 
9087 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9088   // Check for a DIV with the same operands as this REM.
9089   for (auto UI : Op.getOperand(1)->uses()) {
9090     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9091         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9092       if (UI->getOperand(0) == Op.getOperand(0) &&
9093           UI->getOperand(1) == Op.getOperand(1))
9094         return SDValue();
9095   }
9096   return Op;
9097 }
9098 
9099 // Lower scalar BSWAP64 to xxbrd.
9100 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9101   SDLoc dl(Op);
9102   // MTVSRDD
9103   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9104                    Op.getOperand(0));
9105   // XXBRD
9106   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9107   // MFVSRD
9108   int VectorIndex = 0;
9109   if (Subtarget.isLittleEndian())
9110     VectorIndex = 1;
9111   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9112                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9113   return Op;
9114 }
9115 
9116 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9117 // compared to a value that is atomically loaded (atomic loads zero-extend).
9118 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9119                                                 SelectionDAG &DAG) const {
9120   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9121          "Expecting an atomic compare-and-swap here.");
9122   SDLoc dl(Op);
9123   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9124   EVT MemVT = AtomicNode->getMemoryVT();
9125   if (MemVT.getSizeInBits() >= 32)
9126     return Op;
9127 
9128   SDValue CmpOp = Op.getOperand(2);
9129   // If this is already correctly zero-extended, leave it alone.
9130   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9131   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9132     return Op;
9133 
9134   // Clear the high bits of the compare operand.
9135   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9136   SDValue NewCmpOp =
9137     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9138                 DAG.getConstant(MaskVal, dl, MVT::i32));
9139 
9140   // Replace the existing compare operand with the properly zero-extended one.
9141   SmallVector<SDValue, 4> Ops;
9142   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9143     Ops.push_back(AtomicNode->getOperand(i));
9144   Ops[2] = NewCmpOp;
9145   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9146   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9147   auto NodeTy =
9148     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9149   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9150 }
9151 
9152 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9153                                                  SelectionDAG &DAG) const {
9154   SDLoc dl(Op);
9155   // Create a stack slot that is 16-byte aligned.
9156   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9157   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9158   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9159   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9160 
9161   // Store the input value into Value#0 of the stack slot.
9162   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9163                                MachinePointerInfo());
9164   // Load it out.
9165   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9166 }
9167 
9168 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9169                                                   SelectionDAG &DAG) const {
9170   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9171          "Should only be called for ISD::INSERT_VECTOR_ELT");
9172 
9173   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9174   // We have legal lowering for constant indices but not for variable ones.
9175   if (!C)
9176     return SDValue();
9177 
9178   EVT VT = Op.getValueType();
9179   SDLoc dl(Op);
9180   SDValue V1 = Op.getOperand(0);
9181   SDValue V2 = Op.getOperand(1);
9182   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9183   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9184     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9185     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9186     unsigned InsertAtElement = C->getZExtValue();
9187     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9188     if (Subtarget.isLittleEndian()) {
9189       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9190     }
9191     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9192                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9193   }
9194   return Op;
9195 }
9196 
9197 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9198                                                    SelectionDAG &DAG) const {
9199   SDLoc dl(Op);
9200   SDNode *N = Op.getNode();
9201 
9202   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9203          "Unknown extract_vector_elt type");
9204 
9205   SDValue Value = N->getOperand(0);
9206 
9207   // The first part of this is like the store lowering except that we don't
9208   // need to track the chain.
9209 
9210   // The values are now known to be -1 (false) or 1 (true). To convert this
9211   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9212   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9213   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9214 
9215   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9216   // understand how to form the extending load.
9217   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9218 
9219   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9220 
9221   // Now convert to an integer and store.
9222   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9223     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9224     Value);
9225 
9226   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9227   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9228   MachinePointerInfo PtrInfo =
9229       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9230   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9231   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9232 
9233   SDValue StoreChain = DAG.getEntryNode();
9234   SDValue Ops[] = {StoreChain,
9235                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9236                    Value, FIdx};
9237   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9238 
9239   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9240     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9241 
9242   // Extract the value requested.
9243   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9244   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9245   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9246 
9247   SDValue IntVal =
9248       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9249 
9250   if (!Subtarget.useCRBits())
9251     return IntVal;
9252 
9253   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9254 }
9255 
9256 /// Lowering for QPX v4i1 loads
9257 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9258                                            SelectionDAG &DAG) const {
9259   SDLoc dl(Op);
9260   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9261   SDValue LoadChain = LN->getChain();
9262   SDValue BasePtr = LN->getBasePtr();
9263 
9264   if (Op.getValueType() == MVT::v4f64 ||
9265       Op.getValueType() == MVT::v4f32) {
9266     EVT MemVT = LN->getMemoryVT();
9267     unsigned Alignment = LN->getAlignment();
9268 
9269     // If this load is properly aligned, then it is legal.
9270     if (Alignment >= MemVT.getStoreSize())
9271       return Op;
9272 
9273     EVT ScalarVT = Op.getValueType().getScalarType(),
9274         ScalarMemVT = MemVT.getScalarType();
9275     unsigned Stride = ScalarMemVT.getStoreSize();
9276 
9277     SDValue Vals[4], LoadChains[4];
9278     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9279       SDValue Load;
9280       if (ScalarVT != ScalarMemVT)
9281         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9282                               BasePtr,
9283                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9284                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9285                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9286       else
9287         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9288                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9289                            MinAlign(Alignment, Idx * Stride),
9290                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9291 
9292       if (Idx == 0 && LN->isIndexed()) {
9293         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9294                "Unknown addressing mode on vector load");
9295         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9296                                   LN->getAddressingMode());
9297       }
9298 
9299       Vals[Idx] = Load;
9300       LoadChains[Idx] = Load.getValue(1);
9301 
9302       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9303                             DAG.getConstant(Stride, dl,
9304                                             BasePtr.getValueType()));
9305     }
9306 
9307     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9308     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9309 
9310     if (LN->isIndexed()) {
9311       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9312       return DAG.getMergeValues(RetOps, dl);
9313     }
9314 
9315     SDValue RetOps[] = { Value, TF };
9316     return DAG.getMergeValues(RetOps, dl);
9317   }
9318 
9319   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9320   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9321 
9322   // To lower v4i1 from a byte array, we load the byte elements of the
9323   // vector and then reuse the BUILD_VECTOR logic.
9324 
9325   SDValue VectElmts[4], VectElmtChains[4];
9326   for (unsigned i = 0; i < 4; ++i) {
9327     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9328     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9329 
9330     VectElmts[i] = DAG.getExtLoad(
9331         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9332         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9333         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9334     VectElmtChains[i] = VectElmts[i].getValue(1);
9335   }
9336 
9337   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9338   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9339 
9340   SDValue RVals[] = { Value, LoadChain };
9341   return DAG.getMergeValues(RVals, dl);
9342 }
9343 
9344 /// Lowering for QPX v4i1 stores
9345 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9346                                             SelectionDAG &DAG) const {
9347   SDLoc dl(Op);
9348   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9349   SDValue StoreChain = SN->getChain();
9350   SDValue BasePtr = SN->getBasePtr();
9351   SDValue Value = SN->getValue();
9352 
9353   if (Value.getValueType() == MVT::v4f64 ||
9354       Value.getValueType() == MVT::v4f32) {
9355     EVT MemVT = SN->getMemoryVT();
9356     unsigned Alignment = SN->getAlignment();
9357 
9358     // If this store is properly aligned, then it is legal.
9359     if (Alignment >= MemVT.getStoreSize())
9360       return Op;
9361 
9362     EVT ScalarVT = Value.getValueType().getScalarType(),
9363         ScalarMemVT = MemVT.getScalarType();
9364     unsigned Stride = ScalarMemVT.getStoreSize();
9365 
9366     SDValue Stores[4];
9367     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9368       SDValue Ex = DAG.getNode(
9369           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9370           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9371       SDValue Store;
9372       if (ScalarVT != ScalarMemVT)
9373         Store =
9374             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9375                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9376                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9377                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9378       else
9379         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9380                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9381                              MinAlign(Alignment, Idx * Stride),
9382                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9383 
9384       if (Idx == 0 && SN->isIndexed()) {
9385         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9386                "Unknown addressing mode on vector store");
9387         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9388                                     SN->getAddressingMode());
9389       }
9390 
9391       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9392                             DAG.getConstant(Stride, dl,
9393                                             BasePtr.getValueType()));
9394       Stores[Idx] = Store;
9395     }
9396 
9397     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9398 
9399     if (SN->isIndexed()) {
9400       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9401       return DAG.getMergeValues(RetOps, dl);
9402     }
9403 
9404     return TF;
9405   }
9406 
9407   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9408   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9409 
9410   // The values are now known to be -1 (false) or 1 (true). To convert this
9411   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9412   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9413   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9414 
9415   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9416   // understand how to form the extending load.
9417   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9418 
9419   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9420 
9421   // Now convert to an integer and store.
9422   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9423     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9424     Value);
9425 
9426   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9427   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9428   MachinePointerInfo PtrInfo =
9429       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9430   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9431   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9432 
9433   SDValue Ops[] = {StoreChain,
9434                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9435                    Value, FIdx};
9436   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9437 
9438   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9439     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9440 
9441   // Move data into the byte array.
9442   SDValue Loads[4], LoadChains[4];
9443   for (unsigned i = 0; i < 4; ++i) {
9444     unsigned Offset = 4*i;
9445     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9446     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9447 
9448     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9449                            PtrInfo.getWithOffset(Offset));
9450     LoadChains[i] = Loads[i].getValue(1);
9451   }
9452 
9453   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9454 
9455   SDValue Stores[4];
9456   for (unsigned i = 0; i < 4; ++i) {
9457     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9458     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9459 
9460     Stores[i] = DAG.getTruncStore(
9461         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9462         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9463         SN->getAAInfo());
9464   }
9465 
9466   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9467 
9468   return StoreChain;
9469 }
9470 
9471 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9472   SDLoc dl(Op);
9473   if (Op.getValueType() == MVT::v4i32) {
9474     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9475 
9476     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9477     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9478 
9479     SDValue RHSSwap =   // = vrlw RHS, 16
9480       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9481 
9482     // Shrinkify inputs to v8i16.
9483     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9484     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9485     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9486 
9487     // Low parts multiplied together, generating 32-bit results (we ignore the
9488     // top parts).
9489     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9490                                         LHS, RHS, DAG, dl, MVT::v4i32);
9491 
9492     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9493                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9494     // Shift the high parts up 16 bits.
9495     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9496                               Neg16, DAG, dl);
9497     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9498   } else if (Op.getValueType() == MVT::v8i16) {
9499     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9500 
9501     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9502 
9503     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9504                             LHS, RHS, Zero, DAG, dl);
9505   } else if (Op.getValueType() == MVT::v16i8) {
9506     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9507     bool isLittleEndian = Subtarget.isLittleEndian();
9508 
9509     // Multiply the even 8-bit parts, producing 16-bit sums.
9510     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9511                                            LHS, RHS, DAG, dl, MVT::v8i16);
9512     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9513 
9514     // Multiply the odd 8-bit parts, producing 16-bit sums.
9515     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9516                                           LHS, RHS, DAG, dl, MVT::v8i16);
9517     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9518 
9519     // Merge the results together.  Because vmuleub and vmuloub are
9520     // instructions with a big-endian bias, we must reverse the
9521     // element numbering and reverse the meaning of "odd" and "even"
9522     // when generating little endian code.
9523     int Ops[16];
9524     for (unsigned i = 0; i != 8; ++i) {
9525       if (isLittleEndian) {
9526         Ops[i*2  ] = 2*i;
9527         Ops[i*2+1] = 2*i+16;
9528       } else {
9529         Ops[i*2  ] = 2*i+1;
9530         Ops[i*2+1] = 2*i+1+16;
9531       }
9532     }
9533     if (isLittleEndian)
9534       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9535     else
9536       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9537   } else {
9538     llvm_unreachable("Unknown mul to lower!");
9539   }
9540 }
9541 
9542 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
9543 
9544   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
9545 
9546   EVT VT = Op.getValueType();
9547   assert(VT.isVector() &&
9548          "Only set vector abs as custom, scalar abs shouldn't reach here!");
9549   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
9550           VT == MVT::v16i8) &&
9551          "Unexpected vector element type!");
9552   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
9553          "Current subtarget doesn't support smax v2i64!");
9554 
9555   // For vector abs, it can be lowered to:
9556   // abs x
9557   // ==>
9558   // y = -x
9559   // smax(x, y)
9560 
9561   SDLoc dl(Op);
9562   SDValue X = Op.getOperand(0);
9563   SDValue Zero = DAG.getConstant(0, dl, VT);
9564   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
9565 
9566   // SMAX patch https://reviews.llvm.org/D47332
9567   // hasn't landed yet, so use intrinsic first here.
9568   // TODO: Should use SMAX directly once SMAX patch landed
9569   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
9570   if (VT == MVT::v2i64)
9571     BifID = Intrinsic::ppc_altivec_vmaxsd;
9572   else if (VT == MVT::v8i16)
9573     BifID = Intrinsic::ppc_altivec_vmaxsh;
9574   else if (VT == MVT::v16i8)
9575     BifID = Intrinsic::ppc_altivec_vmaxsb;
9576 
9577   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
9578 }
9579 
9580 /// LowerOperation - Provide custom lowering hooks for some operations.
9581 ///
9582 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9583   switch (Op.getOpcode()) {
9584   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9585   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9586   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9587   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9588   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9589   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9590   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9591   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9592   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9593 
9594   // Variable argument lowering.
9595   case ISD::VASTART:            return LowerVASTART(Op, DAG);
9596   case ISD::VAARG:              return LowerVAARG(Op, DAG);
9597   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9598 
9599   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
9600   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9601   case ISD::GET_DYNAMIC_AREA_OFFSET:
9602     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9603 
9604   // Exception handling lowering.
9605   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
9606   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9607   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9608 
9609   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9610   case ISD::STORE:              return LowerSTORE(Op, DAG);
9611   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9612   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9613   case ISD::FP_TO_UINT:
9614   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
9615   case ISD::UINT_TO_FP:
9616   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9617   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9618 
9619   // Lower 64-bit shifts.
9620   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9621   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9622   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9623 
9624   // Vector-related lowering.
9625   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9626   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9627   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9628   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9629   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9630   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9631   case ISD::MUL:                return LowerMUL(Op, DAG);
9632   case ISD::ABS:                return LowerABS(Op, DAG);
9633 
9634   // For counter-based loop handling.
9635   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9636 
9637   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9638 
9639   // Frame & Return address.
9640   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9641   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9642 
9643   case ISD::INTRINSIC_VOID:
9644     return LowerINTRINSIC_VOID(Op, DAG);
9645   case ISD::SREM:
9646   case ISD::UREM:
9647     return LowerREM(Op, DAG);
9648   case ISD::BSWAP:
9649     return LowerBSWAP(Op, DAG);
9650   case ISD::ATOMIC_CMP_SWAP:
9651     return LowerATOMIC_CMP_SWAP(Op, DAG);
9652   }
9653 }
9654 
9655 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9656                                            SmallVectorImpl<SDValue>&Results,
9657                                            SelectionDAG &DAG) const {
9658   SDLoc dl(N);
9659   switch (N->getOpcode()) {
9660   default:
9661     llvm_unreachable("Do not know how to custom type legalize this operation!");
9662   case ISD::READCYCLECOUNTER: {
9663     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9664     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9665 
9666     Results.push_back(RTB);
9667     Results.push_back(RTB.getValue(1));
9668     Results.push_back(RTB.getValue(2));
9669     break;
9670   }
9671   case ISD::INTRINSIC_W_CHAIN: {
9672     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9673         Intrinsic::ppc_is_decremented_ctr_nonzero)
9674       break;
9675 
9676     assert(N->getValueType(0) == MVT::i1 &&
9677            "Unexpected result type for CTR decrement intrinsic");
9678     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9679                                  N->getValueType(0));
9680     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9681     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9682                                  N->getOperand(1));
9683 
9684     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
9685     Results.push_back(NewInt.getValue(1));
9686     break;
9687   }
9688   case ISD::VAARG: {
9689     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9690       return;
9691 
9692     EVT VT = N->getValueType(0);
9693 
9694     if (VT == MVT::i64) {
9695       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9696 
9697       Results.push_back(NewNode);
9698       Results.push_back(NewNode.getValue(1));
9699     }
9700     return;
9701   }
9702   case ISD::FP_TO_SINT:
9703   case ISD::FP_TO_UINT:
9704     // LowerFP_TO_INT() can only handle f32 and f64.
9705     if (N->getOperand(0).getValueType() == MVT::ppcf128)
9706       return;
9707     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9708     return;
9709   case ISD::TRUNCATE: {
9710     EVT TrgVT = N->getValueType(0);
9711     if (TrgVT.isVector() &&
9712         isOperationCustom(N->getOpcode(), TrgVT) &&
9713         N->getOperand(0).getValueType().getSizeInBits() <= 128)
9714       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
9715     return;
9716   }
9717   case ISD::BITCAST:
9718     // Don't handle bitcast here.
9719     return;
9720   }
9721 }
9722 
9723 //===----------------------------------------------------------------------===//
9724 //  Other Lowering Code
9725 //===----------------------------------------------------------------------===//
9726 
9727 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9728   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9729   Function *Func = Intrinsic::getDeclaration(M, Id);
9730   return Builder.CreateCall(Func, {});
9731 }
9732 
9733 // The mappings for emitLeading/TrailingFence is taken from
9734 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
9735 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9736                                                  Instruction *Inst,
9737                                                  AtomicOrdering Ord) const {
9738   if (Ord == AtomicOrdering::SequentiallyConsistent)
9739     return callIntrinsic(Builder, Intrinsic::ppc_sync);
9740   if (isReleaseOrStronger(Ord))
9741     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9742   return nullptr;
9743 }
9744 
9745 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9746                                                   Instruction *Inst,
9747                                                   AtomicOrdering Ord) const {
9748   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9749     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9750     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9751     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9752     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9753       return Builder.CreateCall(
9754           Intrinsic::getDeclaration(
9755               Builder.GetInsertBlock()->getParent()->getParent(),
9756               Intrinsic::ppc_cfence, {Inst->getType()}),
9757           {Inst});
9758     // FIXME: Can use isync for rmw operation.
9759     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9760   }
9761   return nullptr;
9762 }
9763 
9764 MachineBasicBlock *
9765 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9766                                     unsigned AtomicSize,
9767                                     unsigned BinOpcode,
9768                                     unsigned CmpOpcode,
9769                                     unsigned CmpPred) const {
9770   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9771   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9772 
9773   auto LoadMnemonic = PPC::LDARX;
9774   auto StoreMnemonic = PPC::STDCX;
9775   switch (AtomicSize) {
9776   default:
9777     llvm_unreachable("Unexpected size of atomic entity");
9778   case 1:
9779     LoadMnemonic = PPC::LBARX;
9780     StoreMnemonic = PPC::STBCX;
9781     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9782     break;
9783   case 2:
9784     LoadMnemonic = PPC::LHARX;
9785     StoreMnemonic = PPC::STHCX;
9786     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9787     break;
9788   case 4:
9789     LoadMnemonic = PPC::LWARX;
9790     StoreMnemonic = PPC::STWCX;
9791     break;
9792   case 8:
9793     LoadMnemonic = PPC::LDARX;
9794     StoreMnemonic = PPC::STDCX;
9795     break;
9796   }
9797 
9798   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9799   MachineFunction *F = BB->getParent();
9800   MachineFunction::iterator It = ++BB->getIterator();
9801 
9802   unsigned dest = MI.getOperand(0).getReg();
9803   unsigned ptrA = MI.getOperand(1).getReg();
9804   unsigned ptrB = MI.getOperand(2).getReg();
9805   unsigned incr = MI.getOperand(3).getReg();
9806   DebugLoc dl = MI.getDebugLoc();
9807 
9808   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9809   MachineBasicBlock *loop2MBB =
9810     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9811   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9812   F->insert(It, loopMBB);
9813   if (CmpOpcode)
9814     F->insert(It, loop2MBB);
9815   F->insert(It, exitMBB);
9816   exitMBB->splice(exitMBB->begin(), BB,
9817                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9818   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9819 
9820   MachineRegisterInfo &RegInfo = F->getRegInfo();
9821   unsigned TmpReg = (!BinOpcode) ? incr :
9822     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9823                                            : &PPC::GPRCRegClass);
9824 
9825   //  thisMBB:
9826   //   ...
9827   //   fallthrough --> loopMBB
9828   BB->addSuccessor(loopMBB);
9829 
9830   //  loopMBB:
9831   //   l[wd]arx dest, ptr
9832   //   add r0, dest, incr
9833   //   st[wd]cx. r0, ptr
9834   //   bne- loopMBB
9835   //   fallthrough --> exitMBB
9836 
9837   // For max/min...
9838   //  loopMBB:
9839   //   l[wd]arx dest, ptr
9840   //   cmpl?[wd] incr, dest
9841   //   bgt exitMBB
9842   //  loop2MBB:
9843   //   st[wd]cx. dest, ptr
9844   //   bne- loopMBB
9845   //   fallthrough --> exitMBB
9846 
9847   BB = loopMBB;
9848   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9849     .addReg(ptrA).addReg(ptrB);
9850   if (BinOpcode)
9851     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9852   if (CmpOpcode) {
9853     // Signed comparisons of byte or halfword values must be sign-extended.
9854     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9855       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9856       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9857               ExtReg).addReg(dest);
9858       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9859         .addReg(incr).addReg(ExtReg);
9860     } else
9861       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9862         .addReg(incr).addReg(dest);
9863 
9864     BuildMI(BB, dl, TII->get(PPC::BCC))
9865       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9866     BB->addSuccessor(loop2MBB);
9867     BB->addSuccessor(exitMBB);
9868     BB = loop2MBB;
9869   }
9870   BuildMI(BB, dl, TII->get(StoreMnemonic))
9871     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9872   BuildMI(BB, dl, TII->get(PPC::BCC))
9873     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9874   BB->addSuccessor(loopMBB);
9875   BB->addSuccessor(exitMBB);
9876 
9877   //  exitMBB:
9878   //   ...
9879   BB = exitMBB;
9880   return BB;
9881 }
9882 
9883 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
9884     MachineInstr &MI, MachineBasicBlock *BB,
9885     bool is8bit, // operation
9886     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
9887   // If we support part-word atomic mnemonics, just use them
9888   if (Subtarget.hasPartwordAtomics())
9889     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
9890                             CmpPred);
9891 
9892   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9893   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9894   // In 64 bit mode we have to use 64 bits for addresses, even though the
9895   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
9896   // registers without caring whether they're 32 or 64, but here we're
9897   // doing actual arithmetic on the addresses.
