1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnableQuadwordAtomics(
125     "ppc-quadword-atomics",
126     cl::desc("enable quadword lock-free atomic operations"), cl::init(false),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
139 
140 // FIXME: Remove this once the bug has been fixed!
141 extern cl::opt<bool> ANDIGlueBug;
142 
143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
144                                      const PPCSubtarget &STI)
145     : TargetLowering(TM), Subtarget(STI) {
146   // Initialize map that relates the PPC addressing modes to the computed flags
147   // of a load/store instruction. The map is used to determine the optimal
148   // addressing mode when selecting load and stores.
149   initializeAddrModeMap();
150   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
151   // arguments are at least 4/8 bytes aligned.
152   bool isPPC64 = Subtarget.isPPC64();
153   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
154 
155   // Set up the register classes.
156   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
157   if (!useSoftFloat()) {
158     if (hasSPE()) {
159       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
160       // EFPU2 APU only supports f32
161       if (!Subtarget.hasEFPU2())
162         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
163     } else {
164       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
165       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
166     }
167   }
168 
169   // Match BITREVERSE to customized fast code sequence in the td file.
170   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
171   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
172 
173   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
174   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
175 
176   // Custom lower inline assembly to check for special registers.
177   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
178   setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
179 
180   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
181   for (MVT VT : MVT::integer_valuetypes()) {
182     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
183     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
184   }
185 
186   if (Subtarget.isISA3_0()) {
187     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
188     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
189     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
190     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
191   } else {
192     // No extending loads from f16 or HW conversions back and forth.
193     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
194     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
195     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
196     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
197     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
198     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
199     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
200     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
201   }
202 
203   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
204 
205   // PowerPC has pre-inc load and store's.
206   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
207   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
208   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
209   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
210   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
211   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
212   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
213   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
214   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
215   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
216   if (!Subtarget.hasSPE()) {
217     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
218     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
219     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
220     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
221   }
222 
223   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
224   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
225   for (MVT VT : ScalarIntVTs) {
226     setOperationAction(ISD::ADDC, VT, Legal);
227     setOperationAction(ISD::ADDE, VT, Legal);
228     setOperationAction(ISD::SUBC, VT, Legal);
229     setOperationAction(ISD::SUBE, VT, Legal);
230   }
231 
232   if (Subtarget.useCRBits()) {
233     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
234 
235     if (isPPC64 || Subtarget.hasFPCVT()) {
236       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
237       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
238                         isPPC64 ? MVT::i64 : MVT::i32);
239       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
240       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
241                         isPPC64 ? MVT::i64 : MVT::i32);
242 
243       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
244       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
245                          isPPC64 ? MVT::i64 : MVT::i32);
246       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
247       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
248                         isPPC64 ? MVT::i64 : MVT::i32);
249 
250       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
251       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
252                         isPPC64 ? MVT::i64 : MVT::i32);
253       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
254       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
255                         isPPC64 ? MVT::i64 : MVT::i32);
256 
257       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
258       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
259                         isPPC64 ? MVT::i64 : MVT::i32);
260       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
261       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
262                         isPPC64 ? MVT::i64 : MVT::i32);
263     } else {
264       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
265       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
266       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
267       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
268     }
269 
270     // PowerPC does not support direct load/store of condition registers.
271     setOperationAction(ISD::LOAD, MVT::i1, Custom);
272     setOperationAction(ISD::STORE, MVT::i1, Custom);
273 
274     // FIXME: Remove this once the ANDI glue bug is fixed:
275     if (ANDIGlueBug)
276       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
277 
278     for (MVT VT : MVT::integer_valuetypes()) {
279       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
280       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
281       setTruncStoreAction(VT, MVT::i1, Expand);
282     }
283 
284     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
285   }
286 
287   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
288   // PPC (the libcall is not available).
289   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
290   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
291   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
292   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
293 
294   // We do not currently implement these libm ops for PowerPC.
295   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
296   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
297   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
298   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
299   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
300   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
301 
302   // PowerPC has no SREM/UREM instructions unless we are on P9
303   // On P9 we may use a hardware instruction to compute the remainder.
304   // When the result of both the remainder and the division is required it is
305   // more efficient to compute the remainder from the result of the division
306   // rather than use the remainder instruction. The instructions are legalized
307   // directly because the DivRemPairsPass performs the transformation at the IR
308   // level.
309   if (Subtarget.isISA3_0()) {
310     setOperationAction(ISD::SREM, MVT::i32, Legal);
311     setOperationAction(ISD::UREM, MVT::i32, Legal);
312     setOperationAction(ISD::SREM, MVT::i64, Legal);
313     setOperationAction(ISD::UREM, MVT::i64, Legal);
314   } else {
315     setOperationAction(ISD::SREM, MVT::i32, Expand);
316     setOperationAction(ISD::UREM, MVT::i32, Expand);
317     setOperationAction(ISD::SREM, MVT::i64, Expand);
318     setOperationAction(ISD::UREM, MVT::i64, Expand);
319   }
320 
321   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
322   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
323   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
324   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
325   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
326   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
327   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
328   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
329   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
330 
331   // Handle constrained floating-point operations of scalar.
332   // TODO: Handle SPE specific operation.
333   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
334   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
335   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
336   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
337   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
338 
339   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
340   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
341   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
342   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
343 
344   if (!Subtarget.hasSPE()) {
345     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
346     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
347   }
348 
349   if (Subtarget.hasVSX()) {
350     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
351     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
352   }
353 
354   if (Subtarget.hasFSQRT()) {
355     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
356     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
357   }
358 
359   if (Subtarget.hasFPRND()) {
360     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
361     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
362     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
363     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
364 
365     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
366     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
367     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
368     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
369   }
370 
371   // We don't support sin/cos/sqrt/fmod/pow
372   setOperationAction(ISD::FSIN , MVT::f64, Expand);
373   setOperationAction(ISD::FCOS , MVT::f64, Expand);
374   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
375   setOperationAction(ISD::FREM , MVT::f64, Expand);
376   setOperationAction(ISD::FPOW , MVT::f64, Expand);
377   setOperationAction(ISD::FSIN , MVT::f32, Expand);
378   setOperationAction(ISD::FCOS , MVT::f32, Expand);
379   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
380   setOperationAction(ISD::FREM , MVT::f32, Expand);
381   setOperationAction(ISD::FPOW , MVT::f32, Expand);
382   if (Subtarget.hasSPE()) {
383     setOperationAction(ISD::FMA  , MVT::f64, Expand);
384     setOperationAction(ISD::FMA  , MVT::f32, Expand);
385   } else {
386     setOperationAction(ISD::FMA  , MVT::f64, Legal);
387     setOperationAction(ISD::FMA  , MVT::f32, Legal);
388   }
389 
390   if (Subtarget.hasSPE())
391     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
392 
393   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
394 
395   // If we're enabling GP optimizations, use hardware square root
396   if (!Subtarget.hasFSQRT() &&
397       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
398         Subtarget.hasFRE()))
399     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
400 
401   if (!Subtarget.hasFSQRT() &&
402       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
403         Subtarget.hasFRES()))
404     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
405 
406   if (Subtarget.hasFCPSGN()) {
407     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
408     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
409   } else {
410     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
411     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
412   }
413 
414   if (Subtarget.hasFPRND()) {
415     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
416     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
417     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
418     setOperationAction(ISD::FROUND, MVT::f64, Legal);
419 
420     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
421     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
422     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
423     setOperationAction(ISD::FROUND, MVT::f32, Legal);
424   }
425 
426   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
427   // to speed up scalar BSWAP64.
428   // CTPOP or CTTZ were introduced in P8/P9 respectively
429   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
430   if (Subtarget.hasP9Vector() && Subtarget.isPPC64())
431     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
432   else
433     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
434   if (Subtarget.isISA3_0()) {
435     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
436     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
437   } else {
438     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
439     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
440   }
441 
442   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
443     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
444     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
445   } else {
446     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
447     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
448   }
449 
450   // PowerPC does not have ROTR
451   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
452   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
453 
454   if (!Subtarget.useCRBits()) {
455     // PowerPC does not have Select
456     setOperationAction(ISD::SELECT, MVT::i32, Expand);
457     setOperationAction(ISD::SELECT, MVT::i64, Expand);
458     setOperationAction(ISD::SELECT, MVT::f32, Expand);
459     setOperationAction(ISD::SELECT, MVT::f64, Expand);
460   }
461 
462   // PowerPC wants to turn select_cc of FP into fsel when possible.
463   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
464   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
465 
466   // PowerPC wants to optimize integer setcc a bit
467   if (!Subtarget.useCRBits())
468     setOperationAction(ISD::SETCC, MVT::i32, Custom);
469 
470   if (Subtarget.hasFPU()) {
471     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
472     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
473     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
474 
475     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
476     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
477     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
478   }
479 
480   // PowerPC does not have BRCOND which requires SetCC
481   if (!Subtarget.useCRBits())
482     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
483 
484   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
485 
486   if (Subtarget.hasSPE()) {
487     // SPE has built-in conversions
488     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
489     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
490     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
491     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
492     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
493     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
494 
495     // SPE supports signaling compare of f32/f64.
496     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
497     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
498   } else {
499     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
500     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
501     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
502 
503     // PowerPC does not have [U|S]INT_TO_FP
504     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
505     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
506     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
507     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
508   }
509 
510   if (Subtarget.hasDirectMove() && isPPC64) {
511     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
512     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
513     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
514     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
515     if (TM.Options.UnsafeFPMath) {
516       setOperationAction(ISD::LRINT, MVT::f64, Legal);
517       setOperationAction(ISD::LRINT, MVT::f32, Legal);
518       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
519       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
520       setOperationAction(ISD::LROUND, MVT::f64, Legal);
521       setOperationAction(ISD::LROUND, MVT::f32, Legal);
522       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
523       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
524     }
525   } else {
526     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
527     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
528     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
529     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
530   }
531 
532   // We cannot sextinreg(i1).  Expand to shifts.
533   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
534 
535   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
536   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
537   // support continuation, user-level threading, and etc.. As a result, no
538   // other SjLj exception interfaces are implemented and please don't build
539   // your own exception handling based on them.
540   // LLVM/Clang supports zero-cost DWARF exception handling.
541   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
542   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
543 
544   // We want to legalize GlobalAddress and ConstantPool nodes into the
545   // appropriate instructions to materialize the address.
546   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
547   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
548   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
549   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
550   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
551   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
552   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
553   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
554   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
555   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
556 
557   // TRAP is legal.
558   setOperationAction(ISD::TRAP, MVT::Other, Legal);
559 
560   // TRAMPOLINE is custom lowered.
561   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
562   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
563 
564   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
565   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
566 
567   if (Subtarget.is64BitELFABI()) {
568     // VAARG always uses double-word chunks, so promote anything smaller.
569     setOperationAction(ISD::VAARG, MVT::i1, Promote);
570     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
571     setOperationAction(ISD::VAARG, MVT::i8, Promote);
572     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
573     setOperationAction(ISD::VAARG, MVT::i16, Promote);
574     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
575     setOperationAction(ISD::VAARG, MVT::i32, Promote);
576     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
577     setOperationAction(ISD::VAARG, MVT::Other, Expand);
578   } else if (Subtarget.is32BitELFABI()) {
579     // VAARG is custom lowered with the 32-bit SVR4 ABI.
580     setOperationAction(ISD::VAARG, MVT::Other, Custom);
581     setOperationAction(ISD::VAARG, MVT::i64, Custom);
582   } else
583     setOperationAction(ISD::VAARG, MVT::Other, Expand);
584 
585   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
586   if (Subtarget.is32BitELFABI())
587     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
588   else
589     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
590 
591   // Use the default implementation.
592   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
593   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
594   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
595   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
596   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
597   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
598   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
599   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
600   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
601 
602   // We want to custom lower some of our intrinsics.
603   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
604 
605   // To handle counter-based loop conditions.
606   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
607 
608   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
609   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
610   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
611   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
612 
613   // Comparisons that require checking two conditions.
614   if (Subtarget.hasSPE()) {
615     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
616     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
617     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
618     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
619   }
620   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
621   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
622   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
623   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
624   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
625   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
626   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
627   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
628   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
629   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
630   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
631   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
632 
633   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
634   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
635 
636   if (Subtarget.has64BitSupport()) {
637     // They also have instructions for converting between i64 and fp.
638     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
639     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
640     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
641     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
642     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
643     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
644     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
645     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
646     // This is just the low 32 bits of a (signed) fp->i64 conversion.
647     // We cannot do this with Promote because i64 is not a legal type.
648     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
649     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
650 
651     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
652       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
653       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
654     }
655   } else {
656     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
657     if (Subtarget.hasSPE()) {
658       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
659       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
660     } else {
661       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
662       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
663     }
664   }
665 
666   // With the instructions enabled under FPCVT, we can do everything.
667   if (Subtarget.hasFPCVT()) {
668     if (Subtarget.has64BitSupport()) {
669       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
670       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
671       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
672       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
673       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
674       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
675       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
676       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
677     }
678 
679     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
680     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
681     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
682     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
683     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
684     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
685     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
686     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
687   }
688 
689   if (Subtarget.use64BitRegs()) {
690     // 64-bit PowerPC implementations can support i64 types directly
691     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
692     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
693     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
694     // 64-bit PowerPC wants to expand i128 shifts itself.
