1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnableQuadwordAtomics( 125 "ppc-quadword-atomics", 126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false), 127 cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 139 140 // FIXME: Remove this once the bug has been fixed! 141 extern cl::opt<bool> ANDIGlueBug; 142 143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 144 const PPCSubtarget &STI) 145 : TargetLowering(TM), Subtarget(STI) { 146 // Initialize map that relates the PPC addressing modes to the computed flags 147 // of a load/store instruction. The map is used to determine the optimal 148 // addressing mode when selecting load and stores. 149 initializeAddrModeMap(); 150 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 151 // arguments are at least 4/8 bytes aligned. 152 bool isPPC64 = Subtarget.isPPC64(); 153 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 154 155 // Set up the register classes. 156 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 157 if (!useSoftFloat()) { 158 if (hasSPE()) { 159 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 160 // EFPU2 APU only supports f32 161 if (!Subtarget.hasEFPU2()) 162 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 163 } else { 164 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 165 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 166 } 167 } 168 169 // Match BITREVERSE to customized fast code sequence in the td file. 170 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 171 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 172 173 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 174 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 175 176 // Custom lower inline assembly to check for special registers. 177 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 178 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 179 180 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 181 for (MVT VT : MVT::integer_valuetypes()) { 182 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 183 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 184 } 185 186 if (Subtarget.isISA3_0()) { 187 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 188 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 189 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 190 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 191 } else { 192 // No extending loads from f16 or HW conversions back and forth. 193 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 194 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 195 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 196 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 197 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 198 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 199 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 200 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 201 } 202 203 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 204 205 // PowerPC has pre-inc load and store's. 206 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 207 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 208 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 209 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 210 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 211 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 212 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 213 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 214 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 215 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 216 if (!Subtarget.hasSPE()) { 217 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 218 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 221 } 222 223 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 224 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 225 for (MVT VT : ScalarIntVTs) { 226 setOperationAction(ISD::ADDC, VT, Legal); 227 setOperationAction(ISD::ADDE, VT, Legal); 228 setOperationAction(ISD::SUBC, VT, Legal); 229 setOperationAction(ISD::SUBE, VT, Legal); 230 } 231 232 if (Subtarget.useCRBits()) { 233 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 234 235 if (isPPC64 || Subtarget.hasFPCVT()) { 236 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 237 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 238 isPPC64 ? MVT::i64 : MVT::i32); 239 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 240 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 241 isPPC64 ? MVT::i64 : MVT::i32); 242 243 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 244 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 245 isPPC64 ? MVT::i64 : MVT::i32); 246 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 247 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 248 isPPC64 ? MVT::i64 : MVT::i32); 249 250 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 251 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 252 isPPC64 ? MVT::i64 : MVT::i32); 253 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 254 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 255 isPPC64 ? MVT::i64 : MVT::i32); 256 257 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 258 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 259 isPPC64 ? MVT::i64 : MVT::i32); 260 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 261 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 262 isPPC64 ? MVT::i64 : MVT::i32); 263 } else { 264 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 265 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 266 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 268 } 269 270 // PowerPC does not support direct load/store of condition registers. 271 setOperationAction(ISD::LOAD, MVT::i1, Custom); 272 setOperationAction(ISD::STORE, MVT::i1, Custom); 273 274 // FIXME: Remove this once the ANDI glue bug is fixed: 275 if (ANDIGlueBug) 276 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 277 278 for (MVT VT : MVT::integer_valuetypes()) { 279 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 280 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 281 setTruncStoreAction(VT, MVT::i1, Expand); 282 } 283 284 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 285 } 286 287 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 288 // PPC (the libcall is not available). 289 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 290 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 291 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 292 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 293 294 // We do not currently implement these libm ops for PowerPC. 295 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 296 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 297 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 298 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 299 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 300 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 301 302 // PowerPC has no SREM/UREM instructions unless we are on P9 303 // On P9 we may use a hardware instruction to compute the remainder. 304 // When the result of both the remainder and the division is required it is 305 // more efficient to compute the remainder from the result of the division 306 // rather than use the remainder instruction. The instructions are legalized 307 // directly because the DivRemPairsPass performs the transformation at the IR 308 // level. 309 if (Subtarget.isISA3_0()) { 310 setOperationAction(ISD::SREM, MVT::i32, Legal); 311 setOperationAction(ISD::UREM, MVT::i32, Legal); 312 setOperationAction(ISD::SREM, MVT::i64, Legal); 313 setOperationAction(ISD::UREM, MVT::i64, Legal); 314 } else { 315 setOperationAction(ISD::SREM, MVT::i32, Expand); 316 setOperationAction(ISD::UREM, MVT::i32, Expand); 317 setOperationAction(ISD::SREM, MVT::i64, Expand); 318 setOperationAction(ISD::UREM, MVT::i64, Expand); 319 } 320 321 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 322 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 323 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 324 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 325 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 326 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 327 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 328 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 329 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 330 331 // Handle constrained floating-point operations of scalar. 332 // TODO: Handle SPE specific operation. 333 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 334 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 335 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 336 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 337 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 338 339 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 343 344 if (!Subtarget.hasSPE()) { 345 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 346 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 347 } 348 349 if (Subtarget.hasVSX()) { 350 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasFSQRT()) { 355 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 357 } 358 359 if (Subtarget.hasFPRND()) { 360 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 362 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 363 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 364 365 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 366 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 367 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 368 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 369 } 370 371 // We don't support sin/cos/sqrt/fmod/pow 372 setOperationAction(ISD::FSIN , MVT::f64, Expand); 373 setOperationAction(ISD::FCOS , MVT::f64, Expand); 374 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 375 setOperationAction(ISD::FREM , MVT::f64, Expand); 376 setOperationAction(ISD::FPOW , MVT::f64, Expand); 377 setOperationAction(ISD::FSIN , MVT::f32, Expand); 378 setOperationAction(ISD::FCOS , MVT::f32, Expand); 379 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 380 setOperationAction(ISD::FREM , MVT::f32, Expand); 381 setOperationAction(ISD::FPOW , MVT::f32, Expand); 382 if (Subtarget.hasSPE()) { 383 setOperationAction(ISD::FMA , MVT::f64, Expand); 384 setOperationAction(ISD::FMA , MVT::f32, Expand); 385 } else { 386 setOperationAction(ISD::FMA , MVT::f64, Legal); 387 setOperationAction(ISD::FMA , MVT::f32, Legal); 388 } 389 390 if (Subtarget.hasSPE()) 391 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 392 393 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 394 395 // If we're enabling GP optimizations, use hardware square root 396 if (!Subtarget.hasFSQRT() && 397 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 398 Subtarget.hasFRE())) 399 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 400 401 if (!Subtarget.hasFSQRT() && 402 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 403 Subtarget.hasFRES())) 404 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 405 406 if (Subtarget.hasFCPSGN()) { 407 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 408 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 409 } else { 410 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 411 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 412 } 413 414 if (Subtarget.hasFPRND()) { 415 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 416 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 417 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 418 setOperationAction(ISD::FROUND, MVT::f64, Legal); 419 420 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 421 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 422 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 423 setOperationAction(ISD::FROUND, MVT::f32, Legal); 424 } 425 426 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 427 // to speed up scalar BSWAP64. 428 // CTPOP or CTTZ were introduced in P8/P9 respectively 429 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 430 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 431 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 432 else 433 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 434 if (Subtarget.isISA3_0()) { 435 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 436 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 437 } else { 438 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 439 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 440 } 441 442 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 443 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 444 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 445 } else { 446 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 447 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 448 } 449 450 // PowerPC does not have ROTR 451 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 452 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 453 454 if (!Subtarget.useCRBits()) { 455 // PowerPC does not have Select 456 setOperationAction(ISD::SELECT, MVT::i32, Expand); 457 setOperationAction(ISD::SELECT, MVT::i64, Expand); 458 setOperationAction(ISD::SELECT, MVT::f32, Expand); 459 setOperationAction(ISD::SELECT, MVT::f64, Expand); 460 } 461 462 // PowerPC wants to turn select_cc of FP into fsel when possible. 463 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 464 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 465 466 // PowerPC wants to optimize integer setcc a bit 467 if (!Subtarget.useCRBits()) 468 setOperationAction(ISD::SETCC, MVT::i32, Custom); 469 470 if (Subtarget.hasFPU()) { 471 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 472 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 473 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 474 475 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 476 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 477 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 478 } 479 480 // PowerPC does not have BRCOND which requires SetCC 481 if (!Subtarget.useCRBits()) 482 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 483 484 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 485 486 if (Subtarget.hasSPE()) { 487 // SPE has built-in conversions 488 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 489 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 490 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 491 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 492 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 493 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 494 495 // SPE supports signaling compare of f32/f64. 496 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 497 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 498 } else { 499 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 500 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 501 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 502 503 // PowerPC does not have [U|S]INT_TO_FP 504 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 505 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 506 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 507 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 508 } 509 510 if (Subtarget.hasDirectMove() && isPPC64) { 511 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 512 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 513 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 514 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 515 if (TM.Options.UnsafeFPMath) { 516 setOperationAction(ISD::LRINT, MVT::f64, Legal); 517 setOperationAction(ISD::LRINT, MVT::f32, Legal); 518 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 519 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 520 setOperationAction(ISD::LROUND, MVT::f64, Legal); 521 setOperationAction(ISD::LROUND, MVT::f32, Legal); 522 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 523 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 524 } 525 } else { 526 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 527 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 528 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 529 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 530 } 531 532 // We cannot sextinreg(i1). Expand to shifts. 533 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 534 535 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 536 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 537 // support continuation, user-level threading, and etc.. As a result, no 538 // other SjLj exception interfaces are implemented and please don't build 539 // your own exception handling based on them. 540 // LLVM/Clang supports zero-cost DWARF exception handling. 541 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 542 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 543 544 // We want to legalize GlobalAddress and ConstantPool nodes into the 545 // appropriate instructions to materialize the address. 546 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 547 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 548 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 549 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 550 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 551 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 552 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 553 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 554 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 555 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 556 557 // TRAP is legal. 558 setOperationAction(ISD::TRAP, MVT::Other, Legal); 559 560 // TRAMPOLINE is custom lowered. 561 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 562 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 563 564 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 565 setOperationAction(ISD::VASTART , MVT::Other, Custom); 566 567 if (Subtarget.is64BitELFABI()) { 568 // VAARG always uses double-word chunks, so promote anything smaller. 569 setOperationAction(ISD::VAARG, MVT::i1, Promote); 570 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 571 setOperationAction(ISD::VAARG, MVT::i8, Promote); 572 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 573 setOperationAction(ISD::VAARG, MVT::i16, Promote); 574 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 575 setOperationAction(ISD::VAARG, MVT::i32, Promote); 576 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 577 setOperationAction(ISD::VAARG, MVT::Other, Expand); 578 } else if (Subtarget.is32BitELFABI()) { 579 // VAARG is custom lowered with the 32-bit SVR4 ABI. 580 setOperationAction(ISD::VAARG, MVT::Other, Custom); 581 setOperationAction(ISD::VAARG, MVT::i64, Custom); 582 } else 583 setOperationAction(ISD::VAARG, MVT::Other, Expand); 584 585 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 586 if (Subtarget.is32BitELFABI()) 587 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 588 else 589 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 590 591 // Use the default implementation. 592 setOperationAction(ISD::VAEND , MVT::Other, Expand); 593 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 594 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 595 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 596 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 597 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 598 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 599 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 600 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 601 602 // We want to custom lower some of our intrinsics. 603 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 604 605 // To handle counter-based loop conditions. 606 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 607 608 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 609 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 610 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 611 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 612 613 // Comparisons that require checking two conditions. 614 if (Subtarget.hasSPE()) { 615 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 616 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 617 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 618 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 619 } 620 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 621 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 622 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 623 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 624 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 625 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 626 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 627 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 628 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 629 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 630 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 631 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 632 633 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 634 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 635 636 if (Subtarget.has64BitSupport()) { 637 // They also have instructions for converting between i64 and fp. 638 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 639 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 640 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 641 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 642 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 643 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 644 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 645 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 646 // This is just the low 32 bits of a (signed) fp->i64 conversion. 647 // We cannot do this with Promote because i64 is not a legal type. 648 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 649 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 650 651 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 652 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 653 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 654 } 655 } else { 656 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 657 if (Subtarget.hasSPE()) { 658 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 659 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 660 } else { 661 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 662 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 663 } 664 } 665 666 // With the instructions enabled under FPCVT, we can do everything. 667 if (Subtarget.hasFPCVT()) { 668 if (Subtarget.has64BitSupport()) { 669 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 670 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 671 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 672 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 673 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 674 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 675 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 676 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 677 } 678 679 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 680 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 681 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 682 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 683 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 684 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 685 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 686 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 687 } 688 689 if (Subtarget.use64BitRegs()) { 690 // 64-bit PowerPC implementations can support i64 types directly 691 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 692 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 693 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 694 // 64-bit PowerPC wants to expand i128 shifts itself. 695 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 696 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 697 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 698 } else { 699 // 32-bit PowerPC wants to expand i64 shifts itself. 700 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 701 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 702 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 703 } 704 705 // PowerPC has better expansions for funnel shifts than the generic 706 // TargetLowering::expandFunnelShift. 707 if (Subtarget.has64BitSupport()) { 708 setOperationAction(ISD::FSHL, MVT::i64, Custom); 709 setOperationAction(ISD::FSHR, MVT::i64, Custom); 710 } 711 setOperationAction(ISD::FSHL, MVT::i32, Custom); 712 setOperationAction(ISD::FSHR, MVT::i32, Custom); 713 714 if (Subtarget.hasVSX()) { 715 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 716 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 717 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 718 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 719 } 720 721 if (Subtarget.hasAltivec()) { 722 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 723 setOperationAction(ISD::SADDSAT, VT, Legal); 724 setOperationAction(ISD::SSUBSAT, VT, Legal); 725 setOperationAction(ISD::UADDSAT, VT, Legal); 726 setOperationAction(ISD::USUBSAT, VT, Legal); 727 } 728 // First set operation action for all vector types to expand. Then we 729 // will selectively turn on ones that can be effectively codegen'd. 730 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 731 // add/sub are legal for all supported vector VT's. 732 setOperationAction(ISD::ADD, VT, Legal); 733 setOperationAction(ISD::SUB, VT, Legal); 734 735 // For v2i64, these are only valid with P8Vector. This is corrected after 736 // the loop. 737 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 738 setOperationAction(ISD::SMAX, VT, Legal); 739 setOperationAction(ISD::SMIN, VT, Legal); 740 setOperationAction(ISD::UMAX, VT, Legal); 741 setOperationAction(ISD::UMIN, VT, Legal); 742 } 743 else { 744 setOperationAction(ISD::SMAX, VT, Expand); 745 setOperationAction(ISD::SMIN, VT, Expand); 746 setOperationAction(ISD::UMAX, VT, Expand); 747 setOperationAction(ISD::UMIN, VT, Expand); 748 } 749 750 if (Subtarget.hasVSX()) { 751 setOperationAction(ISD::FMAXNUM, VT, Legal); 752 setOperationAction(ISD::FMINNUM, VT, Legal); 753 } 754 755 // Vector instructions introduced in P8 756 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 757 setOperationAction(ISD::CTPOP, VT, Legal); 758 setOperationAction(ISD::CTLZ, VT, Legal); 759 } 760 else { 761 setOperationAction(ISD::CTPOP, VT, Expand); 762 setOperationAction(ISD::CTLZ, VT, Expand); 763 } 764 765 // Vector instructions introduced in P9 766 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 767 setOperationAction(ISD::CTTZ, VT, Legal); 768 else 769 setOperationAction(ISD::CTTZ, VT, Expand); 770 771 // We promote all shuffles to v16i8. 772 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 773 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 774 775 // We promote all non-typed operations to v4i32. 776 setOperationAction(ISD::AND , VT, Promote); 777 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 778 setOperationAction(ISD::OR , VT, Promote); 779 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 780 setOperationAction(ISD::XOR , VT, Promote); 781 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 782 setOperationAction(ISD::LOAD , VT, Promote); 783 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 784 setOperationAction(ISD::SELECT, VT, Promote); 785 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 786 setOperationAction(ISD::VSELECT, VT, Legal); 787 setOperationAction(ISD::SELECT_CC, VT, Promote); 788 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 789 setOperationAction(ISD::STORE, VT, Promote); 790 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 791 792 // No other operations are legal. 793 setOperationAction(ISD::MUL , VT, Expand); 794 setOperationAction(ISD::SDIV, VT, Expand); 795 setOperationAction(ISD::SREM, VT, Expand); 796 setOperationAction(ISD::UDIV, VT, Expand); 797 setOperationAction(ISD::UREM, VT, Expand); 798 setOperationAction(ISD::FDIV, VT, Expand); 799 setOperationAction(ISD::FREM, VT, Expand); 800 setOperationAction(ISD::FNEG, VT, Expand); 801 setOperationAction(ISD::FSQRT, VT, Expand); 802 setOperationAction(ISD::FLOG, VT, Expand); 803 setOperationAction(ISD::FLOG10, VT, Expand); 804 setOperationAction(ISD::FLOG2, VT, Expand); 805 setOperationAction(ISD::FEXP, VT, Expand); 806 setOperationAction(ISD::FEXP2, VT, Expand); 807 setOperationAction(ISD::FSIN, VT, Expand); 808 setOperationAction(ISD::FCOS, VT, Expand); 809 setOperationAction(ISD::FABS, VT, Expand); 810 setOperationAction(ISD::FFLOOR, VT, Expand); 811 setOperationAction(ISD::FCEIL, VT, Expand); 812 setOperationAction(ISD::FTRUNC, VT, Expand); 813 setOperationAction(ISD::FRINT, VT, Expand); 814 setOperationAction(ISD::FNEARBYINT, VT, Expand); 815 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 816 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 817 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 818 setOperationAction(ISD::MULHU, VT, Expand); 819 setOperationAction(ISD::MULHS, VT, Expand); 820 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 821 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 822 setOperationAction(ISD::UDIVREM, VT, Expand); 823 setOperationAction(ISD::SDIVREM, VT, Expand); 824 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 825 setOperationAction(ISD::FPOW, VT, Expand); 826 setOperationAction(ISD::BSWAP, VT, Expand); 827 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 828 setOperationAction(ISD::ROTL, VT, Expand); 829 setOperationAction(ISD::ROTR, VT, Expand); 830 831 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 832 setTruncStoreAction(VT, InnerVT, Expand); 833 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 834 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 835 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 836 } 837 } 838 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 839 if (!Subtarget.hasP8Vector()) { 840 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 841 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 842 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 843 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 844 } 845 846 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 847 // with merges, splats, etc. 848 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 849 850 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 851 // are cheap, so handle them before they get expanded to scalar. 852 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 853 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 854 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 855 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 856 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 857 858 setOperationAction(ISD::AND , MVT::v4i32, Legal); 859 setOperationAction(ISD::OR , MVT::v4i32, Legal); 860 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 861 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 862 setOperationAction(ISD::SELECT, MVT::v4i32, 863 Subtarget.useCRBits() ? Legal : Expand); 864 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 865 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 866 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 867 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 868 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 869 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 870 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 871 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 872 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 873 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 874 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 875 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 876 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 877 878 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 879 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 880 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 881 if (Subtarget.hasAltivec()) 882 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 883 setOperationAction(ISD::ROTL, VT, Legal); 884 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 885 if (Subtarget.hasP8Altivec()) 886 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 887 888 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 889 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 890 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 891 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 892 893 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 894 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 895 896 if (Subtarget.hasVSX()) { 897 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 898 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 899 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 900 } 901 902 if (Subtarget.hasP8Altivec()) 903 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 904 else 905 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 906 907 if (Subtarget.isISA3_1()) { 908 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 909 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 910 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 911 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 912 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 913 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 914 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 915 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 916 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 917 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 918 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 919 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 920 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 921 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 922 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 923 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 924 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 925 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 926 } 927 928 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 929 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 930 931 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 932 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 933 934 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 935 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 936 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 937 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 938 939 // Altivec does not contain unordered floating-point compare instructions 940 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 941 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 942 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 943 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 944 945 if (Subtarget.hasVSX()) { 946 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 947 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 948 if (Subtarget.hasP8Vector()) { 949 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 950 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 951 } 952 if (Subtarget.hasDirectMove() && isPPC64) { 953 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 954 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 955 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 956 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 957 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 958 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 959 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 960 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 961 } 962 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 963 964 // The nearbyint variants are not allowed to raise the inexact exception 965 // so we can only code-gen them with unsafe math. 966 if (TM.Options.UnsafeFPMath) { 967 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 968 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 969 } 970 971 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 972 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 973 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 974 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 975 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 976 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 977 setOperationAction(ISD::FROUND, MVT::f64, Legal); 978 setOperationAction(ISD::FRINT, MVT::f64, Legal); 979 980 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 981 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 982 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 983 setOperationAction(ISD::FROUND, MVT::f32, Legal); 984 setOperationAction(ISD::FRINT, MVT::f32, Legal); 985 986 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 987 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 988 989 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 990 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 991 992 // Share the Altivec comparison restrictions. 993 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 994 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 995 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 996 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 997 998 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 999 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1000 1001 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 1002 1003 if (Subtarget.hasP8Vector()) 1004 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1005 1006 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1007 1008 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1009 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1010 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1011 1012 if (Subtarget.hasP8Altivec()) { 1013 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1014 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1015 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1016 1017 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1018 // SRL, but not for SRA because of the instructions available: 1019 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1020 // doing 1021 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1022 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1023 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1024 1025 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1026 } 1027 else { 1028 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1029 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1030 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1031 1032 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1033 1034 // VSX v2i64 only supports non-arithmetic operations. 1035 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1036 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1037 } 1038 1039 if (Subtarget.isISA3_1()) 1040 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1041 else 1042 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1043 1044 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1045 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1046 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1047 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1048 1049 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1050 1051 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1052 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1053 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1054 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1055 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1056 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1057 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1058 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1059 1060 // Custom handling for partial vectors of integers converted to 1061 // floating point. We already have optimal handling for v2i32 through 1062 // the DAG combine, so those aren't necessary. 1063 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1064 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1065 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1066 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1067 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1068 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1069 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1070 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1071 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1072 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1073 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1074 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1075 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1076 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1077 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1078 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1079 1080 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1081 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1082 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1083 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1084 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1085 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1086 1087 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1088 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1089 1090 // Handle constrained floating-point operations of vector. 1091 // The predictor is `hasVSX` because altivec instruction has 1092 // no exception but VSX vector instruction has. 1093 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1094 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1095 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1096 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1097 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1098 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1099 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1100 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1101 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1102 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1103 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1104 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1105 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1106 1107 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1108 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1109 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1110 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1111 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1112 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1113 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1114 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1115 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1116 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1117 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1118 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1119 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1120 1121 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1122 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1123 1124 for (MVT FPT : MVT::fp_valuetypes()) 1125 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1126 1127 // Expand the SELECT to SELECT_CC 1128 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1129 1130 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1131 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1132 1133 // No implementation for these ops for PowerPC. 1134 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1135 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1136 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1137 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1138 setOperationAction(ISD::FREM, MVT::f128, Expand); 1139 } 1140 1141 if (Subtarget.hasP8Altivec()) { 1142 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1143 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1144 } 1145 1146 if (Subtarget.hasP9Vector()) { 1147 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1148 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1149 1150 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1151 // SRL, but not for SRA because of the instructions available: 1152 // VS{RL} and VS{RL}O. 1153 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1154 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1155 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1156 1157 setOperationAction(ISD::FADD, MVT::f128, Legal); 1158 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1159 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1160 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1161 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1162 1163 setOperationAction(ISD::FMA, MVT::f128, Legal); 1164 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1165 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1166 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1167 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1168 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1169 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1170 1171 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1172 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1173 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1174 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1175 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1176 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1177 1178 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1179 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1180 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1181 1182 // Handle constrained floating-point operations of fp128 1183 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1184 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1185 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1186 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1187 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1188 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1189 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1190 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1191 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1192 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1193 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1194 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1195 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1196 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1197 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1198 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1199 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1200 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1201 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1202 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1203 } else if (Subtarget.hasVSX()) { 1204 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1205 setOperationAction(ISD::STORE, MVT::f128, Promote); 1206 1207 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1208 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1209 1210 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1211 // fp_to_uint and int_to_fp. 1212 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1213 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1214 1215 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1216 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1217 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1218 setOperationAction(ISD::FABS, MVT::f128, Expand); 1219 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1220 setOperationAction(ISD::FMA, MVT::f128, Expand); 1221 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1222 1223 // Expand the fp_extend if the target type is fp128. 1224 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1225 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1226 1227 // Expand the fp_round if the source type is fp128. 1228 for (MVT VT : {MVT::f32, MVT::f64}) { 1229 setOperationAction(ISD::FP_ROUND, VT, Custom); 1230 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1231 } 1232 1233 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1234 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1235 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1236 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1237 1238 // Lower following f128 select_cc pattern: 1239 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1240 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1241 1242 // We need to handle f128 SELECT_CC with integer result type. 1243 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1244 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1245 } 1246 1247 if (Subtarget.hasP9Altivec()) { 1248 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1249 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1250 1251 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1252 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1253 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1254 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1255 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1256 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1257 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1258 } 1259 1260 if (Subtarget.isISA3_1()) 1261 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 1262 } 1263 1264 if (Subtarget.pairedVectorMemops()) { 1265 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1266 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1267 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1268 } 1269 if (Subtarget.hasMMA()) { 1270 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1271 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1272 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1273 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1274 } 1275 1276 if (Subtarget.has64BitSupport()) 1277 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1278 1279 if (Subtarget.isISA3_1()) 1280 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1281 1282 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1283 1284 if (!isPPC64) { 1285 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1286 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1287 } 1288 1289 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) { 1290 setMaxAtomicSizeInBitsSupported(128); 1291 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1292 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1293 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1294 } 1295 1296 setBooleanContents(ZeroOrOneBooleanContent); 1297 1298 if (Subtarget.hasAltivec()) { 1299 // Altivec instructions set fields to all zeros or all ones. 1300 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1301 } 1302 1303 if (!isPPC64) { 1304 // These libcalls are not available in 32-bit. 1305 setLibcallName(RTLIB::SHL_I128, nullptr); 1306 setLibcallName(RTLIB::SRL_I128, nullptr); 1307 setLibcallName(RTLIB::SRA_I128, nullptr); 1308 setLibcallName(RTLIB::MULO_I64, nullptr); 1309 } 1310 1311 if (!isPPC64) 1312 setMaxAtomicSizeInBitsSupported(32); 1313 1314 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1315 1316 // We have target-specific dag combine patterns for the following nodes: 1317 setTargetDAGCombine(ISD::ADD); 1318 setTargetDAGCombine(ISD::SHL); 1319 setTargetDAGCombine(ISD::SRA); 1320 setTargetDAGCombine(ISD::SRL); 1321 setTargetDAGCombine(ISD::MUL); 1322 setTargetDAGCombine(ISD::FMA); 1323 setTargetDAGCombine(ISD::SINT_TO_FP); 1324 setTargetDAGCombine(ISD::BUILD_VECTOR); 1325 if (Subtarget.hasFPCVT()) 1326 setTargetDAGCombine(ISD::UINT_TO_FP); 1327 setTargetDAGCombine(ISD::LOAD); 1328 setTargetDAGCombine(ISD::STORE); 1329 setTargetDAGCombine(ISD::BR_CC); 1330 if (Subtarget.useCRBits()) 1331 setTargetDAGCombine(ISD::BRCOND); 1332 setTargetDAGCombine(ISD::BSWAP); 1333 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1334 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1335 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1336 1337 setTargetDAGCombine(ISD::SIGN_EXTEND); 1338 setTargetDAGCombine(ISD::ZERO_EXTEND); 1339 setTargetDAGCombine(ISD::ANY_EXTEND); 1340 1341 setTargetDAGCombine(ISD::TRUNCATE); 1342 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1343 1344 1345 if (Subtarget.useCRBits()) { 1346 setTargetDAGCombine(ISD::TRUNCATE); 1347 setTargetDAGCombine(ISD::SETCC); 1348 setTargetDAGCombine(ISD::SELECT_CC); 1349 } 1350 1351 if (Subtarget.hasP9Altivec()) { 1352 setTargetDAGCombine(ISD::ABS); 1353 setTargetDAGCombine(ISD::VSELECT); 1354 } 1355 1356 setLibcallName(RTLIB::LOG_F128, "logf128"); 1357 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1358 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1359 setLibcallName(RTLIB::EXP_F128, "expf128"); 1360 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1361 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1362 setLibcallName(RTLIB::COS_F128, "cosf128"); 1363 setLibcallName(RTLIB::POW_F128, "powf128"); 1364 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1365 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1366 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1367 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1368 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1369 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1370 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1371 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1372 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1373 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1374 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1375 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1376 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1377 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1378 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1379 1380 // With 32 condition bits, we don't need to sink (and duplicate) compares 1381 // aggressively in CodeGenPrep. 1382 if (Subtarget.useCRBits()) { 1383 setHasMultipleConditionRegisters(); 1384 setJumpIsExpensive(); 1385 } 1386 1387 setMinFunctionAlignment(Align(4)); 1388 1389 switch (Subtarget.getCPUDirective()) { 1390 default: break; 1391 case PPC::DIR_970: 1392 case PPC::DIR_A2: 1393 case PPC::DIR_E500: 1394 case PPC::DIR_E500mc: 1395 case PPC::DIR_E5500: 1396 case PPC::DIR_PWR4: 1397 case PPC::DIR_PWR5: 1398 case PPC::DIR_PWR5X: 1399 case PPC::DIR_PWR6: 1400 case PPC::DIR_PWR6X: 1401 case PPC::DIR_PWR7: 1402 case PPC::DIR_PWR8: 1403 case PPC::DIR_PWR9: 1404 case PPC::DIR_PWR10: 1405 case PPC::DIR_PWR_FUTURE: 1406 setPrefLoopAlignment(Align(16)); 1407 setPrefFunctionAlignment(Align(16)); 1408 break; 1409 } 1410 1411 if (Subtarget.enableMachineScheduler()) 1412 setSchedulingPreference(Sched::Source); 1413 else 1414 setSchedulingPreference(Sched::Hybrid); 1415 1416 computeRegisterProperties(STI.getRegisterInfo()); 1417 1418 // The Freescale cores do better with aggressive inlining of memcpy and 1419 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1420 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1421 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1422 MaxStoresPerMemset = 32; 1423 MaxStoresPerMemsetOptSize = 16; 1424 MaxStoresPerMemcpy = 32; 1425 MaxStoresPerMemcpyOptSize = 8; 1426 MaxStoresPerMemmove = 32; 1427 MaxStoresPerMemmoveOptSize = 8; 1428 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1429 // The A2 also benefits from (very) aggressive inlining of memcpy and 1430 // friends. The overhead of a the function call, even when warm, can be 1431 // over one hundred cycles. 1432 MaxStoresPerMemset = 128; 1433 MaxStoresPerMemcpy = 128; 1434 MaxStoresPerMemmove = 128; 1435 MaxLoadsPerMemcmp = 128; 1436 } else { 1437 MaxLoadsPerMemcmp = 8; 1438 MaxLoadsPerMemcmpOptSize = 4; 1439 } 1440 1441 IsStrictFPEnabled = true; 1442 1443 // Let the subtarget (CPU) decide if a predictable select is more expensive 1444 // than the corresponding branch. This information is used in CGP to decide 1445 // when to convert selects into branches. 1446 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1447 } 1448 1449 // *********************************** NOTE ************************************ 1450 // For selecting load and store instructions, the addressing modes are defined 1451 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1452 // patterns to match the load the store instructions. 1453 // 1454 // The TD definitions for the addressing modes correspond to their respective 1455 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1456 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1457 // address mode flags of a particular node. Afterwards, the computed address 1458 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1459 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1460 // accordingly, based on the preferred addressing mode. 1461 // 1462 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1463 // MemOpFlags contains all the possible flags that can be used to compute the 1464 // optimal addressing mode for load and store instructions. 1465 // AddrMode contains all the possible load and store addressing modes available 1466 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1467 // 1468 // When adding new load and store instructions, it is possible that new address 1469 // flags may need to be added into MemOpFlags, and a new addressing mode will 1470 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1471 // of the minimal and main distinguishing address flags for the new load/store 1472 // instructions) will need to be added into initializeAddrModeMap() below. 1473 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1474 // need to be updated to account for selecting the optimal addressing mode. 1475 // ***************************************************************************** 1476 /// Initialize the map that relates the different addressing modes of the load 1477 /// and store instructions to a set of flags. This ensures the load/store 1478 /// instruction is correctly matched during instruction selection. 1479 void PPCTargetLowering::initializeAddrModeMap() { 1480 AddrModesMap[PPC::AM_DForm] = { 1481 // LWZ, STW 1482 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1483 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1484 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1485 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1486 // LBZ, LHZ, STB, STH 1487 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1488 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1489 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1490 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1491 // LHA 1492 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1493 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1494 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1495 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1496 // LFS, LFD, STFS, STFD 1497 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1498 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1499 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1500 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1501 }; 1502 AddrModesMap[PPC::AM_DSForm] = { 1503 // LWA 1504 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1505 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1506 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1507 // LD, STD 1508 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1509 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1510 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1511 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1512 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1513 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1514 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1515 }; 1516 AddrModesMap[PPC::AM_DQForm] = { 1517 // LXV, STXV 1518 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1519 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1520 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1521 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10, 1522 PPC::MOF_NotAddNorCst | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10, 1523 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10, 1524 }; 1525 // TODO: Add mapping for quadword load/store. 1526 } 1527 1528 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1529 /// the desired ByVal argument alignment. 1530 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1531 if (MaxAlign == MaxMaxAlign) 1532 return; 1533 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1534 if (MaxMaxAlign >= 32 && 1535 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1536 MaxAlign = Align(32); 1537 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1538 MaxAlign < 16) 1539 MaxAlign = Align(16); 1540 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1541 Align EltAlign; 1542 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1543 if (EltAlign > MaxAlign) 1544 MaxAlign = EltAlign; 1545 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1546 for (auto *EltTy : STy->elements()) { 1547 Align EltAlign; 1548 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1549 if (EltAlign > MaxAlign) 1550 MaxAlign = EltAlign; 1551 if (MaxAlign == MaxMaxAlign) 1552 break; 1553 } 1554 } 1555 } 1556 1557 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1558 /// function arguments in the caller parameter area. 1559 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1560 const DataLayout &DL) const { 1561 // 16byte and wider vectors are passed on 16byte boundary. 1562 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1563 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1564 if (Subtarget.hasAltivec()) 1565 getMaxByValAlign(Ty, Alignment, Align(16)); 1566 return Alignment.value(); 1567 } 1568 1569 bool PPCTargetLowering::useSoftFloat() const { 1570 return Subtarget.useSoftFloat(); 1571 } 1572 1573 bool PPCTargetLowering::hasSPE() const { 1574 return Subtarget.hasSPE(); 1575 } 1576 1577 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1578 return VT.isScalarInteger(); 1579 } 1580 1581 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1582 switch ((PPCISD::NodeType)Opcode) { 1583 case PPCISD::FIRST_NUMBER: break; 1584 case PPCISD::FSEL: return "PPCISD::FSEL"; 1585 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1586 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1587 case PPCISD::FCFID: return "PPCISD::FCFID"; 1588 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1589 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1590 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1591 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1592 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1593 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1594 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1595 case PPCISD::FP_TO_UINT_IN_VSR: 1596 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1597 case PPCISD::FP_TO_SINT_IN_VSR: 1598 return "PPCISD::FP_TO_SINT_IN_VSR"; 1599 case PPCISD::FRE: return "PPCISD::FRE"; 1600 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1601 case PPCISD::FTSQRT: 1602 return "PPCISD::FTSQRT"; 1603 case PPCISD::FSQRT: 1604 return "PPCISD::FSQRT"; 1605 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1606 case PPCISD::VPERM: return "PPCISD::VPERM"; 1607 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1608 case PPCISD::XXSPLTI_SP_TO_DP: 1609 return "PPCISD::XXSPLTI_SP_TO_DP"; 1610 case PPCISD::XXSPLTI32DX: 1611 return "PPCISD::XXSPLTI32DX"; 1612 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1613 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1614 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1615 case PPCISD::CMPB: return "PPCISD::CMPB"; 1616 case PPCISD::Hi: return "PPCISD::Hi"; 1617 case PPCISD::Lo: return "PPCISD::Lo"; 1618 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1619 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1620 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1621 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1622 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1623 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1624 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1625 case PPCISD::SRL: return "PPCISD::SRL"; 1626 case PPCISD::SRA: return "PPCISD::SRA"; 1627 case PPCISD::SHL: return "PPCISD::SHL"; 1628 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1629 case PPCISD::CALL: return "PPCISD::CALL"; 1630 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1631 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1632 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1633 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1634 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1635 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1636 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1637 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1638 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1639 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1640 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1641 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1642 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1643 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1644 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1645 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1646 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1647 case PPCISD::ANDI_rec_1_EQ_BIT: 1648 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1649 case PPCISD::ANDI_rec_1_GT_BIT: 1650 return "PPCISD::ANDI_rec_1_GT_BIT"; 1651 case PPCISD::VCMP: return "PPCISD::VCMP"; 1652 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1653 case PPCISD::LBRX: return "PPCISD::LBRX"; 1654 case PPCISD::STBRX: return "PPCISD::STBRX"; 1655 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1656 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1657 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1658 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1659 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1660 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1661 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1662 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1663 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1664 case PPCISD::ST_VSR_SCAL_INT: 1665 return "PPCISD::ST_VSR_SCAL_INT"; 1666 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1667 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1668 case PPCISD::BDZ: return "PPCISD::BDZ"; 1669 case PPCISD::MFFS: return "PPCISD::MFFS"; 1670 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1671 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1672 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1673 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1674 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1675 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1676 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1677 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1678 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1679 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1680 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1681 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1682 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1683 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1684 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1685 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1686 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1687 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1688 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1689 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1690 case PPCISD::PADDI_DTPREL: 1691 return "PPCISD::PADDI_DTPREL"; 1692 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1693 case PPCISD::SC: return "PPCISD::SC"; 1694 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1695 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1696 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1697 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1698 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1699 case PPCISD::VABSD: return "PPCISD::VABSD"; 1700 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1701 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1702 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1703 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1704 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1705 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1706 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1707 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1708 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1709 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1710 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1711 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1712 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1713 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1714 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1715 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1716 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1717 case PPCISD::STRICT_FADDRTZ: 1718 return "PPCISD::STRICT_FADDRTZ"; 1719 case PPCISD::STRICT_FCTIDZ: 1720 return "PPCISD::STRICT_FCTIDZ"; 1721 case PPCISD::STRICT_FCTIWZ: 1722 return "PPCISD::STRICT_FCTIWZ"; 1723 case PPCISD::STRICT_FCTIDUZ: 1724 return "PPCISD::STRICT_FCTIDUZ"; 1725 case PPCISD::STRICT_FCTIWUZ: 1726 return "PPCISD::STRICT_FCTIWUZ"; 1727 case PPCISD::STRICT_FCFID: 1728 return "PPCISD::STRICT_FCFID"; 1729 case PPCISD::STRICT_FCFIDU: 1730 return "PPCISD::STRICT_FCFIDU"; 1731 case PPCISD::STRICT_FCFIDS: 1732 return "PPCISD::STRICT_FCFIDS"; 1733 case PPCISD::STRICT_FCFIDUS: 1734 return "PPCISD::STRICT_FCFIDUS"; 1735 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1736 } 1737 return nullptr; 1738 } 1739 1740 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1741 EVT VT) const { 1742 if (!VT.isVector()) 1743 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1744 1745 return VT.changeVectorElementTypeToInteger(); 1746 } 1747 1748 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1749 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1750 return true; 1751 } 1752 1753 //===----------------------------------------------------------------------===// 1754 // Node matching predicates, for use by the tblgen matching code. 1755 //===----------------------------------------------------------------------===// 1756 1757 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1758 static bool isFloatingPointZero(SDValue Op) { 1759 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1760 return CFP->getValueAPF().isZero(); 1761 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1762 // Maybe this has already been legalized into the constant pool? 1763 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1764 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1765 return CFP->getValueAPF().isZero(); 1766 } 1767 return false; 1768 } 1769 1770 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1771 /// true if Op is undef or if it matches the specified value. 1772 static bool isConstantOrUndef(int Op, int Val) { 1773 return Op < 0 || Op == Val; 1774 } 1775 1776 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1777 /// VPKUHUM instruction. 1778 /// The ShuffleKind distinguishes between big-endian operations with 1779 /// two different inputs (0), either-endian operations with two identical 1780 /// inputs (1), and little-endian operations with two different inputs (2). 1781 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1782 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1783 SelectionDAG &DAG) { 1784 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1785 if (ShuffleKind == 0) { 1786 if (IsLE) 1787 return false; 1788 for (unsigned i = 0; i != 16; ++i) 1789 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1790 return false; 1791 } else if (ShuffleKind == 2) { 1792 if (!IsLE) 1793 return false; 1794 for (unsigned i = 0; i != 16; ++i) 1795 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1796 return false; 1797 } else if (ShuffleKind == 1) { 1798 unsigned j = IsLE ? 0 : 1; 1799 for (unsigned i = 0; i != 8; ++i) 1800 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1801 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1802 return false; 1803 } 1804 return true; 1805 } 1806 1807 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1808 /// VPKUWUM instruction. 1809 /// The ShuffleKind distinguishes between big-endian operations with 1810 /// two different inputs (0), either-endian operations with two identical 1811 /// inputs (1), and little-endian operations with two different inputs (2). 1812 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1813 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1814 SelectionDAG &DAG) { 1815 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1816 if (ShuffleKind == 0) { 1817 if (IsLE) 1818 return false; 1819 for (unsigned i = 0; i != 16; i += 2) 1820 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1821 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1822 return false; 1823 } else if (ShuffleKind == 2) { 1824 if (!IsLE) 1825 return false; 1826 for (unsigned i = 0; i != 16; i += 2) 1827 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1828 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1829 return false; 1830 } else if (ShuffleKind == 1) { 1831 unsigned j = IsLE ? 0 : 2; 1832 for (unsigned i = 0; i != 8; i += 2) 1833 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1834 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1835 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1836 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1837 return false; 1838 } 1839 return true; 1840 } 1841 1842 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1843 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1844 /// current subtarget. 1845 /// 1846 /// The ShuffleKind distinguishes between big-endian operations with 1847 /// two different inputs (0), either-endian operations with two identical 1848 /// inputs (1), and little-endian operations with two different inputs (2). 1849 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1850 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1851 SelectionDAG &DAG) { 1852 const PPCSubtarget& Subtarget = 1853 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1854 if (!Subtarget.hasP8Vector()) 1855 return false; 1856 1857 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1858 if (ShuffleKind == 0) { 1859 if (IsLE) 1860 return false; 1861 for (unsigned i = 0; i != 16; i += 4) 1862 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1863 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1864 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1865 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1866 return false; 1867 } else if (ShuffleKind == 2) { 1868 if (!IsLE) 1869 return false; 1870 for (unsigned i = 0; i != 16; i += 4) 1871 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1872 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1873 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1874 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1875 return false; 1876 } else if (ShuffleKind == 1) { 1877 unsigned j = IsLE ? 0 : 4; 1878 for (unsigned i = 0; i != 8; i += 4) 1879 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1880 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1881 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1882 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1883 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1884 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1885 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1886 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1887 return false; 1888 } 1889 return true; 1890 } 1891 1892 /// isVMerge - Common function, used to match vmrg* shuffles. 1893 /// 1894 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1895 unsigned LHSStart, unsigned RHSStart) { 1896 if (N->getValueType(0) != MVT::v16i8) 1897 return false; 1898 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1899 "Unsupported merge size!"); 1900 1901 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1902 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1903 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1904 LHSStart+j+i*UnitSize) || 1905 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1906 RHSStart+j+i*UnitSize)) 1907 return false; 1908 } 1909 return true; 1910 } 1911 1912 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1913 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1914 /// The ShuffleKind distinguishes between big-endian merges with two 1915 /// different inputs (0), either-endian merges with two identical inputs (1), 1916 /// and little-endian merges with two different inputs (2). For the latter, 1917 /// the input operands are swapped (see PPCInstrAltivec.td). 1918 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1919 unsigned ShuffleKind, SelectionDAG &DAG) { 1920 if (DAG.getDataLayout().isLittleEndian()) { 1921 if (ShuffleKind == 1) // unary 1922 return isVMerge(N, UnitSize, 0, 0); 1923 else if (ShuffleKind == 2) // swapped 1924 return isVMerge(N, UnitSize, 0, 16); 1925 else 1926 return false; 1927 } else { 1928 if (ShuffleKind == 1) // unary 1929 return isVMerge(N, UnitSize, 8, 8); 1930 else if (ShuffleKind == 0) // normal 1931 return isVMerge(N, UnitSize, 8, 24); 1932 else 1933 return false; 1934 } 1935 } 1936 1937 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1938 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1939 /// The ShuffleKind distinguishes between big-endian merges with two 1940 /// different inputs (0), either-endian merges with two identical inputs (1), 1941 /// and little-endian merges with two different inputs (2). For the latter, 1942 /// the input operands are swapped (see PPCInstrAltivec.td). 1943 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1944 unsigned ShuffleKind, SelectionDAG &DAG) { 1945 if (DAG.getDataLayout().isLittleEndian()) { 1946 if (ShuffleKind == 1) // unary 1947 return isVMerge(N, UnitSize, 8, 8); 1948 else if (ShuffleKind == 2) // swapped 1949 return isVMerge(N, UnitSize, 8, 24); 1950 else 1951 return false; 1952 } else { 1953 if (ShuffleKind == 1) // unary 1954 return isVMerge(N, UnitSize, 0, 0); 1955 else if (ShuffleKind == 0) // normal 1956 return isVMerge(N, UnitSize, 0, 16); 1957 else 1958 return false; 1959 } 1960 } 1961 1962 /** 1963 * Common function used to match vmrgew and vmrgow shuffles 1964 * 1965 * The indexOffset determines whether to look for even or odd words in 1966 * the shuffle mask. This is based on the of the endianness of the target 1967 * machine. 1968 * - Little Endian: 1969 * - Use offset of 0 to check for odd elements 1970 * - Use offset of 4 to check for even elements 1971 * - Big Endian: 1972 * - Use offset of 0 to check for even elements 1973 * - Use offset of 4 to check for odd elements 1974 * A detailed description of the vector element ordering for little endian and 1975 * big endian can be found at 1976 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1977 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1978 * compiler differences mean to you 1979 * 1980 * The mask to the shuffle vector instruction specifies the indices of the 1981 * elements from the two input vectors to place in the result. The elements are 1982 * numbered in array-access order, starting with the first vector. These vectors 1983 * are always of type v16i8, thus each vector will contain 16 elements of size 1984 * 8. More info on the shuffle vector can be found in the 1985 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1986 * Language Reference. 1987 * 1988 * The RHSStartValue indicates whether the same input vectors are used (unary) 1989 * or two different input vectors are used, based on the following: 1990 * - If the instruction uses the same vector for both inputs, the range of the 1991 * indices will be 0 to 15. In this case, the RHSStart value passed should 1992 * be 0. 1993 * - If the instruction has two different vectors then the range of the 1994 * indices will be 0 to 31. In this case, the RHSStart value passed should 1995 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1996 * to 31 specify elements in the second vector). 1997 * 1998 * \param[in] N The shuffle vector SD Node to analyze 1999 * \param[in] IndexOffset Specifies whether to look for even or odd elements 2000 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2001 * vector to the shuffle_vector instruction 2002 * \return true iff this shuffle vector represents an even or odd word merge 2003 */ 2004 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2005 unsigned RHSStartValue) { 2006 if (N->getValueType(0) != MVT::v16i8) 2007 return false; 2008 2009 for (unsigned i = 0; i < 2; ++i) 2010 for (unsigned j = 0; j < 4; ++j) 2011 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2012 i*RHSStartValue+j+IndexOffset) || 2013 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2014 i*RHSStartValue+j+IndexOffset+8)) 2015 return false; 2016 return true; 2017 } 2018 2019 /** 2020 * Determine if the specified shuffle mask is suitable for the vmrgew or 2021 * vmrgow instructions. 2022 * 2023 * \param[in] N The shuffle vector SD Node to analyze 2024 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2025 * \param[in] ShuffleKind Identify the type of merge: 2026 * - 0 = big-endian merge with two different inputs; 2027 * - 1 = either-endian merge with two identical inputs; 2028 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2029 * little-endian merges). 2030 * \param[in] DAG The current SelectionDAG 2031 * \return true iff this shuffle mask 2032 */ 2033 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2034 unsigned ShuffleKind, SelectionDAG &DAG) { 2035 if (DAG.getDataLayout().isLittleEndian()) { 2036 unsigned indexOffset = CheckEven ? 4 : 0; 2037 if (ShuffleKind == 1) // Unary 2038 return isVMerge(N, indexOffset, 0); 2039 else if (ShuffleKind == 2) // swapped 2040 return isVMerge(N, indexOffset, 16); 2041 else 2042 return false; 2043 } 2044 else { 2045 unsigned indexOffset = CheckEven ? 0 : 4; 2046 if (ShuffleKind == 1) // Unary 2047 return isVMerge(N, indexOffset, 0); 2048 else if (ShuffleKind == 0) // Normal 2049 return isVMerge(N, indexOffset, 16); 2050 else 2051 return false; 2052 } 2053 return false; 2054 } 2055 2056 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2057 /// amount, otherwise return -1. 2058 /// The ShuffleKind distinguishes between big-endian operations with two 2059 /// different inputs (0), either-endian operations with two identical inputs 2060 /// (1), and little-endian operations with two different inputs (2). For the 2061 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2062 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2063 SelectionDAG &DAG) { 2064 if (N->getValueType(0) != MVT::v16i8) 2065 return -1; 2066 2067 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2068 2069 // Find the first non-undef value in the shuffle mask. 2070 unsigned i; 2071 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2072 /*search*/; 2073 2074 if (i == 16) return -1; // all undef. 2075 2076 // Otherwise, check to see if the rest of the elements are consecutively 2077 // numbered from this value. 