9898   bool is64bit = Subtarget.isPPC64();
9899   bool isLittleEndian = Subtarget.isLittleEndian();
9900   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9901 
9902   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9903   MachineFunction *F = BB->getParent();
9904   MachineFunction::iterator It = ++BB->getIterator();
9905 
9906   unsigned dest = MI.getOperand(0).getReg();
9907   unsigned ptrA = MI.getOperand(1).getReg();
9908   unsigned ptrB = MI.getOperand(2).getReg();
9909   unsigned incr = MI.getOperand(3).getReg();
9910   DebugLoc dl = MI.getDebugLoc();
9911 
9912   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9913   MachineBasicBlock *loop2MBB =
9914       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9915   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9916   F->insert(It, loopMBB);
9917   if (CmpOpcode)
9918     F->insert(It, loop2MBB);
9919   F->insert(It, exitMBB);
9920   exitMBB->splice(exitMBB->begin(), BB,
9921                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9922   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9923 
9924   MachineRegisterInfo &RegInfo = F->getRegInfo();
9925   const TargetRegisterClass *RC =
9926       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9927   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
9928 
9929   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9930   unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
9931   unsigned ShiftReg =
9932       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
9933   unsigned Incr2Reg = RegInfo.createVirtualRegister(GPRC);
9934   unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
9935   unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
9936   unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
9937   unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
9938   unsigned Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
9939   unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
9940   unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
9941   unsigned Ptr1Reg;
9942   unsigned TmpReg =
9943       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
9944 
9945   //  thisMBB:
9946   //   ...
9947   //   fallthrough --> loopMBB
9948   BB->addSuccessor(loopMBB);
9949 
9950   // The 4-byte load must be aligned, while a char or short may be
9951   // anywhere in the word.  Hence all this nasty bookkeeping code.
9952   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9953   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9954   //   xori shift, shift1, 24 [16]
9955   //   rlwinm ptr, ptr1, 0, 0, 29
9956   //   slw incr2, incr, shift
9957   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9958   //   slw mask, mask2, shift
9959   //  loopMBB:
9960   //   lwarx tmpDest, ptr
9961   //   add tmp, tmpDest, incr2
9962   //   andc tmp2, tmpDest, mask
9963   //   and tmp3, tmp, mask
9964   //   or tmp4, tmp3, tmp2
9965   //   stwcx. tmp4, ptr
9966   //   bne- loopMBB
9967   //   fallthrough --> exitMBB
9968   //   srw dest, tmpDest, shift
9969   if (ptrA != ZeroReg) {
9970     Ptr1Reg = RegInfo.createVirtualRegister(RC);
9971     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9972         .addReg(ptrA)
9973         .addReg(ptrB);
9974   } else {
9975     Ptr1Reg = ptrB;
9976   }
9977   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
9978   // mode.
9979   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
9980       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
9981       .addImm(3)
9982       .addImm(27)
9983       .addImm(is8bit ? 28 : 27);
9984   if (!isLittleEndian)
9985     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
9986         .addReg(Shift1Reg)
9987         .addImm(is8bit ? 24 : 16);
9988   if (is64bit)
9989     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9990         .addReg(Ptr1Reg)
9991         .addImm(0)
9992         .addImm(61);
9993   else
9994     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9995         .addReg(Ptr1Reg)
9996         .addImm(0)
9997         .addImm(0)
9998         .addImm(29);
9999   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10000   if (is8bit)
10001     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10002   else {
10003     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10004     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10005         .addReg(Mask3Reg)
10006         .addImm(65535);
10007   }
10008   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10009       .addReg(Mask2Reg)
10010       .addReg(ShiftReg);
10011 
10012   BB = loopMBB;
10013   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10014       .addReg(ZeroReg)
10015       .addReg(PtrReg);
10016   if (BinOpcode)
10017     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10018         .addReg(Incr2Reg)
10019         .addReg(TmpDestReg);
10020   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10021       .addReg(TmpDestReg)
10022       .addReg(MaskReg);
10023   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10024   if (CmpOpcode) {
10025     // For unsigned comparisons, we can directly compare the shifted values.
10026     // For signed comparisons we shift and sign extend.
10027     unsigned SReg = RegInfo.createVirtualRegister(GPRC);
10028     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10029         .addReg(TmpDestReg)
10030         .addReg(MaskReg);
10031     unsigned ValueReg = SReg;
10032     unsigned CmpReg = Incr2Reg;
10033     if (CmpOpcode == PPC::CMPW) {
10034       ValueReg = RegInfo.createVirtualRegister(GPRC);
10035       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10036           .addReg(SReg)
10037           .addReg(ShiftReg);
10038       unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC);
10039       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10040           .addReg(ValueReg);
10041       ValueReg = ValueSReg;
10042       CmpReg = incr;
10043     }
10044     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10045         .addReg(CmpReg)
10046         .addReg(ValueReg);
10047     BuildMI(BB, dl, TII->get(PPC::BCC))
10048         .addImm(CmpPred)
10049         .addReg(PPC::CR0)
10050         .addMBB(exitMBB);
10051     BB->addSuccessor(loop2MBB);
10052     BB->addSuccessor(exitMBB);
10053     BB = loop2MBB;
10054   }
10055   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10056   BuildMI(BB, dl, TII->get(PPC::STWCX))
10057       .addReg(Tmp4Reg)
10058       .addReg(ZeroReg)
10059       .addReg(PtrReg);
10060   BuildMI(BB, dl, TII->get(PPC::BCC))
10061       .addImm(PPC::PRED_NE)
10062       .addReg(PPC::CR0)
10063       .addMBB(loopMBB);
10064   BB->addSuccessor(loopMBB);
10065   BB->addSuccessor(exitMBB);
10066 
10067   //  exitMBB:
10068   //   ...
10069   BB = exitMBB;
10070   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10071       .addReg(TmpDestReg)
10072       .addReg(ShiftReg);
10073   return BB;
10074 }
10075 
10076 llvm::MachineBasicBlock *
10077 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10078                                     MachineBasicBlock *MBB) const {
10079   DebugLoc DL = MI.getDebugLoc();
10080   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10081   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10082 
10083   MachineFunction *MF = MBB->getParent();
10084   MachineRegisterInfo &MRI = MF->getRegInfo();
10085 
10086   const BasicBlock *BB = MBB->getBasicBlock();
10087   MachineFunction::iterator I = ++MBB->getIterator();
10088 
10089   unsigned DstReg = MI.getOperand(0).getReg();
10090   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10091   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10092   unsigned mainDstReg = MRI.createVirtualRegister(RC);
10093   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
10094 
10095   MVT PVT = getPointerTy(MF->getDataLayout());
10096   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10097          "Invalid Pointer Size!");
10098   // For v = setjmp(buf), we generate
10099   //
10100   // thisMBB:
10101   //  SjLjSetup mainMBB
10102   //  bl mainMBB
10103   //  v_restore = 1
10104   //  b sinkMBB
10105   //
10106   // mainMBB:
10107   //  buf[LabelOffset] = LR
10108   //  v_main = 0
10109   //
10110   // sinkMBB:
10111   //  v = phi(main, restore)
10112   //
10113 
10114   MachineBasicBlock *thisMBB = MBB;
10115   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10116   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10117   MF->insert(I, mainMBB);
10118   MF->insert(I, sinkMBB);
10119 
10120   MachineInstrBuilder MIB;
10121 
10122   // Transfer the remainder of BB and its successor edges to sinkMBB.
10123   sinkMBB->splice(sinkMBB->begin(), MBB,
10124                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10125   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10126 
10127   // Note that the structure of the jmp_buf used here is not compatible
10128   // with that used by libc, and is not designed to be. Specifically, it
10129   // stores only those 'reserved' registers that LLVM does not otherwise
10130   // understand how to spill. Also, by convention, by the time this
10131   // intrinsic is called, Clang has already stored the frame address in the
10132   // first slot of the buffer and stack address in the third. Following the
10133   // X86 target code, we'll store the jump address in the second slot. We also
10134   // need to save the TOC pointer (R2) to handle jumps between shared
10135   // libraries, and that will be stored in the fourth slot. The thread
10136   // identifier (R13) is not affected.
10137 
10138   // thisMBB:
10139   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10140   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10141   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10142 
10143   // Prepare IP either in reg.
10144   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10145   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
10146   unsigned BufReg = MI.getOperand(1).getReg();
10147 
10148   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
10149     setUsesTOCBasePtr(*MBB->getParent());
10150     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10151               .addReg(PPC::X2)
10152               .addImm(TOCOffset)
10153               .addReg(BufReg)
10154               .cloneMemRefs(MI);
10155   }
10156 
10157   // Naked functions never have a base pointer, and so we use r1. For all
10158   // other functions, this decision must be delayed until during PEI.
10159   unsigned BaseReg;
10160   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10161     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10162   else
10163     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10164 
10165   MIB = BuildMI(*thisMBB, MI, DL,
10166                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10167             .addReg(BaseReg)
10168             .addImm(BPOffset)
10169             .addReg(BufReg)
10170             .cloneMemRefs(MI);
10171 
10172   // Setup
10173   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10174   MIB.addRegMask(TRI->getNoPreservedMask());
10175 
10176   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10177 
10178   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10179           .addMBB(mainMBB);
10180   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10181 
10182   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10183   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10184 
10185   // mainMBB:
10186   //  mainDstReg = 0
10187   MIB =
10188       BuildMI(mainMBB, DL,
10189               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10190 
10191   // Store IP
10192   if (Subtarget.isPPC64()) {
10193     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10194             .addReg(LabelReg)
10195             .addImm(LabelOffset)
10196             .addReg(BufReg);
10197   } else {
10198     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10199             .addReg(LabelReg)
10200             .addImm(LabelOffset)
10201             .addReg(BufReg);
10202   }
10203   MIB.cloneMemRefs(MI);
10204 
10205   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10206   mainMBB->addSuccessor(sinkMBB);
10207 
10208   // sinkMBB:
10209   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10210           TII->get(PPC::PHI), DstReg)
10211     .addReg(mainDstReg).addMBB(mainMBB)
10212     .addReg(restoreDstReg).addMBB(thisMBB);
10213 
10214   MI.eraseFromParent();
10215   return sinkMBB;
10216 }
10217 
10218 MachineBasicBlock *
10219 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10220                                      MachineBasicBlock *MBB) const {
10221   DebugLoc DL = MI.getDebugLoc();
10222   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10223 
10224   MachineFunction *MF = MBB->getParent();
10225   MachineRegisterInfo &MRI = MF->getRegInfo();
10226 
10227   MVT PVT = getPointerTy(MF->getDataLayout());
10228   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10229          "Invalid Pointer Size!");
10230 
10231   const TargetRegisterClass *RC =
10232     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10233   unsigned Tmp = MRI.createVirtualRegister(RC);
10234   // Since FP is only updated here but NOT referenced, it's treated as GPR.
10235   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10236   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10237   unsigned BP =
10238       (PVT == MVT::i64)
10239           ? PPC::X30
10240           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10241                                                               : PPC::R30);
10242 
10243   MachineInstrBuilder MIB;
10244 
10245   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10246   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10247   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10248   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10249 
10250   unsigned BufReg = MI.getOperand(0).getReg();
10251 
10252   // Reload FP (the jumped-to function may not have had a
10253   // frame pointer, and if so, then its r31 will be restored
10254   // as necessary).
10255   if (PVT == MVT::i64) {
10256     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10257             .addImm(0)
10258             .addReg(BufReg);
10259   } else {
10260     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10261             .addImm(0)
10262             .addReg(BufReg);
10263   }
10264   MIB.cloneMemRefs(MI);
10265 
10266   // Reload IP
10267   if (PVT == MVT::i64) {
10268     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10269             .addImm(LabelOffset)
10270             .addReg(BufReg);
10271   } else {
10272     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10273             .addImm(LabelOffset)
10274             .addReg(BufReg);
10275   }
10276   MIB.cloneMemRefs(MI);
10277 
10278   // Reload SP
10279   if (PVT == MVT::i64) {
10280     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10281             .addImm(SPOffset)
10282             .addReg(BufReg);
10283   } else {
10284     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10285             .addImm(SPOffset)
10286             .addReg(BufReg);
10287   }
10288   MIB.cloneMemRefs(MI);
10289 
10290   // Reload BP
10291   if (PVT == MVT::i64) {
10292     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10293             .addImm(BPOffset)
10294             .addReg(BufReg);
10295   } else {
10296     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10297             .addImm(BPOffset)
10298             .addReg(BufReg);
10299   }
10300   MIB.cloneMemRefs(MI);
10301 
10302   // Reload TOC
10303   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10304     setUsesTOCBasePtr(*MBB->getParent());
10305     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10306               .addImm(TOCOffset)
10307               .addReg(BufReg)
10308               .cloneMemRefs(MI);
10309   }
10310 
10311   // Jump
10312   BuildMI(*MBB, MI, DL,
10313           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10314   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10315 
10316   MI.eraseFromParent();
10317   return MBB;
10318 }
10319 
10320 MachineBasicBlock *
10321 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10322                                                MachineBasicBlock *BB) const {
10323   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10324       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10325     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10326         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10327       // Call lowering should have added an r2 operand to indicate a dependence
10328       // on the TOC base pointer value. It can't however, because there is no
10329       // way to mark the dependence as implicit there, and so the stackmap code
10330       // will confuse it with a regular operand. Instead, add the dependence
10331       // here.
10332       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10333     }
10334 
10335     return emitPatchPoint(MI, BB);
10336   }
10337 
10338   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10339       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10340     return emitEHSjLjSetJmp(MI, BB);
10341   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10342              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10343     return emitEHSjLjLongJmp(MI, BB);
10344   }
10345 
10346   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10347 
10348   // To "insert" these instructions we actually have to insert their
10349   // control-flow patterns.
10350   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10351   MachineFunction::iterator It = ++BB->getIterator();
10352 
10353   MachineFunction *F = BB->getParent();
10354 
10355   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10356       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
10357       MI.getOpcode() == PPC::SELECT_I8) {
10358     SmallVector<MachineOperand, 2> Cond;
10359     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10360         MI.getOpcode() == PPC::SELECT_CC_I8)
10361       Cond.push_back(MI.getOperand(4));
10362     else
10363       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10364     Cond.push_back(MI.getOperand(1));
10365 
10366     DebugLoc dl = MI.getDebugLoc();
10367     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10368                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10369   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10370              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10371              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10372              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10373              MI.getOpcode() == PPC::SELECT_CC_F16 ||
10374              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10375              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10376              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10377              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10378              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10379              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10380              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10381              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
10382              MI.getOpcode() == PPC::SELECT_CC_SPE ||
10383              MI.getOpcode() == PPC::SELECT_I4 ||
10384              MI.getOpcode() == PPC::SELECT_I8 ||
10385              MI.getOpcode() == PPC::SELECT_F4 ||
10386              MI.getOpcode() == PPC::SELECT_F8 ||
10387              MI.getOpcode() == PPC::SELECT_F16 ||
10388              MI.getOpcode() == PPC::SELECT_QFRC ||
10389              MI.getOpcode() == PPC::SELECT_QSRC ||
10390              MI.getOpcode() == PPC::SELECT_QBRC ||
10391              MI.getOpcode() == PPC::SELECT_SPE ||
10392              MI.getOpcode() == PPC::SELECT_SPE4 ||
10393              MI.getOpcode() == PPC::SELECT_VRRC ||
10394              MI.getOpcode() == PPC::SELECT_VSFRC ||
10395              MI.getOpcode() == PPC::SELECT_VSSRC ||
10396              MI.getOpcode() == PPC::SELECT_VSRC) {
10397     // The incoming instruction knows the destination vreg to set, the
10398     // condition code register to branch on, the true/false values to
10399     // select between, and a branch opcode to use.
10400 
10401     //  thisMBB:
10402     //  ...
10403     //   TrueVal = ...
10404     //   cmpTY ccX, r1, r2
10405     //   bCC copy1MBB
10406     //   fallthrough --> copy0MBB
10407     MachineBasicBlock *thisMBB = BB;
10408     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10409     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10410     DebugLoc dl = MI.getDebugLoc();
10411     F->insert(It, copy0MBB);
10412     F->insert(It, sinkMBB);
10413 
10414     // Transfer the remainder of BB and its successor edges to sinkMBB.
10415     sinkMBB->splice(sinkMBB->begin(), BB,
10416                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10417     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10418 
10419     // Next, add the true and fallthrough blocks as its successors.
10420     BB->addSuccessor(copy0MBB);
10421     BB->addSuccessor(sinkMBB);
10422 
10423     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10424         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10425         MI.getOpcode() == PPC::SELECT_F16 ||
10426         MI.getOpcode() == PPC::SELECT_SPE4 ||
10427         MI.getOpcode() == PPC::SELECT_SPE ||
10428         MI.getOpcode() == PPC::SELECT_QFRC ||
10429         MI.getOpcode() == PPC::SELECT_QSRC ||
10430         MI.getOpcode() == PPC::SELECT_QBRC ||
10431         MI.getOpcode() == PPC::SELECT_VRRC ||
10432         MI.getOpcode() == PPC::SELECT_VSFRC ||
10433         MI.getOpcode() == PPC::SELECT_VSSRC ||
10434         MI.getOpcode() == PPC::SELECT_VSRC) {
10435       BuildMI(BB, dl, TII->get(PPC::BC))
10436           .addReg(MI.getOperand(1).getReg())
10437           .addMBB(sinkMBB);
10438     } else {
10439       unsigned SelectPred = MI.getOperand(4).getImm();
10440       BuildMI(BB, dl, TII->get(PPC::BCC))
10441           .addImm(SelectPred)
10442           .addReg(MI.getOperand(1).getReg())
10443           .addMBB(sinkMBB);
10444     }
10445 
10446     //  copy0MBB:
10447     //   %FalseValue = ...
10448     //   # fallthrough to sinkMBB
10449     BB = copy0MBB;
10450 
10451     // Update machine-CFG edges
10452     BB->addSuccessor(sinkMBB);
10453 
10454     //  sinkMBB:
10455     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10456     //  ...
10457     BB = sinkMBB;
10458     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10459         .addReg(MI.getOperand(3).getReg())
10460         .addMBB(copy0MBB)
10461         .addReg(MI.getOperand(2).getReg())
10462         .addMBB(thisMBB);
10463   } else if (MI.getOpcode() == PPC::ReadTB) {
10464     // To read the 64-bit time-base register on a 32-bit target, we read the
10465     // two halves. Should the counter have wrapped while it was being read, we
10466     // need to try again.
10467     // ...
10468     // readLoop:
10469     // mfspr Rx,TBU # load from TBU
10470     // mfspr Ry,TB  # load from TB
10471     // mfspr Rz,TBU # load from TBU
10472     // cmpw crX,Rx,Rz # check if 'old'='new'
10473     // bne readLoop   # branch if they're not equal
10474     // ...
10475 
10476     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10477     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10478     DebugLoc dl = MI.getDebugLoc();
10479     F->insert(It, readMBB);
10480     F->insert(It, sinkMBB);
10481 
10482     // Transfer the remainder of BB and its successor edges to sinkMBB.
10483     sinkMBB->splice(sinkMBB->begin(), BB,
10484                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10485     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10486 
10487     BB->addSuccessor(readMBB);
10488     BB = readMBB;
10489 
10490     MachineRegisterInfo &RegInfo = F->getRegInfo();
10491     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10492     unsigned LoReg = MI.getOperand(0).getReg();
10493     unsigned HiReg = MI.getOperand(1).getReg();
10494 
10495     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10496     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10497     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10498 
10499     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10500 
10501     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10502         .addReg(HiReg)
10503         .addReg(ReadAgainReg);
10504     BuildMI(BB, dl, TII->get(PPC::BCC))
10505         .addImm(PPC::PRED_NE)
10506         .addReg(CmpReg)
10507         .addMBB(readMBB);
10508 
10509     BB->addSuccessor(readMBB);
10510     BB->addSuccessor(sinkMBB);
10511   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10512     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10513   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10514     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10515   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10516     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10517   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10518     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10519 
10520   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10521     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10522   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10523     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10524   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10525     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10526   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10527     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10528 
10529   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10530     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10531   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10532     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10533   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10534     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10535   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10536     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10537 
10538   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10539     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10540   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10541     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10542   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10543     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10544   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10545     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10546 
10547   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10548     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10549   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10550     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10551   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10552     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10553   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10554     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10555 
10556   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10557     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10558   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10559     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10560   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10561     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10562   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10563     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10564 
10565   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10566     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10567   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10568     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10569   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10570     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10571   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10572     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10573 
10574   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10575     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10576   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10577     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10578   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10579     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10580   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10581     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10582 
10583   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10584     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10585   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10586     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10587   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10588     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10589   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10590     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10591 
10592   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10593     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10594   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10595     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10596   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10597     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10598   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10599     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10600 
10601   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10602     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10603   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10604     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10605   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10606     BB = EmitAtomicBinary(MI, BB, 4, 0);
10607   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10608     BB = EmitAtomicBinary(MI, BB, 8, 0);
10609   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10610            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10611            (Subtarget.hasPartwordAtomics() &&
10612             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10613            (Subtarget.hasPartwordAtomics() &&
10614             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10615     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10616 
10617     auto LoadMnemonic = PPC::LDARX;
10618     auto StoreMnemonic = PPC::STDCX;
10619     switch (MI.getOpcode()) {
10620     default:
10621       llvm_unreachable("Compare and swap of unknown size");
10622     case PPC::ATOMIC_CMP_SWAP_I8:
10623       LoadMnemonic = PPC::LBARX;
10624       StoreMnemonic = PPC::STBCX;
10625       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10626       break;
10627     case PPC::ATOMIC_CMP_SWAP_I16:
10628       LoadMnemonic = PPC::LHARX;
10629       StoreMnemonic = PPC::STHCX;
10630       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10631       break;
10632     case PPC::ATOMIC_CMP_SWAP_I32:
10633       LoadMnemonic = PPC::LWARX;
10634       StoreMnemonic = PPC::STWCX;
10635       break;
10636     case PPC::ATOMIC_CMP_SWAP_I64:
10637       LoadMnemonic = PPC::LDARX;
10638       StoreMnemonic = PPC::STDCX;
10639       break;
10640     }
10641     unsigned dest = MI.getOperand(0).getReg();
10642     unsigned ptrA = MI.getOperand(1).getReg();
10643     unsigned ptrB = MI.getOperand(2).getReg();
10644     unsigned oldval = MI.getOperand(3).getReg();
10645     unsigned newval = MI.getOperand(4).getReg();
10646     DebugLoc dl = MI.getDebugLoc();
10647 
10648     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10649     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10650     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10651     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10652     F->insert(It, loop1MBB);
10653     F->insert(It, loop2MBB);
10654     F->insert(It, midMBB);
10655     F->insert(It, exitMBB);
10656     exitMBB->splice(exitMBB->begin(), BB,
10657                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10658     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10659 
10660     //  thisMBB:
10661     //   ...