695     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
696     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
697     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
698   } else {
699     // 32-bit PowerPC wants to expand i64 shifts itself.
700     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
701     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
702     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
703   }
704 
705   // PowerPC has better expansions for funnel shifts than the generic
706   // TargetLowering::expandFunnelShift.
707   if (Subtarget.has64BitSupport()) {
708     setOperationAction(ISD::FSHL, MVT::i64, Custom);
709     setOperationAction(ISD::FSHR, MVT::i64, Custom);
710   }
711   setOperationAction(ISD::FSHL, MVT::i32, Custom);
712   setOperationAction(ISD::FSHR, MVT::i32, Custom);
713 
714   if (Subtarget.hasVSX()) {
715     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
716     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
717     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
718     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
719   }
720 
721   if (Subtarget.hasAltivec()) {
722     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
723       setOperationAction(ISD::SADDSAT, VT, Legal);
724       setOperationAction(ISD::SSUBSAT, VT, Legal);
725       setOperationAction(ISD::UADDSAT, VT, Legal);
726       setOperationAction(ISD::USUBSAT, VT, Legal);
727     }
728     // First set operation action for all vector types to expand. Then we
729     // will selectively turn on ones that can be effectively codegen'd.
730     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
731       // add/sub are legal for all supported vector VT's.
732       setOperationAction(ISD::ADD, VT, Legal);
733       setOperationAction(ISD::SUB, VT, Legal);
734 
735       // For v2i64, these are only valid with P8Vector. This is corrected after
736       // the loop.
737       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
738         setOperationAction(ISD::SMAX, VT, Legal);
739         setOperationAction(ISD::SMIN, VT, Legal);
740         setOperationAction(ISD::UMAX, VT, Legal);
741         setOperationAction(ISD::UMIN, VT, Legal);
742       }
743       else {
744         setOperationAction(ISD::SMAX, VT, Expand);
745         setOperationAction(ISD::SMIN, VT, Expand);
746         setOperationAction(ISD::UMAX, VT, Expand);
747         setOperationAction(ISD::UMIN, VT, Expand);
748       }
749 
750       if (Subtarget.hasVSX()) {
751         setOperationAction(ISD::FMAXNUM, VT, Legal);
752         setOperationAction(ISD::FMINNUM, VT, Legal);
753       }
754 
755       // Vector instructions introduced in P8
756       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
757         setOperationAction(ISD::CTPOP, VT, Legal);
758         setOperationAction(ISD::CTLZ, VT, Legal);
759       }
760       else {
761         setOperationAction(ISD::CTPOP, VT, Expand);
762         setOperationAction(ISD::CTLZ, VT, Expand);
763       }
764 
765       // Vector instructions introduced in P9
766       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
767         setOperationAction(ISD::CTTZ, VT, Legal);
768       else
769         setOperationAction(ISD::CTTZ, VT, Expand);
770 
771       // We promote all shuffles to v16i8.
772       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
773       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
774 
775       // We promote all non-typed operations to v4i32.
776       setOperationAction(ISD::AND   , VT, Promote);
777       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
778       setOperationAction(ISD::OR    , VT, Promote);
779       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
780       setOperationAction(ISD::XOR   , VT, Promote);
781       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
782       setOperationAction(ISD::LOAD  , VT, Promote);
783       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
784       setOperationAction(ISD::SELECT, VT, Promote);
785       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
786       setOperationAction(ISD::VSELECT, VT, Legal);
787       setOperationAction(ISD::SELECT_CC, VT, Promote);
788       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
789       setOperationAction(ISD::STORE, VT, Promote);
790       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
791 
792       // No other operations are legal.
793       setOperationAction(ISD::MUL , VT, Expand);
794       setOperationAction(ISD::SDIV, VT, Expand);
795       setOperationAction(ISD::SREM, VT, Expand);
796       setOperationAction(ISD::UDIV, VT, Expand);
797       setOperationAction(ISD::UREM, VT, Expand);
798       setOperationAction(ISD::FDIV, VT, Expand);
799       setOperationAction(ISD::FREM, VT, Expand);
800       setOperationAction(ISD::FNEG, VT, Expand);
801       setOperationAction(ISD::FSQRT, VT, Expand);
802       setOperationAction(ISD::FLOG, VT, Expand);
803       setOperationAction(ISD::FLOG10, VT, Expand);
804       setOperationAction(ISD::FLOG2, VT, Expand);
805       setOperationAction(ISD::FEXP, VT, Expand);
806       setOperationAction(ISD::FEXP2, VT, Expand);
807       setOperationAction(ISD::FSIN, VT, Expand);
808       setOperationAction(ISD::FCOS, VT, Expand);
809       setOperationAction(ISD::FABS, VT, Expand);
810       setOperationAction(ISD::FFLOOR, VT, Expand);
811       setOperationAction(ISD::FCEIL,  VT, Expand);
812       setOperationAction(ISD::FTRUNC, VT, Expand);
813       setOperationAction(ISD::FRINT,  VT, Expand);
814       setOperationAction(ISD::FNEARBYINT, VT, Expand);
815       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
816       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
817       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
818       setOperationAction(ISD::MULHU, VT, Expand);
819       setOperationAction(ISD::MULHS, VT, Expand);
820       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
821       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
822       setOperationAction(ISD::UDIVREM, VT, Expand);
823       setOperationAction(ISD::SDIVREM, VT, Expand);
824       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
825       setOperationAction(ISD::FPOW, VT, Expand);
826       setOperationAction(ISD::BSWAP, VT, Expand);
827       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
828       setOperationAction(ISD::ROTL, VT, Expand);
829       setOperationAction(ISD::ROTR, VT, Expand);
830 
831       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
832         setTruncStoreAction(VT, InnerVT, Expand);
833         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
834         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
835         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
836       }
837     }
838     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
839     if (!Subtarget.hasP8Vector()) {
840       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
841       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
842       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
843       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
844     }
845 
846     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
847     // with merges, splats, etc.
848     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
849 
850     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
851     // are cheap, so handle them before they get expanded to scalar.
852     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
853     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
854     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
855     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
856     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
857 
858     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
859     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
860     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
861     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
862     setOperationAction(ISD::SELECT, MVT::v4i32,
863                        Subtarget.useCRBits() ? Legal : Expand);
864     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
865     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
866     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
867     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
868     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
869     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
870     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
871     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
872     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
873     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
874     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
875     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
876     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
877 
878     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
879     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
880     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
881     if (Subtarget.hasAltivec())
882       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
883         setOperationAction(ISD::ROTL, VT, Legal);
884     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
885     if (Subtarget.hasP8Altivec())
886       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
887 
888     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
889     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
890     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
891     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
892 
893     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
894     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
895 
896     if (Subtarget.hasVSX()) {
897       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
898       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
899       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
900     }
901 
902     if (Subtarget.hasP8Altivec())
903       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
904     else
905       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
906 
907     if (Subtarget.isISA3_1()) {
908       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
909       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
910       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
911       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
912       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
913       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
914       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
915       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
916       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
917       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
918       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
919       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
920       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
921       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
922       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
923       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
924       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
925       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
926     }
927 
928     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
929     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
930 
931     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
932     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
933 
934     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
935     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
936     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
937     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
938 
939     // Altivec does not contain unordered floating-point compare instructions
940     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
941     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
942     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
943     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
944 
945     if (Subtarget.hasVSX()) {
946       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
947       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
948       if (Subtarget.hasP8Vector()) {
949         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
950         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
951       }
952       if (Subtarget.hasDirectMove() && isPPC64) {
953         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
954         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
955         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
956         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
957         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
958         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
959         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
960         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
961       }
962       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
963 
964       // The nearbyint variants are not allowed to raise the inexact exception
965       // so we can only code-gen them with unsafe math.
966       if (TM.Options.UnsafeFPMath) {
967         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
968         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
969       }
970 
971       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
972       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
973       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
974       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
975       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
976       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
977       setOperationAction(ISD::FROUND, MVT::f64, Legal);
978       setOperationAction(ISD::FRINT, MVT::f64, Legal);
979 
980       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
981       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
982       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
983       setOperationAction(ISD::FROUND, MVT::f32, Legal);
984       setOperationAction(ISD::FRINT, MVT::f32, Legal);
985 
986       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
987       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
988 
989       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
990       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
991 
992       // Share the Altivec comparison restrictions.
993       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
994       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
995       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
996       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
997 
998       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
999       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
1000 
1001       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
1002 
1003       if (Subtarget.hasP8Vector())
1004         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1005 
1006       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1007 
1008       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1009       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1010       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1011 
1012       if (Subtarget.hasP8Altivec()) {
1013         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1014         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1015         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1016 
1017         // 128 bit shifts can be accomplished via 3 instructions for SHL and
1018         // SRL, but not for SRA because of the instructions available:
1019         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1020         // doing
1021         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1022         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1023         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1024 
1025         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1026       }
1027       else {
1028         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1029         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1030         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1031 
1032         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1033 
1034         // VSX v2i64 only supports non-arithmetic operations.
1035         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1036         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1037       }
1038 
1039       if (Subtarget.isISA3_1())
1040         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1041       else
1042         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1043 
1044       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1045       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1046       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1047       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1048 
1049       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1050 
1051       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1052       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1053       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1054       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1055       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1056       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1057       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1058       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1059 
1060       // Custom handling for partial vectors of integers converted to
1061       // floating point. We already have optimal handling for v2i32 through
1062       // the DAG combine, so those aren't necessary.
1063       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1064       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1065       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1066       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1067       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1068       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1069       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1070       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1071       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1072       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1073       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1074       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1075       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1076       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1077       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1078       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1079 
1080       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1081       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1082       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1083       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1084       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1085       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1086 
1087       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1088       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1089 
1090       // Handle constrained floating-point operations of vector.
1091       // The predictor is `hasVSX` because altivec instruction has
1092       // no exception but VSX vector instruction has.
1093       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1094       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1095       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1096       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1097       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1098       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1099       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1100       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1101       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1102       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1103       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1104       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1105       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1106 
1107       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1108       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1109       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1110       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1111       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1112       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1113       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1114       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1115       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1116       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1117       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1118       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1119       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1120 
1121       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1122       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1123 
1124       for (MVT FPT : MVT::fp_valuetypes())
1125         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1126 
1127       // Expand the SELECT to SELECT_CC
1128       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1129 
1130       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1131       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1132 
1133       // No implementation for these ops for PowerPC.
1134       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1135       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1136       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1137       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1138       setOperationAction(ISD::FREM, MVT::f128, Expand);
1139     }
1140 
1141     if (Subtarget.hasP8Altivec()) {
1142       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1143       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1144     }
1145 
1146     if (Subtarget.hasP9Vector()) {
1147       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1148       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1149 
1150       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1151       // SRL, but not for SRA because of the instructions available:
1152       // VS{RL} and VS{RL}O.
1153       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1154       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1155       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1156 
1157       setOperationAction(ISD::FADD, MVT::f128, Legal);
1158       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1159       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1160       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1161       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1162 
1163       setOperationAction(ISD::FMA, MVT::f128, Legal);
1164       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1165       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1166       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1167       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1168       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1169       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1170 
1171       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1172       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1173       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1174       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1175       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1176       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1177 
1178       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1179       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1180       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1181 
1182       // Handle constrained floating-point operations of fp128
1183       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1184       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1185       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1186       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1187       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1188       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1189       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1190       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1191       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1192       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1193       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1194       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1195       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1196       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1197       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1198       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1199       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1200       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1201       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1202       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1203     } else if (Subtarget.hasVSX()) {
1204       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1205       setOperationAction(ISD::STORE, MVT::f128, Promote);
1206 
1207       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1208       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1209 
1210       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1211       // fp_to_uint and int_to_fp.
1212       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1213       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1214 
1215       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1216       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1217       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1218       setOperationAction(ISD::FABS, MVT::f128, Expand);
1219       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1220       setOperationAction(ISD::FMA, MVT::f128, Expand);
1221       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1222 
1223       // Expand the fp_extend if the target type is fp128.
1224       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1225       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1226 
1227       // Expand the fp_round if the source type is fp128.
1228       for (MVT VT : {MVT::f32, MVT::f64}) {
1229         setOperationAction(ISD::FP_ROUND, VT, Custom);
1230         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1231       }
1232 
1233       setOperationAction(ISD::SETCC, MVT::f128, Custom);
1234       setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1235       setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1236       setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1237 
1238       // Lower following f128 select_cc pattern:
1239       // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1240       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1241 
1242       // We need to handle f128 SELECT_CC with integer result type.