2078 unsigned ShiftAmt = SVOp->getMaskElt(i); 2079 if (ShiftAmt < i) return -1; 2080 2081 ShiftAmt -= i; 2082 bool isLE = DAG.getDataLayout().isLittleEndian(); 2083 2084 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2085 // Check the rest of the elements to see if they are consecutive. 2086 for (++i; i != 16; ++i) 2087 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2088 return -1; 2089 } else if (ShuffleKind == 1) { 2090 // Check the rest of the elements to see if they are consecutive. 2091 for (++i; i != 16; ++i) 2092 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2093 return -1; 2094 } else 2095 return -1; 2096 2097 if (isLE) 2098 ShiftAmt = 16 - ShiftAmt; 2099 2100 return ShiftAmt; 2101 } 2102 2103 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2104 /// specifies a splat of a single element that is suitable for input to 2105 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2106 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2107 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2108 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2109 2110 // The consecutive indices need to specify an element, not part of two 2111 // different elements. So abandon ship early if this isn't the case. 2112 if (N->getMaskElt(0) % EltSize != 0) 2113 return false; 2114 2115 // This is a splat operation if each element of the permute is the same, and 2116 // if the value doesn't reference the second vector. 2117 unsigned ElementBase = N->getMaskElt(0); 2118 2119 // FIXME: Handle UNDEF elements too! 2120 if (ElementBase >= 16) 2121 return false; 2122 2123 // Check that the indices are consecutive, in the case of a multi-byte element 2124 // splatted with a v16i8 mask. 2125 for (unsigned i = 1; i != EltSize; ++i) 2126 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2127 return false; 2128 2129 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2130 if (N->getMaskElt(i) < 0) continue; 2131 for (unsigned j = 0; j != EltSize; ++j) 2132 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2133 return false; 2134 } 2135 return true; 2136 } 2137 2138 /// Check that the mask is shuffling N byte elements. Within each N byte 2139 /// element of the mask, the indices could be either in increasing or 2140 /// decreasing order as long as they are consecutive. 2141 /// \param[in] N the shuffle vector SD Node to analyze 2142 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2143 /// Word/DoubleWord/QuadWord). 2144 /// \param[in] StepLen the delta indices number among the N byte element, if 2145 /// the mask is in increasing/decreasing order then it is 1/-1. 2146 /// \return true iff the mask is shuffling N byte elements. 2147 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2148 int StepLen) { 2149 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2150 "Unexpected element width."); 2151 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2152 2153 unsigned NumOfElem = 16 / Width; 2154 unsigned MaskVal[16]; // Width is never greater than 16 2155 for (unsigned i = 0; i < NumOfElem; ++i) { 2156 MaskVal[0] = N->getMaskElt(i * Width); 2157 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2158 return false; 2159 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2160 return false; 2161 } 2162 2163 for (unsigned int j = 1; j < Width; ++j) { 2164 MaskVal[j] = N->getMaskElt(i * Width + j); 2165 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2166 return false; 2167 } 2168 } 2169 } 2170 2171 return true; 2172 } 2173 2174 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2175 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2176 if (!isNByteElemShuffleMask(N, 4, 1)) 2177 return false; 2178 2179 // Now we look at mask elements 0,4,8,12 2180 unsigned M0 = N->getMaskElt(0) / 4; 2181 unsigned M1 = N->getMaskElt(4) / 4; 2182 unsigned M2 = N->getMaskElt(8) / 4; 2183 unsigned M3 = N->getMaskElt(12) / 4; 2184 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2185 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2186 2187 // Below, let H and L be arbitrary elements of the shuffle mask 2188 // where H is in the range [4,7] and L is in the range [0,3]. 2189 // H, 1, 2, 3 or L, 5, 6, 7 2190 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2191 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2192 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2193 InsertAtByte = IsLE ? 12 : 0; 2194 Swap = M0 < 4; 2195 return true; 2196 } 2197 // 0, H, 2, 3 or 4, L, 6, 7 2198 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2199 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2200 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2201 InsertAtByte = IsLE ? 8 : 4; 2202 Swap = M1 < 4; 2203 return true; 2204 } 2205 // 0, 1, H, 3 or 4, 5, L, 7 2206 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2207 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2208 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2209 InsertAtByte = IsLE ? 4 : 8; 2210 Swap = M2 < 4; 2211 return true; 2212 } 2213 // 0, 1, 2, H or 4, 5, 6, L 2214 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2215 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2216 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2217 InsertAtByte = IsLE ? 0 : 12; 2218 Swap = M3 < 4; 2219 return true; 2220 } 2221 2222 // If both vector operands for the shuffle are the same vector, the mask will 2223 // contain only elements from the first one and the second one will be undef. 2224 if (N->getOperand(1).isUndef()) { 2225 ShiftElts = 0; 2226 Swap = true; 2227 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2228 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2229 InsertAtByte = IsLE ? 12 : 0; 2230 return true; 2231 } 2232 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2233 InsertAtByte = IsLE ? 8 : 4; 2234 return true; 2235 } 2236 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2237 InsertAtByte = IsLE ? 4 : 8; 2238 return true; 2239 } 2240 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2241 InsertAtByte = IsLE ? 0 : 12; 2242 return true; 2243 } 2244 } 2245 2246 return false; 2247 } 2248 2249 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2250 bool &Swap, bool IsLE) { 2251 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2252 // Ensure each byte index of the word is consecutive. 2253 if (!isNByteElemShuffleMask(N, 4, 1)) 2254 return false; 2255 2256 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2257 unsigned M0 = N->getMaskElt(0) / 4; 2258 unsigned M1 = N->getMaskElt(4) / 4; 2259 unsigned M2 = N->getMaskElt(8) / 4; 2260 unsigned M3 = N->getMaskElt(12) / 4; 2261 2262 // If both vector operands for the shuffle are the same vector, the mask will 2263 // contain only elements from the first one and the second one will be undef. 2264 if (N->getOperand(1).isUndef()) { 2265 assert(M0 < 4 && "Indexing into an undef vector?"); 2266 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2267 return false; 2268 2269 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2270 Swap = false; 2271 return true; 2272 } 2273 2274 // Ensure each word index of the ShuffleVector Mask is consecutive. 2275 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2276 return false; 2277 2278 if (IsLE) { 2279 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2280 // Input vectors don't need to be swapped if the leading element 2281 // of the result is one of the 3 left elements of the second vector 2282 // (or if there is no shift to be done at all). 2283 Swap = false; 2284 ShiftElts = (8 - M0) % 8; 2285 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2286 // Input vectors need to be swapped if the leading element 2287 // of the result is one of the 3 left elements of the first vector 2288 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2289 Swap = true; 2290 ShiftElts = (4 - M0) % 4; 2291 } 2292 2293 return true; 2294 } else { // BE 2295 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2296 // Input vectors don't need to be swapped if the leading element 2297 // of the result is one of the 4 elements of the first vector. 2298 Swap = false; 2299 ShiftElts = M0; 2300 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2301 // Input vectors need to be swapped if the leading element 2302 // of the result is one of the 4 elements of the right vector. 2303 Swap = true; 2304 ShiftElts = M0 - 4; 2305 } 2306 2307 return true; 2308 } 2309 } 2310 2311 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2312 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2313 2314 if (!isNByteElemShuffleMask(N, Width, -1)) 2315 return false; 2316 2317 for (int i = 0; i < 16; i += Width) 2318 if (N->getMaskElt(i) != i + Width - 1) 2319 return false; 2320 2321 return true; 2322 } 2323 2324 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2325 return isXXBRShuffleMaskHelper(N, 2); 2326 } 2327 2328 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2329 return isXXBRShuffleMaskHelper(N, 4); 2330 } 2331 2332 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2333 return isXXBRShuffleMaskHelper(N, 8); 2334 } 2335 2336 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2337 return isXXBRShuffleMaskHelper(N, 16); 2338 } 2339 2340 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2341 /// if the inputs to the instruction should be swapped and set \p DM to the 2342 /// value for the immediate. 2343 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2344 /// AND element 0 of the result comes from the first input (LE) or second input 2345 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2346 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2347 /// mask. 2348 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2349 bool &Swap, bool IsLE) { 2350 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2351 2352 // Ensure each byte index of the double word is consecutive. 2353 if (!isNByteElemShuffleMask(N, 8, 1)) 2354 return false; 2355 2356 unsigned M0 = N->getMaskElt(0) / 8; 2357 unsigned M1 = N->getMaskElt(8) / 8; 2358 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2359 2360 // If both vector operands for the shuffle are the same vector, the mask will 2361 // contain only elements from the first one and the second one will be undef. 2362 if (N->getOperand(1).isUndef()) { 2363 if ((M0 | M1) < 2) { 2364 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2365 Swap = false; 2366 return true; 2367 } else 2368 return false; 2369 } 2370 2371 if (IsLE) { 2372 if (M0 > 1 && M1 < 2) { 2373 Swap = false; 2374 } else if (M0 < 2 && M1 > 1) { 2375 M0 = (M0 + 2) % 4; 2376 M1 = (M1 + 2) % 4; 2377 Swap = true; 2378 } else 2379 return false; 2380 2381 // Note: if control flow comes here that means Swap is already set above 2382 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2383 return true; 2384 } else { // BE 2385 if (M0 < 2 && M1 > 1) { 2386 Swap = false; 2387 } else if (M0 > 1 && M1 < 2) { 2388 M0 = (M0 + 2) % 4; 2389 M1 = (M1 + 2) % 4; 2390 Swap = true; 2391 } else 2392 return false; 2393 2394 // Note: if control flow comes here that means Swap is already set above 2395 DM = (M0 << 1) + (M1 & 1); 2396 return true; 2397 } 2398 } 2399 2400 2401 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2402 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2403 /// elements are counted from the left of the vector register). 2404 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2405 SelectionDAG &DAG) { 2406 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2407 assert(isSplatShuffleMask(SVOp, EltSize)); 2408 if (DAG.getDataLayout().isLittleEndian()) 2409 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2410 else 2411 return SVOp->getMaskElt(0) / EltSize; 2412 } 2413 2414 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2415 /// by using a vspltis[bhw] instruction of the specified element size, return 2416 /// the constant being splatted. The ByteSize field indicates the number of 2417 /// bytes of each element [124] -> [bhw]. 2418 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2419 SDValue OpVal(nullptr, 0); 2420 2421 // If ByteSize of the splat is bigger than the element size of the 2422 // build_vector, then we have a case where we are checking for a splat where 2423 // multiple elements of the buildvector are folded together into a single 2424 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2425 unsigned EltSize = 16/N->getNumOperands(); 2426 if (EltSize < ByteSize) { 2427 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2428 SDValue UniquedVals[4]; 2429 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2430 2431 // See if all of the elements in the buildvector agree across. 2432 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2433 if (N->getOperand(i).isUndef()) continue; 2434 // If the element isn't a constant, bail fully out. 2435 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2436 2437 if (!UniquedVals[i&(Multiple-1)].getNode()) 2438 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2439 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2440 return SDValue(); // no match. 2441 } 2442 2443 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2444 // either constant or undef values that are identical for each chunk. See 2445 // if these chunks can form into a larger vspltis*. 2446 2447 // Check to see if all of the leading entries are either 0 or -1. If 2448 // neither, then this won't fit into the immediate field. 2449 bool LeadingZero = true; 2450 bool LeadingOnes = true; 2451 for (unsigned i = 0; i != Multiple-1; ++i) { 2452 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2453 2454 LeadingZero &= isNullConstant(UniquedVals[i]); 2455 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2456 } 2457 // Finally, check the least significant entry. 2458 if (LeadingZero) { 2459 if (!UniquedVals[Multiple-1].getNode()) 2460 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2461 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2462 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2463 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2464 } 2465 if (LeadingOnes) { 2466 if (!UniquedVals[Multiple-1].getNode()) 2467 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2468 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2469 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2470 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2471 } 2472 2473 return SDValue(); 2474 } 2475 2476 // Check to see if this buildvec has a single non-undef value in its elements. 2477 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2478 if (N->getOperand(i).isUndef()) continue; 2479 if (!OpVal.getNode()) 2480 OpVal = N->getOperand(i); 2481 else if (OpVal != N->getOperand(i)) 2482 return SDValue(); 2483 } 2484 2485 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2486 2487 unsigned ValSizeInBytes = EltSize; 2488 uint64_t Value = 0; 2489 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2490 Value = CN->getZExtValue(); 2491 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2492 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2493 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2494 } 2495 2496 // If the splat value is larger than the element value, then we can never do 2497 // this splat. The only case that we could fit the replicated bits into our 2498 // immediate field for would be zero, and we prefer to use vxor for it. 2499 if (ValSizeInBytes < ByteSize) return SDValue(); 2500 2501 // If the element value is larger than the splat value, check if it consists 2502 // of a repeated bit pattern of size ByteSize. 2503 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2504 return SDValue(); 2505 2506 // Properly sign extend the value. 2507 int MaskVal = SignExtend32(Value, ByteSize * 8); 2508 2509 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2510 if (MaskVal == 0) return SDValue(); 2511 2512 // Finally, if this value fits in a 5 bit sext field, return it 2513 if (SignExtend32<5>(MaskVal) == MaskVal) 2514 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2515 return SDValue(); 2516 } 2517 2518 //===----------------------------------------------------------------------===// 2519 // Addressing Mode Selection 2520 //===----------------------------------------------------------------------===// 2521 2522 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2523 /// or 64-bit immediate, and if the value can be accurately represented as a 2524 /// sign extension from a 16-bit value. If so, this returns true and the 2525 /// immediate. 2526 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2527 if (!isa<ConstantSDNode>(N)) 2528 return false; 2529 2530 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2531 if (N->getValueType(0) == MVT::i32) 2532 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2533 else 2534 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2535 } 2536 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2537 return isIntS16Immediate(Op.getNode(), Imm); 2538 } 2539 2540 /// Used when computing address flags for selecting loads and stores. 2541 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2542 /// An OR of two provably disjoint values is equivalent to an ADD. 2543 /// Most PPC load/store instructions compute the effective address as a sum, 2544 /// so doing this conversion is useful. 2545 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2546 if (N.getOpcode() != ISD::OR) 2547 return false; 2548 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2549 if (!LHSKnown.Zero.getBoolValue()) 2550 return false; 2551 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2552 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2553 } 2554 2555 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2556 /// be represented as an indexed [r+r] operation. 2557 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2558 SDValue &Index, 2559 SelectionDAG &DAG) const { 2560 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2561 UI != E; ++UI) { 2562 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2563 if (Memop->getMemoryVT() == MVT::f64) { 2564 Base = N.getOperand(0); 2565 Index = N.getOperand(1); 2566 return true; 2567 } 2568 } 2569 } 2570 return false; 2571 } 2572 2573 /// isIntS34Immediate - This method tests if value of node given can be 2574 /// accurately represented as a sign extension from a 34-bit value. If so, 2575 /// this returns true and the immediate. 2576 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2577 if (!isa<ConstantSDNode>(N)) 2578 return false; 2579 2580 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2581 return isInt<34>(Imm); 2582 } 2583 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2584 return isIntS34Immediate(Op.getNode(), Imm); 2585 } 2586 2587 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2588 /// can be represented as an indexed [r+r] operation. Returns false if it 2589 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2590 /// non-zero and N can be represented by a base register plus a signed 16-bit 2591 /// displacement, make a more precise judgement by checking (displacement % \p 2592 /// EncodingAlignment). 2593 bool PPCTargetLowering::SelectAddressRegReg( 2594 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2595 MaybeAlign EncodingAlignment) const { 2596 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2597 // a [pc+imm]. 2598 if (SelectAddressPCRel(N, Base)) 2599 return false; 2600 2601 int16_t Imm = 0; 2602 if (N.getOpcode() == ISD::ADD) { 2603 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2604 // SPE load/store can only handle 8-bit offsets. 2605 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2606 return true; 2607 if (isIntS16Immediate(N.getOperand(1), Imm) && 2608 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2609 return false; // r+i 2610 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2611 return false; // r+i 2612 2613 Base = N.getOperand(0); 2614 Index = N.getOperand(1); 2615 return true; 2616 } else if (N.getOpcode() == ISD::OR) { 2617 if (isIntS16Immediate(N.getOperand(1), Imm) && 2618 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2619 return false; // r+i can fold it if we can. 2620 2621 // If this is an or of disjoint bitfields, we can codegen this as an add 2622 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2623 // disjoint. 2624 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2625 2626 if (LHSKnown.Zero.getBoolValue()) { 2627 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2628 // If all of the bits are known zero on the LHS or RHS, the add won't 2629 // carry. 2630 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2631 Base = N.getOperand(0); 2632 Index = N.getOperand(1); 2633 return true; 2634 } 2635 } 2636 } 2637 2638 return false; 2639 } 2640 2641 // If we happen to be doing an i64 load or store into a stack slot that has 2642 // less than a 4-byte alignment, then the frame-index elimination may need to 2643 // use an indexed load or store instruction (because the offset may not be a 2644 // multiple of 4). The extra register needed to hold the offset comes from the 2645 // register scavenger, and it is possible that the scavenger will need to use 2646 // an emergency spill slot. As a result, we need to make sure that a spill slot 2647 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2648 // stack slot. 2649 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2650 // FIXME: This does not handle the LWA case. 2651 if (VT != MVT::i64) 2652 return; 2653 2654 // NOTE: We'll exclude negative FIs here, which come from argument 2655 // lowering, because there are no known test cases triggering this problem 2656 // using packed structures (or similar). We can remove this exclusion if 2657 // we find such a test case. The reason why this is so test-case driven is 2658 // because this entire 'fixup' is only to prevent crashes (from the 2659 // register scavenger) on not-really-valid inputs. For example, if we have: 2660 // %a = alloca i1 2661 // %b = bitcast i1* %a to i64* 2662 // store i64* a, i64 b 2663 // then the store should really be marked as 'align 1', but is not. If it 2664 // were marked as 'align 1' then the indexed form would have been 2665 // instruction-selected initially, and the problem this 'fixup' is preventing 2666 // won't happen regardless. 2667 if (FrameIdx < 0) 2668 return; 2669 2670 MachineFunction &MF = DAG.getMachineFunction(); 2671 MachineFrameInfo &MFI = MF.getFrameInfo(); 2672 2673 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2674 return; 2675 2676 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2677 FuncInfo->setHasNonRISpills(); 2678 } 2679 2680 /// Returns true if the address N can be represented by a base register plus 2681 /// a signed 16-bit displacement [r+imm], and if it is not better 2682 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2683 /// displacements that are multiples of that value. 2684 bool PPCTargetLowering::SelectAddressRegImm( 2685 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2686 MaybeAlign EncodingAlignment) const { 2687 // FIXME dl should come from parent load or store, not from address 2688 SDLoc dl(N); 2689 2690 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2691 // a [pc+imm]. 2692 if (SelectAddressPCRel(N, Base)) 2693 return false; 2694 2695 // If this can be more profitably realized as r+r, fail. 2696 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2697 return false; 2698 2699 if (N.getOpcode() == ISD::ADD) { 2700 int16_t imm = 0; 2701 if (isIntS16Immediate(N.getOperand(1), imm) && 2702 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2703 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2704 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2705 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2706 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2707 } else { 2708 Base = N.getOperand(0); 2709 } 2710 return true; // [r+i] 2711 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2712 // Match LOAD (ADD (X, Lo(G))). 2713 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2714 && "Cannot handle constant offsets yet!"); 2715 Disp = N.getOperand(1).getOperand(0); // The global address. 2716 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2717 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2718 Disp.getOpcode() == ISD::TargetConstantPool || 2719 Disp.getOpcode() == ISD::TargetJumpTable); 2720 Base = N.getOperand(0); 2721 return true; // [&g+r] 2722 } 2723 } else if (N.getOpcode() == ISD::OR) { 2724 int16_t imm = 0; 2725 if (isIntS16Immediate(N.getOperand(1), imm) && 2726 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2727 // If this is an or of disjoint bitfields, we can codegen this as an add 2728 // (for better address arithmetic) if the LHS and RHS of the OR are 2729 // provably disjoint. 2730 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2731 2732 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2733 // If all of the bits are known zero on the LHS or RHS, the add won't 2734 // carry. 2735 if (FrameIndexSDNode *FI = 2736 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2737 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2738 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2739 } else { 2740 Base = N.getOperand(0); 2741 } 2742 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2743 return true; 2744 } 2745 } 2746 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2747 // Loading from a constant address. 2748 2749 // If this address fits entirely in a 16-bit sext immediate field, codegen 2750 // this as "d, 0" 2751 int16_t Imm; 2752 if (isIntS16Immediate(CN, Imm) && 2753 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2754 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2755 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2756 CN->getValueType(0)); 2757 return true; 2758 } 2759 2760 // Handle 32-bit sext immediates with LIS + addr mode. 2761 if ((CN->getValueType(0) == MVT::i32 || 2762 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2763 (!EncodingAlignment || 2764 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2765 int Addr = (int)CN->getZExtValue(); 2766 2767 // Otherwise, break this down into an LIS + disp. 2768 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2769 2770 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2771 MVT::i32); 2772 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2773 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2774 return true; 2775 } 2776 } 2777 2778 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2779 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2780 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2781 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2782 } else 2783 Base = N; 2784 return true; // [r+0] 2785 } 2786 2787 /// Similar to the 16-bit case but for instructions that take a 34-bit 2788 /// displacement field (prefixed loads/stores). 2789 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2790 SDValue &Base, 2791 SelectionDAG &DAG) const { 2792 // Only on 64-bit targets. 2793 if (N.getValueType() != MVT::i64) 2794 return false; 2795 2796 SDLoc dl(N); 2797 int64_t Imm = 0; 2798 2799 if (N.getOpcode() == ISD::ADD) { 2800 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2801 return false; 2802 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2803 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2804 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2805 else 2806 Base = N.getOperand(0); 2807 return true; 2808 } 2809 2810 if (N.getOpcode() == ISD::OR) { 2811 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2812 return false; 2813 // If this is an or of disjoint bitfields, we can codegen this as an add 2814 // (for better address arithmetic) if the LHS and RHS of the OR are 2815 // provably disjoint. 2816 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2817 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2818 return false; 2819 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2820 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2821 else 2822 Base = N.getOperand(0); 2823 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2824 return true; 2825 } 2826 2827 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2828 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2829 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2830 return true; 2831 } 2832 2833 return false; 2834 } 2835 2836 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2837 /// represented as an indexed [r+r] operation. 2838 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2839 SDValue &Index, 2840 SelectionDAG &DAG) const { 2841 // Check to see if we can easily represent this as an [r+r] address. This 2842 // will fail if it thinks that the address is more profitably represented as 2843 // reg+imm, e.g. where imm = 0. 2844 if (SelectAddressRegReg(N, Base, Index, DAG)) 2845 return true; 2846 2847 // If the address is the result of an add, we will utilize the fact that the 2848 // address calculation includes an implicit add. However, we can reduce 2849 // register pressure if we do not materialize a constant just for use as the 2850 // index register. We only get rid of the add if it is not an add of a 2851 // value and a 16-bit signed constant and both have a single use. 2852 int16_t imm = 0; 2853 if (N.getOpcode() == ISD::ADD && 2854 (!isIntS16Immediate(N.getOperand(1), imm) || 2855 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2856 Base = N.getOperand(0); 2857 Index = N.getOperand(1); 2858 return true; 2859 } 2860 2861 // Otherwise, do it the hard way, using R0 as the base register. 2862 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2863 N.getValueType()); 2864 Index = N; 2865 return true; 2866 } 2867 2868 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2869 Ty *PCRelCand = dyn_cast<Ty>(N); 2870 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2871 } 2872 2873 /// Returns true if this address is a PC Relative address. 2874 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2875 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2876 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2877 // This is a materialize PC Relative node. Always select this as PC Relative. 2878 Base = N; 2879 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2880 return true; 2881 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2882 isValidPCRelNode<GlobalAddressSDNode>(N) || 2883 isValidPCRelNode<JumpTableSDNode>(N) || 2884 isValidPCRelNode<BlockAddressSDNode>(N)) 2885 return true; 2886 return false; 2887 } 2888 2889 /// Returns true if we should use a direct load into vector instruction 2890 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2891 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2892 2893 // If there are any other uses other than scalar to vector, then we should 2894 // keep it as a scalar load -> direct move pattern to prevent multiple 2895 // loads. 2896 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2897 if (!LD) 2898 return false; 2899 2900 EVT MemVT = LD->getMemoryVT(); 2901 if (!MemVT.isSimple()) 2902 return false; 2903 switch(MemVT.getSimpleVT().SimpleTy) { 2904 case MVT::i64: 2905 break; 2906 case MVT::i32: 2907 if (!ST.hasP8Vector()) 2908 return false; 2909 break; 2910 case MVT::i16: 2911 case MVT::i8: 2912 if (!ST.hasP9Vector()) 2913 return false; 2914 break; 2915 default: 2916 return false; 2917 } 2918 2919 SDValue LoadedVal(N, 0); 2920 if (!LoadedVal.hasOneUse()) 2921 return false; 2922 2923 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2924 UI != UE; ++UI) 2925 if (UI.getUse().get().getResNo() == 0 && 2926 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2927 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2928 return false; 2929 2930 return true; 2931 } 2932 2933 /// getPreIndexedAddressParts - returns true by value, base pointer and 2934 /// offset pointer and addressing mode by reference if the node's address 2935 /// can be legally represented as pre-indexed load / store address. 2936 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2937 SDValue &Offset, 2938 ISD::MemIndexedMode &AM, 2939 SelectionDAG &DAG) const { 2940 if (DisablePPCPreinc) return false; 2941 2942 bool isLoad = true; 2943 SDValue Ptr; 2944 EVT VT; 2945 unsigned Alignment; 2946 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2947 Ptr = LD->getBasePtr(); 2948 VT = LD->getMemoryVT(); 2949 Alignment = LD->getAlignment(); 2950 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2951 Ptr = ST->getBasePtr(); 2952 VT = ST->getMemoryVT(); 2953 Alignment = ST->getAlignment(); 2954 isLoad = false; 2955 } else 2956 return false; 2957 2958 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2959 // instructions because we can fold these into a more efficient instruction 2960 // instead, (such as LXSD). 2961 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2962 return false; 2963 } 2964 2965 // PowerPC doesn't have preinc load/store instructions for vectors 2966 if (VT.isVector()) 2967 return false; 2968 2969 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2970 // Common code will reject creating a pre-inc form if the base pointer 2971 // is a frame index, or if N is a store and the base pointer is either 2972 // the same as or a predecessor of the value being stored. Check for 2973 // those situations here, and try with swapped Base/Offset instead. 2974 bool Swap = false; 2975 2976 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2977 Swap = true; 2978 else if (!isLoad) { 2979 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2980 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2981 Swap = true; 2982 } 2983 2984 if (Swap) 2985 std::swap(Base, Offset); 2986 2987 AM = ISD::PRE_INC; 2988 return true; 2989 } 2990 2991 // LDU/STU can only handle immediates that are a multiple of 4. 2992 if (VT != MVT::i64) { 2993 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2994 return false; 2995 } else { 2996 // LDU/STU need an address with at least 4-byte alignment. 2997 if (Alignment < 4) 2998 return false; 2999 3000 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3001 return false; 3002 } 3003 3004 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3005 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3006 // sext i32 to i64 when addr mode is r+i. 3007 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3008 LD->getExtensionType() == ISD::SEXTLOAD && 3009 isa<ConstantSDNode>(Offset)) 3010 return false; 3011 } 3012 3013 AM = ISD::PRE_INC; 3014 return true; 3015 } 3016 3017 //===----------------------------------------------------------------------===// 3018 // LowerOperation implementation 3019 //===----------------------------------------------------------------------===// 3020 3021 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3022 /// and LoOpFlags to the target MO flags. 3023 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3024 unsigned &HiOpFlags, unsigned &LoOpFlags, 3025 const GlobalValue *GV = nullptr) { 3026 HiOpFlags = PPCII::MO_HA; 3027 LoOpFlags = PPCII::MO_LO; 3028 3029 // Don't use the pic base if not in PIC relocation model. 3030 if (IsPIC) { 3031 HiOpFlags |= PPCII::MO_PIC_FLAG; 3032 LoOpFlags |= PPCII::MO_PIC_FLAG; 3033 } 3034 } 3035 3036 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3037 SelectionDAG &DAG) { 3038 SDLoc DL(HiPart); 3039 EVT PtrVT = HiPart.getValueType(); 3040 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3041 3042 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3043 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3044 3045 // With PIC, the first instruction is actually "GR+hi(&G)". 3046 if (isPIC) 3047 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3048 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3049 3050 // Generate non-pic code that has direct accesses to the constant pool. 3051 // The address of the global is just (hi(&g)+lo(&g)). 3052 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3053 } 3054 3055 static void setUsesTOCBasePtr(MachineFunction &MF) { 3056 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3057 FuncInfo->setUsesTOCBasePtr(); 3058 } 3059 3060 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3061 setUsesTOCBasePtr(DAG.getMachineFunction()); 3062 } 3063 3064 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3065 SDValue GA) const { 3066 const bool Is64Bit = Subtarget.isPPC64(); 3067 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3068 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3069 : Subtarget.isAIXABI() 3070 ? DAG.getRegister(PPC::R2, VT) 3071 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3072 SDValue Ops[] = { GA, Reg }; 3073 return DAG.getMemIntrinsicNode( 3074 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3075 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3076 MachineMemOperand::MOLoad); 3077 } 3078 3079 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3080 SelectionDAG &DAG) const { 3081 EVT PtrVT = Op.getValueType(); 3082 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3083 const Constant *C = CP->getConstVal(); 3084 3085 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3086 // The actual address of the GlobalValue is stored in the TOC. 3087 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3088 if (Subtarget.isUsingPCRelativeCalls()) { 3089 SDLoc DL(CP); 3090 EVT Ty = getPointerTy(DAG.getDataLayout()); 3091 SDValue ConstPool = DAG.getTargetConstantPool( 3092 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3093 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3094 } 3095 setUsesTOCBasePtr(DAG); 3096 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3097 return getTOCEntry(DAG, SDLoc(CP), GA); 3098 } 3099 3100 unsigned MOHiFlag, MOLoFlag; 3101 bool IsPIC = isPositionIndependent(); 3102 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3103 3104 if (IsPIC && Subtarget.isSVR4ABI()) { 3105 SDValue GA = 3106 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3107 return getTOCEntry(DAG, SDLoc(CP), GA); 3108 } 3109 3110 SDValue CPIHi = 3111 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3112 SDValue CPILo = 3113 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3114 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3115 } 3116 3117 // For 64-bit PowerPC, prefer the more compact relative encodings. 3118 // This trades 32 bits per jump table entry for one or two instructions 3119 // on the jump site. 3120 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3121 if (isJumpTableRelative()) 3122 return MachineJumpTableInfo::EK_LabelDifference32; 3123 3124 return TargetLowering::getJumpTableEncoding(); 3125 } 3126 3127 bool PPCTargetLowering::isJumpTableRelative() const { 3128 if (UseAbsoluteJumpTables) 3129 return false; 3130 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3131 return true; 3132 return TargetLowering::isJumpTableRelative(); 3133 } 3134 3135 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3136 SelectionDAG &DAG) const { 3137 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3138 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3139 3140 switch (getTargetMachine().getCodeModel()) { 3141 case CodeModel::Small: 3142 case CodeModel::Medium: 3143 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3144 default: 3145 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3146 getPointerTy(DAG.getDataLayout())); 3147 } 3148 } 3149 3150 const MCExpr * 3151 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3152 unsigned JTI, 3153 MCContext &Ctx) const { 3154 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3155 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3156 3157 switch (getTargetMachine().getCodeModel()) { 3158 case CodeModel::Small: 3159 case CodeModel::Medium: 3160 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3161 default: 3162 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3163 } 3164 } 3165 3166 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3167 EVT PtrVT = Op.getValueType(); 3168 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3169 3170 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3171 if (Subtarget.isUsingPCRelativeCalls()) { 3172 SDLoc DL(JT); 3173 EVT Ty = getPointerTy(DAG.getDataLayout()); 3174 SDValue GA = 3175 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3176 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3177 return MatAddr; 3178 } 3179 3180 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3181 // The actual address of the GlobalValue is stored in the TOC. 3182 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3183 setUsesTOCBasePtr(DAG); 3184 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3185 return getTOCEntry(DAG, SDLoc(JT), GA); 3186 } 3187 3188 unsigned MOHiFlag, MOLoFlag; 3189 bool IsPIC = isPositionIndependent(); 3190 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3191 3192 if (IsPIC && Subtarget.isSVR4ABI()) { 3193 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3194 PPCII::MO_PIC_FLAG); 3195 return getTOCEntry(DAG, SDLoc(GA), GA); 3196 } 3197 3198 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3199 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3200 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3201 } 3202 3203 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3204 SelectionDAG &DAG) const { 3205 EVT PtrVT = Op.getValueType(); 3206 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3207 const BlockAddress *BA = BASDN->getBlockAddress(); 3208 3209 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3210 if (Subtarget.isUsingPCRelativeCalls()) { 3211 SDLoc DL(BASDN); 3212 EVT Ty = getPointerTy(DAG.getDataLayout()); 3213 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3214 PPCII::MO_PCREL_FLAG); 3215 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3216 return MatAddr; 3217 } 3218 3219 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3220 // The actual BlockAddress is stored in the TOC. 3221 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3222 setUsesTOCBasePtr(DAG); 3223 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3224 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3225 } 3226 3227 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3228 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3229 return getTOCEntry( 3230 DAG, SDLoc(BASDN), 3231 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3232 3233 unsigned MOHiFlag, MOLoFlag; 3234 bool IsPIC = isPositionIndependent(); 3235 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3236 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3237 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3238 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3239 } 3240 3241 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3242 SelectionDAG &DAG) const { 3243 if (Subtarget.isAIXABI()) 3244 return LowerGlobalTLSAddressAIX(Op, DAG); 3245 3246 return LowerGlobalTLSAddressLinux(Op, DAG); 3247 } 3248 3249 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3250 SelectionDAG &DAG) const { 3251 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3252 3253 if (DAG.getTarget().useEmulatedTLS()) 3254 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3255 3256 SDLoc dl(GA); 3257 const GlobalValue *GV = GA->getGlobal(); 3258 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3259 3260 // The general-dynamic model is the only access model supported for now, so 3261 // all the GlobalTLSAddress nodes are lowered with this model. 3262 // We need to generate two TOC entries, one for the variable offset, one for 3263 // the region handle. The global address for the TOC entry of the region 3264 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3265 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3266 SDValue VariableOffsetTGA = 3267 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3268 SDValue RegionHandleTGA = 3269 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3270 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3271 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3272 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3273 RegionHandle); 3274 } 3275 3276 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3277 SelectionDAG &DAG) const { 3278 // FIXME: TLS addresses currently use medium model code sequences, 3279 // which is the most useful form. Eventually support for small and 3280 // large models could be added if users need it, at the cost of 3281 // additional complexity. 3282 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3283 if (DAG.getTarget().useEmulatedTLS()) 3284 return LowerToTLSEmulatedModel(GA, DAG); 3285 3286 SDLoc dl(GA); 3287 const GlobalValue *GV = GA->getGlobal(); 3288 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3289 bool is64bit = Subtarget.isPPC64(); 3290 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3291 PICLevel::Level picLevel = M->getPICLevel(); 3292 3293 const TargetMachine &TM = getTargetMachine(); 3294 TLSModel::Model Model = TM.getTLSModel(GV); 3295 3296 if (Model == TLSModel::LocalExec) { 3297 if (Subtarget.isUsingPCRelativeCalls()) { 3298 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3299 SDValue TGA = DAG.getTargetGlobalAddress( 3300 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3301 SDValue MatAddr = 3302 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3303 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3304 } 3305 3306 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3307 PPCII::MO_TPREL_HA); 3308 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3309 PPCII::MO_TPREL_LO); 3310 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3311 : DAG.getRegister(PPC::R2, MVT::i32); 3312 3313 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3314 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3315 } 3316 3317 if (Model == TLSModel::InitialExec) { 3318 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3319 SDValue TGA = DAG.getTargetGlobalAddress( 3320 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3321 SDValue TGATLS = DAG.getTargetGlobalAddress( 3322 GV, dl, PtrVT, 0, 3323 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3324 SDValue TPOffset; 3325 if (IsPCRel) { 3326 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3327 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3328 MachinePointerInfo()); 3329 } else { 3330 SDValue GOTPtr; 3331 if (is64bit) { 3332 setUsesTOCBasePtr(DAG); 3333 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3334 GOTPtr = 3335 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3336 } else { 3337 if (!TM.isPositionIndependent()) 3338 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3339 else if (picLevel == PICLevel::SmallPIC) 3340 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3341 else 3342 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3343 } 3344 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3345 } 3346 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3347 } 3348 3349 if (Model == TLSModel::GeneralDynamic) { 3350 if (Subtarget.isUsingPCRelativeCalls()) { 3351 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3352 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3353 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3354 } 3355 3356 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3357 SDValue GOTPtr; 3358 if (is64bit) { 3359 setUsesTOCBasePtr(DAG); 3360 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3361 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3362 GOTReg, TGA); 3363 } else { 3364 if (picLevel == PICLevel::SmallPIC) 3365 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3366 else 3367 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3368 } 3369 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3370 GOTPtr, TGA, TGA); 3371 } 3372 3373 if (Model == TLSModel::LocalDynamic) { 3374 if (Subtarget.isUsingPCRelativeCalls()) { 3375 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3376 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3377 SDValue MatPCRel = 3378 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3379 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3380 } 3381 3382 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3383 SDValue GOTPtr; 3384 if (is64bit) { 3385 setUsesTOCBasePtr(DAG); 3386 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3387 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3388 GOTReg, TGA); 3389 } else { 3390 if (picLevel == PICLevel::SmallPIC) 3391 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3392 else 3393 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3394 } 3395 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3396 PtrVT, GOTPtr, TGA, TGA); 3397 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3398 PtrVT, TLSAddr, TGA); 3399 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3400 } 3401 3402 llvm_unreachable("Unknown TLS model!"); 3403 } 3404 3405 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3406 SelectionDAG &DAG) const { 3407 EVT PtrVT = Op.getValueType(); 3408 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3409 SDLoc DL(GSDN); 3410 const GlobalValue *GV = GSDN->getGlobal(); 3411 3412 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3413 // The actual address of the GlobalValue is stored in the TOC. 3414 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3415 if (Subtarget.isUsingPCRelativeCalls()) { 3416 EVT Ty = getPointerTy(DAG.getDataLayout()); 3417 if (isAccessedAsGotIndirect(Op)) { 3418 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3419 PPCII::MO_PCREL_FLAG | 3420 PPCII::MO_GOT_FLAG); 3421 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3422 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3423 MachinePointerInfo()); 3424 return Load; 3425 } else { 3426 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3427 PPCII::MO_PCREL_FLAG); 3428 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3429 } 3430 } 3431 setUsesTOCBasePtr(DAG); 3432 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3433 return getTOCEntry(DAG, DL, GA); 3434 } 3435 3436 unsigned MOHiFlag, MOLoFlag; 3437 bool IsPIC = isPositionIndependent(); 3438 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3439 3440 if (IsPIC && Subtarget.isSVR4ABI()) { 3441 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3442 GSDN->getOffset(), 3443 PPCII::MO_PIC_FLAG); 3444 return getTOCEntry(DAG, DL, GA); 3445 } 3446 3447 SDValue GAHi = 3448 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3449 SDValue GALo = 3450 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3451 3452 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3453 } 3454 3455 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3456 bool IsStrict = Op->isStrictFPOpcode(); 3457 ISD::CondCode CC = 3458 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3459 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3460 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3461 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3462 EVT LHSVT = LHS.getValueType(); 3463 SDLoc dl(Op); 3464 3465 // Soften the setcc with libcall if it is fp128. 3466 if (LHSVT == MVT::f128) { 3467 assert(!Subtarget.hasP9Vector() && 3468 "SETCC for f128 is already legal under Power9!"); 3469 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3470 Op->getOpcode() == ISD::STRICT_FSETCCS); 3471 if (RHS.getNode()) 3472 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3473 DAG.getCondCode(CC)); 3474 if (IsStrict) 3475 return DAG.getMergeValues({LHS, Chain}, dl); 3476 return LHS; 3477 } 3478 3479 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3480 3481 if (Op.getValueType() == MVT::v2i64) { 3482 // When the operands themselves are v2i64 values, we need to do something 3483 // special because VSX has no underlying comparison operations for these. 3484 if (LHS.getValueType() == MVT::v2i64) { 3485 // Equality can be handled by casting to the legal type for Altivec 3486 // comparisons, everything else needs to be expanded. 3487 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3488 return DAG.getNode( 3489 ISD::BITCAST, dl, MVT::v2i64, 3490 DAG.getSetCC(dl, MVT::v4i32, 3491 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3492 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC)); 3493 } 3494 3495 return SDValue(); 3496 } 3497 3498 // We handle most of these in the usual way. 3499 return Op; 3500 } 3501 3502 // If we're comparing for equality to zero, expose the fact that this is 3503 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3504 // fold the new nodes. 3505 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3506 return V; 3507 3508 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3509 // Leave comparisons against 0 and -1 alone for now, since they're usually 3510 // optimized. FIXME: revisit this when we can custom lower all setcc 3511 // optimizations. 3512 if (C->isAllOnesValue() || C->isNullValue()) 3513 return SDValue(); 3514 } 3515 3516 // If we have an integer seteq/setne, turn it into a compare against zero 3517 // by xor'ing the rhs with the lhs, which is faster than setting a 3518 // condition register, reading it back out, and masking the correct bit. The 3519 // normal approach here uses sub to do this instead of xor. Using xor exposes 3520 // the result to other bit-twiddling opportunities. 3521 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3522 EVT VT = Op.getValueType(); 3523 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3524 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3525 } 3526 return SDValue(); 3527 } 3528 3529 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3530 SDNode *Node = Op.getNode(); 3531 EVT VT = Node->getValueType(0); 3532 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3533 SDValue InChain = Node->getOperand(0); 3534 SDValue VAListPtr = Node->getOperand(1); 3535 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3536 SDLoc dl(Node); 3537 3538 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3539 3540 // gpr_index 3541 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3542 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3543 InChain = GprIndex.getValue(1); 3544 3545 if (VT == MVT::i64) { 3546 // Check if GprIndex is even 3547 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3548 DAG.getConstant(1, dl, MVT::i32)); 3549 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3550 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3551 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3552 DAG.getConstant(1, dl, MVT::i32)); 3553 // Align GprIndex to be even if it isn't 3554 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3555 GprIndex); 3556 } 3557 3558 // fpr index is 1 byte after gpr 3559 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3560 DAG.getConstant(1, dl, MVT::i32)); 3561 3562 // fpr 3563 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3564 FprPtr, MachinePointerInfo(SV), MVT::i8); 3565 InChain = FprIndex.getValue(1); 3566 3567 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3568 DAG.getConstant(8, dl, MVT::i32)); 3569 3570 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3571 DAG.getConstant(4, dl, MVT::i32)); 3572 3573 // areas 3574 SDValue OverflowArea = 3575 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3576 InChain = OverflowArea.getValue(1); 3577 3578 SDValue RegSaveArea = 3579 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3580 InChain = RegSaveArea.getValue(1); 3581 3582 // select overflow_area if index > 8 3583 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3584 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3585 3586 // adjustment constant gpr_index * 4/8 3587 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3588 VT.isInteger() ? GprIndex : FprIndex, 3589 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3590 MVT::i32)); 3591 3592 // OurReg = RegSaveArea + RegConstant 3593 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3594 RegConstant); 3595 3596 // Floating types are 32 bytes into RegSaveArea 3597 if (VT.isFloatingPoint()) 3598 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3599 DAG.getConstant(32, dl, MVT::i32)); 3600 3601 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3602 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3603 VT.isInteger() ? GprIndex : FprIndex, 3604 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3605 MVT::i32)); 3606 3607 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3608 VT.isInteger() ? VAListPtr : FprPtr, 3609 MachinePointerInfo(SV), MVT::i8); 3610 3611 // determine if we should load from reg_save_area or overflow_area 3612 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3613 3614 // increase overflow_area by 4/8 if gpr/fpr > 8 3615 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3616 DAG.getConstant(VT.isInteger() ? 4 : 8, 3617 dl, MVT::i32)); 3618 3619 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3620 OverflowAreaPlusN); 3621 3622 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3623 MachinePointerInfo(), MVT::i32); 3624 3625 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3626 } 3627 3628 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3629 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3630 3631 // We have to copy the entire va_list struct: 3632 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3633 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3634 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3635 false, true, false, MachinePointerInfo(), 3636 MachinePointerInfo()); 3637 } 3638 3639 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3640 SelectionDAG &DAG) const { 3641 if (Subtarget.isAIXABI()) 3642 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3643 3644 return Op.getOperand(0); 3645 } 3646 3647 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3648 MachineFunction &MF = DAG.getMachineFunction(); 3649 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3650 3651 assert((Op.getOpcode() == ISD::INLINEASM || 3652 Op.getOpcode() == ISD::INLINEASM_BR) && 3653 "Expecting Inline ASM node."); 3654 3655 // If an LR store is already known to be required then there is not point in 3656 // checking this ASM as well. 3657 if (MFI.isLRStoreRequired()) 3658 return Op; 3659 3660 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3661 // type MVT::Glue. We want to ignore this last operand if that is the case. 3662 unsigned NumOps = Op.getNumOperands(); 3663 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3664 --NumOps; 3665 3666 // Check all operands that may contain the LR. 3667 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3668 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3669 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3670 ++i; // Skip the ID value. 3671 3672 switch (InlineAsm::getKind(Flags)) { 3673 default: 3674 llvm_unreachable("Bad flags!"); 3675 case InlineAsm::Kind_RegUse: 3676 case InlineAsm::Kind_Imm: 3677 case InlineAsm::Kind_Mem: 3678 i += NumVals; 3679 break; 3680 case InlineAsm::Kind_Clobber: 3681 case InlineAsm::Kind_RegDef: 3682 case InlineAsm::Kind_RegDefEarlyClobber: { 3683 for (; NumVals; --NumVals, ++i) { 3684 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3685 if (Reg != PPC::LR && Reg != PPC::LR8) 3686 continue; 3687 MFI.setLRStoreRequired(); 3688 return Op; 3689 } 3690 break; 3691 } 3692 } 3693 } 3694 3695 return Op; 3696 } 3697 3698 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3699 SelectionDAG &DAG) const { 3700 if (Subtarget.isAIXABI()) 3701 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3702 3703 SDValue Chain = Op.getOperand(0); 3704 SDValue Trmp = Op.getOperand(1); // trampoline 3705 SDValue FPtr = Op.getOperand(2); // nested function 3706 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3707 SDLoc dl(Op); 3708 3709 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3710 bool isPPC64 = (PtrVT == MVT::i64); 3711 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3712 3713 TargetLowering::ArgListTy Args; 3714 TargetLowering::ArgListEntry Entry; 3715 3716 Entry.Ty = IntPtrTy; 3717 Entry.Node = Trmp; Args.push_back(Entry); 3718 3719 // TrampSize == (isPPC64 ? 48 : 40); 3720 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3721 isPPC64 ? MVT::i64 : MVT::i32); 3722 Args.push_back(Entry); 3723 3724 Entry.Node = FPtr; Args.push_back(Entry); 3725 Entry.Node = Nest; Args.push_back(Entry); 3726 3727 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3728 TargetLowering::CallLoweringInfo CLI(DAG); 3729 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3730 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3731 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3732 3733 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3734 return CallResult.second; 3735 } 3736 3737 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3738 MachineFunction &MF = DAG.getMachineFunction(); 3739 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3740 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3741 3742 SDLoc dl(Op); 3743 3744 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3745 // vastart just stores the address of the VarArgsFrameIndex slot into the 3746 // memory location argument. 3747 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3748 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3749 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3750 MachinePointerInfo(SV)); 3751 } 3752 3753 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3754 // We suppose the given va_list is already allocated. 3755 // 3756 // typedef struct { 3757 // char gpr; /* index into the array of 8 GPRs 3758 // * stored in the register save area 3759 // * gpr=0 corresponds to r3, 3760 // * gpr=1 to r4, etc. 3761 // */ 3762 // char fpr; /* index into the array of 8 FPRs 3763 // * stored in the register save area 3764 // * fpr=0 corresponds to f1, 3765 // * fpr=1 to f2, etc. 3766 // */ 3767 // char *overflow_arg_area; 3768 // /* location on stack that holds 3769 // * the next overflow argument 3770 // */ 3771 // char *reg_save_area; 3772 // /* where r3:r10 and f1:f8 (if saved) 3773 // * are stored 3774 // */ 3775 // } va_list[1]; 3776 3777 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3778 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3779 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3780 PtrVT); 3781 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3782 PtrVT); 3783 3784 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3785 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3786 3787 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3788 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3789 3790 uint64_t FPROffset = 1; 3791 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3792 3793 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3794 3795 // Store first byte : number of int regs 3796 SDValue firstStore = 3797 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3798 MachinePointerInfo(SV), MVT::i8); 3799 uint64_t nextOffset = FPROffset; 3800 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3801 ConstFPROffset); 3802 3803 // Store second byte : number of float regs 3804 SDValue secondStore = 3805 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3806 MachinePointerInfo(SV, nextOffset), MVT::i8); 3807 nextOffset += StackOffset; 3808 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3809 3810 // Store second word : arguments given on stack 3811 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3812 MachinePointerInfo(SV, nextOffset)); 3813 nextOffset += FrameOffset; 3814 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3815 3816 // Store third word : arguments given in registers 3817 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3818 MachinePointerInfo(SV, nextOffset)); 3819 } 3820 3821 /// FPR - The set of FP registers that should be allocated for arguments 3822 /// on Darwin and AIX. 3823 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3824 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3825 PPC::F11, PPC::F12, PPC::F13}; 3826 3827 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3828 /// the stack. 3829 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3830 unsigned PtrByteSize) { 3831 unsigned ArgSize = ArgVT.getStoreSize(); 3832 if (Flags.isByVal()) 3833 ArgSize = Flags.getByValSize(); 3834 3835 // Round up to multiples of the pointer size, except for array members, 3836 // which are always packed. 3837 if (!Flags.isInConsecutiveRegs()) 3838 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3839 3840 return ArgSize; 3841 } 3842 3843 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3844 /// on the stack. 3845 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3846 ISD::ArgFlagsTy Flags, 3847 unsigned PtrByteSize) { 3848 Align Alignment(PtrByteSize); 3849 3850 // Altivec parameters are padded to a 16 byte boundary. 3851 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3852 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3853 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3854 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3855 Alignment = Align(16); 3856 3857 // ByVal parameters are aligned as requested. 3858 if (Flags.isByVal()) { 3859 auto BVAlign = Flags.getNonZeroByValAlign(); 3860 if (BVAlign > PtrByteSize) { 3861 if (BVAlign.value() % PtrByteSize != 0) 3862 llvm_unreachable( 3863 "ByVal alignment is not a multiple of the pointer size"); 3864 3865 Alignment = BVAlign; 3866 } 3867 } 3868 3869 // Array members are always packed to their original alignment. 3870 if (Flags.isInConsecutiveRegs()) { 3871 // If the array member was split into multiple registers, the first 3872 // needs to be aligned to the size of the full type. (Except for 3873 // ppcf128, which is only aligned as its f64 components.) 3874 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3875 Alignment = Align(OrigVT.getStoreSize()); 3876 else 3877 Alignment = Align(ArgVT.getStoreSize()); 3878 } 3879 3880 return Alignment; 3881 } 3882 3883 /// CalculateStackSlotUsed - Return whether this argument will use its 3884 /// stack slot (instead of being passed in registers). ArgOffset, 3885 /// AvailableFPRs, and AvailableVRs must hold the current argument 3886 /// position, and will be updated to account for this argument. 3887 static bool CalculateStackSlotUsed(const PPCSubtarget &Subtarget, EVT ArgVT, 3888 EVT OrigVT, ISD::ArgFlagsTy Flags, 3889 unsigned PtrByteSize, unsigned LinkageSize, 3890 unsigned ParamAreaSize, unsigned &ArgOffset, 3891 unsigned &AvailableFPRs, 3892 unsigned &AvailableVRs) { 3893 bool UseMemory = false; 3894 3895 // Respect alignment of argument on the stack. 3896 Align Alignment = 3897 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3898 ArgOffset = alignTo(ArgOffset, Alignment); 3899 // If there's no space left in the argument save area, we must 3900 // use memory (this check also catches zero-sized arguments). 3901 if (ArgOffset >= LinkageSize + ParamAreaSize) 3902 UseMemory = true; 3903 3904 // Allocate argument on the stack. 3905 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3906 if (Flags.isInConsecutiveRegsLast()) 3907 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3908 // If we overran the argument save area, we must use memory 3909 // (this check catches arguments passed partially in memory) 3910 if (ArgOffset > LinkageSize + ParamAreaSize) 3911 UseMemory = true; 3912 3913 // However, if the argument is actually passed in an FPR or a VR, 3914 // we don't use memory after all. 3915 if (!Flags.isByVal()) { 3916 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3917 if (AvailableFPRs > 0) { 3918 --AvailableFPRs; 3919 return false; 3920 } 3921 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3922 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3923 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3924 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3925 if (AvailableVRs > 0) { 3926 --AvailableVRs; 3927 return false; 3928 } 3929 } else if (Subtarget.isPPC64() && Subtarget.isELFv2ABI() && 3930 Flags.getByValSize() >= 8) 3931 // For 64-bit ELF v2, passing by value object whose size is no less than 8 3932 // bytes will be copied to parameter save area. This is for compatibility 3933 // for other compiler which requires byval parameters to be stored in 3934 // caller's parameter save area. 3935 return true; 3936 3937 return UseMemory; 3938 } 3939 3940 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3941 /// ensure minimum alignment required for target. 3942 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3943 unsigned NumBytes) { 3944 return alignTo(NumBytes, Lowering->getStackAlign()); 3945 } 3946 3947 SDValue PPCTargetLowering::LowerFormalArguments( 3948 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3949 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3950 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3951 if (Subtarget.isAIXABI()) 3952 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3953 InVals); 3954 if (Subtarget.is64BitELFABI()) 3955 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3956 InVals); 3957 assert(Subtarget.is32BitELFABI()); 3958 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3959 InVals); 3960 } 3961 3962 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3963 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3964 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3965 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3966 3967 // 32-bit SVR4 ABI Stack Frame Layout: 3968 // +-----------------------------------+ 3969 // +--> | Back chain | 3970 // | +-----------------------------------+ 3971 // | | Floating-point register save area | 3972 // | +-----------------------------------+ 3973 // | | General register save area | 3974 // | +-----------------------------------+ 3975 // | | CR save word | 3976 // | +-----------------------------------+ 3977 // | | VRSAVE save word | 3978 // | +-----------------------------------+ 3979 // | | Alignment padding | 3980 // | +-----------------------------------+ 3981 // | | Vector register save area | 3982 // | +-----------------------------------+ 3983 // | | Local variable space | 3984 // | +-----------------------------------+ 3985 // | | Parameter list area | 3986 // | +-----------------------------------+ 3987 // | | LR save word | 3988 // | +-----------------------------------+ 3989 // SP--> +--- | Back chain | 3990 // +-----------------------------------+ 3991 // 3992 // Specifications: 3993 // System V Application Binary Interface PowerPC Processor Supplement 3994 // AltiVec Technology Programming Interface Manual 3995 3996 MachineFunction &MF = DAG.getMachineFunction(); 3997 MachineFrameInfo &MFI = MF.getFrameInfo(); 3998 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3999 4000 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4001 // Potential tail calls could cause overwriting of argument stack slots. 4002 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4003 (CallConv == CallingConv::Fast)); 4004 const Align PtrAlign(4); 4005 4006 // Assign locations to all of the incoming arguments. 4007 SmallVector<CCValAssign, 16> ArgLocs; 4008 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4009 *DAG.getContext()); 4010 4011 // Reserve space for the linkage area on the stack. 4012 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4013 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4014 if (useSoftFloat()) 4015 CCInfo.PreAnalyzeFormalArguments(Ins); 4016 4017 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4018 CCInfo.clearWasPPCF128(); 4019 4020 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4021 CCValAssign &VA = ArgLocs[i]; 4022 4023 // Arguments stored in registers. 4024 if (VA.isRegLoc()) { 4025 const TargetRegisterClass *RC; 4026 EVT ValVT = VA.getValVT(); 4027 4028 switch (ValVT.getSimpleVT().SimpleTy) { 4029 default: 4030 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4031 case MVT::i1: 4032 case MVT::i32: 4033 RC = &PPC::GPRCRegClass; 4034 break; 4035 case MVT::f32: 4036 if (Subtarget.hasP8Vector()) 4037 RC = &PPC::VSSRCRegClass; 4038 else if (Subtarget.hasSPE()) 4039 RC = &PPC::GPRCRegClass; 4040 else 4041 RC = &PPC::F4RCRegClass; 4042 break; 4043 case MVT::f64: 4044 if (Subtarget.hasVSX()) 4045 RC = &PPC::VSFRCRegClass; 4046 else if (Subtarget.hasSPE()) 4047 // SPE passes doubles in GPR pairs. 4048 RC = &PPC::GPRCRegClass; 4049 else 4050 RC = &PPC::F8RCRegClass; 4051 break; 4052 case MVT::v16i8: 4053 case MVT::v8i16: 4054 case MVT::v4i32: 4055 RC = &PPC::VRRCRegClass; 4056 break; 4057 case MVT::v4f32: 4058 RC = &PPC::VRRCRegClass; 4059 break; 4060 case MVT::v2f64: 4061 case MVT::v2i64: 4062 RC = &PPC::VRRCRegClass; 4063 break; 4064 } 4065 4066 SDValue ArgValue; 4067 // Transform the arguments stored in physical registers into 4068 // virtual ones. 4069 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4070 assert(i + 1 < e && "No second half of double precision argument"); 4071 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4072 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4073 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4074 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4075 if (!Subtarget.isLittleEndian()) 4076 std::swap (ArgValueLo, ArgValueHi); 4077 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4078 ArgValueHi); 4079 } else { 4080 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 4081 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4082 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4083 if (ValVT == MVT::i1) 4084 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4085 } 4086 4087 InVals.push_back(ArgValue); 4088 } else { 4089 // Argument stored in memory. 4090 assert(VA.isMemLoc()); 4091 4092 // Get the extended size of the argument type in stack 4093 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4094 // Get the actual size of the argument type 4095 unsigned ObjSize = VA.getValVT().getStoreSize(); 4096 unsigned ArgOffset = VA.getLocMemOffset(); 4097 // Stack objects in PPC32 are right justified. 4098 ArgOffset += ArgSize - ObjSize; 4099 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4100 4101 // Create load nodes to retrieve arguments from the stack. 4102 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4103 InVals.push_back( 4104 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4105 } 4106 } 4107 4108 // Assign locations to all of the incoming aggregate by value arguments. 4109 // Aggregates passed by value are stored in the local variable space of the 4110 // caller's stack frame, right above the parameter list area. 4111 SmallVector<CCValAssign, 16> ByValArgLocs; 4112 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4113 ByValArgLocs, *DAG.getContext()); 4114 4115 // Reserve stack space for the allocations in CCInfo. 4116 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4117 4118 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4119 4120 // Area that is at least reserved in the caller of this function. 4121 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4122 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4123 4124 // Set the size that is at least reserved in caller of this function. Tail 4125 // call optimized function's reserved stack space needs to be aligned so that 4126 // taking the difference between two stack areas will result in an aligned 4127 // stack. 4128 MinReservedArea = 4129 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4130 FuncInfo->setMinReservedArea(MinReservedArea); 4131 4132 SmallVector<SDValue, 8> MemOps; 4133 4134 // If the function takes variable number of arguments, make a frame index for 4135 // the start of the first vararg value... for expansion of llvm.va_start. 4136 if (isVarArg) { 4137 static const MCPhysReg GPArgRegs[] = { 4138 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4139 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4140 }; 4141 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4142 4143 static const MCPhysReg FPArgRegs[] = { 4144 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4145 PPC::F8 4146 }; 4147 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4148 4149 if (useSoftFloat() || hasSPE()) 4150 NumFPArgRegs = 0; 4151 4152 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4153 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4154 4155 // Make room for NumGPArgRegs and NumFPArgRegs. 4156 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4157 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4158 4159 FuncInfo->setVarArgsStackOffset( 4160 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4161 CCInfo.getNextStackOffset(), true)); 4162 4163 FuncInfo->setVarArgsFrameIndex( 4164 MFI.CreateStackObject(Depth, Align(8), false)); 4165 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4166 4167 // The fixed integer arguments of a variadic function are stored to the 4168 // VarArgsFrameIndex on the stack so that they may be loaded by 4169 // dereferencing the result of va_next. 4170 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4171 // Get an existing live-in vreg, or add a new one. 4172 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4173 if (!VReg) 4174 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4175 4176 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4177 SDValue Store = 4178 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4179 MemOps.push_back(Store); 4180 // Increment the address by four for the next argument to store 4181 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4182 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4183 } 4184 4185 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4186 // is set. 4187 // The double arguments are stored to the VarArgsFrameIndex 4188 // on the stack. 4189 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4190 // Get an existing live-in vreg, or add a new one. 4191 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4192 if (!VReg) 4193 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4194 4195 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4196 SDValue Store = 4197 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4198 MemOps.push_back(Store); 4199 // Increment the address by eight for the next argument to store 4200 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4201 PtrVT); 4202 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4203 } 4204 } 4205 4206 if (!MemOps.empty()) 4207 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4208 4209 return Chain; 4210 } 4211 4212 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4213 // value to MVT::i64 and then truncate to the correct register size. 4214 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4215 EVT ObjectVT, SelectionDAG &DAG, 4216 SDValue ArgVal, 4217 const SDLoc &dl) const { 4218 if (Flags.isSExt()) 4219 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4220 DAG.getValueType(ObjectVT)); 4221 else if (Flags.isZExt()) 4222 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4223 DAG.getValueType(ObjectVT)); 4224 4225 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4226 } 4227 4228 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4229 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4230 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4231 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4232 // TODO: add description of PPC stack frame format, or at least some docs. 4233 // 4234 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4235 bool isLittleEndian = Subtarget.isLittleEndian(); 4236 MachineFunction &MF = DAG.getMachineFunction(); 4237 MachineFrameInfo &MFI = MF.getFrameInfo(); 4238 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4239 4240 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4241 "fastcc not supported on varargs functions"); 4242 4243 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4244 // Potential tail calls could cause overwriting of argument stack slots. 4245 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4246 (CallConv == CallingConv::Fast)); 4247 unsigned PtrByteSize = 8; 4248 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4249 4250 static const MCPhysReg GPR[] = { 4251 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4252 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4253 }; 4254 static const MCPhysReg VR[] = { 4255 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4256 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4257 }; 4258 4259 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4260 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4261 const unsigned Num_VR_Regs = array_lengthof(VR); 4262 4263 // Do a first pass over the arguments to determine whether the ABI 4264 // guarantees that our caller has allocated the parameter save area 4265 // on its stack frame. In the ELFv1 ABI, this is always the case; 4266 // in the ELFv2 ABI, it is true if this is a vararg function or if 4267 // any parameter is located in a stack slot. 4268 4269 bool HasParameterArea = !isELFv2ABI || isVarArg; 4270 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4271 unsigned NumBytes = LinkageSize; 4272 unsigned AvailableFPRs = Num_FPR_Regs; 4273 unsigned AvailableVRs = Num_VR_Regs; 4274 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4275 if (Ins[i].Flags.isNest()) 4276 continue; 4277 4278 if (CalculateStackSlotUsed(Subtarget, Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4279 PtrByteSize, LinkageSize, ParamAreaSize, 4280 NumBytes, AvailableFPRs, AvailableVRs)) 4281 HasParameterArea = true; 4282 } 4283 4284 // Add DAG nodes to load the arguments or copy them out of registers. On 4285 // entry to a function on PPC, the arguments start after the linkage area, 4286 // although the first ones are often in registers. 4287 4288 unsigned ArgOffset = LinkageSize; 4289 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4290 SmallVector<SDValue, 8> MemOps; 4291 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4292 unsigned CurArgIdx = 0; 4293 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4294 SDValue ArgVal; 4295 bool needsLoad = false; 4296 EVT ObjectVT = Ins[ArgNo].VT; 4297 EVT OrigVT = Ins[ArgNo].ArgVT; 4298 unsigned ObjSize = ObjectVT.getStoreSize(); 4299 unsigned ArgSize = ObjSize; 4300 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4301 if (Ins[ArgNo].isOrigArg()) { 4302 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4303 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4304 } 4305 // We re-align the argument offset for each argument, except when using the 4306 // fast calling convention, when we need to make sure we do that only when 4307 // we'll actually use a stack slot. 4308 unsigned CurArgOffset; 4309 Align Alignment; 4310 auto ComputeArgOffset = [&]() { 4311 /* Respect alignment of argument on the stack. */ 4312 Alignment = 4313 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4314 ArgOffset = alignTo(ArgOffset, Alignment); 4315 CurArgOffset = ArgOffset; 4316 }; 4317 4318 if (CallConv != CallingConv::Fast) { 4319 ComputeArgOffset(); 4320 4321 /* Compute GPR index associated with argument offset. */ 4322 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4323 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4324 } 4325 4326 // FIXME the codegen can be much improved in some cases. 4327 // We do not have to keep everything in memory. 4328 if (Flags.isByVal()) { 4329 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4330 4331 if (CallConv == CallingConv::Fast) 4332 ComputeArgOffset(); 4333 4334 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4335 ObjSize = Flags.getByValSize(); 4336 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4337 // Empty aggregate parameters do not take up registers. Examples: 4338 // struct { } a; 4339 // union { } b; 4340 // int c[0]; 4341 // etc. However, we have to provide a place-holder in InVals, so 4342 // pretend we have an 8-byte item at the current address for that 4343 // purpose. 4344 if (!ObjSize) { 4345 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4346 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4347 InVals.push_back(FIN); 4348 continue; 4349 } 4350 4351 // Create a stack object covering all stack doublewords occupied 4352 // by the argument. If the argument is (fully or partially) on 4353 // the stack, or if the argument is fully in registers but the 4354 // caller has allocated the parameter save anyway, we can refer 4355 // directly to the caller's stack frame. Otherwise, create a 4356 // local copy in our own frame. 