10662     //   fallthrough --> loopMBB
10663     BB->addSuccessor(loop1MBB);
10664 
10665     // loop1MBB:
10666     //   l[bhwd]arx dest, ptr
10667     //   cmp[wd] dest, oldval
10668     //   bne- midMBB
10669     // loop2MBB:
10670     //   st[bhwd]cx. newval, ptr
10671     //   bne- loopMBB
10672     //   b exitBB
10673     // midMBB:
10674     //   st[bhwd]cx. dest, ptr
10675     // exitBB:
10676     BB = loop1MBB;
10677     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
10678     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10679         .addReg(oldval)
10680         .addReg(dest);
10681     BuildMI(BB, dl, TII->get(PPC::BCC))
10682         .addImm(PPC::PRED_NE)
10683         .addReg(PPC::CR0)
10684         .addMBB(midMBB);
10685     BB->addSuccessor(loop2MBB);
10686     BB->addSuccessor(midMBB);
10687 
10688     BB = loop2MBB;
10689     BuildMI(BB, dl, TII->get(StoreMnemonic))
10690         .addReg(newval)
10691         .addReg(ptrA)
10692         .addReg(ptrB);
10693     BuildMI(BB, dl, TII->get(PPC::BCC))
10694         .addImm(PPC::PRED_NE)
10695         .addReg(PPC::CR0)
10696         .addMBB(loop1MBB);
10697     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10698     BB->addSuccessor(loop1MBB);
10699     BB->addSuccessor(exitMBB);
10700 
10701     BB = midMBB;
10702     BuildMI(BB, dl, TII->get(StoreMnemonic))
10703         .addReg(dest)
10704         .addReg(ptrA)
10705         .addReg(ptrB);
10706     BB->addSuccessor(exitMBB);
10707 
10708     //  exitMBB:
10709     //   ...
10710     BB = exitMBB;
10711   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10712              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10713     // We must use 64-bit registers for addresses when targeting 64-bit,
10714     // since we're actually doing arithmetic on them.  Other registers
10715     // can be 32-bit.
10716     bool is64bit = Subtarget.isPPC64();
10717     bool isLittleEndian = Subtarget.isLittleEndian();
10718     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10719 
10720     unsigned dest = MI.getOperand(0).getReg();
10721     unsigned ptrA = MI.getOperand(1).getReg();
10722     unsigned ptrB = MI.getOperand(2).getReg();
10723     unsigned oldval = MI.getOperand(3).getReg();
10724     unsigned newval = MI.getOperand(4).getReg();
10725     DebugLoc dl = MI.getDebugLoc();
10726 
10727     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10728     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10729     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10730     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10731     F->insert(It, loop1MBB);
10732     F->insert(It, loop2MBB);
10733     F->insert(It, midMBB);
10734     F->insert(It, exitMBB);
10735     exitMBB->splice(exitMBB->begin(), BB,
10736                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10737     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10738 
10739     MachineRegisterInfo &RegInfo = F->getRegInfo();
10740     const TargetRegisterClass *RC =
10741         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10742     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10743 
10744     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10745     unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10746     unsigned ShiftReg =
10747         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10748     unsigned NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
10749     unsigned NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
10750     unsigned OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
10751     unsigned OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
10752     unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
10753     unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10754     unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10755     unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10756     unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10757     unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10758     unsigned Ptr1Reg;
10759     unsigned TmpReg = RegInfo.createVirtualRegister(GPRC);
10760     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10761     //  thisMBB:
10762     //   ...
10763     //   fallthrough --> loopMBB
10764     BB->addSuccessor(loop1MBB);
10765 
10766     // The 4-byte load must be aligned, while a char or short may be
10767     // anywhere in the word.  Hence all this nasty bookkeeping code.
10768     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10769     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10770     //   xori shift, shift1, 24 [16]
10771     //   rlwinm ptr, ptr1, 0, 0, 29
10772     //   slw newval2, newval, shift
10773     //   slw oldval2, oldval,shift
10774     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10775     //   slw mask, mask2, shift
10776     //   and newval3, newval2, mask
10777     //   and oldval3, oldval2, mask
10778     // loop1MBB:
10779     //   lwarx tmpDest, ptr
10780     //   and tmp, tmpDest, mask
10781     //   cmpw tmp, oldval3
10782     //   bne- midMBB
10783     // loop2MBB:
10784     //   andc tmp2, tmpDest, mask
10785     //   or tmp4, tmp2, newval3
10786     //   stwcx. tmp4, ptr
10787     //   bne- loop1MBB
10788     //   b exitBB
10789     // midMBB:
10790     //   stwcx. tmpDest, ptr
10791     // exitBB:
10792     //   srw dest, tmpDest, shift
10793     if (ptrA != ZeroReg) {
10794       Ptr1Reg = RegInfo.createVirtualRegister(RC);
10795       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10796           .addReg(ptrA)
10797           .addReg(ptrB);
10798     } else {
10799       Ptr1Reg = ptrB;
10800     }
10801 
10802     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10803     // mode.
10804     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10805         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10806         .addImm(3)
10807         .addImm(27)
10808         .addImm(is8bit ? 28 : 27);
10809     if (!isLittleEndian)
10810       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10811           .addReg(Shift1Reg)
10812           .addImm(is8bit ? 24 : 16);
10813     if (is64bit)
10814       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10815           .addReg(Ptr1Reg)
10816           .addImm(0)
10817           .addImm(61);
10818     else
10819       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10820           .addReg(Ptr1Reg)
10821           .addImm(0)
10822           .addImm(0)
10823           .addImm(29);
10824     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10825         .addReg(newval)
10826         .addReg(ShiftReg);
10827     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10828         .addReg(oldval)
10829         .addReg(ShiftReg);
10830     if (is8bit)
10831       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10832     else {
10833       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10834       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10835           .addReg(Mask3Reg)
10836           .addImm(65535);
10837     }
10838     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10839         .addReg(Mask2Reg)
10840         .addReg(ShiftReg);
10841     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10842         .addReg(NewVal2Reg)
10843         .addReg(MaskReg);
10844     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10845         .addReg(OldVal2Reg)
10846         .addReg(MaskReg);
10847 
10848     BB = loop1MBB;
10849     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10850         .addReg(ZeroReg)
10851         .addReg(PtrReg);
10852     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
10853         .addReg(TmpDestReg)
10854         .addReg(MaskReg);
10855     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10856         .addReg(TmpReg)
10857         .addReg(OldVal3Reg);
10858     BuildMI(BB, dl, TII->get(PPC::BCC))
10859         .addImm(PPC::PRED_NE)
10860         .addReg(PPC::CR0)
10861         .addMBB(midMBB);
10862     BB->addSuccessor(loop2MBB);
10863     BB->addSuccessor(midMBB);
10864 
10865     BB = loop2MBB;
10866     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10867         .addReg(TmpDestReg)
10868         .addReg(MaskReg);
10869     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
10870         .addReg(Tmp2Reg)
10871         .addReg(NewVal3Reg);
10872     BuildMI(BB, dl, TII->get(PPC::STWCX))
10873         .addReg(Tmp4Reg)
10874         .addReg(ZeroReg)
10875         .addReg(PtrReg);
10876     BuildMI(BB, dl, TII->get(PPC::BCC))
10877         .addImm(PPC::PRED_NE)
10878         .addReg(PPC::CR0)
10879         .addMBB(loop1MBB);
10880     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10881     BB->addSuccessor(loop1MBB);
10882     BB->addSuccessor(exitMBB);
10883 
10884     BB = midMBB;
10885     BuildMI(BB, dl, TII->get(PPC::STWCX))
10886         .addReg(TmpDestReg)
10887         .addReg(ZeroReg)
10888         .addReg(PtrReg);
10889     BB->addSuccessor(exitMBB);
10890 
10891     //  exitMBB:
10892     //   ...
10893     BB = exitMBB;
10894     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10895         .addReg(TmpReg)
10896         .addReg(ShiftReg);
10897   } else if (MI.getOpcode() == PPC::FADDrtz) {
10898     // This pseudo performs an FADD with rounding mode temporarily forced
10899     // to round-to-zero.  We emit this via custom inserter since the FPSCR
10900     // is not modeled at the SelectionDAG level.
10901     unsigned Dest = MI.getOperand(0).getReg();
10902     unsigned Src1 = MI.getOperand(1).getReg();
10903     unsigned Src2 = MI.getOperand(2).getReg();
10904     DebugLoc dl = MI.getDebugLoc();
10905 
10906     MachineRegisterInfo &RegInfo = F->getRegInfo();
10907     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10908 
10909     // Save FPSCR value.
10910     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10911 
10912     // Set rounding mode to round-to-zero.
10913     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10914     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10915 
10916     // Perform addition.
10917     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10918 
10919     // Restore FPSCR value.
10920     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10921   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10922              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10923              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10924              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10925     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10926                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10927                           ? PPC::ANDIo8
10928                           : PPC::ANDIo;
10929     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10930                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10931 
10932     MachineRegisterInfo &RegInfo = F->getRegInfo();
10933     unsigned Dest = RegInfo.createVirtualRegister(
10934         Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
10935 
10936     DebugLoc dl = MI.getDebugLoc();
10937     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10938         .addReg(MI.getOperand(1).getReg())
10939         .addImm(1);
10940     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10941             MI.getOperand(0).getReg())
10942         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10943   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10944     DebugLoc Dl = MI.getDebugLoc();
10945     MachineRegisterInfo &RegInfo = F->getRegInfo();
10946     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10947     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10948     return BB;
10949   } else {
10950     llvm_unreachable("Unexpected instr type to insert");
10951   }
10952 
10953   MI.eraseFromParent(); // The pseudo instruction is gone now.
10954   return BB;
10955 }
10956 
10957 //===----------------------------------------------------------------------===//
10958 // Target Optimization Hooks
10959 //===----------------------------------------------------------------------===//
10960 
10961 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
10962   // For the estimates, convergence is quadratic, so we essentially double the
10963   // number of digits correct after every iteration. For both FRE and FRSQRTE,
10964   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
10965   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
10966   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
10967   if (VT.getScalarType() == MVT::f64)
10968     RefinementSteps++;
10969   return RefinementSteps;
10970 }
10971 
10972 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
10973                                            int Enabled, int &RefinementSteps,
10974                                            bool &UseOneConstNR,
10975                                            bool Reciprocal) const {
10976   EVT VT = Operand.getValueType();
10977   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
10978       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
10979       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10980       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10981       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10982       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10983     if (RefinementSteps == ReciprocalEstimate::Unspecified)
10984       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10985 
10986     UseOneConstNR = true;
10987     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
10988   }
10989   return SDValue();
10990 }
10991 
10992 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
10993                                             int Enabled,
10994                                             int &RefinementSteps) const {
10995   EVT VT = Operand.getValueType();
10996   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
10997       (VT == MVT::f64 && Subtarget.hasFRE()) ||
10998       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10999       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11000       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11001       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11002     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11003       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11004     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11005   }
11006   return SDValue();
11007 }
11008 
11009 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11010   // Note: This functionality is used only when unsafe-fp-math is enabled, and
11011   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11012   // enabled for division), this functionality is redundant with the default
11013   // combiner logic (once the division -> reciprocal/multiply transformation
11014   // has taken place). As a result, this matters more for older cores than for
11015   // newer ones.
11016 
11017   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11018   // reciprocal if there are two or more FDIVs (for embedded cores with only
11019   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11020   switch (Subtarget.getDarwinDirective()) {
11021   default:
11022     return 3;
11023   case PPC::DIR_440:
11024   case PPC::DIR_A2:
11025   case PPC::DIR_E500:
11026   case PPC::DIR_E500mc:
11027   case PPC::DIR_E5500:
11028     return 2;
11029   }
11030 }
11031 
11032 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11033 // collapsed, and so we need to look through chains of them.
11034 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
11035                                      int64_t& Offset, SelectionDAG &DAG) {
11036   if (DAG.isBaseWithConstantOffset(Loc)) {
11037     Base = Loc.getOperand(0);
11038     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
11039 
11040     // The base might itself be a base plus an offset, and if so, accumulate
11041     // that as well.
11042     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
11043   }
11044 }
11045 
11046 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
11047                             unsigned Bytes, int Dist,
11048                             SelectionDAG &DAG) {
11049   if (VT.getSizeInBits() / 8 != Bytes)
11050     return false;
11051 
11052   SDValue BaseLoc = Base->getBasePtr();
11053   if (Loc.getOpcode() == ISD::FrameIndex) {
11054     if (BaseLoc.getOpcode() != ISD::FrameIndex)
11055       return false;
11056     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
11057     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
11058     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
11059     int FS  = MFI.getObjectSize(FI);
11060     int BFS = MFI.getObjectSize(BFI);
11061     if (FS != BFS || FS != (int)Bytes) return false;
11062     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
11063   }
11064 
11065   SDValue Base1 = Loc, Base2 = BaseLoc;
11066   int64_t Offset1 = 0, Offset2 = 0;
11067   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
11068   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
11069   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
11070     return true;
11071 
11072   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11073   const GlobalValue *GV1 = nullptr;
11074   const GlobalValue *GV2 = nullptr;
11075   Offset1 = 0;
11076   Offset2 = 0;
11077   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
11078   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
11079   if (isGA1 && isGA2 && GV1 == GV2)
11080     return Offset1 == (Offset2 + Dist*Bytes);
11081   return false;
11082 }
11083 
11084 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
11085 // not enforce equality of the chain operands.
11086 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
11087                             unsigned Bytes, int Dist,
11088                             SelectionDAG &DAG) {
11089   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
11090     EVT VT = LS->getMemoryVT();
11091     SDValue Loc = LS->getBasePtr();
11092     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
11093   }
11094 
11095   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
11096     EVT VT;
11097     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11098     default: return false;
11099     case Intrinsic::ppc_qpx_qvlfd:
11100     case Intrinsic::ppc_qpx_qvlfda:
11101       VT = MVT::v4f64;
11102       break;
11103     case Intrinsic::ppc_qpx_qvlfs:
11104     case Intrinsic::ppc_qpx_qvlfsa:
11105       VT = MVT::v4f32;
11106       break;
11107     case Intrinsic::ppc_qpx_qvlfcd:
11108     case Intrinsic::ppc_qpx_qvlfcda:
11109       VT = MVT::v2f64;
11110       break;
11111     case Intrinsic::ppc_qpx_qvlfcs:
11112     case Intrinsic::ppc_qpx_qvlfcsa:
11113       VT = MVT::v2f32;
11114       break;
11115     case Intrinsic::ppc_qpx_qvlfiwa:
11116     case Intrinsic::ppc_qpx_qvlfiwz:
11117     case Intrinsic::ppc_altivec_lvx:
11118     case Intrinsic::ppc_altivec_lvxl:
11119     case Intrinsic::ppc_vsx_lxvw4x:
11120     case Intrinsic::ppc_vsx_lxvw4x_be:
11121       VT = MVT::v4i32;
11122       break;
11123     case Intrinsic::ppc_vsx_lxvd2x:
11124     case Intrinsic::ppc_vsx_lxvd2x_be:
11125       VT = MVT::v2f64;
11126       break;
11127     case Intrinsic::ppc_altivec_lvebx:
11128       VT = MVT::i8;
11129       break;
11130     case Intrinsic::ppc_altivec_lvehx:
11131       VT = MVT::i16;
11132       break;
11133     case Intrinsic::ppc_altivec_lvewx:
11134       VT = MVT::i32;
11135       break;
11136     }
11137 
11138     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
11139   }
11140 
11141   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
11142     EVT VT;
11143     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11144     default: return false;
11145     case Intrinsic::ppc_qpx_qvstfd:
11146     case Intrinsic::ppc_qpx_qvstfda:
11147       VT = MVT::v4f64;
11148       break;
11149     case Intrinsic::ppc_qpx_qvstfs:
11150     case Intrinsic::ppc_qpx_qvstfsa:
11151       VT = MVT::v4f32;
11152       break;
11153     case Intrinsic::ppc_qpx_qvstfcd:
11154     case Intrinsic::ppc_qpx_qvstfcda:
11155       VT = MVT::v2f64;
11156       break;
11157     case Intrinsic::ppc_qpx_qvstfcs:
11158     case Intrinsic::ppc_qpx_qvstfcsa:
11159       VT = MVT::v2f32;
11160       break;
11161     case Intrinsic::ppc_qpx_qvstfiw:
11162     case Intrinsic::ppc_qpx_qvstfiwa:
11163     case Intrinsic::ppc_altivec_stvx:
11164     case Intrinsic::ppc_altivec_stvxl:
11165     case Intrinsic::ppc_vsx_stxvw4x:
11166       VT = MVT::v4i32;
11167       break;
11168     case Intrinsic::ppc_vsx_stxvd2x:
11169       VT = MVT::v2f64;
11170       break;
11171     case Intrinsic::ppc_vsx_stxvw4x_be:
11172       VT = MVT::v4i32;
11173       break;
11174     case Intrinsic::ppc_vsx_stxvd2x_be:
11175       VT = MVT::v2f64;
11176       break;
11177     case Intrinsic::ppc_altivec_stvebx:
11178       VT = MVT::i8;
11179       break;
11180     case Intrinsic::ppc_altivec_stvehx:
11181       VT = MVT::i16;
11182       break;
11183     case Intrinsic::ppc_altivec_stvewx:
11184       VT = MVT::i32;
11185       break;
11186     }
11187 
11188     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
11189   }
11190 
11191   return false;
11192 }
11193 
11194 // Return true is there is a nearyby consecutive load to the one provided
11195 // (regardless of alignment). We search up and down the chain, looking though
11196 // token factors and other loads (but nothing else). As a result, a true result
11197 // indicates that it is safe to create a new consecutive load adjacent to the
11198 // load provided.
11199 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
11200   SDValue Chain = LD->getChain();
11201   EVT VT = LD->getMemoryVT();
11202 
11203   SmallSet<SDNode *, 16> LoadRoots;
11204   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
11205   SmallSet<SDNode *, 16> Visited;
11206 
11207   // First, search up the chain, branching to follow all token-factor operands.
11208   // If we find a consecutive load, then we're done, otherwise, record all
11209   // nodes just above the top-level loads and token factors.
11210   while (!Queue.empty()) {
11211     SDNode *ChainNext = Queue.pop_back_val();
11212     if (!Visited.insert(ChainNext).second)
11213       continue;
11214 
11215     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
11216       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11217         return true;
11218 
11219       if (!Visited.count(ChainLD->getChain().getNode()))
11220         Queue.push_back(ChainLD->getChain().getNode());
11221     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
11222       for (const SDUse &O : ChainNext->ops())
11223         if (!Visited.count(O.getNode()))
11224           Queue.push_back(O.getNode());
11225     } else
11226       LoadRoots.insert(ChainNext);
11227   }
11228 
11229   // Second, search down the chain, starting from the top-level nodes recorded
11230   // in the first phase. These top-level nodes are the nodes just above all
11231   // loads and token factors. Starting with their uses, recursively look though
11232   // all loads (just the chain uses) and token factors to find a consecutive
11233   // load.
11234   Visited.clear();
11235   Queue.clear();
11236 
11237   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
11238        IE = LoadRoots.end(); I != IE; ++I) {
11239     Queue.push_back(*I);
11240 
11241     while (!Queue.empty()) {
11242       SDNode *LoadRoot = Queue.pop_back_val();
11243       if (!Visited.insert(LoadRoot).second)
11244         continue;
11245 
11246       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
11247         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11248           return true;
11249 
11250       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
11251            UE = LoadRoot->use_end(); UI != UE; ++UI)
11252         if (((isa<MemSDNode>(*UI) &&
11253             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
11254             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
11255           Queue.push_back(*UI);
11256     }
11257   }
11258 
11259   return false;
11260 }
11261 
11262 /// This function is called when we have proved that a SETCC node can be replaced
11263 /// by subtraction (and other supporting instructions) so that the result of
11264 /// comparison is kept in a GPR instead of CR. This function is purely for
11265 /// codegen purposes and has some flags to guide the codegen process.
11266 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
11267                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
11268   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11269 
11270   // Zero extend the operands to the largest legal integer. Originally, they
11271   // must be of a strictly smaller size.
11272   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
11273                          DAG.getConstant(Size, DL, MVT::i32));
11274   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
11275                          DAG.getConstant(Size, DL, MVT::i32));
11276 
11277   // Swap if needed. Depends on the condition code.
11278   if (Swap)
11279     std::swap(Op0, Op1);
11280 
11281   // Subtract extended integers.
11282   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
11283 
11284   // Move the sign bit to the least significant position and zero out the rest.
11285   // Now the least significant bit carries the result of original comparison.
11286   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
11287                              DAG.getConstant(Size - 1, DL, MVT::i32));
11288   auto Final = Shifted;
11289 
11290   // Complement the result if needed. Based on the condition code.
11291   if (Complement)
11292     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11293                         DAG.getConstant(1, DL, MVT::i64));
11294 
11295   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11296 }
11297 
11298 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11299                                                   DAGCombinerInfo &DCI) const {
11300   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11301 
11302   SelectionDAG &DAG = DCI.DAG;
11303   SDLoc DL(N);
11304 
11305   // Size of integers being compared has a critical role in the following
11306   // analysis, so we prefer to do this when all types are legal.
11307   if (!DCI.isAfterLegalizeDAG())
11308     return SDValue();
11309 
11310   // If all users of SETCC extend its value to a legal integer type
11311   // then we replace SETCC with a subtraction
11312   for (SDNode::use_iterator UI = N->use_begin(),
11313        UE = N->use_end(); UI != UE; ++UI) {
11314     if (UI->getOpcode() != ISD::ZERO_EXTEND)
11315       return SDValue();
11316   }
11317 
11318   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11319   auto OpSize = N->getOperand(0).getValueSizeInBits();
11320 
11321   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11322 
11323   if (OpSize < Size) {
11324     switch (CC) {
11325     default: break;
11326     case ISD::SETULT:
11327       return generateEquivalentSub(N, Size, false, false, DL, DAG);
11328     case ISD::SETULE:
11329       return generateEquivalentSub(N, Size, true, true, DL, DAG);
11330     case ISD::SETUGT:
11331       return generateEquivalentSub(N, Size, false, true, DL, DAG);
11332     case ISD::SETUGE:
11333       return generateEquivalentSub(N, Size, true, false, DL, DAG);
11334     }
11335   }
11336 
11337   return SDValue();
11338 }
11339 
11340 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11341                                                   DAGCombinerInfo &DCI) const {
11342   SelectionDAG &DAG = DCI.DAG;
11343   SDLoc dl(N);
11344 
11345   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11346   // If we're tracking CR bits, we need to be careful that we don't have:
11347   //   trunc(binary-ops(zext(x), zext(y)))
11348   // or
11349   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11350   // such that we're unnecessarily moving things into GPRs when it would be
11351   // better to keep them in CR bits.
11352 
11353   // Note that trunc here can be an actual i1 trunc, or can be the effective
11354   // truncation that comes from a setcc or select_cc.