1243       setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1244       setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1245     }
1246 
1247     if (Subtarget.hasP9Altivec()) {
1248       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1249       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1250 
1251       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1252       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1253       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1254       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1255       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1256       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1257       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1258     }
1259 
1260     if (Subtarget.isISA3_1())
1261       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
1262   }
1263 
1264   if (Subtarget.pairedVectorMemops()) {
1265     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1266     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1267     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1268   }
1269   if (Subtarget.hasMMA()) {
1270     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1271     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1272     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1273     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1274   }
1275 
1276   if (Subtarget.has64BitSupport())
1277     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1278 
1279   if (Subtarget.isISA3_1())
1280     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1281 
1282   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1283 
1284   if (!isPPC64) {
1285     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1286     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1287   }
1288 
1289   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) {
1290     setMaxAtomicSizeInBitsSupported(128);
1291     setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
1292     setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
1293     setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom);
1294   }
1295 
1296   setBooleanContents(ZeroOrOneBooleanContent);
1297 
1298   if (Subtarget.hasAltivec()) {
1299     // Altivec instructions set fields to all zeros or all ones.
1300     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1301   }
1302 
1303   if (!isPPC64) {
1304     // These libcalls are not available in 32-bit.
1305     setLibcallName(RTLIB::SHL_I128, nullptr);
1306     setLibcallName(RTLIB::SRL_I128, nullptr);
1307     setLibcallName(RTLIB::SRA_I128, nullptr);
1308     setLibcallName(RTLIB::MULO_I64, nullptr);
1309   }
1310 
1311   if (!isPPC64)
1312     setMaxAtomicSizeInBitsSupported(32);
1313 
1314   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1315 
1316   // We have target-specific dag combine patterns for the following nodes:
1317   setTargetDAGCombine(ISD::ADD);
1318   setTargetDAGCombine(ISD::SHL);
1319   setTargetDAGCombine(ISD::SRA);
1320   setTargetDAGCombine(ISD::SRL);
1321   setTargetDAGCombine(ISD::MUL);
1322   setTargetDAGCombine(ISD::FMA);
1323   setTargetDAGCombine(ISD::SINT_TO_FP);
1324   setTargetDAGCombine(ISD::BUILD_VECTOR);
1325   if (Subtarget.hasFPCVT())
1326     setTargetDAGCombine(ISD::UINT_TO_FP);
1327   setTargetDAGCombine(ISD::LOAD);
1328   setTargetDAGCombine(ISD::STORE);
1329   setTargetDAGCombine(ISD::BR_CC);
1330   if (Subtarget.useCRBits())
1331     setTargetDAGCombine(ISD::BRCOND);
1332   setTargetDAGCombine(ISD::BSWAP);
1333   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1334   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1335   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1336 
1337   setTargetDAGCombine(ISD::SIGN_EXTEND);
1338   setTargetDAGCombine(ISD::ZERO_EXTEND);
1339   setTargetDAGCombine(ISD::ANY_EXTEND);
1340 
1341   setTargetDAGCombine(ISD::TRUNCATE);
1342   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1343 
1344 
1345   if (Subtarget.useCRBits()) {
1346     setTargetDAGCombine(ISD::TRUNCATE);
1347     setTargetDAGCombine(ISD::SETCC);
1348     setTargetDAGCombine(ISD::SELECT_CC);
1349   }
1350 
1351   if (Subtarget.hasP9Altivec()) {
1352     setTargetDAGCombine(ISD::ABS);
1353     setTargetDAGCombine(ISD::VSELECT);
1354   }
1355 
1356   setLibcallName(RTLIB::LOG_F128, "logf128");
1357   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1358   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1359   setLibcallName(RTLIB::EXP_F128, "expf128");
1360   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1361   setLibcallName(RTLIB::SIN_F128, "sinf128");
1362   setLibcallName(RTLIB::COS_F128, "cosf128");
1363   setLibcallName(RTLIB::POW_F128, "powf128");
1364   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1365   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1366   setLibcallName(RTLIB::REM_F128, "fmodf128");
1367   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1368   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1369   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1370   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1371   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1372   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1373   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1374   setLibcallName(RTLIB::RINT_F128, "rintf128");
1375   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1376   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1377   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1378   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1379 
1380   // With 32 condition bits, we don't need to sink (and duplicate) compares
1381   // aggressively in CodeGenPrep.
1382   if (Subtarget.useCRBits()) {
1383     setHasMultipleConditionRegisters();
1384     setJumpIsExpensive();
1385   }
1386 
1387   setMinFunctionAlignment(Align(4));
1388 
1389   switch (Subtarget.getCPUDirective()) {
1390   default: break;
1391   case PPC::DIR_970:
1392   case PPC::DIR_A2:
1393   case PPC::DIR_E500:
1394   case PPC::DIR_E500mc:
1395   case PPC::DIR_E5500:
1396   case PPC::DIR_PWR4:
1397   case PPC::DIR_PWR5:
1398   case PPC::DIR_PWR5X:
1399   case PPC::DIR_PWR6:
1400   case PPC::DIR_PWR6X:
1401   case PPC::DIR_PWR7:
1402   case PPC::DIR_PWR8:
1403   case PPC::DIR_PWR9:
1404   case PPC::DIR_PWR10:
1405   case PPC::DIR_PWR_FUTURE:
1406     setPrefLoopAlignment(Align(16));
1407     setPrefFunctionAlignment(Align(16));
1408     break;
1409   }
1410 
1411   if (Subtarget.enableMachineScheduler())
1412     setSchedulingPreference(Sched::Source);
1413   else
1414     setSchedulingPreference(Sched::Hybrid);
1415 
1416   computeRegisterProperties(STI.getRegisterInfo());
1417 
1418   // The Freescale cores do better with aggressive inlining of memcpy and
1419   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1420   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1421       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1422     MaxStoresPerMemset = 32;
1423     MaxStoresPerMemsetOptSize = 16;
1424     MaxStoresPerMemcpy = 32;
1425     MaxStoresPerMemcpyOptSize = 8;
1426     MaxStoresPerMemmove = 32;
1427     MaxStoresPerMemmoveOptSize = 8;
1428   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1429     // The A2 also benefits from (very) aggressive inlining of memcpy and
1430     // friends. The overhead of a the function call, even when warm, can be
1431     // over one hundred cycles.
1432     MaxStoresPerMemset = 128;
1433     MaxStoresPerMemcpy = 128;
1434     MaxStoresPerMemmove = 128;
1435     MaxLoadsPerMemcmp = 128;
1436   } else {
1437     MaxLoadsPerMemcmp = 8;
1438     MaxLoadsPerMemcmpOptSize = 4;
1439   }
1440 
1441   IsStrictFPEnabled = true;
1442 
1443   // Let the subtarget (CPU) decide if a predictable select is more expensive
1444   // than the corresponding branch. This information is used in CGP to decide
1445   // when to convert selects into branches.
1446   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1447 }
1448 
1449 // *********************************** NOTE ************************************
1450 // For selecting load and store instructions, the addressing modes are defined
1451 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1452 // patterns to match the load the store instructions.
1453 //
1454 // The TD definitions for the addressing modes correspond to their respective
1455 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1456 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1457 // address mode flags of a particular node. Afterwards, the computed address
1458 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1459 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1460 // accordingly, based on the preferred addressing mode.
1461 //
1462 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1463 // MemOpFlags contains all the possible flags that can be used to compute the
1464 // optimal addressing mode for load and store instructions.
1465 // AddrMode contains all the possible load and store addressing modes available
1466 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1467 //
1468 // When adding new load and store instructions, it is possible that new address
1469 // flags may need to be added into MemOpFlags, and a new addressing mode will
1470 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1471 // of the minimal and main distinguishing address flags for the new load/store
1472 // instructions) will need to be added into initializeAddrModeMap() below.
1473 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1474 // need to be updated to account for selecting the optimal addressing mode.
1475 // *****************************************************************************
1476 /// Initialize the map that relates the different addressing modes of the load
1477 /// and store instructions to a set of flags. This ensures the load/store
1478 /// instruction is correctly matched during instruction selection.
1479 void PPCTargetLowering::initializeAddrModeMap() {
1480   AddrModesMap[PPC::AM_DForm] = {
1481       // LWZ, STW
1482       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1483       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1484       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1485       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1486       // LBZ, LHZ, STB, STH
1487       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1488       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1489       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1490       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1491       // LHA
1492       PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1493       PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1494       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1495       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1496       // LFS, LFD, STFS, STFD
1497       PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1498       PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1499       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1500       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1501   };
1502   AddrModesMap[PPC::AM_DSForm] = {
1503       // LWA
1504       PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1505       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1506       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1507       // LD, STD
1508       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1509       PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1510       PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1511       // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1512       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1513       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1514       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1515   };
1516   AddrModesMap[PPC::AM_DQForm] = {
1517       // LXV, STXV
1518       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1519       PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1520       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1521       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10,
1522       PPC::MOF_NotAddNorCst | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10,
1523       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10,
1524   };
1525   // TODO: Add mapping for quadword load/store.
1526 }
1527 
1528 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1529 /// the desired ByVal argument alignment.
1530 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1531   if (MaxAlign == MaxMaxAlign)
1532     return;
1533   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1534     if (MaxMaxAlign >= 32 &&
1535         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1536       MaxAlign = Align(32);
1537     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1538              MaxAlign < 16)
1539       MaxAlign = Align(16);
1540   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1541     Align EltAlign;
1542     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1543     if (EltAlign > MaxAlign)
1544       MaxAlign = EltAlign;
1545   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1546     for (auto *EltTy : STy->elements()) {
1547       Align EltAlign;
1548       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1549       if (EltAlign > MaxAlign)
1550         MaxAlign = EltAlign;
1551       if (MaxAlign == MaxMaxAlign)
1552         break;
1553     }
1554   }
1555 }
1556 
1557 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1558 /// function arguments in the caller parameter area.
1559 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1560                                                   const DataLayout &DL) const {
1561   // 16byte and wider vectors are passed on 16byte boundary.
1562   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1563   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1564   if (Subtarget.hasAltivec())
1565     getMaxByValAlign(Ty, Alignment, Align(16));
1566   return Alignment.value();
1567 }
1568 
1569 bool PPCTargetLowering::useSoftFloat() const {
1570   return Subtarget.useSoftFloat();
1571 }
1572 
1573 bool PPCTargetLowering::hasSPE() const {
1574   return Subtarget.hasSPE();
1575 }
1576 
1577 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1578   return VT.isScalarInteger();
1579 }
1580 
1581 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1582   switch ((PPCISD::NodeType)Opcode) {
1583   case PPCISD::FIRST_NUMBER:    break;
1584   case PPCISD::FSEL:            return "PPCISD::FSEL";
1585   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1586   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1587   case PPCISD::FCFID:           return "PPCISD::FCFID";
1588   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1589   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1590   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1591   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1592   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1593   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1594   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1595   case PPCISD::FP_TO_UINT_IN_VSR:
1596                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1597   case PPCISD::FP_TO_SINT_IN_VSR:
1598                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1599   case PPCISD::FRE:             return "PPCISD::FRE";
1600   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1601   case PPCISD::FTSQRT:
1602     return "PPCISD::FTSQRT";
1603   case PPCISD::FSQRT:
1604     return "PPCISD::FSQRT";
1605   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1606   case PPCISD::VPERM:           return "PPCISD::VPERM";
1607   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1608   case PPCISD::XXSPLTI_SP_TO_DP:
1609     return "PPCISD::XXSPLTI_SP_TO_DP";
1610   case PPCISD::XXSPLTI32DX:
1611     return "PPCISD::XXSPLTI32DX";
1612   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1613   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1614   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1615   case PPCISD::CMPB:            return "PPCISD::CMPB";
1616   case PPCISD::Hi:              return "PPCISD::Hi";
1617   case PPCISD::Lo:              return "PPCISD::Lo";
1618   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1619   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1620   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1621   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1622   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1623   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1624   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1625   case PPCISD::SRL:             return "PPCISD::SRL";
1626   case PPCISD::SRA:             return "PPCISD::SRA";
1627   case PPCISD::SHL:             return "PPCISD::SHL";
1628   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1629   case PPCISD::CALL:            return "PPCISD::CALL";
1630   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1631   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1632   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1633   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1634   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1635   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1636   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1637   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1638   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1639   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1640   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1641   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1642   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1643   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1644   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1645   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1646     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1647   case PPCISD::ANDI_rec_1_EQ_BIT:
1648     return "PPCISD::ANDI_rec_1_EQ_BIT";
1649   case PPCISD::ANDI_rec_1_GT_BIT:
1650     return "PPCISD::ANDI_rec_1_GT_BIT";
1651   case PPCISD::VCMP:            return "PPCISD::VCMP";
1652   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1653   case PPCISD::LBRX:            return "PPCISD::LBRX";
1654   case PPCISD::STBRX:           return "PPCISD::STBRX";
1655   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1656   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1657   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1658   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1659   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1660   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1661   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1662   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1663   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1664   case PPCISD::ST_VSR_SCAL_INT:
1665                                 return "PPCISD::ST_VSR_SCAL_INT";
1666   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1667   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1668   case PPCISD::BDZ:             return "PPCISD::BDZ";
1669   case PPCISD::MFFS:            return "PPCISD::MFFS";
1670   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1671   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1672   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1673   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1674   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1675   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1676   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1677   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1678   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1679   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1680   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1681   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1682   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1683   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1684   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1685   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1686   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1687   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1688   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1689   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1690   case PPCISD::PADDI_DTPREL:
1691     return "PPCISD::PADDI_DTPREL";
1692   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1693   case PPCISD::SC:              return "PPCISD::SC";
1694   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1695   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1696   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1697   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1698   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1699   case PPCISD::VABSD:           return "PPCISD::VABSD";
1700   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1701   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1702   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1703   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1704   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1705   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1706   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1707   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1708     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1709   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1710     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1711   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1712   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1713   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1714   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1715   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1716   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1717   case PPCISD::STRICT_FADDRTZ:
1718     return "PPCISD::STRICT_FADDRTZ";
1719   case PPCISD::STRICT_FCTIDZ:
1720     return "PPCISD::STRICT_FCTIDZ";
1721   case PPCISD::STRICT_FCTIWZ:
1722     return "PPCISD::STRICT_FCTIWZ";
1723   case PPCISD::STRICT_FCTIDUZ:
1724     return "PPCISD::STRICT_FCTIDUZ";
1725   case PPCISD::STRICT_FCTIWUZ:
1726     return "PPCISD::STRICT_FCTIWUZ";
1727   case PPCISD::STRICT_FCFID:
1728     return "PPCISD::STRICT_FCFID";
1729   case PPCISD::STRICT_FCFIDU:
1730     return "PPCISD::STRICT_FCFIDU";
1731   case PPCISD::STRICT_FCFIDS:
1732     return "PPCISD::STRICT_FCFIDS";
1733   case PPCISD::STRICT_FCFIDUS:
1734     return "PPCISD::STRICT_FCFIDUS";
1735   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1736   }
1737   return nullptr;
1738 }
1739 
1740 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1741                                           EVT VT) const {
1742   if (!VT.isVector())
1743     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1744 
1745   return VT.changeVectorElementTypeToInteger();
1746 }
1747 
1748 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1749   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1750   return true;
1751 }
1752 
1753 //===----------------------------------------------------------------------===//
1754 // Node matching predicates, for use by the tblgen matching code.