4357 int FI; 4358 if (HasParameterArea || 4359 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4360 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4361 else 4362 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4363 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4364 4365 // Handle aggregates smaller than 8 bytes. 4366 if (ObjSize < PtrByteSize) { 4367 // The value of the object is its address, which differs from the 4368 // address of the enclosing doubleword on big-endian systems. 4369 SDValue Arg = FIN; 4370 if (!isLittleEndian) { 4371 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4372 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4373 } 4374 InVals.push_back(Arg); 4375 4376 if (GPR_idx != Num_GPR_Regs) { 4377 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4378 FuncInfo->addLiveInAttr(VReg, Flags); 4379 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4380 SDValue Store; 4381 4382 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4383 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4384 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4385 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4386 MachinePointerInfo(&*FuncArg), ObjType); 4387 } else { 4388 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4389 // store the whole register as-is to the parameter save area 4390 // slot. 4391 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4392 MachinePointerInfo(&*FuncArg)); 4393 } 4394 4395 MemOps.push_back(Store); 4396 } 4397 // Whether we copied from a register or not, advance the offset 4398 // into the parameter save area by a full doubleword. 4399 ArgOffset += PtrByteSize; 4400 continue; 4401 } 4402 4403 // The value of the object is its address, which is the address of 4404 // its first stack doubleword. 4405 InVals.push_back(FIN); 4406 4407 // Store whatever pieces of the object are in registers to memory. 4408 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4409 if (GPR_idx == Num_GPR_Regs) 4410 break; 4411 4412 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4413 FuncInfo->addLiveInAttr(VReg, Flags); 4414 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4415 SDValue Addr = FIN; 4416 if (j) { 4417 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4418 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4419 } 4420 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4421 MachinePointerInfo(&*FuncArg, j)); 4422 MemOps.push_back(Store); 4423 ++GPR_idx; 4424 } 4425 ArgOffset += ArgSize; 4426 continue; 4427 } 4428 4429 switch (ObjectVT.getSimpleVT().SimpleTy) { 4430 default: llvm_unreachable("Unhandled argument type!"); 4431 case MVT::i1: 4432 case MVT::i32: 4433 case MVT::i64: 4434 if (Flags.isNest()) { 4435 // The 'nest' parameter, if any, is passed in R11. 4436 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4437 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4438 4439 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4440 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4441 4442 break; 4443 } 4444 4445 // These can be scalar arguments or elements of an integer array type 4446 // passed directly. Clang may use those instead of "byval" aggregate 4447 // types to avoid forcing arguments to memory unnecessarily. 4448 if (GPR_idx != Num_GPR_Regs) { 4449 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4450 FuncInfo->addLiveInAttr(VReg, Flags); 4451 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4452 4453 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4454 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4455 // value to MVT::i64 and then truncate to the correct register size. 4456 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4457 } else { 4458 if (CallConv == CallingConv::Fast) 4459 ComputeArgOffset(); 4460 4461 needsLoad = true; 4462 ArgSize = PtrByteSize; 4463 } 4464 if (CallConv != CallingConv::Fast || needsLoad) 4465 ArgOffset += 8; 4466 break; 4467 4468 case MVT::f32: 4469 case MVT::f64: 4470 // These can be scalar arguments or elements of a float array type 4471 // passed directly. The latter are used to implement ELFv2 homogenous 4472 // float aggregates. 4473 if (FPR_idx != Num_FPR_Regs) { 4474 unsigned VReg; 4475 4476 if (ObjectVT == MVT::f32) 4477 VReg = MF.addLiveIn(FPR[FPR_idx], 4478 Subtarget.hasP8Vector() 4479 ? &PPC::VSSRCRegClass 4480 : &PPC::F4RCRegClass); 4481 else 4482 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4483 ? &PPC::VSFRCRegClass 4484 : &PPC::F8RCRegClass); 4485 4486 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4487 ++FPR_idx; 4488 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4489 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4490 // once we support fp <-> gpr moves. 4491 4492 // This can only ever happen in the presence of f32 array types, 4493 // since otherwise we never run out of FPRs before running out 4494 // of GPRs. 4495 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4496 FuncInfo->addLiveInAttr(VReg, Flags); 4497 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4498 4499 if (ObjectVT == MVT::f32) { 4500 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4501 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4502 DAG.getConstant(32, dl, MVT::i32)); 4503 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4504 } 4505 4506 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4507 } else { 4508 if (CallConv == CallingConv::Fast) 4509 ComputeArgOffset(); 4510 4511 needsLoad = true; 4512 } 4513 4514 // When passing an array of floats, the array occupies consecutive 4515 // space in the argument area; only round up to the next doubleword 4516 // at the end of the array. Otherwise, each float takes 8 bytes. 4517 if (CallConv != CallingConv::Fast || needsLoad) { 4518 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4519 ArgOffset += ArgSize; 4520 if (Flags.isInConsecutiveRegsLast()) 4521 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4522 } 4523 break; 4524 case MVT::v4f32: 4525 case MVT::v4i32: 4526 case MVT::v8i16: 4527 case MVT::v16i8: 4528 case MVT::v2f64: 4529 case MVT::v2i64: 4530 case MVT::v1i128: 4531 case MVT::f128: 4532 // These can be scalar arguments or elements of a vector array type 4533 // passed directly. The latter are used to implement ELFv2 homogenous 4534 // vector aggregates. 4535 if (VR_idx != Num_VR_Regs) { 4536 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4537 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4538 ++VR_idx; 4539 } else { 4540 if (CallConv == CallingConv::Fast) 4541 ComputeArgOffset(); 4542 needsLoad = true; 4543 } 4544 if (CallConv != CallingConv::Fast || needsLoad) 4545 ArgOffset += 16; 4546 break; 4547 } 4548 4549 // We need to load the argument to a virtual register if we determined 4550 // above that we ran out of physical registers of the appropriate type. 4551 if (needsLoad) { 4552 if (ObjSize < ArgSize && !isLittleEndian) 4553 CurArgOffset += ArgSize - ObjSize; 4554 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4555 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4556 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4557 } 4558 4559 InVals.push_back(ArgVal); 4560 } 4561 4562 // Area that is at least reserved in the caller of this function. 4563 unsigned MinReservedArea; 4564 if (HasParameterArea) 4565 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4566 else 4567 MinReservedArea = LinkageSize; 4568 4569 // Set the size that is at least reserved in caller of this function. Tail 4570 // call optimized functions' reserved stack space needs to be aligned so that 4571 // taking the difference between two stack areas will result in an aligned 4572 // stack. 4573 MinReservedArea = 4574 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4575 FuncInfo->setMinReservedArea(MinReservedArea); 4576 4577 // If the function takes variable number of arguments, make a frame index for 4578 // the start of the first vararg value... for expansion of llvm.va_start. 4579 // On ELFv2ABI spec, it writes: 4580 // C programs that are intended to be *portable* across different compilers 4581 // and architectures must use the header file <stdarg.h> to deal with variable 4582 // argument lists. 4583 if (isVarArg && MFI.hasVAStart()) { 4584 int Depth = ArgOffset; 4585 4586 FuncInfo->setVarArgsFrameIndex( 4587 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4588 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4589 4590 // If this function is vararg, store any remaining integer argument regs 4591 // to their spots on the stack so that they may be loaded by dereferencing 4592 // the result of va_next. 4593 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4594 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4595 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4596 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4597 SDValue Store = 4598 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4599 MemOps.push_back(Store); 4600 // Increment the address by four for the next argument to store 4601 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4602 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4603 } 4604 } 4605 4606 if (!MemOps.empty()) 4607 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4608 4609 return Chain; 4610 } 4611 4612 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4613 /// adjusted to accommodate the arguments for the tailcall. 4614 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4615 unsigned ParamSize) { 4616 4617 if (!isTailCall) return 0; 4618 4619 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4620 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4621 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4622 // Remember only if the new adjustment is bigger. 4623 if (SPDiff < FI->getTailCallSPDelta()) 4624 FI->setTailCallSPDelta(SPDiff); 4625 4626 return SPDiff; 4627 } 4628 4629 static bool isFunctionGlobalAddress(SDValue Callee); 4630 4631 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4632 const TargetMachine &TM) { 4633 // It does not make sense to call callsShareTOCBase() with a caller that 4634 // is PC Relative since PC Relative callers do not have a TOC. 4635 #ifndef NDEBUG 4636 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4637 assert(!STICaller->isUsingPCRelativeCalls() && 4638 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4639 #endif 4640 4641 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4642 // don't have enough information to determine if the caller and callee share 4643 // the same TOC base, so we have to pessimistically assume they don't for 4644 // correctness. 4645 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4646 if (!G) 4647 return false; 4648 4649 const GlobalValue *GV = G->getGlobal(); 4650 4651 // If the callee is preemptable, then the static linker will use a plt-stub 4652 // which saves the toc to the stack, and needs a nop after the call 4653 // instruction to convert to a toc-restore. 4654 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4655 return false; 4656 4657 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4658 // We may need a TOC restore in the situation where the caller requires a 4659 // valid TOC but the callee is PC Relative and does not. 4660 const Function *F = dyn_cast<Function>(GV); 4661 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4662 4663 // If we have an Alias we can try to get the function from there. 4664 if (Alias) { 4665 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4666 F = dyn_cast<Function>(GlobalObj); 4667 } 4668 4669 // If we still have no valid function pointer we do not have enough 4670 // information to determine if the callee uses PC Relative calls so we must 4671 // assume that it does. 4672 if (!F) 4673 return false; 4674 4675 // If the callee uses PC Relative we cannot guarantee that the callee won't 4676 // clobber the TOC of the caller and so we must assume that the two 4677 // functions do not share a TOC base. 4678 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4679 if (STICallee->isUsingPCRelativeCalls()) 4680 return false; 4681 4682 // If the GV is not a strong definition then we need to assume it can be 4683 // replaced by another function at link time. The function that replaces 4684 // it may not share the same TOC as the caller since the callee may be 4685 // replaced by a PC Relative version of the same function. 4686 if (!GV->isStrongDefinitionForLinker()) 4687 return false; 4688 4689 // The medium and large code models are expected to provide a sufficiently 4690 // large TOC to provide all data addressing needs of a module with a 4691 // single TOC. 4692 if (CodeModel::Medium == TM.getCodeModel() || 4693 CodeModel::Large == TM.getCodeModel()) 4694 return true; 4695 4696 // Any explicitly-specified sections and section prefixes must also match. 4697 // Also, if we're using -ffunction-sections, then each function is always in 4698 // a different section (the same is true for COMDAT functions). 4699 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4700 GV->getSection() != Caller->getSection()) 4701 return false; 4702 if (const auto *F = dyn_cast<Function>(GV)) { 4703 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4704 return false; 4705 } 4706 4707 return true; 4708 } 4709 4710 static bool 4711 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4712 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4713 assert(Subtarget.is64BitELFABI()); 4714 4715 const unsigned PtrByteSize = 8; 4716 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4717 4718 static const MCPhysReg GPR[] = { 4719 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4720 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4721 }; 4722 static const MCPhysReg VR[] = { 4723 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4724 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4725 }; 4726 4727 const unsigned NumGPRs = array_lengthof(GPR); 4728 const unsigned NumFPRs = 13; 4729 const unsigned NumVRs = array_lengthof(VR); 4730 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4731 4732 unsigned NumBytes = LinkageSize; 4733 unsigned AvailableFPRs = NumFPRs; 4734 unsigned AvailableVRs = NumVRs; 4735 4736 for (const ISD::OutputArg& Param : Outs) { 4737 if (Param.Flags.isNest()) continue; 4738 4739 if (CalculateStackSlotUsed(Subtarget, Param.VT, Param.ArgVT, Param.Flags, 4740 PtrByteSize, LinkageSize, ParamAreaSize, 4741 NumBytes, AvailableFPRs, AvailableVRs)) 4742 return true; 4743 } 4744 return false; 4745 } 4746 4747 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4748 if (CB.arg_size() != CallerFn->arg_size()) 4749 return false; 4750 4751 auto CalleeArgIter = CB.arg_begin(); 4752 auto CalleeArgEnd = CB.arg_end(); 4753 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4754 4755 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4756 const Value* CalleeArg = *CalleeArgIter; 4757 const Value* CallerArg = &(*CallerArgIter); 4758 if (CalleeArg == CallerArg) 4759 continue; 4760 4761 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4762 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4763 // } 4764 // 1st argument of callee is undef and has the same type as caller. 4765 if (CalleeArg->getType() == CallerArg->getType() && 4766 isa<UndefValue>(CalleeArg)) 4767 continue; 4768 4769 return false; 4770 } 4771 4772 return true; 4773 } 4774 4775 // Returns true if TCO is possible between the callers and callees 4776 // calling conventions. 4777 static bool 4778 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4779 CallingConv::ID CalleeCC) { 4780 // Tail calls are possible with fastcc and ccc. 4781 auto isTailCallableCC = [] (CallingConv::ID CC){ 4782 return CC == CallingConv::C || CC == CallingConv::Fast; 4783 }; 4784 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4785 return false; 4786 4787 // We can safely tail call both fastcc and ccc callees from a c calling 4788 // convention caller. If the caller is fastcc, we may have less stack space 4789 // than a non-fastcc caller with the same signature so disable tail-calls in 4790 // that case. 4791 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4792 } 4793 4794 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4795 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4796 const SmallVectorImpl<ISD::OutputArg> &Outs, 4797 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4798 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4799 4800 if (DisableSCO && !TailCallOpt) return false; 4801 4802 // Variadic argument functions are not supported. 4803 if (isVarArg) return false; 4804 4805 auto &Caller = DAG.getMachineFunction().getFunction(); 4806 // Check that the calling conventions are compatible for tco. 4807 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4808 return false; 4809 4810 // Caller contains any byval parameter is not supported. 4811 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4812 return false; 4813 4814 // Callee contains any byval parameter is not supported, too. 4815 // Note: This is a quick work around, because in some cases, e.g. 4816 // caller's stack size > callee's stack size, we are still able to apply 4817 // sibling call optimization. For example, gcc is able to do SCO for caller1 4818 // in the following example, but not for caller2. 4819 // struct test { 4820 // long int a; 4821 // char ary[56]; 4822 // } gTest; 4823 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4824 // b->a = v.a; 4825 // return 0; 4826 // } 4827 // void caller1(struct test a, struct test c, struct test *b) { 4828 // callee(gTest, b); } 4829 // void caller2(struct test *b) { callee(gTest, b); } 4830 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4831 return false; 4832 4833 // If callee and caller use different calling conventions, we cannot pass 4834 // parameters on stack since offsets for the parameter area may be different. 4835 if (Caller.getCallingConv() != CalleeCC && 4836 needStackSlotPassParameters(Subtarget, Outs)) 4837 return false; 4838 4839 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4840 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4841 // callee potentially have different TOC bases then we cannot tail call since 4842 // we need to restore the TOC pointer after the call. 4843 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4844 // We cannot guarantee this for indirect calls or calls to external functions. 4845 // When PC-Relative addressing is used, the concept of the TOC is no longer 4846 // applicable so this check is not required. 4847 // Check first for indirect calls. 4848 if (!Subtarget.isUsingPCRelativeCalls() && 4849 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4850 return false; 4851 4852 // Check if we share the TOC base. 4853 if (!Subtarget.isUsingPCRelativeCalls() && 4854 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4855 return false; 4856 4857 // TCO allows altering callee ABI, so we don't have to check further. 4858 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4859 return true; 4860 4861 if (DisableSCO) return false; 4862 4863 // If callee use the same argument list that caller is using, then we can 4864 // apply SCO on this case. If it is not, then we need to check if callee needs 4865 // stack for passing arguments. 4866 // PC Relative tail calls may not have a CallBase. 4867 // If there is no CallBase we cannot verify if we have the same argument 4868 // list so assume that we don't have the same argument list. 4869 if (CB && !hasSameArgumentList(&Caller, *CB) && 4870 needStackSlotPassParameters(Subtarget, Outs)) 4871 return false; 4872 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4873 return false; 4874 4875 return true; 4876 } 4877 4878 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4879 /// for tail call optimization. Targets which want to do tail call 4880 /// optimization should implement this function. 4881 bool 4882 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4883 CallingConv::ID CalleeCC, 4884 bool isVarArg, 4885 const SmallVectorImpl<ISD::InputArg> &Ins, 4886 SelectionDAG& DAG) const { 4887 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4888 return false; 4889 4890 // Variable argument functions are not supported. 4891 if (isVarArg) 4892 return false; 4893 4894 MachineFunction &MF = DAG.getMachineFunction(); 4895 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4896 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4897 // Functions containing by val parameters are not supported. 4898 for (unsigned i = 0; i != Ins.size(); i++) { 4899 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4900 if (Flags.isByVal()) return false; 4901 } 4902 4903 // Non-PIC/GOT tail calls are supported. 4904 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4905 return true; 4906 4907 // At the moment we can only do local tail calls (in same module, hidden 4908 // or protected) if we are generating PIC. 4909 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4910 return G->getGlobal()->hasHiddenVisibility() 4911 || G->getGlobal()->hasProtectedVisibility(); 4912 } 4913 4914 return false; 4915 } 4916 4917 /// isCallCompatibleAddress - Return the immediate to use if the specified 4918 /// 32-bit value is representable in the immediate field of a BxA instruction. 4919 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4920 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4921 if (!C) return nullptr; 4922 4923 int Addr = C->getZExtValue(); 4924 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4925 SignExtend32<26>(Addr) != Addr) 4926 return nullptr; // Top 6 bits have to be sext of immediate. 4927 4928 return DAG 4929 .getConstant( 4930 (int)C->getZExtValue() >> 2, SDLoc(Op), 4931 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4932 .getNode(); 4933 } 4934 4935 namespace { 4936 4937 struct TailCallArgumentInfo { 4938 SDValue Arg; 4939 SDValue FrameIdxOp; 4940 int FrameIdx = 0; 4941 4942 TailCallArgumentInfo() = default; 4943 }; 4944 4945 } // end anonymous namespace 4946 4947 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4948 static void StoreTailCallArgumentsToStackSlot( 4949 SelectionDAG &DAG, SDValue Chain, 4950 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4951 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4952 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4953 SDValue Arg = TailCallArgs[i].Arg; 4954 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4955 int FI = TailCallArgs[i].FrameIdx; 4956 // Store relative to framepointer. 4957 MemOpChains.push_back(DAG.getStore( 4958 Chain, dl, Arg, FIN, 4959 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4960 } 4961 } 4962 4963 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4964 /// the appropriate stack slot for the tail call optimized function call. 4965 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4966 SDValue OldRetAddr, SDValue OldFP, 4967 int SPDiff, const SDLoc &dl) { 4968 if (SPDiff) { 4969 // Calculate the new stack slot for the return address. 4970 MachineFunction &MF = DAG.getMachineFunction(); 4971 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4972 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4973 bool isPPC64 = Subtarget.isPPC64(); 4974 int SlotSize = isPPC64 ? 8 : 4; 4975 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4976 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4977 NewRetAddrLoc, true); 4978 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4979 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4980 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4981 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4982 } 4983 return Chain; 4984 } 4985 4986 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4987 /// the position of the argument. 4988 static void 4989 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4990 SDValue Arg, int SPDiff, unsigned ArgOffset, 4991 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4992 int Offset = ArgOffset + SPDiff; 4993 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4994 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4995 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4996 SDValue FIN = DAG.getFrameIndex(FI, VT); 4997 TailCallArgumentInfo Info; 4998 Info.Arg = Arg; 4999 Info.FrameIdxOp = FIN; 5000 Info.FrameIdx = FI; 5001 TailCallArguments.push_back(Info); 5002 } 5003 5004 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5005 /// stack slot. Returns the chain as result and the loaded frame pointers in 5006 /// LROpOut/FPOpout. Used when tail calling. 5007 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5008 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5009 SDValue &FPOpOut, const SDLoc &dl) const { 5010 if (SPDiff) { 5011 // Load the LR and FP stack slot for later adjusting. 5012 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5013 LROpOut = getReturnAddrFrameIndex(DAG); 5014 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5015 Chain = SDValue(LROpOut.getNode(), 1); 5016 } 5017 return Chain; 5018 } 5019 5020 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5021 /// by "Src" to address "Dst" of size "Size". Alignment information is 5022 /// specified by the specific parameter attribute. The copy will be passed as 5023 /// a byval function parameter. 5024 /// Sometimes what we are copying is the end of a larger object, the part that 5025 /// does not fit in registers. 5026 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5027 SDValue Chain, ISD::ArgFlagsTy Flags, 5028 SelectionDAG &DAG, const SDLoc &dl) { 5029 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5030 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5031 Flags.getNonZeroByValAlign(), false, false, false, 5032 MachinePointerInfo(), MachinePointerInfo()); 5033 } 5034 5035 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5036 /// tail calls. 5037 static void LowerMemOpCallTo( 5038 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5039 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5040 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5041 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5042 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5043 if (!isTailCall) { 5044 if (isVector) { 5045 SDValue StackPtr; 5046 if (isPPC64) 5047 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5048 else 5049 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5050 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5051 DAG.getConstant(ArgOffset, dl, PtrVT)); 5052 } 5053 MemOpChains.push_back( 5054 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5055 // Calculate and remember argument location. 5056 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5057 TailCallArguments); 5058 } 5059 5060 static void 5061 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5062 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5063 SDValue FPOp, 5064 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5065 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5066 // might overwrite each other in case of tail call optimization. 5067 SmallVector<SDValue, 8> MemOpChains2; 5068 // Do not flag preceding copytoreg stuff together with the following stuff. 5069 InFlag = SDValue(); 5070 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5071 MemOpChains2, dl); 5072 if (!MemOpChains2.empty()) 5073 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5074 5075 // Store the return address to the appropriate stack slot. 5076 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5077 5078 // Emit callseq_end just before tailcall node. 5079 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5080 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5081 InFlag = Chain.getValue(1); 5082 } 5083 5084 // Is this global address that of a function that can be called by name? (as 5085 // opposed to something that must hold a descriptor for an indirect call). 5086 static bool isFunctionGlobalAddress(SDValue Callee) { 5087 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5088 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5089 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5090 return false; 5091 5092 return G->getGlobal()->getValueType()->isFunctionTy(); 5093 } 5094 5095 return false; 5096 } 5097 5098 SDValue PPCTargetLowering::LowerCallResult( 5099 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5100 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5101 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5102 SmallVector<CCValAssign, 16> RVLocs; 5103 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5104 *DAG.getContext()); 5105 5106 CCRetInfo.AnalyzeCallResult( 5107 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5108 ? RetCC_PPC_Cold 5109 : RetCC_PPC); 5110 5111 // Copy all of the result registers out of their specified physreg. 5112 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5113 CCValAssign &VA = RVLocs[i]; 5114 assert(VA.isRegLoc() && "Can only return in registers!"); 5115 5116 SDValue Val; 5117 5118 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5119 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5120 InFlag); 5121 Chain = Lo.getValue(1); 5122 InFlag = Lo.getValue(2); 5123 VA = RVLocs[++i]; // skip ahead to next loc 5124 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5125 InFlag); 5126 Chain = Hi.getValue(1); 5127 InFlag = Hi.getValue(2); 5128 if (!Subtarget.isLittleEndian()) 5129 std::swap (Lo, Hi); 5130 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5131 } else { 5132 Val = DAG.getCopyFromReg(Chain, dl, 5133 VA.getLocReg(), VA.getLocVT(), InFlag); 5134 Chain = Val.getValue(1); 5135 InFlag = Val.getValue(2); 5136 } 5137 5138 switch (VA.getLocInfo()) { 5139 default: llvm_unreachable("Unknown loc info!"); 5140 case CCValAssign::Full: break; 5141 case CCValAssign::AExt: 5142 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5143 break; 5144 case CCValAssign::ZExt: 5145 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5146 DAG.getValueType(VA.getValVT())); 5147 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5148 break; 5149 case CCValAssign::SExt: 5150 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5151 DAG.getValueType(VA.getValVT())); 5152 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5153 break; 5154 } 5155 5156 InVals.push_back(Val); 5157 } 5158 5159 return Chain; 5160 } 5161 5162 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5163 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5164 // PatchPoint calls are not indirect. 5165 if (isPatchPoint) 5166 return false; 5167 5168 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5169 return false; 5170 5171 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5172 // becuase the immediate function pointer points to a descriptor instead of 5173 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5174 // pointer immediate points to the global entry point, while the BLA would 5175 // need to jump to the local entry point (see rL211174). 5176 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5177 isBLACompatibleAddress(Callee, DAG)) 5178 return false; 5179 5180 return true; 5181 } 5182 5183 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5184 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5185 return Subtarget.isAIXABI() || 5186 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5187 } 5188 5189 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5190 const Function &Caller, 5191 const SDValue &Callee, 5192 const PPCSubtarget &Subtarget, 5193 const TargetMachine &TM) { 5194 if (CFlags.IsTailCall) 5195 return PPCISD::TC_RETURN; 5196 5197 // This is a call through a function pointer. 5198 if (CFlags.IsIndirect) { 5199 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5200 // indirect calls. The save of the caller's TOC pointer to the stack will be 5201 // inserted into the DAG as part of call lowering. The restore of the TOC 5202 // pointer is modeled by using a pseudo instruction for the call opcode that 5203 // represents the 2 instruction sequence of an indirect branch and link, 5204 // immediately followed by a load of the TOC pointer from the the stack save 5205 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5206 // as it is not saved or used. 5207 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5208 : PPCISD::BCTRL; 5209 } 5210 5211 if (Subtarget.isUsingPCRelativeCalls()) { 5212 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5213 return PPCISD::CALL_NOTOC; 5214 } 5215 5216 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5217 // immediately following the call instruction if the caller and callee may 5218 // have different TOC bases. At link time if the linker determines the calls 5219 // may not share a TOC base, the call is redirected to a trampoline inserted 5220 // by the linker. The trampoline will (among other things) save the callers 5221 // TOC pointer at an ABI designated offset in the linkage area and the linker 5222 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5223 // into gpr2. 5224 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5225 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5226 : PPCISD::CALL_NOP; 5227 5228 return PPCISD::CALL; 5229 } 5230 5231 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5232 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5233 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5234 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5235 return SDValue(Dest, 0); 5236 5237 // Returns true if the callee is local, and false otherwise. 5238 auto isLocalCallee = [&]() { 5239 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5240 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5241 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5242 5243 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5244 !dyn_cast_or_null<GlobalIFunc>(GV); 5245 }; 5246 5247 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5248 // a static relocation model causes some versions of GNU LD (2.17.50, at 5249 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5250 // built with secure-PLT. 5251 bool UsePlt = 5252 Subtarget.is32BitELFABI() && !isLocalCallee() && 5253 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5254 5255 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5256 const TargetMachine &TM = Subtarget.getTargetMachine(); 5257 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5258 MCSymbolXCOFF *S = 5259 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5260 5261 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5262 return DAG.getMCSymbol(S, PtrVT); 5263 }; 5264 5265 if (isFunctionGlobalAddress(Callee)) { 5266 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5267 5268 if (Subtarget.isAIXABI()) { 5269 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5270 return getAIXFuncEntryPointSymbolSDNode(GV); 5271 } 5272 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5273 UsePlt ? PPCII::MO_PLT : 0); 5274 } 5275 5276 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5277 const char *SymName = S->getSymbol(); 5278 if (Subtarget.isAIXABI()) { 5279 // If there exists a user-declared function whose name is the same as the 5280 // ExternalSymbol's, then we pick up the user-declared version. 5281 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5282 if (const Function *F = 5283 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5284 return getAIXFuncEntryPointSymbolSDNode(F); 5285 5286 // On AIX, direct function calls reference the symbol for the function's 5287 // entry point, which is named by prepending a "." before the function's 5288 // C-linkage name. A Qualname is returned here because an external 5289 // function entry point is a csect with XTY_ER property. 5290 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5291 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5292 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5293 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5294 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5295 return Sec->getQualNameSymbol(); 5296 }; 5297 5298 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5299 } 5300 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5301 UsePlt ? PPCII::MO_PLT : 0); 5302 } 5303 5304 // No transformation needed. 5305 assert(Callee.getNode() && "What no callee?"); 5306 return Callee; 5307 } 5308 5309 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5310 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5311 "Expected a CALLSEQ_STARTSDNode."); 5312 5313 // The last operand is the chain, except when the node has glue. If the node 5314 // has glue, then the last operand is the glue, and the chain is the second 5315 // last operand. 5316 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5317 if (LastValue.getValueType() != MVT::Glue) 5318 return LastValue; 5319 5320 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5321 } 5322 5323 // Creates the node that moves a functions address into the count register 5324 // to prepare for an indirect call instruction. 5325 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5326 SDValue &Glue, SDValue &Chain, 5327 const SDLoc &dl) { 5328 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5329 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5330 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5331 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5332 // The glue is the second value produced. 5333 Glue = Chain.getValue(1); 5334 } 5335 5336 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5337 SDValue &Glue, SDValue &Chain, 5338 SDValue CallSeqStart, 5339 const CallBase *CB, const SDLoc &dl, 5340 bool hasNest, 5341 const PPCSubtarget &Subtarget) { 5342 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5343 // entry point, but to the function descriptor (the function entry point 5344 // address is part of the function descriptor though). 5345 // The function descriptor is a three doubleword structure with the 5346 // following fields: function entry point, TOC base address and 5347 // environment pointer. 5348 // Thus for a call through a function pointer, the following actions need 5349 // to be performed: 5350 // 1. Save the TOC of the caller in the TOC save area of its stack 5351 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5352 // 2. Load the address of the function entry point from the function 5353 // descriptor. 5354 // 3. Load the TOC of the callee from the function descriptor into r2. 5355 // 4. Load the environment pointer from the function descriptor into 5356 // r11. 5357 // 5. Branch to the function entry point address. 5358 // 6. On return of the callee, the TOC of the caller needs to be 5359 // restored (this is done in FinishCall()). 5360 // 5361 // The loads are scheduled at the beginning of the call sequence, and the 5362 // register copies are flagged together to ensure that no other 5363 // operations can be scheduled in between. E.g. without flagging the 5364 // copies together, a TOC access in the caller could be scheduled between 5365 // the assignment of the callee TOC and the branch to the callee, which leads 5366 // to incorrect code. 5367 5368 // Start by loading the function address from the descriptor. 5369 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5370 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5371 ? (MachineMemOperand::MODereferenceable | 5372 MachineMemOperand::MOInvariant) 5373 : MachineMemOperand::MONone; 5374 5375 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5376 5377 // Registers used in building the DAG. 5378 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5379 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5380 5381 // Offsets of descriptor members. 5382 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5383 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5384 5385 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5386 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5387 5388 // One load for the functions entry point address. 5389 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5390 Alignment, MMOFlags); 5391 5392 // One for loading the TOC anchor for the module that contains the called 5393 // function. 5394 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5395 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5396 SDValue TOCPtr = 5397 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5398 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5399 5400 // One for loading the environment pointer. 5401 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5402 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5403 SDValue LoadEnvPtr = 5404 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5405 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5406 5407 5408 // Then copy the newly loaded TOC anchor to the TOC pointer. 5409 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5410 Chain = TOCVal.getValue(0); 5411 Glue = TOCVal.getValue(1); 5412 5413 // If the function call has an explicit 'nest' parameter, it takes the 5414 // place of the environment pointer. 5415 assert((!hasNest || !Subtarget.isAIXABI()) && 5416 "Nest parameter is not supported on AIX."); 5417 if (!hasNest) { 5418 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5419 Chain = EnvVal.getValue(0); 5420 Glue = EnvVal.getValue(1); 5421 } 5422 5423 // The rest of the indirect call sequence is the same as the non-descriptor 5424 // DAG. 5425 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5426 } 5427 5428 static void 5429 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5430 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5431 SelectionDAG &DAG, 5432 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5433 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5434 const PPCSubtarget &Subtarget) { 5435 const bool IsPPC64 = Subtarget.isPPC64(); 5436 // MVT for a general purpose register. 5437 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5438 5439 // First operand is always the chain. 5440 Ops.push_back(Chain); 5441 5442 // If it's a direct call pass the callee as the second operand. 5443 if (!CFlags.IsIndirect) 5444 Ops.push_back(Callee); 5445 else { 5446 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5447 5448 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5449 // on the stack (this would have been done in `LowerCall_64SVR4` or 5450 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5451 // represents both the indirect branch and a load that restores the TOC 5452 // pointer from the linkage area. The operand for the TOC restore is an add 5453 // of the TOC save offset to the stack pointer. This must be the second 5454 // operand: after the chain input but before any other variadic arguments. 5455 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5456 // saved or used. 5457 if (isTOCSaveRestoreRequired(Subtarget)) { 5458 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5459 5460 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5461 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5462 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5463 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5464 Ops.push_back(AddTOC); 5465 } 5466 5467 // Add the register used for the environment pointer. 5468 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5469 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5470 RegVT)); 5471 5472 5473 // Add CTR register as callee so a bctr can be emitted later. 5474 if (CFlags.IsTailCall) 5475 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5476 } 5477 5478 // If this is a tail call add stack pointer delta. 5479 if (CFlags.IsTailCall) 5480 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5481 5482 // Add argument registers to the end of the list so that they are known live 5483 // into the call. 5484 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5485 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5486 RegsToPass[i].second.getValueType())); 5487 5488 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5489 // no way to mark dependencies as implicit here. 5490 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5491 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5492 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5493 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5494 5495 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5496 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5497 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5498 5499 // Add a register mask operand representing the call-preserved registers. 5500 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5501 const uint32_t *Mask = 5502 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5503 assert(Mask && "Missing call preserved mask for calling convention"); 5504 Ops.push_back(DAG.getRegisterMask(Mask)); 5505 5506 // If the glue is valid, it is the last operand. 5507 if (Glue.getNode()) 5508 Ops.push_back(Glue); 5509 } 5510 5511 SDValue PPCTargetLowering::FinishCall( 5512 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5513 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5514 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5515 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5516 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5517 5518 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5519 Subtarget.isAIXABI()) 5520 setUsesTOCBasePtr(DAG); 5521 5522 unsigned CallOpc = 5523 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5524 Subtarget, DAG.getTarget()); 5525 5526 if (!CFlags.IsIndirect) 5527 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5528 else if (Subtarget.usesFunctionDescriptors()) 5529 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5530 dl, CFlags.HasNest, Subtarget); 5531 else 5532 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5533 5534 // Build the operand list for the call instruction. 5535 SmallVector<SDValue, 8> Ops; 5536 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5537 SPDiff, Subtarget); 5538 5539 // Emit tail call. 5540 if (CFlags.IsTailCall) { 5541 // Indirect tail call when using PC Relative calls do not have the same 5542 // constraints. 5543 assert(((Callee.getOpcode() == ISD::Register && 5544 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5545 Callee.getOpcode() == ISD::TargetExternalSymbol || 5546 Callee.getOpcode() == ISD::TargetGlobalAddress || 5547 isa<ConstantSDNode>(Callee) || 5548 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5549 "Expecting a global address, external symbol, absolute value, " 5550 "register or an indirect tail call when PC Relative calls are " 5551 "used."); 5552 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5553 assert(CallOpc == PPCISD::TC_RETURN && 5554 "Unexpected call opcode for a tail call."); 5555 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5556 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5557 } 5558 5559 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5560 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5561 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5562 Glue = Chain.getValue(1); 5563 5564 // When performing tail call optimization the callee pops its arguments off 5565 // the stack. Account for this here so these bytes can be pushed back on in 5566 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5567 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5568 getTargetMachine().Options.GuaranteedTailCallOpt) 5569 ? NumBytes 5570 : 0; 5571 5572 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5573 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5574 Glue, dl); 5575 Glue = Chain.getValue(1); 5576 5577 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5578 DAG, InVals); 5579 } 5580 5581 SDValue 5582 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5583 SmallVectorImpl<SDValue> &InVals) const { 5584 SelectionDAG &DAG = CLI.DAG; 5585 SDLoc &dl = CLI.DL; 5586 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5587 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5588 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5589 SDValue Chain = CLI.Chain; 5590 SDValue Callee = CLI.Callee; 5591 bool &isTailCall = CLI.IsTailCall; 5592 CallingConv::ID CallConv = CLI.CallConv; 5593 bool isVarArg = CLI.IsVarArg; 5594 bool isPatchPoint = CLI.IsPatchPoint; 5595 const CallBase *CB = CLI.CB; 5596 5597 if (isTailCall) { 5598 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5599 isTailCall = false; 5600 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5601 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5602 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5603 else 5604 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5605 Ins, DAG); 5606 if (isTailCall) { 5607 ++NumTailCalls; 5608 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5609 ++NumSiblingCalls; 5610 5611 // PC Relative calls no longer guarantee that the callee is a Global 5612 // Address Node. The callee could be an indirect tail call in which 5613 // case the SDValue for the callee could be a load (to load the address 5614 // of a function pointer) or it may be a register copy (to move the 5615 // address of the callee from a function parameter into a virtual 5616 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5617 assert((Subtarget.isUsingPCRelativeCalls() || 5618 isa<GlobalAddressSDNode>(Callee)) && 5619 "Callee should be an llvm::Function object."); 5620 5621 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5622 << "\nTCO callee: "); 5623 LLVM_DEBUG(Callee.dump()); 5624 } 5625 } 5626 5627 if (!isTailCall && CB && CB->isMustTailCall()) 5628 report_fatal_error("failed to perform tail call elimination on a call " 5629 "site marked musttail"); 5630 5631 // When long calls (i.e. indirect calls) are always used, calls are always 5632 // made via function pointer. If we have a function name, first translate it 5633 // into a pointer. 5634 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5635 !isTailCall) 5636 Callee = LowerGlobalAddress(Callee, DAG); 5637 5638 CallFlags CFlags( 5639 CallConv, isTailCall, isVarArg, isPatchPoint, 5640 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5641 // hasNest 5642 Subtarget.is64BitELFABI() && 5643 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5644 CLI.NoMerge); 5645 5646 if (Subtarget.isAIXABI()) 5647 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5648 InVals, CB); 5649 5650 assert(Subtarget.isSVR4ABI()); 5651 if (Subtarget.isPPC64()) 5652 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5653 InVals, CB); 5654 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5655 InVals, CB); 5656 } 5657 5658 SDValue PPCTargetLowering::LowerCall_32SVR4( 5659 SDValue Chain, SDValue Callee, CallFlags CFlags, 5660 const SmallVectorImpl<ISD::OutputArg> &Outs, 5661 const SmallVectorImpl<SDValue> &OutVals, 5662 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5663 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5664 const CallBase *CB) const { 5665 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5666 // of the 32-bit SVR4 ABI stack frame layout. 5667 5668 const CallingConv::ID CallConv = CFlags.CallConv; 5669 const bool IsVarArg = CFlags.IsVarArg; 5670 const bool IsTailCall = CFlags.IsTailCall; 5671 5672 assert((CallConv == CallingConv::C || 5673 CallConv == CallingConv::Cold || 5674 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5675 5676 const Align PtrAlign(4); 5677 5678 MachineFunction &MF = DAG.getMachineFunction(); 5679 5680 // Mark this function as potentially containing a function that contains a 5681 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5682 // and restoring the callers stack pointer in this functions epilog. This is 5683 // done because by tail calling the called function might overwrite the value 5684 // in this function's (MF) stack pointer stack slot 0(SP). 5685 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5686 CallConv == CallingConv::Fast) 5687 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5688 5689 // Count how many bytes are to be pushed on the stack, including the linkage 5690 // area, parameter list area and the part of the local variable space which 5691 // contains copies of aggregates which are passed by value. 5692 5693 // Assign locations to all of the outgoing arguments. 5694 SmallVector<CCValAssign, 16> ArgLocs; 5695 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5696 5697 // Reserve space for the linkage area on the stack. 5698 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5699 PtrAlign); 5700 if (useSoftFloat()) 5701 CCInfo.PreAnalyzeCallOperands(Outs); 5702 5703 if (IsVarArg) { 5704 // Handle fixed and variable vector arguments differently. 5705 // Fixed vector arguments go into registers as long as registers are 5706 // available. Variable vector arguments always go into memory. 5707 unsigned NumArgs = Outs.size(); 5708 5709 for (unsigned i = 0; i != NumArgs; ++i) { 5710 MVT ArgVT = Outs[i].VT; 5711 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5712 bool Result; 5713 5714 if (Outs[i].IsFixed) { 5715 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5716 CCInfo); 5717 } else { 5718 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5719 ArgFlags, CCInfo); 5720 } 5721 5722 if (Result) { 5723 #ifndef NDEBUG 5724 errs() << "Call operand #" << i << " has unhandled type " 5725 << EVT(ArgVT).getEVTString() << "\n"; 5726 #endif 5727 llvm_unreachable(nullptr); 5728 } 5729 } 5730 } else { 5731 // All arguments are treated the same. 5732 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5733 } 5734 CCInfo.clearWasPPCF128(); 5735 5736 // Assign locations to all of the outgoing aggregate by value arguments. 5737 SmallVector<CCValAssign, 16> ByValArgLocs; 5738 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5739 5740 // Reserve stack space for the allocations in CCInfo. 5741 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5742 5743 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5744 5745 // Size of the linkage area, parameter list area and the part of the local 5746 // space variable where copies of aggregates which are passed by value are 5747 // stored. 5748 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5749 5750 // Calculate by how many bytes the stack has to be adjusted in case of tail 5751 // call optimization. 5752 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5753 5754 // Adjust the stack pointer for the new arguments... 5755 // These operations are automatically eliminated by the prolog/epilog pass 5756 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5757 SDValue CallSeqStart = Chain; 5758 5759 // Load the return address and frame pointer so it can be moved somewhere else 5760 // later. 5761 SDValue LROp, FPOp; 5762 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5763 5764 // Set up a copy of the stack pointer for use loading and storing any 5765 // arguments that may not fit in the registers available for argument 5766 // passing. 5767 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5768 5769 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5770 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5771 SmallVector<SDValue, 8> MemOpChains; 5772 5773 bool seenFloatArg = false; 5774 // Walk the register/memloc assignments, inserting copies/loads. 5775 // i - Tracks the index into the list of registers allocated for the call 5776 // RealArgIdx - Tracks the index into the list of actual function arguments 5777 // j - Tracks the index into the list of byval arguments 5778 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5779 i != e; 5780 ++i, ++RealArgIdx) { 5781 CCValAssign &VA = ArgLocs[i]; 5782 SDValue Arg = OutVals[RealArgIdx]; 5783 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5784 5785 if (Flags.isByVal()) { 5786 // Argument is an aggregate which is passed by value, thus we need to 5787 // create a copy of it in the local variable space of the current stack 5788 // frame (which is the stack frame of the caller) and pass the address of 5789 // this copy to the callee. 5790 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5791 CCValAssign &ByValVA = ByValArgLocs[j++]; 5792 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5793 5794 // Memory reserved in the local variable space of the callers stack frame. 5795 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5796 5797 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5798 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5799 StackPtr, PtrOff); 5800 5801 // Create a copy of the argument in the local area of the current 5802 // stack frame. 5803 SDValue MemcpyCall = 5804 CreateCopyOfByValArgument(Arg, PtrOff, 5805 CallSeqStart.getNode()->getOperand(0), 5806 Flags, DAG, dl); 5807 5808 // This must go outside the CALLSEQ_START..END. 5809 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5810 SDLoc(MemcpyCall)); 5811 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5812 NewCallSeqStart.getNode()); 5813 Chain = CallSeqStart = NewCallSeqStart; 5814 5815 // Pass the address of the aggregate copy on the stack either in a 5816 // physical register or in the parameter list area of the current stack 5817 // frame to the callee. 5818 Arg = PtrOff; 5819 } 5820 5821 // When useCRBits() is true, there can be i1 arguments. 5822 // It is because getRegisterType(MVT::i1) => MVT::i1, 5823 // and for other integer types getRegisterType() => MVT::i32. 5824 // Extend i1 and ensure callee will get i32. 5825 if (Arg.getValueType() == MVT::i1) 5826 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5827 dl, MVT::i32, Arg); 5828 5829 if (VA.isRegLoc()) { 5830 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5831 // Put argument in a physical register. 5832 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5833 bool IsLE = Subtarget.isLittleEndian(); 5834 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5835 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5836 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5837 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5838 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5839 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5840 SVal.getValue(0))); 5841 } else 5842 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5843 } else { 5844 // Put argument in the parameter list area of the current stack frame. 5845 assert(VA.isMemLoc()); 5846 unsigned LocMemOffset = VA.getLocMemOffset(); 5847 5848 if (!IsTailCall) { 5849 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5850 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5851 StackPtr, PtrOff); 5852 5853 MemOpChains.push_back( 5854 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5855 } else { 5856 // Calculate and remember argument location. 5857 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5858 TailCallArguments); 5859 } 5860 } 5861 } 5862 5863 if (!MemOpChains.empty()) 5864 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5865 5866 // Build a sequence of copy-to-reg nodes chained together with token chain 5867 // and flag operands which copy the outgoing args into the appropriate regs. 5868 SDValue InFlag; 5869 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5870 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5871 RegsToPass[i].second, InFlag); 5872 InFlag = Chain.getValue(1); 5873 } 5874 5875 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5876 // registers. 5877 if (IsVarArg) { 5878 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5879 SDValue Ops[] = { Chain, InFlag }; 5880 5881 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5882 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5883 5884 InFlag = Chain.getValue(1); 5885 } 5886 5887 if (IsTailCall) 5888 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5889 TailCallArguments); 5890 5891 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5892 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5893 } 5894 5895 // Copy an argument into memory, being careful to do this outside the 5896 // call sequence for the call to which the argument belongs. 5897 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5898 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5899 SelectionDAG &DAG, const SDLoc &dl) const { 5900 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5901 CallSeqStart.getNode()->getOperand(0), 5902 Flags, DAG, dl); 5903 // The MEMCPY must go outside the CALLSEQ_START..END. 5904 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5905 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5906 SDLoc(MemcpyCall)); 5907 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5908 NewCallSeqStart.getNode()); 5909 return NewCallSeqStart; 5910 } 5911 5912 SDValue PPCTargetLowering::LowerCall_64SVR4( 5913 SDValue Chain, SDValue Callee, CallFlags CFlags, 5914 const SmallVectorImpl<ISD::OutputArg> &Outs, 5915 const SmallVectorImpl<SDValue> &OutVals, 5916 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5917 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5918 const CallBase *CB) const { 5919 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5920 bool isLittleEndian = Subtarget.isLittleEndian(); 5921 unsigned NumOps = Outs.size(); 5922 bool IsSibCall = false; 5923 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5924 5925 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5926 unsigned PtrByteSize = 8; 5927 5928 MachineFunction &MF = DAG.getMachineFunction(); 5929 5930 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5931 IsSibCall = true; 5932 5933 // Mark this function as potentially containing a function that contains a 5934 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5935 // and restoring the callers stack pointer in this functions epilog. This is 5936 // done because by tail calling the called function might overwrite the value 5937 // in this function's (MF) stack pointer stack slot 0(SP). 5938 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5939 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5940 5941 assert(!(IsFastCall && CFlags.IsVarArg) && 5942 "fastcc not supported on varargs functions"); 5943 5944 // Count how many bytes are to be pushed on the stack, including the linkage 5945 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5946 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5947 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5948 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5949 unsigned NumBytes = LinkageSize; 5950 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5951 5952 static const MCPhysReg GPR[] = { 5953 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5954 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5955 }; 5956 static const MCPhysReg VR[] = { 5957 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5958 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5959 }; 5960 5961 const unsigned NumGPRs = array_lengthof(GPR); 5962 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5963 const unsigned NumVRs = array_lengthof(VR); 5964 5965 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5966 // can be passed to the callee in registers. 5967 // For the fast calling convention, there is another check below. 5968 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5969 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5970 if (!HasParameterArea) { 5971 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5972 unsigned AvailableFPRs = NumFPRs; 5973 unsigned AvailableVRs = NumVRs; 5974 unsigned NumBytesTmp = NumBytes; 5975 for (unsigned i = 0; i != NumOps; ++i) { 5976 if (Outs[i].Flags.isNest()) continue; 5977 if (CalculateStackSlotUsed(Subtarget, Outs[i].VT, Outs[i].ArgVT, 5978 Outs[i].Flags, PtrByteSize, LinkageSize, 5979 ParamAreaSize, NumBytesTmp, AvailableFPRs, 5980 AvailableVRs)) 5981 HasParameterArea = true; 5982 } 5983 } 5984 5985 // When using the fast calling convention, we don't provide backing for 5986 // arguments that will be in registers. 5987 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5988 5989 // Avoid allocating parameter area for fastcc functions if all the arguments 5990 // can be passed in the registers. 5991 if (IsFastCall) 5992 HasParameterArea = false; 5993 5994 // Add up all the space actually used. 5995 for (unsigned i = 0; i != NumOps; ++i) { 5996 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5997 EVT ArgVT = Outs[i].VT; 5998 EVT OrigVT = Outs[i].ArgVT; 5999 6000 if (Flags.isNest()) 6001 continue; 6002 6003 if (IsFastCall) { 6004 if (Flags.isByVal()) { 6005 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6006 if (NumGPRsUsed > NumGPRs) 6007 HasParameterArea = true; 6008 } else { 6009 switch (ArgVT.getSimpleVT().SimpleTy) { 6010 default: llvm_unreachable("Unexpected ValueType for argument!"); 6011 case MVT::i1: 6012 case MVT::i32: 6013 case MVT::i64: 6014 if (++NumGPRsUsed <= NumGPRs) 6015 continue; 6016 break; 6017 case MVT::v4i32: 6018 case MVT::v8i16: 6019 case MVT::v16i8: 6020 case MVT::v2f64: 6021 case MVT::v2i64: 6022 case MVT::v1i128: 6023 case MVT::f128: 6024 if (++NumVRsUsed <= NumVRs) 6025 continue; 6026 break; 6027 case MVT::v4f32: 6028 if (++NumVRsUsed <= NumVRs) 6029 continue; 6030 break; 6031 case MVT::f32: 6032 case MVT::f64: 6033 if (++NumFPRsUsed <= NumFPRs) 6034 continue; 6035 break; 6036 } 6037 HasParameterArea = true; 6038 } 6039 } 6040 6041 /* Respect alignment of argument on the stack. */ 6042 auto Alignement = 6043 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6044 NumBytes = alignTo(NumBytes, Alignement); 6045 6046 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6047 if (Flags.isInConsecutiveRegsLast()) 6048 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6049 } 6050 6051 unsigned NumBytesActuallyUsed = NumBytes; 6052 6053 // In the old ELFv1 ABI, 6054 // the prolog code of the callee may store up to 8 GPR argument registers to 6055 // the stack, allowing va_start to index over them in memory if its varargs. 6056 // Because we cannot tell if this is needed on the caller side, we have to 6057 // conservatively assume that it is needed. As such, make sure we have at 6058 // least enough stack space for the caller to store the 8 GPRs. 6059 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6060 // really requires memory operands, e.g. a vararg function. 6061 if (HasParameterArea) 6062 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6063 else 6064 NumBytes = LinkageSize; 6065 6066 // Tail call needs the stack to be aligned. 6067 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6068 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6069 6070 int SPDiff = 0; 6071 6072 // Calculate by how many bytes the stack has to be adjusted in case of tail 6073 // call optimization. 6074 if (!IsSibCall) 6075 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6076 6077 // To protect arguments on the stack from being clobbered in a tail call, 6078 // force all the loads to happen before doing any other lowering. 6079 if (CFlags.IsTailCall) 6080 Chain = DAG.getStackArgumentTokenFactor(Chain); 6081 6082 // Adjust the stack pointer for the new arguments... 6083 // These operations are automatically eliminated by the prolog/epilog pass 6084 if (!IsSibCall) 6085 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6086 SDValue CallSeqStart = Chain; 6087 6088 // Load the return address and frame pointer so it can be move somewhere else 6089 // later. 6090 SDValue LROp, FPOp; 6091 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6092 6093 // Set up a copy of the stack pointer for use loading and storing any 6094 // arguments that may not fit in the registers available for argument 6095 // passing. 6096 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6097 6098 // Figure out which arguments are going to go in registers, and which in 6099 // memory. Also, if this is a vararg function, floating point operations 6100 // must be stored to our stack, and loaded into integer regs as well, if 6101 // any integer regs are available for argument passing. 6102 unsigned ArgOffset = LinkageSize; 6103 6104 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6105 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6106 6107 SmallVector<SDValue, 8> MemOpChains; 6108 for (unsigned i = 0; i != NumOps; ++i) { 6109 SDValue Arg = OutVals[i]; 6110 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6111 EVT ArgVT = Outs[i].VT; 6112 EVT OrigVT = Outs[i].ArgVT; 6113 6114 // PtrOff will be used to store the current argument to the stack if a 6115 // register cannot be found for it. 6116 SDValue PtrOff; 6117 6118 // We re-align the argument offset for each argument, except when using the 6119 // fast calling convention, when we need to make sure we do that only when 6120 // we'll actually use a stack slot. 6121 auto ComputePtrOff = [&]() { 6122 /* Respect alignment of argument on the stack. */ 6123 auto Alignment = 6124 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6125 ArgOffset = alignTo(ArgOffset, Alignment); 6126 6127 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6128 6129 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6130 }; 6131 6132 if (!IsFastCall) { 6133 ComputePtrOff(); 6134 6135 /* Compute GPR index associated with argument offset. */ 6136 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6137 GPR_idx = std::min(GPR_idx, NumGPRs); 6138 } 6139 6140 // Promote integers to 64-bit values. 6141 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6142 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6143 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6144 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6145 } 6146 6147 // FIXME memcpy is used way more than necessary. Correctness first. 6148 // Note: "by value" is code for passing a structure by value, not 6149 // basic types. 6150 if (Flags.isByVal()) { 6151 // Note: Size includes alignment padding, so 6152 // struct x { short a; char b; } 6153 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6154 // These are the proper values we need for right-justifying the 6155 // aggregate in a parameter register. 6156 unsigned Size = Flags.getByValSize(); 6157 6158 // An empty aggregate parameter takes up no storage and no 6159 // registers. 6160 if (Size == 0) 6161 continue; 6162 6163 if (IsFastCall) 6164 ComputePtrOff(); 6165 6166 // All aggregates smaller than 8 bytes must be passed right-justified. 6167 if (Size==1 || Size==2 || Size==4) { 6168 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6169 if (GPR_idx != NumGPRs) { 6170 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6171 MachinePointerInfo(), VT); 6172 MemOpChains.push_back(Load.getValue(1)); 6173 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6174 6175 ArgOffset += PtrByteSize; 6176 continue; 6177 } 6178 } 6179 6180 if (GPR_idx == NumGPRs && Size < 8) { 6181 SDValue AddPtr = PtrOff; 6182 if (!isLittleEndian) { 6183 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6184 PtrOff.getValueType()); 6185 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6186 } 6187 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6188 CallSeqStart, 6189 Flags, DAG, dl); 6190 ArgOffset += PtrByteSize; 6191 continue; 6192 } 6193 // Copy entire object into memory. There are cases where gcc-generated 6194 // code assumes it is there, even if it could be put entirely into 6195 // registers. (This is not what the doc says.) 6196 6197 // FIXME: The above statement is likely due to a misunderstanding of the 6198 // documents. All arguments must be copied into the parameter area BY 6199 // THE CALLEE in the event that the callee takes the address of any 6200 // formal argument. That has not yet been implemented. However, it is 6201 // reasonable to use the stack area as a staging area for the register 6202 // load. 6203 6204 // Skip this for small aggregates, as we will use the same slot for a 6205 // right-justified copy, below. 6206 if (Size >= 8) 6207 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6208 CallSeqStart, 6209 Flags, DAG, dl); 6210 6211 // When a register is available, pass a small aggregate right-justified. 6212 if (Size < 8 && GPR_idx != NumGPRs) { 6213 // The easiest way to get this right-justified in a register 6214 // is to copy the structure into the rightmost portion of a 6215 // local variable slot, then load the whole slot into the 6216 // register. 6217 // FIXME: The memcpy seems to produce pretty awful code for 6218 // small aggregates, particularly for packed ones. 6219 // FIXME: It would be preferable to use the slot in the 6220 // parameter save area instead of a new local variable. 6221 SDValue AddPtr = PtrOff; 6222 if (!isLittleEndian) { 6223 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6224 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6225 } 6226 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6227 CallSeqStart, 6228 Flags, DAG, dl); 6229 6230 // Load the slot into the register. 6231 SDValue Load = 6232 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6233 MemOpChains.push_back(Load.getValue(1)); 6234 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6235 6236 // Done with this argument. 6237 ArgOffset += PtrByteSize; 6238 continue; 6239 } 6240 6241 // For aggregates larger than PtrByteSize, copy the pieces of the 6242 // object that fit into registers from the parameter save area. 6243 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6244 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6245 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6246 if (GPR_idx != NumGPRs) { 6247 SDValue Load = 6248 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6249 MemOpChains.push_back(Load.getValue(1)); 6250 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6251 ArgOffset += PtrByteSize; 6252 } else { 6253 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6254 break; 6255 } 6256 } 6257 continue; 6258 } 6259 6260 switch (Arg.getSimpleValueType().SimpleTy) { 6261 default: llvm_unreachable("Unexpected ValueType for argument!"); 6262 case MVT::i1: 6263 case MVT::i32: 6264 case MVT::i64: 6265 if (Flags.isNest()) { 6266 // The 'nest' parameter, if any, is passed in R11. 6267 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6268 break; 6269 } 6270 6271 // These can be scalar arguments or elements of an integer array type 6272 // passed directly. Clang may use those instead of "byval" aggregate 6273 // types to avoid forcing arguments to memory unnecessarily. 6274 if (GPR_idx != NumGPRs) { 6275 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6276 } else { 6277 if (IsFastCall) 6278 ComputePtrOff(); 6279 6280 assert(HasParameterArea && 6281 "Parameter area must exist to pass an argument in memory."); 6282 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6283 true, CFlags.IsTailCall, false, MemOpChains, 6284 TailCallArguments, dl); 6285 if (IsFastCall) 6286 ArgOffset += PtrByteSize; 6287 } 6288 if (!IsFastCall) 6289 ArgOffset += PtrByteSize; 6290 break; 6291 case MVT::f32: 6292 case MVT::f64: { 6293 // These can be scalar arguments or elements of a float array type 6294 // passed directly. The latter are used to implement ELFv2 homogenous 6295 // float aggregates. 6296 6297 // Named arguments go into FPRs first, and once they overflow, the 6298 // remaining arguments go into GPRs and then the parameter save area. 6299 // Unnamed arguments for vararg functions always go to GPRs and 6300 // then the parameter save area. For now, put all arguments to vararg 6301 // routines always in both locations (FPR *and* GPR or stack slot). 6302 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6303 bool NeededLoad = false; 6304 6305 // First load the argument into the next available FPR. 6306 if (FPR_idx != NumFPRs) 6307 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6308 6309 // Next, load the argument into GPR or stack slot if needed. 6310 if (!NeedGPROrStack) 6311 ; 6312 else if (GPR_idx != NumGPRs && !IsFastCall) { 6313 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6314 // once we support fp <-> gpr moves. 6315 6316 // In the non-vararg case, this can only ever happen in the 6317 // presence of f32 array types, since otherwise we never run 6318 // out of FPRs before running out of GPRs. 6319 SDValue ArgVal; 6320 6321 // Double values are always passed in a single GPR. 6322 if (Arg.getValueType() != MVT::f32) { 6323 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6324 6325 // Non-array float values are extended and passed in a GPR. 6326 } else if (!Flags.isInConsecutiveRegs()) { 6327 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6328 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6329 6330 // If we have an array of floats, we collect every odd element 6331 // together with its predecessor into one GPR. 6332 } else if (ArgOffset % PtrByteSize != 0) { 6333 SDValue Lo, Hi; 6334 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6335 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6336 if (!isLittleEndian) 6337 std::swap(Lo, Hi); 6338 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6339 6340 // The final element, if even, goes into the first half of a GPR. 6341 } else if (Flags.isInConsecutiveRegsLast()) { 6342 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6343 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6344 if (!isLittleEndian) 6345 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6346 DAG.getConstant(32, dl, MVT::i32)); 6347 6348 // Non-final even elements are skipped; they will be handled 6349 // together the with subsequent argument on the next go-around. 6350 } else 6351 ArgVal = SDValue(); 6352 6353 if (ArgVal.getNode()) 6354 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6355 } else { 6356 if (IsFastCall) 6357 ComputePtrOff(); 6358 6359 // Single-precision floating-point values are mapped to the 6360 // second (rightmost) word of the stack doubleword. 6361 if (Arg.getValueType() == MVT::f32 && 6362 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6363 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6364 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6365 } 6366 6367 assert(HasParameterArea && 6368 "Parameter area must exist to pass an argument in memory."); 6369 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6370 true, CFlags.IsTailCall, false, MemOpChains, 6371 TailCallArguments, dl); 6372 6373 NeededLoad = true; 6374 } 6375 // When passing an array of floats, the array occupies consecutive 6376 // space in the argument area; only round up to the next doubleword 6377 // at the end of the array. Otherwise, each float takes 8 bytes. 6378 if (!IsFastCall || NeededLoad) { 6379 ArgOffset += (Arg.getValueType() == MVT::f32 && 6380 Flags.isInConsecutiveRegs()) ? 4 : 8; 6381 if (Flags.isInConsecutiveRegsLast()) 6382 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6383 } 6384 break; 6385 } 6386 case MVT::v4f32: 6387 case MVT::v4i32: 6388 case MVT::v8i16: 6389 case MVT::v16i8: 6390 case MVT::v2f64: 6391 case MVT::v2i64: 6392 case MVT::v1i128: 6393 case MVT::f128: 6394 // These can be scalar arguments or elements of a vector array type 6395 // passed directly. The latter are used to implement ELFv2 homogenous 6396 // vector aggregates. 6397 6398 // For a varargs call, named arguments go into VRs or on the stack as 6399 // usual; unnamed arguments always go to the stack or the corresponding 6400 // GPRs when within range. For now, we always put the value in both 6401 // locations (or even all three). 6402 if (CFlags.IsVarArg) { 6403 assert(HasParameterArea && 6404 "Parameter area must exist if we have a varargs call."); 6405 // We could elide this store in the case where the object fits 6406 // entirely in R registers. Maybe later. 6407 SDValue Store = 6408 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6409 MemOpChains.push_back(Store); 6410 if (VR_idx != NumVRs) { 6411 SDValue Load = 6412 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6413 MemOpChains.push_back(Load.getValue(1)); 6414 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6415 } 6416 ArgOffset += 16; 6417 for (unsigned i=0; i<16; i+=PtrByteSize) { 6418 if (GPR_idx == NumGPRs) 6419 break; 6420 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6421 DAG.getConstant(i, dl, PtrVT)); 6422 SDValue Load = 6423 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6424 MemOpChains.push_back(Load.getValue(1)); 6425 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6426 } 6427 break; 6428 } 6429 6430 // Non-varargs Altivec params go into VRs or on the stack. 6431 if (VR_idx != NumVRs) { 6432 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6433 } else { 6434 if (IsFastCall) 6435 ComputePtrOff(); 6436 6437 assert(HasParameterArea && 6438 "Parameter area must exist to pass an argument in memory."); 6439 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6440 true, CFlags.IsTailCall, true, MemOpChains, 6441 TailCallArguments, dl); 6442 if (IsFastCall) 6443 ArgOffset += 16; 6444 } 6445 6446 if (!IsFastCall) 6447 ArgOffset += 16; 6448 break; 6449 } 6450 } 6451 6452 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6453 "mismatch in size of parameter area"); 6454 (void)NumBytesActuallyUsed; 6455 6456 if (!MemOpChains.empty()) 6457 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6458 6459 // Check if this is an indirect call (MTCTR/BCTRL). 6460 // See prepareDescriptorIndirectCall and buildCallOperands for more 6461 // information about calls through function pointers in the 64-bit SVR4 ABI. 6462 if (CFlags.IsIndirect) { 6463 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6464 // caller in the TOC save area. 6465 if (isTOCSaveRestoreRequired(Subtarget)) { 6466 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6467 // Load r2 into a virtual register and store it to the TOC save area. 6468 setUsesTOCBasePtr(DAG); 6469 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6470 // TOC save area offset. 6471 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6472 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6473 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6474 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6475 MachinePointerInfo::getStack( 6476 DAG.getMachineFunction(), TOCSaveOffset)); 6477 } 6478 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6479 // This does not mean the MTCTR instruction must use R12; it's easier 6480 // to model this as an extra parameter, so do that. 6481 if (isELFv2ABI && !CFlags.IsPatchPoint) 6482 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6483 } 6484 6485 // Build a sequence of copy-to-reg nodes chained together with token chain 6486 // and flag operands which copy the outgoing args into the appropriate regs. 6487 SDValue InFlag; 6488 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6489 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6490 RegsToPass[i].second, InFlag); 6491 InFlag = Chain.getValue(1); 6492 } 6493 6494 if (CFlags.IsTailCall && !IsSibCall) 6495 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6496 TailCallArguments); 6497 6498 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6499 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6500 } 6501 6502 // Returns true when the shadow of a general purpose argument register 6503 // in the parameter save area is aligned to at least 'RequiredAlign'. 6504 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6505 assert(RequiredAlign.value() <= 16 && 6506 "Required alignment greater than stack alignment."); 6507 switch (Reg) { 6508 default: 6509 report_fatal_error("called on invalid register."); 6510 case PPC::R5: 6511 case PPC::R9: 6512 case PPC::X3: 6513 case PPC::X5: 6514 case PPC::X7: 6515 case PPC::X9: 6516 // These registers are 16 byte aligned which is the most strict aligment 6517 // we can support. 6518 return true; 6519 case PPC::R3: 6520 case PPC::R7: 6521 case PPC::X4: 6522 case PPC::X6: 6523 case PPC::X8: 6524 case PPC::X10: 6525 // The shadow of these registers in the PSA is 8 byte aligned. 