11355   if (N->getOpcode() == ISD::TRUNCATE &&
11356       N->getValueType(0) != MVT::i1)
11357     return SDValue();
11358 
11359   if (N->getOperand(0).getValueType() != MVT::i32 &&
11360       N->getOperand(0).getValueType() != MVT::i64)
11361     return SDValue();
11362 
11363   if (N->getOpcode() == ISD::SETCC ||
11364       N->getOpcode() == ISD::SELECT_CC) {
11365     // If we're looking at a comparison, then we need to make sure that the
11366     // high bits (all except for the first) don't matter the result.
11367     ISD::CondCode CC =
11368       cast<CondCodeSDNode>(N->getOperand(
11369         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11370     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11371 
11372     if (ISD::isSignedIntSetCC(CC)) {
11373       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11374           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11375         return SDValue();
11376     } else if (ISD::isUnsignedIntSetCC(CC)) {
11377       if (!DAG.MaskedValueIsZero(N->getOperand(0),
11378                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11379           !DAG.MaskedValueIsZero(N->getOperand(1),
11380                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
11381         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11382                                              : SDValue());
11383     } else {
11384       // This is neither a signed nor an unsigned comparison, just make sure
11385       // that the high bits are equal.
11386       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
11387       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
11388 
11389       // We don't really care about what is known about the first bit (if
11390       // anything), so clear it in all masks prior to comparing them.
11391       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11392       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11393 
11394       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11395         return SDValue();
11396     }
11397   }
11398 
11399   // We now know that the higher-order bits are irrelevant, we just need to
11400   // make sure that all of the intermediate operations are bit operations, and
11401   // all inputs are extensions.
11402   if (N->getOperand(0).getOpcode() != ISD::AND &&
11403       N->getOperand(0).getOpcode() != ISD::OR  &&
11404       N->getOperand(0).getOpcode() != ISD::XOR &&
11405       N->getOperand(0).getOpcode() != ISD::SELECT &&
11406       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11407       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11408       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11409       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11410       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11411     return SDValue();
11412 
11413   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11414       N->getOperand(1).getOpcode() != ISD::AND &&
11415       N->getOperand(1).getOpcode() != ISD::OR  &&
11416       N->getOperand(1).getOpcode() != ISD::XOR &&
11417       N->getOperand(1).getOpcode() != ISD::SELECT &&
11418       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11419       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11420       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11421       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11422       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11423     return SDValue();
11424 
11425   SmallVector<SDValue, 4> Inputs;
11426   SmallVector<SDValue, 8> BinOps, PromOps;
11427   SmallPtrSet<SDNode *, 16> Visited;
11428 
11429   for (unsigned i = 0; i < 2; ++i) {
11430     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11431           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11432           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11433           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11434         isa<ConstantSDNode>(N->getOperand(i)))
11435       Inputs.push_back(N->getOperand(i));
11436     else
11437       BinOps.push_back(N->getOperand(i));
11438 
11439     if (N->getOpcode() == ISD::TRUNCATE)
11440       break;
11441   }
11442 
11443   // Visit all inputs, collect all binary operations (and, or, xor and
11444   // select) that are all fed by extensions.
11445   while (!BinOps.empty()) {
11446     SDValue BinOp = BinOps.back();
11447     BinOps.pop_back();
11448 
11449     if (!Visited.insert(BinOp.getNode()).second)
11450       continue;
11451 
11452     PromOps.push_back(BinOp);
11453 
11454     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11455       // The condition of the select is not promoted.
11456       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11457         continue;
11458       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11459         continue;
11460 
11461       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11462             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11463             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11464            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11465           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11466         Inputs.push_back(BinOp.getOperand(i));
11467       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11468                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11469                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11470                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11471                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11472                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11473                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11474                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11475                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11476         BinOps.push_back(BinOp.getOperand(i));
11477       } else {
11478         // We have an input that is not an extension or another binary
11479         // operation; we'll abort this transformation.
11480         return SDValue();
11481       }
11482     }
11483   }
11484 
11485   // Make sure that this is a self-contained cluster of operations (which
11486   // is not quite the same thing as saying that everything has only one
11487   // use).
11488   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11489     if (isa<ConstantSDNode>(Inputs[i]))
11490       continue;
11491 
11492     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11493                               UE = Inputs[i].getNode()->use_end();
11494          UI != UE; ++UI) {
11495       SDNode *User = *UI;
11496       if (User != N && !Visited.count(User))
11497         return SDValue();
11498 
11499       // Make sure that we're not going to promote the non-output-value
11500       // operand(s) or SELECT or SELECT_CC.
11501       // FIXME: Although we could sometimes handle this, and it does occur in
11502       // practice that one of the condition inputs to the select is also one of
11503       // the outputs, we currently can't deal with this.
11504       if (User->getOpcode() == ISD::SELECT) {
11505         if (User->getOperand(0) == Inputs[i])
11506           return SDValue();
11507       } else if (User->getOpcode() == ISD::SELECT_CC) {
11508         if (User->getOperand(0) == Inputs[i] ||
11509             User->getOperand(1) == Inputs[i])
11510           return SDValue();
11511       }
11512     }
11513   }
11514 
11515   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11516     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11517                               UE = PromOps[i].getNode()->use_end();
11518          UI != UE; ++UI) {
11519       SDNode *User = *UI;
11520       if (User != N && !Visited.count(User))
11521         return SDValue();
11522 
11523       // Make sure that we're not going to promote the non-output-value
11524       // operand(s) or SELECT or SELECT_CC.
11525       // FIXME: Although we could sometimes handle this, and it does occur in
11526       // practice that one of the condition inputs to the select is also one of
11527       // the outputs, we currently can't deal with this.
11528       if (User->getOpcode() == ISD::SELECT) {
11529         if (User->getOperand(0) == PromOps[i])
11530           return SDValue();
11531       } else if (User->getOpcode() == ISD::SELECT_CC) {
11532         if (User->getOperand(0) == PromOps[i] ||
11533             User->getOperand(1) == PromOps[i])
11534           return SDValue();
11535       }
11536     }
11537   }
11538 
11539   // Replace all inputs with the extension operand.
11540   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11541     // Constants may have users outside the cluster of to-be-promoted nodes,
11542     // and so we need to replace those as we do the promotions.
11543     if (isa<ConstantSDNode>(Inputs[i]))
11544       continue;
11545     else
11546       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11547   }
11548 
11549   std::list<HandleSDNode> PromOpHandles;
11550   for (auto &PromOp : PromOps)
11551     PromOpHandles.emplace_back(PromOp);
11552 
11553   // Replace all operations (these are all the same, but have a different
11554   // (i1) return type). DAG.getNode will validate that the types of
11555   // a binary operator match, so go through the list in reverse so that
11556   // we've likely promoted both operands first. Any intermediate truncations or
11557   // extensions disappear.
11558   while (!PromOpHandles.empty()) {
11559     SDValue PromOp = PromOpHandles.back().getValue();
11560     PromOpHandles.pop_back();
11561 
11562     if (PromOp.getOpcode() == ISD::TRUNCATE ||
11563         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11564         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11565         PromOp.getOpcode() == ISD::ANY_EXTEND) {
11566       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11567           PromOp.getOperand(0).getValueType() != MVT::i1) {
11568         // The operand is not yet ready (see comment below).
11569         PromOpHandles.emplace_front(PromOp);
11570         continue;
11571       }
11572 
11573       SDValue RepValue = PromOp.getOperand(0);
11574       if (isa<ConstantSDNode>(RepValue))
11575         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11576 
11577       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11578       continue;
11579     }
11580 
11581     unsigned C;
11582     switch (PromOp.getOpcode()) {
11583     default:             C = 0; break;
11584     case ISD::SELECT:    C = 1; break;
11585     case ISD::SELECT_CC: C = 2; break;
11586     }
11587 
11588     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11589          PromOp.getOperand(C).getValueType() != MVT::i1) ||
11590         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11591          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11592       // The to-be-promoted operands of this node have not yet been
11593       // promoted (this should be rare because we're going through the
11594       // list backward, but if one of the operands has several users in
11595       // this cluster of to-be-promoted nodes, it is possible).
11596       PromOpHandles.emplace_front(PromOp);
11597       continue;
11598     }
11599 
11600     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11601                                 PromOp.getNode()->op_end());
11602 
11603     // If there are any constant inputs, make sure they're replaced now.
11604     for (unsigned i = 0; i < 2; ++i)
11605       if (isa<ConstantSDNode>(Ops[C+i]))
11606         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11607 
11608     DAG.ReplaceAllUsesOfValueWith(PromOp,
11609       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11610   }
11611 
11612   // Now we're left with the initial truncation itself.
11613   if (N->getOpcode() == ISD::TRUNCATE)
11614     return N->getOperand(0);
11615 
11616   // Otherwise, this is a comparison. The operands to be compared have just
11617   // changed type (to i1), but everything else is the same.
11618   return SDValue(N, 0);
11619 }
11620 
11621 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11622                                                   DAGCombinerInfo &DCI) const {
11623   SelectionDAG &DAG = DCI.DAG;
11624   SDLoc dl(N);
11625 
11626   // If we're tracking CR bits, we need to be careful that we don't have:
11627   //   zext(binary-ops(trunc(x), trunc(y)))
11628   // or
11629   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11630   // such that we're unnecessarily moving things into CR bits that can more
11631   // efficiently stay in GPRs. Note that if we're not certain that the high
11632   // bits are set as required by the final extension, we still may need to do
11633   // some masking to get the proper behavior.
11634 
11635   // This same functionality is important on PPC64 when dealing with
11636   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11637   // the return values of functions. Because it is so similar, it is handled
11638   // here as well.
11639 
11640   if (N->getValueType(0) != MVT::i32 &&
11641       N->getValueType(0) != MVT::i64)
11642     return SDValue();
11643 
11644   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11645         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11646     return SDValue();
11647 
11648   if (N->getOperand(0).getOpcode() != ISD::AND &&
11649       N->getOperand(0).getOpcode() != ISD::OR  &&
11650       N->getOperand(0).getOpcode() != ISD::XOR &&
11651       N->getOperand(0).getOpcode() != ISD::SELECT &&
11652       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11653     return SDValue();
11654 
11655   SmallVector<SDValue, 4> Inputs;
11656   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11657   SmallPtrSet<SDNode *, 16> Visited;
11658 
11659   // Visit all inputs, collect all binary operations (and, or, xor and
11660   // select) that are all fed by truncations.
11661   while (!BinOps.empty()) {
11662     SDValue BinOp = BinOps.back();
11663     BinOps.pop_back();
11664 
11665     if (!Visited.insert(BinOp.getNode()).second)
11666       continue;
11667 
11668     PromOps.push_back(BinOp);
11669 
11670     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11671       // The condition of the select is not promoted.
11672       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11673         continue;
11674       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11675         continue;
11676 
11677       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11678           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11679         Inputs.push_back(BinOp.getOperand(i));
11680       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11681                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11682                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11683                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11684                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11685         BinOps.push_back(BinOp.getOperand(i));
11686       } else {
11687         // We have an input that is not a truncation or another binary
11688         // operation; we'll abort this transformation.
11689         return SDValue();
11690       }
11691     }
11692   }
11693 
11694   // The operands of a select that must be truncated when the select is
11695   // promoted because the operand is actually part of the to-be-promoted set.
11696   DenseMap<SDNode *, EVT> SelectTruncOp[2];
11697 
11698   // Make sure that this is a self-contained cluster of operations (which
11699   // is not quite the same thing as saying that everything has only one
11700   // use).
11701   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11702     if (isa<ConstantSDNode>(Inputs[i]))
11703       continue;
11704 
11705     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11706                               UE = Inputs[i].getNode()->use_end();
11707          UI != UE; ++UI) {
11708       SDNode *User = *UI;
11709       if (User != N && !Visited.count(User))
11710         return SDValue();
11711 
11712       // If we're going to promote the non-output-value operand(s) or SELECT or
11713       // SELECT_CC, record them for truncation.
11714       if (User->getOpcode() == ISD::SELECT) {
11715         if (User->getOperand(0) == Inputs[i])
11716           SelectTruncOp[0].insert(std::make_pair(User,
11717                                     User->getOperand(0).getValueType()));
11718       } else if (User->getOpcode() == ISD::SELECT_CC) {
11719         if (User->getOperand(0) == Inputs[i])
11720           SelectTruncOp[0].insert(std::make_pair(User,
11721                                     User->getOperand(0).getValueType()));
11722         if (User->getOperand(1) == Inputs[i])
11723           SelectTruncOp[1].insert(std::make_pair(User,
11724                                     User->getOperand(1).getValueType()));
11725       }
11726     }
11727   }
11728 
11729   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11730     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11731                               UE = PromOps[i].getNode()->use_end();
11732          UI != UE; ++UI) {
11733       SDNode *User = *UI;
11734       if (User != N && !Visited.count(User))
11735         return SDValue();
11736 
11737       // If we're going to promote the non-output-value operand(s) or SELECT or
11738       // SELECT_CC, record them for truncation.
11739       if (User->getOpcode() == ISD::SELECT) {
11740         if (User->getOperand(0) == PromOps[i])
11741           SelectTruncOp[0].insert(std::make_pair(User,
11742                                     User->getOperand(0).getValueType()));
11743       } else if (User->getOpcode() == ISD::SELECT_CC) {
11744         if (User->getOperand(0) == PromOps[i])
11745           SelectTruncOp[0].insert(std::make_pair(User,
11746                                     User->getOperand(0).getValueType()));
11747         if (User->getOperand(1) == PromOps[i])
11748           SelectTruncOp[1].insert(std::make_pair(User,
11749                                     User->getOperand(1).getValueType()));
11750       }
11751     }
11752   }
11753 
11754   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11755   bool ReallyNeedsExt = false;
11756   if (N->getOpcode() != ISD::ANY_EXTEND) {
11757     // If all of the inputs are not already sign/zero extended, then
11758     // we'll still need to do that at the end.
11759     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11760       if (isa<ConstantSDNode>(Inputs[i]))
11761         continue;
11762 
11763       unsigned OpBits =
11764         Inputs[i].getOperand(0).getValueSizeInBits();
11765       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11766 
11767       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11768            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11769                                   APInt::getHighBitsSet(OpBits,
11770                                                         OpBits-PromBits))) ||
11771           (N->getOpcode() == ISD::SIGN_EXTEND &&
11772            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11773              (OpBits-(PromBits-1)))) {
11774         ReallyNeedsExt = true;
11775         break;
11776       }
11777     }
11778   }
11779 
11780   // Replace all inputs, either with the truncation operand, or a
11781   // truncation or extension to the final output type.
11782   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11783     // Constant inputs need to be replaced with the to-be-promoted nodes that
11784     // use them because they might have users outside of the cluster of
11785     // promoted nodes.
11786     if (isa<ConstantSDNode>(Inputs[i]))
11787       continue;
11788 
11789     SDValue InSrc = Inputs[i].getOperand(0);
11790     if (Inputs[i].getValueType() == N->getValueType(0))
11791       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11792     else if (N->getOpcode() == ISD::SIGN_EXTEND)
11793       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11794         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11795     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11796       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11797         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11798     else
11799       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11800         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11801   }
11802 
11803   std::list<HandleSDNode> PromOpHandles;
11804   for (auto &PromOp : PromOps)
11805     PromOpHandles.emplace_back(PromOp);
11806 
11807   // Replace all operations (these are all the same, but have a different
11808   // (promoted) return type). DAG.getNode will validate that the types of
11809   // a binary operator match, so go through the list in reverse so that
11810   // we've likely promoted both operands first.
11811   while (!PromOpHandles.empty()) {
11812     SDValue PromOp = PromOpHandles.back().getValue();
11813     PromOpHandles.pop_back();
11814 
11815     unsigned C;
11816     switch (PromOp.getOpcode()) {
11817     default:             C = 0; break;
11818     case ISD::SELECT:    C = 1; break;
11819     case ISD::SELECT_CC: C = 2; break;
11820     }
11821 
11822     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11823          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11824         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11825          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11826       // The to-be-promoted operands of this node have not yet been
11827       // promoted (this should be rare because we're going through the
11828       // list backward, but if one of the operands has several users in
11829       // this cluster of to-be-promoted nodes, it is possible).
11830       PromOpHandles.emplace_front(PromOp);
11831       continue;
11832     }
11833 
11834     // For SELECT and SELECT_CC nodes, we do a similar check for any
11835     // to-be-promoted comparison inputs.
11836     if (PromOp.getOpcode() == ISD::SELECT ||
11837         PromOp.getOpcode() == ISD::SELECT_CC) {
11838       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11839            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11840           (SelectTruncOp[1].count(PromOp.getNode()) &&
11841            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11842         PromOpHandles.emplace_front(PromOp);
11843         continue;
11844       }
11845     }
11846 
11847     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11848                                 PromOp.getNode()->op_end());
11849 
11850     // If this node has constant inputs, then they'll need to be promoted here.
11851     for (unsigned i = 0; i < 2; ++i) {
11852       if (!isa<ConstantSDNode>(Ops[C+i]))
11853         continue;
11854       if (Ops[C+i].getValueType() == N->getValueType(0))
11855         continue;
11856 
11857       if (N->getOpcode() == ISD::SIGN_EXTEND)
11858         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11859       else if (N->getOpcode() == ISD::ZERO_EXTEND)
11860         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11861       else
11862         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11863     }
11864 
11865     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
11866     // truncate them again to the original value type.
11867     if (PromOp.getOpcode() == ISD::SELECT ||
11868         PromOp.getOpcode() == ISD::SELECT_CC) {
11869       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
11870       if (SI0 != SelectTruncOp[0].end())
11871         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
11872       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
11873       if (SI1 != SelectTruncOp[1].end())
11874         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
11875     }
11876 
11877     DAG.ReplaceAllUsesOfValueWith(PromOp,
11878       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
11879   }
11880 
11881   // Now we're left with the initial extension itself.
11882   if (!ReallyNeedsExt)
11883     return N->getOperand(0);
11884 
11885   // To zero extend, just mask off everything except for the first bit (in the
11886   // i1 case).
11887   if (N->getOpcode() == ISD::ZERO_EXTEND)
11888     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
11889                        DAG.getConstant(APInt::getLowBitsSet(
11890                                          N->getValueSizeInBits(0), PromBits),
11891                                        dl, N->getValueType(0)));
11892 
11893   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
11894          "Invalid extension type");
11895   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
11896   SDValue ShiftCst =
11897       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
11898   return DAG.getNode(
11899       ISD::SRA, dl, N->getValueType(0),
11900       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
11901       ShiftCst);
11902 }
11903 
11904 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
11905                                         DAGCombinerInfo &DCI) const {
11906   assert(N->getOpcode() == ISD::SETCC &&
11907          "Should be called with a SETCC node");
11908 
11909   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11910   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
11911     SDValue LHS = N->getOperand(0);
11912     SDValue RHS = N->getOperand(1);
11913 
11914     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
11915     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
11916         LHS.hasOneUse())
11917       std::swap(LHS, RHS);
11918 
11919     // x == 0-y --> x+y == 0
11920     // x != 0-y --> x+y != 0
11921     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
11922         RHS.hasOneUse()) {
11923       SDLoc DL(N);
11924       SelectionDAG &DAG = DCI.DAG;
11925       EVT VT = N->getValueType(0);
11926       EVT OpVT = LHS.getValueType();
11927       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
11928       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
11929     }
11930   }
11931 
11932   return DAGCombineTruncBoolExt(N, DCI);
11933 }
11934 
11935 // Is this an extending load from an f32 to an f64?
11936 static bool isFPExtLoad(SDValue Op) {
11937   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
11938     return LD->getExtensionType() == ISD::EXTLOAD &&
11939       Op.getValueType() == MVT::f64;
11940   return false;
11941 }
11942 
11943 /// Reduces the number of fp-to-int conversion when building a vector.
11944 ///
11945 /// If this vector is built out of floating to integer conversions,
11946 /// transform it to a vector built out of floating point values followed by a
11947 /// single floating to integer conversion of the vector.
11948 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
11949 /// becomes (fptosi (build_vector ($A, $B, ...)))
11950 SDValue PPCTargetLowering::
11951 combineElementTruncationToVectorTruncation(SDNode *N,
11952                                            DAGCombinerInfo &DCI) const {
11953   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11954          "Should be called with a BUILD_VECTOR node");
11955 
11956   SelectionDAG &DAG = DCI.DAG;
11957   SDLoc dl(N);
11958 
11959   SDValue FirstInput = N->getOperand(0);
11960   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
11961          "The input operand must be an fp-to-int conversion.");
11962 
11963   // This combine happens after legalization so the fp_to_[su]i nodes are
11964   // already converted to PPCSISD nodes.
11965   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
11966   if (FirstConversion == PPCISD::FCTIDZ ||
11967       FirstConversion == PPCISD::FCTIDUZ ||
11968       FirstConversion == PPCISD::FCTIWZ ||
11969       FirstConversion == PPCISD::FCTIWUZ) {
11970     bool IsSplat = true;
11971     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
11972       FirstConversion == PPCISD::FCTIWUZ;
11973     EVT SrcVT = FirstInput.getOperand(0).getValueType();
11974     SmallVector<SDValue, 4> Ops;
11975     EVT TargetVT = N->getValueType(0);
11976     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11977       SDValue NextOp = N->getOperand(i);
11978       if (NextOp.getOpcode() != PPCISD::MFVSR)
11979         return SDValue();
11980       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
11981       if (NextConversion != FirstConversion)
11982         return SDValue();
11983       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
11984       // This is not valid if the input was originally double precision. It is
11985       // also not profitable to do unless this is an extending load in which
11986       // case doing this combine will allow us to combine consecutive loads.
11987       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
11988         return SDValue();
11989       if (N->getOperand(i) != FirstInput)
11990         IsSplat = false;
11991     }
11992 
11993     // If this is a splat, we leave it as-is since there will be only a single
11994     // fp-to-int conversion followed by a splat of the integer. This is better
11995     // for 32-bit and smaller ints and neutral for 64-bit ints.
11996     if (IsSplat)
11997       return SDValue();
11998 
11999     // Now that we know we have the right type of node, get its operands
12000     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12001       SDValue In = N->getOperand(i).getOperand(0);
12002       if (Is32Bit) {
12003         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12004         // here, we know that all inputs are extending loads so this is safe).
12005         if (In.isUndef())
12006           Ops.push_back(DAG.getUNDEF(SrcVT));
12007         else {
12008           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
12009                                       MVT::f32, In.getOperand(0),
12010                                       DAG.getIntPtrConstant(1, dl));
12011           Ops.push_back(Trunc);
12012         }
12013       } else
12014         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
12015     }
12016 
12017     unsigned Opcode;
12018     if (FirstConversion == PPCISD::FCTIDZ ||
12019         FirstConversion == PPCISD::FCTIWZ)
12020       Opcode = ISD::FP_TO_SINT;
12021     else
12022       Opcode = ISD::FP_TO_UINT;
12023 
12024     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
12025     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
12026     return DAG.getNode(Opcode, dl, TargetVT, BV);
12027   }
12028   return SDValue();
12029 }
12030 
12031 /// Reduce the number of loads when building a vector.