1755 //===----------------------------------------------------------------------===//
1756 
1757 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1758 static bool isFloatingPointZero(SDValue Op) {
1759   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1760     return CFP->getValueAPF().isZero();
1761   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1762     // Maybe this has already been legalized into the constant pool?
1763     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1764       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1765         return CFP->getValueAPF().isZero();
1766   }
1767   return false;
1768 }
1769 
1770 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1771 /// true if Op is undef or if it matches the specified value.
1772 static bool isConstantOrUndef(int Op, int Val) {
1773   return Op < 0 || Op == Val;
1774 }
1775 
1776 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1777 /// VPKUHUM instruction.
1778 /// The ShuffleKind distinguishes between big-endian operations with
1779 /// two different inputs (0), either-endian operations with two identical
1780 /// inputs (1), and little-endian operations with two different inputs (2).
1781 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1782 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1783                                SelectionDAG &DAG) {
1784   bool IsLE = DAG.getDataLayout().isLittleEndian();
1785   if (ShuffleKind == 0) {
1786     if (IsLE)
1787       return false;
1788     for (unsigned i = 0; i != 16; ++i)
1789       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1790         return false;
1791   } else if (ShuffleKind == 2) {
1792     if (!IsLE)
1793       return false;
1794     for (unsigned i = 0; i != 16; ++i)
1795       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1796         return false;
1797   } else if (ShuffleKind == 1) {
1798     unsigned j = IsLE ? 0 : 1;
1799     for (unsigned i = 0; i != 8; ++i)
1800       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1801           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1802         return false;
1803   }
1804   return true;
1805 }
1806 
1807 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1808 /// VPKUWUM instruction.
1809 /// The ShuffleKind distinguishes between big-endian operations with
1810 /// two different inputs (0), either-endian operations with two identical
1811 /// inputs (1), and little-endian operations with two different inputs (2).
1812 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1813 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1814                                SelectionDAG &DAG) {
1815   bool IsLE = DAG.getDataLayout().isLittleEndian();
1816   if (ShuffleKind == 0) {
1817     if (IsLE)
1818       return false;
1819     for (unsigned i = 0; i != 16; i += 2)
1820       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1821           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1822         return false;
1823   } else if (ShuffleKind == 2) {
1824     if (!IsLE)
1825       return false;
1826     for (unsigned i = 0; i != 16; i += 2)
1827       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1828           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1829         return false;
1830   } else if (ShuffleKind == 1) {
1831     unsigned j = IsLE ? 0 : 2;
1832     for (unsigned i = 0; i != 8; i += 2)
1833       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1834           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1835           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1836           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1837         return false;
1838   }
1839   return true;
1840 }
1841 
1842 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1843 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1844 /// current subtarget.
1845 ///
1846 /// The ShuffleKind distinguishes between big-endian operations with
1847 /// two different inputs (0), either-endian operations with two identical
1848 /// inputs (1), and little-endian operations with two different inputs (2).
1849 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1850 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1851                                SelectionDAG &DAG) {
1852   const PPCSubtarget& Subtarget =
1853       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1854   if (!Subtarget.hasP8Vector())
1855     return false;
1856 
1857   bool IsLE = DAG.getDataLayout().isLittleEndian();
1858   if (ShuffleKind == 0) {
1859     if (IsLE)
1860       return false;
1861     for (unsigned i = 0; i != 16; i += 4)
1862       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1863           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1864           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1865           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1866         return false;
1867   } else if (ShuffleKind == 2) {
1868     if (!IsLE)
1869       return false;
1870     for (unsigned i = 0; i != 16; i += 4)
1871       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1872           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1873           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1874           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1875         return false;
1876   } else if (ShuffleKind == 1) {
1877     unsigned j = IsLE ? 0 : 4;
1878     for (unsigned i = 0; i != 8; i += 4)
1879       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1880           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1881           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1882           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1883           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1884           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1885           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1886           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1887         return false;
1888   }
1889   return true;
1890 }
1891 
1892 /// isVMerge - Common function, used to match vmrg* shuffles.
1893 ///
1894 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1895                      unsigned LHSStart, unsigned RHSStart) {
1896   if (N->getValueType(0) != MVT::v16i8)
1897     return false;
1898   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1899          "Unsupported merge size!");
1900 
1901   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1902     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1903       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1904                              LHSStart+j+i*UnitSize) ||
1905           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1906                              RHSStart+j+i*UnitSize))
1907         return false;
1908     }
1909   return true;
1910 }
1911 
1912 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1913 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1914 /// The ShuffleKind distinguishes between big-endian merges with two
1915 /// different inputs (0), either-endian merges with two identical inputs (1),
1916 /// and little-endian merges with two different inputs (2).  For the latter,
1917 /// the input operands are swapped (see PPCInstrAltivec.td).
1918 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1919                              unsigned ShuffleKind, SelectionDAG &DAG) {
1920   if (DAG.getDataLayout().isLittleEndian()) {
1921     if (ShuffleKind == 1) // unary
1922       return isVMerge(N, UnitSize, 0, 0);
1923     else if (ShuffleKind == 2) // swapped
1924       return isVMerge(N, UnitSize, 0, 16);
1925     else
1926       return false;
1927   } else {
1928     if (ShuffleKind == 1) // unary
1929       return isVMerge(N, UnitSize, 8, 8);
1930     else if (ShuffleKind == 0) // normal
1931       return isVMerge(N, UnitSize, 8, 24);
1932     else
1933       return false;
1934   }
1935 }
1936 
1937 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1938 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1939 /// The ShuffleKind distinguishes between big-endian merges with two
1940 /// different inputs (0), either-endian merges with two identical inputs (1),
1941 /// and little-endian merges with two different inputs (2).  For the latter,
1942 /// the input operands are swapped (see PPCInstrAltivec.td).
1943 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1944                              unsigned ShuffleKind, SelectionDAG &DAG) {
1945   if (DAG.getDataLayout().isLittleEndian()) {
1946     if (ShuffleKind == 1) // unary
1947       return isVMerge(N, UnitSize, 8, 8);
1948     else if (ShuffleKind == 2) // swapped
1949       return isVMerge(N, UnitSize, 8, 24);
1950     else
1951       return false;
1952   } else {
1953     if (ShuffleKind == 1) // unary
1954       return isVMerge(N, UnitSize, 0, 0);
1955     else if (ShuffleKind == 0) // normal
1956       return isVMerge(N, UnitSize, 0, 16);
1957     else
1958       return false;
1959   }
1960 }
1961 
1962 /**
1963  * Common function used to match vmrgew and vmrgow shuffles
1964  *
1965  * The indexOffset determines whether to look for even or odd words in
1966  * the shuffle mask. This is based on the of the endianness of the target
1967  * machine.
1968  *   - Little Endian:
1969  *     - Use offset of 0 to check for odd elements
1970  *     - Use offset of 4 to check for even elements
1971  *   - Big Endian:
1972  *     - Use offset of 0 to check for even elements
1973  *     - Use offset of 4 to check for odd elements
1974  * A detailed description of the vector element ordering for little endian and
1975  * big endian can be found at
1976  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1977  * Targeting your applications - what little endian and big endian IBM XL C/C++
1978  * compiler differences mean to you
1979  *
1980  * The mask to the shuffle vector instruction specifies the indices of the
1981  * elements from the two input vectors to place in the result. The elements are
1982  * numbered in array-access order, starting with the first vector. These vectors
1983  * are always of type v16i8, thus each vector will contain 16 elements of size
1984  * 8. More info on the shuffle vector can be found in the
1985  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1986  * Language Reference.
1987  *
1988  * The RHSStartValue indicates whether the same input vectors are used (unary)
1989  * or two different input vectors are used, based on the following:
1990  *   - If the instruction uses the same vector for both inputs, the range of the
1991  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1992  *     be 0.
1993  *   - If the instruction has two different vectors then the range of the
1994  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1995  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1996  *     to 31 specify elements in the second vector).
1997  *
1998  * \param[in] N The shuffle vector SD Node to analyze
1999  * \param[in] IndexOffset Specifies whether to look for even or odd elements
2000  * \param[in] RHSStartValue Specifies the starting index for the righthand input
2001  * vector to the shuffle_vector instruction
2002  * \return true iff this shuffle vector represents an even or odd word merge
2003  */
2004 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
2005                      unsigned RHSStartValue) {
2006   if (N->getValueType(0) != MVT::v16i8)
2007     return false;
2008 
2009   for (unsigned i = 0; i < 2; ++i)
2010     for (unsigned j = 0; j < 4; ++j)
2011       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
2012                              i*RHSStartValue+j+IndexOffset) ||
2013           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2014                              i*RHSStartValue+j+IndexOffset+8))
2015         return false;
2016   return true;
2017 }
2018 
2019 /**
2020  * Determine if the specified shuffle mask is suitable for the vmrgew or
2021  * vmrgow instructions.
2022  *
2023  * \param[in] N The shuffle vector SD Node to analyze
2024  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2025  * \param[in] ShuffleKind Identify the type of merge:
2026  *   - 0 = big-endian merge with two different inputs;
2027  *   - 1 = either-endian merge with two identical inputs;
2028  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2029  *     little-endian merges).
2030  * \param[in] DAG The current SelectionDAG
2031  * \return true iff this shuffle mask
2032  */
2033 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2034                               unsigned ShuffleKind, SelectionDAG &DAG) {
2035   if (DAG.getDataLayout().isLittleEndian()) {
2036     unsigned indexOffset = CheckEven ? 4 : 0;
2037     if (ShuffleKind == 1) // Unary
2038       return isVMerge(N, indexOffset, 0);
2039     else if (ShuffleKind == 2) // swapped
2040       return isVMerge(N, indexOffset, 16);
2041     else
2042       return false;
2043   }
2044   else {
2045     unsigned indexOffset = CheckEven ? 0 : 4;
2046     if (ShuffleKind == 1) // Unary
2047       return isVMerge(N, indexOffset, 0);
2048     else if (ShuffleKind == 0) // Normal
2049       return isVMerge(N, indexOffset, 16);
2050     else
2051       return false;
2052   }
2053   return false;
2054 }
2055 
2056 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2057 /// amount, otherwise return -1.
2058 /// The ShuffleKind distinguishes between big-endian operations with two
2059 /// different inputs (0), either-endian operations with two identical inputs
2060 /// (1), and little-endian operations with two different inputs (2).  For the
2061 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
2062 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2063                              SelectionDAG &DAG) {
2064   if (N->getValueType(0) != MVT::v16i8)
2065     return -1;
2066 
2067   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2068 
2069   // Find the first non-undef value in the shuffle mask.
2070   unsigned i;
2071   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2072     /*search*/;
2073 
2074   if (i == 16) return -1;  // all undef.
2075 
2076   // Otherwise, check to see if the rest of the elements are consecutively
2077   // numbered from this value.
2078   unsigned ShiftAmt = SVOp->getMaskElt(i);
2079   if (ShiftAmt < i) return -1;
2080 
2081   ShiftAmt -= i;
2082   bool isLE = DAG.getDataLayout().isLittleEndian();
2083 
2084   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2085     // Check the rest of the elements to see if they are consecutive.