6526 return RequiredAlign <= 8; 6527 case PPC::R4: 6528 case PPC::R6: 6529 case PPC::R8: 6530 case PPC::R10: 6531 return RequiredAlign <= 4; 6532 } 6533 } 6534 6535 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6536 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6537 CCState &S) { 6538 AIXCCState &State = static_cast<AIXCCState &>(S); 6539 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6540 State.getMachineFunction().getSubtarget()); 6541 const bool IsPPC64 = Subtarget.isPPC64(); 6542 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6543 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6544 6545 if (ValVT == MVT::f128) 6546 report_fatal_error("f128 is unimplemented on AIX."); 6547 6548 if (ArgFlags.isNest()) 6549 report_fatal_error("Nest arguments are unimplemented."); 6550 6551 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6552 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6553 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6554 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6555 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6556 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6557 6558 static const MCPhysReg VR[] = {// Vector registers. 6559 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6560 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6561 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6562 6563 if (ArgFlags.isByVal()) { 6564 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6565 report_fatal_error("Pass-by-value arguments with alignment greater than " 6566 "register width are not supported."); 6567 6568 const unsigned ByValSize = ArgFlags.getByValSize(); 6569 6570 // An empty aggregate parameter takes up no storage and no registers, 6571 // but needs a MemLoc for a stack slot for the formal arguments side. 6572 if (ByValSize == 0) { 6573 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6574 State.getNextStackOffset(), RegVT, 6575 LocInfo)); 6576 return false; 6577 } 6578 6579 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6580 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6581 for (const unsigned E = Offset + StackSize; Offset < E; 6582 Offset += PtrAlign.value()) { 6583 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6584 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6585 else { 6586 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6587 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6588 LocInfo)); 6589 break; 6590 } 6591 } 6592 return false; 6593 } 6594 6595 // Arguments always reserve parameter save area. 6596 switch (ValVT.SimpleTy) { 6597 default: 6598 report_fatal_error("Unhandled value type for argument."); 6599 case MVT::i64: 6600 // i64 arguments should have been split to i32 for PPC32. 6601 assert(IsPPC64 && "PPC32 should have split i64 values."); 6602 LLVM_FALLTHROUGH; 6603 case MVT::i1: 6604 case MVT::i32: { 6605 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6606 // AIX integer arguments are always passed in register width. 6607 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6608 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6609 : CCValAssign::LocInfo::ZExt; 6610 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6611 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6612 else 6613 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6614 6615 return false; 6616 } 6617 case MVT::f32: 6618 case MVT::f64: { 6619 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6620 const unsigned StoreSize = LocVT.getStoreSize(); 6621 // Floats are always 4-byte aligned in the PSA on AIX. 6622 // This includes f64 in 64-bit mode for ABI compatibility. 6623 const unsigned Offset = 6624 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6625 unsigned FReg = State.AllocateReg(FPR); 6626 if (FReg) 6627 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6628 6629 // Reserve and initialize GPRs or initialize the PSA as required. 6630 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6631 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6632 assert(FReg && "An FPR should be available when a GPR is reserved."); 6633 if (State.isVarArg()) { 6634 // Successfully reserved GPRs are only initialized for vararg calls. 6635 // Custom handling is required for: 6636 // f64 in PPC32 needs to be split into 2 GPRs. 6637 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6638 State.addLoc( 6639 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6640 } 6641 } else { 6642 // If there are insufficient GPRs, the PSA needs to be initialized. 6643 // Initialization occurs even if an FPR was initialized for 6644 // compatibility with the AIX XL compiler. The full memory for the 6645 // argument will be initialized even if a prior word is saved in GPR. 6646 // A custom memLoc is used when the argument also passes in FPR so 6647 // that the callee handling can skip over it easily. 6648 State.addLoc( 6649 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6650 LocInfo) 6651 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6652 break; 6653 } 6654 } 6655 6656 return false; 6657 } 6658 case MVT::v4f32: 6659 case MVT::v4i32: 6660 case MVT::v8i16: 6661 case MVT::v16i8: 6662 case MVT::v2i64: 6663 case MVT::v2f64: 6664 case MVT::v1i128: { 6665 const unsigned VecSize = 16; 6666 const Align VecAlign(VecSize); 6667 6668 if (!State.isVarArg()) { 6669 // If there are vector registers remaining we don't consume any stack 6670 // space. 6671 if (unsigned VReg = State.AllocateReg(VR)) { 6672 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6673 return false; 6674 } 6675 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6676 // might be allocated in the portion of the PSA that is shadowed by the 6677 // GPRs. 6678 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6679 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6680 return false; 6681 } 6682 6683 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6684 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6685 6686 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6687 // Burn any underaligned registers and their shadowed stack space until 6688 // we reach the required alignment. 6689 while (NextRegIndex != GPRs.size() && 6690 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6691 // Shadow allocate register and its stack shadow. 6692 unsigned Reg = State.AllocateReg(GPRs); 6693 State.AllocateStack(PtrSize, PtrAlign); 6694 assert(Reg && "Allocating register unexpectedly failed."); 6695 (void)Reg; 6696 NextRegIndex = State.getFirstUnallocated(GPRs); 6697 } 6698 6699 // Vectors that are passed as fixed arguments are handled differently. 6700 // They are passed in VRs if any are available (unlike arguments passed 6701 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6702 // functions) 6703 if (State.isFixed(ValNo)) { 6704 if (unsigned VReg = State.AllocateReg(VR)) { 6705 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6706 // Shadow allocate GPRs and stack space even though we pass in a VR. 6707 for (unsigned I = 0; I != VecSize; I += PtrSize) 6708 State.AllocateReg(GPRs); 6709 State.AllocateStack(VecSize, VecAlign); 6710 return false; 6711 } 6712 // No vector registers remain so pass on the stack. 6713 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6714 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6715 return false; 6716 } 6717 6718 // If all GPRS are consumed then we pass the argument fully on the stack. 6719 if (NextRegIndex == GPRs.size()) { 6720 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6721 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6722 return false; 6723 } 6724 6725 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6726 // half of the argument, and then need to pass the remaining half on the 6727 // stack. 6728 if (GPRs[NextRegIndex] == PPC::R9) { 6729 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6730 State.addLoc( 6731 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6732 6733 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6734 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6735 assert(FirstReg && SecondReg && 6736 "Allocating R9 or R10 unexpectedly failed."); 6737 State.addLoc( 6738 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6739 State.addLoc( 6740 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6741 return false; 6742 } 6743 6744 // We have enough GPRs to fully pass the vector argument, and we have 6745 // already consumed any underaligned registers. Start with the custom 6746 // MemLoc and then the custom RegLocs. 6747 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6748 State.addLoc( 6749 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6750 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6751 const unsigned Reg = State.AllocateReg(GPRs); 6752 assert(Reg && "Failed to allocated register for vararg vector argument"); 6753 State.addLoc( 6754 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6755 } 6756 return false; 6757 } 6758 } 6759 return true; 6760 } 6761 6762 // So far, this function is only used by LowerFormalArguments_AIX() 6763 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6764 bool IsPPC64, 6765 bool HasP8Vector, 6766 bool HasVSX) { 6767 assert((IsPPC64 || SVT != MVT::i64) && 6768 "i64 should have been split for 32-bit codegen."); 6769 6770 switch (SVT) { 6771 default: 6772 report_fatal_error("Unexpected value type for formal argument"); 6773 case MVT::i1: 6774 case MVT::i32: 6775 case MVT::i64: 6776 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6777 case MVT::f32: 6778 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6779 case MVT::f64: 6780 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6781 case MVT::v4f32: 6782 case MVT::v4i32: 6783 case MVT::v8i16: 6784 case MVT::v16i8: 6785 case MVT::v2i64: 6786 case MVT::v2f64: 6787 case MVT::v1i128: 6788 return &PPC::VRRCRegClass; 6789 } 6790 } 6791 6792 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6793 SelectionDAG &DAG, SDValue ArgValue, 6794 MVT LocVT, const SDLoc &dl) { 6795 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6796 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6797 6798 if (Flags.isSExt()) 6799 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6800 DAG.getValueType(ValVT)); 6801 else if (Flags.isZExt()) 6802 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6803 DAG.getValueType(ValVT)); 6804 6805 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6806 } 6807 6808 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6809 const unsigned LASize = FL->getLinkageSize(); 6810 6811 if (PPC::GPRCRegClass.contains(Reg)) { 6812 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6813 "Reg must be a valid argument register!"); 6814 return LASize + 4 * (Reg - PPC::R3); 6815 } 6816 6817 if (PPC::G8RCRegClass.contains(Reg)) { 6818 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6819 "Reg must be a valid argument register!"); 6820 return LASize + 8 * (Reg - PPC::X3); 6821 } 6822 6823 llvm_unreachable("Only general purpose registers expected."); 6824 } 6825 6826 // AIX ABI Stack Frame Layout: 6827 // 6828 // Low Memory +--------------------------------------------+ 6829 // SP +---> | Back chain | ---+ 6830 // | +--------------------------------------------+ | 6831 // | | Saved Condition Register | | 6832 // | +--------------------------------------------+ | 6833 // | | Saved Linkage Register | | 6834 // | +--------------------------------------------+ | Linkage Area 6835 // | | Reserved for compilers | | 6836 // | +--------------------------------------------+ | 6837 // | | Reserved for binders | | 6838 // | +--------------------------------------------+ | 6839 // | | Saved TOC pointer | ---+ 6840 // | +--------------------------------------------+ 6841 // | | Parameter save area | 6842 // | +--------------------------------------------+ 6843 // | | Alloca space | 6844 // | +--------------------------------------------+ 6845 // | | Local variable space | 6846 // | +--------------------------------------------+ 6847 // | | Float/int conversion temporary | 6848 // | +--------------------------------------------+ 6849 // | | Save area for AltiVec registers | 6850 // | +--------------------------------------------+ 6851 // | | AltiVec alignment padding | 6852 // | +--------------------------------------------+ 6853 // | | Save area for VRSAVE register | 6854 // | +--------------------------------------------+ 6855 // | | Save area for General Purpose registers | 6856 // | +--------------------------------------------+ 6857 // | | Save area for Floating Point registers | 6858 // | +--------------------------------------------+ 6859 // +---- | Back chain | 6860 // High Memory +--------------------------------------------+ 6861 // 6862 // Specifications: 6863 // AIX 7.2 Assembler Language Reference 6864 // Subroutine linkage convention 6865 6866 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6867 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6868 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6869 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6870 6871 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6872 CallConv == CallingConv::Fast) && 6873 "Unexpected calling convention!"); 6874 6875 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6876 report_fatal_error("Tail call support is unimplemented on AIX."); 6877 6878 if (useSoftFloat()) 6879 report_fatal_error("Soft float support is unimplemented on AIX."); 6880 6881 const PPCSubtarget &Subtarget = 6882 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6883 6884 const bool IsPPC64 = Subtarget.isPPC64(); 6885 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6886 6887 // Assign locations to all of the incoming arguments. 6888 SmallVector<CCValAssign, 16> ArgLocs; 6889 MachineFunction &MF = DAG.getMachineFunction(); 6890 MachineFrameInfo &MFI = MF.getFrameInfo(); 6891 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6892 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6893 6894 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6895 // Reserve space for the linkage area on the stack. 6896 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6897 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6898 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6899 6900 SmallVector<SDValue, 8> MemOps; 6901 6902 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6903 CCValAssign &VA = ArgLocs[I++]; 6904 MVT LocVT = VA.getLocVT(); 6905 MVT ValVT = VA.getValVT(); 6906 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6907 // For compatibility with the AIX XL compiler, the float args in the 6908 // parameter save area are initialized even if the argument is available 6909 // in register. The caller is required to initialize both the register 6910 // and memory, however, the callee can choose to expect it in either. 6911 // The memloc is dismissed here because the argument is retrieved from 6912 // the register. 6913 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6914 continue; 6915 6916 auto HandleMemLoc = [&]() { 6917 const unsigned LocSize = LocVT.getStoreSize(); 6918 const unsigned ValSize = ValVT.getStoreSize(); 6919 assert((ValSize <= LocSize) && 6920 "Object size is larger than size of MemLoc"); 6921 int CurArgOffset = VA.getLocMemOffset(); 6922 // Objects are right-justified because AIX is big-endian. 6923 if (LocSize > ValSize) 6924 CurArgOffset += LocSize - ValSize; 6925 // Potential tail calls could cause overwriting of argument stack slots. 6926 const bool IsImmutable = 6927 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6928 (CallConv == CallingConv::Fast)); 6929 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6930 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6931 SDValue ArgValue = 6932 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6933 InVals.push_back(ArgValue); 6934 }; 6935 6936 // Vector arguments to VaArg functions are passed both on the stack, and 6937 // in any available GPRs. Load the value from the stack and add the GPRs 6938 // as live ins. 6939 if (VA.isMemLoc() && VA.needsCustom()) { 6940 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6941 assert(isVarArg && "Only use custom memloc for vararg."); 6942 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6943 // matching custom RegLocs. 6944 const unsigned OriginalValNo = VA.getValNo(); 6945 (void)OriginalValNo; 6946 6947 auto HandleCustomVecRegLoc = [&]() { 6948 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6949 "Missing custom RegLoc."); 6950 VA = ArgLocs[I++]; 6951 assert(VA.getValVT().isVector() && 6952 "Unexpected Val type for custom RegLoc."); 6953 assert(VA.getValNo() == OriginalValNo && 6954 "ValNo mismatch between custom MemLoc and RegLoc."); 6955 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6956 MF.addLiveIn(VA.getLocReg(), 6957 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 6958 Subtarget.hasVSX())); 6959 }; 6960 6961 HandleMemLoc(); 6962 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 6963 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 6964 // R10. 6965 HandleCustomVecRegLoc(); 6966 HandleCustomVecRegLoc(); 6967 6968 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 6969 // we passed the vector in R5, R6, R7 and R8. 6970 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 6971 assert(!IsPPC64 && 6972 "Only 2 custom RegLocs expected for 64-bit codegen."); 6973 HandleCustomVecRegLoc(); 6974 HandleCustomVecRegLoc(); 6975 } 6976 6977 continue; 6978 } 6979 6980 if (VA.isRegLoc()) { 6981 if (VA.getValVT().isScalarInteger()) 6982 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6983 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 6984 switch (VA.getValVT().SimpleTy) { 6985 default: 6986 report_fatal_error("Unhandled value type for argument."); 6987 case MVT::f32: 6988 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 6989 break; 6990 case MVT::f64: 6991 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 6992 break; 6993 } 6994 } else if (VA.getValVT().isVector()) { 6995 switch (VA.getValVT().SimpleTy) { 6996 default: 6997 report_fatal_error("Unhandled value type for argument."); 6998 case MVT::v16i8: 6999 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 7000 break; 7001 case MVT::v8i16: 7002 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 7003 break; 7004 case MVT::v4i32: 7005 case MVT::v2i64: 7006 case MVT::v1i128: 7007 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 7008 break; 7009 case MVT::v4f32: 7010 case MVT::v2f64: 7011 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 7012 break; 7013 } 7014 } 7015 } 7016 7017 if (Flags.isByVal() && VA.isMemLoc()) { 7018 const unsigned Size = 7019 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7020 PtrByteSize); 7021 const int FI = MF.getFrameInfo().CreateFixedObject( 7022 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7023 /* IsAliased */ true); 7024 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7025 InVals.push_back(FIN); 7026 7027 continue; 7028 } 7029 7030 if (Flags.isByVal()) { 7031 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7032 7033 const MCPhysReg ArgReg = VA.getLocReg(); 7034 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7035 7036 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7037 report_fatal_error("Over aligned byvals not supported yet."); 7038 7039 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7040 const int FI = MF.getFrameInfo().CreateFixedObject( 7041 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7042 /* IsAliased */ true); 7043 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7044 InVals.push_back(FIN); 7045 7046 // Add live ins for all the RegLocs for the same ByVal. 7047 const TargetRegisterClass *RegClass = 7048 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7049 7050 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7051 unsigned Offset) { 7052 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7053 // Since the callers side has left justified the aggregate in the 7054 // register, we can simply store the entire register into the stack 7055 // slot. 7056 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7057 // The store to the fixedstack object is needed becuase accessing a 7058 // field of the ByVal will use a gep and load. Ideally we will optimize 7059 // to extracting the value from the register directly, and elide the 7060 // stores when the arguments address is not taken, but that will need to 7061 // be future work. 7062 SDValue Store = DAG.getStore( 7063 CopyFrom.getValue(1), dl, CopyFrom, 7064 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7065 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7066 7067 MemOps.push_back(Store); 7068 }; 7069 7070 unsigned Offset = 0; 7071 HandleRegLoc(VA.getLocReg(), Offset); 7072 Offset += PtrByteSize; 7073 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7074 Offset += PtrByteSize) { 7075 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7076 "RegLocs should be for ByVal argument."); 7077 7078 const CCValAssign RL = ArgLocs[I++]; 7079 HandleRegLoc(RL.getLocReg(), Offset); 7080 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7081 } 7082 7083 if (Offset != StackSize) { 7084 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7085 "Expected MemLoc for remaining bytes."); 7086 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7087 // Consume the MemLoc.The InVal has already been emitted, so nothing 7088 // more needs to be done. 7089 ++I; 7090 } 7091 7092 continue; 7093 } 7094 7095 if (VA.isRegLoc() && !VA.needsCustom()) { 7096 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7097 Register VReg = 7098 MF.addLiveIn(VA.getLocReg(), 7099 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7100 Subtarget.hasVSX())); 7101 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7102 if (ValVT.isScalarInteger() && 7103 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7104 ArgValue = 7105 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7106 } 7107 InVals.push_back(ArgValue); 7108 continue; 7109 } 7110 if (VA.isMemLoc()) { 7111 HandleMemLoc(); 7112 continue; 7113 } 7114 } 7115 7116 // On AIX a minimum of 8 words is saved to the parameter save area. 7117 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7118 // Area that is at least reserved in the caller of this function. 7119 unsigned CallerReservedArea = 7120 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7121 7122 // Set the size that is at least reserved in caller of this function. Tail 7123 // call optimized function's reserved stack space needs to be aligned so 7124 // that taking the difference between two stack areas will result in an 7125 // aligned stack. 7126 CallerReservedArea = 7127 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7128 FuncInfo->setMinReservedArea(CallerReservedArea); 7129 7130 if (isVarArg) { 7131 FuncInfo->setVarArgsFrameIndex( 7132 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7133 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7134 7135 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7136 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7137 7138 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7139 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7140 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7141 7142 // The fixed integer arguments of a variadic function are stored to the 7143 // VarArgsFrameIndex on the stack so that they may be loaded by 7144 // dereferencing the result of va_next. 7145 for (unsigned GPRIndex = 7146 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7147 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7148 7149 const unsigned VReg = 7150 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7151 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7152 7153 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7154 SDValue Store = 7155 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7156 MemOps.push_back(Store); 7157 // Increment the address for the next argument to store. 7158 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7159 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7160 } 7161 } 7162 7163 if (!MemOps.empty()) 7164 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7165 7166 return Chain; 7167 } 7168 7169 SDValue PPCTargetLowering::LowerCall_AIX( 7170 SDValue Chain, SDValue Callee, CallFlags CFlags, 7171 const SmallVectorImpl<ISD::OutputArg> &Outs, 7172 const SmallVectorImpl<SDValue> &OutVals, 7173 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7174 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7175 const CallBase *CB) const { 7176 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7177 // AIX ABI stack frame layout. 7178 7179 assert((CFlags.CallConv == CallingConv::C || 7180 CFlags.CallConv == CallingConv::Cold || 7181 CFlags.CallConv == CallingConv::Fast) && 7182 "Unexpected calling convention!"); 7183 7184 if (CFlags.IsPatchPoint) 7185 report_fatal_error("This call type is unimplemented on AIX."); 7186 7187 const PPCSubtarget& Subtarget = 7188 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7189 7190 MachineFunction &MF = DAG.getMachineFunction(); 7191 SmallVector<CCValAssign, 16> ArgLocs; 7192 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7193 *DAG.getContext()); 7194 7195 // Reserve space for the linkage save area (LSA) on the stack. 7196 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7197 // [SP][CR][LR][2 x reserved][TOC]. 7198 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7199 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7200 const bool IsPPC64 = Subtarget.isPPC64(); 7201 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7202 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7203 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7204 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7205 7206 // The prolog code of the callee may store up to 8 GPR argument registers to 7207 // the stack, allowing va_start to index over them in memory if the callee 7208 // is variadic. 7209 // Because we cannot tell if this is needed on the caller side, we have to 7210 // conservatively assume that it is needed. As such, make sure we have at 7211 // least enough stack space for the caller to store the 8 GPRs. 7212 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7213 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7214 CCInfo.getNextStackOffset()); 7215 7216 // Adjust the stack pointer for the new arguments... 7217 // These operations are automatically eliminated by the prolog/epilog pass. 7218 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7219 SDValue CallSeqStart = Chain; 7220 7221 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7222 SmallVector<SDValue, 8> MemOpChains; 7223 7224 // Set up a copy of the stack pointer for loading and storing any 7225 // arguments that may not fit in the registers available for argument 7226 // passing. 7227 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7228 : DAG.getRegister(PPC::R1, MVT::i32); 7229 7230 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7231 const unsigned ValNo = ArgLocs[I].getValNo(); 7232 SDValue Arg = OutVals[ValNo]; 7233 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7234 7235 if (Flags.isByVal()) { 7236 const unsigned ByValSize = Flags.getByValSize(); 7237 7238 // Nothing to do for zero-sized ByVals on the caller side. 7239 if (!ByValSize) { 7240 ++I; 7241 continue; 7242 } 7243 7244 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7245 return DAG.getExtLoad( 7246 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7247 (LoadOffset != 0) 7248 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7249 : Arg, 7250 MachinePointerInfo(), VT); 7251 }; 7252 7253 unsigned LoadOffset = 0; 7254 7255 // Initialize registers, which are fully occupied by the by-val argument. 7256 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7257 SDValue Load = GetLoad(PtrVT, LoadOffset); 7258 MemOpChains.push_back(Load.getValue(1)); 7259 LoadOffset += PtrByteSize; 7260 const CCValAssign &ByValVA = ArgLocs[I++]; 7261 assert(ByValVA.getValNo() == ValNo && 7262 "Unexpected location for pass-by-value argument."); 7263 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7264 } 7265 7266 if (LoadOffset == ByValSize) 7267 continue; 7268 7269 // There must be one more loc to handle the remainder. 7270 assert(ArgLocs[I].getValNo() == ValNo && 7271 "Expected additional location for by-value argument."); 7272 7273 if (ArgLocs[I].isMemLoc()) { 7274 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7275 const CCValAssign &ByValVA = ArgLocs[I++]; 7276 ISD::ArgFlagsTy MemcpyFlags = Flags; 7277 // Only memcpy the bytes that don't pass in register. 7278 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7279 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7280 (LoadOffset != 0) 7281 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7282 : Arg, 7283 DAG.getObjectPtrOffset(dl, StackPtr, 7284 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7285 CallSeqStart, MemcpyFlags, DAG, dl); 7286 continue; 7287 } 7288 7289 // Initialize the final register residue. 7290 // Any residue that occupies the final by-val arg register must be 7291 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7292 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7293 // 2 and 1 byte loads. 7294 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7295 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7296 "Unexpected register residue for by-value argument."); 7297 SDValue ResidueVal; 7298 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7299 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7300 const MVT VT = 7301 N == 1 ? MVT::i8 7302 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7303 SDValue Load = GetLoad(VT, LoadOffset); 7304 MemOpChains.push_back(Load.getValue(1)); 7305 LoadOffset += N; 7306 Bytes += N; 7307 7308 // By-val arguments are passed left-justfied in register. 7309 // Every load here needs to be shifted, otherwise a full register load 7310 // should have been used. 7311 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7312 "Unexpected load emitted during handling of pass-by-value " 7313 "argument."); 7314 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7315 EVT ShiftAmountTy = 7316 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7317 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7318 SDValue ShiftedLoad = 7319 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7320 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7321 ShiftedLoad) 7322 : ShiftedLoad; 7323 } 7324 7325 const CCValAssign &ByValVA = ArgLocs[I++]; 7326 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7327 continue; 7328 } 7329 7330 CCValAssign &VA = ArgLocs[I++]; 7331 const MVT LocVT = VA.getLocVT(); 7332 const MVT ValVT = VA.getValVT(); 7333 7334 switch (VA.getLocInfo()) { 7335 default: 7336 report_fatal_error("Unexpected argument extension type."); 7337 case CCValAssign::Full: 7338 break; 7339 case CCValAssign::ZExt: 7340 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7341 break; 7342 case CCValAssign::SExt: 7343 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7344 break; 7345 } 7346 7347 if (VA.isRegLoc() && !VA.needsCustom()) { 7348 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7349 continue; 7350 } 7351 7352 // Vector arguments passed to VarArg functions need custom handling when 7353 // they are passed (at least partially) in GPRs. 7354 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7355 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7356 // Store value to its stack slot. 7357 SDValue PtrOff = 7358 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7359 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7360 SDValue Store = 7361 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7362 MemOpChains.push_back(Store); 7363 const unsigned OriginalValNo = VA.getValNo(); 7364 // Then load the GPRs from the stack 7365 unsigned LoadOffset = 0; 7366 auto HandleCustomVecRegLoc = [&]() { 7367 assert(I != E && "Unexpected end of CCvalAssigns."); 7368 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7369 "Expected custom RegLoc."); 7370 CCValAssign RegVA = ArgLocs[I++]; 7371 assert(RegVA.getValNo() == OriginalValNo && 7372 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7373 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7374 DAG.getConstant(LoadOffset, dl, PtrVT)); 7375 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7376 MemOpChains.push_back(Load.getValue(1)); 7377 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7378 LoadOffset += PtrByteSize; 7379 }; 7380 7381 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7382 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7383 // R10. 7384 HandleCustomVecRegLoc(); 7385 HandleCustomVecRegLoc(); 7386 7387 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7388 ArgLocs[I].getValNo() == OriginalValNo) { 7389 assert(!IsPPC64 && 7390 "Only 2 custom RegLocs expected for 64-bit codegen."); 7391 HandleCustomVecRegLoc(); 7392 HandleCustomVecRegLoc(); 7393 } 7394 7395 continue; 7396 } 7397 7398 if (VA.isMemLoc()) { 7399 SDValue PtrOff = 7400 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7401 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7402 MemOpChains.push_back( 7403 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7404 7405 continue; 7406 } 7407 7408 if (!ValVT.isFloatingPoint()) 7409 report_fatal_error( 7410 "Unexpected register handling for calling convention."); 7411 7412 // Custom handling is used for GPR initializations for vararg float 7413 // arguments. 7414 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7415 LocVT.isInteger() && 7416 "Custom register handling only expected for VarArg."); 7417 7418 SDValue ArgAsInt = 7419 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7420 7421 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7422 // f32 in 32-bit GPR 7423 // f64 in 64-bit GPR 7424 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7425 else if (Arg.getValueType().getFixedSizeInBits() < 7426 LocVT.getFixedSizeInBits()) 7427 // f32 in 64-bit GPR. 7428 RegsToPass.push_back(std::make_pair( 7429 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7430 else { 7431 // f64 in two 32-bit GPRs 7432 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7433 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7434 "Unexpected custom register for argument!"); 7435 CCValAssign &GPR1 = VA; 7436 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7437 DAG.getConstant(32, dl, MVT::i8)); 7438 RegsToPass.push_back(std::make_pair( 7439 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7440 7441 if (I != E) { 7442 // If only 1 GPR was available, there will only be one custom GPR and 7443 // the argument will also pass in memory. 7444 CCValAssign &PeekArg = ArgLocs[I]; 7445 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7446 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7447 CCValAssign &GPR2 = ArgLocs[I++]; 7448 RegsToPass.push_back(std::make_pair( 7449 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7450 } 7451 } 7452 } 7453 } 7454 7455 if (!MemOpChains.empty()) 7456 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7457 7458 // For indirect calls, we need to save the TOC base to the stack for 7459 // restoration after the call. 7460 if (CFlags.IsIndirect) { 7461 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7462 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7463 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7464 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7465 const unsigned TOCSaveOffset = 7466 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7467 7468 setUsesTOCBasePtr(DAG); 7469 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7470 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7471 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7472 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7473 Chain = DAG.getStore( 7474 Val.getValue(1), dl, Val, AddPtr, 7475 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7476 } 7477 7478 // Build a sequence of copy-to-reg nodes chained together with token chain 7479 // and flag operands which copy the outgoing args into the appropriate regs. 7480 SDValue InFlag; 7481 for (auto Reg : RegsToPass) { 7482 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7483 InFlag = Chain.getValue(1); 7484 } 7485 7486 const int SPDiff = 0; 7487 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7488 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7489 } 7490 7491 bool 7492 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7493 MachineFunction &MF, bool isVarArg, 7494 const SmallVectorImpl<ISD::OutputArg> &Outs, 7495 LLVMContext &Context) const { 7496 SmallVector<CCValAssign, 16> RVLocs; 7497 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7498 return CCInfo.CheckReturn( 7499 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7500 ? RetCC_PPC_Cold 7501 : RetCC_PPC); 7502 } 7503 7504 SDValue 7505 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7506 bool isVarArg, 7507 const SmallVectorImpl<ISD::OutputArg> &Outs, 7508 const SmallVectorImpl<SDValue> &OutVals, 7509 const SDLoc &dl, SelectionDAG &DAG) const { 7510 SmallVector<CCValAssign, 16> RVLocs; 7511 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7512 *DAG.getContext()); 7513 CCInfo.AnalyzeReturn(Outs, 7514 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7515 ? RetCC_PPC_Cold 7516 : RetCC_PPC); 7517 7518 SDValue Flag; 7519 SmallVector<SDValue, 4> RetOps(1, Chain); 7520 7521 // Copy the result values into the output registers. 7522 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7523 CCValAssign &VA = RVLocs[i]; 7524 assert(VA.isRegLoc() && "Can only return in registers!"); 7525 7526 SDValue Arg = OutVals[RealResIdx]; 7527 7528 switch (VA.getLocInfo()) { 7529 default: llvm_unreachable("Unknown loc info!"); 7530 case CCValAssign::Full: break; 7531 case CCValAssign::AExt: 7532 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7533 break; 7534 case CCValAssign::ZExt: 7535 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7536 break; 7537 case CCValAssign::SExt: 7538 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7539 break; 7540 } 7541 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7542 bool isLittleEndian = Subtarget.isLittleEndian(); 7543 // Legalize ret f64 -> ret 2 x i32. 7544 SDValue SVal = 7545 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7546 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7547 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7548 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7549 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7550 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7551 Flag = Chain.getValue(1); 7552 VA = RVLocs[++i]; // skip ahead to next loc 7553 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7554 } else 7555 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7556 Flag = Chain.getValue(1); 7557 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7558 } 7559 7560 RetOps[0] = Chain; // Update chain. 7561 7562 // Add the flag if we have it. 7563 if (Flag.getNode()) 7564 RetOps.push_back(Flag); 7565 7566 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7567 } 7568 7569 SDValue 7570 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7571 SelectionDAG &DAG) const { 7572 SDLoc dl(Op); 7573 7574 // Get the correct type for integers. 7575 EVT IntVT = Op.getValueType(); 7576 7577 // Get the inputs. 7578 SDValue Chain = Op.getOperand(0); 7579 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7580 // Build a DYNAREAOFFSET node. 7581 SDValue Ops[2] = {Chain, FPSIdx}; 7582 SDVTList VTs = DAG.getVTList(IntVT); 7583 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7584 } 7585 7586 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7587 SelectionDAG &DAG) const { 7588 // When we pop the dynamic allocation we need to restore the SP link. 7589 SDLoc dl(Op); 7590 7591 // Get the correct type for pointers. 7592 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7593 7594 // Construct the stack pointer operand. 7595 bool isPPC64 = Subtarget.isPPC64(); 7596 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7597 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7598 7599 // Get the operands for the STACKRESTORE. 7600 SDValue Chain = Op.getOperand(0); 7601 SDValue SaveSP = Op.getOperand(1); 7602 7603 // Load the old link SP. 7604 SDValue LoadLinkSP = 7605 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7606 7607 // Restore the stack pointer. 7608 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7609 7610 // Store the old link SP. 7611 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7612 } 7613 7614 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7615 MachineFunction &MF = DAG.getMachineFunction(); 7616 bool isPPC64 = Subtarget.isPPC64(); 7617 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7618 7619 // Get current frame pointer save index. The users of this index will be 7620 // primarily DYNALLOC instructions. 7621 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7622 int RASI = FI->getReturnAddrSaveIndex(); 7623 7624 // If the frame pointer save index hasn't been defined yet. 7625 if (!RASI) { 7626 // Find out what the fix offset of the frame pointer save area. 7627 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7628 // Allocate the frame index for frame pointer save area. 7629 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7630 // Save the result. 7631 FI->setReturnAddrSaveIndex(RASI); 7632 } 7633 return DAG.getFrameIndex(RASI, PtrVT); 7634 } 7635 7636 SDValue 7637 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7638 MachineFunction &MF = DAG.getMachineFunction(); 7639 bool isPPC64 = Subtarget.isPPC64(); 7640 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7641 7642 // Get current frame pointer save index. The users of this index will be 7643 // primarily DYNALLOC instructions. 7644 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7645 int FPSI = FI->getFramePointerSaveIndex(); 7646 7647 // If the frame pointer save index hasn't been defined yet. 7648 if (!FPSI) { 7649 // Find out what the fix offset of the frame pointer save area. 7650 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7651 // Allocate the frame index for frame pointer save area. 7652 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7653 // Save the result. 7654 FI->setFramePointerSaveIndex(FPSI); 7655 } 7656 return DAG.getFrameIndex(FPSI, PtrVT); 7657 } 7658 7659 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7660 SelectionDAG &DAG) const { 7661 MachineFunction &MF = DAG.getMachineFunction(); 7662 // Get the inputs. 7663 SDValue Chain = Op.getOperand(0); 7664 SDValue Size = Op.getOperand(1); 7665 SDLoc dl(Op); 7666 7667 // Get the correct type for pointers. 7668 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7669 // Negate the size. 7670 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7671 DAG.getConstant(0, dl, PtrVT), Size); 7672 // Construct a node for the frame pointer save index. 7673 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7674 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7675 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7676 if (hasInlineStackProbe(MF)) 7677 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7678 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7679 } 7680 7681 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7682 SelectionDAG &DAG) const { 7683 MachineFunction &MF = DAG.getMachineFunction(); 7684 7685 bool isPPC64 = Subtarget.isPPC64(); 7686 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7687 7688 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7689 return DAG.getFrameIndex(FI, PtrVT); 7690 } 7691 7692 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7693 SelectionDAG &DAG) const { 7694 SDLoc DL(Op); 7695 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7696 DAG.getVTList(MVT::i32, MVT::Other), 7697 Op.getOperand(0), Op.getOperand(1)); 7698 } 7699 7700 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7701 SelectionDAG &DAG) const { 7702 SDLoc DL(Op); 7703 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7704 Op.getOperand(0), Op.getOperand(1)); 7705 } 7706 7707 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7708 if (Op.getValueType().isVector()) 7709 return LowerVectorLoad(Op, DAG); 7710 7711 assert(Op.getValueType() == MVT::i1 && 7712 "Custom lowering only for i1 loads"); 7713 7714 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7715 7716 SDLoc dl(Op); 7717 LoadSDNode *LD = cast<LoadSDNode>(Op); 7718 7719 SDValue Chain = LD->getChain(); 7720 SDValue BasePtr = LD->getBasePtr(); 7721 MachineMemOperand *MMO = LD->getMemOperand(); 7722 7723 SDValue NewLD = 7724 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7725 BasePtr, MVT::i8, MMO); 7726 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7727 7728 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7729 return DAG.getMergeValues(Ops, dl); 7730 } 7731 7732 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7733 if (Op.getOperand(1).getValueType().isVector()) 7734 return LowerVectorStore(Op, DAG); 7735 7736 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7737 "Custom lowering only for i1 stores"); 7738 7739 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7740 7741 SDLoc dl(Op); 7742 StoreSDNode *ST = cast<StoreSDNode>(Op); 7743 7744 SDValue Chain = ST->getChain(); 7745 SDValue BasePtr = ST->getBasePtr(); 7746 SDValue Value = ST->getValue(); 7747 MachineMemOperand *MMO = ST->getMemOperand(); 7748 7749 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7750 Value); 7751 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7752 } 7753 7754 // FIXME: Remove this once the ANDI glue bug is fixed: 7755 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7756 assert(Op.getValueType() == MVT::i1 && 7757 "Custom lowering only for i1 results"); 7758 7759 SDLoc DL(Op); 7760 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7761 } 7762 7763 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7764 SelectionDAG &DAG) const { 7765 7766 // Implements a vector truncate that fits in a vector register as a shuffle. 7767 // We want to legalize vector truncates down to where the source fits in 7768 // a vector register (and target is therefore smaller than vector register 7769 // size). At that point legalization will try to custom lower the sub-legal 7770 // result and get here - where we can contain the truncate as a single target 7771 // operation. 7772 7773 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7774 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7775 // 7776 // We will implement it for big-endian ordering as this (where x denotes 7777 // undefined): 7778 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7779 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7780 // 7781 // The same operation in little-endian ordering will be: 7782 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7783 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7784 7785 EVT TrgVT = Op.getValueType(); 7786 assert(TrgVT.isVector() && "Vector type expected."); 7787 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7788 EVT EltVT = TrgVT.getVectorElementType(); 7789 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7790 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7791 !isPowerOf2_32(EltVT.getSizeInBits())) 7792 return SDValue(); 7793 7794 SDValue N1 = Op.getOperand(0); 7795 EVT SrcVT = N1.getValueType(); 7796 unsigned SrcSize = SrcVT.getSizeInBits(); 7797 if (SrcSize > 256 || 7798 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7799 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7800 return SDValue(); 7801 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7802 return SDValue(); 7803 7804 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7805 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7806 7807 SDLoc DL(Op); 7808 SDValue Op1, Op2; 7809 if (SrcSize == 256) { 7810 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7811 EVT SplitVT = 7812 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7813 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7814 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7815 DAG.getConstant(0, DL, VecIdxTy)); 7816 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7817 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7818 } 7819 else { 7820 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7821 Op2 = DAG.getUNDEF(WideVT); 7822 } 7823 7824 // First list the elements we want to keep. 7825 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7826 SmallVector<int, 16> ShuffV; 7827 if (Subtarget.isLittleEndian()) 7828 for (unsigned i = 0; i < TrgNumElts; ++i) 7829 ShuffV.push_back(i * SizeMult); 7830 else 7831 for (unsigned i = 1; i <= TrgNumElts; ++i) 7832 ShuffV.push_back(i * SizeMult - 1); 7833 7834 // Populate the remaining elements with undefs. 7835 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7836 // ShuffV.push_back(i + WideNumElts); 7837 ShuffV.push_back(WideNumElts + 1); 7838 7839 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7840 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7841 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7842 } 7843 7844 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7845 /// possible. 7846 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7847 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7848 EVT ResVT = Op.getValueType(); 7849 EVT CmpVT = Op.getOperand(0).getValueType(); 7850 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7851 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7852 SDLoc dl(Op); 7853 7854 // Without power9-vector, we don't have native instruction for f128 comparison. 7855 // Following transformation to libcall is needed for setcc: 7856 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7857 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7858 SDValue Z = DAG.getSetCC( 7859 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7860 LHS, RHS, CC); 7861 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7862 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7863 } 7864 7865 // Not FP, or using SPE? Not a fsel. 7866 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7867 Subtarget.hasSPE()) 7868 return Op; 7869 7870 SDNodeFlags Flags = Op.getNode()->getFlags(); 7871 7872 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7873 // presence of infinities. 7874 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7875 switch (CC) { 7876 default: 7877 break; 7878 case ISD::SETOGT: 7879 case ISD::SETGT: 7880 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7881 case ISD::SETOLT: 7882 case ISD::SETLT: 7883 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7884 } 7885 } 7886 7887 // We might be able to do better than this under some circumstances, but in 7888 // general, fsel-based lowering of select is a finite-math-only optimization. 7889 // For more information, see section F.3 of the 2.06 ISA specification. 7890 // With ISA 3.0 7891 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7892 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7893 return Op; 7894 7895 // If the RHS of the comparison is a 0.0, we don't need to do the 7896 // subtraction at all. 7897 SDValue Sel1; 7898 if (isFloatingPointZero(RHS)) 7899 switch (CC) { 7900 default: break; // SETUO etc aren't handled by fsel. 7901 case ISD::SETNE: 7902 std::swap(TV, FV); 7903 LLVM_FALLTHROUGH; 7904 case ISD::SETEQ: 7905 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7906 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7907 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7908 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7909 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7910 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7911 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7912 case ISD::SETULT: 7913 case ISD::SETLT: 7914 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7915 LLVM_FALLTHROUGH; 7916 case ISD::SETOGE: 7917 case ISD::SETGE: 7918 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7919 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7920 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7921 case ISD::SETUGT: 7922 case ISD::SETGT: 7923 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7924 LLVM_FALLTHROUGH; 7925 case ISD::SETOLE: 7926 case ISD::SETLE: 7927 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7928 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7929 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7930 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7931 } 7932 7933 SDValue Cmp; 7934 switch (CC) { 7935 default: break; // SETUO etc aren't handled by fsel. 7936 case ISD::SETNE: 7937 std::swap(TV, FV); 7938 LLVM_FALLTHROUGH; 7939 case ISD::SETEQ: 7940 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7941 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7942 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7943 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7944 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7945 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7946 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7947 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7948 case ISD::SETULT: 7949 case ISD::SETLT: 7950 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7951 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7952 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7953 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7954 case ISD::SETOGE: 7955 case ISD::SETGE: 7956 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7957 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7958 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7959 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7960 case ISD::SETUGT: 7961 case ISD::SETGT: 7962 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7963 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7964 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7965 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7966 case ISD::SETOLE: 7967 case ISD::SETLE: 7968 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7969 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7970 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7971 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7972 } 7973 return Op; 7974 } 7975 7976 static unsigned getPPCStrictOpcode(unsigned Opc) { 7977 switch (Opc) { 7978 default: 7979 llvm_unreachable("No strict version of this opcode!"); 7980 case PPCISD::FCTIDZ: 7981 return PPCISD::STRICT_FCTIDZ; 7982 case PPCISD::FCTIWZ: 7983 return PPCISD::STRICT_FCTIWZ; 7984 case PPCISD::FCTIDUZ: 7985 return PPCISD::STRICT_FCTIDUZ; 7986 case PPCISD::FCTIWUZ: 7987 return PPCISD::STRICT_FCTIWUZ; 7988 case PPCISD::FCFID: 7989 return PPCISD::STRICT_FCFID; 7990 case PPCISD::FCFIDU: 7991 return PPCISD::STRICT_FCFIDU; 7992 case PPCISD::FCFIDS: 7993 return PPCISD::STRICT_FCFIDS; 7994 case PPCISD::FCFIDUS: 7995 return PPCISD::STRICT_FCFIDUS; 7996 } 7997 } 7998 7999 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8000 const PPCSubtarget &Subtarget) { 8001 SDLoc dl(Op); 8002 bool IsStrict = Op->isStrictFPOpcode(); 8003 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8004 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8005 8006 // TODO: Any other flags to propagate? 8007 SDNodeFlags Flags; 8008 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8009 8010 // For strict nodes, source is the second operand. 8011 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8012 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8013 assert(Src.getValueType().isFloatingPoint()); 8014 if (Src.getValueType() == MVT::f32) { 8015 if (IsStrict) { 8016 Src = 8017 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8018 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8019 Chain = Src.getValue(1); 8020 } else 8021 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8022 } 8023 SDValue Conv; 8024 unsigned Opc = ISD::DELETED_NODE; 8025 switch (Op.getSimpleValueType().SimpleTy) { 8026 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8027 case MVT::i32: 8028 Opc = IsSigned ? PPCISD::FCTIWZ 8029 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8030 break; 8031 case MVT::i64: 8032 assert((IsSigned || Subtarget.hasFPCVT()) && 8033 "i64 FP_TO_UINT is supported only with FPCVT"); 8034 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8035 } 8036 if (IsStrict) { 8037 Opc = getPPCStrictOpcode(Opc); 8038 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8039 {Chain, Src}, Flags); 8040 } else { 8041 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8042 } 8043 return Conv; 8044 } 8045 8046 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8047 SelectionDAG &DAG, 8048 const SDLoc &dl) const { 8049 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8050 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8051 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8052 bool IsStrict = Op->isStrictFPOpcode(); 8053 8054 // Convert the FP value to an int value through memory. 8055 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8056 (IsSigned || Subtarget.hasFPCVT()); 8057 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8058 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8059 MachinePointerInfo MPI = 8060 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8061 8062 // Emit a store to the stack slot. 8063 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8064 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8065 if (i32Stack) { 8066 MachineFunction &MF = DAG.getMachineFunction(); 8067 Alignment = Align(4); 8068 MachineMemOperand *MMO = 8069 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8070 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8071 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8072 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8073 } else 8074 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8075 8076 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8077 // add in a bias on big endian. 8078 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8079 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8080 DAG.getConstant(4, dl, FIPtr.getValueType())); 8081 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8082 } 8083 8084 RLI.Chain = Chain; 8085 RLI.Ptr = FIPtr; 8086 RLI.MPI = MPI; 8087 RLI.Alignment = Alignment; 8088 } 8089 8090 /// Custom lowers floating point to integer conversions to use 8091 /// the direct move instructions available in ISA 2.07 to avoid the 8092 /// need for load/store combinations. 8093 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8094 SelectionDAG &DAG, 8095 const SDLoc &dl) const { 8096 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8097 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8098 if (Op->isStrictFPOpcode()) 8099 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8100 else 8101 return Mov; 8102 } 8103 8104 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8105 const SDLoc &dl) const { 8106 bool IsStrict = Op->isStrictFPOpcode(); 8107 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8108 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8109 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8110 EVT SrcVT = Src.getValueType(); 8111 EVT DstVT = Op.getValueType(); 8112 8113 // FP to INT conversions are legal for f128. 8114 if (SrcVT == MVT::f128) 8115 return Subtarget.hasP9Vector() ? Op : SDValue(); 8116 8117 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8118 // PPC (the libcall is not available). 8119 if (SrcVT == MVT::ppcf128) { 8120 if (DstVT == MVT::i32) { 8121 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8122 // set other fast-math flags to FP operations in both strict and 8123 // non-strict cases. (FP_TO_SINT, FSUB) 8124 SDNodeFlags Flags; 8125 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8126 8127 if (IsSigned) { 8128 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8129 DAG.getIntPtrConstant(0, dl)); 8130 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8131 DAG.getIntPtrConstant(1, dl)); 8132 8133 // Add the two halves of the long double in round-to-zero mode, and use 8134 // a smaller FP_TO_SINT. 8135 if (IsStrict) { 8136 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8137 DAG.getVTList(MVT::f64, MVT::Other), 8138 {Op.getOperand(0), Lo, Hi}, Flags); 8139 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8140 DAG.getVTList(MVT::i32, MVT::Other), 8141 {Res.getValue(1), Res}, Flags); 8142 } else { 8143 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8144 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8145 } 8146 } else { 8147 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8148 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8149 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8150 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8151 if (IsStrict) { 8152 // Sel = Src < 0x80000000 8153 // FltOfs = select Sel, 0.0, 0x80000000 8154 // IntOfs = select Sel, 0, 0x80000000 8155 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8156 SDValue Chain = Op.getOperand(0); 8157 EVT SetCCVT = 8158 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8159 EVT DstSetCCVT = 8160 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8161 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8162 Chain, true); 8163 Chain = Sel.getValue(1); 8164 8165 SDValue FltOfs = DAG.getSelect( 8166 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8167 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8168 8169 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8170 DAG.getVTList(SrcVT, MVT::Other), 8171 {Chain, Src, FltOfs}, Flags); 8172 Chain = Val.getValue(1); 8173 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8174 DAG.getVTList(DstVT, MVT::Other), 8175 {Chain, Val}, Flags); 8176 Chain = SInt.getValue(1); 8177 SDValue IntOfs = DAG.getSelect( 8178 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8179 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8180 return DAG.getMergeValues({Result, Chain}, dl); 8181 } else { 8182 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8183 // FIXME: generated code sucks. 8184 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8185 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8186 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8187 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8188 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8189 } 8190 } 8191 } 8192 8193 return SDValue(); 8194 } 8195 8196 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8197 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8198 8199 ReuseLoadInfo RLI; 8200 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8201 8202 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8203 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8204 } 8205 8206 // We're trying to insert a regular store, S, and then a load, L. If the 8207 // incoming value, O, is a load, we might just be able to have our load use the 8208 // address used by O. However, we don't know if anything else will store to 8209 // that address before we can load from it. To prevent this situation, we need 8210 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8211 // the same chain operand as O, we create a token factor from the chain results 8212 // of O and L, and we replace all uses of O's chain result with that token 8213 // factor (see spliceIntoChain below for this last part). 8214 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8215 ReuseLoadInfo &RLI, 8216 SelectionDAG &DAG, 8217 ISD::LoadExtType ET) const { 8218 // Conservatively skip reusing for constrained FP nodes. 8219 if (Op->isStrictFPOpcode()) 8220 return false; 8221 8222 SDLoc dl(Op); 8223 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8224 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8225 if (ET == ISD::NON_EXTLOAD && 8226 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8227 isOperationLegalOrCustom(Op.getOpcode(), 8228 Op.getOperand(0).getValueType())) { 8229 8230 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8231 return true; 8232 } 8233 8234 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8235 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8236 LD->isNonTemporal()) 8237 return false; 8238 if (LD->getMemoryVT() != MemVT) 8239 return false; 8240 8241 // If the result of the load is an illegal type, then we can't build a 8242 // valid chain for reuse since the legalised loads and token factor node that 8243 // ties the legalised loads together uses a different output chain then the 8244 // illegal load. 8245 if (!isTypeLegal(LD->getValueType(0))) 8246 return false; 8247 8248 RLI.Ptr = LD->getBasePtr(); 8249 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8250 assert(LD->getAddressingMode() == ISD::PRE_INC && 8251 "Non-pre-inc AM on PPC?"); 8252 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8253 LD->getOffset()); 8254 } 8255 8256 RLI.Chain = LD->getChain(); 8257 RLI.MPI = LD->getPointerInfo(); 8258 RLI.IsDereferenceable = LD->isDereferenceable(); 8259 RLI.IsInvariant = LD->isInvariant(); 8260 RLI.Alignment = LD->getAlign(); 8261 RLI.AAInfo = LD->getAAInfo(); 8262 RLI.Ranges = LD->getRanges(); 8263 8264 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8265 return true; 8266 } 8267 8268 // Given the head of the old chain, ResChain, insert a token factor containing 8269 // it and NewResChain, and make users of ResChain now be users of that token 8270 // factor. 8271 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8272 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8273 SDValue NewResChain, 8274 SelectionDAG &DAG) const { 8275 if (!ResChain) 8276 return; 8277 8278 SDLoc dl(NewResChain); 8279 8280 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8281 NewResChain, DAG.getUNDEF(MVT::Other)); 8282 assert(TF.getNode() != NewResChain.getNode() && 8283 "A new TF really is required here"); 8284 8285 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8286 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8287 } 8288 8289 /// Analyze profitability of direct move 8290 /// prefer float load to int load plus direct move 8291 /// when there is no integer use of int load 8292 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8293 SDNode *Origin = Op.getOperand(0).getNode(); 8294 if (Origin->getOpcode() != ISD::LOAD) 8295 return true; 8296 8297 // If there is no LXSIBZX/LXSIHZX, like Power8, 8298 // prefer direct move if the memory size is 1 or 2 bytes. 8299 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8300 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8301 return true; 8302 8303 for (SDNode::use_iterator UI = Origin->use_begin(), 8304 UE = Origin->use_end(); 8305 UI != UE; ++UI) { 8306 8307 // Only look at the users of the loaded value. 8308 if (UI.getUse().get().getResNo() != 0) 8309 continue; 8310 8311 if (UI->getOpcode() != ISD::SINT_TO_FP && 8312 UI->getOpcode() != ISD::UINT_TO_FP && 8313 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8314 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8315 return true; 8316 } 8317 8318 return false; 8319 } 8320 8321 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8322 const PPCSubtarget &Subtarget, 8323 SDValue Chain = SDValue()) { 8324 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8325 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8326 SDLoc dl(Op); 8327 8328 // TODO: Any other flags to propagate? 8329 SDNodeFlags Flags; 8330 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8331 8332 // If we have FCFIDS, then use it when converting to single-precision. 8333 // Otherwise, convert to double-precision and then round. 8334 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8335 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8336 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8337 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8338 if (Op->isStrictFPOpcode()) { 8339 if (!Chain) 8340 Chain = Op.getOperand(0); 8341 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8342 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8343 } else 8344 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8345 } 8346 8347 /// Custom lowers integer to floating point conversions to use 8348 /// the direct move instructions available in ISA 2.07 to avoid the 8349 /// need for load/store combinations. 8350 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8351 SelectionDAG &DAG, 8352 const SDLoc &dl) const { 8353 assert((Op.getValueType() == MVT::f32 || 8354 Op.getValueType() == MVT::f64) && 8355 "Invalid floating point type as target of conversion"); 8356 assert(Subtarget.hasFPCVT() && 8357 "Int to FP conversions with direct moves require FPCVT"); 8358 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8359 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8360 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8361 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8362 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8363 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8364 return convertIntToFP(Op, Mov, DAG, Subtarget); 8365 } 8366 8367 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8368 8369 EVT VecVT = Vec.getValueType(); 8370 assert(VecVT.isVector() && "Expected a vector type."); 8371 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8372 8373 EVT EltVT = VecVT.getVectorElementType(); 8374 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8375 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8376 8377 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8378 SmallVector<SDValue, 16> Ops(NumConcat); 8379 Ops[0] = Vec; 8380 SDValue UndefVec = DAG.getUNDEF(VecVT); 8381 for (unsigned i = 1; i < NumConcat; ++i) 8382 Ops[i] = UndefVec; 8383 8384 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8385 } 8386 8387 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8388 const SDLoc &dl) const { 8389 bool IsStrict = Op->isStrictFPOpcode(); 8390 unsigned Opc = Op.getOpcode(); 8391 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8392 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8393 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8394 "Unexpected conversion type"); 8395 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8396 "Supports conversions to v2f64/v4f32 only."); 8397 8398 // TODO: Any other flags to propagate? 8399 SDNodeFlags Flags; 8400 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8401 8402 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8403 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8404 8405 SDValue Wide = widenVec(DAG, Src, dl); 8406 EVT WideVT = Wide.getValueType(); 8407 unsigned WideNumElts = WideVT.getVectorNumElements(); 8408 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8409 8410 SmallVector<int, 16> ShuffV; 8411 for (unsigned i = 0; i < WideNumElts; ++i) 8412 ShuffV.push_back(i + WideNumElts); 8413 8414 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8415 int SaveElts = FourEltRes ? 4 : 2; 8416 if (Subtarget.isLittleEndian()) 8417 for (int i = 0; i < SaveElts; i++) 8418 ShuffV[i * Stride] = i; 8419 else 8420 for (int i = 1; i <= SaveElts; i++) 8421 ShuffV[i * Stride - 1] = i - 1; 8422 8423 SDValue ShuffleSrc2 = 8424 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8425 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8426 8427 SDValue Extend; 8428 if (SignedConv) { 8429 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8430 EVT ExtVT = Src.getValueType(); 8431 if (Subtarget.hasP9Altivec()) 8432 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8433 IntermediateVT.getVectorNumElements()); 8434 8435 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8436 DAG.getValueType(ExtVT)); 8437 } else 8438 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8439 8440 if (IsStrict) 8441 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8442 {Op.getOperand(0), Extend}, Flags); 8443 8444 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8445 } 8446 8447 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8448 SelectionDAG &DAG) const { 8449 SDLoc dl(Op); 8450 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8451 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8452 bool IsStrict = Op->isStrictFPOpcode(); 8453 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8454 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8455 8456 // TODO: Any other flags to propagate? 8457 SDNodeFlags Flags; 8458 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8459 8460 EVT InVT = Src.getValueType(); 8461 EVT OutVT = Op.getValueType(); 8462 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8463 isOperationCustom(Op.getOpcode(), InVT)) 8464 return LowerINT_TO_FPVector(Op, DAG, dl); 8465 8466 // Conversions to f128 are legal. 8467 if (Op.getValueType() == MVT::f128) 8468 return Subtarget.hasP9Vector() ? Op : SDValue(); 8469 8470 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8471 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8472 return SDValue(); 8473 8474 if (Src.getValueType() == MVT::i1) { 8475 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8476 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8477 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8478 if (IsStrict) 8479 return DAG.getMergeValues({Sel, Chain}, dl); 8480 else 8481 return Sel; 8482 } 8483 8484 // If we have direct moves, we can do all the conversion, skip the store/load 8485 // however, without FPCVT we can't do most conversions. 8486 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8487 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8488 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8489 8490 assert((IsSigned || Subtarget.hasFPCVT()) && 8491 "UINT_TO_FP is supported only with FPCVT"); 8492 8493 if (Src.getValueType() == MVT::i64) { 8494 SDValue SINT = Src; 8495 // When converting to single-precision, we actually need to convert 8496 // to double-precision first and then round to single-precision. 8497 // To avoid double-rounding effects during that operation, we have 8498 // to prepare the input operand. Bits that might be truncated when 8499 // converting to double-precision are replaced by a bit that won't 8500 // be lost at this stage, but is below the single-precision rounding 8501 // position. 8502 // 8503 // However, if -enable-unsafe-fp-math is in effect, accept double 8504 // rounding to avoid the extra overhead. 8505 if (Op.getValueType() == MVT::f32 && 8506 !Subtarget.hasFPCVT() && 8507 !DAG.getTarget().Options.UnsafeFPMath) { 8508 8509 // Twiddle input to make sure the low 11 bits are zero. (If this 8510 // is the case, we are guaranteed the value will fit into the 53 bit 8511 // mantissa of an IEEE double-precision value without rounding.) 8512 // If any of those low 11 bits were not zero originally, make sure 8513 // bit 12 (value 2048) is set instead, so that the final rounding 8514 // to single-precision gets the correct result. 8515 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8516 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8517 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8518 Round, DAG.getConstant(2047, dl, MVT::i64)); 8519 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8520 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8521 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8522 8523 // However, we cannot use that value unconditionally: if the magnitude 8524 // of the input value is small, the bit-twiddling we did above might 8525 // end up visibly changing the output. Fortunately, in that case, we 8526 // don't need to twiddle bits since the original input will convert 8527 // exactly to double-precision floating-point already. Therefore, 8528 // construct a conditional to use the original value if the top 11 8529 // bits are all sign-bit copies, and use the rounded value computed 8530 // above otherwise. 8531 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8532 SINT, DAG.getConstant(53, dl, MVT::i32)); 8533 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8534 Cond, DAG.getConstant(1, dl, MVT::i64)); 8535 Cond = DAG.getSetCC( 8536 dl, 8537 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8538 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8539 8540 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8541 } 8542 8543 ReuseLoadInfo RLI; 8544 SDValue Bits; 8545 8546 MachineFunction &MF = DAG.getMachineFunction(); 8547 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8548 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8549 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8550 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8551 } else if (Subtarget.hasLFIWAX() && 8552 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8553 MachineMemOperand *MMO = 8554 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8555 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8556 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8557 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8558 DAG.getVTList(MVT::f64, MVT::Other), 8559 Ops, MVT::i32, MMO); 8560 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8561 } else if (Subtarget.hasFPCVT() && 8562 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8563 MachineMemOperand *MMO = 8564 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8565 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8566 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8567 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8568 DAG.getVTList(MVT::f64, MVT::Other), 8569 Ops, MVT::i32, MMO); 8570 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8571 } else if (((Subtarget.hasLFIWAX() && 8572 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8573 (Subtarget.hasFPCVT() && 8574 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8575 SINT.getOperand(0).getValueType() == MVT::i32) { 8576 MachineFrameInfo &MFI = MF.getFrameInfo(); 8577 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8578 8579 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8580 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8581 8582 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8583 MachinePointerInfo::getFixedStack( 8584 DAG.getMachineFunction(), FrameIdx)); 8585 Chain = Store; 8586 8587 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8588 "Expected an i32 store"); 8589 8590 RLI.Ptr = FIdx; 8591 RLI.Chain = Chain; 8592 RLI.MPI = 8593 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8594 RLI.Alignment = Align(4); 8595 8596 MachineMemOperand *MMO = 8597 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8598 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8599 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8600 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8601 PPCISD::LFIWZX : PPCISD::LFIWAX, 8602 dl, DAG.getVTList(MVT::f64, MVT::Other), 8603 Ops, MVT::i32, MMO); 8604 Chain = Bits.getValue(1); 8605 } else 8606 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8607 8608 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8609 if (IsStrict) 8610 Chain = FP.getValue(1); 8611 8612 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8613 if (IsStrict) 8614 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8615 DAG.getVTList(MVT::f32, MVT::Other), 8616 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8617 else 8618 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8619 DAG.getIntPtrConstant(0, dl)); 8620 } 8621 return FP; 8622 } 8623 8624 assert(Src.getValueType() == MVT::i32 && 8625 "Unhandled INT_TO_FP type in custom expander!"); 8626 // Since we only generate this in 64-bit mode, we can take advantage of 8627 // 64-bit registers. In particular, sign extend the input value into the 8628 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8629 // then lfd it and fcfid it. 8630 MachineFunction &MF = DAG.getMachineFunction(); 8631 MachineFrameInfo &MFI = MF.getFrameInfo(); 8632 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8633 8634 SDValue Ld; 8635 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8636 ReuseLoadInfo RLI; 8637 bool ReusingLoad; 8638 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8639 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8640 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8641 8642 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8643 MachinePointerInfo::getFixedStack( 8644 DAG.getMachineFunction(), FrameIdx)); 8645 Chain = Store; 8646 8647 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8648 "Expected an i32 store"); 8649 8650 RLI.Ptr = FIdx; 8651 RLI.Chain = Chain; 8652 RLI.MPI = 8653 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8654 RLI.Alignment = Align(4); 8655 } 8656 8657 MachineMemOperand *MMO = 8658 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8659 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8660 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8661 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8662 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8663 MVT::i32, MMO); 8664 Chain = Ld.getValue(1); 8665 if (ReusingLoad) 8666 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8667 } else { 8668 assert(Subtarget.isPPC64() && 8669 "i32->FP without LFIWAX supported only on PPC64"); 8670 8671 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8672 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8673 8674 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8675 8676 // STD the extended value into the stack slot. 8677 SDValue Store = DAG.getStore( 8678 Chain, dl, Ext64, FIdx, 8679 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8680 Chain = Store; 8681 8682 // Load the value as a double. 8683 Ld = DAG.getLoad( 8684 MVT::f64, dl, Chain, FIdx, 8685 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8686 Chain = Ld.getValue(1); 8687 } 8688 8689 // FCFID it and return it. 8690 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8691 if (IsStrict) 8692 Chain = FP.getValue(1); 8693 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8694 if (IsStrict) 8695 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8696 DAG.getVTList(MVT::f32, MVT::Other), 8697 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8698 else 8699 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8700 DAG.getIntPtrConstant(0, dl)); 8701 } 8702 return FP; 8703 } 8704 8705 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8706 SelectionDAG &DAG) const { 8707 SDLoc dl(Op); 8708 /* 8709 The rounding mode is in bits 30:31 of FPSR, and has the following 8710 settings: 8711 00 Round to nearest 8712 01 Round to 0 8713 10 Round to +inf 8714 11 Round to -inf 8715 8716 FLT_ROUNDS, on the other hand, expects the following: 8717 -1 Undefined 8718 0 Round to 0 8719 1 Round to nearest 8720 2 Round to +inf 8721 3 Round to -inf 8722 8723 To perform the conversion, we do: 8724 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8725 */ 8726 8727 MachineFunction &MF = DAG.getMachineFunction(); 8728 EVT VT = Op.getValueType(); 8729 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8730 8731 // Save FP Control Word to register 8732 SDValue Chain = Op.getOperand(0); 8733 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8734 Chain = MFFS.getValue(1); 8735 8736 SDValue CWD; 8737 if (isTypeLegal(MVT::i64)) { 8738 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8739 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8740 } else { 8741 // Save FP register to stack slot 8742 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8743 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8744 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8745 8746 // Load FP Control Word from low 32 bits of stack slot. 8747 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8748 "Stack slot adjustment is valid only on big endian subtargets!"); 8749 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8750 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8751 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8752 Chain = CWD.getValue(1); 8753 } 8754 8755 // Transform as necessary 8756 SDValue CWD1 = 8757 DAG.getNode(ISD::AND, dl, MVT::i32, 8758 CWD, DAG.getConstant(3, dl, MVT::i32)); 8759 SDValue CWD2 = 8760 DAG.getNode(ISD::SRL, dl, MVT::i32, 8761 DAG.getNode(ISD::AND, dl, MVT::i32, 8762 DAG.getNode(ISD::XOR, dl, MVT::i32, 8763 CWD, DAG.getConstant(3, dl, MVT::i32)), 8764 DAG.getConstant(3, dl, MVT::i32)), 8765 DAG.getConstant(1, dl, MVT::i32)); 8766 8767 SDValue RetVal = 8768 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8769 8770 RetVal = 8771 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8772 dl, VT, RetVal); 8773 8774 return DAG.getMergeValues({RetVal, Chain}, dl); 8775 } 8776 8777 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8778 EVT VT = Op.getValueType(); 8779 unsigned BitWidth = VT.getSizeInBits(); 8780 SDLoc dl(Op); 8781 assert(Op.getNumOperands() == 3 && 8782 VT == Op.getOperand(1).getValueType() && 8783 "Unexpected SHL!"); 8784 8785 // Expand into a bunch of logical ops. Note that these ops 8786 // depend on the PPC behavior for oversized shift amounts. 