12032 ///
12033 /// Building a vector out of multiple loads can be converted to a load
12034 /// of the vector type if the loads are consecutive. If the loads are
12035 /// consecutive but in descending order, a shuffle is added at the end
12036 /// to reorder the vector.
12037 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
12038   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12039          "Should be called with a BUILD_VECTOR node");
12040 
12041   SDLoc dl(N);
12042   bool InputsAreConsecutiveLoads = true;
12043   bool InputsAreReverseConsecutive = true;
12044   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
12045   SDValue FirstInput = N->getOperand(0);
12046   bool IsRoundOfExtLoad = false;
12047 
12048   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
12049       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
12050     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
12051     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
12052   }
12053   // Not a build vector of (possibly fp_rounded) loads.
12054   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
12055       N->getNumOperands() == 1)
12056     return SDValue();
12057 
12058   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
12059     // If any inputs are fp_round(extload), they all must be.
12060     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
12061       return SDValue();
12062 
12063     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
12064       N->getOperand(i);
12065     if (NextInput.getOpcode() != ISD::LOAD)
12066       return SDValue();
12067 
12068     SDValue PreviousInput =
12069       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
12070     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
12071     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
12072 
12073     // If any inputs are fp_round(extload), they all must be.
12074     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
12075       return SDValue();
12076 
12077     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
12078       InputsAreConsecutiveLoads = false;
12079     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
12080       InputsAreReverseConsecutive = false;
12081 
12082     // Exit early if the loads are neither consecutive nor reverse consecutive.
12083     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
12084       return SDValue();
12085   }
12086 
12087   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
12088          "The loads cannot be both consecutive and reverse consecutive.");
12089 
12090   SDValue FirstLoadOp =
12091     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
12092   SDValue LastLoadOp =
12093     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
12094                        N->getOperand(N->getNumOperands()-1);
12095 
12096   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
12097   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
12098   if (InputsAreConsecutiveLoads) {
12099     assert(LD1 && "Input needs to be a LoadSDNode.");
12100     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
12101                        LD1->getBasePtr(), LD1->getPointerInfo(),
12102                        LD1->getAlignment());
12103   }
12104   if (InputsAreReverseConsecutive) {
12105     assert(LDL && "Input needs to be a LoadSDNode.");
12106     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
12107                                LDL->getBasePtr(), LDL->getPointerInfo(),
12108                                LDL->getAlignment());
12109     SmallVector<int, 16> Ops;
12110     for (int i = N->getNumOperands() - 1; i >= 0; i--)
12111       Ops.push_back(i);
12112 
12113     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
12114                                 DAG.getUNDEF(N->getValueType(0)), Ops);
12115   }
12116   return SDValue();
12117 }
12118 
12119 // This function adds the required vector_shuffle needed to get
12120 // the elements of the vector extract in the correct position
12121 // as specified by the CorrectElems encoding.
12122 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
12123                                       SDValue Input, uint64_t Elems,
12124                                       uint64_t CorrectElems) {
12125   SDLoc dl(N);
12126 
12127   unsigned NumElems = Input.getValueType().getVectorNumElements();
12128   SmallVector<int, 16> ShuffleMask(NumElems, -1);
12129 
12130   // Knowing the element indices being extracted from the original
12131   // vector and the order in which they're being inserted, just put
12132   // them at element indices required for the instruction.
12133   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12134     if (DAG.getDataLayout().isLittleEndian())
12135       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
12136     else
12137       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
12138     CorrectElems = CorrectElems >> 8;
12139     Elems = Elems >> 8;
12140   }
12141 
12142   SDValue Shuffle =
12143       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
12144                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
12145 
12146   EVT Ty = N->getValueType(0);
12147   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
12148   return BV;
12149 }
12150 
12151 // Look for build vector patterns where input operands come from sign
12152 // extended vector_extract elements of specific indices. If the correct indices
12153 // aren't used, add a vector shuffle to fix up the indices and create a new
12154 // PPCISD:SExtVElems node which selects the vector sign extend instructions
12155 // during instruction selection.
12156 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
12157   // This array encodes the indices that the vector sign extend instructions
12158   // extract from when extending from one type to another for both BE and LE.
12159   // The right nibble of each byte corresponds to the LE incides.
12160   // and the left nibble of each byte corresponds to the BE incides.
12161   // For example: 0x3074B8FC  byte->word
12162   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
12163   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
12164   // For example: 0x000070F8  byte->double word
12165   // For LE: the allowed indices are: 0x0,0x8
12166   // For BE: the allowed indices are: 0x7,0xF
12167   uint64_t TargetElems[] = {
12168       0x3074B8FC, // b->w
12169       0x000070F8, // b->d
12170       0x10325476, // h->w
12171       0x00003074, // h->d
12172       0x00001032, // w->d
12173   };
12174 
12175   uint64_t Elems = 0;
12176   int Index;
12177   SDValue Input;
12178 
12179   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
12180     if (!Op)
12181       return false;
12182     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
12183         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
12184       return false;
12185 
12186     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
12187     // of the right width.
12188     SDValue Extract = Op.getOperand(0);
12189     if (Extract.getOpcode() == ISD::ANY_EXTEND)
12190       Extract = Extract.getOperand(0);
12191     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12192       return false;
12193 
12194     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
12195     if (!ExtOp)
12196       return false;
12197 
12198     Index = ExtOp->getZExtValue();
12199     if (Input && Input != Extract.getOperand(0))
12200       return false;
12201 
12202     if (!Input)
12203       Input = Extract.getOperand(0);
12204 
12205     Elems = Elems << 8;
12206     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
12207     Elems |= Index;
12208 
12209     return true;
12210   };
12211 
12212   // If the build vector operands aren't sign extended vector extracts,
12213   // of the same input vector, then return.
12214   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12215     if (!isSExtOfVecExtract(N->getOperand(i))) {
12216       return SDValue();
12217     }
12218   }
12219 
12220   // If the vector extract indicies are not correct, add the appropriate
12221   // vector_shuffle.
12222   int TgtElemArrayIdx;
12223   int InputSize = Input.getValueType().getScalarSizeInBits();
12224   int OutputSize = N->getValueType(0).getScalarSizeInBits();
12225   if (InputSize + OutputSize == 40)
12226     TgtElemArrayIdx = 0;
12227   else if (InputSize + OutputSize == 72)
12228     TgtElemArrayIdx = 1;
12229   else if (InputSize + OutputSize == 48)
12230     TgtElemArrayIdx = 2;
12231   else if (InputSize + OutputSize == 80)
12232     TgtElemArrayIdx = 3;
12233   else if (InputSize + OutputSize == 96)
12234     TgtElemArrayIdx = 4;
12235   else
12236     return SDValue();
12237 
12238   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
12239   CorrectElems = DAG.getDataLayout().isLittleEndian()
12240                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
12241                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
12242   if (Elems != CorrectElems) {
12243     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
12244   }
12245 
12246   // Regular lowering will catch cases where a shuffle is not needed.
12247   return SDValue();
12248 }
12249 
12250 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
12251                                                  DAGCombinerInfo &DCI) const {
12252   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12253          "Should be called with a BUILD_VECTOR node");
12254 
12255   SelectionDAG &DAG = DCI.DAG;
12256   SDLoc dl(N);
12257 
12258   if (!Subtarget.hasVSX())
12259     return SDValue();
12260 
12261   // The target independent DAG combiner will leave a build_vector of
12262   // float-to-int conversions intact. We can generate MUCH better code for
12263   // a float-to-int conversion of a vector of floats.
12264   SDValue FirstInput = N->getOperand(0);
12265   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
12266     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
12267     if (Reduced)
12268       return Reduced;
12269   }
12270 
12271   // If we're building a vector out of consecutive loads, just load that
12272   // vector type.
12273   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
12274   if (Reduced)
12275     return Reduced;
12276 
12277   // If we're building a vector out of extended elements from another vector
12278   // we have P9 vector integer extend instructions. The code assumes legal
12279   // input types (i.e. it can't handle things like v4i16) so do not run before
12280   // legalization.
12281   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
12282     Reduced = combineBVOfVecSExt(N, DAG);
12283     if (Reduced)
12284       return Reduced;
12285   }
12286 
12287 
12288   if (N->getValueType(0) != MVT::v2f64)
12289     return SDValue();
12290 
12291   // Looking for:
12292   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12293   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
12294       FirstInput.getOpcode() != ISD::UINT_TO_FP)
12295     return SDValue();
12296   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
12297       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
12298     return SDValue();
12299   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
12300     return SDValue();
12301 
12302   SDValue Ext1 = FirstInput.getOperand(0);
12303   SDValue Ext2 = N->getOperand(1).getOperand(0);
12304   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12305      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12306     return SDValue();
12307 
12308   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
12309   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
12310   if (!Ext1Op || !Ext2Op)
12311     return SDValue();
12312   if (Ext1.getValueType() != MVT::i32 ||
12313       Ext2.getValueType() != MVT::i32)
12314   if (Ext1.getOperand(0) != Ext2.getOperand(0))
12315     return SDValue();
12316 
12317   int FirstElem = Ext1Op->getZExtValue();
12318   int SecondElem = Ext2Op->getZExtValue();
12319   int SubvecIdx;
12320   if (FirstElem == 0 && SecondElem == 1)
12321     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
12322   else if (FirstElem == 2 && SecondElem == 3)
12323     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
12324   else
12325     return SDValue();
12326 
12327   SDValue SrcVec = Ext1.getOperand(0);
12328   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
12329     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
12330   return DAG.getNode(NodeType, dl, MVT::v2f64,
12331                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
12332 }
12333 
12334 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
12335                                               DAGCombinerInfo &DCI) const {
12336   assert((N->getOpcode() == ISD::SINT_TO_FP ||
12337           N->getOpcode() == ISD::UINT_TO_FP) &&
12338          "Need an int -> FP conversion node here");
12339 
12340   if (useSoftFloat() || !Subtarget.has64BitSupport())
12341     return SDValue();
12342 
12343   SelectionDAG &DAG = DCI.DAG;
12344   SDLoc dl(N);
12345   SDValue Op(N, 0);
12346 
12347   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12348   // from the hardware.
12349   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12350     return SDValue();
12351   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12352       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12353     return SDValue();
12354 
12355   SDValue FirstOperand(Op.getOperand(0));
12356   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12357     (FirstOperand.getValueType() == MVT::i8 ||
12358      FirstOperand.getValueType() == MVT::i16);
12359   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12360     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12361     bool DstDouble = Op.getValueType() == MVT::f64;
12362     unsigned ConvOp = Signed ?
12363       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
12364       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12365     SDValue WidthConst =
12366       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12367                             dl, false);
12368     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12369     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12370     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12371                                          DAG.getVTList(MVT::f64, MVT::Other),
12372                                          Ops, MVT::i8, LDN->getMemOperand());
12373 
12374     // For signed conversion, we need to sign-extend the value in the VSR
12375     if (Signed) {
12376       SDValue ExtOps[] = { Ld, WidthConst };
12377       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12378       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12379     } else
12380       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12381   }
12382 
12383 
12384   // For i32 intermediate values, unfortunately, the conversion functions
12385   // leave the upper 32 bits of the value are undefined. Within the set of
12386   // scalar instructions, we have no method for zero- or sign-extending the
12387   // value. Thus, we cannot handle i32 intermediate values here.
12388   if (Op.getOperand(0).getValueType() == MVT::i32)
12389     return SDValue();
12390 
12391   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12392          "UINT_TO_FP is supported only with FPCVT");
12393 
12394   // If we have FCFIDS, then use it when converting to single-precision.
12395   // Otherwise, convert to double-precision and then round.
12396   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12397                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12398                                                             : PPCISD::FCFIDS)
12399                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12400                                                             : PPCISD::FCFID);
12401   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12402                   ? MVT::f32
12403                   : MVT::f64;
12404 
12405   // If we're converting from a float, to an int, and back to a float again,
12406   // then we don't need the store/load pair at all.
12407   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12408        Subtarget.hasFPCVT()) ||
12409       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12410     SDValue Src = Op.getOperand(0).getOperand(0);
12411     if (Src.getValueType() == MVT::f32) {
12412       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12413       DCI.AddToWorklist(Src.getNode());
12414     } else if (Src.getValueType() != MVT::f64) {
12415       // Make sure that we don't pick up a ppc_fp128 source value.
12416       return SDValue();
12417     }
12418 
12419     unsigned FCTOp =
12420       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12421                                                         PPCISD::FCTIDUZ;
12422 
12423     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12424     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12425 
12426     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12427       FP = DAG.getNode(ISD::FP_ROUND, dl,
12428                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12429       DCI.AddToWorklist(FP.getNode());
12430     }
12431 
12432     return FP;
12433   }
12434 
12435   return SDValue();
12436 }
12437 
12438 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12439 // builtins) into loads with swaps.
12440 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12441                                               DAGCombinerInfo &DCI) const {
12442   SelectionDAG &DAG = DCI.DAG;
12443   SDLoc dl(N);
12444   SDValue Chain;
12445   SDValue Base;
12446   MachineMemOperand *MMO;
12447 
12448   switch (N->getOpcode()) {
12449   default:
12450     llvm_unreachable("Unexpected opcode for little endian VSX load");
12451   case ISD::LOAD: {
12452     LoadSDNode *LD = cast<LoadSDNode>(N);
12453     Chain = LD->getChain();
12454     Base = LD->getBasePtr();
12455     MMO = LD->getMemOperand();
12456     // If the MMO suggests this isn't a load of a full vector, leave
12457     // things alone.  For a built-in, we have to make the change for
12458     // correctness, so if there is a size problem that will be a bug.
12459     if (MMO->getSize() < 16)
12460       return SDValue();
12461     break;
12462   }
12463   case ISD::INTRINSIC_W_CHAIN: {
12464     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12465     Chain = Intrin->getChain();
12466     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12467     // us what we want. Get operand 2 instead.
12468     Base = Intrin->getOperand(2);
12469     MMO = Intrin->getMemOperand();
12470     break;
12471   }
12472   }
12473 
12474   MVT VecTy = N->getValueType(0).getSimpleVT();
12475 
12476   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12477   // aligned and the type is a vector with elements up to 4 bytes
12478   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12479       && VecTy.getScalarSizeInBits() <= 32 ) {
12480     return SDValue();
12481   }
12482 
12483   SDValue LoadOps[] = { Chain, Base };
12484   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12485                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12486                                          LoadOps, MVT::v2f64, MMO);
12487 
12488   DCI.AddToWorklist(Load.getNode());
12489   Chain = Load.getValue(1);
12490   SDValue Swap = DAG.getNode(
12491       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12492   DCI.AddToWorklist(Swap.getNode());
12493 
12494   // Add a bitcast if the resulting load type doesn't match v2f64.
12495   if (VecTy != MVT::v2f64) {
12496     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12497     DCI.AddToWorklist(N.getNode());
12498     // Package {bitcast value, swap's chain} to match Load's shape.
12499     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12500                        N, Swap.getValue(1));
12501   }
12502 
12503   return Swap;
12504 }
12505 
12506 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12507 // builtins) into stores with swaps.
12508 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12509                                                DAGCombinerInfo &DCI) const {
12510   SelectionDAG &DAG = DCI.DAG;
12511   SDLoc dl(N);
12512   SDValue Chain;
12513   SDValue Base;
12514   unsigned SrcOpnd;
12515   MachineMemOperand *MMO;
12516 
12517   switch (N->getOpcode()) {
12518   default:
12519     llvm_unreachable("Unexpected opcode for little endian VSX store");
12520   case ISD::STORE: {
12521     StoreSDNode *ST = cast<StoreSDNode>(N);
12522     Chain = ST->getChain();
12523     Base = ST->getBasePtr();
12524     MMO = ST->getMemOperand();
12525     SrcOpnd = 1;
12526     // If the MMO suggests this isn't a store of a full vector, leave
12527     // things alone.  For a built-in, we have to make the change for
12528     // correctness, so if there is a size problem that will be a bug.
12529     if (MMO->getSize() < 16)
12530       return SDValue();
12531     break;
12532   }
12533   case ISD::INTRINSIC_VOID: {
12534     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12535     Chain = Intrin->getChain();
12536     // Intrin->getBasePtr() oddly does not get what we want.
12537     Base = Intrin->getOperand(3);
12538     MMO = Intrin->getMemOperand();
12539     SrcOpnd = 2;
12540     break;
12541   }
12542   }
12543 
12544   SDValue Src = N->getOperand(SrcOpnd);
12545   MVT VecTy = Src.getValueType().getSimpleVT();
12546 
12547   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12548   // aligned and the type is a vector with elements up to 4 bytes
12549   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12550       && VecTy.getScalarSizeInBits() <= 32 ) {
12551     return SDValue();
12552   }
12553 
12554   // All stores are done as v2f64 and possible bit cast.
12555   if (VecTy != MVT::v2f64) {
12556     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12557     DCI.AddToWorklist(Src.getNode());
12558   }
12559 
12560   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12561                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12562   DCI.AddToWorklist(Swap.getNode());
12563   Chain = Swap.getValue(1);
12564   SDValue StoreOps[] = { Chain, Swap, Base };
12565   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12566                                           DAG.getVTList(MVT::Other),
12567                                           StoreOps, VecTy, MMO);
12568   DCI.AddToWorklist(Store.getNode());
12569   return Store;
12570 }
12571 
12572 // Handle DAG combine for STORE (FP_TO_INT F).
12573 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
12574                                                DAGCombinerInfo &DCI) const {
12575 
12576   SelectionDAG &DAG = DCI.DAG;
12577   SDLoc dl(N);
12578   unsigned Opcode = N->getOperand(1).getOpcode();
12579 
12580   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
12581          && "Not a FP_TO_INT Instruction!");
12582 
12583   SDValue Val = N->getOperand(1).getOperand(0);
12584   EVT Op1VT = N->getOperand(1).getValueType();
12585   EVT ResVT = Val.getValueType();
12586 
12587   // Floating point types smaller than 32 bits are not legal on Power.
12588   if (ResVT.getScalarSizeInBits() < 32)
12589     return SDValue();
12590 
12591   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
12592   bool ValidTypeForStoreFltAsInt =
12593         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
12594          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
12595 
12596   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
12597       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
12598     return SDValue();
12599 
12600   // Extend f32 values to f64
12601   if (ResVT.getScalarSizeInBits() == 32) {
12602     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12603     DCI.AddToWorklist(Val.getNode());
12604   }
12605 
12606   // Set signed or unsigned conversion opcode.
12607   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
12608                           PPCISD::FP_TO_SINT_IN_VSR :
12609                           PPCISD::FP_TO_UINT_IN_VSR;
12610 
12611   Val = DAG.getNode(ConvOpcode,
12612                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
12613   DCI.AddToWorklist(Val.getNode());
12614 
12615   // Set number of bytes being converted.
12616   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
12617   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
12618                     DAG.getIntPtrConstant(ByteSize, dl, false),
12619                     DAG.getValueType(Op1VT) };
12620 
12621   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
12622           DAG.getVTList(MVT::Other), Ops,
12623           cast<StoreSDNode>(N)->getMemoryVT(),
12624           cast<StoreSDNode>(N)->getMemOperand());
12625 
12626   DCI.AddToWorklist(Val.getNode());
12627   return Val;
12628 }
12629 
12630 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12631                                              DAGCombinerInfo &DCI) const {
12632   SelectionDAG &DAG = DCI.DAG;
12633   SDLoc dl(N);
12634   switch (N->getOpcode()) {
12635   default: break;
12636   case ISD::ADD:
12637     return combineADD(N, DCI);
12638   case ISD::SHL:
12639     return combineSHL(N, DCI);
12640   case ISD::SRA:
12641     return combineSRA(N, DCI);
12642   case ISD::SRL:
12643     return combineSRL(N, DCI);
12644   case PPCISD::SHL:
12645     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12646         return N->getOperand(0);
12647     break;
12648   case PPCISD::SRL:
12649     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12650         return N->getOperand(0);
12651     break;
12652   case PPCISD::SRA:
12653     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12654       if (C->isNullValue() ||   //  0 >>s V -> 0.
12655           C->isAllOnesValue())    // -1 >>s V -> -1.
12656         return N->getOperand(0);
12657     }
12658     break;
12659   case ISD::SIGN_EXTEND:
12660   case ISD::ZERO_EXTEND:
12661   case ISD::ANY_EXTEND:
12662     return DAGCombineExtBoolTrunc(N, DCI);
12663   case ISD::TRUNCATE:
12664     return combineTRUNCATE(N, DCI);
12665   case ISD::SETCC:
12666     if (SDValue CSCC = combineSetCC(N, DCI))
12667       return CSCC;
12668     LLVM_FALLTHROUGH;
12669   case ISD::SELECT_CC:
12670     return DAGCombineTruncBoolExt(N, DCI);
12671   case ISD::SINT_TO_FP:
12672   case ISD::UINT_TO_FP:
12673     return combineFPToIntToFP(N, DCI);
12674   case ISD::STORE: {
12675 
12676     EVT Op1VT = N->getOperand(1).getValueType();
12677     unsigned Opcode = N->getOperand(1).getOpcode();
12678 
12679     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
12680       SDValue Val= combineStoreFPToInt(N, DCI);
12681       if (Val)
12682         return Val;
12683     }
12684 
12685     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12686     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
12687         N->getOperand(1).getNode()->hasOneUse() &&
12688         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
12689          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
12690 
12691       // STBRX can only handle simple types and it makes no sense to store less
12692       // two bytes in byte-reversed order.
12693       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12694       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
12695         break;
12696 
12697       SDValue BSwapOp = N->getOperand(1).getOperand(0);
12698       // Do an any-extend to 32-bits if this is a half-word input.
12699       if (BSwapOp.getValueType() == MVT::i16)
12700         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12701 
12702       // If the type of BSWAP operand is wider than stored memory width
12703       // it need to be shifted to the right side before STBRX.
12704       if (Op1VT.bitsGT(mVT)) {
12705         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12706         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12707                               DAG.getConstant(Shift, dl, MVT::i32));
12708         // Need to truncate if this is a bswap of i64 stored as i32/i16.
12709         if (Op1VT == MVT::i64)
12710           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12711       }
12712 
12713       SDValue Ops[] = {
12714         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12715       };
12716       return
12717         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12718                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12719                                 cast<StoreSDNode>(N)->getMemOperand());
12720     }
12721 
12722     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
12723     // So it can increase the chance of CSE constant construction.
12724     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
12725         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
12726       // Need to sign-extended to 64-bits to handle negative values.
12727       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
12728       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
12729                                     MemVT.getSizeInBits());
12730       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
12731 
12732       // DAG.getTruncStore() can't be used here because it doesn't accept
12733       // the general (base + offset) addressing mode.
12734       // So we use UpdateNodeOperands and setTruncatingStore instead.