2086     for (++i; i != 16; ++i)
2087       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2088         return -1;
2089   } else if (ShuffleKind == 1) {
2090     // Check the rest of the elements to see if they are consecutive.
2091     for (++i; i != 16; ++i)
2092       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2093         return -1;
2094   } else
2095     return -1;
2096 
2097   if (isLE)
2098     ShiftAmt = 16 - ShiftAmt;
2099 
2100   return ShiftAmt;
2101 }
2102 
2103 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2104 /// specifies a splat of a single element that is suitable for input to
2105 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2106 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2107   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2108          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2109 
2110   // The consecutive indices need to specify an element, not part of two
2111   // different elements.  So abandon ship early if this isn't the case.
2112   if (N->getMaskElt(0) % EltSize != 0)
2113     return false;
2114 
2115   // This is a splat operation if each element of the permute is the same, and
2116   // if the value doesn't reference the second vector.
2117   unsigned ElementBase = N->getMaskElt(0);
2118 
2119   // FIXME: Handle UNDEF elements too!
2120   if (ElementBase >= 16)
2121     return false;
2122 
2123   // Check that the indices are consecutive, in the case of a multi-byte element
2124   // splatted with a v16i8 mask.
2125   for (unsigned i = 1; i != EltSize; ++i)
2126     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2127       return false;
2128 
2129   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2130     if (N->getMaskElt(i) < 0) continue;
2131     for (unsigned j = 0; j != EltSize; ++j)
2132       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2133         return false;
2134   }
2135   return true;
2136 }
2137 
2138 /// Check that the mask is shuffling N byte elements. Within each N byte
2139 /// element of the mask, the indices could be either in increasing or
2140 /// decreasing order as long as they are consecutive.
2141 /// \param[in] N the shuffle vector SD Node to analyze
2142 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2143 /// Word/DoubleWord/QuadWord).
2144 /// \param[in] StepLen the delta indices number among the N byte element, if
2145 /// the mask is in increasing/decreasing order then it is 1/-1.
2146 /// \return true iff the mask is shuffling N byte elements.
2147 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2148                                    int StepLen) {
2149   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2150          "Unexpected element width.");
2151   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2152 
2153   unsigned NumOfElem = 16 / Width;
2154   unsigned MaskVal[16]; //  Width is never greater than 16
2155   for (unsigned i = 0; i < NumOfElem; ++i) {
2156     MaskVal[0] = N->getMaskElt(i * Width);
2157     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2158       return false;
2159     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2160       return false;
2161     }
2162 
2163     for (unsigned int j = 1; j < Width; ++j) {
2164       MaskVal[j] = N->getMaskElt(i * Width + j);
2165       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2166         return false;
2167       }
2168     }
2169   }
2170 
2171   return true;
2172 }
2173 
2174 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2175                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2176   if (!isNByteElemShuffleMask(N, 4, 1))
2177     return false;
2178 
2179   // Now we look at mask elements 0,4,8,12
2180   unsigned M0 = N->getMaskElt(0) / 4;
2181   unsigned M1 = N->getMaskElt(4) / 4;
2182   unsigned M2 = N->getMaskElt(8) / 4;
2183   unsigned M3 = N->getMaskElt(12) / 4;
2184   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2185   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2186 
2187   // Below, let H and L be arbitrary elements of the shuffle mask
2188   // where H is in the range [4,7] and L is in the range [0,3].
2189   // H, 1, 2, 3 or L, 5, 6, 7
2190   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2191       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2192     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2193     InsertAtByte = IsLE ? 12 : 0;
2194     Swap = M0 < 4;
2195     return true;
2196   }
2197   // 0, H, 2, 3 or 4, L, 6, 7
2198   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2199       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2200     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2201     InsertAtByte = IsLE ? 8 : 4;
2202     Swap = M1 < 4;
2203     return true;
2204   }
2205   // 0, 1, H, 3 or 4, 5, L, 7
2206   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2207       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2208     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2209     InsertAtByte = IsLE ? 4 : 8;
2210     Swap = M2 < 4;
2211     return true;
2212   }
2213   // 0, 1, 2, H or 4, 5, 6, L
2214   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2215       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2216     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2217     InsertAtByte = IsLE ? 0 : 12;
2218     Swap = M3 < 4;
2219     return true;
2220   }
2221 
2222   // If both vector operands for the shuffle are the same vector, the mask will
2223   // contain only elements from the first one and the second one will be undef.
2224   if (N->getOperand(1).isUndef()) {
2225     ShiftElts = 0;
2226     Swap = true;
2227     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2228     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2229       InsertAtByte = IsLE ? 12 : 0;
2230       return true;
2231     }
2232     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2233       InsertAtByte = IsLE ? 8 : 4;
2234       return true;
2235     }
2236     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2237       InsertAtByte = IsLE ? 4 : 8;
2238       return true;
2239     }
2240     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2241       InsertAtByte = IsLE ? 0 : 12;
2242       return true;
2243     }
2244   }
2245 
2246   return false;
2247 }
2248 
2249 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2250                                bool &Swap, bool IsLE) {
2251   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2252   // Ensure each byte index of the word is consecutive.
2253   if (!isNByteElemShuffleMask(N, 4, 1))
2254     return false;
2255 
2256   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2257   unsigned M0 = N->getMaskElt(0) / 4;
2258   unsigned M1 = N->getMaskElt(4) / 4;
2259   unsigned M2 = N->getMaskElt(8) / 4;
2260   unsigned M3 = N->getMaskElt(12) / 4;
2261 
2262   // If both vector operands for the shuffle are the same vector, the mask will
2263   // contain only elements from the first one and the second one will be undef.
2264   if (N->getOperand(1).isUndef()) {
2265     assert(M0 < 4 && "Indexing into an undef vector?");
2266     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2267       return false;
2268 
2269     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2270     Swap = false;
2271     return true;
2272   }
2273 
2274   // Ensure each word index of the ShuffleVector Mask is consecutive.
2275   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2276     return false;
2277 
2278   if (IsLE) {
2279     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2280       // Input vectors don't need to be swapped if the leading element
2281       // of the result is one of the 3 left elements of the second vector
2282       // (or if there is no shift to be done at all).
2283       Swap = false;
2284       ShiftElts = (8 - M0) % 8;
2285     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2286       // Input vectors need to be swapped if the leading element
2287       // of the result is one of the 3 left elements of the first vector
2288       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2289       Swap = true;
2290       ShiftElts = (4 - M0) % 4;
2291     }
2292 
2293     return true;
2294   } else {                                          // BE
2295     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2296       // Input vectors don't need to be swapped if the leading element
2297       // of the result is one of the 4 elements of the first vector.
2298       Swap = false;
2299       ShiftElts = M0;
2300     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2301       // Input vectors need to be swapped if the leading element
2302       // of the result is one of the 4 elements of the right vector.
2303       Swap = true;
2304       ShiftElts = M0 - 4;
2305     }
2306 
2307     return true;
2308   }
2309 }
2310 
2311 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2312   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2313 
2314   if (!isNByteElemShuffleMask(N, Width, -1))
2315     return false;
2316 
2317   for (int i = 0; i < 16; i += Width)
2318     if (N->getMaskElt(i) != i + Width - 1)
2319       return false;
2320 
2321   return true;
2322 }
2323 
2324 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2325   return isXXBRShuffleMaskHelper(N, 2);
2326 }
2327 
2328 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2329   return isXXBRShuffleMaskHelper(N, 4);
2330 }
2331 
2332 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2333   return isXXBRShuffleMaskHelper(N, 8);
2334 }
2335 
2336 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2337   return isXXBRShuffleMaskHelper(N, 16);
2338 }
2339 
2340 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2341 /// if the inputs to the instruction should be swapped and set \p DM to the
2342 /// value for the immediate.
2343 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2344 /// AND element 0 of the result comes from the first input (LE) or second input
2345 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2346 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2347 /// mask.
2348 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2349                                bool &Swap, bool IsLE) {
2350   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2351 
2352   // Ensure each byte index of the double word is consecutive.
2353   if (!isNByteElemShuffleMask(N, 8, 1))
2354     return false;
2355 
2356   unsigned M0 = N->getMaskElt(0) / 8;
2357   unsigned M1 = N->getMaskElt(8) / 8;
2358   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2359 
2360   // If both vector operands for the shuffle are the same vector, the mask will
2361   // contain only elements from the first one and the second one will be undef.
2362   if (N->getOperand(1).isUndef()) {
2363     if ((M0 | M1) < 2) {
2364       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2365       Swap = false;
2366       return true;
2367     } else
2368       return false;
2369   }
2370 
2371   if (IsLE) {
2372     if (M0 > 1 && M1 < 2) {
2373       Swap = false;
2374     } else if (M0 < 2 && M1 > 1) {
2375       M0 = (M0 + 2) % 4;
2376       M1 = (M1 + 2) % 4;
2377       Swap = true;
2378     } else
2379       return false;
2380 
2381     // Note: if control flow comes here that means Swap is already set above
2382     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2383     return true;
2384   } else { // BE
2385     if (M0 < 2 && M1 > 1) {
2386       Swap = false;
2387     } else if (M0 > 1 && M1 < 2) {
2388       M0 = (M0 + 2) % 4;
2389       M1 = (M1 + 2) % 4;
2390       Swap = true;
2391     } else
2392       return false;
2393 
2394     // Note: if control flow comes here that means Swap is already set above
2395     DM = (M0 << 1) + (M1 & 1);
2396     return true;
2397   }
2398 }
2399 
2400 
2401 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2402 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2403 /// elements are counted from the left of the vector register).
2404 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2405                                          SelectionDAG &DAG) {
2406   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2407   assert(isSplatShuffleMask(SVOp, EltSize));
2408   if (DAG.getDataLayout().isLittleEndian())
2409     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2410   else
2411     return SVOp->getMaskElt(0) / EltSize;
2412 }
2413 
2414 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2415 /// by using a vspltis[bhw] instruction of the specified element size, return
2416 /// the constant being splatted.  The ByteSize field indicates the number of
2417 /// bytes of each element [124] -> [bhw].
2418 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2419   SDValue OpVal(nullptr, 0);
2420 
2421   // If ByteSize of the splat is bigger than the element size of the
2422   // build_vector, then we have a case where we are checking for a splat where
2423   // multiple elements of the buildvector are folded together into a single
2424   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2425   unsigned EltSize = 16/N->getNumOperands();
2426   if (EltSize < ByteSize) {
2427     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2428     SDValue UniquedVals[4];
2429     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2430 
2431     // See if all of the elements in the buildvector agree across.
2432     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2433       if (N->getOperand(i).isUndef()) continue;
2434       // If the element isn't a constant, bail fully out.
2435       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2436 
2437       if (!UniquedVals[i&(Multiple-1)].getNode())
2438         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2439       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2440         return SDValue();  // no match.
2441     }
2442 
2443     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2444     // either constant or undef values that are identical for each chunk.  See
2445     // if these chunks can form into a larger vspltis*.
2446 
2447     // Check to see if all of the leading entries are either 0 or -1.  If
2448     // neither, then this won't fit into the immediate field.
2449     bool LeadingZero = true;
2450     bool LeadingOnes = true;
2451     for (unsigned i = 0; i != Multiple-1; ++i) {
2452       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2453 
2454       LeadingZero &= isNullConstant(UniquedVals[i]);
2455       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2456     }
2457     // Finally, check the least significant entry.
2458     if (LeadingZero) {
2459       if (!UniquedVals[Multiple-1].getNode())
2460         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2461       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2462       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2463         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2464     }
2465     if (LeadingOnes) {
2466       if (!UniquedVals[Multiple-1].getNode())
2467         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2468       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2469       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2470         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2471     }
2472 
2473     return SDValue();
2474   }
2475 
2476   // Check to see if this buildvec has a single non-undef value in its elements.
2477   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2478     if (N->getOperand(i).isUndef()) continue;
2479     if (!OpVal.getNode())
2480       OpVal = N->getOperand(i);
2481     else if (OpVal != N->getOperand(i))
2482       return SDValue();
2483   }
2484 
2485   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2486 
2487   unsigned ValSizeInBytes = EltSize;
2488   uint64_t Value = 0;
2489   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2490     Value = CN->getZExtValue();
2491   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2492     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2493     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2494   }
2495 
2496   // If the splat value is larger than the element value, then we can never do
2497   // this splat.  The only case that we could fit the replicated bits into our
2498   // immediate field for would be zero, and we prefer to use vxor for it.
2499   if (ValSizeInBytes < ByteSize) return SDValue();
2500 
2501   // If the element value is larger than the splat value, check if it consists
2502   // of a repeated bit pattern of size ByteSize.
2503   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2504     return SDValue();
2505 
2506   // Properly sign extend the value.
2507   int MaskVal = SignExtend32(Value, ByteSize * 8);
2508 
2509   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2510   if (MaskVal == 0) return SDValue();
2511 
2512   // Finally, if this value fits in a 5 bit sext field, return it
2513   if (SignExtend32<5>(MaskVal) == MaskVal)
2514     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2515   return SDValue();
2516 }
2517 
2518 //===----------------------------------------------------------------------===//
2519 //  Addressing Mode Selection
2520 //===----------------------------------------------------------------------===//
2521 
2522 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2523 /// or 64-bit immediate, and if the value can be accurately represented as a
2524 /// sign extension from a 16-bit value.  If so, this returns true and the
2525 /// immediate.