8787 SDValue Lo = Op.getOperand(0); 8788 SDValue Hi = Op.getOperand(1); 8789 SDValue Amt = Op.getOperand(2); 8790 EVT AmtVT = Amt.getValueType(); 8791 8792 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8793 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8794 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8795 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8796 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8797 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8798 DAG.getConstant(-BitWidth, dl, AmtVT)); 8799 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8800 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8801 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8802 SDValue OutOps[] = { OutLo, OutHi }; 8803 return DAG.getMergeValues(OutOps, dl); 8804 } 8805 8806 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8807 EVT VT = Op.getValueType(); 8808 SDLoc dl(Op); 8809 unsigned BitWidth = VT.getSizeInBits(); 8810 assert(Op.getNumOperands() == 3 && 8811 VT == Op.getOperand(1).getValueType() && 8812 "Unexpected SRL!"); 8813 8814 // Expand into a bunch of logical ops. Note that these ops 8815 // depend on the PPC behavior for oversized shift amounts. 8816 SDValue Lo = Op.getOperand(0); 8817 SDValue Hi = Op.getOperand(1); 8818 SDValue Amt = Op.getOperand(2); 8819 EVT AmtVT = Amt.getValueType(); 8820 8821 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8822 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8823 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8824 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8825 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8826 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8827 DAG.getConstant(-BitWidth, dl, AmtVT)); 8828 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8829 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8830 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8831 SDValue OutOps[] = { OutLo, OutHi }; 8832 return DAG.getMergeValues(OutOps, dl); 8833 } 8834 8835 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8836 SDLoc dl(Op); 8837 EVT VT = Op.getValueType(); 8838 unsigned BitWidth = VT.getSizeInBits(); 8839 assert(Op.getNumOperands() == 3 && 8840 VT == Op.getOperand(1).getValueType() && 8841 "Unexpected SRA!"); 8842 8843 // Expand into a bunch of logical ops, followed by a select_cc. 8844 SDValue Lo = Op.getOperand(0); 8845 SDValue Hi = Op.getOperand(1); 8846 SDValue Amt = Op.getOperand(2); 8847 EVT AmtVT = Amt.getValueType(); 8848 8849 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8850 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8851 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8852 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8853 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8854 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8855 DAG.getConstant(-BitWidth, dl, AmtVT)); 8856 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8857 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8858 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8859 Tmp4, Tmp6, ISD::SETLE); 8860 SDValue OutOps[] = { OutLo, OutHi }; 8861 return DAG.getMergeValues(OutOps, dl); 8862 } 8863 8864 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8865 SelectionDAG &DAG) const { 8866 SDLoc dl(Op); 8867 EVT VT = Op.getValueType(); 8868 unsigned BitWidth = VT.getSizeInBits(); 8869 8870 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8871 SDValue X = Op.getOperand(0); 8872 SDValue Y = Op.getOperand(1); 8873 SDValue Z = Op.getOperand(2); 8874 EVT AmtVT = Z.getValueType(); 8875 8876 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8877 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8878 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8879 // on PowerPC shift by BW being well defined. 8880 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8881 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8882 SDValue SubZ = 8883 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8884 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8885 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8886 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8887 } 8888 8889 //===----------------------------------------------------------------------===// 8890 // Vector related lowering. 8891 // 8892 8893 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8894 /// element size of SplatSize. Cast the result to VT. 8895 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8896 SelectionDAG &DAG, const SDLoc &dl) { 8897 static const MVT VTys[] = { // canonical VT to use for each size. 8898 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8899 }; 8900 8901 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8902 8903 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8904 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8905 SplatSize = 1; 8906 Val = 0xFF; 8907 } 8908 8909 EVT CanonicalVT = VTys[SplatSize-1]; 8910 8911 // Build a canonical splat for this value. 8912 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8913 } 8914 8915 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8916 /// specified intrinsic ID. 8917 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8918 const SDLoc &dl, EVT DestVT = MVT::Other) { 8919 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8920 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8921 DAG.getConstant(IID, dl, MVT::i32), Op); 8922 } 8923 8924 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8925 /// specified intrinsic ID. 8926 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8927 SelectionDAG &DAG, const SDLoc &dl, 8928 EVT DestVT = MVT::Other) { 8929 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8930 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8931 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8932 } 8933 8934 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8935 /// specified intrinsic ID. 8936 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8937 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8938 EVT DestVT = MVT::Other) { 8939 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8940 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8941 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8942 } 8943 8944 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8945 /// amount. The result has the specified value type. 8946 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8947 SelectionDAG &DAG, const SDLoc &dl) { 8948 // Force LHS/RHS to be the right type. 8949 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8950 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8951 8952 int Ops[16]; 8953 for (unsigned i = 0; i != 16; ++i) 8954 Ops[i] = i + Amt; 8955 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8956 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8957 } 8958 8959 /// Do we have an efficient pattern in a .td file for this node? 8960 /// 8961 /// \param V - pointer to the BuildVectorSDNode being matched 8962 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8963 /// 8964 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8965 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8966 /// the opposite is true (expansion is beneficial) are: 8967 /// - The node builds a vector out of integers that are not 32 or 64-bits 8968 /// - The node builds a vector out of constants 8969 /// - The node is a "load-and-splat" 8970 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8971 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8972 bool HasDirectMove, 8973 bool HasP8Vector) { 8974 EVT VecVT = V->getValueType(0); 8975 bool RightType = VecVT == MVT::v2f64 || 8976 (HasP8Vector && VecVT == MVT::v4f32) || 8977 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8978 if (!RightType) 8979 return false; 8980 8981 bool IsSplat = true; 8982 bool IsLoad = false; 8983 SDValue Op0 = V->getOperand(0); 8984 8985 // This function is called in a block that confirms the node is not a constant 8986 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8987 // different constants. 8988 if (V->isConstant()) 8989 return false; 8990 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8991 if (V->getOperand(i).isUndef()) 8992 return false; 8993 // We want to expand nodes that represent load-and-splat even if the 8994 // loaded value is a floating point truncation or conversion to int. 8995 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8996 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8997 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8998 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8999 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9000 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9001 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9002 IsLoad = true; 9003 // If the operands are different or the input is not a load and has more 9004 // uses than just this BV node, then it isn't a splat. 9005 if (V->getOperand(i) != Op0 || 9006 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9007 IsSplat = false; 9008 } 9009 return !(IsSplat && IsLoad); 9010 } 9011 9012 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9013 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9014 9015 SDLoc dl(Op); 9016 SDValue Op0 = Op->getOperand(0); 9017 9018 if ((Op.getValueType() != MVT::f128) || 9019 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9020 (Op0.getOperand(0).getValueType() != MVT::i64) || 9021 (Op0.getOperand(1).getValueType() != MVT::i64)) 9022 return SDValue(); 9023 9024 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9025 Op0.getOperand(1)); 9026 } 9027 9028 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9029 const SDValue *InputLoad = &Op; 9030 if (InputLoad->getOpcode() == ISD::BITCAST) 9031 InputLoad = &InputLoad->getOperand(0); 9032 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9033 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9034 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9035 InputLoad = &InputLoad->getOperand(0); 9036 } 9037 if (InputLoad->getOpcode() != ISD::LOAD) 9038 return nullptr; 9039 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9040 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9041 } 9042 9043 // Convert the argument APFloat to a single precision APFloat if there is no 9044 // loss in information during the conversion to single precision APFloat and the 9045 // resulting number is not a denormal number. Return true if successful. 9046 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9047 APFloat APFloatToConvert = ArgAPFloat; 9048 bool LosesInfo = true; 9049 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9050 &LosesInfo); 9051 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9052 if (Success) 9053 ArgAPFloat = APFloatToConvert; 9054 return Success; 9055 } 9056 9057 // Bitcast the argument APInt to a double and convert it to a single precision 9058 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9059 // argument if there is no loss in information during the conversion from 9060 // double to single precision APFloat and the resulting number is not a denormal 9061 // number. Return true if successful. 9062 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9063 double DpValue = ArgAPInt.bitsToDouble(); 9064 APFloat APFloatDp(DpValue); 9065 bool Success = convertToNonDenormSingle(APFloatDp); 9066 if (Success) 9067 ArgAPInt = APFloatDp.bitcastToAPInt(); 9068 return Success; 9069 } 9070 9071 // Nondestructive check for convertTonNonDenormSingle. 9072 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9073 // Only convert if it loses info, since XXSPLTIDP should 9074 // handle the other case. 9075 APFloat APFloatToConvert = ArgAPFloat; 9076 bool LosesInfo = true; 9077 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9078 &LosesInfo); 9079 9080 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9081 } 9082 9083 // If this is a case we can't handle, return null and let the default 9084 // expansion code take care of it. If we CAN select this case, and if it 9085 // selects to a single instruction, return Op. Otherwise, if we can codegen 9086 // this case more efficiently than a constant pool load, lower it to the 9087 // sequence of ops that should be used. 9088 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9089 SelectionDAG &DAG) const { 9090 SDLoc dl(Op); 9091 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9092 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9093 9094 // Check if this is a splat of a constant value. 9095 APInt APSplatBits, APSplatUndef; 9096 unsigned SplatBitSize; 9097 bool HasAnyUndefs; 9098 bool BVNIsConstantSplat = 9099 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9100 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9101 9102 // If it is a splat of a double, check if we can shrink it to a 32 bit 9103 // non-denormal float which when converted back to double gives us the same 9104 // double. This is to exploit the XXSPLTIDP instruction. 9105 // If we lose precision, we use XXSPLTI32DX. 9106 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9107 Subtarget.hasPrefixInstrs()) { 9108 // Check the type first to short-circuit so we don't modify APSplatBits if 9109 // this block isn't executed. 9110 if ((Op->getValueType(0) == MVT::v2f64) && 9111 convertToNonDenormSingle(APSplatBits)) { 9112 SDValue SplatNode = DAG.getNode( 9113 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9114 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9115 return DAG.getBitcast(Op.getValueType(), SplatNode); 9116 } else { 9117 // We may lose precision, so we have to use XXSPLTI32DX. 9118 9119 uint32_t Hi = 9120 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9121 uint32_t Lo = 9122 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9123 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9124 9125 if (!Hi || !Lo) 9126 // If either load is 0, then we should generate XXLXOR to set to 0. 9127 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9128 9129 if (Hi) 9130 SplatNode = DAG.getNode( 9131 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9132 DAG.getTargetConstant(0, dl, MVT::i32), 9133 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9134 9135 if (Lo) 9136 SplatNode = 9137 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9138 DAG.getTargetConstant(1, dl, MVT::i32), 9139 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9140 9141 return DAG.getBitcast(Op.getValueType(), SplatNode); 9142 } 9143 } 9144 9145 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9146 9147 bool IsPermutedLoad = false; 9148 const SDValue *InputLoad = 9149 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9150 // Handle load-and-splat patterns as we have instructions that will do this 9151 // in one go. 9152 if (InputLoad && DAG.isSplatValue(Op, true)) { 9153 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9154 9155 // We have handling for 4 and 8 byte elements. 9156 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9157 9158 // Checking for a single use of this load, we have to check for vector 9159 // width (128 bits) / ElementSize uses (since each operand of the 9160 // BUILD_VECTOR is a separate use of the value. 9161 unsigned NumUsesOfInputLD = 128 / ElementSize; 9162 for (SDValue BVInOp : Op->ops()) 9163 if (BVInOp.isUndef()) 9164 NumUsesOfInputLD--; 9165 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9166 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9167 ((Subtarget.hasVSX() && ElementSize == 64) || 9168 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9169 SDValue Ops[] = { 9170 LD->getChain(), // Chain 9171 LD->getBasePtr(), // Ptr 9172 DAG.getValueType(Op.getValueType()) // VT 9173 }; 9174 SDValue LdSplt = DAG.getMemIntrinsicNode( 9175 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 9176 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9177 // Replace all uses of the output chain of the original load with the 9178 // output chain of the new load. 9179 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9180 LdSplt.getValue(1)); 9181 return LdSplt; 9182 } 9183 } 9184 9185 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9186 // 32-bits can be lowered to VSX instructions under certain conditions. 9187 // Without VSX, there is no pattern more efficient than expanding the node. 9188 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9189 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9190 Subtarget.hasP8Vector())) 9191 return Op; 9192 return SDValue(); 9193 } 9194 9195 uint64_t SplatBits = APSplatBits.getZExtValue(); 9196 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9197 unsigned SplatSize = SplatBitSize / 8; 9198 9199 // First, handle single instruction cases. 9200 9201 // All zeros? 9202 if (SplatBits == 0) { 9203 // Canonicalize all zero vectors to be v4i32. 9204 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9205 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9206 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9207 } 9208 return Op; 9209 } 9210 9211 // We have XXSPLTIW for constant splats four bytes wide. 9212 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9213 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9214 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9215 // turned into a 4-byte splat of 0xABABABAB. 9216 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9217 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9218 Op.getValueType(), DAG, dl); 9219 9220 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9221 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9222 dl); 9223 9224 // We have XXSPLTIB for constant splats one byte wide. 9225 if (Subtarget.hasP9Vector() && SplatSize == 1) 9226 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9227 dl); 9228 9229 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9230 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9231 (32-SplatBitSize)); 9232 if (SextVal >= -16 && SextVal <= 15) 9233 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9234 dl); 9235 9236 // Two instruction sequences. 9237 9238 // If this value is in the range [-32,30] and is even, use: 9239 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9240 // If this value is in the range [17,31] and is odd, use: 9241 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9242 // If this value is in the range [-31,-17] and is odd, use: 9243 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9244 // Note the last two are three-instruction sequences. 9245 if (SextVal >= -32 && SextVal <= 31) { 9246 // To avoid having these optimizations undone by constant folding, 9247 // we convert to a pseudo that will be expanded later into one of 9248 // the above forms. 9249 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9250 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9251 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9252 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9253 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9254 if (VT == Op.getValueType()) 9255 return RetVal; 9256 else 9257 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9258 } 9259 9260 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9261 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9262 // for fneg/fabs. 9263 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9264 // Make -1 and vspltisw -1: 9265 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9266 9267 // Make the VSLW intrinsic, computing 0x8000_0000. 9268 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9269 OnesV, DAG, dl); 9270 9271 // xor by OnesV to invert it. 9272 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9273 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9274 } 9275 9276 // Check to see if this is a wide variety of vsplti*, binop self cases. 9277 static const signed char SplatCsts[] = { 9278 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9279 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9280 }; 9281 9282 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9283 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9284 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9285 int i = SplatCsts[idx]; 9286 9287 // Figure out what shift amount will be used by altivec if shifted by i in 9288 // this splat size. 9289 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9290 9291 // vsplti + shl self. 9292 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9293 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9294 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9295 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9296 Intrinsic::ppc_altivec_vslw 9297 }; 9298 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9299 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9300 } 9301 9302 // vsplti + srl self. 9303 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9304 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9305 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9306 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9307 Intrinsic::ppc_altivec_vsrw 9308 }; 9309 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9310 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9311 } 9312 9313 // vsplti + rol self. 9314 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9315 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9316 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9317 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9318 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9319 Intrinsic::ppc_altivec_vrlw 9320 }; 9321 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9322 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9323 } 9324 9325 // t = vsplti c, result = vsldoi t, t, 1 9326 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9327 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9328 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9329 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9330 } 9331 // t = vsplti c, result = vsldoi t, t, 2 9332 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9333 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9334 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9335 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9336 } 9337 // t = vsplti c, result = vsldoi t, t, 3 9338 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9339 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9340 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9341 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9342 } 9343 } 9344 9345 return SDValue(); 9346 } 9347 9348 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9349 /// the specified operations to build the shuffle. 9350 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9351 SDValue RHS, SelectionDAG &DAG, 9352 const SDLoc &dl) { 9353 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9354 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9355 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9356 9357 enum { 9358 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9359 OP_VMRGHW, 9360 OP_VMRGLW, 9361 OP_VSPLTISW0, 9362 OP_VSPLTISW1, 9363 OP_VSPLTISW2, 9364 OP_VSPLTISW3, 9365 OP_VSLDOI4, 9366 OP_VSLDOI8, 9367 OP_VSLDOI12 9368 }; 9369 9370 if (OpNum == OP_COPY) { 9371 if (LHSID == (1*9+2)*9+3) return LHS; 9372 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9373 return RHS; 9374 } 9375 9376 SDValue OpLHS, OpRHS; 9377 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9378 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9379 9380 int ShufIdxs[16]; 9381 switch (OpNum) { 9382 default: llvm_unreachable("Unknown i32 permute!"); 9383 case OP_VMRGHW: 9384 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9385 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9386 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9387 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9388 break; 9389 case OP_VMRGLW: 9390 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9391 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9392 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9393 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9394 break; 9395 case OP_VSPLTISW0: 9396 for (unsigned i = 0; i != 16; ++i) 9397 ShufIdxs[i] = (i&3)+0; 9398 break; 9399 case OP_VSPLTISW1: 9400 for (unsigned i = 0; i != 16; ++i) 9401 ShufIdxs[i] = (i&3)+4; 9402 break; 9403 case OP_VSPLTISW2: 9404 for (unsigned i = 0; i != 16; ++i) 9405 ShufIdxs[i] = (i&3)+8; 9406 break; 9407 case OP_VSPLTISW3: 9408 for (unsigned i = 0; i != 16; ++i) 9409 ShufIdxs[i] = (i&3)+12; 9410 break; 9411 case OP_VSLDOI4: 9412 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9413 case OP_VSLDOI8: 9414 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9415 case OP_VSLDOI12: 9416 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9417 } 9418 EVT VT = OpLHS.getValueType(); 9419 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9420 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9421 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9422 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9423 } 9424 9425 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9426 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9427 /// SDValue. 9428 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9429 SelectionDAG &DAG) const { 9430 const unsigned BytesInVector = 16; 9431 bool IsLE = Subtarget.isLittleEndian(); 9432 SDLoc dl(N); 9433 SDValue V1 = N->getOperand(0); 9434 SDValue V2 = N->getOperand(1); 9435 unsigned ShiftElts = 0, InsertAtByte = 0; 9436 bool Swap = false; 9437 9438 // Shifts required to get the byte we want at element 7. 9439 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9440 0, 15, 14, 13, 12, 11, 10, 9}; 9441 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9442 1, 2, 3, 4, 5, 6, 7, 8}; 9443 9444 ArrayRef<int> Mask = N->getMask(); 9445 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9446 9447 // For each mask element, find out if we're just inserting something 9448 // from V2 into V1 or vice versa. 9449 // Possible permutations inserting an element from V2 into V1: 9450 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9451 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9452 // ... 9453 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9454 // Inserting from V1 into V2 will be similar, except mask range will be 9455 // [16,31]. 9456 9457 bool FoundCandidate = false; 9458 // If both vector operands for the shuffle are the same vector, the mask 9459 // will contain only elements from the first one and the second one will be 9460 // undef. 9461 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9462 // Go through the mask of half-words to find an element that's being moved 9463 // from one vector to the other. 9464 for (unsigned i = 0; i < BytesInVector; ++i) { 9465 unsigned CurrentElement = Mask[i]; 9466 // If 2nd operand is undefined, we should only look for element 7 in the 9467 // Mask. 9468 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9469 continue; 9470 9471 bool OtherElementsInOrder = true; 9472 // Examine the other elements in the Mask to see if they're in original 9473 // order. 9474 for (unsigned j = 0; j < BytesInVector; ++j) { 9475 if (j == i) 9476 continue; 9477 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9478 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9479 // in which we always assume we're always picking from the 1st operand. 9480 int MaskOffset = 9481 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9482 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9483 OtherElementsInOrder = false; 9484 break; 9485 } 9486 } 9487 // If other elements are in original order, we record the number of shifts 9488 // we need to get the element we want into element 7. Also record which byte 9489 // in the vector we should insert into. 9490 if (OtherElementsInOrder) { 9491 // If 2nd operand is undefined, we assume no shifts and no swapping. 9492 if (V2.isUndef()) { 9493 ShiftElts = 0; 9494 Swap = false; 9495 } else { 9496 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9497 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9498 : BigEndianShifts[CurrentElement & 0xF]; 9499 Swap = CurrentElement < BytesInVector; 9500 } 9501 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9502 FoundCandidate = true; 9503 break; 9504 } 9505 } 9506 9507 if (!FoundCandidate) 9508 return SDValue(); 9509 9510 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9511 // optionally with VECSHL if shift is required. 9512 if (Swap) 9513 std::swap(V1, V2); 9514 if (V2.isUndef()) 9515 V2 = V1; 9516 if (ShiftElts) { 9517 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9518 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9519 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9520 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9521 } 9522 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9523 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9524 } 9525 9526 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9527 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9528 /// SDValue. 9529 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9530 SelectionDAG &DAG) const { 9531 const unsigned NumHalfWords = 8; 9532 const unsigned BytesInVector = NumHalfWords * 2; 9533 // Check that the shuffle is on half-words. 9534 if (!isNByteElemShuffleMask(N, 2, 1)) 9535 return SDValue(); 9536 9537 bool IsLE = Subtarget.isLittleEndian(); 9538 SDLoc dl(N); 9539 SDValue V1 = N->getOperand(0); 9540 SDValue V2 = N->getOperand(1); 9541 unsigned ShiftElts = 0, InsertAtByte = 0; 9542 bool Swap = false; 9543 9544 // Shifts required to get the half-word we want at element 3. 9545 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9546 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9547 9548 uint32_t Mask = 0; 9549 uint32_t OriginalOrderLow = 0x1234567; 9550 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9551 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9552 // 32-bit space, only need 4-bit nibbles per element. 9553 for (unsigned i = 0; i < NumHalfWords; ++i) { 9554 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9555 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9556 } 9557 9558 // For each mask element, find out if we're just inserting something 9559 // from V2 into V1 or vice versa. Possible permutations inserting an element 9560 // from V2 into V1: 9561 // X, 1, 2, 3, 4, 5, 6, 7 9562 // 0, X, 2, 3, 4, 5, 6, 7 9563 // 0, 1, X, 3, 4, 5, 6, 7 9564 // 0, 1, 2, X, 4, 5, 6, 7 9565 // 0, 1, 2, 3, X, 5, 6, 7 9566 // 0, 1, 2, 3, 4, X, 6, 7 9567 // 0, 1, 2, 3, 4, 5, X, 7 9568 // 0, 1, 2, 3, 4, 5, 6, X 9569 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9570 9571 bool FoundCandidate = false; 9572 // Go through the mask of half-words to find an element that's being moved 9573 // from one vector to the other. 9574 for (unsigned i = 0; i < NumHalfWords; ++i) { 9575 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9576 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9577 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9578 uint32_t TargetOrder = 0x0; 9579 9580 // If both vector operands for the shuffle are the same vector, the mask 9581 // will contain only elements from the first one and the second one will be 9582 // undef. 9583 if (V2.isUndef()) { 9584 ShiftElts = 0; 9585 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9586 TargetOrder = OriginalOrderLow; 9587 Swap = false; 9588 // Skip if not the correct element or mask of other elements don't equal 9589 // to our expected order. 9590 if (MaskOneElt == VINSERTHSrcElem && 9591 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9592 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9593 FoundCandidate = true; 9594 break; 9595 } 9596 } else { // If both operands are defined. 9597 // Target order is [8,15] if the current mask is between [0,7]. 9598 TargetOrder = 9599 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9600 // Skip if mask of other elements don't equal our expected order. 9601 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9602 // We only need the last 3 bits for the number of shifts. 9603 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9604 : BigEndianShifts[MaskOneElt & 0x7]; 9605 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9606 Swap = MaskOneElt < NumHalfWords; 9607 FoundCandidate = true; 9608 break; 9609 } 9610 } 9611 } 9612 9613 if (!FoundCandidate) 9614 return SDValue(); 9615 9616 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9617 // optionally with VECSHL if shift is required. 9618 if (Swap) 9619 std::swap(V1, V2); 9620 if (V2.isUndef()) 9621 V2 = V1; 9622 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9623 if (ShiftElts) { 9624 // Double ShiftElts because we're left shifting on v16i8 type. 9625 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9626 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9627 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9628 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9629 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9630 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9631 } 9632 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9633 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9634 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9635 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9636 } 9637 9638 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9639 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9640 /// return the default SDValue. 9641 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9642 SelectionDAG &DAG) const { 9643 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9644 // to v16i8. Peek through the bitcasts to get the actual operands. 9645 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9646 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9647 9648 auto ShuffleMask = SVN->getMask(); 9649 SDValue VecShuffle(SVN, 0); 9650 SDLoc DL(SVN); 9651 9652 // Check that we have a four byte shuffle. 9653 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9654 return SDValue(); 9655 9656 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9657 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9658 std::swap(LHS, RHS); 9659 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9660 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9661 } 9662 9663 // Ensure that the RHS is a vector of constants. 9664 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9665 if (!BVN) 9666 return SDValue(); 9667 9668 // Check if RHS is a splat of 4-bytes (or smaller). 9669 APInt APSplatValue, APSplatUndef; 9670 unsigned SplatBitSize; 9671 bool HasAnyUndefs; 9672 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9673 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9674 SplatBitSize > 32) 9675 return SDValue(); 9676 9677 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9678 // The instruction splats a constant C into two words of the source vector 9679 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9680 // Thus we check that the shuffle mask is the equivalent of 9681 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9682 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9683 // within each word are consecutive, so we only need to check the first byte. 9684 SDValue Index; 9685 bool IsLE = Subtarget.isLittleEndian(); 9686 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9687 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9688 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9689 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9690 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9691 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9692 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9693 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9694 else 9695 return SDValue(); 9696 9697 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9698 // for XXSPLTI32DX. 9699 unsigned SplatVal = APSplatValue.getZExtValue(); 9700 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9701 SplatVal |= (SplatVal << SplatBitSize); 9702 9703 SDValue SplatNode = DAG.getNode( 9704 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9705 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9706 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9707 } 9708 9709 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9710 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9711 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9712 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9713 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9714 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9715 assert(Op.getValueType() == MVT::v1i128 && 9716 "Only set v1i128 as custom, other type shouldn't reach here!"); 9717 SDLoc dl(Op); 9718 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9719 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9720 unsigned SHLAmt = N1.getConstantOperandVal(0); 9721 if (SHLAmt % 8 == 0) { 9722 SmallVector<int, 16> Mask(16, 0); 9723 std::iota(Mask.begin(), Mask.end(), 0); 9724 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9725 if (SDValue Shuffle = 9726 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9727 DAG.getUNDEF(MVT::v16i8), Mask)) 9728 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9729 } 9730 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9731 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9732 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9733 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9734 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9735 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9736 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9737 } 9738 9739 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9740 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9741 /// return the code it can be lowered into. Worst case, it can always be 9742 /// lowered into a vperm. 9743 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9744 SelectionDAG &DAG) const { 9745 SDLoc dl(Op); 9746 SDValue V1 = Op.getOperand(0); 9747 SDValue V2 = Op.getOperand(1); 9748 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9749 9750 // Any nodes that were combined in the target-independent combiner prior 9751 // to vector legalization will not be sent to the target combine. Try to 9752 // combine it here. 9753 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9754 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9755 return NewShuffle; 9756 Op = NewShuffle; 9757 SVOp = cast<ShuffleVectorSDNode>(Op); 9758 V1 = Op.getOperand(0); 9759 V2 = Op.getOperand(1); 9760 } 9761 EVT VT = Op.getValueType(); 9762 bool isLittleEndian = Subtarget.isLittleEndian(); 9763 9764 unsigned ShiftElts, InsertAtByte; 9765 bool Swap = false; 9766 9767 // If this is a load-and-splat, we can do that with a single instruction 9768 // in some cases. However if the load has multiple uses, we don't want to 9769 // combine it because that will just produce multiple loads. 9770 bool IsPermutedLoad = false; 9771 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9772 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9773 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9774 InputLoad->hasOneUse()) { 9775 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9776 int SplatIdx = 9777 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9778 9779 // The splat index for permuted loads will be in the left half of the vector 9780 // which is strictly wider than the loaded value by 8 bytes. So we need to 9781 // adjust the splat index to point to the correct address in memory. 9782 if (IsPermutedLoad) { 9783 assert((isLittleEndian || IsFourByte) && 9784 "Unexpected size for permuted load on big endian target"); 9785 SplatIdx += IsFourByte ? 2 : 1; 9786 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9787 "Splat of a value outside of the loaded memory"); 9788 } 9789 9790 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9791 // For 4-byte load-and-splat, we need Power9. 9792 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9793 uint64_t Offset = 0; 9794 if (IsFourByte) 9795 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9796 else 9797 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9798 9799 // If the width of the load is the same as the width of the splat, 9800 // loading with an offset would load the wrong memory. 9801 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9802 Offset = 0; 9803 9804 SDValue BasePtr = LD->getBasePtr(); 9805 if (Offset != 0) 9806 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9807 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9808 SDValue Ops[] = { 9809 LD->getChain(), // Chain 9810 BasePtr, // BasePtr 9811 DAG.getValueType(Op.getValueType()) // VT 9812 }; 9813 SDVTList VTL = 9814 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9815 SDValue LdSplt = 9816 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9817 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9818 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9819 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9820 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9821 return LdSplt; 9822 } 9823 } 9824 if (Subtarget.hasP9Vector() && 9825 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9826 isLittleEndian)) { 9827 if (Swap) 9828 std::swap(V1, V2); 9829 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9830 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9831 if (ShiftElts) { 9832 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9833 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9834 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9835 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9836 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9837 } 9838 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9839 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9840 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9841 } 9842 9843 if (Subtarget.hasPrefixInstrs()) { 9844 SDValue SplatInsertNode; 9845 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9846 return SplatInsertNode; 9847 } 9848 9849 if (Subtarget.hasP9Altivec()) { 9850 SDValue NewISDNode; 9851 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9852 return NewISDNode; 9853 9854 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9855 return NewISDNode; 9856 } 9857 9858 if (Subtarget.hasVSX() && 9859 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9860 if (Swap) 9861 std::swap(V1, V2); 9862 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9863 SDValue Conv2 = 9864 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9865 9866 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9867 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9868 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9869 } 9870 9871 if (Subtarget.hasVSX() && 9872 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9873 if (Swap) 9874 std::swap(V1, V2); 9875 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9876 SDValue Conv2 = 9877 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9878 9879 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9880 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9881 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9882 } 9883 9884 if (Subtarget.hasP9Vector()) { 9885 if (PPC::isXXBRHShuffleMask(SVOp)) { 9886 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9887 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9888 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9889 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9890 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9891 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9892 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9893 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9894 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9895 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9896 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9897 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9898 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9899 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9900 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9901 } 9902 } 9903 9904 if (Subtarget.hasVSX()) { 9905 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9906 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9907 9908 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9909 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9910 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9911 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9912 } 9913 9914 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9915 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9916 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9917 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9918 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9919 } 9920 } 9921 9922 // Cases that are handled by instructions that take permute immediates 9923 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9924 // selected by the instruction selector. 9925 if (V2.isUndef()) { 9926 if (PPC::isSplatShuffleMask(SVOp, 1) || 9927 PPC::isSplatShuffleMask(SVOp, 2) || 9928 PPC::isSplatShuffleMask(SVOp, 4) || 9929 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9930 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9931 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9932 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9933 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9934 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9935 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9936 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9937 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9938 (Subtarget.hasP8Altivec() && ( 9939 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9940 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9941 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9942 return Op; 9943 } 9944 } 9945 9946 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9947 // and produce a fixed permutation. If any of these match, do not lower to 9948 // VPERM. 9949 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9950 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9951 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9952 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9953 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9954 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9955 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9956 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9957 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9958 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9959 (Subtarget.hasP8Altivec() && ( 9960 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9961 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9962 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9963 return Op; 9964 9965 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9966 // perfect shuffle table to emit an optimal matching sequence. 9967 ArrayRef<int> PermMask = SVOp->getMask(); 9968 9969 unsigned PFIndexes[4]; 9970 bool isFourElementShuffle = true; 9971 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9972 unsigned EltNo = 8; // Start out undef. 9973 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9974 if (PermMask[i*4+j] < 0) 9975 continue; // Undef, ignore it. 9976 9977 unsigned ByteSource = PermMask[i*4+j]; 9978 if ((ByteSource & 3) != j) { 9979 isFourElementShuffle = false; 9980 break; 9981 } 9982 9983 if (EltNo == 8) { 9984 EltNo = ByteSource/4; 9985 } else if (EltNo != ByteSource/4) { 9986 isFourElementShuffle = false; 9987 break; 9988 } 9989 } 9990 PFIndexes[i] = EltNo; 9991 } 9992 9993 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9994 // perfect shuffle vector to determine if it is cost effective to do this as 9995 // discrete instructions, or whether we should use a vperm. 9996 // For now, we skip this for little endian until such time as we have a 9997 // little-endian perfect shuffle table. 9998 if (isFourElementShuffle && !isLittleEndian) { 9999 // Compute the index in the perfect shuffle table. 10000 unsigned PFTableIndex = 10001 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 10002 10003 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10004 unsigned Cost = (PFEntry >> 30); 10005 10006 // Determining when to avoid vperm is tricky. Many things affect the cost 10007 // of vperm, particularly how many times the perm mask needs to be computed. 10008 // For example, if the perm mask can be hoisted out of a loop or is already 10009 // used (perhaps because there are multiple permutes with the same shuffle 10010 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10011 // the loop requires an extra register. 10012 // 10013 // As a compromise, we only emit discrete instructions if the shuffle can be 10014 // generated in 3 or fewer operations. When we have loop information 10015 // available, if this block is within a loop, we should avoid using vperm 10016 // for 3-operation perms and use a constant pool load instead. 10017 if (Cost < 3) 10018 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10019 } 10020 10021 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10022 // vector that will get spilled to the constant pool. 10023 if (V2.isUndef()) V2 = V1; 10024 10025 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10026 // that it is in input element units, not in bytes. Convert now. 10027 10028 // For little endian, the order of the input vectors is reversed, and 10029 // the permutation mask is complemented with respect to 31. This is 10030 // necessary to produce proper semantics with the big-endian-biased vperm 10031 // instruction. 10032 EVT EltVT = V1.getValueType().getVectorElementType(); 10033 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10034 10035 SmallVector<SDValue, 16> ResultMask; 10036 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10037 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10038 10039 for (unsigned j = 0; j != BytesPerElement; ++j) 10040 if (isLittleEndian) 10041 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10042 dl, MVT::i32)); 10043 else 10044 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10045 MVT::i32)); 10046 } 10047 10048 ShufflesHandledWithVPERM++; 10049 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10050 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10051 LLVM_DEBUG(SVOp->dump()); 10052 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10053 LLVM_DEBUG(VPermMask.dump()); 10054 10055 if (isLittleEndian) 10056 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10057 V2, V1, VPermMask); 10058 else 10059 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10060 V1, V2, VPermMask); 10061 } 10062 10063 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10064 /// vector comparison. If it is, return true and fill in Opc/isDot with 10065 /// information about the intrinsic. 10066 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10067 bool &isDot, const PPCSubtarget &Subtarget) { 10068 unsigned IntrinsicID = 10069 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10070 CompareOpc = -1; 10071 isDot = false; 10072 switch (IntrinsicID) { 10073 default: 10074 return false; 10075 // Comparison predicates. 10076 case Intrinsic::ppc_altivec_vcmpbfp_p: 10077 CompareOpc = 966; 10078 isDot = true; 10079 break; 10080 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10081 CompareOpc = 198; 10082 isDot = true; 10083 break; 10084 case Intrinsic::ppc_altivec_vcmpequb_p: 10085 CompareOpc = 6; 10086 isDot = true; 10087 break; 10088 case Intrinsic::ppc_altivec_vcmpequh_p: 10089 CompareOpc = 70; 10090 isDot = true; 10091 break; 10092 case Intrinsic::ppc_altivec_vcmpequw_p: 10093 CompareOpc = 134; 10094 isDot = true; 10095 break; 10096 case Intrinsic::ppc_altivec_vcmpequd_p: 10097 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10098 CompareOpc = 199; 10099 isDot = true; 10100 } else 10101 return false; 10102 break; 10103 case Intrinsic::ppc_altivec_vcmpneb_p: 10104 case Intrinsic::ppc_altivec_vcmpneh_p: 10105 case Intrinsic::ppc_altivec_vcmpnew_p: 10106 case Intrinsic::ppc_altivec_vcmpnezb_p: 10107 case Intrinsic::ppc_altivec_vcmpnezh_p: 10108 case Intrinsic::ppc_altivec_vcmpnezw_p: 10109 if (Subtarget.hasP9Altivec()) { 10110 switch (IntrinsicID) { 10111 default: 10112 llvm_unreachable("Unknown comparison intrinsic."); 10113 case Intrinsic::ppc_altivec_vcmpneb_p: 10114 CompareOpc = 7; 10115 break; 10116 case Intrinsic::ppc_altivec_vcmpneh_p: 10117 CompareOpc = 71; 10118 break; 10119 case Intrinsic::ppc_altivec_vcmpnew_p: 10120 CompareOpc = 135; 10121 break; 10122 case Intrinsic::ppc_altivec_vcmpnezb_p: 10123 CompareOpc = 263; 10124 break; 10125 case Intrinsic::ppc_altivec_vcmpnezh_p: 10126 CompareOpc = 327; 10127 break; 10128 case Intrinsic::ppc_altivec_vcmpnezw_p: 10129 CompareOpc = 391; 10130 break; 10131 } 10132 isDot = true; 10133 } else 10134 return false; 10135 break; 10136 case Intrinsic::ppc_altivec_vcmpgefp_p: 10137 CompareOpc = 454; 10138 isDot = true; 10139 break; 10140 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10141 CompareOpc = 710; 10142 isDot = true; 10143 break; 10144 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10145 CompareOpc = 774; 10146 isDot = true; 10147 break; 10148 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10149 CompareOpc = 838; 10150 isDot = true; 10151 break; 10152 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10153 CompareOpc = 902; 10154 isDot = true; 10155 break; 10156 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10157 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10158 CompareOpc = 967; 10159 isDot = true; 10160 } else 10161 return false; 10162 break; 10163 case Intrinsic::ppc_altivec_vcmpgtub_p: 10164 CompareOpc = 518; 10165 isDot = true; 10166 break; 10167 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10168 CompareOpc = 582; 10169 isDot = true; 10170 break; 10171 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10172 CompareOpc = 646; 10173 isDot = true; 10174 break; 10175 case Intrinsic::ppc_altivec_vcmpgtud_p: 10176 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10177 CompareOpc = 711; 10178 isDot = true; 10179 } else 10180 return false; 10181 break; 10182 10183 case Intrinsic::ppc_altivec_vcmpequq: 10184 case Intrinsic::ppc_altivec_vcmpgtsq: 10185 case Intrinsic::ppc_altivec_vcmpgtuq: 10186 if (!Subtarget.isISA3_1()) 10187 return false; 10188 switch (IntrinsicID) { 10189 default: 10190 llvm_unreachable("Unknown comparison intrinsic."); 10191 case Intrinsic::ppc_altivec_vcmpequq: 10192 CompareOpc = 455; 10193 break; 10194 case Intrinsic::ppc_altivec_vcmpgtsq: 10195 CompareOpc = 903; 10196 break; 10197 case Intrinsic::ppc_altivec_vcmpgtuq: 10198 CompareOpc = 647; 10199 break; 10200 } 10201 break; 10202 10203 // VSX predicate comparisons use the same infrastructure 10204 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10205 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10206 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10207 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10208 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10209 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10210 if (Subtarget.hasVSX()) { 10211 switch (IntrinsicID) { 10212 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10213 CompareOpc = 99; 10214 break; 10215 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10216 CompareOpc = 115; 10217 break; 10218 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10219 CompareOpc = 107; 10220 break; 10221 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10222 CompareOpc = 67; 10223 break; 10224 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10225 CompareOpc = 83; 10226 break; 10227 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10228 CompareOpc = 75; 10229 break; 10230 } 10231 isDot = true; 10232 } else 10233 return false; 10234 break; 10235 10236 // Normal Comparisons. 10237 case Intrinsic::ppc_altivec_vcmpbfp: 10238 CompareOpc = 966; 10239 break; 10240 case Intrinsic::ppc_altivec_vcmpeqfp: 10241 CompareOpc = 198; 10242 break; 10243 case Intrinsic::ppc_altivec_vcmpequb: 10244 CompareOpc = 6; 10245 break; 10246 case Intrinsic::ppc_altivec_vcmpequh: 10247 CompareOpc = 70; 10248 break; 10249 case Intrinsic::ppc_altivec_vcmpequw: 10250 CompareOpc = 134; 10251 break; 10252 case Intrinsic::ppc_altivec_vcmpequd: 10253 if (Subtarget.hasP8Altivec()) 10254 CompareOpc = 199; 10255 else 10256 return false; 10257 break; 10258 case Intrinsic::ppc_altivec_vcmpneb: 10259 case Intrinsic::ppc_altivec_vcmpneh: 10260 case Intrinsic::ppc_altivec_vcmpnew: 10261 case Intrinsic::ppc_altivec_vcmpnezb: 10262 case Intrinsic::ppc_altivec_vcmpnezh: 10263 case Intrinsic::ppc_altivec_vcmpnezw: 10264 if (Subtarget.hasP9Altivec()) 10265 switch (IntrinsicID) { 10266 default: 10267 llvm_unreachable("Unknown comparison intrinsic."); 10268 case Intrinsic::ppc_altivec_vcmpneb: 10269 CompareOpc = 7; 10270 break; 10271 case Intrinsic::ppc_altivec_vcmpneh: 10272 CompareOpc = 71; 10273 break; 10274 case Intrinsic::ppc_altivec_vcmpnew: 10275 CompareOpc = 135; 10276 break; 10277 case Intrinsic::ppc_altivec_vcmpnezb: 10278 CompareOpc = 263; 10279 break; 10280 case Intrinsic::ppc_altivec_vcmpnezh: 10281 CompareOpc = 327; 10282 break; 10283 case Intrinsic::ppc_altivec_vcmpnezw: 10284 CompareOpc = 391; 10285 break; 10286 } 10287 else 10288 return false; 10289 break; 10290 case Intrinsic::ppc_altivec_vcmpgefp: 10291 CompareOpc = 454; 10292 break; 10293 case Intrinsic::ppc_altivec_vcmpgtfp: 10294 CompareOpc = 710; 10295 break; 10296 case Intrinsic::ppc_altivec_vcmpgtsb: 10297 CompareOpc = 774; 10298 break; 10299 case Intrinsic::ppc_altivec_vcmpgtsh: 10300 CompareOpc = 838; 10301 break; 10302 case Intrinsic::ppc_altivec_vcmpgtsw: 10303 CompareOpc = 902; 10304 break; 10305 case Intrinsic::ppc_altivec_vcmpgtsd: 10306 if (Subtarget.hasP8Altivec()) 10307 CompareOpc = 967; 10308 else 10309 return false; 10310 break; 10311 case Intrinsic::ppc_altivec_vcmpgtub: 10312 CompareOpc = 518; 10313 break; 10314 case Intrinsic::ppc_altivec_vcmpgtuh: 10315 CompareOpc = 582; 10316 break; 10317 case Intrinsic::ppc_altivec_vcmpgtuw: 10318 CompareOpc = 646; 10319 break; 10320 case Intrinsic::ppc_altivec_vcmpgtud: 10321 if (Subtarget.hasP8Altivec()) 10322 CompareOpc = 711; 10323 else 10324 return false; 10325 break; 10326 case Intrinsic::ppc_altivec_vcmpequq_p: 10327 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10328 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10329 if (!Subtarget.isISA3_1()) 10330 return false; 10331 switch (IntrinsicID) { 10332 default: 10333 llvm_unreachable("Unknown comparison intrinsic."); 10334 case Intrinsic::ppc_altivec_vcmpequq_p: 10335 CompareOpc = 455; 10336 break; 10337 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10338 CompareOpc = 903; 10339 break; 10340 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10341 CompareOpc = 647; 10342 break; 10343 } 10344 isDot = true; 10345 break; 10346 } 10347 return true; 10348 } 10349 10350 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10351 /// lower, do it, otherwise return null. 10352 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10353 SelectionDAG &DAG) const { 10354 unsigned IntrinsicID = 10355 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10356 10357 SDLoc dl(Op); 10358 10359 switch (IntrinsicID) { 10360 case Intrinsic::thread_pointer: 10361 // Reads the thread pointer register, used for __builtin_thread_pointer. 10362 if (Subtarget.isPPC64()) 10363 return DAG.getRegister(PPC::X13, MVT::i64); 10364 return DAG.getRegister(PPC::R2, MVT::i32); 10365 10366 case Intrinsic::ppc_mma_disassemble_acc: 10367 case Intrinsic::ppc_vsx_disassemble_pair: { 10368 int NumVecs = 2; 10369 SDValue WideVec = Op.getOperand(1); 10370 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10371 NumVecs = 4; 10372 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10373 } 10374 SmallVector<SDValue, 4> RetOps; 10375 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10376 SDValue Extract = DAG.getNode( 10377 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10378 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10379 : VecNo, 10380 dl, getPointerTy(DAG.getDataLayout()))); 10381 RetOps.push_back(Extract); 10382 } 10383 return DAG.getMergeValues(RetOps, dl); 10384 } 10385 } 10386 10387 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10388 // opcode number of the comparison. 10389 int CompareOpc; 10390 bool isDot; 10391 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10392 return SDValue(); // Don't custom lower most intrinsics. 10393 10394 // If this is a non-dot comparison, make the VCMP node and we are done. 10395 if (!isDot) { 10396 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10397 Op.getOperand(1), Op.getOperand(2), 10398 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10399 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10400 } 10401 10402 // Create the PPCISD altivec 'dot' comparison node. 10403 SDValue Ops[] = { 10404 Op.getOperand(2), // LHS 10405 Op.getOperand(3), // RHS 10406 DAG.getConstant(CompareOpc, dl, MVT::i32) 10407 }; 10408 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10409 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10410 10411 // Now that we have the comparison, emit a copy from the CR to a GPR. 10412 // This is flagged to the above dot comparison. 10413 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10414 DAG.getRegister(PPC::CR6, MVT::i32), 10415 CompNode.getValue(1)); 10416 10417 // Unpack the result based on how the target uses it. 10418 unsigned BitNo; // Bit # of CR6. 10419 bool InvertBit; // Invert result? 10420 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10421 default: // Can't happen, don't crash on invalid number though. 10422 case 0: // Return the value of the EQ bit of CR6. 10423 BitNo = 0; InvertBit = false; 10424 break; 10425 case 1: // Return the inverted value of the EQ bit of CR6. 10426 BitNo = 0; InvertBit = true; 10427 break; 10428 case 2: // Return the value of the LT bit of CR6. 10429 BitNo = 2; InvertBit = false; 10430 break; 10431 case 3: // Return the inverted value of the LT bit of CR6. 10432 BitNo = 2; InvertBit = true; 10433 break; 10434 } 10435 10436 // Shift the bit into the low position. 10437 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10438 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10439 // Isolate the bit. 10440 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10441 DAG.getConstant(1, dl, MVT::i32)); 10442 10443 // If we are supposed to, toggle the bit. 10444 if (InvertBit) 10445 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10446 DAG.getConstant(1, dl, MVT::i32)); 10447 return Flags; 10448 } 10449 10450 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10451 SelectionDAG &DAG) const { 10452 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10453 // the beginning of the argument list. 10454 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10455 SDLoc DL(Op); 10456 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10457 case Intrinsic::ppc_cfence: { 10458 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10459 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10460 SDValue Val = Op.getOperand(ArgStart + 1); 10461 EVT Ty = Val.getValueType(); 10462 if (Ty == MVT::i128) { 10463 // FIXME: Testing one of two paired registers is sufficient to guarantee 10464 // ordering? 10465 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 10466 } 10467 return SDValue( 10468 DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10469 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), 10470 Op.getOperand(0)), 10471 0); 10472 } 10473 default: 10474 break; 10475 } 10476 return SDValue(); 10477 } 10478 10479 // Lower scalar BSWAP64 to xxbrd. 10480 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10481 SDLoc dl(Op); 10482 if (!Subtarget.isPPC64()) 10483 return Op; 10484 // MTVSRDD 10485 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10486 Op.getOperand(0)); 10487 // XXBRD 10488 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10489 // MFVSRD 10490 int VectorIndex = 0; 10491 if (Subtarget.isLittleEndian()) 10492 VectorIndex = 1; 10493 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10494 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10495 return Op; 10496 } 10497 10498 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10499 // compared to a value that is atomically loaded (atomic loads zero-extend). 10500 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10501 SelectionDAG &DAG) const { 10502 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10503 "Expecting an atomic compare-and-swap here."); 10504 SDLoc dl(Op); 10505 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10506 EVT MemVT = AtomicNode->getMemoryVT(); 10507 if (MemVT.getSizeInBits() >= 32) 10508 return Op; 10509 10510 SDValue CmpOp = Op.getOperand(2); 10511 // If this is already correctly zero-extended, leave it alone. 10512 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10513 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10514 return Op; 10515 10516 // Clear the high bits of the compare operand. 10517 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10518 SDValue NewCmpOp = 10519 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10520 DAG.getConstant(MaskVal, dl, MVT::i32)); 10521 10522 // Replace the existing compare operand with the properly zero-extended one. 10523 SmallVector<SDValue, 4> Ops; 10524 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10525 Ops.push_back(AtomicNode->getOperand(i)); 10526 Ops[2] = NewCmpOp; 10527 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10528 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10529 auto NodeTy = 10530 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10531 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10532 } 10533 10534 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 10535 SelectionDAG &DAG) const { 10536 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 10537 EVT MemVT = N->getMemoryVT(); 10538 assert(MemVT.getSimpleVT() == MVT::i128 && 10539 "Expect quadword atomic operations"); 10540 SDLoc dl(N); 10541 unsigned Opc = N->getOpcode(); 10542 switch (Opc) { 10543 case ISD::ATOMIC_LOAD: { 10544 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 10545 // lowered to ppc instructions by pattern matching instruction selector. 10546 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 10547 SmallVector<SDValue, 4> Ops{ 10548 N->getOperand(0), 10549 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 10550 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 10551 Ops.push_back(N->getOperand(I)); 10552 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 10553 Ops, MemVT, N->getMemOperand()); 10554 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 10555 SDValue ValHi = 10556 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 10557 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 10558 DAG.getConstant(64, dl, MVT::i32)); 10559 SDValue Val = 10560 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 10561 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 10562 {Val, LoadedVal.getValue(2)}); 10563 } 10564 case ISD::ATOMIC_STORE: { 10565 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 10566 // lowered to ppc instructions by pattern matching instruction selector. 10567 SDVTList Tys = DAG.getVTList(MVT::Other); 10568 SmallVector<SDValue, 4> Ops{ 10569 N->getOperand(0), 10570 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 10571 SDValue Val = N->getOperand(2); 10572 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 10573 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 10574 DAG.getConstant(64, dl, MVT::i32)); 10575 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 10576 Ops.push_back(ValLo); 10577 Ops.push_back(ValHi); 10578 Ops.push_back(N->getOperand(1)); 10579 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 10580 N->getMemOperand()); 10581 } 10582 default: 10583 llvm_unreachable("Unexpected atomic opcode"); 10584 } 10585 } 10586 10587 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10588 SelectionDAG &DAG) const { 10589 SDLoc dl(Op); 10590 // Create a stack slot that is 16-byte aligned. 10591 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10592 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10593 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10594 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10595 10596 // Store the input value into Value#0 of the stack slot. 10597 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10598 MachinePointerInfo()); 10599 // Load it out. 10600 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10601 } 10602 10603 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10604 SelectionDAG &DAG) const { 10605 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10606 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10607 10608 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10609 10610 EVT VT = Op.getValueType(); 10611 SDLoc dl(Op); 10612 SDValue V1 = Op.getOperand(0); 10613 SDValue V2 = Op.getOperand(1); 10614 SDValue V3 = Op.getOperand(2); 10615 10616 if (VT == MVT::v2f64 && C) 10617 return Op; 10618 10619 if (Subtarget.isISA3_1()) { 10620 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10621 return SDValue(); 10622 // On P10, we have legal lowering for constant and variable indices for 10623 // integer vectors. 10624 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10625 VT == MVT::v2i64) 10626 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10627 // For f32 and f64 vectors, we have legal lowering for variable indices. 10628 // For f32 we also have legal lowering when the element is loaded from 10629 // memory. 10630 if (VT == MVT::v4f32 || VT == MVT::v2f64) { 10631 if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2))) 10632 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10633 return Op; 10634 } 10635 } 10636 10637 // Before P10, we have legal lowering for constant indices but not for 10638 // variable ones. 10639 if (!C) 10640 return SDValue(); 10641 10642 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10643 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10644 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10645 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10646 unsigned InsertAtElement = C->getZExtValue(); 10647 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10648 if (Subtarget.isLittleEndian()) { 10649 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10650 } 10651 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10652 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10653 } 10654 return Op; 10655 } 10656 10657 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10658 SelectionDAG &DAG) const { 10659 SDLoc dl(Op); 10660 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10661 SDValue LoadChain = LN->getChain(); 10662 SDValue BasePtr = LN->getBasePtr(); 10663 EVT VT = Op.getValueType(); 10664 10665 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10666 return Op; 10667 10668 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10669 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10670 // 2 or 4 vsx registers. 10671 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10672 "Type unsupported without MMA"); 10673 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10674 "Type unsupported without paired vector support"); 10675 Align Alignment = LN->getAlign(); 10676 SmallVector<SDValue, 4> Loads; 10677 SmallVector<SDValue, 4> LoadChains; 10678 unsigned NumVecs = VT.getSizeInBits() / 128; 10679 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10680 SDValue Load = 10681 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10682 LN->getPointerInfo().getWithOffset(Idx * 16), 10683 commonAlignment(Alignment, Idx * 16), 10684 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10685 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10686 DAG.getConstant(16, dl, BasePtr.getValueType())); 10687 Loads.push_back(Load); 10688 LoadChains.push_back(Load.getValue(1)); 10689 } 10690 if (Subtarget.isLittleEndian()) { 10691 std::reverse(Loads.begin(), Loads.end()); 10692 std::reverse(LoadChains.begin(), LoadChains.end()); 10693 } 10694 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10695 SDValue Value = 10696 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10697 dl, VT, Loads); 10698 SDValue RetOps[] = {Value, TF}; 10699 return DAG.getMergeValues(RetOps, dl); 10700 } 10701 10702 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10703 SelectionDAG &DAG) const { 10704 SDLoc dl(Op); 10705 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10706 SDValue StoreChain = SN->getChain(); 10707 SDValue BasePtr = SN->getBasePtr(); 10708 SDValue Value = SN->getValue(); 10709 EVT StoreVT = Value.getValueType(); 10710 10711 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10712 return Op; 10713 10714 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10715 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10716 // underlying registers individually. 10717 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10718 "Type unsupported without MMA"); 10719 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10720 "Type unsupported without paired vector support"); 10721 Align Alignment = SN->getAlign(); 10722 SmallVector<SDValue, 4> Stores; 10723 unsigned NumVecs = 2; 10724 if (StoreVT == MVT::v512i1) { 10725 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10726 NumVecs = 4; 10727 } 10728 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10729 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10730 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10731 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10732 SDValue Store = 10733 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10734 SN->getPointerInfo().getWithOffset(Idx * 16), 10735 commonAlignment(Alignment, Idx * 16), 10736 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10737 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10738 DAG.getConstant(16, dl, BasePtr.getValueType())); 10739 Stores.push_back(Store); 10740 } 10741 SDValue TF = DAG.getTokenFactor(dl, Stores); 10742 return TF; 10743 } 10744 10745 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10746 SDLoc dl(Op); 10747 if (Op.getValueType() == MVT::v4i32) { 10748 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10749 10750 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10751 // +16 as shift amt. 10752 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10753 SDValue RHSSwap = // = vrlw RHS, 16 10754 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10755 10756 // Shrinkify inputs to v8i16. 10757 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10758 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10759 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10760 10761 // Low parts multiplied together, generating 32-bit results (we ignore the 10762 // top parts). 10763 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10764 LHS, RHS, DAG, dl, MVT::v4i32); 10765 10766 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10767 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10768 // Shift the high parts up 16 bits. 10769 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10770 Neg16, DAG, dl); 10771 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10772 } else if (Op.getValueType() == MVT::v16i8) { 10773 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10774 bool isLittleEndian = Subtarget.isLittleEndian(); 10775 10776 // Multiply the even 8-bit parts, producing 16-bit sums. 10777 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10778 LHS, RHS, DAG, dl, MVT::v8i16); 10779 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10780 10781 // Multiply the odd 8-bit parts, producing 16-bit sums. 10782 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10783 LHS, RHS, DAG, dl, MVT::v8i16); 10784 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10785 10786 // Merge the results together. Because vmuleub and vmuloub are 10787 // instructions with a big-endian bias, we must reverse the 10788 // element numbering and reverse the meaning of "odd" and "even" 10789 // when generating little endian code. 10790 int Ops[16]; 10791 for (unsigned i = 0; i != 8; ++i) { 10792 if (isLittleEndian) { 10793 Ops[i*2 ] = 2*i; 10794 Ops[i*2+1] = 2*i+16; 10795 } else { 10796 Ops[i*2 ] = 2*i+1; 10797 Ops[i*2+1] = 2*i+1+16; 10798 } 10799 } 10800 if (isLittleEndian) 10801 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10802 else 10803 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10804 } else { 10805 llvm_unreachable("Unknown mul to lower!"); 10806 } 10807 } 10808 10809 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10810 bool IsStrict = Op->isStrictFPOpcode(); 10811 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 10812 !Subtarget.hasP9Vector()) 10813 return SDValue(); 10814 10815 return Op; 10816 } 10817 10818 // Custom lowering for fpext vf32 to v2f64 10819 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10820 10821 assert(Op.getOpcode() == ISD::FP_EXTEND && 10822 "Should only be called for ISD::FP_EXTEND"); 10823 10824 // FIXME: handle extends from half precision float vectors on P9. 10825 // We only want to custom lower an extend from v2f32 to v2f64. 10826 if (Op.getValueType() != MVT::v2f64 || 10827 Op.getOperand(0).getValueType() != MVT::v2f32) 10828 return SDValue(); 10829 10830 SDLoc dl(Op); 10831 SDValue Op0 = Op.getOperand(0); 10832 10833 switch (Op0.getOpcode()) { 10834 default: 10835 return SDValue(); 10836 case ISD::EXTRACT_SUBVECTOR: { 10837 assert(Op0.getNumOperands() == 2 && 10838 isa<ConstantSDNode>(Op0->getOperand(1)) && 10839 "Node should have 2 operands with second one being a constant!"); 10840 10841 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10842 return SDValue(); 10843 10844 // Custom lower is only done for high or low doubleword. 10845 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10846 if (Idx % 2 != 0) 10847 return SDValue(); 10848 10849 // Since input is v4f32, at this point Idx is either 0 or 2. 10850 // Shift to get the doubleword position we want. 10851 int DWord = Idx >> 1; 10852 10853 // High and low word positions are different on little endian. 10854 if (Subtarget.isLittleEndian()) 10855 DWord ^= 0x1; 10856 10857 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10858 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10859 } 10860 case ISD::FADD: 10861 case ISD::FMUL: 10862 case ISD::FSUB: { 10863 SDValue NewLoad[2]; 10864 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10865 // Ensure both input are loads. 10866 SDValue LdOp = Op0.getOperand(i); 10867 if (LdOp.getOpcode() != ISD::LOAD) 10868 return SDValue(); 10869 // Generate new load node. 10870 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10871 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10872 NewLoad[i] = DAG.getMemIntrinsicNode( 10873 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10874 LD->getMemoryVT(), LD->getMemOperand()); 10875 } 10876 SDValue NewOp = 10877 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10878 NewLoad[1], Op0.getNode()->getFlags()); 10879 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10880 DAG.getConstant(0, dl, MVT::i32)); 10881 } 10882 case ISD::LOAD: { 10883 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10884 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10885 SDValue NewLd = DAG.getMemIntrinsicNode( 10886 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10887 LD->getMemoryVT(), LD->getMemOperand()); 10888 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10889 DAG.getConstant(0, dl, MVT::i32)); 10890 } 10891 } 10892 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10893 } 10894 10895 /// LowerOperation - Provide custom lowering hooks for some operations. 10896 /// 10897 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10898 switch (Op.getOpcode()) { 10899 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10900 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10901 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10902 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10903 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10904 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10905 case ISD::STRICT_FSETCC: 10906 case ISD::STRICT_FSETCCS: 10907 case ISD::SETCC: return LowerSETCC(Op, DAG); 10908 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10909 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10910 10911 case ISD::INLINEASM: 10912 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 10913 // Variable argument lowering. 10914 case ISD::VASTART: return LowerVASTART(Op, DAG); 10915 case ISD::VAARG: return LowerVAARG(Op, DAG); 10916 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10917 10918 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10919 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10920 case ISD::GET_DYNAMIC_AREA_OFFSET: 10921 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10922 10923 // Exception handling lowering. 10924 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10925 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10926 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10927 10928 case ISD::LOAD: return LowerLOAD(Op, DAG); 10929 case ISD::STORE: return LowerSTORE(Op, DAG); 10930 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10931 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10932 case ISD::STRICT_FP_TO_UINT: 10933 case ISD::STRICT_FP_TO_SINT: 10934 case ISD::FP_TO_UINT: 10935 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10936 case ISD::STRICT_UINT_TO_FP: 10937 case ISD::STRICT_SINT_TO_FP: 10938 case ISD::UINT_TO_FP: 10939 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10940 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10941 10942 // Lower 64-bit shifts. 10943 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10944 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10945 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10946 10947 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10948 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10949 10950 // Vector-related lowering. 10951 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10952 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10953 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10954 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10955 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10956 case ISD::MUL: return LowerMUL(Op, DAG); 10957 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10958 case ISD::STRICT_FP_ROUND: 10959 case ISD::FP_ROUND: 10960 return LowerFP_ROUND(Op, DAG); 10961 case ISD::ROTL: return LowerROTL(Op, DAG); 10962 10963 // For counter-based loop handling. 10964 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10965 10966 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10967 10968 // Frame & Return address. 