12735       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
12736                              N->getOperand(3));
12737       cast<StoreSDNode>(N)->setTruncatingStore(true);
12738       return SDValue(N, 0);
12739     }
12740 
12741     // For little endian, VSX stores require generating xxswapd/lxvd2x.
12742     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12743     if (Op1VT.isSimple()) {
12744       MVT StoreVT = Op1VT.getSimpleVT();
12745       if (Subtarget.needsSwapsForVSXMemOps() &&
12746           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12747            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12748         return expandVSXStoreForLE(N, DCI);
12749     }
12750     break;
12751   }
12752   case ISD::LOAD: {
12753     LoadSDNode *LD = cast<LoadSDNode>(N);
12754     EVT VT = LD->getValueType(0);
12755 
12756     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12757     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12758     if (VT.isSimple()) {
12759       MVT LoadVT = VT.getSimpleVT();
12760       if (Subtarget.needsSwapsForVSXMemOps() &&
12761           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12762            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12763         return expandVSXLoadForLE(N, DCI);
12764     }
12765 
12766     // We sometimes end up with a 64-bit integer load, from which we extract
12767     // two single-precision floating-point numbers. This happens with
12768     // std::complex<float>, and other similar structures, because of the way we
12769     // canonicalize structure copies. However, if we lack direct moves,
12770     // then the final bitcasts from the extracted integer values to the
12771     // floating-point numbers turn into store/load pairs. Even with direct moves,
12772     // just loading the two floating-point numbers is likely better.
12773     auto ReplaceTwoFloatLoad = [&]() {
12774       if (VT != MVT::i64)
12775         return false;
12776 
12777       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12778           LD->isVolatile())
12779         return false;
12780 
12781       //  We're looking for a sequence like this:
12782       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12783       //      t16: i64 = srl t13, Constant:i32<32>
12784       //    t17: i32 = truncate t16
12785       //  t18: f32 = bitcast t17
12786       //    t19: i32 = truncate t13
12787       //  t20: f32 = bitcast t19
12788 
12789       if (!LD->hasNUsesOfValue(2, 0))
12790         return false;
12791 
12792       auto UI = LD->use_begin();
12793       while (UI.getUse().getResNo() != 0) ++UI;
12794       SDNode *Trunc = *UI++;
12795       while (UI.getUse().getResNo() != 0) ++UI;
12796       SDNode *RightShift = *UI;
12797       if (Trunc->getOpcode() != ISD::TRUNCATE)
12798         std::swap(Trunc, RightShift);
12799 
12800       if (Trunc->getOpcode() != ISD::TRUNCATE ||
12801           Trunc->getValueType(0) != MVT::i32 ||
12802           !Trunc->hasOneUse())
12803         return false;
12804       if (RightShift->getOpcode() != ISD::SRL ||
12805           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12806           RightShift->getConstantOperandVal(1) != 32 ||
12807           !RightShift->hasOneUse())
12808         return false;
12809 
12810       SDNode *Trunc2 = *RightShift->use_begin();
12811       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12812           Trunc2->getValueType(0) != MVT::i32 ||
12813           !Trunc2->hasOneUse())
12814         return false;
12815 
12816       SDNode *Bitcast = *Trunc->use_begin();
12817       SDNode *Bitcast2 = *Trunc2->use_begin();
12818 
12819       if (Bitcast->getOpcode() != ISD::BITCAST ||
12820           Bitcast->getValueType(0) != MVT::f32)
12821         return false;
12822       if (Bitcast2->getOpcode() != ISD::BITCAST ||
12823           Bitcast2->getValueType(0) != MVT::f32)
12824         return false;
12825 
12826       if (Subtarget.isLittleEndian())
12827         std::swap(Bitcast, Bitcast2);
12828 
12829       // Bitcast has the second float (in memory-layout order) and Bitcast2
12830       // has the first one.
12831 
12832       SDValue BasePtr = LD->getBasePtr();
12833       if (LD->isIndexed()) {
12834         assert(LD->getAddressingMode() == ISD::PRE_INC &&
12835                "Non-pre-inc AM on PPC?");
12836         BasePtr =
12837           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12838                       LD->getOffset());
12839       }
12840 
12841       auto MMOFlags =
12842           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12843       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12844                                       LD->getPointerInfo(), LD->getAlignment(),
12845                                       MMOFlags, LD->getAAInfo());
12846       SDValue AddPtr =
12847         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12848                     BasePtr, DAG.getIntPtrConstant(4, dl));
12849       SDValue FloatLoad2 = DAG.getLoad(
12850           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12851           LD->getPointerInfo().getWithOffset(4),
12852           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12853 
12854       if (LD->isIndexed()) {
12855         // Note that DAGCombine should re-form any pre-increment load(s) from
12856         // what is produced here if that makes sense.
12857         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
12858       }
12859 
12860       DCI.CombineTo(Bitcast2, FloatLoad);
12861       DCI.CombineTo(Bitcast, FloatLoad2);
12862 
12863       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
12864                                     SDValue(FloatLoad2.getNode(), 1));
12865       return true;
12866     };
12867 
12868     if (ReplaceTwoFloatLoad())
12869       return SDValue(N, 0);
12870 
12871     EVT MemVT = LD->getMemoryVT();
12872     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
12873     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
12874     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
12875     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
12876     if (LD->isUnindexed() && VT.isVector() &&
12877         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
12878           // P8 and later hardware should just use LOAD.
12879           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
12880                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
12881          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
12882           LD->getAlignment() >= ScalarABIAlignment)) &&
12883         LD->getAlignment() < ABIAlignment) {
12884       // This is a type-legal unaligned Altivec or QPX load.
12885       SDValue Chain = LD->getChain();
12886       SDValue Ptr = LD->getBasePtr();
12887       bool isLittleEndian = Subtarget.isLittleEndian();
12888 
12889       // This implements the loading of unaligned vectors as described in
12890       // the venerable Apple Velocity Engine overview. Specifically:
12891       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
12892       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
12893       //
12894       // The general idea is to expand a sequence of one or more unaligned
12895       // loads into an alignment-based permutation-control instruction (lvsl
12896       // or lvsr), a series of regular vector loads (which always truncate
12897       // their input address to an aligned address), and a series of
12898       // permutations.  The results of these permutations are the requested
12899       // loaded values.  The trick is that the last "extra" load is not taken
12900       // from the address you might suspect (sizeof(vector) bytes after the
12901       // last requested load), but rather sizeof(vector) - 1 bytes after the
12902       // last requested vector. The point of this is to avoid a page fault if
12903       // the base address happened to be aligned. This works because if the
12904       // base address is aligned, then adding less than a full vector length
12905       // will cause the last vector in the sequence to be (re)loaded.
12906       // Otherwise, the next vector will be fetched as you might suspect was
12907       // necessary.
12908 
12909       // We might be able to reuse the permutation generation from
12910       // a different base address offset from this one by an aligned amount.
12911       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
12912       // optimization later.
12913       Intrinsic::ID Intr, IntrLD, IntrPerm;
12914       MVT PermCntlTy, PermTy, LDTy;
12915       if (Subtarget.hasAltivec()) {
12916         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
12917                                  Intrinsic::ppc_altivec_lvsl;
12918         IntrLD = Intrinsic::ppc_altivec_lvx;
12919         IntrPerm = Intrinsic::ppc_altivec_vperm;
12920         PermCntlTy = MVT::v16i8;
12921         PermTy = MVT::v4i32;
12922         LDTy = MVT::v4i32;
12923       } else {
12924         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
12925                                        Intrinsic::ppc_qpx_qvlpcls;
12926         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
12927                                        Intrinsic::ppc_qpx_qvlfs;
12928         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
12929         PermCntlTy = MVT::v4f64;
12930         PermTy = MVT::v4f64;
12931         LDTy = MemVT.getSimpleVT();
12932       }
12933 
12934       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
12935 
12936       // Create the new MMO for the new base load. It is like the original MMO,
12937       // but represents an area in memory almost twice the vector size centered
12938       // on the original address. If the address is unaligned, we might start
12939       // reading up to (sizeof(vector)-1) bytes below the address of the
12940       // original unaligned load.
12941       MachineFunction &MF = DAG.getMachineFunction();
12942       MachineMemOperand *BaseMMO =
12943         MF.getMachineMemOperand(LD->getMemOperand(),
12944                                 -(long)MemVT.getStoreSize()+1,
12945                                 2*MemVT.getStoreSize()-1);
12946 
12947       // Create the new base load.
12948       SDValue LDXIntID =
12949           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
12950       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
12951       SDValue BaseLoad =
12952         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12953                                 DAG.getVTList(PermTy, MVT::Other),
12954                                 BaseLoadOps, LDTy, BaseMMO);
12955 
12956       // Note that the value of IncOffset (which is provided to the next
12957       // load's pointer info offset value, and thus used to calculate the
12958       // alignment), and the value of IncValue (which is actually used to
12959       // increment the pointer value) are different! This is because we
12960       // require the next load to appear to be aligned, even though it
12961       // is actually offset from the base pointer by a lesser amount.
12962       int IncOffset = VT.getSizeInBits() / 8;
12963       int IncValue = IncOffset;
12964 
12965       // Walk (both up and down) the chain looking for another load at the real
12966       // (aligned) offset (the alignment of the other load does not matter in
12967       // this case). If found, then do not use the offset reduction trick, as
12968       // that will prevent the loads from being later combined (as they would
12969       // otherwise be duplicates).
12970       if (!findConsecutiveLoad(LD, DAG))
12971         --IncValue;
12972 
12973       SDValue Increment =
12974           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
12975       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
12976 
12977       MachineMemOperand *ExtraMMO =
12978         MF.getMachineMemOperand(LD->getMemOperand(),
12979                                 1, 2*MemVT.getStoreSize()-1);
12980       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
12981       SDValue ExtraLoad =
12982         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12983                                 DAG.getVTList(PermTy, MVT::Other),
12984                                 ExtraLoadOps, LDTy, ExtraMMO);
12985 
12986       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
12987         BaseLoad.getValue(1), ExtraLoad.getValue(1));
12988 
12989       // Because vperm has a big-endian bias, we must reverse the order
12990       // of the input vectors and complement the permute control vector
12991       // when generating little endian code.  We have already handled the
12992       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
12993       // and ExtraLoad here.
12994       SDValue Perm;
12995       if (isLittleEndian)
12996         Perm = BuildIntrinsicOp(IntrPerm,
12997                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
12998       else
12999         Perm = BuildIntrinsicOp(IntrPerm,
13000                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
13001 
13002       if (VT != PermTy)
13003         Perm = Subtarget.hasAltivec() ?
13004                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
13005                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
13006                                DAG.getTargetConstant(1, dl, MVT::i64));
13007                                // second argument is 1 because this rounding
13008                                // is always exact.
13009 
13010       // The output of the permutation is our loaded result, the TokenFactor is
13011       // our new chain.
13012       DCI.CombineTo(N, Perm, TF);
13013       return SDValue(N, 0);
13014     }
13015     }
13016     break;
13017     case ISD::INTRINSIC_WO_CHAIN: {
13018       bool isLittleEndian = Subtarget.isLittleEndian();
13019       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13020       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
13021                                            : Intrinsic::ppc_altivec_lvsl);
13022       if ((IID == Intr ||
13023            IID == Intrinsic::ppc_qpx_qvlpcld  ||
13024            IID == Intrinsic::ppc_qpx_qvlpcls) &&
13025         N->getOperand(1)->getOpcode() == ISD::ADD) {
13026         SDValue Add = N->getOperand(1);
13027 
13028         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
13029                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
13030 
13031         if (DAG.MaskedValueIsZero(Add->getOperand(1),
13032                                   APInt::getAllOnesValue(Bits /* alignment */)
13033                                       .zext(Add.getScalarValueSizeInBits()))) {
13034           SDNode *BasePtr = Add->getOperand(0).getNode();
13035           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13036                                     UE = BasePtr->use_end();
13037                UI != UE; ++UI) {
13038             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13039                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
13040               // We've found another LVSL/LVSR, and this address is an aligned
13041               // multiple of that one. The results will be the same, so use the
13042               // one we've just found instead.
13043 
13044               return SDValue(*UI, 0);
13045             }
13046           }
13047         }
13048 
13049         if (isa<ConstantSDNode>(Add->getOperand(1))) {
13050           SDNode *BasePtr = Add->getOperand(0).getNode();
13051           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13052                UE = BasePtr->use_end(); UI != UE; ++UI) {
13053             if (UI->getOpcode() == ISD::ADD &&
13054                 isa<ConstantSDNode>(UI->getOperand(1)) &&
13055                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
13056                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
13057                 (1ULL << Bits) == 0) {
13058               SDNode *OtherAdd = *UI;
13059               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
13060                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
13061                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13062                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
13063                   return SDValue(*VI, 0);
13064                 }
13065               }
13066             }
13067           }
13068         }
13069       }
13070 
13071       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
13072       // Expose the vabsduw/h/b opportunity for down stream
13073       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
13074           (IID == Intrinsic::ppc_altivec_vmaxsw ||
13075            IID == Intrinsic::ppc_altivec_vmaxsh ||
13076            IID == Intrinsic::ppc_altivec_vmaxsb)) {
13077         SDValue V1 = N->getOperand(1);
13078         SDValue V2 = N->getOperand(2);
13079         if ((V1.getSimpleValueType() == MVT::v4i32 ||
13080              V1.getSimpleValueType() == MVT::v8i16 ||
13081              V1.getSimpleValueType() == MVT::v16i8) &&
13082             V1.getSimpleValueType() == V2.getSimpleValueType()) {
13083           // (0-a, a)
13084           if (V1.getOpcode() == ISD::SUB &&
13085               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
13086               V1.getOperand(1) == V2) {
13087             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
13088           }
13089           // (a, 0-a)
13090           if (V2.getOpcode() == ISD::SUB &&
13091               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
13092               V2.getOperand(1) == V1) {
13093             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13094           }
13095           // (x-y, y-x)
13096           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
13097               V1.getOperand(0) == V2.getOperand(1) &&
13098               V1.getOperand(1) == V2.getOperand(0)) {
13099             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13100           }
13101         }
13102       }
13103     }
13104 
13105     break;
13106   case ISD::INTRINSIC_W_CHAIN:
13107     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13108     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13109     if (Subtarget.needsSwapsForVSXMemOps()) {
13110       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13111       default:
13112         break;
13113       case Intrinsic::ppc_vsx_lxvw4x:
13114       case Intrinsic::ppc_vsx_lxvd2x:
13115         return expandVSXLoadForLE(N, DCI);
13116       }
13117     }
13118     break;
13119   case ISD::INTRINSIC_VOID:
13120     // For little endian, VSX stores require generating xxswapd/stxvd2x.
13121     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13122     if (Subtarget.needsSwapsForVSXMemOps()) {
13123       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13124       default:
13125         break;
13126       case Intrinsic::ppc_vsx_stxvw4x:
13127       case Intrinsic::ppc_vsx_stxvd2x:
13128         return expandVSXStoreForLE(N, DCI);
13129       }
13130     }
13131     break;
13132   case ISD::BSWAP:
13133     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
13134     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
13135         N->getOperand(0).hasOneUse() &&
13136         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
13137          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
13138           N->getValueType(0) == MVT::i64))) {
13139       SDValue Load = N->getOperand(0);
13140       LoadSDNode *LD = cast<LoadSDNode>(Load);
13141       // Create the byte-swapping load.
13142       SDValue Ops[] = {
13143         LD->getChain(),    // Chain
13144         LD->getBasePtr(),  // Ptr
13145         DAG.getValueType(N->getValueType(0)) // VT
13146       };
13147       SDValue BSLoad =
13148         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
13149                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
13150                                               MVT::i64 : MVT::i32, MVT::Other),
13151                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
13152 
13153       // If this is an i16 load, insert the truncate.
13154       SDValue ResVal = BSLoad;
13155       if (N->getValueType(0) == MVT::i16)
13156         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
13157 
13158       // First, combine the bswap away.  This makes the value produced by the
13159       // load dead.
13160       DCI.CombineTo(N, ResVal);
13161 
13162       // Next, combine the load away, we give it a bogus result value but a real
13163       // chain result.  The result value is dead because the bswap is dead.
13164       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
13165 
13166       // Return N so it doesn't get rechecked!
13167       return SDValue(N, 0);
13168     }
13169     break;
13170   case PPCISD::VCMP:
13171     // If a VCMPo node already exists with exactly the same operands as this
13172     // node, use its result instead of this node (VCMPo computes both a CR6 and
13173     // a normal output).
13174     //
13175     if (!N->getOperand(0).hasOneUse() &&
13176         !N->getOperand(1).hasOneUse() &&
13177         !N->getOperand(2).hasOneUse()) {
13178 
13179       // Scan all of the users of the LHS, looking for VCMPo's that match.
13180       SDNode *VCMPoNode = nullptr;
13181 
13182       SDNode *LHSN = N->getOperand(0).getNode();
13183       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
13184            UI != E; ++UI)
13185         if (UI->getOpcode() == PPCISD::VCMPo &&
13186             UI->getOperand(1) == N->getOperand(1) &&
13187             UI->getOperand(2) == N->getOperand(2) &&
13188             UI->getOperand(0) == N->getOperand(0)) {
13189           VCMPoNode = *UI;
13190           break;
13191         }
13192 
13193       // If there is no VCMPo node, or if the flag value has a single use, don't
13194       // transform this.
13195       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
13196         break;
13197 
13198       // Look at the (necessarily single) use of the flag value.  If it has a
13199       // chain, this transformation is more complex.  Note that multiple things
13200       // could use the value result, which we should ignore.
13201       SDNode *FlagUser = nullptr;
13202       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
13203            FlagUser == nullptr; ++UI) {
13204         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
13205         SDNode *User = *UI;
13206         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
13207           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
13208             FlagUser = User;
13209             break;
13210           }
13211         }
13212       }
13213 
13214       // If the user is a MFOCRF instruction, we know this is safe.
13215       // Otherwise we give up for right now.
13216       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
13217         return SDValue(VCMPoNode, 0);
13218     }
13219     break;
13220   case ISD::BRCOND: {
13221     SDValue Cond = N->getOperand(1);
13222     SDValue Target = N->getOperand(2);
13223 
13224     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13225         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
13226           Intrinsic::ppc_is_decremented_ctr_nonzero) {
13227 
13228       // We now need to make the intrinsic dead (it cannot be instruction
13229       // selected).
13230       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
13231       assert(Cond.getNode()->hasOneUse() &&
13232              "Counter decrement has more than one use");
13233 
13234       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
13235                          N->getOperand(0), Target);
13236     }
13237   }
13238   break;
13239   case ISD::BR_CC: {
13240     // If this is a branch on an altivec predicate comparison, lower this so
13241     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
13242     // lowering is done pre-legalize, because the legalizer lowers the predicate
13243     // compare down to code that is difficult to reassemble.
13244     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13245     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
13246 
13247     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13248     // value. If so, pass-through the AND to get to the intrinsic.
13249     if (LHS.getOpcode() == ISD::AND &&
13250         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13251         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
13252           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13253         isa<ConstantSDNode>(LHS.getOperand(1)) &&
13254         !isNullConstant(LHS.getOperand(1)))
13255       LHS = LHS.getOperand(0);
13256 
13257     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13258         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
13259           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13260         isa<ConstantSDNode>(RHS)) {
13261       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
13262              "Counter decrement comparison is not EQ or NE");
13263 
13264       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13265       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
13266                     (CC == ISD::SETNE && !Val);
13267 
13268       // We now need to make the intrinsic dead (it cannot be instruction
13269       // selected).
13270       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
13271       assert(LHS.getNode()->hasOneUse() &&
13272              "Counter decrement has more than one use");
13273 
13274       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
13275                          N->getOperand(0), N->getOperand(4));
13276     }
13277 
13278     int CompareOpc;
13279     bool isDot;
13280 
13281     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13282         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
13283         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
13284       assert(isDot && "Can't compare against a vector result!");
13285 
13286       // If this is a comparison against something other than 0/1, then we know
13287       // that the condition is never/always true.
13288       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13289       if (Val != 0 && Val != 1) {
13290         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
13291           return N->getOperand(0);
13292         // Always !=, turn it into an unconditional branch.
13293         return DAG.getNode(ISD::BR, dl, MVT::Other,
13294                            N->getOperand(0), N->getOperand(4));
13295       }
13296 
13297       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
13298 
13299       // Create the PPCISD altivec 'dot' comparison node.
13300       SDValue Ops[] = {
13301         LHS.getOperand(2),  // LHS of compare
13302         LHS.getOperand(3),  // RHS of compare
13303         DAG.getConstant(CompareOpc, dl, MVT::i32)
13304       };
13305       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
13306       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
13307 
13308       // Unpack the result based on how the target uses it.
13309       PPC::Predicate CompOpc;
13310       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
13311       default:  // Can't happen, don't crash on invalid number though.
13312       case 0:   // Branch on the value of the EQ bit of CR6.
13313         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
13314         break;
13315       case 1:   // Branch on the inverted value of the EQ bit of CR6.
13316         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
13317         break;
13318       case 2:   // Branch on the value of the LT bit of CR6.
13319         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
13320         break;
13321       case 3:   // Branch on the inverted value of the LT bit of CR6.
13322         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
13323         break;
13324       }
13325 
13326       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
13327                          DAG.getConstant(CompOpc, dl, MVT::i32),
13328                          DAG.getRegister(PPC::CR6, MVT::i32),
13329                          N->getOperand(4), CompNode.getValue(1));
13330     }
13331     break;
13332   }
13333   case ISD::BUILD_VECTOR:
13334     return DAGCombineBuildVector(N, DCI);
13335   case ISD::ABS:
13336     return combineABS(N, DCI);
13337   case ISD::VSELECT:
13338     return combineVSelect(N, DCI);
13339   }
13340 
13341   return SDValue();
13342 }
13343 
13344 SDValue
13345 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
13346                                  SelectionDAG &DAG,
13347                                  SmallVectorImpl<SDNode *> &Created) const {
13348   // fold (sdiv X, pow2)
13349   EVT VT = N->getValueType(0);
13350   if (VT == MVT::i64 && !Subtarget.isPPC64())
13351     return SDValue();
13352   if ((VT != MVT::i32 && VT != MVT::i64) ||
13353       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
13354     return SDValue();
13355 
13356   SDLoc DL(N);
13357   SDValue N0 = N->getOperand(0);
13358 
13359   bool IsNegPow2 = (-Divisor).isPowerOf2();
13360   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
13361   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
13362 
13363   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
13364   Created.push_back(Op.getNode());
13365 
13366   if (IsNegPow2) {
13367     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
13368     Created.push_back(Op.getNode());
13369   }
13370 
13371   return Op;
13372 }
13373 
13374 //===----------------------------------------------------------------------===//
13375 // Inline Assembly Support
13376 //===----------------------------------------------------------------------===//
13377 
13378 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13379                                                       KnownBits &Known,
13380                                                       const APInt &DemandedElts,
13381                                                       const SelectionDAG &DAG,
13382                                                       unsigned Depth) const {
13383   Known.resetAll();
13384   switch (Op.getOpcode()) {
13385   default: break;
13386   case PPCISD::LBRX: {
13387     // lhbrx is known to have the top bits cleared out.