2526 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2527   if (!isa<ConstantSDNode>(N))
2528     return false;
2529 
2530   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2531   if (N->getValueType(0) == MVT::i32)
2532     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2533   else
2534     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2535 }
2536 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2537   return isIntS16Immediate(Op.getNode(), Imm);
2538 }
2539 
2540 /// Used when computing address flags for selecting loads and stores.
2541 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2542 /// An OR of two provably disjoint values is equivalent to an ADD.
2543 /// Most PPC load/store instructions compute the effective address as a sum,
2544 /// so doing this conversion is useful.
2545 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2546   if (N.getOpcode() != ISD::OR)
2547     return false;
2548   KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2549   if (!LHSKnown.Zero.getBoolValue())
2550     return false;
2551   KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2552   return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2553 }
2554 
2555 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2556 /// be represented as an indexed [r+r] operation.
2557 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2558                                                SDValue &Index,
2559                                                SelectionDAG &DAG) const {
2560   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2561       UI != E; ++UI) {
2562     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2563       if (Memop->getMemoryVT() == MVT::f64) {
2564           Base = N.getOperand(0);
2565           Index = N.getOperand(1);
2566           return true;
2567       }
2568     }
2569   }
2570   return false;
2571 }
2572 
2573 /// isIntS34Immediate - This method tests if value of node given can be
2574 /// accurately represented as a sign extension from a 34-bit value.  If so,
2575 /// this returns true and the immediate.
2576 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2577   if (!isa<ConstantSDNode>(N))
2578     return false;
2579 
2580   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2581   return isInt<34>(Imm);
2582 }
2583 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2584   return isIntS34Immediate(Op.getNode(), Imm);
2585 }
2586 
2587 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2588 /// can be represented as an indexed [r+r] operation.  Returns false if it
2589 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2590 /// non-zero and N can be represented by a base register plus a signed 16-bit
2591 /// displacement, make a more precise judgement by checking (displacement % \p
2592 /// EncodingAlignment).
2593 bool PPCTargetLowering::SelectAddressRegReg(
2594     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2595     MaybeAlign EncodingAlignment) const {
2596   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2597   // a [pc+imm].
2598   if (SelectAddressPCRel(N, Base))
2599     return false;
2600 
2601   int16_t Imm = 0;
2602   if (N.getOpcode() == ISD::ADD) {
2603     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2604     // SPE load/store can only handle 8-bit offsets.
2605     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2606         return true;
2607     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2608         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2609       return false; // r+i
2610     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2611       return false;    // r+i
2612 
2613     Base = N.getOperand(0);
2614     Index = N.getOperand(1);
2615     return true;
2616   } else if (N.getOpcode() == ISD::OR) {
2617     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2618         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2619       return false; // r+i can fold it if we can.
2620 
2621     // If this is an or of disjoint bitfields, we can codegen this as an add
2622     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2623     // disjoint.
2624     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2625 
2626     if (LHSKnown.Zero.getBoolValue()) {
2627       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2628       // If all of the bits are known zero on the LHS or RHS, the add won't
2629       // carry.
2630       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2631         Base = N.getOperand(0);
2632         Index = N.getOperand(1);
2633         return true;
2634       }
2635     }
2636   }
2637 
2638   return false;
2639 }
2640 
2641 // If we happen to be doing an i64 load or store into a stack slot that has
2642 // less than a 4-byte alignment, then the frame-index elimination may need to
2643 // use an indexed load or store instruction (because the offset may not be a
2644 // multiple of 4). The extra register needed to hold the offset comes from the
2645 // register scavenger, and it is possible that the scavenger will need to use
2646 // an emergency spill slot. As a result, we need to make sure that a spill slot
2647 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2648 // stack slot.
2649 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2650   // FIXME: This does not handle the LWA case.
2651   if (VT != MVT::i64)
2652     return;
2653 
2654   // NOTE: We'll exclude negative FIs here, which come from argument
2655   // lowering, because there are no known test cases triggering this problem
2656   // using packed structures (or similar). We can remove this exclusion if
2657   // we find such a test case. The reason why this is so test-case driven is
2658   // because this entire 'fixup' is only to prevent crashes (from the
2659   // register scavenger) on not-really-valid inputs. For example, if we have:
2660   //   %a = alloca i1
2661   //   %b = bitcast i1* %a to i64*
2662   //   store i64* a, i64 b
2663   // then the store should really be marked as 'align 1', but is not. If it
2664   // were marked as 'align 1' then the indexed form would have been
2665   // instruction-selected initially, and the problem this 'fixup' is preventing
2666   // won't happen regardless.
2667   if (FrameIdx < 0)
2668     return;
2669 
2670   MachineFunction &MF = DAG.getMachineFunction();
2671   MachineFrameInfo &MFI = MF.getFrameInfo();
2672 
2673   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2674     return;
2675 
2676   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2677   FuncInfo->setHasNonRISpills();
2678 }
2679 
2680 /// Returns true if the address N can be represented by a base register plus
2681 /// a signed 16-bit displacement [r+imm], and if it is not better
2682 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2683 /// displacements that are multiples of that value.
2684 bool PPCTargetLowering::SelectAddressRegImm(
2685     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2686     MaybeAlign EncodingAlignment) const {
2687   // FIXME dl should come from parent load or store, not from address
2688   SDLoc dl(N);
2689 
2690   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2691   // a [pc+imm].
2692   if (SelectAddressPCRel(N, Base))
2693     return false;
2694 
2695   // If this can be more profitably realized as r+r, fail.
2696   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2697     return false;
2698 
2699   if (N.getOpcode() == ISD::ADD) {
2700     int16_t imm = 0;
2701     if (isIntS16Immediate(N.getOperand(1), imm) &&
2702         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2703       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2704       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2705         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2706         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2707       } else {
2708         Base = N.getOperand(0);
2709       }
2710       return true; // [r+i]
2711     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2712       // Match LOAD (ADD (X, Lo(G))).
2713       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2714              && "Cannot handle constant offsets yet!");
2715       Disp = N.getOperand(1).getOperand(0);  // The global address.
2716       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2717              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2718              Disp.getOpcode() == ISD::TargetConstantPool ||
2719              Disp.getOpcode() == ISD::TargetJumpTable);
2720       Base = N.getOperand(0);
2721       return true;  // [&g+r]
2722     }
2723   } else if (N.getOpcode() == ISD::OR) {
2724     int16_t imm = 0;
2725     if (isIntS16Immediate(N.getOperand(1), imm) &&
2726         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2727       // If this is an or of disjoint bitfields, we can codegen this as an add
2728       // (for better address arithmetic) if the LHS and RHS of the OR are
2729       // provably disjoint.
2730       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2731 
2732       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2733         // If all of the bits are known zero on the LHS or RHS, the add won't
2734         // carry.
2735         if (FrameIndexSDNode *FI =
2736               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2737           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2738           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2739         } else {
2740           Base = N.getOperand(0);
2741         }
2742         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2743         return true;
2744       }
2745     }
2746   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2747     // Loading from a constant address.
2748 
2749     // If this address fits entirely in a 16-bit sext immediate field, codegen
2750     // this as "d, 0"
2751     int16_t Imm;
2752     if (isIntS16Immediate(CN, Imm) &&
2753         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2754       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2755       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2756                              CN->getValueType(0));
2757       return true;
2758     }
2759 
2760     // Handle 32-bit sext immediates with LIS + addr mode.
2761     if ((CN->getValueType(0) == MVT::i32 ||
2762          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2763         (!EncodingAlignment ||
2764          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2765       int Addr = (int)CN->getZExtValue();
2766 
2767       // Otherwise, break this down into an LIS + disp.
2768       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2769 
2770       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2771                                    MVT::i32);
2772       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2773       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2774       return true;
2775     }
2776   }
2777 
2778   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2779   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2780     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2781     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2782   } else
2783     Base = N;
2784   return true;      // [r+0]
2785 }
2786 
2787 /// Similar to the 16-bit case but for instructions that take a 34-bit
2788 /// displacement field (prefixed loads/stores).
2789 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2790                                               SDValue &Base,
2791                                               SelectionDAG &DAG) const {
2792   // Only on 64-bit targets.
2793   if (N.getValueType() != MVT::i64)
2794     return false;
2795 
2796   SDLoc dl(N);
2797   int64_t Imm = 0;
2798 
2799   if (N.getOpcode() == ISD::ADD) {
2800     if (!isIntS34Immediate(N.getOperand(1), Imm))
2801       return false;
2802     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2803     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2804       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2805     else
2806       Base = N.getOperand(0);
2807     return true;
2808   }
2809 
2810   if (N.getOpcode() == ISD::OR) {
2811     if (!isIntS34Immediate(N.getOperand(1), Imm))
2812       return false;
2813     // If this is an or of disjoint bitfields, we can codegen this as an add
2814     // (for better address arithmetic) if the LHS and RHS of the OR are
2815     // provably disjoint.
2816     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2817     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2818       return false;
2819     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2820       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2821     else
2822       Base = N.getOperand(0);
2823     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2824     return true;
2825   }
2826 
2827   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2828     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2829     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2830     return true;
2831   }
2832 
2833   return false;
2834 }
2835 
2836 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2837 /// represented as an indexed [r+r] operation.
2838 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2839                                                 SDValue &Index,
2840                                                 SelectionDAG &DAG) const {
2841   // Check to see if we can easily represent this as an [r+r] address.  This
2842   // will fail if it thinks that the address is more profitably represented as
2843   // reg+imm, e.g. where imm = 0.
2844   if (SelectAddressRegReg(N, Base, Index, DAG))
2845     return true;
2846 
2847   // If the address is the result of an add, we will utilize the fact that the
2848   // address calculation includes an implicit add.  However, we can reduce
2849   // register pressure if we do not materialize a constant just for use as the
2850   // index register.  We only get rid of the add if it is not an add of a
2851   // value and a 16-bit signed constant and both have a single use.
2852   int16_t imm = 0;
2853   if (N.getOpcode() == ISD::ADD &&
2854       (!isIntS16Immediate(N.getOperand(1), imm) ||
2855        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2856     Base = N.getOperand(0);
2857     Index = N.getOperand(1);
2858     return true;
2859   }
2860 
2861   // Otherwise, do it the hard way, using R0 as the base register.
2862   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2863                          N.getValueType());
2864   Index = N;
2865   return true;
2866 }
2867 
2868 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2869   Ty *PCRelCand = dyn_cast<Ty>(N);
2870   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2871 }
2872 
2873 /// Returns true if this address is a PC Relative address.
2874 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2875 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2876 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2877   // This is a materialize PC Relative node. Always select this as PC Relative.
2878   Base = N;
2879   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2880     return true;
2881   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2882       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2883       isValidPCRelNode<JumpTableSDNode>(N) ||
2884       isValidPCRelNode<BlockAddressSDNode>(N))
2885     return true;
2886   return false;
2887 }
2888 
2889 /// Returns true if we should use a direct load into vector instruction
2890 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2891 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2892 
2893   // If there are any other uses other than scalar to vector, then we should
2894   // keep it as a scalar load -> direct move pattern to prevent multiple
2895   // loads.
2896   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2897   if (!LD)
2898     return false;
2899 
2900   EVT MemVT = LD->getMemoryVT();
2901   if (!MemVT.isSimple())
2902     return false;
2903   switch(MemVT.getSimpleVT().SimpleTy) {
2904   case MVT::i64:
2905     break;
2906   case MVT::i32:
2907     if (!ST.hasP8Vector())
2908       return false;
2909     break;
2910   case MVT::i16:
2911   case MVT::i8:
2912     if (!ST.hasP9Vector())
2913       return false;
2914     break;
2915   default:
2916     return false;
2917   }
2918 
2919   SDValue LoadedVal(N, 0);
2920   if (!LoadedVal.hasOneUse())
2921     return false;
2922 
2923   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2924        UI != UE; ++UI)
2925     if (UI.getUse().get().getResNo() == 0 &&
2926         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2927         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2928       return false;
2929 
2930   return true;
2931 }
2932 
2933 /// getPreIndexedAddressParts - returns true by value, base pointer and
2934 /// offset pointer and addressing mode by reference if the node's address
2935 /// can be legally represented as pre-indexed load / store address.
2936 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2937                                                   SDValue &Offset,
2938                                                   ISD::MemIndexedMode &AM,
2939                                                   SelectionDAG &DAG) const {
2940   if (DisablePPCPreinc) return false;
2941 
2942   bool isLoad = true;
2943   SDValue Ptr;
2944   EVT VT;
2945   unsigned Alignment;
2946   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2947     Ptr = LD->getBasePtr();
2948     VT = LD->getMemoryVT();
2949     Alignment = LD->getAlignment();
2950   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2951     Ptr = ST->getBasePtr();
2952     VT  = ST->getMemoryVT();
2953     Alignment = ST->getAlignment();
2954     isLoad = false;
2955   } else
2956     return false;
2957 
2958   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2959   // instructions because we can fold these into a more efficient instruction
2960   // instead, (such as LXSD).