10969 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10970 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10971 10972 case ISD::INTRINSIC_VOID: 10973 return LowerINTRINSIC_VOID(Op, DAG); 10974 case ISD::BSWAP: 10975 return LowerBSWAP(Op, DAG); 10976 case ISD::ATOMIC_CMP_SWAP: 10977 return LowerATOMIC_CMP_SWAP(Op, DAG); 10978 case ISD::ATOMIC_STORE: 10979 return LowerATOMIC_LOAD_STORE(Op, DAG); 10980 } 10981 } 10982 10983 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10984 SmallVectorImpl<SDValue>&Results, 10985 SelectionDAG &DAG) const { 10986 SDLoc dl(N); 10987 switch (N->getOpcode()) { 10988 default: 10989 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10990 case ISD::ATOMIC_LOAD: { 10991 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 10992 Results.push_back(Res); 10993 Results.push_back(Res.getValue(1)); 10994 break; 10995 } 10996 case ISD::READCYCLECOUNTER: { 10997 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10998 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10999 11000 Results.push_back( 11001 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11002 Results.push_back(RTB.getValue(2)); 11003 break; 11004 } 11005 case ISD::INTRINSIC_W_CHAIN: { 11006 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11007 Intrinsic::loop_decrement) 11008 break; 11009 11010 assert(N->getValueType(0) == MVT::i1 && 11011 "Unexpected result type for CTR decrement intrinsic"); 11012 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11013 N->getValueType(0)); 11014 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11015 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11016 N->getOperand(1)); 11017 11018 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11019 Results.push_back(NewInt.getValue(1)); 11020 break; 11021 } 11022 case ISD::VAARG: { 11023 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11024 return; 11025 11026 EVT VT = N->getValueType(0); 11027 11028 if (VT == MVT::i64) { 11029 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11030 11031 Results.push_back(NewNode); 11032 Results.push_back(NewNode.getValue(1)); 11033 } 11034 return; 11035 } 11036 case ISD::STRICT_FP_TO_SINT: 11037 case ISD::STRICT_FP_TO_UINT: 11038 case ISD::FP_TO_SINT: 11039 case ISD::FP_TO_UINT: 11040 // LowerFP_TO_INT() can only handle f32 and f64. 11041 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11042 MVT::ppcf128) 11043 return; 11044 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11045 return; 11046 case ISD::TRUNCATE: { 11047 if (!N->getValueType(0).isVector()) 11048 return; 11049 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11050 if (Lowered) 11051 Results.push_back(Lowered); 11052 return; 11053 } 11054 case ISD::FSHL: 11055 case ISD::FSHR: 11056 // Don't handle funnel shifts here. 11057 return; 11058 case ISD::BITCAST: 11059 // Don't handle bitcast here. 11060 return; 11061 case ISD::FP_EXTEND: 11062 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11063 if (Lowered) 11064 Results.push_back(Lowered); 11065 return; 11066 } 11067 } 11068 11069 //===----------------------------------------------------------------------===// 11070 // Other Lowering Code 11071 //===----------------------------------------------------------------------===// 11072 11073 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11074 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11075 Function *Func = Intrinsic::getDeclaration(M, Id); 11076 return Builder.CreateCall(Func, {}); 11077 } 11078 11079 // The mappings for emitLeading/TrailingFence is taken from 11080 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11081 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11082 Instruction *Inst, 11083 AtomicOrdering Ord) const { 11084 if (Ord == AtomicOrdering::SequentiallyConsistent) 11085 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11086 if (isReleaseOrStronger(Ord)) 11087 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11088 return nullptr; 11089 } 11090 11091 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11092 Instruction *Inst, 11093 AtomicOrdering Ord) const { 11094 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11095 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11096 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11097 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11098 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11099 return Builder.CreateCall( 11100 Intrinsic::getDeclaration( 11101 Builder.GetInsertBlock()->getParent()->getParent(), 11102 Intrinsic::ppc_cfence, {Inst->getType()}), 11103 {Inst}); 11104 // FIXME: Can use isync for rmw operation. 11105 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11106 } 11107 return nullptr; 11108 } 11109 11110 MachineBasicBlock * 11111 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11112 unsigned AtomicSize, 11113 unsigned BinOpcode, 11114 unsigned CmpOpcode, 11115 unsigned CmpPred) const { 11116 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11117 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11118 11119 auto LoadMnemonic = PPC::LDARX; 11120 auto StoreMnemonic = PPC::STDCX; 11121 switch (AtomicSize) { 11122 default: 11123 llvm_unreachable("Unexpected size of atomic entity"); 11124 case 1: 11125 LoadMnemonic = PPC::LBARX; 11126 StoreMnemonic = PPC::STBCX; 11127 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11128 break; 11129 case 2: 11130 LoadMnemonic = PPC::LHARX; 11131 StoreMnemonic = PPC::STHCX; 11132 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11133 break; 11134 case 4: 11135 LoadMnemonic = PPC::LWARX; 11136 StoreMnemonic = PPC::STWCX; 11137 break; 11138 case 8: 11139 LoadMnemonic = PPC::LDARX; 11140 StoreMnemonic = PPC::STDCX; 11141 break; 11142 } 11143 11144 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11145 MachineFunction *F = BB->getParent(); 11146 MachineFunction::iterator It = ++BB->getIterator(); 11147 11148 Register dest = MI.getOperand(0).getReg(); 11149 Register ptrA = MI.getOperand(1).getReg(); 11150 Register ptrB = MI.getOperand(2).getReg(); 11151 Register incr = MI.getOperand(3).getReg(); 11152 DebugLoc dl = MI.getDebugLoc(); 11153 11154 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11155 MachineBasicBlock *loop2MBB = 11156 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11157 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11158 F->insert(It, loopMBB); 11159 if (CmpOpcode) 11160 F->insert(It, loop2MBB); 11161 F->insert(It, exitMBB); 11162 exitMBB->splice(exitMBB->begin(), BB, 11163 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11164 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11165 11166 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11167 Register TmpReg = (!BinOpcode) ? incr : 11168 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11169 : &PPC::GPRCRegClass); 11170 11171 // thisMBB: 11172 // ... 11173 // fallthrough --> loopMBB 11174 BB->addSuccessor(loopMBB); 11175 11176 // loopMBB: 11177 // l[wd]arx dest, ptr 11178 // add r0, dest, incr 11179 // st[wd]cx. r0, ptr 11180 // bne- loopMBB 11181 // fallthrough --> exitMBB 11182 11183 // For max/min... 11184 // loopMBB: 11185 // l[wd]arx dest, ptr 11186 // cmpl?[wd] incr, dest 11187 // bgt exitMBB 11188 // loop2MBB: 11189 // st[wd]cx. dest, ptr 11190 // bne- loopMBB 11191 // fallthrough --> exitMBB 11192 11193 BB = loopMBB; 11194 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11195 .addReg(ptrA).addReg(ptrB); 11196 if (BinOpcode) 11197 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11198 if (CmpOpcode) { 11199 // Signed comparisons of byte or halfword values must be sign-extended. 11200 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11201 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11202 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11203 ExtReg).addReg(dest); 11204 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11205 .addReg(incr).addReg(ExtReg); 11206 } else 11207 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11208 .addReg(incr).addReg(dest); 11209 11210 BuildMI(BB, dl, TII->get(PPC::BCC)) 11211 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11212 BB->addSuccessor(loop2MBB); 11213 BB->addSuccessor(exitMBB); 11214 BB = loop2MBB; 11215 } 11216 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11217 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11218 BuildMI(BB, dl, TII->get(PPC::BCC)) 11219 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11220 BB->addSuccessor(loopMBB); 11221 BB->addSuccessor(exitMBB); 11222 11223 // exitMBB: 11224 // ... 11225 BB = exitMBB; 11226 return BB; 11227 } 11228 11229 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11230 switch(MI.getOpcode()) { 11231 default: 11232 return false; 11233 case PPC::COPY: 11234 return TII->isSignExtended(MI); 11235 case PPC::LHA: 11236 case PPC::LHA8: 11237 case PPC::LHAU: 11238 case PPC::LHAU8: 11239 case PPC::LHAUX: 11240 case PPC::LHAUX8: 11241 case PPC::LHAX: 11242 case PPC::LHAX8: 11243 case PPC::LWA: 11244 case PPC::LWAUX: 11245 case PPC::LWAX: 11246 case PPC::LWAX_32: 11247 case PPC::LWA_32: 11248 case PPC::PLHA: 11249 case PPC::PLHA8: 11250 case PPC::PLHA8pc: 11251 case PPC::PLHApc: 11252 case PPC::PLWA: 11253 case PPC::PLWA8: 11254 case PPC::PLWA8pc: 11255 case PPC::PLWApc: 11256 case PPC::EXTSB: 11257 case PPC::EXTSB8: 11258 case PPC::EXTSB8_32_64: 11259 case PPC::EXTSB8_rec: 11260 case PPC::EXTSB_rec: 11261 case PPC::EXTSH: 11262 case PPC::EXTSH8: 11263 case PPC::EXTSH8_32_64: 11264 case PPC::EXTSH8_rec: 11265 case PPC::EXTSH_rec: 11266 case PPC::EXTSW: 11267 case PPC::EXTSWSLI: 11268 case PPC::EXTSWSLI_32_64: 11269 case PPC::EXTSWSLI_32_64_rec: 11270 case PPC::EXTSWSLI_rec: 11271 case PPC::EXTSW_32: 11272 case PPC::EXTSW_32_64: 11273 case PPC::EXTSW_32_64_rec: 11274 case PPC::EXTSW_rec: 11275 case PPC::SRAW: 11276 case PPC::SRAWI: 11277 case PPC::SRAWI_rec: 11278 case PPC::SRAW_rec: 11279 return true; 11280 } 11281 return false; 11282 } 11283 11284 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11285 MachineInstr &MI, MachineBasicBlock *BB, 11286 bool is8bit, // operation 11287 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11288 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11289 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11290 11291 // If this is a signed comparison and the value being compared is not known 11292 // to be sign extended, sign extend it here. 11293 DebugLoc dl = MI.getDebugLoc(); 11294 MachineFunction *F = BB->getParent(); 11295 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11296 Register incr = MI.getOperand(3).getReg(); 11297 bool IsSignExtended = Register::isVirtualRegister(incr) && 11298 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11299 11300 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11301 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11302 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11303 .addReg(MI.getOperand(3).getReg()); 11304 MI.getOperand(3).setReg(ValueReg); 11305 } 11306 // If we support part-word atomic mnemonics, just use them 11307 if (Subtarget.hasPartwordAtomics()) 11308 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11309 CmpPred); 11310 11311 // In 64 bit mode we have to use 64 bits for addresses, even though the 11312 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11313 // registers without caring whether they're 32 or 64, but here we're 11314 // doing actual arithmetic on the addresses. 11315 bool is64bit = Subtarget.isPPC64(); 11316 bool isLittleEndian = Subtarget.isLittleEndian(); 11317 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11318 11319 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11320 MachineFunction::iterator It = ++BB->getIterator(); 11321 11322 Register dest = MI.getOperand(0).getReg(); 11323 Register ptrA = MI.getOperand(1).getReg(); 11324 Register ptrB = MI.getOperand(2).getReg(); 11325 11326 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11327 MachineBasicBlock *loop2MBB = 11328 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11329 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11330 F->insert(It, loopMBB); 11331 if (CmpOpcode) 11332 F->insert(It, loop2MBB); 11333 F->insert(It, exitMBB); 11334 exitMBB->splice(exitMBB->begin(), BB, 11335 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11336 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11337 11338 const TargetRegisterClass *RC = 11339 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11340 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11341 11342 Register PtrReg = RegInfo.createVirtualRegister(RC); 11343 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11344 Register ShiftReg = 11345 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11346 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11347 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11348 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11349 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11350 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11351 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11352 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11353 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11354 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11355 Register Ptr1Reg; 11356 Register TmpReg = 11357 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11358 11359 // thisMBB: 11360 // ... 11361 // fallthrough --> loopMBB 11362 BB->addSuccessor(loopMBB); 11363 11364 // The 4-byte load must be aligned, while a char or short may be 11365 // anywhere in the word. Hence all this nasty bookkeeping code. 11366 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11367 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11368 // xori shift, shift1, 24 [16] 11369 // rlwinm ptr, ptr1, 0, 0, 29 11370 // slw incr2, incr, shift 11371 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11372 // slw mask, mask2, shift 11373 // loopMBB: 11374 // lwarx tmpDest, ptr 11375 // add tmp, tmpDest, incr2 11376 // andc tmp2, tmpDest, mask 11377 // and tmp3, tmp, mask 11378 // or tmp4, tmp3, tmp2 11379 // stwcx. tmp4, ptr 11380 // bne- loopMBB 11381 // fallthrough --> exitMBB 11382 // srw SrwDest, tmpDest, shift 11383 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11384 if (ptrA != ZeroReg) { 11385 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11386 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11387 .addReg(ptrA) 11388 .addReg(ptrB); 11389 } else { 11390 Ptr1Reg = ptrB; 11391 } 11392 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11393 // mode. 11394 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11395 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11396 .addImm(3) 11397 .addImm(27) 11398 .addImm(is8bit ? 28 : 27); 11399 if (!isLittleEndian) 11400 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11401 .addReg(Shift1Reg) 11402 .addImm(is8bit ? 24 : 16); 11403 if (is64bit) 11404 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11405 .addReg(Ptr1Reg) 11406 .addImm(0) 11407 .addImm(61); 11408 else 11409 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11410 .addReg(Ptr1Reg) 11411 .addImm(0) 11412 .addImm(0) 11413 .addImm(29); 11414 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11415 if (is8bit) 11416 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11417 else { 11418 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11419 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11420 .addReg(Mask3Reg) 11421 .addImm(65535); 11422 } 11423 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11424 .addReg(Mask2Reg) 11425 .addReg(ShiftReg); 11426 11427 BB = loopMBB; 11428 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11429 .addReg(ZeroReg) 11430 .addReg(PtrReg); 11431 if (BinOpcode) 11432 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11433 .addReg(Incr2Reg) 11434 .addReg(TmpDestReg); 11435 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11436 .addReg(TmpDestReg) 11437 .addReg(MaskReg); 11438 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11439 if (CmpOpcode) { 11440 // For unsigned comparisons, we can directly compare the shifted values. 11441 // For signed comparisons we shift and sign extend. 11442 Register SReg = RegInfo.createVirtualRegister(GPRC); 11443 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11444 .addReg(TmpDestReg) 11445 .addReg(MaskReg); 11446 unsigned ValueReg = SReg; 11447 unsigned CmpReg = Incr2Reg; 11448 if (CmpOpcode == PPC::CMPW) { 11449 ValueReg = RegInfo.createVirtualRegister(GPRC); 11450 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11451 .addReg(SReg) 11452 .addReg(ShiftReg); 11453 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11454 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11455 .addReg(ValueReg); 11456 ValueReg = ValueSReg; 11457 CmpReg = incr; 11458 } 11459 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11460 .addReg(CmpReg) 11461 .addReg(ValueReg); 11462 BuildMI(BB, dl, TII->get(PPC::BCC)) 11463 .addImm(CmpPred) 11464 .addReg(PPC::CR0) 11465 .addMBB(exitMBB); 11466 BB->addSuccessor(loop2MBB); 11467 BB->addSuccessor(exitMBB); 11468 BB = loop2MBB; 11469 } 11470 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11471 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11472 .addReg(Tmp4Reg) 11473 .addReg(ZeroReg) 11474 .addReg(PtrReg); 11475 BuildMI(BB, dl, TII->get(PPC::BCC)) 11476 .addImm(PPC::PRED_NE) 11477 .addReg(PPC::CR0) 11478 .addMBB(loopMBB); 11479 BB->addSuccessor(loopMBB); 11480 BB->addSuccessor(exitMBB); 11481 11482 // exitMBB: 11483 // ... 11484 BB = exitMBB; 11485 // Since the shift amount is not a constant, we need to clear 11486 // the upper bits with a separate RLWINM. 11487 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11488 .addReg(SrwDestReg) 11489 .addImm(0) 11490 .addImm(is8bit ? 24 : 16) 11491 .addImm(31); 11492 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11493 .addReg(TmpDestReg) 11494 .addReg(ShiftReg); 11495 return BB; 11496 } 11497 11498 llvm::MachineBasicBlock * 11499 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11500 MachineBasicBlock *MBB) const { 11501 DebugLoc DL = MI.getDebugLoc(); 11502 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11503 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11504 11505 MachineFunction *MF = MBB->getParent(); 11506 MachineRegisterInfo &MRI = MF->getRegInfo(); 11507 11508 const BasicBlock *BB = MBB->getBasicBlock(); 11509 MachineFunction::iterator I = ++MBB->getIterator(); 11510 11511 Register DstReg = MI.getOperand(0).getReg(); 11512 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11513 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11514 Register mainDstReg = MRI.createVirtualRegister(RC); 11515 Register restoreDstReg = MRI.createVirtualRegister(RC); 11516 11517 MVT PVT = getPointerTy(MF->getDataLayout()); 11518 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11519 "Invalid Pointer Size!"); 11520 // For v = setjmp(buf), we generate 11521 // 11522 // thisMBB: 11523 // SjLjSetup mainMBB 11524 // bl mainMBB 11525 // v_restore = 1 11526 // b sinkMBB 11527 // 11528 // mainMBB: 11529 // buf[LabelOffset] = LR 11530 // v_main = 0 11531 // 11532 // sinkMBB: 11533 // v = phi(main, restore) 11534 // 11535 11536 MachineBasicBlock *thisMBB = MBB; 11537 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11538 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11539 MF->insert(I, mainMBB); 11540 MF->insert(I, sinkMBB); 11541 11542 MachineInstrBuilder MIB; 11543 11544 // Transfer the remainder of BB and its successor edges to sinkMBB. 11545 sinkMBB->splice(sinkMBB->begin(), MBB, 11546 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11547 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11548 11549 // Note that the structure of the jmp_buf used here is not compatible 11550 // with that used by libc, and is not designed to be. Specifically, it 11551 // stores only those 'reserved' registers that LLVM does not otherwise 11552 // understand how to spill. Also, by convention, by the time this 11553 // intrinsic is called, Clang has already stored the frame address in the 11554 // first slot of the buffer and stack address in the third. Following the 11555 // X86 target code, we'll store the jump address in the second slot. We also 11556 // need to save the TOC pointer (R2) to handle jumps between shared 11557 // libraries, and that will be stored in the fourth slot. The thread 11558 // identifier (R13) is not affected. 11559 11560 // thisMBB: 11561 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11562 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11563 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11564 11565 // Prepare IP either in reg. 11566 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11567 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11568 Register BufReg = MI.getOperand(1).getReg(); 11569 11570 if (Subtarget.is64BitELFABI()) { 11571 setUsesTOCBasePtr(*MBB->getParent()); 11572 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11573 .addReg(PPC::X2) 11574 .addImm(TOCOffset) 11575 .addReg(BufReg) 11576 .cloneMemRefs(MI); 11577 } 11578 11579 // Naked functions never have a base pointer, and so we use r1. For all 11580 // other functions, this decision must be delayed until during PEI. 11581 unsigned BaseReg; 11582 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11583 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11584 else 11585 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11586 11587 MIB = BuildMI(*thisMBB, MI, DL, 11588 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11589 .addReg(BaseReg) 11590 .addImm(BPOffset) 11591 .addReg(BufReg) 11592 .cloneMemRefs(MI); 11593 11594 // Setup 11595 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11596 MIB.addRegMask(TRI->getNoPreservedMask()); 11597 11598 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11599 11600 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11601 .addMBB(mainMBB); 11602 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11603 11604 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11605 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11606 11607 // mainMBB: 11608 // mainDstReg = 0 11609 MIB = 11610 BuildMI(mainMBB, DL, 11611 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11612 11613 // Store IP 11614 if (Subtarget.isPPC64()) { 11615 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11616 .addReg(LabelReg) 11617 .addImm(LabelOffset) 11618 .addReg(BufReg); 11619 } else { 11620 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11621 .addReg(LabelReg) 11622 .addImm(LabelOffset) 11623 .addReg(BufReg); 11624 } 11625 MIB.cloneMemRefs(MI); 11626 11627 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11628 mainMBB->addSuccessor(sinkMBB); 11629 11630 // sinkMBB: 11631 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11632 TII->get(PPC::PHI), DstReg) 11633 .addReg(mainDstReg).addMBB(mainMBB) 11634 .addReg(restoreDstReg).addMBB(thisMBB); 11635 11636 MI.eraseFromParent(); 11637 return sinkMBB; 11638 } 11639 11640 MachineBasicBlock * 11641 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11642 MachineBasicBlock *MBB) const { 11643 DebugLoc DL = MI.getDebugLoc(); 11644 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11645 11646 MachineFunction *MF = MBB->getParent(); 11647 MachineRegisterInfo &MRI = MF->getRegInfo(); 11648 11649 MVT PVT = getPointerTy(MF->getDataLayout()); 11650 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11651 "Invalid Pointer Size!"); 11652 11653 const TargetRegisterClass *RC = 11654 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11655 Register Tmp = MRI.createVirtualRegister(RC); 11656 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11657 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11658 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11659 unsigned BP = 11660 (PVT == MVT::i64) 11661 ? PPC::X30 11662 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11663 : PPC::R30); 11664 11665 MachineInstrBuilder MIB; 11666 11667 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11668 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11669 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11670 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11671 11672 Register BufReg = MI.getOperand(0).getReg(); 11673 11674 // Reload FP (the jumped-to function may not have had a 11675 // frame pointer, and if so, then its r31 will be restored 11676 // as necessary). 11677 if (PVT == MVT::i64) { 11678 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11679 .addImm(0) 11680 .addReg(BufReg); 11681 } else { 11682 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11683 .addImm(0) 11684 .addReg(BufReg); 11685 } 11686 MIB.cloneMemRefs(MI); 11687 11688 // Reload IP 11689 if (PVT == MVT::i64) { 11690 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11691 .addImm(LabelOffset) 11692 .addReg(BufReg); 11693 } else { 11694 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11695 .addImm(LabelOffset) 11696 .addReg(BufReg); 11697 } 11698 MIB.cloneMemRefs(MI); 11699 11700 // Reload SP 11701 if (PVT == MVT::i64) { 11702 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11703 .addImm(SPOffset) 11704 .addReg(BufReg); 11705 } else { 11706 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11707 .addImm(SPOffset) 11708 .addReg(BufReg); 11709 } 11710 MIB.cloneMemRefs(MI); 11711 11712 // Reload BP 11713 if (PVT == MVT::i64) { 11714 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11715 .addImm(BPOffset) 11716 .addReg(BufReg); 11717 } else { 11718 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11719 .addImm(BPOffset) 11720 .addReg(BufReg); 11721 } 11722 MIB.cloneMemRefs(MI); 11723 11724 // Reload TOC 11725 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11726 setUsesTOCBasePtr(*MBB->getParent()); 11727 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11728 .addImm(TOCOffset) 11729 .addReg(BufReg) 11730 .cloneMemRefs(MI); 11731 } 11732 11733 // Jump 11734 BuildMI(*MBB, MI, DL, 11735 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11736 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11737 11738 MI.eraseFromParent(); 11739 return MBB; 11740 } 11741 11742 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11743 // If the function specifically requests inline stack probes, emit them. 11744 if (MF.getFunction().hasFnAttribute("probe-stack")) 11745 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11746 "inline-asm"; 11747 return false; 11748 } 11749 11750 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11751 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11752 unsigned StackAlign = TFI->getStackAlignment(); 11753 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11754 "Unexpected stack alignment"); 11755 // The default stack probe size is 4096 if the function has no 11756 // stack-probe-size attribute. 11757 unsigned StackProbeSize = 4096; 11758 const Function &Fn = MF.getFunction(); 11759 if (Fn.hasFnAttribute("stack-probe-size")) 11760 Fn.getFnAttribute("stack-probe-size") 11761 .getValueAsString() 11762 .getAsInteger(0, StackProbeSize); 11763 // Round down to the stack alignment. 11764 StackProbeSize &= ~(StackAlign - 1); 11765 return StackProbeSize ? StackProbeSize : StackAlign; 11766 } 11767 11768 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11769 // into three phases. In the first phase, it uses pseudo instruction 11770 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11771 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11772 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11773 // MaxCallFrameSize so that it can calculate correct data area pointer. 11774 MachineBasicBlock * 11775 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11776 MachineBasicBlock *MBB) const { 11777 const bool isPPC64 = Subtarget.isPPC64(); 11778 MachineFunction *MF = MBB->getParent(); 11779 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11780 DebugLoc DL = MI.getDebugLoc(); 11781 const unsigned ProbeSize = getStackProbeSize(*MF); 11782 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11783 MachineRegisterInfo &MRI = MF->getRegInfo(); 11784 // The CFG of probing stack looks as 11785 // +-----+ 11786 // | MBB | 11787 // +--+--+ 11788 // | 11789 // +----v----+ 11790 // +--->+ TestMBB +---+ 11791 // | +----+----+ | 11792 // | | | 11793 // | +-----v----+ | 11794 // +---+ BlockMBB | | 11795 // +----------+ | 11796 // | 11797 // +---------+ | 11798 // | TailMBB +<--+ 11799 // +---------+ 11800 // In MBB, calculate previous frame pointer and final stack pointer. 11801 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11802 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11803 // TailMBB is spliced via \p MI. 11804 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11805 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11806 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11807 11808 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11809 MF->insert(MBBIter, TestMBB); 11810 MF->insert(MBBIter, BlockMBB); 11811 MF->insert(MBBIter, TailMBB); 11812 11813 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11814 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11815 11816 Register DstReg = MI.getOperand(0).getReg(); 11817 Register NegSizeReg = MI.getOperand(1).getReg(); 11818 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11819 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11820 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11821 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11822 11823 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11824 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11825 // NegSize. 11826 unsigned ProbeOpc; 11827 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11828 ProbeOpc = 11829 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11830 else 11831 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11832 // and NegSizeReg will be allocated in the same phyreg to avoid 11833 // redundant copy when NegSizeReg has only one use which is current MI and 11834 // will be replaced by PREPARE_PROBED_ALLOCA then. 11835 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11836 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11837 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11838 .addDef(ActualNegSizeReg) 11839 .addReg(NegSizeReg) 11840 .add(MI.getOperand(2)) 11841 .add(MI.getOperand(3)); 11842 11843 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11844 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11845 FinalStackPtr) 11846 .addReg(SPReg) 11847 .addReg(ActualNegSizeReg); 11848 11849 // Materialize a scratch register for update. 11850 int64_t NegProbeSize = -(int64_t)ProbeSize; 11851 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11852 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11853 if (!isInt<16>(NegProbeSize)) { 11854 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11855 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11856 .addImm(NegProbeSize >> 16); 11857 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11858 ScratchReg) 11859 .addReg(TempReg) 11860 .addImm(NegProbeSize & 0xFFFF); 11861 } else 11862 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11863 .addImm(NegProbeSize); 11864 11865 { 11866 // Probing leading residual part. 11867 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11868 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11869 .addReg(ActualNegSizeReg) 11870 .addReg(ScratchReg); 11871 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11872 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11873 .addReg(Div) 11874 .addReg(ScratchReg); 11875 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11876 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11877 .addReg(Mul) 11878 .addReg(ActualNegSizeReg); 11879 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11880 .addReg(FramePointer) 11881 .addReg(SPReg) 11882 .addReg(NegMod); 11883 } 11884 11885 { 11886 // Remaining part should be multiple of ProbeSize. 11887 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11888 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11889 .addReg(SPReg) 11890 .addReg(FinalStackPtr); 11891 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11892 .addImm(PPC::PRED_EQ) 11893 .addReg(CmpResult) 11894 .addMBB(TailMBB); 11895 TestMBB->addSuccessor(BlockMBB); 11896 TestMBB->addSuccessor(TailMBB); 11897 } 11898 11899 { 11900 // Touch the block. 11901 // |P...|P...|P... 11902 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11903 .addReg(FramePointer) 11904 .addReg(SPReg) 11905 .addReg(ScratchReg); 11906 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11907 BlockMBB->addSuccessor(TestMBB); 11908 } 11909 11910 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11911 // DYNAREAOFFSET pseudo instruction to get the future result. 11912 Register MaxCallFrameSizeReg = 11913 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11914 BuildMI(TailMBB, DL, 11915 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11916 MaxCallFrameSizeReg) 11917 .add(MI.getOperand(2)) 11918 .add(MI.getOperand(3)); 11919 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11920 .addReg(SPReg) 11921 .addReg(MaxCallFrameSizeReg); 11922 11923 // Splice instructions after MI to TailMBB. 11924 TailMBB->splice(TailMBB->end(), MBB, 11925 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11926 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11927 MBB->addSuccessor(TestMBB); 11928 11929 // Delete the pseudo instruction. 11930 MI.eraseFromParent(); 11931 11932 ++NumDynamicAllocaProbed; 11933 return TailMBB; 11934 } 11935 11936 MachineBasicBlock * 11937 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11938 MachineBasicBlock *BB) const { 11939 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11940 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11941 if (Subtarget.is64BitELFABI() && 11942 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11943 !Subtarget.isUsingPCRelativeCalls()) { 11944 // Call lowering should have added an r2 operand to indicate a dependence 11945 // on the TOC base pointer value. It can't however, because there is no 11946 // way to mark the dependence as implicit there, and so the stackmap code 11947 // will confuse it with a regular operand. Instead, add the dependence 11948 // here. 11949 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11950 } 11951 11952 return emitPatchPoint(MI, BB); 11953 } 11954 11955 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11956 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11957 return emitEHSjLjSetJmp(MI, BB); 11958 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11959 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11960 return emitEHSjLjLongJmp(MI, BB); 11961 } 11962 11963 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11964 11965 // To "insert" these instructions we actually have to insert their 11966 // control-flow patterns. 11967 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11968 MachineFunction::iterator It = ++BB->getIterator(); 11969 11970 MachineFunction *F = BB->getParent(); 11971 11972 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11973 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11974 MI.getOpcode() == PPC::SELECT_I8) { 11975 SmallVector<MachineOperand, 2> Cond; 11976 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11977 MI.getOpcode() == PPC::SELECT_CC_I8) 11978 Cond.push_back(MI.getOperand(4)); 11979 else 11980 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11981 Cond.push_back(MI.getOperand(1)); 11982 11983 DebugLoc dl = MI.getDebugLoc(); 11984 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11985 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11986 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11987 MI.getOpcode() == PPC::SELECT_CC_F8 || 11988 MI.getOpcode() == PPC::SELECT_CC_F16 || 11989 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11990 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11991 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11992 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11993 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11994 MI.getOpcode() == PPC::SELECT_CC_SPE || 11995 MI.getOpcode() == PPC::SELECT_F4 || 11996 MI.getOpcode() == PPC::SELECT_F8 || 11997 MI.getOpcode() == PPC::SELECT_F16 || 11998 MI.getOpcode() == PPC::SELECT_SPE || 11999 MI.getOpcode() == PPC::SELECT_SPE4 || 12000 MI.getOpcode() == PPC::SELECT_VRRC || 12001 MI.getOpcode() == PPC::SELECT_VSFRC || 12002 MI.getOpcode() == PPC::SELECT_VSSRC || 12003 MI.getOpcode() == PPC::SELECT_VSRC) { 12004 // The incoming instruction knows the destination vreg to set, the 12005 // condition code register to branch on, the true/false values to 12006 // select between, and a branch opcode to use. 12007 12008 // thisMBB: 12009 // ... 12010 // TrueVal = ... 12011 // cmpTY ccX, r1, r2 12012 // bCC copy1MBB 12013 // fallthrough --> copy0MBB 12014 MachineBasicBlock *thisMBB = BB; 12015 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12016 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12017 DebugLoc dl = MI.getDebugLoc(); 12018 F->insert(It, copy0MBB); 12019 F->insert(It, sinkMBB); 12020 12021 // Transfer the remainder of BB and its successor edges to sinkMBB. 12022 sinkMBB->splice(sinkMBB->begin(), BB, 12023 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12024 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12025 12026 // Next, add the true and fallthrough blocks as its successors. 12027 BB->addSuccessor(copy0MBB); 12028 BB->addSuccessor(sinkMBB); 12029 12030 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12031 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12032 MI.getOpcode() == PPC::SELECT_F16 || 12033 MI.getOpcode() == PPC::SELECT_SPE4 || 12034 MI.getOpcode() == PPC::SELECT_SPE || 12035 MI.getOpcode() == PPC::SELECT_VRRC || 12036 MI.getOpcode() == PPC::SELECT_VSFRC || 12037 MI.getOpcode() == PPC::SELECT_VSSRC || 12038 MI.getOpcode() == PPC::SELECT_VSRC) { 12039 BuildMI(BB, dl, TII->get(PPC::BC)) 12040 .addReg(MI.getOperand(1).getReg()) 12041 .addMBB(sinkMBB); 12042 } else { 12043 unsigned SelectPred = MI.getOperand(4).getImm(); 12044 BuildMI(BB, dl, TII->get(PPC::BCC)) 12045 .addImm(SelectPred) 12046 .addReg(MI.getOperand(1).getReg()) 12047 .addMBB(sinkMBB); 12048 } 12049 12050 // copy0MBB: 12051 // %FalseValue = ... 12052 // # fallthrough to sinkMBB 12053 BB = copy0MBB; 12054 12055 // Update machine-CFG edges 12056 BB->addSuccessor(sinkMBB); 12057 12058 // sinkMBB: 12059 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12060 // ... 12061 BB = sinkMBB; 12062 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12063 .addReg(MI.getOperand(3).getReg()) 12064 .addMBB(copy0MBB) 12065 .addReg(MI.getOperand(2).getReg()) 12066 .addMBB(thisMBB); 12067 } else if (MI.getOpcode() == PPC::ReadTB) { 12068 // To read the 64-bit time-base register on a 32-bit target, we read the 12069 // two halves. Should the counter have wrapped while it was being read, we 12070 // need to try again. 12071 // ... 12072 // readLoop: 12073 // mfspr Rx,TBU # load from TBU 12074 // mfspr Ry,TB # load from TB 12075 // mfspr Rz,TBU # load from TBU 12076 // cmpw crX,Rx,Rz # check if 'old'='new' 12077 // bne readLoop # branch if they're not equal 12078 // ... 12079 12080 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12081 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12082 DebugLoc dl = MI.getDebugLoc(); 12083 F->insert(It, readMBB); 12084 F->insert(It, sinkMBB); 12085 12086 // Transfer the remainder of BB and its successor edges to sinkMBB. 12087 sinkMBB->splice(sinkMBB->begin(), BB, 12088 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12089 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12090 12091 BB->addSuccessor(readMBB); 12092 BB = readMBB; 12093 12094 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12095 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12096 Register LoReg = MI.getOperand(0).getReg(); 12097 Register HiReg = MI.getOperand(1).getReg(); 12098 12099 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12100 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12101 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12102 12103 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12104 12105 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12106 .addReg(HiReg) 12107 .addReg(ReadAgainReg); 12108 BuildMI(BB, dl, TII->get(PPC::BCC)) 12109 .addImm(PPC::PRED_NE) 12110 .addReg(CmpReg) 12111 .addMBB(readMBB); 12112 12113 BB->addSuccessor(readMBB); 12114 BB->addSuccessor(sinkMBB); 12115 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12116 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12117 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12118 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12119 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12120 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12121 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12122 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12123 12124 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12125 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12126 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12127 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12128 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12129 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12130 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12131 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12132 12133 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12134 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12135 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12136 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12137 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12138 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12139 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12140 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12141 12142 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12143 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12144 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12145 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12146 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12147 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12148 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12149 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12150 12151 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12152 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12153 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12154 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12155 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12156 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12157 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12158 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12159 12160 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12161 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12162 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12163 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12164 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12165 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12166 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12167 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12168 12169 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12170 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12171 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12172 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12173 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12174 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12175 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12176 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12177 12178 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12179 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12180 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12181 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12182 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12183 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12184 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12185 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12186 12187 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12188 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12189 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12190 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12191 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12192 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12193 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12194 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12195 12196 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12197 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12198 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12199 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12200 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12201 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12202 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12203 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12204 12205 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12206 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12207 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12208 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12209 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12210 BB = EmitAtomicBinary(MI, BB, 4, 0); 12211 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12212 BB = EmitAtomicBinary(MI, BB, 8, 0); 12213 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12214 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12215 (Subtarget.hasPartwordAtomics() && 12216 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12217 (Subtarget.hasPartwordAtomics() && 12218 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12219 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12220 12221 auto LoadMnemonic = PPC::LDARX; 12222 auto StoreMnemonic = PPC::STDCX; 12223 switch (MI.getOpcode()) { 12224 default: 12225 llvm_unreachable("Compare and swap of unknown size"); 12226 case PPC::ATOMIC_CMP_SWAP_I8: 12227 LoadMnemonic = PPC::LBARX; 12228 StoreMnemonic = PPC::STBCX; 12229 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12230 break; 12231 case PPC::ATOMIC_CMP_SWAP_I16: 12232 LoadMnemonic = PPC::LHARX; 12233 StoreMnemonic = PPC::STHCX; 12234 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12235 break; 12236 case PPC::ATOMIC_CMP_SWAP_I32: 12237 LoadMnemonic = PPC::LWARX; 12238 StoreMnemonic = PPC::STWCX; 12239 break; 12240 case PPC::ATOMIC_CMP_SWAP_I64: 12241 LoadMnemonic = PPC::LDARX; 12242 StoreMnemonic = PPC::STDCX; 12243 break; 12244 } 12245 Register dest = MI.getOperand(0).getReg(); 12246 Register ptrA = MI.getOperand(1).getReg(); 12247 Register ptrB = MI.getOperand(2).getReg(); 12248 Register oldval = MI.getOperand(3).getReg(); 12249 Register newval = MI.getOperand(4).getReg(); 12250 DebugLoc dl = MI.getDebugLoc(); 12251 12252 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12253 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12254 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12255 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12256 F->insert(It, loop1MBB); 12257 F->insert(It, loop2MBB); 12258 F->insert(It, midMBB); 12259 F->insert(It, exitMBB); 12260 exitMBB->splice(exitMBB->begin(), BB, 12261 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12262 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12263 12264 // thisMBB: 12265 // ... 12266 // fallthrough --> loopMBB 12267 BB->addSuccessor(loop1MBB); 12268 12269 // loop1MBB: 12270 // l[bhwd]arx dest, ptr 12271 // cmp[wd] dest, oldval 12272 // bne- midMBB 12273 // loop2MBB: 12274 // st[bhwd]cx. newval, ptr 12275 // bne- loopMBB 12276 // b exitBB 12277 // midMBB: 12278 // st[bhwd]cx. dest, ptr 12279 // exitBB: 12280 BB = loop1MBB; 12281 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12282 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12283 .addReg(oldval) 12284 .addReg(dest); 12285 BuildMI(BB, dl, TII->get(PPC::BCC)) 12286 .addImm(PPC::PRED_NE) 12287 .addReg(PPC::CR0) 12288 .addMBB(midMBB); 12289 BB->addSuccessor(loop2MBB); 12290 BB->addSuccessor(midMBB); 12291 12292 BB = loop2MBB; 12293 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12294 .addReg(newval) 12295 .addReg(ptrA) 12296 .addReg(ptrB); 12297 BuildMI(BB, dl, TII->get(PPC::BCC)) 12298 .addImm(PPC::PRED_NE) 12299 .addReg(PPC::CR0) 12300 .addMBB(loop1MBB); 12301 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12302 BB->addSuccessor(loop1MBB); 12303 BB->addSuccessor(exitMBB); 12304 12305 BB = midMBB; 12306 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12307 .addReg(dest) 12308 .addReg(ptrA) 12309 .addReg(ptrB); 12310 BB->addSuccessor(exitMBB); 12311 12312 // exitMBB: 12313 // ... 12314 BB = exitMBB; 12315 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12316 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12317 // We must use 64-bit registers for addresses when targeting 64-bit, 12318 // since we're actually doing arithmetic on them. Other registers 12319 // can be 32-bit. 12320 bool is64bit = Subtarget.isPPC64(); 12321 bool isLittleEndian = Subtarget.isLittleEndian(); 12322 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12323 12324 Register dest = MI.getOperand(0).getReg(); 12325 Register ptrA = MI.getOperand(1).getReg(); 12326 Register ptrB = MI.getOperand(2).getReg(); 12327 Register oldval = MI.getOperand(3).getReg(); 12328 Register newval = MI.getOperand(4).getReg(); 12329 DebugLoc dl = MI.getDebugLoc(); 12330 12331 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12332 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12333 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12334 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12335 F->insert(It, loop1MBB); 12336 F->insert(It, loop2MBB); 12337 F->insert(It, midMBB); 12338 F->insert(It, exitMBB); 12339 exitMBB->splice(exitMBB->begin(), BB, 12340 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12341 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12342 12343 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12344 const TargetRegisterClass *RC = 12345 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12346 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12347 12348 Register PtrReg = RegInfo.createVirtualRegister(RC); 12349 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12350 Register ShiftReg = 12351 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12352 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12353 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12354 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12355 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12356 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12357 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12358 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12359 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12360 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12361 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12362 Register Ptr1Reg; 12363 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12364 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12365 // thisMBB: 12366 // ... 12367 // fallthrough --> loopMBB 12368 BB->addSuccessor(loop1MBB); 12369 12370 // The 4-byte load must be aligned, while a char or short may be 12371 // anywhere in the word. Hence all this nasty bookkeeping code. 12372 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12373 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12374 // xori shift, shift1, 24 [16] 12375 // rlwinm ptr, ptr1, 0, 0, 29 12376 // slw newval2, newval, shift 12377 // slw oldval2, oldval,shift 12378 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12379 // slw mask, mask2, shift 12380 // and newval3, newval2, mask 12381 // and oldval3, oldval2, mask 12382 // loop1MBB: 12383 // lwarx tmpDest, ptr 12384 // and tmp, tmpDest, mask 12385 // cmpw tmp, oldval3 12386 // bne- midMBB 12387 // loop2MBB: 12388 // andc tmp2, tmpDest, mask 12389 // or tmp4, tmp2, newval3 12390 // stwcx. tmp4, ptr 12391 // bne- loop1MBB 12392 // b exitBB 12393 // midMBB: 12394 // stwcx. tmpDest, ptr 12395 // exitBB: 12396 // srw dest, tmpDest, shift 12397 if (ptrA != ZeroReg) { 12398 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12399 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12400 .addReg(ptrA) 12401 .addReg(ptrB); 12402 } else { 12403 Ptr1Reg = ptrB; 12404 } 12405 12406 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12407 // mode. 12408 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12409 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12410 .addImm(3) 12411 .addImm(27) 12412 .addImm(is8bit ? 28 : 27); 12413 if (!isLittleEndian) 12414 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12415 .addReg(Shift1Reg) 12416 .addImm(is8bit ? 24 : 16); 12417 if (is64bit) 12418 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12419 .addReg(Ptr1Reg) 12420 .addImm(0) 12421 .addImm(61); 12422 else 12423 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12424 .addReg(Ptr1Reg) 12425 .addImm(0) 12426 .addImm(0) 12427 .addImm(29); 12428 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12429 .addReg(newval) 12430 .addReg(ShiftReg); 12431 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12432 .addReg(oldval) 12433 .addReg(ShiftReg); 12434 if (is8bit) 12435 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12436 else { 12437 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12438 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12439 .addReg(Mask3Reg) 12440 .addImm(65535); 12441 } 12442 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12443 .addReg(Mask2Reg) 12444 .addReg(ShiftReg); 12445 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12446 .addReg(NewVal2Reg) 12447 .addReg(MaskReg); 12448 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12449 .addReg(OldVal2Reg) 12450 .addReg(MaskReg); 12451 12452 BB = loop1MBB; 12453 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12454 .addReg(ZeroReg) 12455 .addReg(PtrReg); 12456 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12457 .addReg(TmpDestReg) 12458 .addReg(MaskReg); 12459 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12460 .addReg(TmpReg) 12461 .addReg(OldVal3Reg); 12462 BuildMI(BB, dl, TII->get(PPC::BCC)) 12463 .addImm(PPC::PRED_NE) 12464 .addReg(PPC::CR0) 12465 .addMBB(midMBB); 12466 BB->addSuccessor(loop2MBB); 12467 BB->addSuccessor(midMBB); 12468 12469 BB = loop2MBB; 12470 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12471 .addReg(TmpDestReg) 12472 .addReg(MaskReg); 12473 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12474 .addReg(Tmp2Reg) 12475 .addReg(NewVal3Reg); 12476 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12477 .addReg(Tmp4Reg) 12478 .addReg(ZeroReg) 12479 .addReg(PtrReg); 12480 BuildMI(BB, dl, TII->get(PPC::BCC)) 12481 .addImm(PPC::PRED_NE) 12482 .addReg(PPC::CR0) 12483 .addMBB(loop1MBB); 12484 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12485 BB->addSuccessor(loop1MBB); 12486 BB->addSuccessor(exitMBB); 12487 12488 BB = midMBB; 12489 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12490 .addReg(TmpDestReg) 12491 .addReg(ZeroReg) 12492 .addReg(PtrReg); 12493 BB->addSuccessor(exitMBB); 12494 12495 // exitMBB: 12496 // ... 12497 BB = exitMBB; 12498 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12499 .addReg(TmpReg) 12500 .addReg(ShiftReg); 12501 } else if (MI.getOpcode() == PPC::FADDrtz) { 12502 // This pseudo performs an FADD with rounding mode temporarily forced 12503 // to round-to-zero. We emit this via custom inserter since the FPSCR 12504 // is not modeled at the SelectionDAG level. 12505 Register Dest = MI.getOperand(0).getReg(); 12506 Register Src1 = MI.getOperand(1).getReg(); 12507 Register Src2 = MI.getOperand(2).getReg(); 12508 DebugLoc dl = MI.getDebugLoc(); 12509 12510 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12511 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12512 12513 // Save FPSCR value. 12514 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12515 12516 // Set rounding mode to round-to-zero. 12517 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12518 .addImm(31) 12519 .addReg(PPC::RM, RegState::ImplicitDefine); 12520 12521 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12522 .addImm(30) 12523 .addReg(PPC::RM, RegState::ImplicitDefine); 12524 12525 // Perform addition. 12526 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12527 .addReg(Src1) 12528 .addReg(Src2); 12529 if (MI.getFlag(MachineInstr::NoFPExcept)) 12530 MIB.setMIFlag(MachineInstr::NoFPExcept); 12531 12532 // Restore FPSCR value. 12533 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12534 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12535 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12536 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12537 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12538 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12539 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12540 ? PPC::ANDI8_rec 12541 : PPC::ANDI_rec; 12542 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12543 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12544 12545 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12546 Register Dest = RegInfo.createVirtualRegister( 12547 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12548 12549 DebugLoc Dl = MI.getDebugLoc(); 12550 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12551 .addReg(MI.getOperand(1).getReg()) 12552 .addImm(1); 12553 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12554 MI.getOperand(0).getReg()) 12555 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12556 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12557 DebugLoc Dl = MI.getDebugLoc(); 12558 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12559 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12560 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12561 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12562 MI.getOperand(0).getReg()) 12563 .addReg(CRReg); 12564 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12565 DebugLoc Dl = MI.getDebugLoc(); 12566 unsigned Imm = MI.getOperand(1).getImm(); 12567 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12568 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12569 MI.getOperand(0).getReg()) 12570 .addReg(PPC::CR0EQ); 12571 } else if (MI.getOpcode() == PPC::SETRNDi) { 12572 DebugLoc dl = MI.getDebugLoc(); 12573 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12574 12575 // Save FPSCR value. 12576 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12577 12578 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12579 // the following settings: 12580 // 00 Round to nearest 12581 // 01 Round to 0 12582 // 10 Round to +inf 12583 // 11 Round to -inf 12584 12585 // When the operand is immediate, using the two least significant bits of 12586 // the immediate to set the bits 62:63 of FPSCR. 12587 unsigned Mode = MI.getOperand(1).getImm(); 12588 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12589 .addImm(31) 12590 .addReg(PPC::RM, RegState::ImplicitDefine); 12591 12592 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12593 .addImm(30) 12594 .addReg(PPC::RM, RegState::ImplicitDefine); 12595 } else if (MI.getOpcode() == PPC::SETRND) { 12596 DebugLoc dl = MI.getDebugLoc(); 12597 12598 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12599 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12600 // If the target doesn't have DirectMove, we should use stack to do the 12601 // conversion, because the target doesn't have the instructions like mtvsrd 12602 // or mfvsrd to do this conversion directly. 12603 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12604 if (Subtarget.hasDirectMove()) { 12605 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12606 .addReg(SrcReg); 12607 } else { 12608 // Use stack to do the register copy. 12609 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12610 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12611 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12612 if (RC == &PPC::F8RCRegClass) { 12613 // Copy register from F8RCRegClass to G8RCRegclass. 12614 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12615 "Unsupported RegClass."); 12616 12617 StoreOp = PPC::STFD; 12618 LoadOp = PPC::LD; 12619 } else { 12620 // Copy register from G8RCRegClass to F8RCRegclass. 12621 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12622 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12623 "Unsupported RegClass."); 12624 } 12625 12626 MachineFrameInfo &MFI = F->getFrameInfo(); 12627 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12628 12629 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12630 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12631 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12632 MFI.getObjectAlign(FrameIdx)); 12633 12634 // Store the SrcReg into the stack. 12635 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12636 .addReg(SrcReg) 12637 .addImm(0) 12638 .addFrameIndex(FrameIdx) 12639 .addMemOperand(MMOStore); 12640 12641 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12642 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12643 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12644 MFI.getObjectAlign(FrameIdx)); 12645 12646 // Load from the stack where SrcReg is stored, and save to DestReg, 12647 // so we have done the RegClass conversion from RegClass::SrcReg to 12648 // RegClass::DestReg. 12649 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12650 .addImm(0) 12651 .addFrameIndex(FrameIdx) 12652 .addMemOperand(MMOLoad); 12653 } 12654 }; 12655 12656 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12657 12658 // Save FPSCR value. 12659 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12660 12661 // When the operand is gprc register, use two least significant bits of the 12662 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12663 // 12664 // copy OldFPSCRTmpReg, OldFPSCRReg 12665 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12666 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12667 // copy NewFPSCRReg, NewFPSCRTmpReg 12668 // mtfsf 255, NewFPSCRReg 12669 MachineOperand SrcOp = MI.getOperand(1); 12670 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12671 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12672 12673 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12674 12675 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12676 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12677 12678 // The first operand of INSERT_SUBREG should be a register which has 12679 // subregisters, we only care about its RegClass, so we should use an 12680 // IMPLICIT_DEF register. 12681 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12682 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12683 .addReg(ImDefReg) 12684 .add(SrcOp) 12685 .addImm(1); 12686 12687 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12688 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12689 .addReg(OldFPSCRTmpReg) 12690 .addReg(ExtSrcReg) 12691 .addImm(0) 12692 .addImm(62); 12693 12694 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12695 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12696 12697 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12698 // bits of FPSCR. 12699 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12700 .addImm(255) 12701 .addReg(NewFPSCRReg) 12702 .addImm(0) 12703 .addImm(0); 12704 } else if (MI.getOpcode() == PPC::SETFLM) { 12705 DebugLoc Dl = MI.getDebugLoc(); 12706 12707 // Result of setflm is previous FPSCR content, so we need to save it first. 12708 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12709 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12710 12711 // Put bits in 32:63 to FPSCR. 12712 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12713 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12714 .addImm(255) 12715 .addReg(NewFPSCRReg) 12716 .addImm(0) 12717 .addImm(0); 12718 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12719 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12720 return emitProbedAlloca(MI, BB); 12721 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 12722 DebugLoc DL = MI.getDebugLoc(); 12723 Register Src = MI.getOperand(2).getReg(); 12724 Register Lo = MI.getOperand(0).getReg(); 12725 Register Hi = MI.getOperand(1).getReg(); 12726 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12727 .addDef(Lo) 12728 .addUse(Src, 0, PPC::sub_gp8_x1); 12729 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12730 .addDef(Hi) 12731 .addUse(Src, 0, PPC::sub_gp8_x0); 12732 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 12733 MI.getOpcode() == PPC::STQX_PSEUDO) { 12734 DebugLoc DL = MI.getDebugLoc(); 12735 // Ptr is used as the ptr_rc_no_r0 part 12736 // of LQ/STQ's memory operand and adding result of RA and RB, 12737 // so it has to be g8rc_and_g8rc_nox0. 12738 Register Ptr = 12739 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 12740 Register Val = MI.getOperand(0).getReg(); 12741 Register RA = MI.getOperand(1).getReg(); 12742 Register RB = MI.getOperand(2).getReg(); 12743 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 12744 BuildMI(*BB, MI, DL, 12745 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 12746 : TII->get(PPC::STQ)) 12747 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 12748 .addImm(0) 12749 .addReg(Ptr); 12750 } else { 12751 llvm_unreachable("Unexpected instr type to insert"); 12752 } 12753 12754 MI.eraseFromParent(); // The pseudo instruction is gone now. 12755 return BB; 12756 } 12757 12758 //===----------------------------------------------------------------------===// 12759 // Target Optimization Hooks 12760 //===----------------------------------------------------------------------===// 12761 12762 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12763 // For the estimates, convergence is quadratic, so we essentially double the 12764 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12765 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12766 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12767 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12768 if (VT.getScalarType() == MVT::f64) 12769 RefinementSteps++; 12770 return RefinementSteps; 12771 } 12772 12773 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12774 const DenormalMode &Mode) const { 12775 // We only have VSX Vector Test for software Square Root. 12776 EVT VT = Op.getValueType(); 12777 if (!isTypeLegal(MVT::i1) || 12778 (VT != MVT::f64 && 12779 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12780 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12781 12782 SDLoc DL(Op); 12783 // The output register of FTSQRT is CR field. 12784 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12785 // ftsqrt BF,FRB 12786 // Let e_b be the unbiased exponent of the double-precision 12787 // floating-point operand in register FRB. 12788 // fe_flag is set to 1 if either of the following conditions occurs. 12789 // - The double-precision floating-point operand in register FRB is a zero, 12790 // a NaN, or an infinity, or a negative value. 12791 // - e_b is less than or equal to -970. 12792 // Otherwise fe_flag is set to 0. 12793 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12794 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12795 // exponent is less than -970) 12796 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12797 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12798 FTSQRT, SRIdxVal), 12799 0); 12800 } 12801 12802 SDValue 12803 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12804 SelectionDAG &DAG) const { 12805 // We only have VSX Vector Square Root. 12806 EVT VT = Op.getValueType(); 12807 if (VT != MVT::f64 && 12808 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 12809 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12810 12811 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12812 } 12813 12814 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12815 int Enabled, int &RefinementSteps, 12816 bool &UseOneConstNR, 12817 bool Reciprocal) const { 12818 EVT VT = Operand.getValueType(); 12819 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12820 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12821 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12822 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12823 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12824 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12825 12826 // The Newton-Raphson computation with a single constant does not provide 12827 // enough accuracy on some CPUs. 12828 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12829 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12830 } 12831 return SDValue(); 12832 } 12833 12834 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12835 int Enabled, 12836 int &RefinementSteps) const { 12837 EVT VT = Operand.getValueType(); 12838 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12839 (VT == MVT::f64 && Subtarget.hasFRE()) || 12840 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12841 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12842 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12843 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12844 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12845 } 12846 return SDValue(); 12847 } 12848 12849 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12850 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12851 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12852 // enabled for division), this functionality is redundant with the default 12853 // combiner logic (once the division -> reciprocal/multiply transformation 12854 // has taken place). As a result, this matters more for older cores than for 12855 // newer ones. 12856 12857 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12858 // reciprocal if there are two or more FDIVs (for embedded cores with only 12859 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12860 switch (Subtarget.getCPUDirective()) { 12861 default: 12862 return 3; 12863 case PPC::DIR_440: 12864 case PPC::DIR_A2: 12865 case PPC::DIR_E500: 12866 case PPC::DIR_E500mc: 12867 case PPC::DIR_E5500: 12868 return 2; 12869 } 12870 } 12871 12872 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12873 // collapsed, and so we need to look through chains of them. 12874 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12875 int64_t& Offset, SelectionDAG &DAG) { 12876 if (DAG.isBaseWithConstantOffset(Loc)) { 12877 Base = Loc.getOperand(0); 12878 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12879 12880 // The base might itself be a base plus an offset, and if so, accumulate 12881 // that as well. 12882 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12883 } 12884 } 12885 12886 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12887 unsigned Bytes, int Dist, 12888 SelectionDAG &DAG) { 12889 if (VT.getSizeInBits() / 8 != Bytes) 12890 return false; 12891 12892 SDValue BaseLoc = Base->getBasePtr(); 12893 if (Loc.getOpcode() == ISD::FrameIndex) { 12894 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12895 return false; 12896 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12897 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12898 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12899 int FS = MFI.getObjectSize(FI); 12900 int BFS = MFI.getObjectSize(BFI); 12901 if (FS != BFS || FS != (int)Bytes) return false; 12902 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12903 } 12904 12905 SDValue Base1 = Loc, Base2 = BaseLoc; 12906 int64_t Offset1 = 0, Offset2 = 0; 12907 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12908 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12909 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12910 return true; 12911 12912 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12913 const GlobalValue *GV1 = nullptr; 12914 const GlobalValue *GV2 = nullptr; 12915 Offset1 = 0; 12916 Offset2 = 0; 12917 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12918 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12919 if (isGA1 && isGA2 && GV1 == GV2) 12920 return Offset1 == (Offset2 + Dist*Bytes); 12921 return false; 12922 } 12923 12924 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12925 // not enforce equality of the chain operands. 12926 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12927 unsigned Bytes, int Dist, 12928 SelectionDAG &DAG) { 12929 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12930 EVT VT = LS->getMemoryVT(); 12931 SDValue Loc = LS->getBasePtr(); 12932 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12933 } 12934 12935 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12936 EVT VT; 12937 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12938 default: return false; 12939 case Intrinsic::ppc_altivec_lvx: 12940 case Intrinsic::ppc_altivec_lvxl: 12941 case Intrinsic::ppc_vsx_lxvw4x: 12942 case Intrinsic::ppc_vsx_lxvw4x_be: 12943 VT = MVT::v4i32; 12944 break; 12945 case Intrinsic::ppc_vsx_lxvd2x: 12946 case Intrinsic::ppc_vsx_lxvd2x_be: 12947 VT = MVT::v2f64; 12948 break; 12949 case Intrinsic::ppc_altivec_lvebx: 12950 VT = MVT::i8; 12951 break; 12952 case Intrinsic::ppc_altivec_lvehx: 12953 VT = MVT::i16; 12954 break; 12955 case Intrinsic::ppc_altivec_lvewx: 12956 VT = MVT::i32; 12957 break; 12958 } 12959 12960 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12961 } 12962 12963 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12964 EVT VT; 12965 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12966 default: return false; 12967 case Intrinsic::ppc_altivec_stvx: 12968 case Intrinsic::ppc_altivec_stvxl: 12969 case Intrinsic::ppc_vsx_stxvw4x: 12970 VT = MVT::v4i32; 12971 break; 12972 case Intrinsic::ppc_vsx_stxvd2x: 12973 VT = MVT::v2f64; 12974 break; 12975 case Intrinsic::ppc_vsx_stxvw4x_be: 12976 VT = MVT::v4i32; 12977 break; 12978 case Intrinsic::ppc_vsx_stxvd2x_be: 12979 VT = MVT::v2f64; 12980 break; 12981 case Intrinsic::ppc_altivec_stvebx: 12982 VT = MVT::i8; 12983 break; 12984 case Intrinsic::ppc_altivec_stvehx: 12985 VT = MVT::i16; 12986 break; 12987 case Intrinsic::ppc_altivec_stvewx: 12988 VT = MVT::i32; 12989 break; 12990 } 12991 12992 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12993 } 12994 12995 return false; 12996 } 12997 12998 // Return true is there is a nearyby consecutive load to the one provided 12999 // (regardless of alignment). We search up and down the chain, looking though 13000 // token factors and other loads (but nothing else). As a result, a true result 13001 // indicates that it is safe to create a new consecutive load adjacent to the 13002 // load provided. 13003 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13004 SDValue Chain = LD->getChain(); 13005 EVT VT = LD->getMemoryVT(); 13006 13007 SmallSet<SDNode *, 16> LoadRoots; 13008 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13009 SmallSet<SDNode *, 16> Visited; 13010 13011 // First, search up the chain, branching to follow all token-factor operands. 13012 // If we find a consecutive load, then we're done, otherwise, record all 13013 // nodes just above the top-level loads and token factors. 13014 while (!Queue.empty()) { 13015 SDNode *ChainNext = Queue.pop_back_val(); 13016 if (!Visited.insert(ChainNext).second) 13017 continue; 13018 13019 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13020 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13021 return true; 13022 13023 if (!Visited.count(ChainLD->getChain().getNode())) 13024 Queue.push_back(ChainLD->getChain().getNode()); 13025 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13026 for (const SDUse &O : ChainNext->ops()) 13027 if (!Visited.count(O.getNode())) 13028 Queue.push_back(O.getNode()); 13029 } else 13030 LoadRoots.insert(ChainNext); 13031 } 13032 13033 // Second, search down the chain, starting from the top-level nodes recorded 13034 // in the first phase. These top-level nodes are the nodes just above all 13035 // loads and token factors. Starting with their uses, recursively look though 13036 // all loads (just the chain uses) and token factors to find a consecutive 13037 // load. 13038 Visited.clear(); 13039 Queue.clear(); 13040 13041 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13042 IE = LoadRoots.end(); I != IE; ++I) { 13043 Queue.push_back(*I); 13044 13045 while (!Queue.empty()) { 13046 SDNode *LoadRoot = Queue.pop_back_val(); 13047 if (!Visited.insert(LoadRoot).second) 13048 continue; 13049 13050 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13051 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13052 return true; 13053 13054 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 13055 UE = LoadRoot->use_end(); UI != UE; ++UI) 13056 if (((isa<MemSDNode>(*UI) && 13057 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 13058 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 13059 Queue.push_back(*UI); 13060 } 13061 } 13062 13063 return false; 13064 } 13065 13066 /// This function is called when we have proved that a SETCC node can be replaced 13067 /// by subtraction (and other supporting instructions) so that the result of 13068 /// comparison is kept in a GPR instead of CR. This function is purely for 13069 /// codegen purposes and has some flags to guide the codegen process. 13070 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13071 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13072 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13073 13074 // Zero extend the operands to the largest legal integer. Originally, they 13075 // must be of a strictly smaller size. 13076 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13077 DAG.getConstant(Size, DL, MVT::i32)); 13078 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13079 DAG.getConstant(Size, DL, MVT::i32)); 13080 13081 // Swap if needed. Depends on the condition code. 13082 if (Swap) 13083 std::swap(Op0, Op1); 13084 13085 // Subtract extended integers. 13086 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13087 13088 // Move the sign bit to the least significant position and zero out the rest. 13089 // Now the least significant bit carries the result of original comparison. 13090 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13091 DAG.getConstant(Size - 1, DL, MVT::i32)); 13092 auto Final = Shifted; 13093 13094 // Complement the result if needed. Based on the condition code. 13095 if (Complement) 13096 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13097 DAG.getConstant(1, DL, MVT::i64)); 13098 13099 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13100 } 13101 13102 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13103 DAGCombinerInfo &DCI) const { 13104 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13105 13106 SelectionDAG &DAG = DCI.DAG; 13107 SDLoc DL(N); 13108 13109 // Size of integers being compared has a critical role in the following 13110 // analysis, so we prefer to do this when all types are legal. 13111 if (!DCI.isAfterLegalizeDAG()) 13112 return SDValue(); 13113 13114 // If all users of SETCC extend its value to a legal integer type 13115 // then we replace SETCC with a subtraction 13116 for (SDNode::use_iterator UI = N->use_begin(), 13117 UE = N->use_end(); UI != UE; ++UI) { 13118 if (UI->getOpcode() != ISD::ZERO_EXTEND) 13119 return SDValue(); 13120 } 13121 13122 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13123 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13124 13125 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13126 13127 if (OpSize < Size) { 13128 switch (CC) { 13129 default: break; 13130 case ISD::SETULT: 13131 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13132 case ISD::SETULE: 13133 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13134 case ISD::SETUGT: 13135 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13136 case ISD::SETUGE: 13137 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13138 } 13139 } 13140 13141 return SDValue(); 13142 } 13143 13144 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13145 DAGCombinerInfo &DCI) const { 13146 SelectionDAG &DAG = DCI.DAG; 13147 SDLoc dl(N); 13148 13149 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13150 // If we're tracking CR bits, we need to be careful that we don't have: 13151 // trunc(binary-ops(zext(x), zext(y))) 13152 // or 13153 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13154 // such that we're unnecessarily moving things into GPRs when it would be 13155 // better to keep them in CR bits. 13156 13157 // Note that trunc here can be an actual i1 trunc, or can be the effective 13158 // truncation that comes from a setcc or select_cc. 13159 if (N->getOpcode() == ISD::TRUNCATE && 13160 N->getValueType(0) != MVT::i1) 13161 return SDValue(); 13162 13163 if (N->getOperand(0).getValueType() != MVT::i32 && 13164 N->getOperand(0).getValueType() != MVT::i64) 13165 return SDValue(); 13166 13167 if (N->getOpcode() == ISD::SETCC || 13168 N->getOpcode() == ISD::SELECT_CC) { 13169 // If we're looking at a comparison, then we need to make sure that the 13170 // high bits (all except for the first) don't matter the result. 13171 ISD::CondCode CC = 13172 cast<CondCodeSDNode>(N->getOperand( 13173 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13174 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13175 13176 if (ISD::isSignedIntSetCC(CC)) { 13177 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13178 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13179 return SDValue(); 13180 } else if (ISD::isUnsignedIntSetCC(CC)) { 13181 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13182 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13183 !DAG.MaskedValueIsZero(N->getOperand(1), 13184 APInt::getHighBitsSet(OpBits, OpBits-1))) 13185 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13186 : SDValue()); 13187 } else { 13188 // This is neither a signed nor an unsigned comparison, just make sure 13189 // that the high bits are equal. 13190 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13191 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13192 13193 // We don't really care about what is known about the first bit (if 13194 // anything), so pretend that it is known zero for both to ensure they can 13195 // be compared as constants. 13196 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13197 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13198 13199 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13200 Op1Known.getConstant() != Op2Known.getConstant()) 13201 return SDValue(); 13202 } 13203 } 13204 13205 // We now know that the higher-order bits are irrelevant, we just need to 13206 // make sure that all of the intermediate operations are bit operations, and 13207 // all inputs are extensions. 13208 if (N->getOperand(0).getOpcode() != ISD::AND && 13209 N->getOperand(0).getOpcode() != ISD::OR && 13210 N->getOperand(0).getOpcode() != ISD::XOR && 13211 N->getOperand(0).getOpcode() != ISD::SELECT && 13212 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13213 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13214 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13215 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13216 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13217 return SDValue(); 13218 13219 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13220 N->getOperand(1).getOpcode() != ISD::AND && 13221 N->getOperand(1).getOpcode() != ISD::OR && 13222 N->getOperand(1).getOpcode() != ISD::XOR && 13223 N->getOperand(1).getOpcode() != ISD::SELECT && 13224 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13225 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13226 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13227 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13228 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13229 return SDValue(); 13230 13231 SmallVector<SDValue, 4> Inputs; 13232 SmallVector<SDValue, 8> BinOps, PromOps; 13233 SmallPtrSet<SDNode *, 16> Visited; 13234 13235 for (unsigned i = 0; i < 2; ++i) { 13236 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13237 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13238 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13239 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13240 isa<ConstantSDNode>(N->getOperand(i))) 13241 Inputs.push_back(N->getOperand(i)); 13242 else 13243 BinOps.push_back(N->getOperand(i)); 13244 13245 if (N->getOpcode() == ISD::TRUNCATE) 13246 break; 13247 } 13248 13249 // Visit all inputs, collect all binary operations (and, or, xor and 13250 // select) that are all fed by extensions. 