13388     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
13389       Known.Zero = 0xFFFF0000;
13390     break;
13391   }
13392   case ISD::INTRINSIC_WO_CHAIN: {
13393     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
13394     default: break;
13395     case Intrinsic::ppc_altivec_vcmpbfp_p:
13396     case Intrinsic::ppc_altivec_vcmpeqfp_p:
13397     case Intrinsic::ppc_altivec_vcmpequb_p:
13398     case Intrinsic::ppc_altivec_vcmpequh_p:
13399     case Intrinsic::ppc_altivec_vcmpequw_p:
13400     case Intrinsic::ppc_altivec_vcmpequd_p:
13401     case Intrinsic::ppc_altivec_vcmpgefp_p:
13402     case Intrinsic::ppc_altivec_vcmpgtfp_p:
13403     case Intrinsic::ppc_altivec_vcmpgtsb_p:
13404     case Intrinsic::ppc_altivec_vcmpgtsh_p:
13405     case Intrinsic::ppc_altivec_vcmpgtsw_p:
13406     case Intrinsic::ppc_altivec_vcmpgtsd_p:
13407     case Intrinsic::ppc_altivec_vcmpgtub_p:
13408     case Intrinsic::ppc_altivec_vcmpgtuh_p:
13409     case Intrinsic::ppc_altivec_vcmpgtuw_p:
13410     case Intrinsic::ppc_altivec_vcmpgtud_p:
13411       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
13412       break;
13413     }
13414   }
13415   }
13416 }
13417 
13418 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13419   switch (Subtarget.getDarwinDirective()) {
13420   default: break;
13421   case PPC::DIR_970:
13422   case PPC::DIR_PWR4:
13423   case PPC::DIR_PWR5:
13424   case PPC::DIR_PWR5X:
13425   case PPC::DIR_PWR6:
13426   case PPC::DIR_PWR6X:
13427   case PPC::DIR_PWR7:
13428   case PPC::DIR_PWR8:
13429   case PPC::DIR_PWR9: {
13430     if (!ML)
13431       break;
13432 
13433     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13434 
13435     // For small loops (between 5 and 8 instructions), align to a 32-byte
13436     // boundary so that the entire loop fits in one instruction-cache line.
13437     uint64_t LoopSize = 0;
13438     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13439       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13440         LoopSize += TII->getInstSizeInBytes(*J);
13441         if (LoopSize > 32)
13442           break;
13443       }
13444 
13445     if (LoopSize > 16 && LoopSize <= 32)
13446       return 5;
13447 
13448     break;
13449   }
13450   }
13451 
13452   return TargetLowering::getPrefLoopAlignment(ML);
13453 }
13454 
13455 /// getConstraintType - Given a constraint, return the type of
13456 /// constraint it is for this target.
13457 PPCTargetLowering::ConstraintType
13458 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13459   if (Constraint.size() == 1) {
13460     switch (Constraint[0]) {
13461     default: break;
13462     case 'b':
13463     case 'r':
13464     case 'f':
13465     case 'd':
13466     case 'v':
13467     case 'y':
13468       return C_RegisterClass;
13469     case 'Z':
13470       // FIXME: While Z does indicate a memory constraint, it specifically
13471       // indicates an r+r address (used in conjunction with the 'y' modifier
13472       // in the replacement string). Currently, we're forcing the base
13473       // register to be r0 in the asm printer (which is interpreted as zero)
13474       // and forming the complete address in the second register. This is
13475       // suboptimal.
13476       return C_Memory;
13477     }
13478   } else if (Constraint == "wc") { // individual CR bits.
13479     return C_RegisterClass;
13480   } else if (Constraint == "wa" || Constraint == "wd" ||
13481              Constraint == "wf" || Constraint == "ws" ||
13482              Constraint == "wi") {
13483     return C_RegisterClass; // VSX registers.
13484   }
13485   return TargetLowering::getConstraintType(Constraint);
13486 }
13487 
13488 /// Examine constraint type and operand type and determine a weight value.
13489 /// This object must already have been set up with the operand type
13490 /// and the current alternative constraint selected.
13491 TargetLowering::ConstraintWeight
13492 PPCTargetLowering::getSingleConstraintMatchWeight(
13493     AsmOperandInfo &info, const char *constraint) const {
13494   ConstraintWeight weight = CW_Invalid;
13495   Value *CallOperandVal = info.CallOperandVal;
13496     // If we don't have a value, we can't do a match,
13497     // but allow it at the lowest weight.
13498   if (!CallOperandVal)
13499     return CW_Default;
13500   Type *type = CallOperandVal->getType();
13501 
13502   // Look at the constraint type.
13503   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13504     return CW_Register; // an individual CR bit.
13505   else if ((StringRef(constraint) == "wa" ||
13506             StringRef(constraint) == "wd" ||
13507             StringRef(constraint) == "wf") &&
13508            type->isVectorTy())
13509     return CW_Register;
13510   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13511     return CW_Register;
13512   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
13513     return CW_Register; // just hold 64-bit integers data.
13514 
13515   switch (*constraint) {
13516   default:
13517     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13518     break;
13519   case 'b':
13520     if (type->isIntegerTy())
13521       weight = CW_Register;
13522     break;
13523   case 'f':
13524     if (type->isFloatTy())
13525       weight = CW_Register;
13526     break;
13527   case 'd':
13528     if (type->isDoubleTy())
13529       weight = CW_Register;
13530     break;
13531   case 'v':
13532     if (type->isVectorTy())
13533       weight = CW_Register;
13534     break;
13535   case 'y':
13536     weight = CW_Register;
13537     break;
13538   case 'Z':
13539     weight = CW_Memory;
13540     break;
13541   }
13542   return weight;
13543 }
13544 
13545 std::pair<unsigned, const TargetRegisterClass *>
13546 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13547                                                 StringRef Constraint,
13548                                                 MVT VT) const {
13549   if (Constraint.size() == 1) {
13550     // GCC RS6000 Constraint Letters
13551     switch (Constraint[0]) {
13552     case 'b':   // R1-R31
13553       if (VT == MVT::i64 && Subtarget.isPPC64())
13554         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
13555       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
13556     case 'r':   // R0-R31
13557       if (VT == MVT::i64 && Subtarget.isPPC64())
13558         return std::make_pair(0U, &PPC::G8RCRegClass);
13559       return std::make_pair(0U, &PPC::GPRCRegClass);
13560     // 'd' and 'f' constraints are both defined to be "the floating point
13561     // registers", where one is for 32-bit and the other for 64-bit. We don't
13562     // really care overly much here so just give them all the same reg classes.
13563     case 'd':
13564     case 'f':
13565       if (Subtarget.hasSPE()) {
13566         if (VT == MVT::f32 || VT == MVT::i32)
13567           return std::make_pair(0U, &PPC::SPE4RCRegClass);
13568         if (VT == MVT::f64 || VT == MVT::i64)
13569           return std::make_pair(0U, &PPC::SPERCRegClass);
13570       } else {
13571         if (VT == MVT::f32 || VT == MVT::i32)
13572           return std::make_pair(0U, &PPC::F4RCRegClass);
13573         if (VT == MVT::f64 || VT == MVT::i64)
13574           return std::make_pair(0U, &PPC::F8RCRegClass);
13575         if (VT == MVT::v4f64 && Subtarget.hasQPX())
13576           return std::make_pair(0U, &PPC::QFRCRegClass);
13577         if (VT == MVT::v4f32 && Subtarget.hasQPX())
13578           return std::make_pair(0U, &PPC::QSRCRegClass);
13579       }
13580       break;
13581     case 'v':
13582       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13583         return std::make_pair(0U, &PPC::QFRCRegClass);
13584       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13585         return std::make_pair(0U, &PPC::QSRCRegClass);
13586       if (Subtarget.hasAltivec())
13587         return std::make_pair(0U, &PPC::VRRCRegClass);
13588       break;
13589     case 'y':   // crrc
13590       return std::make_pair(0U, &PPC::CRRCRegClass);
13591     }
13592   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13593     // An individual CR bit.
13594     return std::make_pair(0U, &PPC::CRBITRCRegClass);
13595   } else if ((Constraint == "wa" || Constraint == "wd" ||
13596              Constraint == "wf" || Constraint == "wi") &&
13597              Subtarget.hasVSX()) {
13598     return std::make_pair(0U, &PPC::VSRCRegClass);
13599   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13600     if (VT == MVT::f32 && Subtarget.hasP8Vector())
13601       return std::make_pair(0U, &PPC::VSSRCRegClass);
13602     else
13603       return std::make_pair(0U, &PPC::VSFRCRegClass);
13604   }
13605 
13606   std::pair<unsigned, const TargetRegisterClass *> R =
13607       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13608 
13609   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13610   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13611   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13612   // register.
13613   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13614   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13615   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13616       PPC::GPRCRegClass.contains(R.first))
13617     return std::make_pair(TRI->getMatchingSuperReg(R.first,
13618                             PPC::sub_32, &PPC::G8RCRegClass),
13619                           &PPC::G8RCRegClass);
13620 
13621   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13622   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13623     R.first = PPC::CR0;
13624     R.second = &PPC::CRRCRegClass;
13625   }
13626 
13627   return R;
13628 }
13629 
13630 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13631 /// vector.  If it is invalid, don't add anything to Ops.
13632 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13633                                                      std::string &Constraint,
13634                                                      std::vector<SDValue>&Ops,
13635                                                      SelectionDAG &DAG) const {
13636   SDValue Result;
13637 
13638   // Only support length 1 constraints.
13639   if (Constraint.length() > 1) return;
13640 
13641   char Letter = Constraint[0];
13642   switch (Letter) {
13643   default: break;
13644   case 'I':
13645   case 'J':
13646   case 'K':
13647   case 'L':
13648   case 'M':
13649   case 'N':
13650   case 'O':
13651   case 'P': {
13652     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13653     if (!CST) return; // Must be an immediate to match.
13654     SDLoc dl(Op);
13655     int64_t Value = CST->getSExtValue();
13656     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13657                          // numbers are printed as such.
13658     switch (Letter) {
13659     default: llvm_unreachable("Unknown constraint letter!");
13660     case 'I':  // "I" is a signed 16-bit constant.
13661       if (isInt<16>(Value))
13662         Result = DAG.getTargetConstant(Value, dl, TCVT);
13663       break;
13664     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
13665       if (isShiftedUInt<16, 16>(Value))
13666         Result = DAG.getTargetConstant(Value, dl, TCVT);
13667       break;
13668     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
13669       if (isShiftedInt<16, 16>(Value))
13670         Result = DAG.getTargetConstant(Value, dl, TCVT);
13671       break;
13672     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
13673       if (isUInt<16>(Value))
13674         Result = DAG.getTargetConstant(Value, dl, TCVT);
13675       break;
13676     case 'M':  // "M" is a constant that is greater than 31.
13677       if (Value > 31)
13678         Result = DAG.getTargetConstant(Value, dl, TCVT);
13679       break;
13680     case 'N':  // "N" is a positive constant that is an exact power of two.
13681       if (Value > 0 && isPowerOf2_64(Value))
13682         Result = DAG.getTargetConstant(Value, dl, TCVT);
13683       break;
13684     case 'O':  // "O" is the constant zero.
13685       if (Value == 0)
13686         Result = DAG.getTargetConstant(Value, dl, TCVT);
13687       break;
13688     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
13689       if (isInt<16>(-Value))
13690         Result = DAG.getTargetConstant(Value, dl, TCVT);
13691       break;
13692     }
13693     break;
13694   }
13695   }
13696 
13697   if (Result.getNode()) {
13698     Ops.push_back(Result);
13699     return;
13700   }
13701 
13702   // Handle standard constraint letters.
13703   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13704 }
13705 
13706 // isLegalAddressingMode - Return true if the addressing mode represented
13707 // by AM is legal for this target, for a load/store of the specified type.
13708 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13709                                               const AddrMode &AM, Type *Ty,
13710                                               unsigned AS, Instruction *I) const {
13711   // PPC does not allow r+i addressing modes for vectors!
13712   if (Ty->isVectorTy() && AM.BaseOffs != 0)
13713     return false;
13714 
13715   // PPC allows a sign-extended 16-bit immediate field.
13716   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13717     return false;
13718 
13719   // No global is ever allowed as a base.
13720   if (AM.BaseGV)
13721     return false;
13722 
13723   // PPC only support r+r,
13724   switch (AM.Scale) {
13725   case 0:  // "r+i" or just "i", depending on HasBaseReg.
13726     break;
13727   case 1:
13728     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
13729       return false;
13730     // Otherwise we have r+r or r+i.
13731     break;
13732   case 2:
13733     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
13734       return false;
13735     // Allow 2*r as r+r.
13736     break;
13737   default:
13738     // No other scales are supported.
13739     return false;
13740   }
13741 
13742   return true;
13743 }
13744 
13745 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13746                                            SelectionDAG &DAG) const {
13747   MachineFunction &MF = DAG.getMachineFunction();
13748   MachineFrameInfo &MFI = MF.getFrameInfo();
13749   MFI.setReturnAddressIsTaken(true);
13750 
13751   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13752     return SDValue();
13753 
13754   SDLoc dl(Op);
13755   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13756 
13757   // Make sure the function does not optimize away the store of the RA to
13758   // the stack.
13759   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13760   FuncInfo->setLRStoreRequired();
13761   bool isPPC64 = Subtarget.isPPC64();
13762   auto PtrVT = getPointerTy(MF.getDataLayout());
13763 
13764   if (Depth > 0) {
13765     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13766     SDValue Offset =
13767         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13768                         isPPC64 ? MVT::i64 : MVT::i32);
13769     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13770                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13771                        MachinePointerInfo());
13772   }
13773 
13774   // Just load the return address off the stack.
13775   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13776   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13777                      MachinePointerInfo());
13778 }
13779 
13780 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13781                                           SelectionDAG &DAG) const {
13782   SDLoc dl(Op);
13783   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13784 
13785   MachineFunction &MF = DAG.getMachineFunction();
13786   MachineFrameInfo &MFI = MF.getFrameInfo();
13787   MFI.setFrameAddressIsTaken(true);
13788 
13789   EVT PtrVT = getPointerTy(MF.getDataLayout());
13790   bool isPPC64 = PtrVT == MVT::i64;
13791 
13792   // Naked functions never have a frame pointer, and so we use r1. For all
13793   // other functions, this decision must be delayed until during PEI.
13794   unsigned FrameReg;
13795   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
13796     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13797   else
13798     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13799 
13800   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13801                                          PtrVT);
13802   while (Depth--)
13803     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13804                             FrameAddr, MachinePointerInfo());
13805   return FrameAddr;
13806 }
13807 
13808 // FIXME? Maybe this could be a TableGen attribute on some registers and
13809 // this table could be generated automatically from RegInfo.
13810 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13811                                               SelectionDAG &DAG) const {
13812   bool isPPC64 = Subtarget.isPPC64();
13813   bool isDarwinABI = Subtarget.isDarwinABI();
13814 
13815   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13816       (!isPPC64 && VT != MVT::i32))
13817     report_fatal_error("Invalid register global variable type");
13818 
13819   bool is64Bit = isPPC64 && VT == MVT::i64;
13820   unsigned Reg = StringSwitch<unsigned>(RegName)
13821                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13822                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13823                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13824                                   (is64Bit ? PPC::X13 : PPC::R13))
13825                    .Default(0);
13826 
13827   if (Reg)
13828     return Reg;
13829   report_fatal_error("Invalid register name global variable");
13830 }
13831 
13832 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
13833   // 32-bit SVR4 ABI access everything as got-indirect.
13834   if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
13835     return true;
13836 
13837   CodeModel::Model CModel = getTargetMachine().getCodeModel();
13838   // If it is small or large code model, module locals are accessed
13839   // indirectly by loading their address from .toc/.got. The difference
13840   // is that for large code model we have ADDISTocHa + LDtocL and for
13841   // small code model we simply have LDtoc.
13842   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
13843     return true;
13844 
13845   // JumpTable and BlockAddress are accessed as got-indirect.
13846   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
13847     return true;
13848 
13849   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
13850     const GlobalValue *GV = G->getGlobal();
13851     unsigned char GVFlags = Subtarget.classifyGlobalReference(GV);
13852     // The NLP flag indicates that a global access has to use an
13853     // extra indirection.
13854     if (GVFlags & PPCII::MO_NLP_FLAG)
13855       return true;
13856   }
13857 
13858   return false;
13859 }
13860 
13861 bool
13862 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
13863   // The PowerPC target isn't yet aware of offsets.
13864   return false;
13865 }
13866 
13867 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
13868                                            const CallInst &I,
13869                                            MachineFunction &MF,
13870                                            unsigned Intrinsic) const {
13871   switch (Intrinsic) {
13872   case Intrinsic::ppc_qpx_qvlfd:
13873   case Intrinsic::ppc_qpx_qvlfs:
13874   case Intrinsic::ppc_qpx_qvlfcd:
13875   case Intrinsic::ppc_qpx_qvlfcs:
13876   case Intrinsic::ppc_qpx_qvlfiwa:
13877   case Intrinsic::ppc_qpx_qvlfiwz:
13878   case Intrinsic::ppc_altivec_lvx:
13879   case Intrinsic::ppc_altivec_lvxl:
13880   case Intrinsic::ppc_altivec_lvebx:
13881   case Intrinsic::ppc_altivec_lvehx:
13882   case Intrinsic::ppc_altivec_lvewx:
13883   case Intrinsic::ppc_vsx_lxvd2x:
13884   case Intrinsic::ppc_vsx_lxvw4x: {
13885     EVT VT;
13886     switch (Intrinsic) {
13887     case Intrinsic::ppc_altivec_lvebx:
13888       VT = MVT::i8;
13889       break;
13890     case Intrinsic::ppc_altivec_lvehx:
13891       VT = MVT::i16;
13892       break;
13893     case Intrinsic::ppc_altivec_lvewx:
13894       VT = MVT::i32;
13895       break;
13896     case Intrinsic::ppc_vsx_lxvd2x:
13897       VT = MVT::v2f64;
13898       break;
13899     case Intrinsic::ppc_qpx_qvlfd:
13900       VT = MVT::v4f64;
13901       break;
13902     case Intrinsic::ppc_qpx_qvlfs:
13903       VT = MVT::v4f32;
13904       break;
13905     case Intrinsic::ppc_qpx_qvlfcd:
13906       VT = MVT::v2f64;
13907       break;
13908     case Intrinsic::ppc_qpx_qvlfcs:
13909       VT = MVT::v2f32;
13910       break;
13911     default:
13912       VT = MVT::v4i32;
13913       break;
13914     }
13915 
13916     Info.opc = ISD::INTRINSIC_W_CHAIN;
13917     Info.memVT = VT;
13918     Info.ptrVal = I.getArgOperand(0);
13919     Info.offset = -VT.getStoreSize()+1;
13920     Info.size = 2*VT.getStoreSize()-1;
13921     Info.align = 1;
13922     Info.flags = MachineMemOperand::MOLoad;
13923     return true;
13924   }
13925   case Intrinsic::ppc_qpx_qvlfda:
13926   case Intrinsic::ppc_qpx_qvlfsa:
13927   case Intrinsic::ppc_qpx_qvlfcda:
13928   case Intrinsic::ppc_qpx_qvlfcsa:
13929   case Intrinsic::ppc_qpx_qvlfiwaa:
13930   case Intrinsic::ppc_qpx_qvlfiwza: {
13931     EVT VT;
13932     switch (Intrinsic) {
13933     case Intrinsic::ppc_qpx_qvlfda:
13934       VT = MVT::v4f64;
13935       break;
13936     case Intrinsic::ppc_qpx_qvlfsa:
13937       VT = MVT::v4f32;
13938       break;
13939     case Intrinsic::ppc_qpx_qvlfcda:
13940       VT = MVT::v2f64;
13941       break;
13942     case Intrinsic::ppc_qpx_qvlfcsa:
13943       VT = MVT::v2f32;
13944       break;
13945     default:
13946       VT = MVT::v4i32;
13947       break;
13948     }
13949 
13950     Info.opc = ISD::INTRINSIC_W_CHAIN;
13951     Info.memVT = VT;
13952     Info.ptrVal = I.getArgOperand(0);
13953     Info.offset = 0;
13954     Info.size = VT.getStoreSize();
13955     Info.align = 1;
13956     Info.flags = MachineMemOperand::MOLoad;
13957     return true;
13958   }
13959   case Intrinsic::ppc_qpx_qvstfd:
13960   case Intrinsic::ppc_qpx_qvstfs:
13961   case Intrinsic::ppc_qpx_qvstfcd:
13962   case Intrinsic::ppc_qpx_qvstfcs:
13963   case Intrinsic::ppc_qpx_qvstfiw:
13964   case Intrinsic::ppc_altivec_stvx:
13965   case Intrinsic::ppc_altivec_stvxl:
13966   case Intrinsic::ppc_altivec_stvebx:
13967   case Intrinsic::ppc_altivec_stvehx:
13968   case Intrinsic::ppc_altivec_stvewx:
13969   case Intrinsic::ppc_vsx_stxvd2x:
13970   case Intrinsic::ppc_vsx_stxvw4x: {
13971     EVT VT;
13972     switch (Intrinsic) {
13973     case Intrinsic::ppc_altivec_stvebx:
13974       VT = MVT::i8;
13975       break;
13976     case Intrinsic::ppc_altivec_stvehx:
13977       VT = MVT::i16;
13978       break;
13979     case Intrinsic::ppc_altivec_stvewx:
13980       VT = MVT::i32;
13981       break;
13982     case Intrinsic::ppc_vsx_stxvd2x:
13983       VT = MVT::v2f64;
13984       break;
13985     case Intrinsic::ppc_qpx_qvstfd:
13986       VT = MVT::v4f64;
13987       break;
13988     case Intrinsic::ppc_qpx_qvstfs:
13989       VT = MVT::v4f32;
13990       break;
13991     case Intrinsic::ppc_qpx_qvstfcd:
13992       VT = MVT::v2f64;
13993       break;
13994     case Intrinsic::ppc_qpx_qvstfcs:
13995       VT = MVT::v2f32;
13996       break;
13997     default:
13998       VT = MVT::v4i32;
13999       break;
14000     }
14001 
14002     Info.opc = ISD::INTRINSIC_VOID;
14003     Info.memVT = VT;
14004     Info.ptrVal = I.getArgOperand(1);
14005     Info.offset = -VT.getStoreSize()+1;
14006     Info.size = 2*VT.getStoreSize()-1;
14007     Info.align = 1;
14008     Info.flags = MachineMemOperand::MOStore;
14009     return true;
14010   }
14011   case Intrinsic::ppc_qpx_qvstfda:
14012   case Intrinsic::ppc_qpx_qvstfsa:
14013   case Intrinsic::ppc_qpx_qvstfcda:
14014   case Intrinsic::ppc_qpx_qvstfcsa:
14015   case Intrinsic::ppc_qpx_qvstfiwa: {
14016     EVT VT;
14017     switch (Intrinsic) {
14018     case Intrinsic::ppc_qpx_qvstfda:
14019       VT = MVT::v4f64;
14020       break;
14021     case Intrinsic::ppc_qpx_qvstfsa:
14022       VT = MVT::v4f32;
14023       break;
14024     case Intrinsic::ppc_qpx_qvstfcda:
14025       VT = MVT::v2f64;
14026       break;
14027     case Intrinsic::ppc_qpx_qvstfcsa:
14028       VT = MVT::v2f32;
14029       break;
14030     default:
14031       VT = MVT::v4i32;
14032       break;
14033     }
14034 
14035     Info.opc = ISD::INTRINSIC_VOID;
14036     Info.memVT = VT;
14037     Info.ptrVal = I.getArgOperand(1);
14038     Info.offset = 0;
14039     Info.size = VT.getStoreSize();
14040     Info.align = 1;
14041     Info.flags = MachineMemOperand::MOStore;
14042     return true;
14043   }
14044   default:
14045     break;
14046   }
14047 
14048   return false;
14049 }
14050 
14051 /// getOptimalMemOpType - Returns the target specific optimal type for load
14052 /// and store operations as a result of memset, memcpy, and memmove
14053 /// lowering. If DstAlign is zero that means it's safe to destination
14054 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
14055 /// means there isn't a need to check it against alignment requirement,
14056 /// probably because the source does not need to be loaded. If 'IsMemset' is
14057 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
14058 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
14059 /// source is constant so it does not need to be loaded.