2961   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2962     return false;
2963   }
2964 
2965   // PowerPC doesn't have preinc load/store instructions for vectors
2966   if (VT.isVector())
2967     return false;
2968 
2969   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2970     // Common code will reject creating a pre-inc form if the base pointer
2971     // is a frame index, or if N is a store and the base pointer is either
2972     // the same as or a predecessor of the value being stored.  Check for
2973     // those situations here, and try with swapped Base/Offset instead.
2974     bool Swap = false;
2975 
2976     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2977       Swap = true;
2978     else if (!isLoad) {
2979       SDValue Val = cast<StoreSDNode>(N)->getValue();
2980       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2981         Swap = true;
2982     }
2983 
2984     if (Swap)
2985       std::swap(Base, Offset);
2986 
2987     AM = ISD::PRE_INC;
2988     return true;
2989   }
2990 
2991   // LDU/STU can only handle immediates that are a multiple of 4.
2992   if (VT != MVT::i64) {
2993     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2994       return false;
2995   } else {
2996     // LDU/STU need an address with at least 4-byte alignment.
2997     if (Alignment < 4)
2998       return false;
2999 
3000     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
3001       return false;
3002   }
3003 
3004   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3005     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
3006     // sext i32 to i64 when addr mode is r+i.
3007     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
3008         LD->getExtensionType() == ISD::SEXTLOAD &&
3009         isa<ConstantSDNode>(Offset))
3010       return false;
3011   }
3012 
3013   AM = ISD::PRE_INC;
3014   return true;
3015 }
3016 
3017 //===----------------------------------------------------------------------===//
3018 //  LowerOperation implementation
3019 //===----------------------------------------------------------------------===//
3020 
3021 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3022 /// and LoOpFlags to the target MO flags.
3023 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3024                                unsigned &HiOpFlags, unsigned &LoOpFlags,
3025                                const GlobalValue *GV = nullptr) {
3026   HiOpFlags = PPCII::MO_HA;
3027   LoOpFlags = PPCII::MO_LO;
3028 
3029   // Don't use the pic base if not in PIC relocation model.
3030   if (IsPIC) {
3031     HiOpFlags |= PPCII::MO_PIC_FLAG;
3032     LoOpFlags |= PPCII::MO_PIC_FLAG;
3033   }
3034 }
3035 
3036 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3037                              SelectionDAG &DAG) {
3038   SDLoc DL(HiPart);
3039   EVT PtrVT = HiPart.getValueType();
3040   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3041 
3042   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3043   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3044 
3045   // With PIC, the first instruction is actually "GR+hi(&G)".
3046   if (isPIC)
3047     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3048                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3049 
3050   // Generate non-pic code that has direct accesses to the constant pool.
3051   // The address of the global is just (hi(&g)+lo(&g)).
3052   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3053 }
3054 
3055 static void setUsesTOCBasePtr(MachineFunction &MF) {
3056   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3057   FuncInfo->setUsesTOCBasePtr();
3058 }
3059 
3060 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3061   setUsesTOCBasePtr(DAG.getMachineFunction());
3062 }
3063 
3064 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3065                                        SDValue GA) const {
3066   const bool Is64Bit = Subtarget.isPPC64();
3067   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3068   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3069                         : Subtarget.isAIXABI()
3070                               ? DAG.getRegister(PPC::R2, VT)
3071                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3072   SDValue Ops[] = { GA, Reg };
3073   return DAG.getMemIntrinsicNode(
3074       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3075       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
3076       MachineMemOperand::MOLoad);
3077 }
3078 
3079 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3080                                              SelectionDAG &DAG) const {
3081   EVT PtrVT = Op.getValueType();
3082   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3083   const Constant *C = CP->getConstVal();
3084 
3085   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3086   // The actual address of the GlobalValue is stored in the TOC.
3087   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3088     if (Subtarget.isUsingPCRelativeCalls()) {
3089       SDLoc DL(CP);
3090       EVT Ty = getPointerTy(DAG.getDataLayout());
3091       SDValue ConstPool = DAG.getTargetConstantPool(
3092           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3093       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3094     }
3095     setUsesTOCBasePtr(DAG);
3096     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3097     return getTOCEntry(DAG, SDLoc(CP), GA);
3098   }
3099 
3100   unsigned MOHiFlag, MOLoFlag;
3101   bool IsPIC = isPositionIndependent();
3102   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3103 
3104   if (IsPIC && Subtarget.isSVR4ABI()) {
3105     SDValue GA =
3106         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3107     return getTOCEntry(DAG, SDLoc(CP), GA);
3108   }
3109 
3110   SDValue CPIHi =
3111       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3112   SDValue CPILo =
3113       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3114   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3115 }
3116 
3117 // For 64-bit PowerPC, prefer the more compact relative encodings.
3118 // This trades 32 bits per jump table entry for one or two instructions
3119 // on the jump site.
3120 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3121   if (isJumpTableRelative())
3122     return MachineJumpTableInfo::EK_LabelDifference32;
3123 
3124   return TargetLowering::getJumpTableEncoding();
3125 }
3126 
3127 bool PPCTargetLowering::isJumpTableRelative() const {
3128   if (UseAbsoluteJumpTables)
3129     return false;
3130   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3131     return true;
3132   return TargetLowering::isJumpTableRelative();
3133 }
3134 
3135 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3136                                                     SelectionDAG &DAG) const {
3137   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3138     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3139 
3140   switch (getTargetMachine().getCodeModel()) {
3141   case CodeModel::Small:
3142   case CodeModel::Medium:
3143     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3144   default:
3145     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3146                        getPointerTy(DAG.getDataLayout()));
3147   }
3148 }
3149 
3150 const MCExpr *
3151 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3152                                                 unsigned JTI,
3153                                                 MCContext &Ctx) const {
3154   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3155     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3156 
3157   switch (getTargetMachine().getCodeModel()) {
3158   case CodeModel::Small:
3159   case CodeModel::Medium:
3160     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3161   default:
3162     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3163   }
3164 }
3165 
3166 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3167   EVT PtrVT = Op.getValueType();
3168   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3169 
3170   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3171   if (Subtarget.isUsingPCRelativeCalls()) {
3172     SDLoc DL(JT);
3173     EVT Ty = getPointerTy(DAG.getDataLayout());
3174     SDValue GA =
3175         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3176     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3177     return MatAddr;
3178   }
3179 
3180   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3181   // The actual address of the GlobalValue is stored in the TOC.
3182   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3183     setUsesTOCBasePtr(DAG);
3184     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3185     return getTOCEntry(DAG, SDLoc(JT), GA);
3186   }
3187 
3188   unsigned MOHiFlag, MOLoFlag;
3189   bool IsPIC = isPositionIndependent();
3190   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3191 
3192   if (IsPIC && Subtarget.isSVR4ABI()) {
3193     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3194                                         PPCII::MO_PIC_FLAG);
3195     return getTOCEntry(DAG, SDLoc(GA), GA);
3196   }
3197 
3198   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3199   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3200   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3201 }
3202 
3203 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3204                                              SelectionDAG &DAG) const {
3205   EVT PtrVT = Op.getValueType();
3206   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3207   const BlockAddress *BA = BASDN->getBlockAddress();
3208 
3209   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3210   if (Subtarget.isUsingPCRelativeCalls()) {
3211     SDLoc DL(BASDN);
3212     EVT Ty = getPointerTy(DAG.getDataLayout());
3213     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3214                                            PPCII::MO_PCREL_FLAG);
3215     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3216     return MatAddr;
3217   }
3218 
3219   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3220   // The actual BlockAddress is stored in the TOC.
3221   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3222     setUsesTOCBasePtr(DAG);
3223     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3224     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3225   }
3226 
3227   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3228   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3229     return getTOCEntry(
3230         DAG, SDLoc(BASDN),
3231         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3232 
3233   unsigned MOHiFlag, MOLoFlag;
3234   bool IsPIC = isPositionIndependent();
3235   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3236   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3237   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3238   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3239 }
3240 
3241 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3242                                               SelectionDAG &DAG) const {
3243   if (Subtarget.isAIXABI())
3244     return LowerGlobalTLSAddressAIX(Op, DAG);
3245 
3246   return LowerGlobalTLSAddressLinux(Op, DAG);
3247 }
3248 
3249 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3250                                                     SelectionDAG &DAG) const {
3251   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3252 
3253   if (DAG.getTarget().useEmulatedTLS())
3254     report_fatal_error("Emulated TLS is not yet supported on AIX");
3255 
3256   SDLoc dl(GA);
3257   const GlobalValue *GV = GA->getGlobal();
3258   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3259 
3260   // The general-dynamic model is the only access model supported for now, so
3261   // all the GlobalTLSAddress nodes are lowered with this model.
3262   // We need to generate two TOC entries, one for the variable offset, one for
3263   // the region handle. The global address for the TOC entry of the region
3264   // handle is created with the MO_TLSGDM_FLAG flag and the global address
3265   // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3266   SDValue VariableOffsetTGA =
3267       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3268   SDValue RegionHandleTGA =
3269       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3270   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3271   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3272   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3273                      RegionHandle);
3274 }
3275 
3276 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3277                                                       SelectionDAG &DAG) const {
3278   // FIXME: TLS addresses currently use medium model code sequences,
3279   // which is the most useful form.  Eventually support for small and
3280   // large models could be added if users need it, at the cost of
3281   // additional complexity.
3282   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3283   if (DAG.getTarget().useEmulatedTLS())
3284     return LowerToTLSEmulatedModel(GA, DAG);
3285 
3286   SDLoc dl(GA);
3287   const GlobalValue *GV = GA->getGlobal();
3288   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3289   bool is64bit = Subtarget.isPPC64();
3290   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3291   PICLevel::Level picLevel = M->getPICLevel();
3292 
3293   const TargetMachine &TM = getTargetMachine();
3294   TLSModel::Model Model = TM.getTLSModel(GV);
3295 
3296   if (Model == TLSModel::LocalExec) {
3297     if (Subtarget.isUsingPCRelativeCalls()) {
3298       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3299       SDValue TGA = DAG.getTargetGlobalAddress(
3300           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3301       SDValue MatAddr =
3302           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3303       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3304     }
3305 
3306     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3307                                                PPCII::MO_TPREL_HA);
3308     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3309                                                PPCII::MO_TPREL_LO);
3310     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3311                              : DAG.getRegister(PPC::R2, MVT::i32);
3312 
3313     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3314     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3315   }
3316 
3317   if (Model == TLSModel::InitialExec) {
3318     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3319     SDValue TGA = DAG.getTargetGlobalAddress(
3320         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3321     SDValue TGATLS = DAG.getTargetGlobalAddress(
3322         GV, dl, PtrVT, 0,
3323         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3324     SDValue TPOffset;
3325     if (IsPCRel) {
3326       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3327       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3328                              MachinePointerInfo());
3329     } else {
3330       SDValue GOTPtr;
3331       if (is64bit) {
3332         setUsesTOCBasePtr(DAG);
3333         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3334         GOTPtr =
3335             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3336       } else {
3337         if (!TM.isPositionIndependent())
3338           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3339         else if (picLevel == PICLevel::SmallPIC)
3340           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3341         else
3342           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3343       }
3344       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3345     }
3346     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3347   }
3348 
3349   if (Model == TLSModel::GeneralDynamic) {
3350     if (Subtarget.isUsingPCRelativeCalls()) {
3351       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3352                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3353       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3354     }
3355 
3356     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3357     SDValue GOTPtr;
3358     if (is64bit) {
3359       setUsesTOCBasePtr(DAG);
3360       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3361       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3362                                    GOTReg, TGA);
3363     } else {
3364       if (picLevel == PICLevel::SmallPIC)
3365         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3366       else
3367         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3368     }
3369     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3370                        GOTPtr, TGA, TGA);
3371   }
3372 
3373   if (Model == TLSModel::LocalDynamic) {
3374     if (Subtarget.isUsingPCRelativeCalls()) {
3375       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3376                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3377       SDValue MatPCRel =
3378           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3379       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3380     }
3381 
3382     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3383     SDValue GOTPtr;
3384     if (is64bit) {
3385       setUsesTOCBasePtr(DAG);
3386       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3387       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3388                            GOTReg, TGA);
3389     } else {
3390       if (picLevel == PICLevel::SmallPIC)
3391         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3392       else
3393         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3394     }
3395     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3396                                   PtrVT, GOTPtr, TGA, TGA);
3397     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3398                                       PtrVT, TLSAddr, TGA);
3399     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3400   }
3401 
3402   llvm_unreachable("Unknown TLS model!");
3403 }
3404 
3405 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3406                                               SelectionDAG &DAG) const {
3407   EVT PtrVT = Op.getValueType();
3408   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3409   SDLoc DL(GSDN);
3410   const GlobalValue *GV = GSDN->getGlobal();
3411 
3412   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3413   // The actual address of the GlobalValue is stored in the TOC.