13251 while (!BinOps.empty()) { 13252 SDValue BinOp = BinOps.pop_back_val(); 13253 13254 if (!Visited.insert(BinOp.getNode()).second) 13255 continue; 13256 13257 PromOps.push_back(BinOp); 13258 13259 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13260 // The condition of the select is not promoted. 13261 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13262 continue; 13263 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13264 continue; 13265 13266 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13267 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13268 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13269 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13270 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13271 Inputs.push_back(BinOp.getOperand(i)); 13272 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13273 BinOp.getOperand(i).getOpcode() == ISD::OR || 13274 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13275 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13276 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13277 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13278 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13279 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13280 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13281 BinOps.push_back(BinOp.getOperand(i)); 13282 } else { 13283 // We have an input that is not an extension or another binary 13284 // operation; we'll abort this transformation. 13285 return SDValue(); 13286 } 13287 } 13288 } 13289 13290 // Make sure that this is a self-contained cluster of operations (which 13291 // is not quite the same thing as saying that everything has only one 13292 // use). 13293 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13294 if (isa<ConstantSDNode>(Inputs[i])) 13295 continue; 13296 13297 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13298 UE = Inputs[i].getNode()->use_end(); 13299 UI != UE; ++UI) { 13300 SDNode *User = *UI; 13301 if (User != N && !Visited.count(User)) 13302 return SDValue(); 13303 13304 // Make sure that we're not going to promote the non-output-value 13305 // operand(s) or SELECT or SELECT_CC. 13306 // FIXME: Although we could sometimes handle this, and it does occur in 13307 // practice that one of the condition inputs to the select is also one of 13308 // the outputs, we currently can't deal with this. 13309 if (User->getOpcode() == ISD::SELECT) { 13310 if (User->getOperand(0) == Inputs[i]) 13311 return SDValue(); 13312 } else if (User->getOpcode() == ISD::SELECT_CC) { 13313 if (User->getOperand(0) == Inputs[i] || 13314 User->getOperand(1) == Inputs[i]) 13315 return SDValue(); 13316 } 13317 } 13318 } 13319 13320 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13321 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13322 UE = PromOps[i].getNode()->use_end(); 13323 UI != UE; ++UI) { 13324 SDNode *User = *UI; 13325 if (User != N && !Visited.count(User)) 13326 return SDValue(); 13327 13328 // Make sure that we're not going to promote the non-output-value 13329 // operand(s) or SELECT or SELECT_CC. 13330 // FIXME: Although we could sometimes handle this, and it does occur in 13331 // practice that one of the condition inputs to the select is also one of 13332 // the outputs, we currently can't deal with this. 13333 if (User->getOpcode() == ISD::SELECT) { 13334 if (User->getOperand(0) == PromOps[i]) 13335 return SDValue(); 13336 } else if (User->getOpcode() == ISD::SELECT_CC) { 13337 if (User->getOperand(0) == PromOps[i] || 13338 User->getOperand(1) == PromOps[i]) 13339 return SDValue(); 13340 } 13341 } 13342 } 13343 13344 // Replace all inputs with the extension operand. 13345 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13346 // Constants may have users outside the cluster of to-be-promoted nodes, 13347 // and so we need to replace those as we do the promotions. 13348 if (isa<ConstantSDNode>(Inputs[i])) 13349 continue; 13350 else 13351 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13352 } 13353 13354 std::list<HandleSDNode> PromOpHandles; 13355 for (auto &PromOp : PromOps) 13356 PromOpHandles.emplace_back(PromOp); 13357 13358 // Replace all operations (these are all the same, but have a different 13359 // (i1) return type). DAG.getNode will validate that the types of 13360 // a binary operator match, so go through the list in reverse so that 13361 // we've likely promoted both operands first. Any intermediate truncations or 13362 // extensions disappear. 13363 while (!PromOpHandles.empty()) { 13364 SDValue PromOp = PromOpHandles.back().getValue(); 13365 PromOpHandles.pop_back(); 13366 13367 if (PromOp.getOpcode() == ISD::TRUNCATE || 13368 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13369 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13370 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13371 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13372 PromOp.getOperand(0).getValueType() != MVT::i1) { 13373 // The operand is not yet ready (see comment below). 13374 PromOpHandles.emplace_front(PromOp); 13375 continue; 13376 } 13377 13378 SDValue RepValue = PromOp.getOperand(0); 13379 if (isa<ConstantSDNode>(RepValue)) 13380 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13381 13382 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13383 continue; 13384 } 13385 13386 unsigned C; 13387 switch (PromOp.getOpcode()) { 13388 default: C = 0; break; 13389 case ISD::SELECT: C = 1; break; 13390 case ISD::SELECT_CC: C = 2; break; 13391 } 13392 13393 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13394 PromOp.getOperand(C).getValueType() != MVT::i1) || 13395 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13396 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13397 // The to-be-promoted operands of this node have not yet been 13398 // promoted (this should be rare because we're going through the 13399 // list backward, but if one of the operands has several users in 13400 // this cluster of to-be-promoted nodes, it is possible). 13401 PromOpHandles.emplace_front(PromOp); 13402 continue; 13403 } 13404 13405 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13406 PromOp.getNode()->op_end()); 13407 13408 // If there are any constant inputs, make sure they're replaced now. 13409 for (unsigned i = 0; i < 2; ++i) 13410 if (isa<ConstantSDNode>(Ops[C+i])) 13411 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13412 13413 DAG.ReplaceAllUsesOfValueWith(PromOp, 13414 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13415 } 13416 13417 // Now we're left with the initial truncation itself. 13418 if (N->getOpcode() == ISD::TRUNCATE) 13419 return N->getOperand(0); 13420 13421 // Otherwise, this is a comparison. The operands to be compared have just 13422 // changed type (to i1), but everything else is the same. 13423 return SDValue(N, 0); 13424 } 13425 13426 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13427 DAGCombinerInfo &DCI) const { 13428 SelectionDAG &DAG = DCI.DAG; 13429 SDLoc dl(N); 13430 13431 // If we're tracking CR bits, we need to be careful that we don't have: 13432 // zext(binary-ops(trunc(x), trunc(y))) 13433 // or 13434 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13435 // such that we're unnecessarily moving things into CR bits that can more 13436 // efficiently stay in GPRs. Note that if we're not certain that the high 13437 // bits are set as required by the final extension, we still may need to do 13438 // some masking to get the proper behavior. 13439 13440 // This same functionality is important on PPC64 when dealing with 13441 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13442 // the return values of functions. Because it is so similar, it is handled 13443 // here as well. 13444 13445 if (N->getValueType(0) != MVT::i32 && 13446 N->getValueType(0) != MVT::i64) 13447 return SDValue(); 13448 13449 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13450 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13451 return SDValue(); 13452 13453 if (N->getOperand(0).getOpcode() != ISD::AND && 13454 N->getOperand(0).getOpcode() != ISD::OR && 13455 N->getOperand(0).getOpcode() != ISD::XOR && 13456 N->getOperand(0).getOpcode() != ISD::SELECT && 13457 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13458 return SDValue(); 13459 13460 SmallVector<SDValue, 4> Inputs; 13461 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13462 SmallPtrSet<SDNode *, 16> Visited; 13463 13464 // Visit all inputs, collect all binary operations (and, or, xor and 13465 // select) that are all fed by truncations. 13466 while (!BinOps.empty()) { 13467 SDValue BinOp = BinOps.pop_back_val(); 13468 13469 if (!Visited.insert(BinOp.getNode()).second) 13470 continue; 13471 13472 PromOps.push_back(BinOp); 13473 13474 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13475 // The condition of the select is not promoted. 13476 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13477 continue; 13478 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13479 continue; 13480 13481 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13482 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13483 Inputs.push_back(BinOp.getOperand(i)); 13484 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13485 BinOp.getOperand(i).getOpcode() == ISD::OR || 13486 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13487 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13488 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13489 BinOps.push_back(BinOp.getOperand(i)); 13490 } else { 13491 // We have an input that is not a truncation or another binary 13492 // operation; we'll abort this transformation. 13493 return SDValue(); 13494 } 13495 } 13496 } 13497 13498 // The operands of a select that must be truncated when the select is 13499 // promoted because the operand is actually part of the to-be-promoted set. 13500 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13501 13502 // Make sure that this is a self-contained cluster of operations (which 13503 // is not quite the same thing as saying that everything has only one 13504 // use). 13505 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13506 if (isa<ConstantSDNode>(Inputs[i])) 13507 continue; 13508 13509 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13510 UE = Inputs[i].getNode()->use_end(); 13511 UI != UE; ++UI) { 13512 SDNode *User = *UI; 13513 if (User != N && !Visited.count(User)) 13514 return SDValue(); 13515 13516 // If we're going to promote the non-output-value operand(s) or SELECT or 13517 // SELECT_CC, record them for truncation. 13518 if (User->getOpcode() == ISD::SELECT) { 13519 if (User->getOperand(0) == Inputs[i]) 13520 SelectTruncOp[0].insert(std::make_pair(User, 13521 User->getOperand(0).getValueType())); 13522 } else if (User->getOpcode() == ISD::SELECT_CC) { 13523 if (User->getOperand(0) == Inputs[i]) 13524 SelectTruncOp[0].insert(std::make_pair(User, 13525 User->getOperand(0).getValueType())); 13526 if (User->getOperand(1) == Inputs[i]) 13527 SelectTruncOp[1].insert(std::make_pair(User, 13528 User->getOperand(1).getValueType())); 13529 } 13530 } 13531 } 13532 13533 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13534 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13535 UE = PromOps[i].getNode()->use_end(); 13536 UI != UE; ++UI) { 13537 SDNode *User = *UI; 13538 if (User != N && !Visited.count(User)) 13539 return SDValue(); 13540 13541 // If we're going to promote the non-output-value operand(s) or SELECT or 13542 // SELECT_CC, record them for truncation. 13543 if (User->getOpcode() == ISD::SELECT) { 13544 if (User->getOperand(0) == PromOps[i]) 13545 SelectTruncOp[0].insert(std::make_pair(User, 13546 User->getOperand(0).getValueType())); 13547 } else if (User->getOpcode() == ISD::SELECT_CC) { 13548 if (User->getOperand(0) == PromOps[i]) 13549 SelectTruncOp[0].insert(std::make_pair(User, 13550 User->getOperand(0).getValueType())); 13551 if (User->getOperand(1) == PromOps[i]) 13552 SelectTruncOp[1].insert(std::make_pair(User, 13553 User->getOperand(1).getValueType())); 13554 } 13555 } 13556 } 13557 13558 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13559 bool ReallyNeedsExt = false; 13560 if (N->getOpcode() != ISD::ANY_EXTEND) { 13561 // If all of the inputs are not already sign/zero extended, then 13562 // we'll still need to do that at the end. 13563 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13564 if (isa<ConstantSDNode>(Inputs[i])) 13565 continue; 13566 13567 unsigned OpBits = 13568 Inputs[i].getOperand(0).getValueSizeInBits(); 13569 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13570 13571 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13572 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13573 APInt::getHighBitsSet(OpBits, 13574 OpBits-PromBits))) || 13575 (N->getOpcode() == ISD::SIGN_EXTEND && 13576 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13577 (OpBits-(PromBits-1)))) { 13578 ReallyNeedsExt = true; 13579 break; 13580 } 13581 } 13582 } 13583 13584 // Replace all inputs, either with the truncation operand, or a 13585 // truncation or extension to the final output type. 13586 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13587 // Constant inputs need to be replaced with the to-be-promoted nodes that 13588 // use them because they might have users outside of the cluster of 13589 // promoted nodes. 13590 if (isa<ConstantSDNode>(Inputs[i])) 13591 continue; 13592 13593 SDValue InSrc = Inputs[i].getOperand(0); 13594 if (Inputs[i].getValueType() == N->getValueType(0)) 13595 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13596 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13597 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13598 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13599 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13600 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13601 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13602 else 13603 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13604 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13605 } 13606 13607 std::list<HandleSDNode> PromOpHandles; 13608 for (auto &PromOp : PromOps) 13609 PromOpHandles.emplace_back(PromOp); 13610 13611 // Replace all operations (these are all the same, but have a different 13612 // (promoted) return type). DAG.getNode will validate that the types of 13613 // a binary operator match, so go through the list in reverse so that 13614 // we've likely promoted both operands first. 13615 while (!PromOpHandles.empty()) { 13616 SDValue PromOp = PromOpHandles.back().getValue(); 13617 PromOpHandles.pop_back(); 13618 13619 unsigned C; 13620 switch (PromOp.getOpcode()) { 13621 default: C = 0; break; 13622 case ISD::SELECT: C = 1; break; 13623 case ISD::SELECT_CC: C = 2; break; 13624 } 13625 13626 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13627 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13628 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13629 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13630 // The to-be-promoted operands of this node have not yet been 13631 // promoted (this should be rare because we're going through the 13632 // list backward, but if one of the operands has several users in 13633 // this cluster of to-be-promoted nodes, it is possible). 13634 PromOpHandles.emplace_front(PromOp); 13635 continue; 13636 } 13637 13638 // For SELECT and SELECT_CC nodes, we do a similar check for any 13639 // to-be-promoted comparison inputs. 13640 if (PromOp.getOpcode() == ISD::SELECT || 13641 PromOp.getOpcode() == ISD::SELECT_CC) { 13642 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13643 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13644 (SelectTruncOp[1].count(PromOp.getNode()) && 13645 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13646 PromOpHandles.emplace_front(PromOp); 13647 continue; 13648 } 13649 } 13650 13651 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13652 PromOp.getNode()->op_end()); 13653 13654 // If this node has constant inputs, then they'll need to be promoted here. 13655 for (unsigned i = 0; i < 2; ++i) { 13656 if (!isa<ConstantSDNode>(Ops[C+i])) 13657 continue; 13658 if (Ops[C+i].getValueType() == N->getValueType(0)) 13659 continue; 13660 13661 if (N->getOpcode() == ISD::SIGN_EXTEND) 13662 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13663 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13664 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13665 else 13666 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13667 } 13668 13669 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13670 // truncate them again to the original value type. 13671 if (PromOp.getOpcode() == ISD::SELECT || 13672 PromOp.getOpcode() == ISD::SELECT_CC) { 13673 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13674 if (SI0 != SelectTruncOp[0].end()) 13675 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13676 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13677 if (SI1 != SelectTruncOp[1].end()) 13678 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13679 } 13680 13681 DAG.ReplaceAllUsesOfValueWith(PromOp, 13682 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13683 } 13684 13685 // Now we're left with the initial extension itself. 13686 if (!ReallyNeedsExt) 13687 return N->getOperand(0); 13688 13689 // To zero extend, just mask off everything except for the first bit (in the 13690 // i1 case). 13691 if (N->getOpcode() == ISD::ZERO_EXTEND) 13692 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13693 DAG.getConstant(APInt::getLowBitsSet( 13694 N->getValueSizeInBits(0), PromBits), 13695 dl, N->getValueType(0))); 13696 13697 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13698 "Invalid extension type"); 13699 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13700 SDValue ShiftCst = 13701 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13702 return DAG.getNode( 13703 ISD::SRA, dl, N->getValueType(0), 13704 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13705 ShiftCst); 13706 } 13707 13708 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13709 DAGCombinerInfo &DCI) const { 13710 assert(N->getOpcode() == ISD::SETCC && 13711 "Should be called with a SETCC node"); 13712 13713 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13714 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13715 SDValue LHS = N->getOperand(0); 13716 SDValue RHS = N->getOperand(1); 13717 13718 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13719 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13720 LHS.hasOneUse()) 13721 std::swap(LHS, RHS); 13722 13723 // x == 0-y --> x+y == 0 13724 // x != 0-y --> x+y != 0 13725 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13726 RHS.hasOneUse()) { 13727 SDLoc DL(N); 13728 SelectionDAG &DAG = DCI.DAG; 13729 EVT VT = N->getValueType(0); 13730 EVT OpVT = LHS.getValueType(); 13731 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13732 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13733 } 13734 } 13735 13736 return DAGCombineTruncBoolExt(N, DCI); 13737 } 13738 13739 // Is this an extending load from an f32 to an f64? 13740 static bool isFPExtLoad(SDValue Op) { 13741 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13742 return LD->getExtensionType() == ISD::EXTLOAD && 13743 Op.getValueType() == MVT::f64; 13744 return false; 13745 } 13746 13747 /// Reduces the number of fp-to-int conversion when building a vector. 13748 /// 13749 /// If this vector is built out of floating to integer conversions, 13750 /// transform it to a vector built out of floating point values followed by a 13751 /// single floating to integer conversion of the vector. 13752 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13753 /// becomes (fptosi (build_vector ($A, $B, ...))) 13754 SDValue PPCTargetLowering:: 13755 combineElementTruncationToVectorTruncation(SDNode *N, 13756 DAGCombinerInfo &DCI) const { 13757 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13758 "Should be called with a BUILD_VECTOR node"); 13759 13760 SelectionDAG &DAG = DCI.DAG; 13761 SDLoc dl(N); 13762 13763 SDValue FirstInput = N->getOperand(0); 13764 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13765 "The input operand must be an fp-to-int conversion."); 13766 13767 // This combine happens after legalization so the fp_to_[su]i nodes are 13768 // already converted to PPCSISD nodes. 13769 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13770 if (FirstConversion == PPCISD::FCTIDZ || 13771 FirstConversion == PPCISD::FCTIDUZ || 13772 FirstConversion == PPCISD::FCTIWZ || 13773 FirstConversion == PPCISD::FCTIWUZ) { 13774 bool IsSplat = true; 13775 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13776 FirstConversion == PPCISD::FCTIWUZ; 13777 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13778 SmallVector<SDValue, 4> Ops; 13779 EVT TargetVT = N->getValueType(0); 13780 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13781 SDValue NextOp = N->getOperand(i); 13782 if (NextOp.getOpcode() != PPCISD::MFVSR) 13783 return SDValue(); 13784 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13785 if (NextConversion != FirstConversion) 13786 return SDValue(); 13787 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13788 // This is not valid if the input was originally double precision. It is 13789 // also not profitable to do unless this is an extending load in which 13790 // case doing this combine will allow us to combine consecutive loads. 13791 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13792 return SDValue(); 13793 if (N->getOperand(i) != FirstInput) 13794 IsSplat = false; 13795 } 13796 13797 // If this is a splat, we leave it as-is since there will be only a single 13798 // fp-to-int conversion followed by a splat of the integer. This is better 13799 // for 32-bit and smaller ints and neutral for 64-bit ints. 13800 if (IsSplat) 13801 return SDValue(); 13802 13803 // Now that we know we have the right type of node, get its operands 13804 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13805 SDValue In = N->getOperand(i).getOperand(0); 13806 if (Is32Bit) { 13807 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13808 // here, we know that all inputs are extending loads so this is safe). 13809 if (In.isUndef()) 13810 Ops.push_back(DAG.getUNDEF(SrcVT)); 13811 else { 13812 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13813 MVT::f32, In.getOperand(0), 13814 DAG.getIntPtrConstant(1, dl)); 13815 Ops.push_back(Trunc); 13816 } 13817 } else 13818 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13819 } 13820 13821 unsigned Opcode; 13822 if (FirstConversion == PPCISD::FCTIDZ || 13823 FirstConversion == PPCISD::FCTIWZ) 13824 Opcode = ISD::FP_TO_SINT; 13825 else 13826 Opcode = ISD::FP_TO_UINT; 13827 13828 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13829 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13830 return DAG.getNode(Opcode, dl, TargetVT, BV); 13831 } 13832 return SDValue(); 13833 } 13834 13835 /// Reduce the number of loads when building a vector. 13836 /// 13837 /// Building a vector out of multiple loads can be converted to a load 13838 /// of the vector type if the loads are consecutive. If the loads are 13839 /// consecutive but in descending order, a shuffle is added at the end 13840 /// to reorder the vector. 13841 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13842 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13843 "Should be called with a BUILD_VECTOR node"); 13844 13845 SDLoc dl(N); 13846 13847 // Return early for non byte-sized type, as they can't be consecutive. 13848 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13849 return SDValue(); 13850 13851 bool InputsAreConsecutiveLoads = true; 13852 bool InputsAreReverseConsecutive = true; 13853 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13854 SDValue FirstInput = N->getOperand(0); 13855 bool IsRoundOfExtLoad = false; 13856 13857 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13858 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13859 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13860 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13861 } 13862 // Not a build vector of (possibly fp_rounded) loads. 13863 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13864 N->getNumOperands() == 1) 13865 return SDValue(); 13866 13867 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13868 // If any inputs are fp_round(extload), they all must be. 13869 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13870 return SDValue(); 13871 13872 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13873 N->getOperand(i); 13874 if (NextInput.getOpcode() != ISD::LOAD) 13875 return SDValue(); 13876 13877 SDValue PreviousInput = 13878 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13879 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13880 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13881 13882 // If any inputs are fp_round(extload), they all must be. 13883 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13884 return SDValue(); 13885 13886 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13887 InputsAreConsecutiveLoads = false; 13888 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13889 InputsAreReverseConsecutive = false; 13890 13891 // Exit early if the loads are neither consecutive nor reverse consecutive. 13892 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13893 return SDValue(); 13894 } 13895 13896 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13897 "The loads cannot be both consecutive and reverse consecutive."); 13898 13899 SDValue FirstLoadOp = 13900 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13901 SDValue LastLoadOp = 13902 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13903 N->getOperand(N->getNumOperands()-1); 13904 13905 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13906 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13907 if (InputsAreConsecutiveLoads) { 13908 assert(LD1 && "Input needs to be a LoadSDNode."); 13909 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13910 LD1->getBasePtr(), LD1->getPointerInfo(), 13911 LD1->getAlignment()); 13912 } 13913 if (InputsAreReverseConsecutive) { 13914 assert(LDL && "Input needs to be a LoadSDNode."); 13915 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13916 LDL->getBasePtr(), LDL->getPointerInfo(), 13917 LDL->getAlignment()); 13918 SmallVector<int, 16> Ops; 13919 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13920 Ops.push_back(i); 13921 13922 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13923 DAG.getUNDEF(N->getValueType(0)), Ops); 13924 } 13925 return SDValue(); 13926 } 13927 13928 // This function adds the required vector_shuffle needed to get 13929 // the elements of the vector extract in the correct position 13930 // as specified by the CorrectElems encoding. 13931 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13932 SDValue Input, uint64_t Elems, 13933 uint64_t CorrectElems) { 13934 SDLoc dl(N); 13935 13936 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13937 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13938 13939 // Knowing the element indices being extracted from the original 13940 // vector and the order in which they're being inserted, just put 13941 // them at element indices required for the instruction. 13942 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13943 if (DAG.getDataLayout().isLittleEndian()) 13944 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13945 else 13946 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13947 CorrectElems = CorrectElems >> 8; 13948 Elems = Elems >> 8; 13949 } 13950 13951 SDValue Shuffle = 13952 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13953 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13954 13955 EVT VT = N->getValueType(0); 13956 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13957 13958 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13959 Input.getValueType().getVectorElementType(), 13960 VT.getVectorNumElements()); 13961 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13962 DAG.getValueType(ExtVT)); 13963 } 13964 13965 // Look for build vector patterns where input operands come from sign 13966 // extended vector_extract elements of specific indices. If the correct indices 13967 // aren't used, add a vector shuffle to fix up the indices and create 13968 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13969 // during instruction selection. 13970 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13971 // This array encodes the indices that the vector sign extend instructions 13972 // extract from when extending from one type to another for both BE and LE. 13973 // The right nibble of each byte corresponds to the LE incides. 13974 // and the left nibble of each byte corresponds to the BE incides. 13975 // For example: 0x3074B8FC byte->word 13976 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13977 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13978 // For example: 0x000070F8 byte->double word 13979 // For LE: the allowed indices are: 0x0,0x8 13980 // For BE: the allowed indices are: 0x7,0xF 13981 uint64_t TargetElems[] = { 13982 0x3074B8FC, // b->w 13983 0x000070F8, // b->d 13984 0x10325476, // h->w 13985 0x00003074, // h->d 13986 0x00001032, // w->d 13987 }; 13988 13989 uint64_t Elems = 0; 13990 int Index; 13991 SDValue Input; 13992 13993 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13994 if (!Op) 13995 return false; 13996 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13997 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13998 return false; 13999 14000 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14001 // of the right width. 14002 SDValue Extract = Op.getOperand(0); 14003 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14004 Extract = Extract.getOperand(0); 14005 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14006 return false; 14007 14008 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14009 if (!ExtOp) 14010 return false; 14011 14012 Index = ExtOp->getZExtValue(); 14013 if (Input && Input != Extract.getOperand(0)) 14014 return false; 14015 14016 if (!Input) 14017 Input = Extract.getOperand(0); 14018 14019 Elems = Elems << 8; 14020 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14021 Elems |= Index; 14022 14023 return true; 14024 }; 14025 14026 // If the build vector operands aren't sign extended vector extracts, 14027 // of the same input vector, then return. 14028 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14029 if (!isSExtOfVecExtract(N->getOperand(i))) { 14030 return SDValue(); 14031 } 14032 } 14033 14034 // If the vector extract indicies are not correct, add the appropriate 14035 // vector_shuffle. 14036 int TgtElemArrayIdx; 14037 int InputSize = Input.getValueType().getScalarSizeInBits(); 14038 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14039 if (InputSize + OutputSize == 40) 14040 TgtElemArrayIdx = 0; 14041 else if (InputSize + OutputSize == 72) 14042 TgtElemArrayIdx = 1; 14043 else if (InputSize + OutputSize == 48) 14044 TgtElemArrayIdx = 2; 14045 else if (InputSize + OutputSize == 80) 14046 TgtElemArrayIdx = 3; 14047 else if (InputSize + OutputSize == 96) 14048 TgtElemArrayIdx = 4; 14049 else 14050 return SDValue(); 14051 14052 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14053 CorrectElems = DAG.getDataLayout().isLittleEndian() 14054 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14055 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14056 if (Elems != CorrectElems) { 14057 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14058 } 14059 14060 // Regular lowering will catch cases where a shuffle is not needed. 14061 return SDValue(); 14062 } 14063 14064 // Look for the pattern of a load from a narrow width to i128, feeding 14065 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14066 // (LXVRZX). This node represents a zero extending load that will be matched 14067 // to the Load VSX Vector Rightmost instructions. 14068 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14069 SDLoc DL(N); 14070 14071 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14072 if (N->getValueType(0) != MVT::v1i128) 14073 return SDValue(); 14074 14075 SDValue Operand = N->getOperand(0); 14076 // Proceed with the transformation if the operand to the BUILD_VECTOR 14077 // is a load instruction. 14078 if (Operand.getOpcode() != ISD::LOAD) 14079 return SDValue(); 14080 14081 auto *LD = cast<LoadSDNode>(Operand); 14082 EVT MemoryType = LD->getMemoryVT(); 14083 14084 // This transformation is only valid if the we are loading either a byte, 14085 // halfword, word, or doubleword. 14086 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14087 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14088 14089 // Ensure that the load from the narrow width is being zero extended to i128. 14090 if (!ValidLDType || 14091 (LD->getExtensionType() != ISD::ZEXTLOAD && 14092 LD->getExtensionType() != ISD::EXTLOAD)) 14093 return SDValue(); 14094 14095 SDValue LoadOps[] = { 14096 LD->getChain(), LD->getBasePtr(), 14097 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14098 14099 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14100 DAG.getVTList(MVT::v1i128, MVT::Other), 14101 LoadOps, MemoryType, LD->getMemOperand()); 14102 } 14103 14104 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14105 DAGCombinerInfo &DCI) const { 14106 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14107 "Should be called with a BUILD_VECTOR node"); 14108 14109 SelectionDAG &DAG = DCI.DAG; 14110 SDLoc dl(N); 14111 14112 if (!Subtarget.hasVSX()) 14113 return SDValue(); 14114 14115 // The target independent DAG combiner will leave a build_vector of 14116 // float-to-int conversions intact. We can generate MUCH better code for 14117 // a float-to-int conversion of a vector of floats. 14118 SDValue FirstInput = N->getOperand(0); 14119 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14120 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14121 if (Reduced) 14122 return Reduced; 14123 } 14124 14125 // If we're building a vector out of consecutive loads, just load that 14126 // vector type. 14127 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14128 if (Reduced) 14129 return Reduced; 14130 14131 // If we're building a vector out of extended elements from another vector 14132 // we have P9 vector integer extend instructions. The code assumes legal 14133 // input types (i.e. it can't handle things like v4i16) so do not run before 14134 // legalization. 14135 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14136 Reduced = combineBVOfVecSExt(N, DAG); 14137 if (Reduced) 14138 return Reduced; 14139 } 14140 14141 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14142 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14143 // is a load from <valid narrow width> to i128. 14144 if (Subtarget.isISA3_1()) { 14145 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14146 if (BVOfZLoad) 14147 return BVOfZLoad; 14148 } 14149 14150 if (N->getValueType(0) != MVT::v2f64) 14151 return SDValue(); 14152 14153 // Looking for: 14154 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14155 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14156 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14157 return SDValue(); 14158 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14159 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14160 return SDValue(); 14161 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14162 return SDValue(); 14163 14164 SDValue Ext1 = FirstInput.getOperand(0); 14165 SDValue Ext2 = N->getOperand(1).getOperand(0); 14166 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14167 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14168 return SDValue(); 14169 14170 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14171 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14172 if (!Ext1Op || !Ext2Op) 14173 return SDValue(); 14174 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14175 Ext1.getOperand(0) != Ext2.getOperand(0)) 14176 return SDValue(); 14177 14178 int FirstElem = Ext1Op->getZExtValue(); 14179 int SecondElem = Ext2Op->getZExtValue(); 14180 int SubvecIdx; 14181 if (FirstElem == 0 && SecondElem == 1) 14182 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14183 else if (FirstElem == 2 && SecondElem == 3) 14184 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14185 else 14186 return SDValue(); 14187 14188 SDValue SrcVec = Ext1.getOperand(0); 14189 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14190 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14191 return DAG.getNode(NodeType, dl, MVT::v2f64, 14192 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14193 } 14194 14195 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14196 DAGCombinerInfo &DCI) const { 14197 assert((N->getOpcode() == ISD::SINT_TO_FP || 14198 N->getOpcode() == ISD::UINT_TO_FP) && 14199 "Need an int -> FP conversion node here"); 14200 14201 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14202 return SDValue(); 14203 14204 SelectionDAG &DAG = DCI.DAG; 14205 SDLoc dl(N); 14206 SDValue Op(N, 0); 14207 14208 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14209 // from the hardware. 14210 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14211 return SDValue(); 14212 if (!Op.getOperand(0).getValueType().isSimple()) 14213 return SDValue(); 14214 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14215 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14216 return SDValue(); 14217 14218 SDValue FirstOperand(Op.getOperand(0)); 14219 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14220 (FirstOperand.getValueType() == MVT::i8 || 14221 FirstOperand.getValueType() == MVT::i16); 14222 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14223 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14224 bool DstDouble = Op.getValueType() == MVT::f64; 14225 unsigned ConvOp = Signed ? 14226 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14227 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14228 SDValue WidthConst = 14229 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14230 dl, false); 14231 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14232 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14233 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14234 DAG.getVTList(MVT::f64, MVT::Other), 14235 Ops, MVT::i8, LDN->getMemOperand()); 14236 14237 // For signed conversion, we need to sign-extend the value in the VSR 14238 if (Signed) { 14239 SDValue ExtOps[] = { Ld, WidthConst }; 14240 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14241 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14242 } else 14243 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14244 } 14245 14246 14247 // For i32 intermediate values, unfortunately, the conversion functions 14248 // leave the upper 32 bits of the value are undefined. Within the set of 14249 // scalar instructions, we have no method for zero- or sign-extending the 14250 // value. Thus, we cannot handle i32 intermediate values here. 14251 if (Op.getOperand(0).getValueType() == MVT::i32) 14252 return SDValue(); 14253 14254 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14255 "UINT_TO_FP is supported only with FPCVT"); 14256 14257 // If we have FCFIDS, then use it when converting to single-precision. 14258 // Otherwise, convert to double-precision and then round. 14259 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14260 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14261 : PPCISD::FCFIDS) 14262 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14263 : PPCISD::FCFID); 14264 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14265 ? MVT::f32 14266 : MVT::f64; 14267 14268 // If we're converting from a float, to an int, and back to a float again, 14269 // then we don't need the store/load pair at all. 14270 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14271 Subtarget.hasFPCVT()) || 14272 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14273 SDValue Src = Op.getOperand(0).getOperand(0); 14274 if (Src.getValueType() == MVT::f32) { 14275 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14276 DCI.AddToWorklist(Src.getNode()); 14277 } else if (Src.getValueType() != MVT::f64) { 14278 // Make sure that we don't pick up a ppc_fp128 source value. 14279 return SDValue(); 14280 } 14281 14282 unsigned FCTOp = 14283 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14284 PPCISD::FCTIDUZ; 14285 14286 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14287 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14288 14289 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14290 FP = DAG.getNode(ISD::FP_ROUND, dl, 14291 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14292 DCI.AddToWorklist(FP.getNode()); 14293 } 14294 14295 return FP; 14296 } 14297 14298 return SDValue(); 14299 } 14300 14301 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14302 // builtins) into loads with swaps. 14303 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14304 DAGCombinerInfo &DCI) const { 14305 SelectionDAG &DAG = DCI.DAG; 14306 SDLoc dl(N); 14307 SDValue Chain; 14308 SDValue Base; 14309 MachineMemOperand *MMO; 14310 14311 switch (N->getOpcode()) { 14312 default: 14313 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14314 case ISD::LOAD: { 14315 LoadSDNode *LD = cast<LoadSDNode>(N); 14316 Chain = LD->getChain(); 14317 Base = LD->getBasePtr(); 14318 MMO = LD->getMemOperand(); 14319 // If the MMO suggests this isn't a load of a full vector, leave 14320 // things alone. For a built-in, we have to make the change for 14321 // correctness, so if there is a size problem that will be a bug. 14322 if (MMO->getSize() < 16) 14323 return SDValue(); 14324 break; 14325 } 14326 case ISD::INTRINSIC_W_CHAIN: { 14327 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14328 Chain = Intrin->getChain(); 14329 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14330 // us what we want. Get operand 2 instead. 14331 Base = Intrin->getOperand(2); 14332 MMO = Intrin->getMemOperand(); 14333 break; 14334 } 14335 } 14336 14337 MVT VecTy = N->getValueType(0).getSimpleVT(); 14338 14339 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14340 // aligned and the type is a vector with elements up to 4 bytes 14341 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14342 VecTy.getScalarSizeInBits() <= 32) { 14343 return SDValue(); 14344 } 14345 14346 SDValue LoadOps[] = { Chain, Base }; 14347 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14348 DAG.getVTList(MVT::v2f64, MVT::Other), 14349 LoadOps, MVT::v2f64, MMO); 14350 14351 DCI.AddToWorklist(Load.getNode()); 14352 Chain = Load.getValue(1); 14353 SDValue Swap = DAG.getNode( 14354 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14355 DCI.AddToWorklist(Swap.getNode()); 14356 14357 // Add a bitcast if the resulting load type doesn't match v2f64. 14358 if (VecTy != MVT::v2f64) { 14359 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14360 DCI.AddToWorklist(N.getNode()); 14361 // Package {bitcast value, swap's chain} to match Load's shape. 14362 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14363 N, Swap.getValue(1)); 14364 } 14365 14366 return Swap; 14367 } 14368 14369 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14370 // builtins) into stores with swaps. 14371 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14372 DAGCombinerInfo &DCI) const { 14373 SelectionDAG &DAG = DCI.DAG; 14374 SDLoc dl(N); 14375 SDValue Chain; 14376 SDValue Base; 14377 unsigned SrcOpnd; 14378 MachineMemOperand *MMO; 14379 14380 switch (N->getOpcode()) { 14381 default: 14382 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14383 case ISD::STORE: { 14384 StoreSDNode *ST = cast<StoreSDNode>(N); 14385 Chain = ST->getChain(); 14386 Base = ST->getBasePtr(); 14387 MMO = ST->getMemOperand(); 14388 SrcOpnd = 1; 14389 // If the MMO suggests this isn't a store of a full vector, leave 14390 // things alone. For a built-in, we have to make the change for 14391 // correctness, so if there is a size problem that will be a bug. 14392 if (MMO->getSize() < 16) 14393 return SDValue(); 14394 break; 14395 } 14396 case ISD::INTRINSIC_VOID: { 14397 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14398 Chain = Intrin->getChain(); 14399 // Intrin->getBasePtr() oddly does not get what we want. 14400 Base = Intrin->getOperand(3); 14401 MMO = Intrin->getMemOperand(); 14402 SrcOpnd = 2; 14403 break; 14404 } 14405 } 14406 14407 SDValue Src = N->getOperand(SrcOpnd); 14408 MVT VecTy = Src.getValueType().getSimpleVT(); 14409 14410 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14411 // aligned and the type is a vector with elements up to 4 bytes 14412 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14413 VecTy.getScalarSizeInBits() <= 32) { 14414 return SDValue(); 14415 } 14416 14417 // All stores are done as v2f64 and possible bit cast. 14418 if (VecTy != MVT::v2f64) { 14419 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14420 DCI.AddToWorklist(Src.getNode()); 14421 } 14422 14423 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14424 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14425 DCI.AddToWorklist(Swap.getNode()); 14426 Chain = Swap.getValue(1); 14427 SDValue StoreOps[] = { Chain, Swap, Base }; 14428 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14429 DAG.getVTList(MVT::Other), 14430 StoreOps, VecTy, MMO); 14431 DCI.AddToWorklist(Store.getNode()); 14432 return Store; 14433 } 14434 14435 // Handle DAG combine for STORE (FP_TO_INT F). 14436 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14437 DAGCombinerInfo &DCI) const { 14438 14439 SelectionDAG &DAG = DCI.DAG; 14440 SDLoc dl(N); 14441 unsigned Opcode = N->getOperand(1).getOpcode(); 14442 14443 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14444 && "Not a FP_TO_INT Instruction!"); 14445 14446 SDValue Val = N->getOperand(1).getOperand(0); 14447 EVT Op1VT = N->getOperand(1).getValueType(); 14448 EVT ResVT = Val.getValueType(); 14449 14450 if (!isTypeLegal(ResVT)) 14451 return SDValue(); 14452 14453 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14454 bool ValidTypeForStoreFltAsInt = 14455 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14456 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14457 14458 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14459 return SDValue(); 14460 14461 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14462 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14463 return SDValue(); 14464 14465 // Extend f32 values to f64 14466 if (ResVT.getScalarSizeInBits() == 32) { 14467 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14468 DCI.AddToWorklist(Val.getNode()); 14469 } 14470 14471 // Set signed or unsigned conversion opcode. 14472 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14473 PPCISD::FP_TO_SINT_IN_VSR : 14474 PPCISD::FP_TO_UINT_IN_VSR; 14475 14476 Val = DAG.getNode(ConvOpcode, 14477 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14478 DCI.AddToWorklist(Val.getNode()); 14479 14480 // Set number of bytes being converted. 14481 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14482 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14483 DAG.getIntPtrConstant(ByteSize, dl, false), 14484 DAG.getValueType(Op1VT) }; 14485 14486 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14487 DAG.getVTList(MVT::Other), Ops, 14488 cast<StoreSDNode>(N)->getMemoryVT(), 14489 cast<StoreSDNode>(N)->getMemOperand()); 14490 14491 DCI.AddToWorklist(Val.getNode()); 14492 return Val; 14493 } 14494 14495 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14496 // Check that the source of the element keeps flipping 14497 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14498 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14499 for (int i = 1, e = Mask.size(); i < e; i++) { 14500 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14501 return false; 14502 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14503 return false; 14504 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14505 } 14506 return true; 14507 } 14508 14509 static bool isSplatBV(SDValue Op) { 14510 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14511 return false; 14512 SDValue FirstOp; 14513 14514 // Find first non-undef input. 14515 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14516 FirstOp = Op.getOperand(i); 14517 if (!FirstOp.isUndef()) 14518 break; 14519 } 14520 14521 // All inputs are undef or the same as the first non-undef input. 14522 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14523 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14524 return false; 14525 return true; 14526 } 14527 14528 static SDValue isScalarToVec(SDValue Op) { 14529 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14530 return Op; 14531 if (Op.getOpcode() != ISD::BITCAST) 14532 return SDValue(); 14533 Op = Op.getOperand(0); 14534 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14535 return Op; 14536 return SDValue(); 14537 } 14538 14539 // Fix up the shuffle mask to account for the fact that the result of 14540 // scalar_to_vector is not in lane zero. This just takes all values in 14541 // the ranges specified by the min/max indices and adds the number of 14542 // elements required to ensure each element comes from the respective 14543 // position in the valid lane. 14544 // On little endian, that's just the corresponding element in the other 14545 // half of the vector. On big endian, it is in the same half but right 14546 // justified rather than left justified in that half. 14547 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14548 int LHSMaxIdx, int RHSMinIdx, 14549 int RHSMaxIdx, int HalfVec, 14550 unsigned ValidLaneWidth, 14551 const PPCSubtarget &Subtarget) { 14552 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14553 int Idx = ShuffV[i]; 14554 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14555 ShuffV[i] += 14556 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14557 } 14558 } 14559 14560 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14561 // the original is: 14562 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14563 // In such a case, just change the shuffle mask to extract the element 14564 // from the permuted index. 14565 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14566 const PPCSubtarget &Subtarget) { 14567 SDLoc dl(OrigSToV); 14568 EVT VT = OrigSToV.getValueType(); 14569 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14570 "Expecting a SCALAR_TO_VECTOR here"); 14571 SDValue Input = OrigSToV.getOperand(0); 14572 14573 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14574 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14575 SDValue OrigVector = Input.getOperand(0); 14576 14577 // Can't handle non-const element indices or different vector types 14578 // for the input to the extract and the output of the scalar_to_vector. 14579 if (Idx && VT == OrigVector.getValueType()) { 14580 unsigned NumElts = VT.getVectorNumElements(); 14581 assert( 14582 NumElts > 1 && 14583 "Cannot produce a permuted scalar_to_vector for one element vector"); 14584 SmallVector<int, 16> NewMask(NumElts, -1); 14585 unsigned ResultInElt = NumElts / 2; 14586 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14587 NewMask[ResultInElt] = Idx->getZExtValue(); 14588 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14589 } 14590 } 14591 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14592 OrigSToV.getOperand(0)); 14593 } 14594 14595 // On little endian subtargets, combine shuffles such as: 14596 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14597 // into: 14598 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14599 // because the latter can be matched to a single instruction merge. 14600 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14601 // to put the value into element zero. Adjust the shuffle mask so that the 14602 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14603 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14604 // nodes with elements smaller than doubleword because all the ways 14605 // of getting scalar data into a vector register put the value in the 14606 // rightmost element of the left half of the vector. 14607 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14608 SelectionDAG &DAG) const { 14609 SDValue LHS = SVN->getOperand(0); 14610 SDValue RHS = SVN->getOperand(1); 14611 auto Mask = SVN->getMask(); 14612 int NumElts = LHS.getValueType().getVectorNumElements(); 14613 SDValue Res(SVN, 0); 14614 SDLoc dl(SVN); 14615 bool IsLittleEndian = Subtarget.isLittleEndian(); 14616 14617 // On big endian targets this is only useful for subtargets with direct moves. 14618 // On little endian targets it would be useful for all subtargets with VSX. 14619 // However adding special handling for LE subtargets without direct moves 14620 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14621 // which includes direct moves. 14622 if (!Subtarget.hasDirectMove()) 14623 return Res; 14624 14625 // If this is not a shuffle of a shuffle and the first element comes from 14626 // the second vector, canonicalize to the commuted form. This will make it 14627 // more likely to match one of the single instruction patterns. 14628 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14629 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14630 std::swap(LHS, RHS); 14631 Res = DAG.getCommutedVectorShuffle(*SVN); 14632 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14633 } 14634 14635 // Adjust the shuffle mask if either input vector comes from a 14636 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14637 // form (to prevent the need for a swap). 14638 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14639 SDValue SToVLHS = isScalarToVec(LHS); 14640 SDValue SToVRHS = isScalarToVec(RHS); 14641 if (SToVLHS || SToVRHS) { 14642 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14643 : SToVRHS.getValueType().getVectorNumElements(); 14644 int NumEltsOut = ShuffV.size(); 14645 // The width of the "valid lane" (i.e. the lane that contains the value that 14646 // is vectorized) needs to be expressed in terms of the number of elements 14647 // of the shuffle. It is thereby the ratio of the values before and after 14648 // any bitcast. 14649 unsigned ValidLaneWidth = 14650 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14651 LHS.getValueType().getScalarSizeInBits() 14652 : SToVRHS.getValueType().getScalarSizeInBits() / 14653 RHS.getValueType().getScalarSizeInBits(); 14654 14655 // Initially assume that neither input is permuted. These will be adjusted 14656 // accordingly if either input is. 14657 int LHSMaxIdx = -1; 14658 int RHSMinIdx = -1; 14659 int RHSMaxIdx = -1; 14660 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14661 14662 // Get the permuted scalar to vector nodes for the source(s) that come from 14663 // ISD::SCALAR_TO_VECTOR. 14664 // On big endian systems, this only makes sense for element sizes smaller 14665 // than 64 bits since for 64-bit elements, all instructions already put 14666 // the value into element zero. Since scalar size of LHS and RHS may differ 14667 // after isScalarToVec, this should be checked using their own sizes. 14668 if (SToVLHS) { 14669 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14670 return Res; 14671 // Set up the values for the shuffle vector fixup. 14672 LHSMaxIdx = NumEltsOut / NumEltsIn; 14673 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14674 if (SToVLHS.getValueType() != LHS.getValueType()) 14675 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14676 LHS = SToVLHS; 14677 } 14678 if (SToVRHS) { 14679 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14680 return Res; 14681 RHSMinIdx = NumEltsOut; 14682 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14683 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14684 if (SToVRHS.getValueType() != RHS.getValueType()) 14685 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14686 RHS = SToVRHS; 14687 } 14688 14689 // Fix up the shuffle mask to reflect where the desired element actually is. 14690 // The minimum and maximum indices that correspond to element zero for both 14691 // the LHS and RHS are computed and will control which shuffle mask entries 14692 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14693 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14694 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14695 HalfVec, ValidLaneWidth, Subtarget); 14696 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14697 14698 // We may have simplified away the shuffle. We won't be able to do anything 14699 // further with it here. 14700 if (!isa<ShuffleVectorSDNode>(Res)) 14701 return Res; 14702 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14703 } 14704 14705 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14706 // The common case after we commuted the shuffle is that the RHS is a splat 14707 // and we have elements coming in from the splat at indices that are not 14708 // conducive to using a merge. 14709 // Example: 14710 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14711 if (!isSplatBV(TheSplat)) 14712 return Res; 14713 14714 // We are looking for a mask such that all even elements are from 14715 // one vector and all odd elements from the other. 14716 if (!isAlternatingShuffMask(Mask, NumElts)) 14717 return Res; 14718 14719 // Adjust the mask so we are pulling in the same index from the splat 14720 // as the index from the interesting vector in consecutive elements. 14721 if (IsLittleEndian) { 14722 // Example (even elements from first vector): 14723 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14724 if (Mask[0] < NumElts) 14725 for (int i = 1, e = Mask.size(); i < e; i += 2) 14726 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14727 // Example (odd elements from first vector): 14728 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14729 else 14730 for (int i = 0, e = Mask.size(); i < e; i += 2) 14731 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14732 } else { 14733 // Example (even elements from first vector): 14734 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14735 if (Mask[0] < NumElts) 14736 for (int i = 0, e = Mask.size(); i < e; i += 2) 14737 ShuffV[i] = ShuffV[i + 1] - NumElts; 14738 // Example (odd elements from first vector): 14739 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14740 else 14741 for (int i = 1, e = Mask.size(); i < e; i += 2) 14742 ShuffV[i] = ShuffV[i - 1] - NumElts; 14743 } 14744 14745 // If the RHS has undefs, we need to remove them since we may have created 14746 // a shuffle that adds those instead of the splat value. 14747 SDValue SplatVal = 14748 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14749 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14750 14751 if (IsLittleEndian) 14752 RHS = TheSplat; 14753 else 14754 LHS = TheSplat; 14755 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14756 } 14757 14758 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14759 LSBaseSDNode *LSBase, 14760 DAGCombinerInfo &DCI) const { 14761 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14762 "Not a reverse memop pattern!"); 14763 14764 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14765 auto Mask = SVN->getMask(); 14766 int i = 0; 14767 auto I = Mask.rbegin(); 14768 auto E = Mask.rend(); 14769 14770 for (; I != E; ++I) { 14771 if (*I != i) 14772 return false; 14773 i++; 14774 } 14775 return true; 14776 }; 14777 14778 SelectionDAG &DAG = DCI.DAG; 14779 EVT VT = SVN->getValueType(0); 14780 14781 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14782 return SDValue(); 14783 14784 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14785 // See comment in PPCVSXSwapRemoval.cpp. 14786 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14787 if (!Subtarget.hasP9Vector()) 14788 return SDValue(); 14789 14790 if(!IsElementReverse(SVN)) 14791 return SDValue(); 14792 14793 if (LSBase->getOpcode() == ISD::LOAD) { 14794 // If the load return value 0 has more than one user except the 14795 // shufflevector instruction, it is not profitable to replace the 14796 // shufflevector with a reverse load. 14797 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 14798 UI != UE; ++UI) 14799 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 14800 return SDValue(); 14801 14802 SDLoc dl(LSBase); 14803 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14804 return DAG.getMemIntrinsicNode( 14805 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14806 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14807 } 14808 14809 if (LSBase->getOpcode() == ISD::STORE) { 14810 // If there are other uses of the shuffle, the swap cannot be avoided. 14811 // Forcing the use of an X-Form (since swapped stores only have 14812 // X-Forms) without removing the swap is unprofitable. 14813 if (!SVN->hasOneUse()) 14814 return SDValue(); 14815 14816 SDLoc dl(LSBase); 14817 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14818 LSBase->getBasePtr()}; 14819 return DAG.getMemIntrinsicNode( 14820 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14821 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14822 } 14823 14824 llvm_unreachable("Expected a load or store node here"); 14825 } 14826 14827 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14828 DAGCombinerInfo &DCI) const { 14829 SelectionDAG &DAG = DCI.DAG; 14830 SDLoc dl(N); 14831 switch (N->getOpcode()) { 14832 default: break; 14833 case ISD::ADD: 14834 return combineADD(N, DCI); 14835 case ISD::SHL: 14836 return combineSHL(N, DCI); 14837 case ISD::SRA: 14838 return combineSRA(N, DCI); 14839 case ISD::SRL: 14840 return combineSRL(N, DCI); 14841 case ISD::MUL: 14842 return combineMUL(N, DCI); 14843 case ISD::FMA: 14844 case PPCISD::FNMSUB: 14845 return combineFMALike(N, DCI); 14846 case PPCISD::SHL: 14847 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14848 return N->getOperand(0); 14849 break; 14850 case PPCISD::SRL: 14851 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14852 return N->getOperand(0); 14853 break; 14854 case PPCISD::SRA: 14855 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14856 if (C->isNullValue() || // 0 >>s V -> 0. 14857 C->isAllOnesValue()) // -1 >>s V -> -1. 14858 return N->getOperand(0); 14859 } 14860 break; 14861 case ISD::SIGN_EXTEND: 14862 case ISD::ZERO_EXTEND: 14863 case ISD::ANY_EXTEND: 14864 return DAGCombineExtBoolTrunc(N, DCI); 14865 case ISD::TRUNCATE: 14866 return combineTRUNCATE(N, DCI); 14867 case ISD::SETCC: 14868 if (SDValue CSCC = combineSetCC(N, DCI)) 14869 return CSCC; 14870 LLVM_FALLTHROUGH; 14871 case ISD::SELECT_CC: 14872 return DAGCombineTruncBoolExt(N, DCI); 14873 case ISD::SINT_TO_FP: 14874 case ISD::UINT_TO_FP: 14875 return combineFPToIntToFP(N, DCI); 14876 case ISD::VECTOR_SHUFFLE: 14877 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14878 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14879 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14880 } 14881 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14882 case ISD::STORE: { 14883 14884 EVT Op1VT = N->getOperand(1).getValueType(); 14885 unsigned Opcode = N->getOperand(1).getOpcode(); 14886 14887 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14888 SDValue Val= combineStoreFPToInt(N, DCI); 14889 if (Val) 14890 return Val; 14891 } 14892 14893 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14894 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14895 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14896 if (Val) 14897 return Val; 14898 } 14899 14900 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14901 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14902 N->getOperand(1).getNode()->hasOneUse() && 14903 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14904 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14905 14906 // STBRX can only handle simple types and it makes no sense to store less 14907 // two bytes in byte-reversed order. 14908 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14909 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14910 break; 14911 14912 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14913 // Do an any-extend to 32-bits if this is a half-word input. 14914 if (BSwapOp.getValueType() == MVT::i16) 14915 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14916 14917 // If the type of BSWAP operand is wider than stored memory width 14918 // it need to be shifted to the right side before STBRX. 14919 if (Op1VT.bitsGT(mVT)) { 14920 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14921 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14922 DAG.getConstant(Shift, dl, MVT::i32)); 14923 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14924 if (Op1VT == MVT::i64) 14925 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14926 } 14927 14928 SDValue Ops[] = { 14929 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14930 }; 14931 return 14932 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14933 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14934 cast<StoreSDNode>(N)->getMemOperand()); 14935 } 14936 14937 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14938 // So it can increase the chance of CSE constant construction. 14939 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14940 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14941 // Need to sign-extended to 64-bits to handle negative values. 14942 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14943 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14944 MemVT.getSizeInBits()); 14945 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14946 14947 // DAG.getTruncStore() can't be used here because it doesn't accept 14948 // the general (base + offset) addressing mode. 14949 // So we use UpdateNodeOperands and setTruncatingStore instead. 14950 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14951 N->getOperand(3)); 14952 cast<StoreSDNode>(N)->setTruncatingStore(true); 14953 return SDValue(N, 0); 14954 } 14955 14956 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14957 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14958 if (Op1VT.isSimple()) { 14959 MVT StoreVT = Op1VT.getSimpleVT(); 14960 if (Subtarget.needsSwapsForVSXMemOps() && 14961 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14962 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14963 return expandVSXStoreForLE(N, DCI); 14964 } 14965 break; 14966 } 14967 case ISD::LOAD: { 14968 LoadSDNode *LD = cast<LoadSDNode>(N); 14969 EVT VT = LD->getValueType(0); 14970 14971 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14972 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14973 if (VT.isSimple()) { 14974 MVT LoadVT = VT.getSimpleVT(); 14975 if (Subtarget.needsSwapsForVSXMemOps() && 14976 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14977 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14978 return expandVSXLoadForLE(N, DCI); 14979 } 14980 14981 // We sometimes end up with a 64-bit integer load, from which we extract 14982 // two single-precision floating-point numbers. This happens with 14983 // std::complex<float>, and other similar structures, because of the way we 14984 // canonicalize structure copies. However, if we lack direct moves, 14985 // then the final bitcasts from the extracted integer values to the 14986 // floating-point numbers turn into store/load pairs. Even with direct moves, 14987 // just loading the two floating-point numbers is likely better. 14988 auto ReplaceTwoFloatLoad = [&]() { 14989 if (VT != MVT::i64) 14990 return false; 14991 14992 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14993 LD->isVolatile()) 14994 return false; 14995 14996 // We're looking for a sequence like this: 14997 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14998 // t16: i64 = srl t13, Constant:i32<32> 14999 // t17: i32 = truncate t16 15000 // t18: f32 = bitcast t17 15001 // t19: i32 = truncate t13 15002 // t20: f32 = bitcast t19 15003 15004 if (!LD->hasNUsesOfValue(2, 0)) 15005 return false; 15006 15007 auto UI = LD->use_begin(); 15008 while (UI.getUse().getResNo() != 0) ++UI; 15009 SDNode *Trunc = *UI++; 15010 while (UI.getUse().getResNo() != 0) ++UI; 15011 SDNode *RightShift = *UI; 15012 if (Trunc->getOpcode() != ISD::TRUNCATE) 15013 std::swap(Trunc, RightShift); 15014 15015 if (Trunc->getOpcode() != ISD::TRUNCATE || 15016 Trunc->getValueType(0) != MVT::i32 || 15017 !Trunc->hasOneUse()) 15018 return false; 15019 if (RightShift->getOpcode() != ISD::SRL || 15020 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15021 RightShift->getConstantOperandVal(1) != 32 || 15022 !RightShift->hasOneUse()) 15023 return false; 15024 15025 SDNode *Trunc2 = *RightShift->use_begin(); 15026 if (Trunc2->getOpcode() != ISD::TRUNCATE || 15027 Trunc2->getValueType(0) != MVT::i32 || 15028 !Trunc2->hasOneUse()) 15029 return false; 15030 15031 SDNode *Bitcast = *Trunc->use_begin(); 15032 SDNode *Bitcast2 = *Trunc2->use_begin(); 15033 15034 if (Bitcast->getOpcode() != ISD::BITCAST || 15035 Bitcast->getValueType(0) != MVT::f32) 15036 return false; 15037 if (Bitcast2->getOpcode() != ISD::BITCAST || 15038 Bitcast2->getValueType(0) != MVT::f32) 15039 return false; 15040 15041 if (Subtarget.isLittleEndian()) 15042 std::swap(Bitcast, Bitcast2); 15043 15044 // Bitcast has the second float (in memory-layout order) and Bitcast2 15045 // has the first one. 15046 15047 SDValue BasePtr = LD->getBasePtr(); 15048 if (LD->isIndexed()) { 15049 assert(LD->getAddressingMode() == ISD::PRE_INC && 15050 "Non-pre-inc AM on PPC?"); 15051 BasePtr = 15052 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15053 LD->getOffset()); 15054 } 15055 15056 auto MMOFlags = 15057 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15058 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15059 LD->getPointerInfo(), LD->getAlignment(), 15060 MMOFlags, LD->getAAInfo()); 15061 SDValue AddPtr = 15062 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15063 BasePtr, DAG.getIntPtrConstant(4, dl)); 15064 SDValue FloatLoad2 = DAG.getLoad( 15065 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15066 LD->getPointerInfo().getWithOffset(4), 15067 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15068 15069 if (LD->isIndexed()) { 15070 // Note that DAGCombine should re-form any pre-increment load(s) from 15071 // what is produced here if that makes sense. 15072 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15073 } 15074 15075 DCI.CombineTo(Bitcast2, FloatLoad); 15076 DCI.CombineTo(Bitcast, FloatLoad2); 15077 15078 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15079 SDValue(FloatLoad2.getNode(), 1)); 15080 return true; 15081 }; 15082 15083 if (ReplaceTwoFloatLoad()) 15084 return SDValue(N, 0); 15085 15086 EVT MemVT = LD->getMemoryVT(); 15087 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15088 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15089 if (LD->isUnindexed() && VT.isVector() && 15090 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15091 // P8 and later hardware should just use LOAD. 15092 !Subtarget.hasP8Vector() && 15093 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15094 VT == MVT::v4f32))) && 15095 LD->getAlign() < ABIAlignment) { 15096 // This is a type-legal unaligned Altivec load. 15097 SDValue Chain = LD->getChain(); 15098 SDValue Ptr = LD->getBasePtr(); 15099 bool isLittleEndian = Subtarget.isLittleEndian(); 15100 15101 // This implements the loading of unaligned vectors as described in 15102 // the venerable Apple Velocity Engine overview. Specifically: 15103 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15104 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15105 // 15106 // The general idea is to expand a sequence of one or more unaligned 15107 // loads into an alignment-based permutation-control instruction (lvsl 15108 // or lvsr), a series of regular vector loads (which always truncate 15109 // their input address to an aligned address), and a series of 15110 // permutations. The results of these permutations are the requested 15111 // loaded values. The trick is that the last "extra" load is not taken 15112 // from the address you might suspect (sizeof(vector) bytes after the 15113 // last requested load), but rather sizeof(vector) - 1 bytes after the 15114 // last requested vector. The point of this is to avoid a page fault if 15115 // the base address happened to be aligned. This works because if the 15116 // base address is aligned, then adding less than a full vector length 15117 // will cause the last vector in the sequence to be (re)loaded. 15118 // Otherwise, the next vector will be fetched as you might suspect was 15119 // necessary. 15120 15121 // We might be able to reuse the permutation generation from 15122 // a different base address offset from this one by an aligned amount. 15123 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15124 // optimization later. 15125 Intrinsic::ID Intr, IntrLD, IntrPerm; 15126 MVT PermCntlTy, PermTy, LDTy; 15127 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15128 : Intrinsic::ppc_altivec_lvsl; 15129 IntrLD = Intrinsic::ppc_altivec_lvx; 15130 IntrPerm = Intrinsic::ppc_altivec_vperm; 15131 PermCntlTy = MVT::v16i8; 15132 PermTy = MVT::v4i32; 15133 LDTy = MVT::v4i32; 15134 15135 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15136 15137 // Create the new MMO for the new base load. It is like the original MMO, 15138 // but represents an area in memory almost twice the vector size centered 15139 // on the original address. If the address is unaligned, we might start 15140 // reading up to (sizeof(vector)-1) bytes below the address of the 15141 // original unaligned load. 15142 MachineFunction &MF = DAG.getMachineFunction(); 15143 MachineMemOperand *BaseMMO = 15144 MF.getMachineMemOperand(LD->getMemOperand(), 15145 -(long)MemVT.getStoreSize()+1, 15146 2*MemVT.getStoreSize()-1); 15147 15148 // Create the new base load. 15149 SDValue LDXIntID = 15150 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15151 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15152 SDValue BaseLoad = 15153 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15154 DAG.getVTList(PermTy, MVT::Other), 15155 BaseLoadOps, LDTy, BaseMMO); 15156 15157 // Note that the value of IncOffset (which is provided to the next 15158 // load's pointer info offset value, and thus used to calculate the 15159 // alignment), and the value of IncValue (which is actually used to 15160 // increment the pointer value) are different! This is because we 15161 // require the next load to appear to be aligned, even though it 15162 // is actually offset from the base pointer by a lesser amount. 15163 int IncOffset = VT.getSizeInBits() / 8; 15164 int IncValue = IncOffset; 15165 15166 // Walk (both up and down) the chain looking for another load at the real 15167 // (aligned) offset (the alignment of the other load does not matter in 15168 // this case). If found, then do not use the offset reduction trick, as 15169 // that will prevent the loads from being later combined (as they would 15170 // otherwise be duplicates). 15171 if (!findConsecutiveLoad(LD, DAG)) 15172 --IncValue; 15173 15174 SDValue Increment = 15175 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15176 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15177 15178 MachineMemOperand *ExtraMMO = 15179 MF.getMachineMemOperand(LD->getMemOperand(), 15180 1, 2*MemVT.getStoreSize()-1); 15181 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15182 SDValue ExtraLoad = 15183 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15184 DAG.getVTList(PermTy, MVT::Other), 15185 ExtraLoadOps, LDTy, ExtraMMO); 15186 15187 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15188 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15189 15190 // Because vperm has a big-endian bias, we must reverse the order 15191 // of the input vectors and complement the permute control vector 15192 // when generating little endian code. We have already handled the 15193 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15194 // and ExtraLoad here. 15195 SDValue Perm; 15196 if (isLittleEndian) 15197 Perm = BuildIntrinsicOp(IntrPerm, 15198 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15199 else 15200 Perm = BuildIntrinsicOp(IntrPerm, 15201 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15202 15203 if (VT != PermTy) 15204 Perm = Subtarget.hasAltivec() 15205 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15206 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15207 DAG.getTargetConstant(1, dl, MVT::i64)); 15208 // second argument is 1 because this rounding 15209 // is always exact. 15210 15211 // The output of the permutation is our loaded result, the TokenFactor is 15212 // our new chain. 15213 DCI.CombineTo(N, Perm, TF); 15214 return SDValue(N, 0); 15215 } 15216 } 15217 break; 15218 case ISD::INTRINSIC_WO_CHAIN: { 15219 bool isLittleEndian = Subtarget.isLittleEndian(); 15220 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15221 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15222 : Intrinsic::ppc_altivec_lvsl); 15223 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15224 SDValue Add = N->getOperand(1); 15225 15226 int Bits = 4 /* 16 byte alignment */; 15227 15228 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15229 APInt::getAllOnesValue(Bits /* alignment */) 15230 .zext(Add.getScalarValueSizeInBits()))) { 15231 SDNode *BasePtr = Add->getOperand(0).getNode(); 15232 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15233 UE = BasePtr->use_end(); 15234 UI != UE; ++UI) { 15235 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15236 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 15237 IID) { 15238 // We've found another LVSL/LVSR, and this address is an aligned 15239 // multiple of that one. The results will be the same, so use the 15240 // one we've just found instead. 15241 15242 return SDValue(*UI, 0); 15243 } 15244 } 15245 } 15246 15247 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15248 SDNode *BasePtr = Add->getOperand(0).getNode(); 15249 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15250 UE = BasePtr->use_end(); UI != UE; ++UI) { 15251 if (UI->getOpcode() == ISD::ADD && 15252 isa<ConstantSDNode>(UI->getOperand(1)) && 15253 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15254 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15255 (1ULL << Bits) == 0) { 15256 SDNode *OtherAdd = *UI; 15257 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15258 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15259 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15260 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15261 return SDValue(*VI, 0); 15262 } 15263 } 15264 } 15265 } 15266 } 15267 } 15268 15269 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15270 // Expose the vabsduw/h/b opportunity for down stream 15271 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15272 (IID == Intrinsic::ppc_altivec_vmaxsw || 15273 IID == Intrinsic::ppc_altivec_vmaxsh || 15274 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15275 SDValue V1 = N->getOperand(1); 15276 SDValue V2 = N->getOperand(2); 15277 if ((V1.getSimpleValueType() == MVT::v4i32 || 15278 V1.getSimpleValueType() == MVT::v8i16 || 15279 V1.getSimpleValueType() == MVT::v16i8) && 15280 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15281 // (0-a, a) 15282 if (V1.getOpcode() == ISD::SUB && 15283 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15284 V1.getOperand(1) == V2) { 15285 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15286 } 15287 // (a, 0-a) 15288 if (V2.getOpcode() == ISD::SUB && 15289 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15290 V2.getOperand(1) == V1) { 15291 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15292 } 15293 // (x-y, y-x) 15294 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15295 V1.getOperand(0) == V2.getOperand(1) && 15296 V1.getOperand(1) == V2.getOperand(0)) { 15297 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15298 } 15299 } 15300 } 15301 } 15302 15303 break; 15304 case ISD::INTRINSIC_W_CHAIN: 15305 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15306 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15307 if (Subtarget.needsSwapsForVSXMemOps()) { 15308 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15309 default: 15310 break; 15311 case Intrinsic::ppc_vsx_lxvw4x: 15312 case Intrinsic::ppc_vsx_lxvd2x: 15313 return expandVSXLoadForLE(N, DCI); 15314 } 15315 } 15316 break; 15317 case ISD::INTRINSIC_VOID: 15318 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15319 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15320 if (Subtarget.needsSwapsForVSXMemOps()) { 15321 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15322 default: 15323 break; 15324 case Intrinsic::ppc_vsx_stxvw4x: 15325 case Intrinsic::ppc_vsx_stxvd2x: 15326 return expandVSXStoreForLE(N, DCI); 15327 } 15328 } 15329 break; 15330 case ISD::BSWAP: { 15331 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15332 // For subtargets without LDBRX, we can still do better than the default 15333 // expansion even for 64-bit BSWAP (LOAD). 15334 bool Is64BitBswapOn64BitTgt = 15335 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15336 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15337 N->getOperand(0).hasOneUse(); 15338 if (IsSingleUseNormalLd && 15339 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15340 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15341 SDValue Load = N->getOperand(0); 15342 LoadSDNode *LD = cast<LoadSDNode>(Load); 15343 // Create the byte-swapping load. 15344 SDValue Ops[] = { 15345 LD->getChain(), // Chain 15346 LD->getBasePtr(), // Ptr 15347 DAG.getValueType(N->getValueType(0)) // VT 15348 }; 15349 SDValue BSLoad = 15350 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15351 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15352 MVT::i64 : MVT::i32, MVT::Other), 15353 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15354 15355 // If this is an i16 load, insert the truncate. 15356 SDValue ResVal = BSLoad; 15357 if (N->getValueType(0) == MVT::i16) 15358 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15359 15360 // First, combine the bswap away. This makes the value produced by the 15361 // load dead. 15362 DCI.CombineTo(N, ResVal); 15363 15364 // Next, combine the load away, we give it a bogus result value but a real 15365 // chain result. The result value is dead because the bswap is dead. 15366 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15367 15368 // Return N so it doesn't get rechecked! 15369 return SDValue(N, 0); 15370 } 15371 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15372 // before legalization so that the BUILD_PAIR is handled correctly. 15373 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15374 !IsSingleUseNormalLd) 15375 return SDValue(); 15376 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15377 15378 // Can't split volatile or atomic loads. 15379 if (!LD->isSimple()) 15380 return SDValue(); 15381 SDValue BasePtr = LD->getBasePtr(); 15382 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15383 LD->getPointerInfo(), LD->getAlignment()); 15384 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15385 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15386 DAG.getIntPtrConstant(4, dl)); 15387 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15388 LD->getMemOperand(), 4, 4); 15389 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15390 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15391 SDValue Res; 15392 if (Subtarget.isLittleEndian()) 15393 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15394 else 15395 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15396 SDValue TF = 15397 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15398 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15399 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15400 return Res; 15401 } 15402 case PPCISD::VCMP: 15403 // If a VCMP_rec node already exists with exactly the same operands as this 15404 // node, use its result instead of this node (VCMP_rec computes both a CR6 15405 // and a normal output). 