14060 /// It returns EVT::Other if the type should be determined using generic
14061 /// target-independent logic.
14062 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
14063                                            unsigned DstAlign, unsigned SrcAlign,
14064                                            bool IsMemset, bool ZeroMemset,
14065                                            bool MemcpyStrSrc,
14066                                            MachineFunction &MF) const {
14067   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
14068     const Function &F = MF.getFunction();
14069     // When expanding a memset, require at least two QPX instructions to cover
14070     // the cost of loading the value to be stored from the constant pool.
14071     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
14072        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
14073         !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
14074       return MVT::v4f64;
14075     }
14076 
14077     // We should use Altivec/VSX loads and stores when available. For unaligned
14078     // addresses, unaligned VSX loads are only fast starting with the P8.
14079     if (Subtarget.hasAltivec() && Size >= 16 &&
14080         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
14081          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
14082       return MVT::v4i32;
14083   }
14084 
14085   if (Subtarget.isPPC64()) {
14086     return MVT::i64;
14087   }
14088 
14089   return MVT::i32;
14090 }
14091 
14092 /// Returns true if it is beneficial to convert a load of a constant
14093 /// to just the constant itself.
14094 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14095                                                           Type *Ty) const {
14096   assert(Ty->isIntegerTy());
14097 
14098   unsigned BitSize = Ty->getPrimitiveSizeInBits();
14099   return !(BitSize == 0 || BitSize > 64);
14100 }
14101 
14102 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
14103   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
14104     return false;
14105   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
14106   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
14107   return NumBits1 == 64 && NumBits2 == 32;
14108 }
14109 
14110 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
14111   if (!VT1.isInteger() || !VT2.isInteger())
14112     return false;
14113   unsigned NumBits1 = VT1.getSizeInBits();
14114   unsigned NumBits2 = VT2.getSizeInBits();
14115   return NumBits1 == 64 && NumBits2 == 32;
14116 }
14117 
14118 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14119   // Generally speaking, zexts are not free, but they are free when they can be
14120   // folded with other operations.
14121   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
14122     EVT MemVT = LD->getMemoryVT();
14123     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
14124          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
14125         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
14126          LD->getExtensionType() == ISD::ZEXTLOAD))
14127       return true;
14128   }
14129 
14130   // FIXME: Add other cases...
14131   //  - 32-bit shifts with a zext to i64
14132   //  - zext after ctlz, bswap, etc.
14133   //  - zext after and by a constant mask
14134 
14135   return TargetLowering::isZExtFree(Val, VT2);
14136 }
14137 
14138 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
14139   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
14140          "invalid fpext types");
14141   // Extending to float128 is not free.
14142   if (DestVT == MVT::f128)
14143     return false;
14144   return true;
14145 }
14146 
14147 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
14148   return isInt<16>(Imm) || isUInt<16>(Imm);
14149 }
14150 
14151 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
14152   return isInt<16>(Imm) || isUInt<16>(Imm);
14153 }
14154 
14155 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
14156                                                        unsigned,
14157                                                        unsigned,
14158                                                        bool *Fast) const {
14159   if (DisablePPCUnaligned)
14160     return false;
14161 
14162   // PowerPC supports unaligned memory access for simple non-vector types.
14163   // Although accessing unaligned addresses is not as efficient as accessing
14164   // aligned addresses, it is generally more efficient than manual expansion,
14165   // and generally only traps for software emulation when crossing page
14166   // boundaries.
14167 
14168   if (!VT.isSimple())
14169     return false;
14170 
14171   if (VT.getSimpleVT().isVector()) {
14172     if (Subtarget.hasVSX()) {
14173       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
14174           VT != MVT::v4f32 && VT != MVT::v4i32)
14175         return false;
14176     } else {
14177       return false;
14178     }
14179   }
14180 
14181   if (VT == MVT::ppcf128)
14182     return false;
14183 
14184   if (Fast)
14185     *Fast = true;
14186 
14187   return true;
14188 }
14189 
14190 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
14191   VT = VT.getScalarType();
14192 
14193   if (!VT.isSimple())
14194     return false;
14195 
14196   switch (VT.getSimpleVT().SimpleTy) {
14197   case MVT::f32:
14198   case MVT::f64:
14199     return true;
14200   case MVT::f128:
14201     return (EnableQuadPrecision && Subtarget.hasP9Vector());
14202   default:
14203     break;
14204   }
14205 
14206   return false;
14207 }
14208 
14209 const MCPhysReg *
14210 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
14211   // LR is a callee-save register, but we must treat it as clobbered by any call
14212   // site. Hence we include LR in the scratch registers, which are in turn added
14213   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
14214   // to CTR, which is used by any indirect call.
14215   static const MCPhysReg ScratchRegs[] = {
14216     PPC::X12, PPC::LR8, PPC::CTR8, 0
14217   };
14218 
14219   return ScratchRegs;
14220 }
14221 
14222 unsigned PPCTargetLowering::getExceptionPointerRegister(
14223     const Constant *PersonalityFn) const {
14224   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
14225 }
14226 
14227 unsigned PPCTargetLowering::getExceptionSelectorRegister(
14228     const Constant *PersonalityFn) const {
14229   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
14230 }
14231 
14232 bool
14233 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
14234                      EVT VT , unsigned DefinedValues) const {
14235   if (VT == MVT::v2i64)
14236     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
14237 
14238   if (Subtarget.hasVSX() || Subtarget.hasQPX())
14239     return true;
14240 
14241   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
14242 }
14243 
14244 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
14245   if (DisableILPPref || Subtarget.enableMachineScheduler())
14246     return TargetLowering::getSchedulingPreference(N);
14247 
14248   return Sched::ILP;
14249 }
14250 
14251 // Create a fast isel object.
14252 FastISel *
14253 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
14254                                   const TargetLibraryInfo *LibInfo) const {
14255   return PPC::createFastISel(FuncInfo, LibInfo);
14256 }
14257 
14258 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14259   if (Subtarget.isDarwinABI()) return;
14260   if (!Subtarget.isPPC64()) return;
14261 
14262   // Update IsSplitCSR in PPCFunctionInfo
14263   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
14264   PFI->setIsSplitCSR(true);
14265 }
14266 
14267 void PPCTargetLowering::insertCopiesSplitCSR(
14268   MachineBasicBlock *Entry,
14269   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14270   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
14271   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14272   if (!IStart)
14273     return;
14274 
14275   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
14276   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14277   MachineBasicBlock::iterator MBBI = Entry->begin();
14278   for (const MCPhysReg *I = IStart; *I; ++I) {
14279     const TargetRegisterClass *RC = nullptr;
14280     if (PPC::G8RCRegClass.contains(*I))
14281       RC = &PPC::G8RCRegClass;
14282     else if (PPC::F8RCRegClass.contains(*I))
14283       RC = &PPC::F8RCRegClass;
14284     else if (PPC::CRRCRegClass.contains(*I))
14285       RC = &PPC::CRRCRegClass;
14286     else if (PPC::VRRCRegClass.contains(*I))
14287       RC = &PPC::VRRCRegClass;
14288     else
14289       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14290 
14291     unsigned NewVR = MRI->createVirtualRegister(RC);
14292     // Create copy from CSR to a virtual register.
14293     // FIXME: this currently does not emit CFI pseudo-instructions, it works
14294     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14295     // nounwind. If we want to generalize this later, we may need to emit
14296     // CFI pseudo-instructions.
14297     assert(Entry->getParent()->getFunction().hasFnAttribute(
14298              Attribute::NoUnwind) &&
14299            "Function should be nounwind in insertCopiesSplitCSR!");
14300     Entry->addLiveIn(*I);
14301     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14302       .addReg(*I);
14303 
14304     // Insert the copy-back instructions right before the terminator
14305     for (auto *Exit : Exits)
14306       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14307               TII->get(TargetOpcode::COPY), *I)
14308         .addReg(NewVR);
14309   }
14310 }
14311 
14312 // Override to enable LOAD_STACK_GUARD lowering on Linux.
14313 bool PPCTargetLowering::useLoadStackGuardNode() const {
14314   if (!Subtarget.isTargetLinux())
14315     return TargetLowering::useLoadStackGuardNode();
14316   return true;
14317 }
14318 
14319 // Override to disable global variable loading on Linux.
14320 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
14321   if (!Subtarget.isTargetLinux())
14322     return TargetLowering::insertSSPDeclarations(M);
14323 }
14324 
14325 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
14326   if (!VT.isSimple() || !Subtarget.hasVSX())
14327     return false;
14328 
14329   switch(VT.getSimpleVT().SimpleTy) {
14330   default:
14331     // For FP types that are currently not supported by PPC backend, return
14332     // false. Examples: f16, f80.
14333     return false;
14334   case MVT::f32:
14335   case MVT::f64:
14336   case MVT::ppcf128:
14337     return Imm.isPosZero();
14338   }
14339 }
14340 
14341 // For vector shift operation op, fold
14342 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
14343 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
14344                                   SelectionDAG &DAG) {
14345   SDValue N0 = N->getOperand(0);
14346   SDValue N1 = N->getOperand(1);
14347   EVT VT = N0.getValueType();
14348   unsigned OpSizeInBits = VT.getScalarSizeInBits();
14349   unsigned Opcode = N->getOpcode();
14350   unsigned TargetOpcode;
14351 
14352   switch (Opcode) {
14353   default:
14354     llvm_unreachable("Unexpected shift operation");
14355   case ISD::SHL:
14356     TargetOpcode = PPCISD::SHL;
14357     break;
14358   case ISD::SRL:
14359     TargetOpcode = PPCISD::SRL;
14360     break;
14361   case ISD::SRA:
14362     TargetOpcode = PPCISD::SRA;
14363     break;
14364   }
14365 
14366   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
14367       N1->getOpcode() == ISD::AND)
14368     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
14369       if (Mask->getZExtValue() == OpSizeInBits - 1)
14370         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
14371 
14372   return SDValue();
14373 }
14374 
14375 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
14376   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14377     return Value;
14378 
14379   SDValue N0 = N->getOperand(0);
14380   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
14381   if (!Subtarget.isISA3_0() ||
14382       N0.getOpcode() != ISD::SIGN_EXTEND ||
14383       N0.getOperand(0).getValueType() != MVT::i32 ||
14384       CN1 == nullptr || N->getValueType(0) != MVT::i64)
14385     return SDValue();
14386 
14387   // We can't save an operation here if the value is already extended, and
14388   // the existing shift is easier to combine.
14389   SDValue ExtsSrc = N0.getOperand(0);
14390   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
14391       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
14392     return SDValue();
14393 
14394   SDLoc DL(N0);
14395   SDValue ShiftBy = SDValue(CN1, 0);
14396   // We want the shift amount to be i32 on the extswli, but the shift could
14397   // have an i64.
14398   if (ShiftBy.getValueType() == MVT::i64)
14399     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
14400 
14401   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
14402                          ShiftBy);
14403 }
14404 
14405 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
14406   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14407     return Value;
14408 
14409   return SDValue();
14410 }
14411 
14412 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
14413   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14414     return Value;
14415 
14416   return SDValue();
14417 }
14418 
14419 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
14420 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
14421 // When C is zero, the equation (addi Z, -C) can be simplified to Z
14422 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
14423 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
14424                                  const PPCSubtarget &Subtarget) {
14425   if (!Subtarget.isPPC64())
14426     return SDValue();
14427 
14428   SDValue LHS = N->getOperand(0);
14429   SDValue RHS = N->getOperand(1);
14430 
14431   auto isZextOfCompareWithConstant = [](SDValue Op) {
14432     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
14433         Op.getValueType() != MVT::i64)
14434       return false;
14435 
14436     SDValue Cmp = Op.getOperand(0);
14437     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
14438         Cmp.getOperand(0).getValueType() != MVT::i64)
14439       return false;
14440 
14441     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
14442       int64_t NegConstant = 0 - Constant->getSExtValue();
14443       // Due to the limitations of the addi instruction,
14444       // -C is required to be [-32768, 32767].
14445       return isInt<16>(NegConstant);
14446     }
14447 
14448     return false;
14449   };
14450 
14451   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
14452   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
14453 
14454   // If there is a pattern, canonicalize a zext operand to the RHS.
14455   if (LHSHasPattern && !RHSHasPattern)
14456     std::swap(LHS, RHS);
14457   else if (!LHSHasPattern && !RHSHasPattern)
14458     return SDValue();
14459 
14460   SDLoc DL(N);
14461   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
14462   SDValue Cmp = RHS.getOperand(0);
14463   SDValue Z = Cmp.getOperand(0);
14464   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
14465 
14466   assert(Constant && "Constant Should not be a null pointer.");
14467   int64_t NegConstant = 0 - Constant->getSExtValue();
14468 
14469   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
14470   default: break;
14471   case ISD::SETNE: {
14472     //                                 when C == 0
14473     //                             --> addze X, (addic Z, -1).carry
14474     //                            /
14475     // add X, (zext(setne Z, C))--
14476     //                            \    when -32768 <= -C <= 32767 && C != 0
14477     //                             --> addze X, (addic (addi Z, -C), -1).carry
14478     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14479                               DAG.getConstant(NegConstant, DL, MVT::i64));
14480     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14481     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14482                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
14483     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14484                        SDValue(Addc.getNode(), 1));
14485     }
14486   case ISD::SETEQ: {
14487     //                                 when C == 0
14488     //                             --> addze X, (subfic Z, 0).carry
14489     //                            /
14490     // add X, (zext(sete  Z, C))--
14491     //                            \    when -32768 <= -C <= 32767 && C != 0
14492     //                             --> addze X, (subfic (addi Z, -C), 0).carry
14493     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14494                               DAG.getConstant(NegConstant, DL, MVT::i64));
14495     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14496     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14497                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
14498     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14499                        SDValue(Subc.getNode(), 1));
14500     }
14501   }
14502 
14503   return SDValue();
14504 }
14505 
14506 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
14507   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
14508     return Value;
14509 
14510   return SDValue();
14511 }
14512 
14513 // Detect TRUNCATE operations on bitcasts of float128 values.
14514 // What we are looking for here is the situtation where we extract a subset
14515 // of bits from a 128 bit float.
14516 // This can be of two forms:
14517 // 1) BITCAST of f128 feeding TRUNCATE
14518 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
14519 // The reason this is required is because we do not have a legal i128 type
14520 // and so we want to prevent having to store the f128 and then reload part
14521 // of it.
14522 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
14523                                            DAGCombinerInfo &DCI) const {
14524   // If we are using CRBits then try that first.
14525   if (Subtarget.useCRBits()) {
14526     // Check if CRBits did anything and return that if it did.
14527     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
14528       return CRTruncValue;
14529   }
14530 
14531   SDLoc dl(N);
14532   SDValue Op0 = N->getOperand(0);
14533 
14534   // Looking for a truncate of i128 to i64.
14535   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
14536     return SDValue();
14537 
14538   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
14539 
14540   // SRL feeding TRUNCATE.
14541   if (Op0.getOpcode() == ISD::SRL) {
14542     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
14543     // The right shift has to be by 64 bits.
14544     if (!ConstNode || ConstNode->getZExtValue() != 64)
14545       return SDValue();
14546 
14547     // Switch the element number to extract.
14548     EltToExtract = EltToExtract ? 0 : 1;
14549     // Update Op0 past the SRL.
14550     Op0 = Op0.getOperand(0);
14551   }
14552 
14553   // BITCAST feeding a TRUNCATE possibly via SRL.
14554   if (Op0.getOpcode() == ISD::BITCAST &&
14555       Op0.getValueType() == MVT::i128 &&
14556       Op0.getOperand(0).getValueType() == MVT::f128) {
14557     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
14558     return DCI.DAG.getNode(
14559         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
14560         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
14561   }
14562   return SDValue();
14563 }
14564 
14565 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
14566   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
14567   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
14568     return false;
14569 
14570   // If not a tail call then no need to proceed.
14571   if (!CI->isTailCall())
14572     return false;
14573 
14574   // If tail calls are disabled for the caller then we are done.
14575   const Function *Caller = CI->getParent()->getParent();
14576   auto Attr = Caller->getFnAttribute("disable-tail-calls");
14577   if (Attr.getValueAsString() == "true")
14578     return false;
14579 
14580   // If sibling calls have been disabled and tail-calls aren't guaranteed
14581   // there is no reason to duplicate.
14582   auto &TM = getTargetMachine();
14583   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
14584     return false;
14585 
14586   // Can't tail call a function called indirectly, or if it has variadic args.
14587   const Function *Callee = CI->getCalledFunction();
14588   if (!Callee || Callee->isVarArg())
14589     return false;
14590 
14591   // Make sure the callee and caller calling conventions are eligible for tco.
14592   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
14593                                            CI->getCallingConv()))
14594       return false;
14595 
14596   // If the function is local then we have a good chance at tail-calling it
14597   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
14598 }
14599 
14600 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
14601   if (!Subtarget.hasVSX())
14602     return false;
14603   if (Subtarget.hasP9Vector() && VT == MVT::f128)
14604     return true;
14605   return VT == MVT::f32 || VT == MVT::f64 ||
14606     VT == MVT::v4f32 || VT == MVT::v2f64;
14607 }
14608 
14609 bool PPCTargetLowering::
14610 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
14611   const Value *Mask = AndI.getOperand(1);
14612   // If the mask is suitable for andi. or andis. we should sink the and.
14613   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
14614     // Can't handle constants wider than 64-bits.
14615     if (CI->getBitWidth() > 64)
14616       return false;
14617     int64_t ConstVal = CI->getZExtValue();
14618     return isUInt<16>(ConstVal) ||
14619       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
14620   }
14621 
14622   // For non-constant masks, we can always use the record-form and.
14623   return true;
14624 }
14625 
14626 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
14627 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
14628 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
14629 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
14630 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
14631 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
14632   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
14633   assert(Subtarget.hasP9Altivec() &&
14634          "Only combine this when P9 altivec supported!");
14635   EVT VT = N->getValueType(0);
14636   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
14637     return SDValue();
14638 
14639   SelectionDAG &DAG = DCI.DAG;
14640   SDLoc dl(N);
14641   if (N->getOperand(0).getOpcode() == ISD::SUB) {
14642     // Even for signed integers, if it's known to be positive (as signed
14643     // integer) due to zero-extended inputs.
14644     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
14645     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
14646     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
14647          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
14648         (SubOpcd1 == ISD::ZERO_EXTEND ||
14649          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
14650       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
14651                          N->getOperand(0)->getOperand(0),
14652                          N->getOperand(0)->getOperand(1),
14653                          DAG.getTargetConstant(0, dl, MVT::i32));
14654     }
14655 
14656     // For type v4i32, it can be optimized with xvnegsp + vabsduw
14657     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
14658         N->getOperand(0).hasOneUse()) {
14659       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
14660                          N->getOperand(0)->getOperand(0),
14661                          N->getOperand(0)->getOperand(1),
14662                          DAG.getTargetConstant(1, dl, MVT::i32));
14663     }
14664   }
14665 
14666   return SDValue();
14667 }
14668 
14669 // For type v4i32/v8ii16/v16i8, transform
14670 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
14671 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
14672 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
14673 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
14674 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
14675                                           DAGCombinerInfo &DCI) const {
14676   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
14677   assert(Subtarget.hasP9Altivec() &&
14678          "Only combine this when P9 altivec supported!");
14679 
14680   SelectionDAG &DAG = DCI.DAG;
14681   SDLoc dl(N);
14682   SDValue Cond = N->getOperand(0);
14683   SDValue TrueOpnd = N->getOperand(1);
14684   SDValue FalseOpnd = N->getOperand(2);
14685   EVT VT = N->getOperand(1).getValueType();
14686 
14687   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
14688       FalseOpnd.getOpcode() != ISD::SUB)
14689     return SDValue();
14690 
14691   // ABSD only available for type v4i32/v8i16/v16i8
14692   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
14693     return SDValue();
14694 
14695   // At least to save one more dependent computation
14696   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
14697     return SDValue();
14698 
14699   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14700 
14701   // Can only handle unsigned comparison here
14702   switch (CC) {
14703   default:
14704     return SDValue();
14705   case ISD::SETUGT:
14706   case ISD::SETUGE:
14707     break;
14708   case ISD::SETULT:
14709   case ISD::SETULE:
14710     std::swap(TrueOpnd, FalseOpnd);
14711     break;
14712   }
14713 
14714   SDValue CmpOpnd1 = Cond.getOperand(0);
14715   SDValue CmpOpnd2 = Cond.getOperand(1);
14716 
14717   // SETCC CmpOpnd1 CmpOpnd2 cond
14718   // TrueOpnd = CmpOpnd1 - CmpOpnd2
14719   // FalseOpnd = CmpOpnd2 - CmpOpnd1
14720   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
14721       TrueOpnd.getOperand(1) == CmpOpnd2 &&
14722       FalseOpnd.getOperand(0) == CmpOpnd2 &&
14723       FalseOpnd.getOperand(1) == CmpOpnd1) {
14724     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
14725                        CmpOpnd1, CmpOpnd2,
14726                        DAG.getTargetConstant(0, dl, MVT::i32));
14727   }
14728 
14729   return SDValue();
14730 }
14731