15406 // 15407 if (!N->getOperand(0).hasOneUse() && 15408 !N->getOperand(1).hasOneUse() && 15409 !N->getOperand(2).hasOneUse()) { 15410 15411 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15412 SDNode *VCMPrecNode = nullptr; 15413 15414 SDNode *LHSN = N->getOperand(0).getNode(); 15415 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15416 UI != E; ++UI) 15417 if (UI->getOpcode() == PPCISD::VCMP_rec && 15418 UI->getOperand(1) == N->getOperand(1) && 15419 UI->getOperand(2) == N->getOperand(2) && 15420 UI->getOperand(0) == N->getOperand(0)) { 15421 VCMPrecNode = *UI; 15422 break; 15423 } 15424 15425 // If there is no VCMP_rec node, or if the flag value has a single use, 15426 // don't transform this. 15427 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15428 break; 15429 15430 // Look at the (necessarily single) use of the flag value. If it has a 15431 // chain, this transformation is more complex. Note that multiple things 15432 // could use the value result, which we should ignore. 15433 SDNode *FlagUser = nullptr; 15434 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15435 FlagUser == nullptr; ++UI) { 15436 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15437 SDNode *User = *UI; 15438 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15439 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15440 FlagUser = User; 15441 break; 15442 } 15443 } 15444 } 15445 15446 // If the user is a MFOCRF instruction, we know this is safe. 15447 // Otherwise we give up for right now. 15448 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15449 return SDValue(VCMPrecNode, 0); 15450 } 15451 break; 15452 case ISD::BRCOND: { 15453 SDValue Cond = N->getOperand(1); 15454 SDValue Target = N->getOperand(2); 15455 15456 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15457 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15458 Intrinsic::loop_decrement) { 15459 15460 // We now need to make the intrinsic dead (it cannot be instruction 15461 // selected). 15462 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15463 assert(Cond.getNode()->hasOneUse() && 15464 "Counter decrement has more than one use"); 15465 15466 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15467 N->getOperand(0), Target); 15468 } 15469 } 15470 break; 15471 case ISD::BR_CC: { 15472 // If this is a branch on an altivec predicate comparison, lower this so 15473 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15474 // lowering is done pre-legalize, because the legalizer lowers the predicate 15475 // compare down to code that is difficult to reassemble. 15476 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15477 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15478 15479 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15480 // value. If so, pass-through the AND to get to the intrinsic. 15481 if (LHS.getOpcode() == ISD::AND && 15482 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15483 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15484 Intrinsic::loop_decrement && 15485 isa<ConstantSDNode>(LHS.getOperand(1)) && 15486 !isNullConstant(LHS.getOperand(1))) 15487 LHS = LHS.getOperand(0); 15488 15489 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15490 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15491 Intrinsic::loop_decrement && 15492 isa<ConstantSDNode>(RHS)) { 15493 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15494 "Counter decrement comparison is not EQ or NE"); 15495 15496 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15497 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15498 (CC == ISD::SETNE && !Val); 15499 15500 // We now need to make the intrinsic dead (it cannot be instruction 15501 // selected). 15502 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15503 assert(LHS.getNode()->hasOneUse() && 15504 "Counter decrement has more than one use"); 15505 15506 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15507 N->getOperand(0), N->getOperand(4)); 15508 } 15509 15510 int CompareOpc; 15511 bool isDot; 15512 15513 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15514 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15515 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15516 assert(isDot && "Can't compare against a vector result!"); 15517 15518 // If this is a comparison against something other than 0/1, then we know 15519 // that the condition is never/always true. 15520 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15521 if (Val != 0 && Val != 1) { 15522 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15523 return N->getOperand(0); 15524 // Always !=, turn it into an unconditional branch. 15525 return DAG.getNode(ISD::BR, dl, MVT::Other, 15526 N->getOperand(0), N->getOperand(4)); 15527 } 15528 15529 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15530 15531 // Create the PPCISD altivec 'dot' comparison node. 15532 SDValue Ops[] = { 15533 LHS.getOperand(2), // LHS of compare 15534 LHS.getOperand(3), // RHS of compare 15535 DAG.getConstant(CompareOpc, dl, MVT::i32) 15536 }; 15537 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15538 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15539 15540 // Unpack the result based on how the target uses it. 15541 PPC::Predicate CompOpc; 15542 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15543 default: // Can't happen, don't crash on invalid number though. 15544 case 0: // Branch on the value of the EQ bit of CR6. 15545 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15546 break; 15547 case 1: // Branch on the inverted value of the EQ bit of CR6. 15548 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15549 break; 15550 case 2: // Branch on the value of the LT bit of CR6. 15551 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15552 break; 15553 case 3: // Branch on the inverted value of the LT bit of CR6. 15554 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15555 break; 15556 } 15557 15558 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15559 DAG.getConstant(CompOpc, dl, MVT::i32), 15560 DAG.getRegister(PPC::CR6, MVT::i32), 15561 N->getOperand(4), CompNode.getValue(1)); 15562 } 15563 break; 15564 } 15565 case ISD::BUILD_VECTOR: 15566 return DAGCombineBuildVector(N, DCI); 15567 case ISD::ABS: 15568 return combineABS(N, DCI); 15569 case ISD::VSELECT: 15570 return combineVSelect(N, DCI); 15571 } 15572 15573 return SDValue(); 15574 } 15575 15576 SDValue 15577 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15578 SelectionDAG &DAG, 15579 SmallVectorImpl<SDNode *> &Created) const { 15580 // fold (sdiv X, pow2) 15581 EVT VT = N->getValueType(0); 15582 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15583 return SDValue(); 15584 if ((VT != MVT::i32 && VT != MVT::i64) || 15585 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15586 return SDValue(); 15587 15588 SDLoc DL(N); 15589 SDValue N0 = N->getOperand(0); 15590 15591 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15592 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15593 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15594 15595 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15596 Created.push_back(Op.getNode()); 15597 15598 if (IsNegPow2) { 15599 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15600 Created.push_back(Op.getNode()); 15601 } 15602 15603 return Op; 15604 } 15605 15606 //===----------------------------------------------------------------------===// 15607 // Inline Assembly Support 15608 //===----------------------------------------------------------------------===// 15609 15610 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15611 KnownBits &Known, 15612 const APInt &DemandedElts, 15613 const SelectionDAG &DAG, 15614 unsigned Depth) const { 15615 Known.resetAll(); 15616 switch (Op.getOpcode()) { 15617 default: break; 15618 case PPCISD::LBRX: { 15619 // lhbrx is known to have the top bits cleared out. 15620 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15621 Known.Zero = 0xFFFF0000; 15622 break; 15623 } 15624 case ISD::INTRINSIC_WO_CHAIN: { 15625 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15626 default: break; 15627 case Intrinsic::ppc_altivec_vcmpbfp_p: 15628 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15629 case Intrinsic::ppc_altivec_vcmpequb_p: 15630 case Intrinsic::ppc_altivec_vcmpequh_p: 15631 case Intrinsic::ppc_altivec_vcmpequw_p: 15632 case Intrinsic::ppc_altivec_vcmpequd_p: 15633 case Intrinsic::ppc_altivec_vcmpequq_p: 15634 case Intrinsic::ppc_altivec_vcmpgefp_p: 15635 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15636 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15637 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15638 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15639 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15640 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15641 case Intrinsic::ppc_altivec_vcmpgtub_p: 15642 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15643 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15644 case Intrinsic::ppc_altivec_vcmpgtud_p: 15645 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15646 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15647 break; 15648 } 15649 } 15650 } 15651 } 15652 15653 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15654 switch (Subtarget.getCPUDirective()) { 15655 default: break; 15656 case PPC::DIR_970: 15657 case PPC::DIR_PWR4: 15658 case PPC::DIR_PWR5: 15659 case PPC::DIR_PWR5X: 15660 case PPC::DIR_PWR6: 15661 case PPC::DIR_PWR6X: 15662 case PPC::DIR_PWR7: 15663 case PPC::DIR_PWR8: 15664 case PPC::DIR_PWR9: 15665 case PPC::DIR_PWR10: 15666 case PPC::DIR_PWR_FUTURE: { 15667 if (!ML) 15668 break; 15669 15670 if (!DisableInnermostLoopAlign32) { 15671 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15672 // so that we can decrease cache misses and branch-prediction misses. 15673 // Actual alignment of the loop will depend on the hotness check and other 15674 // logic in alignBlocks. 15675 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15676 return Align(32); 15677 } 15678 15679 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15680 15681 // For small loops (between 5 and 8 instructions), align to a 32-byte 15682 // boundary so that the entire loop fits in one instruction-cache line. 15683 uint64_t LoopSize = 0; 15684 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15685 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15686 LoopSize += TII->getInstSizeInBytes(*J); 15687 if (LoopSize > 32) 15688 break; 15689 } 15690 15691 if (LoopSize > 16 && LoopSize <= 32) 15692 return Align(32); 15693 15694 break; 15695 } 15696 } 15697 15698 return TargetLowering::getPrefLoopAlignment(ML); 15699 } 15700 15701 /// getConstraintType - Given a constraint, return the type of 15702 /// constraint it is for this target. 15703 PPCTargetLowering::ConstraintType 15704 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15705 if (Constraint.size() == 1) { 15706 switch (Constraint[0]) { 15707 default: break; 15708 case 'b': 15709 case 'r': 15710 case 'f': 15711 case 'd': 15712 case 'v': 15713 case 'y': 15714 return C_RegisterClass; 15715 case 'Z': 15716 // FIXME: While Z does indicate a memory constraint, it specifically 15717 // indicates an r+r address (used in conjunction with the 'y' modifier 15718 // in the replacement string). Currently, we're forcing the base 15719 // register to be r0 in the asm printer (which is interpreted as zero) 15720 // and forming the complete address in the second register. This is 15721 // suboptimal. 15722 return C_Memory; 15723 } 15724 } else if (Constraint == "wc") { // individual CR bits. 15725 return C_RegisterClass; 15726 } else if (Constraint == "wa" || Constraint == "wd" || 15727 Constraint == "wf" || Constraint == "ws" || 15728 Constraint == "wi" || Constraint == "ww") { 15729 return C_RegisterClass; // VSX registers. 15730 } 15731 return TargetLowering::getConstraintType(Constraint); 15732 } 15733 15734 /// Examine constraint type and operand type and determine a weight value. 15735 /// This object must already have been set up with the operand type 15736 /// and the current alternative constraint selected. 15737 TargetLowering::ConstraintWeight 15738 PPCTargetLowering::getSingleConstraintMatchWeight( 15739 AsmOperandInfo &info, const char *constraint) const { 15740 ConstraintWeight weight = CW_Invalid; 15741 Value *CallOperandVal = info.CallOperandVal; 15742 // If we don't have a value, we can't do a match, 15743 // but allow it at the lowest weight. 15744 if (!CallOperandVal) 15745 return CW_Default; 15746 Type *type = CallOperandVal->getType(); 15747 15748 // Look at the constraint type. 15749 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15750 return CW_Register; // an individual CR bit. 15751 else if ((StringRef(constraint) == "wa" || 15752 StringRef(constraint) == "wd" || 15753 StringRef(constraint) == "wf") && 15754 type->isVectorTy()) 15755 return CW_Register; 15756 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15757 return CW_Register; // just hold 64-bit integers data. 15758 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15759 return CW_Register; 15760 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15761 return CW_Register; 15762 15763 switch (*constraint) { 15764 default: 15765 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15766 break; 15767 case 'b': 15768 if (type->isIntegerTy()) 15769 weight = CW_Register; 15770 break; 15771 case 'f': 15772 if (type->isFloatTy()) 15773 weight = CW_Register; 15774 break; 15775 case 'd': 15776 if (type->isDoubleTy()) 15777 weight = CW_Register; 15778 break; 15779 case 'v': 15780 if (type->isVectorTy()) 15781 weight = CW_Register; 15782 break; 15783 case 'y': 15784 weight = CW_Register; 15785 break; 15786 case 'Z': 15787 weight = CW_Memory; 15788 break; 15789 } 15790 return weight; 15791 } 15792 15793 std::pair<unsigned, const TargetRegisterClass *> 15794 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15795 StringRef Constraint, 15796 MVT VT) const { 15797 if (Constraint.size() == 1) { 15798 // GCC RS6000 Constraint Letters 15799 switch (Constraint[0]) { 15800 case 'b': // R1-R31 15801 if (VT == MVT::i64 && Subtarget.isPPC64()) 15802 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15803 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15804 case 'r': // R0-R31 15805 if (VT == MVT::i64 && Subtarget.isPPC64()) 15806 return std::make_pair(0U, &PPC::G8RCRegClass); 15807 return std::make_pair(0U, &PPC::GPRCRegClass); 15808 // 'd' and 'f' constraints are both defined to be "the floating point 15809 // registers", where one is for 32-bit and the other for 64-bit. We don't 15810 // really care overly much here so just give them all the same reg classes. 15811 case 'd': 15812 case 'f': 15813 if (Subtarget.hasSPE()) { 15814 if (VT == MVT::f32 || VT == MVT::i32) 15815 return std::make_pair(0U, &PPC::GPRCRegClass); 15816 if (VT == MVT::f64 || VT == MVT::i64) 15817 return std::make_pair(0U, &PPC::SPERCRegClass); 15818 } else { 15819 if (VT == MVT::f32 || VT == MVT::i32) 15820 return std::make_pair(0U, &PPC::F4RCRegClass); 15821 if (VT == MVT::f64 || VT == MVT::i64) 15822 return std::make_pair(0U, &PPC::F8RCRegClass); 15823 } 15824 break; 15825 case 'v': 15826 if (Subtarget.hasAltivec()) 15827 return std::make_pair(0U, &PPC::VRRCRegClass); 15828 break; 15829 case 'y': // crrc 15830 return std::make_pair(0U, &PPC::CRRCRegClass); 15831 } 15832 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15833 // An individual CR bit. 15834 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15835 } else if ((Constraint == "wa" || Constraint == "wd" || 15836 Constraint == "wf" || Constraint == "wi") && 15837 Subtarget.hasVSX()) { 15838 // A VSX register for either a scalar (FP) or vector. There is no 15839 // support for single precision scalars on subtargets prior to Power8. 15840 if (VT.isVector()) 15841 return std::make_pair(0U, &PPC::VSRCRegClass); 15842 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15843 return std::make_pair(0U, &PPC::VSSRCRegClass); 15844 return std::make_pair(0U, &PPC::VSFRCRegClass); 15845 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15846 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15847 return std::make_pair(0U, &PPC::VSSRCRegClass); 15848 else 15849 return std::make_pair(0U, &PPC::VSFRCRegClass); 15850 } else if (Constraint == "lr") { 15851 if (VT == MVT::i64) 15852 return std::make_pair(0U, &PPC::LR8RCRegClass); 15853 else 15854 return std::make_pair(0U, &PPC::LRRCRegClass); 15855 } 15856 15857 // Handle special cases of physical registers that are not properly handled 15858 // by the base class. 15859 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 15860 // If we name a VSX register, we can't defer to the base class because it 15861 // will not recognize the correct register (their names will be VSL{0-31} 15862 // and V{0-31} so they won't match). So we match them here. 15863 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15864 int VSNum = atoi(Constraint.data() + 3); 15865 assert(VSNum >= 0 && VSNum <= 63 && 15866 "Attempted to access a vsr out of range"); 15867 if (VSNum < 32) 15868 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15869 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15870 } 15871 15872 // For float registers, we can't defer to the base class as it will match 15873 // the SPILLTOVSRRC class. 15874 if (Constraint.size() > 3 && Constraint[1] == 'f') { 15875 int RegNum = atoi(Constraint.data() + 2); 15876 if (RegNum > 31 || RegNum < 0) 15877 report_fatal_error("Invalid floating point register number"); 15878 if (VT == MVT::f32 || VT == MVT::i32) 15879 return Subtarget.hasSPE() 15880 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 15881 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 15882 if (VT == MVT::f64 || VT == MVT::i64) 15883 return Subtarget.hasSPE() 15884 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 15885 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 15886 } 15887 } 15888 15889 std::pair<unsigned, const TargetRegisterClass *> R = 15890 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15891 15892 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15893 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15894 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15895 // register. 15896 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15897 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15898 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15899 PPC::GPRCRegClass.contains(R.first)) 15900 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15901 PPC::sub_32, &PPC::G8RCRegClass), 15902 &PPC::G8RCRegClass); 15903 15904 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15905 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 15906 R.first = PPC::CR0; 15907 R.second = &PPC::CRRCRegClass; 15908 } 15909 // FIXME: This warning should ideally be emitted in the front end. 15910 const auto &TM = getTargetMachine(); 15911 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 15912 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 15913 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 15914 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 15915 errs() << "warning: vector registers 20 to 32 are reserved in the " 15916 "default AIX AltiVec ABI and cannot be used\n"; 15917 } 15918 15919 return R; 15920 } 15921 15922 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15923 /// vector. If it is invalid, don't add anything to Ops. 15924 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15925 std::string &Constraint, 15926 std::vector<SDValue>&Ops, 15927 SelectionDAG &DAG) const { 15928 SDValue Result; 15929 15930 // Only support length 1 constraints. 15931 if (Constraint.length() > 1) return; 15932 15933 char Letter = Constraint[0]; 15934 switch (Letter) { 15935 default: break; 15936 case 'I': 15937 case 'J': 15938 case 'K': 15939 case 'L': 15940 case 'M': 15941 case 'N': 15942 case 'O': 15943 case 'P': { 15944 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15945 if (!CST) return; // Must be an immediate to match. 15946 SDLoc dl(Op); 15947 int64_t Value = CST->getSExtValue(); 15948 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15949 // numbers are printed as such. 15950 switch (Letter) { 15951 default: llvm_unreachable("Unknown constraint letter!"); 15952 case 'I': // "I" is a signed 16-bit constant. 15953 if (isInt<16>(Value)) 15954 Result = DAG.getTargetConstant(Value, dl, TCVT); 15955 break; 15956 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15957 if (isShiftedUInt<16, 16>(Value)) 15958 Result = DAG.getTargetConstant(Value, dl, TCVT); 15959 break; 15960 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15961 if (isShiftedInt<16, 16>(Value)) 15962 Result = DAG.getTargetConstant(Value, dl, TCVT); 15963 break; 15964 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15965 if (isUInt<16>(Value)) 15966 Result = DAG.getTargetConstant(Value, dl, TCVT); 15967 break; 15968 case 'M': // "M" is a constant that is greater than 31. 15969 if (Value > 31) 15970 Result = DAG.getTargetConstant(Value, dl, TCVT); 15971 break; 15972 case 'N': // "N" is a positive constant that is an exact power of two. 15973 if (Value > 0 && isPowerOf2_64(Value)) 15974 Result = DAG.getTargetConstant(Value, dl, TCVT); 15975 break; 15976 case 'O': // "O" is the constant zero. 15977 if (Value == 0) 15978 Result = DAG.getTargetConstant(Value, dl, TCVT); 15979 break; 15980 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15981 if (isInt<16>(-Value)) 15982 Result = DAG.getTargetConstant(Value, dl, TCVT); 15983 break; 15984 } 15985 break; 15986 } 15987 } 15988 15989 if (Result.getNode()) { 15990 Ops.push_back(Result); 15991 return; 15992 } 15993 15994 // Handle standard constraint letters. 15995 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15996 } 15997 15998 // isLegalAddressingMode - Return true if the addressing mode represented 15999 // by AM is legal for this target, for a load/store of the specified type. 16000 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 16001 const AddrMode &AM, Type *Ty, 16002 unsigned AS, 16003 Instruction *I) const { 16004 // Vector type r+i form is supported since power9 as DQ form. We don't check 16005 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 16006 // imm form is preferred and the offset can be adjusted to use imm form later 16007 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 16008 // max offset to check legal addressing mode, we should be a little aggressive 16009 // to contain other offsets for that LSRUse. 16010 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 16011 return false; 16012 16013 // PPC allows a sign-extended 16-bit immediate field. 16014 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 16015 return false; 16016 16017 // No global is ever allowed as a base. 16018 if (AM.BaseGV) 16019 return false; 16020 16021 // PPC only support r+r, 16022 switch (AM.Scale) { 16023 case 0: // "r+i" or just "i", depending on HasBaseReg. 16024 break; 16025 case 1: 16026 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 16027 return false; 16028 // Otherwise we have r+r or r+i. 16029 break; 16030 case 2: 16031 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 16032 return false; 16033 // Allow 2*r as r+r. 16034 break; 16035 default: 16036 // No other scales are supported. 16037 return false; 16038 } 16039 16040 return true; 16041 } 16042 16043 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 16044 SelectionDAG &DAG) const { 16045 MachineFunction &MF = DAG.getMachineFunction(); 16046 MachineFrameInfo &MFI = MF.getFrameInfo(); 16047 MFI.setReturnAddressIsTaken(true); 16048 16049 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 16050 return SDValue(); 16051 16052 SDLoc dl(Op); 16053 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16054 16055 // Make sure the function does not optimize away the store of the RA to 16056 // the stack. 16057 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 16058 FuncInfo->setLRStoreRequired(); 16059 bool isPPC64 = Subtarget.isPPC64(); 16060 auto PtrVT = getPointerTy(MF.getDataLayout()); 16061 16062 if (Depth > 0) { 16063 // The link register (return address) is saved in the caller's frame 16064 // not the callee's stack frame. So we must get the caller's frame 16065 // address and load the return address at the LR offset from there. 16066 SDValue FrameAddr = 16067 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16068 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 16069 SDValue Offset = 16070 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 16071 isPPC64 ? MVT::i64 : MVT::i32); 16072 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 16073 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 16074 MachinePointerInfo()); 16075 } 16076 16077 // Just load the return address off the stack. 16078 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 16079 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 16080 MachinePointerInfo()); 16081 } 16082 16083 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 16084 SelectionDAG &DAG) const { 16085 SDLoc dl(Op); 16086 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16087 16088 MachineFunction &MF = DAG.getMachineFunction(); 16089 MachineFrameInfo &MFI = MF.getFrameInfo(); 16090 MFI.setFrameAddressIsTaken(true); 16091 16092 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16093 bool isPPC64 = PtrVT == MVT::i64; 16094 16095 // Naked functions never have a frame pointer, and so we use r1. For all 16096 // other functions, this decision must be delayed until during PEI. 16097 unsigned FrameReg; 16098 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16099 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16100 else 16101 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16102 16103 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16104 PtrVT); 16105 while (Depth--) 16106 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16107 FrameAddr, MachinePointerInfo()); 16108 return FrameAddr; 16109 } 16110 16111 // FIXME? Maybe this could be a TableGen attribute on some registers and 16112 // this table could be generated automatically from RegInfo. 16113 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16114 const MachineFunction &MF) const { 16115 bool isPPC64 = Subtarget.isPPC64(); 16116 16117 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16118 if (!is64Bit && VT != LLT::scalar(32)) 16119 report_fatal_error("Invalid register global variable type"); 16120 16121 Register Reg = StringSwitch<Register>(RegName) 16122 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16123 .Case("r2", isPPC64 ? Register() : PPC::R2) 16124 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16125 .Default(Register()); 16126 16127 if (Reg) 16128 return Reg; 16129 report_fatal_error("Invalid register name global variable"); 16130 } 16131 16132 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16133 // 32-bit SVR4 ABI access everything as got-indirect. 16134 if (Subtarget.is32BitELFABI()) 16135 return true; 16136 16137 // AIX accesses everything indirectly through the TOC, which is similar to 16138 // the GOT. 16139 if (Subtarget.isAIXABI()) 16140 return true; 16141 16142 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16143 // If it is small or large code model, module locals are accessed 16144 // indirectly by loading their address from .toc/.got. 16145 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16146 return true; 16147 16148 // JumpTable and BlockAddress are accessed as got-indirect. 16149 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16150 return true; 16151 16152 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16153 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16154 16155 return false; 16156 } 16157 16158 bool 16159 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16160 // The PowerPC target isn't yet aware of offsets. 16161 return false; 16162 } 16163 16164 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16165 const CallInst &I, 16166 MachineFunction &MF, 16167 unsigned Intrinsic) const { 16168 switch (Intrinsic) { 16169 case Intrinsic::ppc_atomicrmw_xchg_i128: 16170 case Intrinsic::ppc_atomicrmw_add_i128: 16171 case Intrinsic::ppc_atomicrmw_sub_i128: 16172 case Intrinsic::ppc_atomicrmw_nand_i128: 16173 case Intrinsic::ppc_atomicrmw_and_i128: 16174 case Intrinsic::ppc_atomicrmw_or_i128: 16175 case Intrinsic::ppc_atomicrmw_xor_i128: 16176 case Intrinsic::ppc_cmpxchg_i128: 16177 Info.opc = ISD::INTRINSIC_W_CHAIN; 16178 Info.memVT = MVT::i128; 16179 Info.ptrVal = I.getArgOperand(0); 16180 Info.offset = 0; 16181 Info.align = Align(16); 16182 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16183 MachineMemOperand::MOVolatile; 16184 return true; 16185 case Intrinsic::ppc_atomic_load_i128: 16186 Info.opc = ISD::INTRINSIC_W_CHAIN; 16187 Info.memVT = MVT::i128; 16188 Info.ptrVal = I.getArgOperand(0); 16189 Info.offset = 0; 16190 Info.align = Align(16); 16191 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 16192 return true; 16193 case Intrinsic::ppc_atomic_store_i128: 16194 Info.opc = ISD::INTRINSIC_VOID; 16195 Info.memVT = MVT::i128; 16196 Info.ptrVal = I.getArgOperand(2); 16197 Info.offset = 0; 16198 Info.align = Align(16); 16199 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 16200 return true; 16201 case Intrinsic::ppc_altivec_lvx: 16202 case Intrinsic::ppc_altivec_lvxl: 16203 case Intrinsic::ppc_altivec_lvebx: 16204 case Intrinsic::ppc_altivec_lvehx: 16205 case Intrinsic::ppc_altivec_lvewx: 16206 case Intrinsic::ppc_vsx_lxvd2x: 16207 case Intrinsic::ppc_vsx_lxvw4x: 16208 case Intrinsic::ppc_vsx_lxvd2x_be: 16209 case Intrinsic::ppc_vsx_lxvw4x_be: 16210 case Intrinsic::ppc_vsx_lxvl: 16211 case Intrinsic::ppc_vsx_lxvll: { 16212 EVT VT; 16213 switch (Intrinsic) { 16214 case Intrinsic::ppc_altivec_lvebx: 16215 VT = MVT::i8; 16216 break; 16217 case Intrinsic::ppc_altivec_lvehx: 16218 VT = MVT::i16; 16219 break; 16220 case Intrinsic::ppc_altivec_lvewx: 16221 VT = MVT::i32; 16222 break; 16223 case Intrinsic::ppc_vsx_lxvd2x: 16224 case Intrinsic::ppc_vsx_lxvd2x_be: 16225 VT = MVT::v2f64; 16226 break; 16227 default: 16228 VT = MVT::v4i32; 16229 break; 16230 } 16231 16232 Info.opc = ISD::INTRINSIC_W_CHAIN; 16233 Info.memVT = VT; 16234 Info.ptrVal = I.getArgOperand(0); 16235 Info.offset = -VT.getStoreSize()+1; 16236 Info.size = 2*VT.getStoreSize()-1; 16237 Info.align = Align(1); 16238 Info.flags = MachineMemOperand::MOLoad; 16239 return true; 16240 } 16241 case Intrinsic::ppc_altivec_stvx: 16242 case Intrinsic::ppc_altivec_stvxl: 16243 case Intrinsic::ppc_altivec_stvebx: 16244 case Intrinsic::ppc_altivec_stvehx: 16245 case Intrinsic::ppc_altivec_stvewx: 16246 case Intrinsic::ppc_vsx_stxvd2x: 16247 case Intrinsic::ppc_vsx_stxvw4x: 16248 case Intrinsic::ppc_vsx_stxvd2x_be: 16249 case Intrinsic::ppc_vsx_stxvw4x_be: 16250 case Intrinsic::ppc_vsx_stxvl: 16251 case Intrinsic::ppc_vsx_stxvll: { 16252 EVT VT; 16253 switch (Intrinsic) { 16254 case Intrinsic::ppc_altivec_stvebx: 16255 VT = MVT::i8; 16256 break; 16257 case Intrinsic::ppc_altivec_stvehx: 16258 VT = MVT::i16; 16259 break; 16260 case Intrinsic::ppc_altivec_stvewx: 16261 VT = MVT::i32; 16262 break; 16263 case Intrinsic::ppc_vsx_stxvd2x: 16264 case Intrinsic::ppc_vsx_stxvd2x_be: 16265 VT = MVT::v2f64; 16266 break; 16267 default: 16268 VT = MVT::v4i32; 16269 break; 16270 } 16271 16272 Info.opc = ISD::INTRINSIC_VOID; 16273 Info.memVT = VT; 16274 Info.ptrVal = I.getArgOperand(1); 16275 Info.offset = -VT.getStoreSize()+1; 16276 Info.size = 2*VT.getStoreSize()-1; 16277 Info.align = Align(1); 16278 Info.flags = MachineMemOperand::MOStore; 16279 return true; 16280 } 16281 default: 16282 break; 16283 } 16284 16285 return false; 16286 } 16287 16288 /// It returns EVT::Other if the type should be determined using generic 16289 /// target-independent logic. 16290 EVT PPCTargetLowering::getOptimalMemOpType( 16291 const MemOp &Op, const AttributeList &FuncAttributes) const { 16292 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16293 // We should use Altivec/VSX loads and stores when available. For unaligned 16294 // addresses, unaligned VSX loads are only fast starting with the P8. 16295 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16296 (Op.isAligned(Align(16)) || 16297 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16298 return MVT::v4i32; 16299 } 16300 16301 if (Subtarget.isPPC64()) { 16302 return MVT::i64; 16303 } 16304 16305 return MVT::i32; 16306 } 16307 16308 /// Returns true if it is beneficial to convert a load of a constant 16309 /// to just the constant itself. 16310 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16311 Type *Ty) const { 16312 assert(Ty->isIntegerTy()); 16313 16314 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16315 return !(BitSize == 0 || BitSize > 64); 16316 } 16317 16318 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16319 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16320 return false; 16321 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16322 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16323 return NumBits1 == 64 && NumBits2 == 32; 16324 } 16325 16326 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16327 if (!VT1.isInteger() || !VT2.isInteger()) 16328 return false; 16329 unsigned NumBits1 = VT1.getSizeInBits(); 16330 unsigned NumBits2 = VT2.getSizeInBits(); 16331 return NumBits1 == 64 && NumBits2 == 32; 16332 } 16333 16334 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16335 // Generally speaking, zexts are not free, but they are free when they can be 16336 // folded with other operations. 16337 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16338 EVT MemVT = LD->getMemoryVT(); 16339 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16340 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16341 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16342 LD->getExtensionType() == ISD::ZEXTLOAD)) 16343 return true; 16344 } 16345 16346 // FIXME: Add other cases... 16347 // - 32-bit shifts with a zext to i64 16348 // - zext after ctlz, bswap, etc. 16349 // - zext after and by a constant mask 16350 16351 return TargetLowering::isZExtFree(Val, VT2); 16352 } 16353 16354 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16355 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16356 "invalid fpext types"); 16357 // Extending to float128 is not free. 16358 if (DestVT == MVT::f128) 16359 return false; 16360 return true; 16361 } 16362 16363 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16364 return isInt<16>(Imm) || isUInt<16>(Imm); 16365 } 16366 16367 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16368 return isInt<16>(Imm) || isUInt<16>(Imm); 16369 } 16370 16371 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16372 MachineMemOperand::Flags, 16373 bool *Fast) const { 16374 if (DisablePPCUnaligned) 16375 return false; 16376 16377 // PowerPC supports unaligned memory access for simple non-vector types. 16378 // Although accessing unaligned addresses is not as efficient as accessing 16379 // aligned addresses, it is generally more efficient than manual expansion, 16380 // and generally only traps for software emulation when crossing page 16381 // boundaries. 16382 16383 if (!VT.isSimple()) 16384 return false; 16385 16386 if (VT.isFloatingPoint() && !VT.isVector() && 16387 !Subtarget.allowsUnalignedFPAccess()) 16388 return false; 16389 16390 if (VT.getSimpleVT().isVector()) { 16391 if (Subtarget.hasVSX()) { 16392 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16393 VT != MVT::v4f32 && VT != MVT::v4i32) 16394 return false; 16395 } else { 16396 return false; 16397 } 16398 } 16399 16400 if (VT == MVT::ppcf128) 16401 return false; 16402 16403 if (Fast) 16404 *Fast = true; 16405 16406 return true; 16407 } 16408 16409 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16410 SDValue C) const { 16411 // Check integral scalar types. 16412 if (!VT.isScalarInteger()) 16413 return false; 16414 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16415 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16416 return false; 16417 // This transformation will generate >= 2 operations. But the following 16418 // cases will generate <= 2 instructions during ISEL. So exclude them. 16419 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16420 // HW instruction, ie. MULLI 16421 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16422 // instruction is needed than case 1, ie. MULLI and RLDICR 16423 int64_t Imm = ConstNode->getSExtValue(); 16424 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16425 Imm >>= Shift; 16426 if (isInt<16>(Imm)) 16427 return false; 16428 uint64_t UImm = static_cast<uint64_t>(Imm); 16429 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16430 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16431 return true; 16432 } 16433 return false; 16434 } 16435 16436 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16437 EVT VT) const { 16438 return isFMAFasterThanFMulAndFAdd( 16439 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16440 } 16441 16442 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16443 Type *Ty) const { 16444 switch (Ty->getScalarType()->getTypeID()) { 16445 case Type::FloatTyID: 16446 case Type::DoubleTyID: 16447 return true; 16448 case Type::FP128TyID: 16449 return Subtarget.hasP9Vector(); 16450 default: 16451 return false; 16452 } 16453 } 16454 16455 // FIXME: add more patterns which are not profitable to hoist. 16456 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16457 if (!I->hasOneUse()) 16458 return true; 16459 16460 Instruction *User = I->user_back(); 16461 assert(User && "A single use instruction with no uses."); 16462 16463 switch (I->getOpcode()) { 16464 case Instruction::FMul: { 16465 // Don't break FMA, PowerPC prefers FMA. 16466 if (User->getOpcode() != Instruction::FSub && 16467 User->getOpcode() != Instruction::FAdd) 16468 return true; 16469 16470 const TargetOptions &Options = getTargetMachine().Options; 16471 const Function *F = I->getFunction(); 16472 const DataLayout &DL = F->getParent()->getDataLayout(); 16473 Type *Ty = User->getOperand(0)->getType(); 16474 16475 return !( 16476 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16477 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16478 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16479 } 16480 case Instruction::Load: { 16481 // Don't break "store (load float*)" pattern, this pattern will be combined 16482 // to "store (load int32)" in later InstCombine pass. See function 16483 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16484 // cycles than loading a 32 bit integer. 16485 LoadInst *LI = cast<LoadInst>(I); 16486 // For the loads that combineLoadToOperationType does nothing, like 16487 // ordered load, it should be profitable to hoist them. 16488 // For swifterror load, it can only be used for pointer to pointer type, so 16489 // later type check should get rid of this case. 16490 if (!LI->isUnordered()) 16491 return true; 16492 16493 if (User->getOpcode() != Instruction::Store) 16494 return true; 16495 16496 if (I->getType()->getTypeID() != Type::FloatTyID) 16497 return true; 16498 16499 return false; 16500 } 16501 default: 16502 return true; 16503 } 16504 return true; 16505 } 16506 16507 const MCPhysReg * 16508 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16509 // LR is a callee-save register, but we must treat it as clobbered by any call 16510 // site. Hence we include LR in the scratch registers, which are in turn added 16511 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16512 // to CTR, which is used by any indirect call. 16513 static const MCPhysReg ScratchRegs[] = { 16514 PPC::X12, PPC::LR8, PPC::CTR8, 0 16515 }; 16516 16517 return ScratchRegs; 16518 } 16519 16520 Register PPCTargetLowering::getExceptionPointerRegister( 16521 const Constant *PersonalityFn) const { 16522 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16523 } 16524 16525 Register PPCTargetLowering::getExceptionSelectorRegister( 16526 const Constant *PersonalityFn) const { 16527 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16528 } 16529 16530 bool 16531 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16532 EVT VT , unsigned DefinedValues) const { 16533 if (VT == MVT::v2i64) 16534 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16535 16536 if (Subtarget.hasVSX()) 16537 return true; 16538 16539 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16540 } 16541 16542 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16543 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16544 return TargetLowering::getSchedulingPreference(N); 16545 16546 return Sched::ILP; 16547 } 16548 16549 // Create a fast isel object. 16550 FastISel * 16551 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16552 const TargetLibraryInfo *LibInfo) const { 16553 return PPC::createFastISel(FuncInfo, LibInfo); 16554 } 16555 16556 // 'Inverted' means the FMA opcode after negating one multiplicand. 16557 // For example, (fma -a b c) = (fnmsub a b c) 16558 static unsigned invertFMAOpcode(unsigned Opc) { 16559 switch (Opc) { 16560 default: 16561 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16562 case ISD::FMA: 16563 return PPCISD::FNMSUB; 16564 case PPCISD::FNMSUB: 16565 return ISD::FMA; 16566 } 16567 } 16568 16569 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16570 bool LegalOps, bool OptForSize, 16571 NegatibleCost &Cost, 16572 unsigned Depth) const { 16573 if (Depth > SelectionDAG::MaxRecursionDepth) 16574 return SDValue(); 16575 16576 unsigned Opc = Op.getOpcode(); 16577 EVT VT = Op.getValueType(); 16578 SDNodeFlags Flags = Op.getNode()->getFlags(); 16579 16580 switch (Opc) { 16581 case PPCISD::FNMSUB: 16582 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16583 break; 16584 16585 const TargetOptions &Options = getTargetMachine().Options; 16586 SDValue N0 = Op.getOperand(0); 16587 SDValue N1 = Op.getOperand(1); 16588 SDValue N2 = Op.getOperand(2); 16589 SDLoc Loc(Op); 16590 16591 NegatibleCost N2Cost = NegatibleCost::Expensive; 16592 SDValue NegN2 = 16593 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16594 16595 if (!NegN2) 16596 return SDValue(); 16597 16598 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16599 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16600 // These transformations may change sign of zeroes. For example, 16601 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16602 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16603 // Try and choose the cheaper one to negate. 16604 NegatibleCost N0Cost = NegatibleCost::Expensive; 16605 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16606 N0Cost, Depth + 1); 16607 16608 NegatibleCost N1Cost = NegatibleCost::Expensive; 16609 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16610 N1Cost, Depth + 1); 16611 16612 if (NegN0 && N0Cost <= N1Cost) { 16613 Cost = std::min(N0Cost, N2Cost); 16614 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16615 } else if (NegN1) { 16616 Cost = std::min(N1Cost, N2Cost); 16617 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16618 } 16619 } 16620 16621 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16622 if (isOperationLegal(ISD::FMA, VT)) { 16623 Cost = N2Cost; 16624 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16625 } 16626 16627 break; 16628 } 16629 16630 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16631 Cost, Depth); 16632 } 16633 16634 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16635 bool PPCTargetLowering::useLoadStackGuardNode() const { 16636 if (!Subtarget.isTargetLinux()) 16637 return TargetLowering::useLoadStackGuardNode(); 16638 return true; 16639 } 16640 16641 // Override to disable global variable loading on Linux and insert AIX canary 16642 // word declaration. 16643 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16644 if (Subtarget.isAIXABI()) { 16645 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16646 Type::getInt8PtrTy(M.getContext())); 16647 return; 16648 } 16649 if (!Subtarget.isTargetLinux()) 16650 return TargetLowering::insertSSPDeclarations(M); 16651 } 16652 16653 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16654 if (Subtarget.isAIXABI()) 16655 return M.getGlobalVariable(AIXSSPCanaryWordName); 16656 return TargetLowering::getSDagStackGuard(M); 16657 } 16658 16659 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16660 bool ForCodeSize) const { 16661 if (!VT.isSimple() || !Subtarget.hasVSX()) 16662 return false; 16663 16664 switch(VT.getSimpleVT().SimpleTy) { 16665 default: 16666 // For FP types that are currently not supported by PPC backend, return 16667 // false. Examples: f16, f80. 16668 return false; 16669 case MVT::f32: 16670 case MVT::f64: 16671 if (Subtarget.hasPrefixInstrs()) { 16672 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16673 return true; 16674 } 16675 LLVM_FALLTHROUGH; 16676 case MVT::ppcf128: 16677 return Imm.isPosZero(); 16678 } 16679 } 16680 16681 // For vector shift operation op, fold 16682 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16683 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16684 SelectionDAG &DAG) { 16685 SDValue N0 = N->getOperand(0); 16686 SDValue N1 = N->getOperand(1); 16687 EVT VT = N0.getValueType(); 16688 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16689 unsigned Opcode = N->getOpcode(); 16690 unsigned TargetOpcode; 16691 16692 switch (Opcode) { 16693 default: 16694 llvm_unreachable("Unexpected shift operation"); 16695 case ISD::SHL: 16696 TargetOpcode = PPCISD::SHL; 16697 break; 16698 case ISD::SRL: 16699 TargetOpcode = PPCISD::SRL; 16700 break; 16701 case ISD::SRA: 16702 TargetOpcode = PPCISD::SRA; 16703 break; 16704 } 16705 16706 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16707 N1->getOpcode() == ISD::AND) 16708 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16709 if (Mask->getZExtValue() == OpSizeInBits - 1) 16710 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16711 16712 return SDValue(); 16713 } 16714 16715 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16716 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16717 return Value; 16718 16719 SDValue N0 = N->getOperand(0); 16720 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16721 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16722 N0.getOpcode() != ISD::SIGN_EXTEND || 16723 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16724 N->getValueType(0) != MVT::i64) 16725 return SDValue(); 16726 16727 // We can't save an operation here if the value is already extended, and 16728 // the existing shift is easier to combine. 16729 SDValue ExtsSrc = N0.getOperand(0); 16730 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16731 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16732 return SDValue(); 16733 16734 SDLoc DL(N0); 16735 SDValue ShiftBy = SDValue(CN1, 0); 16736 // We want the shift amount to be i32 on the extswli, but the shift could 16737 // have an i64. 16738 if (ShiftBy.getValueType() == MVT::i64) 16739 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16740 16741 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16742 ShiftBy); 16743 } 16744 16745 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16746 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16747 return Value; 16748 16749 return SDValue(); 16750 } 16751 16752 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16753 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16754 return Value; 16755 16756 return SDValue(); 16757 } 16758 16759 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16760 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16761 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16762 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16763 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16764 const PPCSubtarget &Subtarget) { 16765 if (!Subtarget.isPPC64()) 16766 return SDValue(); 16767 16768 SDValue LHS = N->getOperand(0); 16769 SDValue RHS = N->getOperand(1); 16770 16771 auto isZextOfCompareWithConstant = [](SDValue Op) { 16772 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16773 Op.getValueType() != MVT::i64) 16774 return false; 16775 16776 SDValue Cmp = Op.getOperand(0); 16777 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16778 Cmp.getOperand(0).getValueType() != MVT::i64) 16779 return false; 16780 16781 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16782 int64_t NegConstant = 0 - Constant->getSExtValue(); 16783 // Due to the limitations of the addi instruction, 16784 // -C is required to be [-32768, 32767]. 16785 return isInt<16>(NegConstant); 16786 } 16787 16788 return false; 16789 }; 16790 16791 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16792 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16793 16794 // If there is a pattern, canonicalize a zext operand to the RHS. 16795 if (LHSHasPattern && !RHSHasPattern) 16796 std::swap(LHS, RHS); 16797 else if (!LHSHasPattern && !RHSHasPattern) 16798 return SDValue(); 16799 16800 SDLoc DL(N); 16801 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16802 SDValue Cmp = RHS.getOperand(0); 16803 SDValue Z = Cmp.getOperand(0); 16804 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 16805 int64_t NegConstant = 0 - Constant->getSExtValue(); 16806 16807 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16808 default: break; 16809 case ISD::SETNE: { 16810 // when C == 0 16811 // --> addze X, (addic Z, -1).carry 16812 // / 16813 // add X, (zext(setne Z, C))-- 16814 // \ when -32768 <= -C <= 32767 && C != 0 16815 // --> addze X, (addic (addi Z, -C), -1).carry 16816 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16817 DAG.getConstant(NegConstant, DL, MVT::i64)); 16818 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16819 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16820 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16821 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16822 SDValue(Addc.getNode(), 1)); 16823 } 16824 case ISD::SETEQ: { 16825 // when C == 0 16826 // --> addze X, (subfic Z, 0).carry 16827 // / 16828 // add X, (zext(sete Z, C))-- 16829 // \ when -32768 <= -C <= 32767 && C != 0 16830 // --> addze X, (subfic (addi Z, -C), 0).carry 16831 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16832 DAG.getConstant(NegConstant, DL, MVT::i64)); 16833 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16834 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16835 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16836 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16837 SDValue(Subc.getNode(), 1)); 16838 } 16839 } 16840 16841 return SDValue(); 16842 } 16843 16844 // Transform 16845 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16846 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16847 // In this case both C1 and C2 must be known constants. 16848 // C1+C2 must fit into a 34 bit signed integer. 16849 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16850 const PPCSubtarget &Subtarget) { 16851 if (!Subtarget.isUsingPCRelativeCalls()) 16852 return SDValue(); 16853 16854 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16855 // If we find that node try to cast the Global Address and the Constant. 16856 SDValue LHS = N->getOperand(0); 16857 SDValue RHS = N->getOperand(1); 16858 16859 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16860 std::swap(LHS, RHS); 16861 16862 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16863 return SDValue(); 16864 16865 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16866 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16867 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16868 16869 // Check that both casts succeeded. 16870 if (!GSDN || !ConstNode) 16871 return SDValue(); 16872 16873 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16874 SDLoc DL(GSDN); 16875 16876 // The signed int offset needs to fit in 34 bits. 16877 if (!isInt<34>(NewOffset)) 16878 return SDValue(); 16879 16880 // The new global address is a copy of the old global address except 16881 // that it has the updated Offset. 16882 SDValue GA = 16883 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16884 NewOffset, GSDN->getTargetFlags()); 16885 SDValue MatPCRel = 16886 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16887 return MatPCRel; 16888 } 16889 16890 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16891 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16892 return Value; 16893 16894 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16895 return Value; 16896 16897 return SDValue(); 16898 } 16899 16900 // Detect TRUNCATE operations on bitcasts of float128 values. 16901 // What we are looking for here is the situtation where we extract a subset 16902 // of bits from a 128 bit float. 16903 // This can be of two forms: 16904 // 1) BITCAST of f128 feeding TRUNCATE 16905 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16906 // The reason this is required is because we do not have a legal i128 type 16907 // and so we want to prevent having to store the f128 and then reload part 16908 // of it. 16909 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16910 DAGCombinerInfo &DCI) const { 16911 // If we are using CRBits then try that first. 16912 if (Subtarget.useCRBits()) { 16913 // Check if CRBits did anything and return that if it did. 16914 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16915 return CRTruncValue; 16916 } 16917 16918 SDLoc dl(N); 16919 SDValue Op0 = N->getOperand(0); 16920 16921 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16922 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16923 EVT VT = N->getValueType(0); 16924 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16925 return SDValue(); 16926 SDValue Sub = Op0.getOperand(0); 16927 if (Sub.getOpcode() == ISD::SUB) { 16928 SDValue SubOp0 = Sub.getOperand(0); 16929 SDValue SubOp1 = Sub.getOperand(1); 16930 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16931 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16932 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16933 SubOp1.getOperand(0), 16934 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16935 } 16936 } 16937 } 16938 16939 // Looking for a truncate of i128 to i64. 16940 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16941 return SDValue(); 16942 16943 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16944 16945 // SRL feeding TRUNCATE. 16946 if (Op0.getOpcode() == ISD::SRL) { 16947 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16948 // The right shift has to be by 64 bits. 16949 if (!ConstNode || ConstNode->getZExtValue() != 64) 16950 return SDValue(); 16951 16952 // Switch the element number to extract. 16953 EltToExtract = EltToExtract ? 0 : 1; 16954 // Update Op0 past the SRL. 16955 Op0 = Op0.getOperand(0); 16956 } 16957 16958 // BITCAST feeding a TRUNCATE possibly via SRL. 16959 if (Op0.getOpcode() == ISD::BITCAST && 16960 Op0.getValueType() == MVT::i128 && 16961 Op0.getOperand(0).getValueType() == MVT::f128) { 16962 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16963 return DCI.DAG.getNode( 16964 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16965 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16966 } 16967 return SDValue(); 16968 } 16969 16970 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16971 SelectionDAG &DAG = DCI.DAG; 16972 16973 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16974 if (!ConstOpOrElement) 16975 return SDValue(); 16976 16977 // An imul is usually smaller than the alternative sequence for legal type. 16978 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16979 isOperationLegal(ISD::MUL, N->getValueType(0))) 16980 return SDValue(); 16981 16982 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16983 switch (this->Subtarget.getCPUDirective()) { 16984 default: 16985 // TODO: enhance the condition for subtarget before pwr8 16986 return false; 16987 case PPC::DIR_PWR8: 16988 // type mul add shl 16989 // scalar 4 1 1 16990 // vector 7 2 2 16991 return true; 16992 case PPC::DIR_PWR9: 16993 case PPC::DIR_PWR10: 16994 case PPC::DIR_PWR_FUTURE: 16995 // type mul add shl 16996 // scalar 5 2 2 16997 // vector 7 2 2 16998 16999 // The cycle RATIO of related operations are showed as a table above. 17000 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 17001 // scalar and vector type. For 2 instrs patterns, add/sub + shl 17002 // are 4, it is always profitable; but for 3 instrs patterns 17003 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 17004 // So we should only do it for vector type. 17005 return IsAddOne && IsNeg ? VT.isVector() : true; 17006 } 17007 }; 17008 17009 EVT VT = N->getValueType(0); 17010 SDLoc DL(N); 17011 17012 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 17013 bool IsNeg = MulAmt.isNegative(); 17014 APInt MulAmtAbs = MulAmt.abs(); 17015 17016 if ((MulAmtAbs - 1).isPowerOf2()) { 17017 // (mul x, 2^N + 1) => (add (shl x, N), x) 17018 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 17019 17020 if (!IsProfitable(IsNeg, true, VT)) 17021 return SDValue(); 17022 17023 SDValue Op0 = N->getOperand(0); 17024 SDValue Op1 = 17025 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17026 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 17027 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 17028 17029 if (!IsNeg) 17030 return Res; 17031 17032 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 17033 } else if ((MulAmtAbs + 1).isPowerOf2()) { 17034 // (mul x, 2^N - 1) => (sub (shl x, N), x) 17035 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 17036 17037 if (!IsProfitable(IsNeg, false, VT)) 17038 return SDValue(); 17039 17040 SDValue Op0 = N->getOperand(0); 17041 SDValue Op1 = 17042 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17043 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 17044 17045 if (!IsNeg) 17046 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 17047 else 17048 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 17049 17050 } else { 17051 return SDValue(); 17052 } 17053 } 17054 17055 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 17056 // in combiner since we need to check SD flags and other subtarget features. 17057 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 17058 DAGCombinerInfo &DCI) const { 17059 SDValue N0 = N->getOperand(0); 17060 SDValue N1 = N->getOperand(1); 17061 SDValue N2 = N->getOperand(2); 17062 SDNodeFlags Flags = N->getFlags(); 17063 EVT VT = N->getValueType(0); 17064 SelectionDAG &DAG = DCI.DAG; 17065 const TargetOptions &Options = getTargetMachine().Options; 17066 unsigned Opc = N->getOpcode(); 17067 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 17068 bool LegalOps = !DCI.isBeforeLegalizeOps(); 17069 SDLoc Loc(N); 17070 17071 if (!isOperationLegal(ISD::FMA, VT)) 17072 return SDValue(); 17073 17074 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 17075 // since (fnmsub a b c)=-0 while c-ab=+0. 17076 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 17077 return SDValue(); 17078 17079 // (fma (fneg a) b c) => (fnmsub a b c) 17080 // (fnmsub (fneg a) b c) => (fma a b c) 17081 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17082 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17083 17084 // (fma a (fneg b) c) => (fnmsub a b c) 17085 // (fnmsub a (fneg b) c) => (fma a b c) 17086 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17087 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17088 17089 return SDValue(); 17090 } 17091 17092 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17093 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17094 if (!Subtarget.is64BitELFABI()) 17095 return false; 17096 17097 // If not a tail call then no need to proceed. 17098 if (!CI->isTailCall()) 17099 return false; 17100 17101 // If sibling calls have been disabled and tail-calls aren't guaranteed 17102 // there is no reason to duplicate. 17103 auto &TM = getTargetMachine(); 17104 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17105 return false; 17106 17107 // Can't tail call a function called indirectly, or if it has variadic args. 17108 const Function *Callee = CI->getCalledFunction(); 17109 if (!Callee || Callee->isVarArg()) 17110 return false; 17111 17112 // Make sure the callee and caller calling conventions are eligible for tco. 17113 const Function *Caller = CI->getParent()->getParent(); 17114 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17115 CI->getCallingConv())) 17116 return false; 17117 17118 // If the function is local then we have a good chance at tail-calling it 17119 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17120 } 17121 17122 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17123 if (!Subtarget.hasVSX()) 17124 return false; 17125 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17126 return true; 17127 return VT == MVT::f32 || VT == MVT::f64 || 17128 VT == MVT::v4f32 || VT == MVT::v2f64; 17129 } 17130 17131 bool PPCTargetLowering:: 17132 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17133 const Value *Mask = AndI.getOperand(1); 17134 // If the mask is suitable for andi. or andis. we should sink the and. 17135 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17136 // Can't handle constants wider than 64-bits. 17137 if (CI->getBitWidth() > 64) 17138 return false; 17139 int64_t ConstVal = CI->getZExtValue(); 17140 return isUInt<16>(ConstVal) || 17141 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17142 } 17143 17144 // For non-constant masks, we can always use the record-form and. 17145 return true; 17146 } 17147 17148 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17149 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17150 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17151 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17152 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17153 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17154 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17155 assert(Subtarget.hasP9Altivec() && 17156 "Only combine this when P9 altivec supported!"); 17157 EVT VT = N->getValueType(0); 17158 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17159 return SDValue(); 17160 17161 SelectionDAG &DAG = DCI.DAG; 17162 SDLoc dl(N); 17163 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17164 // Even for signed integers, if it's known to be positive (as signed 17165 // integer) due to zero-extended inputs. 17166 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17167 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17168 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17169 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17170 (SubOpcd1 == ISD::ZERO_EXTEND || 17171 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17172 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17173 N->getOperand(0)->getOperand(0), 17174 N->getOperand(0)->getOperand(1), 17175 DAG.getTargetConstant(0, dl, MVT::i32)); 17176 } 17177 17178 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17179 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17180 N->getOperand(0).hasOneUse()) { 17181 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17182 N->getOperand(0)->getOperand(0), 17183 N->getOperand(0)->getOperand(1), 17184 DAG.getTargetConstant(1, dl, MVT::i32)); 17185 } 17186 } 17187 17188 return SDValue(); 17189 } 17190 17191 // For type v4i32/v8ii16/v16i8, transform 17192 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17193 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17194 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17195 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17196 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17197 DAGCombinerInfo &DCI) const { 17198 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17199 assert(Subtarget.hasP9Altivec() && 17200 "Only combine this when P9 altivec supported!"); 17201 17202 SelectionDAG &DAG = DCI.DAG; 17203 SDLoc dl(N); 17204 SDValue Cond = N->getOperand(0); 17205 SDValue TrueOpnd = N->getOperand(1); 17206 SDValue FalseOpnd = N->getOperand(2); 17207 EVT VT = N->getOperand(1).getValueType(); 17208 17209 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17210 FalseOpnd.getOpcode() != ISD::SUB) 17211 return SDValue(); 17212 17213 // ABSD only available for type v4i32/v8i16/v16i8 17214 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17215 return SDValue(); 17216 17217 // At least to save one more dependent computation 17218 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17219 return SDValue(); 17220 17221 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17222 17223 // Can only handle unsigned comparison here 17224 switch (CC) { 17225 default: 17226 return SDValue(); 17227 case ISD::SETUGT: 17228 case ISD::SETUGE: 17229 break; 17230 case ISD::SETULT: 17231 case ISD::SETULE: 17232 std::swap(TrueOpnd, FalseOpnd); 17233 break; 17234 } 17235 17236 SDValue CmpOpnd1 = Cond.getOperand(0); 17237 SDValue CmpOpnd2 = Cond.getOperand(1); 17238 17239 // SETCC CmpOpnd1 CmpOpnd2 cond 17240 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17241 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17242 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17243 TrueOpnd.getOperand(1) == CmpOpnd2 && 17244 FalseOpnd.getOperand(0) == CmpOpnd2 && 17245 FalseOpnd.getOperand(1) == CmpOpnd1) { 17246 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17247 CmpOpnd1, CmpOpnd2, 17248 DAG.getTargetConstant(0, dl, MVT::i32)); 17249 } 17250 17251 return SDValue(); 17252 } 17253 17254 /// getAddrModeForFlags - Based on the set of address flags, select the most 17255 /// optimal instruction format to match by. 17256 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17257 // This is not a node we should be handling here. 17258 if (Flags == PPC::MOF_None) 17259 return PPC::AM_None; 17260 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17261 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17262 if ((Flags & FlagSet) == FlagSet) 17263 return PPC::AM_DForm; 17264 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17265 if ((Flags & FlagSet) == FlagSet) 17266 return PPC::AM_DSForm; 17267 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17268 if ((Flags & FlagSet) == FlagSet) 17269 return PPC::AM_DQForm; 17270 // If no other forms are selected, return an X-Form as it is the most 17271 // general addressing mode. 17272 return PPC::AM_XForm; 17273 } 17274 17275 /// Set alignment flags based on whether or not the Frame Index is aligned. 17276 /// Utilized when computing flags for address computation when selecting 17277 /// load and store instructions. 17278 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17279 SelectionDAG &DAG) { 17280 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17281 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17282 if (!FI) 17283 return; 17284 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17285 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17286 // If this is (add $FI, $S16Imm), the alignment flags are already set 17287 // based on the immediate. We just need to clear the alignment flags 17288 // if the FI alignment is weaker. 17289 if ((FrameIndexAlign % 4) != 0) 17290 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17291 if ((FrameIndexAlign % 16) != 0) 17292 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17293 // If the address is a plain FrameIndex, set alignment flags based on 17294 // FI alignment. 17295 if (!IsAdd) { 17296 if ((FrameIndexAlign % 4) == 0) 17297 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17298 if ((FrameIndexAlign % 16) == 0) 17299 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17300 } 17301 } 17302 17303 /// Given a node, compute flags that are used for address computation when 17304 /// selecting load and store instructions. The flags computed are stored in 17305 /// FlagSet. This function takes into account whether the node is a constant, 17306 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17307 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17308 SelectionDAG &DAG) { 17309 // Set the alignment flags for the node depending on if the node is 17310 // 4-byte or 16-byte aligned. 17311 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17312 if ((Imm & 0x3) == 0) 17313 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17314 if ((Imm & 0xf) == 0) 17315 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17316 }; 17317 17318 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17319 // All 32-bit constants can be computed as LIS + Disp. 17320 const APInt &ConstImm = CN->getAPIntValue(); 17321 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17322 FlagSet |= PPC::MOF_AddrIsSImm32; 17323 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17324 setAlignFlagsForFI(N, FlagSet, DAG); 17325 } 17326 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17327 FlagSet |= PPC::MOF_RPlusSImm34; 17328 else // Let constant materialization handle large constants. 17329 FlagSet |= PPC::MOF_NotAddNorCst; 17330 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17331 // This address can be represented as an addition of: 17332 // - Register + Imm16 (possibly a multiple of 4/16) 17333 // - Register + Imm34 17334 // - Register + PPCISD::Lo 17335 // - Register + Register 17336 // In any case, we won't have to match this as Base + Zero. 17337 SDValue RHS = N.getOperand(1); 17338 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17339 const APInt &ConstImm = CN->getAPIntValue(); 17340 if (ConstImm.isSignedIntN(16)) { 17341 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17342 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17343 setAlignFlagsForFI(N, FlagSet, DAG); 17344 } 17345 if (ConstImm.isSignedIntN(34)) 17346 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17347 else 17348 FlagSet |= PPC::MOF_RPlusR; // Register. 17349 } else if (RHS.getOpcode() == PPCISD::Lo && 17350 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17351 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17352 else 17353 FlagSet |= PPC::MOF_RPlusR; 17354 } else { // The address computation is not a constant or an addition. 17355 setAlignFlagsForFI(N, FlagSet, DAG); 17356 FlagSet |= PPC::MOF_NotAddNorCst; 17357 } 17358 } 17359 17360 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17361 /// the address flags of the load/store instruction that is to be matched. 17362 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17363 SelectionDAG &DAG) const { 17364 unsigned FlagSet = PPC::MOF_None; 17365 17366 // Compute subtarget flags. 17367 if (!Subtarget.hasP9Vector()) 17368 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17369 else { 17370 FlagSet |= PPC::MOF_SubtargetP9; 17371 if (Subtarget.hasPrefixInstrs()) 17372 FlagSet |= PPC::MOF_SubtargetP10; 17373 } 17374 if (Subtarget.hasSPE()) 17375 FlagSet |= PPC::MOF_SubtargetSPE; 17376 17377 // Mark this as something we don't want to handle here if it is atomic 17378 // or pre-increment instruction. 17379 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17380 if (LSB->isIndexed()) 17381 return PPC::MOF_None; 17382 17383 // Compute in-memory type flags. This is based on if there are scalars, 17384 // floats or vectors. 17385 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17386 assert(MN && "Parent should be a MemSDNode!"); 17387 EVT MemVT = MN->getMemoryVT(); 17388 unsigned Size = MemVT.getSizeInBits(); 17389 if (MemVT.isScalarInteger()) { 17390 assert(Size <= 128 && 17391 "Not expecting scalar integers larger than 16 bytes!"); 17392 if (Size < 32) 17393 FlagSet |= PPC::MOF_SubWordInt; 17394 else if (Size == 32) 17395 FlagSet |= PPC::MOF_WordInt; 17396 else 17397 FlagSet |= PPC::MOF_DoubleWordInt; 17398 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17399 if (Size == 128) 17400 FlagSet |= PPC::MOF_Vector; 17401 else if (Size == 256) 17402 FlagSet |= PPC::MOF_Vector256; 17403 else 17404 llvm_unreachable("Not expecting illegal vectors!"); 17405 } else { // Floating point type: can be scalar, f128 or vector types. 17406 if (Size == 32 || Size == 64) 17407 FlagSet |= PPC::MOF_ScalarFloat; 17408 else if (MemVT == MVT::f128 || MemVT.isVector()) 17409 FlagSet |= PPC::MOF_Vector; 17410 else 17411 llvm_unreachable("Not expecting illegal scalar floats!"); 17412 } 17413 17414 // Compute flags for address computation. 17415 computeFlagsForAddressComputation(N, FlagSet, DAG); 17416 17417 // Compute type extension flags. 17418 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17419 switch (LN->getExtensionType()) { 17420 case ISD::SEXTLOAD: 17421 FlagSet |= PPC::MOF_SExt; 17422 break; 17423 case ISD::EXTLOAD: 17424 case ISD::ZEXTLOAD: 17425 FlagSet |= PPC::MOF_ZExt; 17426 break; 17427 case ISD::NON_EXTLOAD: 17428 FlagSet |= PPC::MOF_NoExt; 17429 break; 17430 } 17431 } else 17432 FlagSet |= PPC::MOF_NoExt; 17433 17434 // For integers, no extension is the same as zero extension. 17435 // We set the extension mode to zero extension so we don't have 17436 // to add separate entries in AddrModesMap for loads and stores. 17437 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17438 FlagSet |= PPC::MOF_ZExt; 17439 FlagSet &= ~PPC::MOF_NoExt; 17440 } 17441 17442 // If we don't have prefixed instructions, 34-bit constants should be 17443 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17444 bool IsNonP1034BitConst = 17445 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17446 FlagSet) == PPC::MOF_RPlusSImm34; 17447 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17448 IsNonP1034BitConst) 17449 FlagSet |= PPC::MOF_NotAddNorCst; 17450 17451 return FlagSet; 17452 } 17453 17454 /// SelectForceXFormMode - Given the specified address, force it to be 17455 /// represented as an indexed [r+r] operation (an XForm instruction). 17456 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17457 SDValue &Base, 17458 SelectionDAG &DAG) const { 17459 17460 PPC::AddrMode Mode = PPC::AM_XForm; 17461 int16_t ForceXFormImm = 0; 17462 if (provablyDisjointOr(DAG, N) && 17463 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17464 Disp = N.getOperand(0); 17465 Base = N.getOperand(1); 17466 return Mode; 17467 } 17468 17469 // If the address is the result of an add, we will utilize the fact that the 17470 // address calculation includes an implicit add. However, we can reduce 17471 // register pressure if we do not materialize a constant just for use as the 17472 // index register. We only get rid of the add if it is not an add of a 17473 // value and a 16-bit signed constant and both have a single use. 17474 if (N.getOpcode() == ISD::ADD && 17475 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17476 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17477 Disp = N.getOperand(0); 17478 Base = N.getOperand(1); 17479 return Mode; 17480 } 17481 17482 // Otherwise, use R0 as the base register. 17483 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17484 N.getValueType()); 17485 Base = N; 17486 17487 return Mode; 17488 } 17489 17490 // If we happen to match to an aligned D-Form, check if the Frame Index is 17491 // adequately aligned. If it is not, reset the mode to match to X-Form. 17492 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 17493 PPC::AddrMode &Mode) { 17494 if (!isa<FrameIndexSDNode>(N)) 17495 return; 17496 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 17497 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 17498 Mode = PPC::AM_XForm; 17499 } 17500 17501 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17502 /// compute the address flags of the node, get the optimal address mode based 17503 /// on the flags, and set the Base and Disp based on the address mode. 17504 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17505 SDValue N, SDValue &Disp, 17506 SDValue &Base, 17507 SelectionDAG &DAG, 17508 MaybeAlign Align) const { 17509 SDLoc DL(Parent); 17510 17511 // Compute the address flags. 17512 unsigned Flags = computeMOFlags(Parent, N, DAG); 17513 17514 // Get the optimal address mode based on the Flags. 17515 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17516 17517 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 17518 // Select an X-Form load if it is not. 17519 setXFormForUnalignedFI(N, Flags, Mode); 17520 17521 // Set Base and Disp accordingly depending on the address mode. 17522 switch (Mode) { 17523 case PPC::AM_DForm: 17524 case PPC::AM_DSForm: 17525 case PPC::AM_DQForm: { 17526 // This is a register plus a 16-bit immediate. The base will be the 17527 // register and the displacement will be the immediate unless it 17528 // isn't sufficiently aligned. 17529 if (Flags & PPC::MOF_RPlusSImm16) { 17530 SDValue Op0 = N.getOperand(0); 17531 SDValue Op1 = N.getOperand(1); 17532 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17533 if (!Align || isAligned(*Align, Imm)) { 17534 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17535 Base = Op0; 17536 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17537 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17538 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17539 } 17540 break; 17541 } 17542 } 17543 // This is a register plus the @lo relocation. The base is the register 17544 // and the displacement is the global address. 17545 else if (Flags & PPC::MOF_RPlusLo) { 17546 Disp = N.getOperand(1).getOperand(0); // The global address. 17547 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17548 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17549 Disp.getOpcode() == ISD::TargetConstantPool || 17550 Disp.getOpcode() == ISD::TargetJumpTable); 17551 Base = N.getOperand(0); 17552 break; 17553 } 17554 // This is a constant address at most 32 bits. The base will be 17555 // zero or load-immediate-shifted and the displacement will be 17556 // the low 16 bits of the address. 17557 else if (Flags & PPC::MOF_AddrIsSImm32) { 17558 auto *CN = cast<ConstantSDNode>(N); 17559 EVT CNType = CN->getValueType(0); 17560 uint64_t CNImm = CN->getZExtValue(); 17561 // If this address fits entirely in a 16-bit sext immediate field, codegen 17562 // this as "d, 0". 17563 int16_t Imm; 17564 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17565 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17566 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17567 CNType); 17568 break; 17569 } 17570 // Handle 32-bit sext immediate with LIS + Addr mode. 17571 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17572 (!Align || isAligned(*Align, CNImm))) { 17573 int32_t Addr = (int32_t)CNImm; 17574 // Otherwise, break this down into LIS + Disp. 17575 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17576 Base = 17577 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17578 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17579 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17580 break; 17581 } 17582 } 17583 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 17584 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 17585 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 17586 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17587 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17588 } else 17589 Base = N; 17590 break; 17591 } 17592 case PPC::AM_None: 17593 break; 17594 default: { // By default, X-Form is always available to be selected. 17595 // When a frame index is not aligned, we also match by XForm. 17596 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 17597 Base = FI ? N : N.getOperand(1); 17598 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17599 N.getValueType()) 17600 : N.getOperand(0); 17601 break; 17602 } 17603 } 17604 return Mode; 17605 } 17606 17607 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 17608 bool Return, 17609 bool IsVarArg) const { 17610 switch (CC) { 17611 case CallingConv::Cold: 17612 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 17613 default: 17614 return CC_PPC64_ELF_FIS; 17615 } 17616 } 17617 17618 TargetLowering::AtomicExpansionKind 17619 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 17620 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 17621 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 17622 return AtomicExpansionKind::MaskedIntrinsic; 17623 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 17624 } 17625 17626 TargetLowering::AtomicExpansionKind 17627 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 17628 unsigned Size = AI->getPointerOperand() 17629 ->getType() 17630 ->getPointerElementType() 17631 ->getPrimitiveSizeInBits(); 17632 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 17633 return AtomicExpansionKind::MaskedIntrinsic; 17634 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 17635 } 17636 17637 static Intrinsic::ID 17638 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 17639 switch (BinOp) { 17640 default: 17641 llvm_unreachable("Unexpected AtomicRMW BinOp"); 17642 case AtomicRMWInst::Xchg: 17643 return Intrinsic::ppc_atomicrmw_xchg_i128; 17644 case AtomicRMWInst::Add: 17645 return Intrinsic::ppc_atomicrmw_add_i128; 17646 case AtomicRMWInst::Sub: 17647 return Intrinsic::ppc_atomicrmw_sub_i128; 17648 case AtomicRMWInst::And: 17649 return Intrinsic::ppc_atomicrmw_and_i128; 17650 case AtomicRMWInst::Or: 17651 return Intrinsic::ppc_atomicrmw_or_i128; 17652 case AtomicRMWInst::Xor: 17653 return Intrinsic::ppc_atomicrmw_xor_i128; 17654 case AtomicRMWInst::Nand: 17655 return Intrinsic::ppc_atomicrmw_nand_i128; 17656 } 17657 } 17658 17659 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 17660 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 17661 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 17662 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 17663 "Only support quadword now"); 17664 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 17665 Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType(); 17666 assert(ValTy->getPrimitiveSizeInBits() == 128); 17667 Function *RMW = Intrinsic::getDeclaration( 17668 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 17669 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 17670 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 17671 Value *IncrHi = 17672 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 17673 Value *Addr = 17674 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 17675 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 17676 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 17677 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 17678 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 17679 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 17680 return Builder.CreateOr( 17681 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 17682 } 17683 17684 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 17685 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 17686 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 17687 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 17688 "Only support quadword now"); 17689 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 17690 Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType(); 17691 assert(ValTy->getPrimitiveSizeInBits() == 128); 17692 Function *IntCmpXchg = 17693 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 17694 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 17695 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 17696 Value *CmpHi = 17697 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 17698 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 17699 Value *NewHi = 17700 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 17701 Value *Addr = 17702 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 17703 emitLeadingFence(Builder, CI, Ord); 17704 Value *LoHi = 17705 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 17706 emitTrailingFence(Builder, CI, Ord); 17707 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 17708 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 17709 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 17710 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 17711 return Builder.CreateOr( 17712 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 17713 } 17714