3414   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3415     if (Subtarget.isUsingPCRelativeCalls()) {
3416       EVT Ty = getPointerTy(DAG.getDataLayout());
3417       if (isAccessedAsGotIndirect(Op)) {
3418         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3419                                                 PPCII::MO_PCREL_FLAG |
3420                                                     PPCII::MO_GOT_FLAG);
3421         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3422         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3423                                    MachinePointerInfo());
3424         return Load;
3425       } else {
3426         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3427                                                 PPCII::MO_PCREL_FLAG);
3428         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3429       }
3430     }
3431     setUsesTOCBasePtr(DAG);
3432     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3433     return getTOCEntry(DAG, DL, GA);
3434   }
3435 
3436   unsigned MOHiFlag, MOLoFlag;
3437   bool IsPIC = isPositionIndependent();
3438   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3439 
3440   if (IsPIC && Subtarget.isSVR4ABI()) {
3441     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3442                                             GSDN->getOffset(),
3443                                             PPCII::MO_PIC_FLAG);
3444     return getTOCEntry(DAG, DL, GA);
3445   }
3446 
3447   SDValue GAHi =
3448     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3449   SDValue GALo =
3450     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3451 
3452   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3453 }
3454 
3455 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3456   bool IsStrict = Op->isStrictFPOpcode();
3457   ISD::CondCode CC =
3458       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3459   SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3460   SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3461   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3462   EVT LHSVT = LHS.getValueType();
3463   SDLoc dl(Op);
3464 
3465   // Soften the setcc with libcall if it is fp128.
3466   if (LHSVT == MVT::f128) {
3467     assert(!Subtarget.hasP9Vector() &&
3468            "SETCC for f128 is already legal under Power9!");
3469     softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3470                         Op->getOpcode() == ISD::STRICT_FSETCCS);
3471     if (RHS.getNode())
3472       LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3473                         DAG.getCondCode(CC));
3474     if (IsStrict)
3475       return DAG.getMergeValues({LHS, Chain}, dl);
3476     return LHS;
3477   }
3478 
3479   assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3480 
3481   if (Op.getValueType() == MVT::v2i64) {
3482     // When the operands themselves are v2i64 values, we need to do something
3483     // special because VSX has no underlying comparison operations for these.
3484     if (LHS.getValueType() == MVT::v2i64) {
3485       // Equality can be handled by casting to the legal type for Altivec
3486       // comparisons, everything else needs to be expanded.
3487       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3488         return DAG.getNode(
3489             ISD::BITCAST, dl, MVT::v2i64,
3490             DAG.getSetCC(dl, MVT::v4i32,
3491                          DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3492                          DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC));
3493       }
3494 
3495       return SDValue();
3496     }
3497 
3498     // We handle most of these in the usual way.
3499     return Op;
3500   }
3501 
3502   // If we're comparing for equality to zero, expose the fact that this is
3503   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3504   // fold the new nodes.
3505   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3506     return V;
3507 
3508   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3509     // Leave comparisons against 0 and -1 alone for now, since they're usually
3510     // optimized.  FIXME: revisit this when we can custom lower all setcc
3511     // optimizations.
3512     if (C->isAllOnesValue() || C->isNullValue())
3513       return SDValue();
3514   }
3515 
3516   // If we have an integer seteq/setne, turn it into a compare against zero
3517   // by xor'ing the rhs with the lhs, which is faster than setting a
3518   // condition register, reading it back out, and masking the correct bit.  The
3519   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3520   // the result to other bit-twiddling opportunities.
3521   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3522     EVT VT = Op.getValueType();
3523     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3524     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3525   }
3526   return SDValue();
3527 }
3528 
3529 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3530   SDNode *Node = Op.getNode();
3531   EVT VT = Node->getValueType(0);
3532   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3533   SDValue InChain = Node->getOperand(0);
3534   SDValue VAListPtr = Node->getOperand(1);
3535   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3536   SDLoc dl(Node);
3537 
3538   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3539 
3540   // gpr_index
3541   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3542                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3543   InChain = GprIndex.getValue(1);
3544 
3545   if (VT == MVT::i64) {
3546     // Check if GprIndex is even
3547     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3548                                  DAG.getConstant(1, dl, MVT::i32));
3549     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3550                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3551     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3552                                           DAG.getConstant(1, dl, MVT::i32));
3553     // Align GprIndex to be even if it isn't
3554     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3555                            GprIndex);
3556   }
3557 
3558   // fpr index is 1 byte after gpr
3559   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3560                                DAG.getConstant(1, dl, MVT::i32));
3561 
3562   // fpr
3563   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3564                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3565   InChain = FprIndex.getValue(1);
3566 
3567   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3568                                        DAG.getConstant(8, dl, MVT::i32));
3569 
3570   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3571                                         DAG.getConstant(4, dl, MVT::i32));
3572 
3573   // areas
3574   SDValue OverflowArea =
3575       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3576   InChain = OverflowArea.getValue(1);
3577 
3578   SDValue RegSaveArea =
3579       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3580   InChain = RegSaveArea.getValue(1);
3581 
3582   // select overflow_area if index > 8
3583   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3584                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3585 
3586   // adjustment constant gpr_index * 4/8
3587   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3588                                     VT.isInteger() ? GprIndex : FprIndex,
3589                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3590                                                     MVT::i32));
3591 
3592   // OurReg = RegSaveArea + RegConstant
3593   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3594                                RegConstant);
3595 
3596   // Floating types are 32 bytes into RegSaveArea
3597   if (VT.isFloatingPoint())
3598     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3599                          DAG.getConstant(32, dl, MVT::i32));
3600 
3601   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3602   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3603                                    VT.isInteger() ? GprIndex : FprIndex,
3604                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3605                                                    MVT::i32));
3606 
3607   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3608                               VT.isInteger() ? VAListPtr : FprPtr,
3609                               MachinePointerInfo(SV), MVT::i8);
3610 
3611   // determine if we should load from reg_save_area or overflow_area
3612   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3613 
3614   // increase overflow_area by 4/8 if gpr/fpr > 8
3615   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3616                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3617                                           dl, MVT::i32));
3618 
3619   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3620                              OverflowAreaPlusN);
3621 
3622   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3623                               MachinePointerInfo(), MVT::i32);
3624 
3625   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3626 }
3627 
3628 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3629   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3630 
3631   // We have to copy the entire va_list struct:
3632   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3633   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3634                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3635                        false, true, false, MachinePointerInfo(),
3636                        MachinePointerInfo());
3637 }
3638 
3639 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3640                                                   SelectionDAG &DAG) const {
3641   if (Subtarget.isAIXABI())
3642     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3643 
3644   return Op.getOperand(0);
3645 }
3646 
3647 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3648   MachineFunction &MF = DAG.getMachineFunction();
3649   PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3650 
3651   assert((Op.getOpcode() == ISD::INLINEASM ||
3652           Op.getOpcode() == ISD::INLINEASM_BR) &&
3653          "Expecting Inline ASM node.");
3654 
3655   // If an LR store is already known to be required then there is not point in
3656   // checking this ASM as well.
3657   if (MFI.isLRStoreRequired())
3658     return Op;
3659 
3660   // Inline ASM nodes have an optional last operand that is an incoming Flag of
3661   // type MVT::Glue. We want to ignore this last operand if that is the case.
3662   unsigned NumOps = Op.getNumOperands();
3663   if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3664     --NumOps;
3665 
3666   // Check all operands that may contain the LR.
3667   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3668     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
3669     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
3670     ++i; // Skip the ID value.
3671 
3672     switch (InlineAsm::getKind(Flags)) {
3673     default:
3674       llvm_unreachable("Bad flags!");
3675     case InlineAsm::Kind_RegUse:
3676     case InlineAsm::Kind_Imm:
3677     case InlineAsm::Kind_Mem:
3678       i += NumVals;
3679       break;
3680     case InlineAsm::Kind_Clobber:
3681     case InlineAsm::Kind_RegDef:
3682     case InlineAsm::Kind_RegDefEarlyClobber: {
3683       for (; NumVals; --NumVals, ++i) {
3684         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3685         if (Reg != PPC::LR && Reg != PPC::LR8)
3686           continue;
3687         MFI.setLRStoreRequired();
3688         return Op;
3689       }
3690       break;
3691     }
3692     }
3693   }
3694 
3695   return Op;
3696 }
3697 
3698 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3699                                                 SelectionDAG &DAG) const {
3700   if (Subtarget.isAIXABI())
3701     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3702 
3703   SDValue Chain = Op.getOperand(0);
3704   SDValue Trmp = Op.getOperand(1); // trampoline
3705   SDValue FPtr = Op.getOperand(2); // nested function
3706   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3707   SDLoc dl(Op);
3708 
3709   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3710   bool isPPC64 = (PtrVT == MVT::i64);
3711   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3712 
3713   TargetLowering::ArgListTy Args;
3714   TargetLowering::ArgListEntry Entry;
3715 
3716   Entry.Ty = IntPtrTy;
3717   Entry.Node = Trmp; Args.push_back(Entry);
3718 
3719   // TrampSize == (isPPC64 ? 48 : 40);
3720   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3721                                isPPC64 ? MVT::i64 : MVT::i32);
3722   Args.push_back(Entry);
3723 
3724   Entry.Node = FPtr; Args.push_back(Entry);
3725   Entry.Node = Nest; Args.push_back(Entry);
3726 
3727   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3728   TargetLowering::CallLoweringInfo CLI(DAG);
3729   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3730       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3731       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3732 
3733   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3734   return CallResult.second;
3735 }
3736 
3737 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3738   MachineFunction &MF = DAG.getMachineFunction();
3739   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3740   EVT PtrVT = getPointerTy(MF.getDataLayout());
3741 
3742   SDLoc dl(Op);
3743 
3744   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3745     // vastart just stores the address of the VarArgsFrameIndex slot into the
3746     // memory location argument.
3747     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3748     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3749     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3750                         MachinePointerInfo(SV));
3751   }
3752 
3753   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3754   // We suppose the given va_list is already allocated.
3755   //
3756   // typedef struct {
3757   //  char gpr;     /* index into the array of 8 GPRs
3758   //                 * stored in the register save area
3759   //                 * gpr=0 corresponds to r3,
3760   //                 * gpr=1 to r4, etc.
3761   //                 */
3762   //  char fpr;     /* index into the array of 8 FPRs
3763   //                 * stored in the register save area
3764   //                 * fpr=0 corresponds to f1,
3765   //                 * fpr=1 to f2, etc.
3766   //                 */
3767   //  char *overflow_arg_area;
3768   //                /* location on stack that holds
3769   //                 * the next overflow argument
3770   //                 */
3771   //  char *reg_save_area;
3772   //               /* where r3:r10 and f1:f8 (if saved)
3773   //                * are stored
3774   //                */
3775   // } va_list[1];
3776 
3777   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3778   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3779   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3780                                             PtrVT);
3781   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3782                                  PtrVT);
3783 
3784   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3785   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3786 
3787   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3788   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3789 
3790   uint64_t FPROffset = 1;
3791   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3792 
3793   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3794 
3795   // Store first byte : number of int regs
3796   SDValue firstStore =
3797       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3798                         MachinePointerInfo(SV), MVT::i8);
3799   uint64_t nextOffset = FPROffset;
3800   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3801                                   ConstFPROffset);
3802 
3803   // Store second byte : number of float regs
3804   SDValue secondStore =
3805       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3806                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3807   nextOffset += StackOffset;
3808   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3809 
3810   // Store second word : arguments given on stack
3811   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3812                                     MachinePointerInfo(SV, nextOffset));
3813   nextOffset += FrameOffset;
3814   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3815 
3816   // Store third word : arguments given in registers
3817   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3818                       MachinePointerInfo(SV, nextOffset));
3819 }
3820 
3821 /// FPR - The set of FP registers that should be allocated for arguments
3822 /// on Darwin and AIX.
3823 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3824                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3825                                 PPC::F11, PPC::F12, PPC::F13};
3826 
3827 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3828 /// the stack.
3829 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3830                                        unsigned PtrByteSize) {
3831   unsigned ArgSize = ArgVT.getStoreSize();
3832   if (Flags.isByVal())
3833     ArgSize = Flags.getByValSize();
3834 
3835   // Round up to multiples of the pointer size, except for array members,
3836   // which are always packed.
3837   if (!Flags.isInConsecutiveRegs())
3838     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3839 
3840   return ArgSize;
3841 }
3842 
3843 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3844 /// on the stack.
3845 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3846                                          ISD::ArgFlagsTy Flags,
3847                                          unsigned PtrByteSize) {
3848   Align Alignment(PtrByteSize);
3849 
3850   // Altivec parameters are padded to a 16 byte boundary.
3851   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3852       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3853       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3854       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3855     Alignment = Align(16);
3856 
3857   // ByVal parameters are aligned as requested.
3858   if (Flags.isByVal()) {
3859     auto BVAlign = Flags.getNonZeroByValAlign();
3860     if (BVAlign > PtrByteSize) {
3861       if (BVAlign.value() % PtrByteSize != 0)
3862         llvm_unreachable(
3863             "ByVal alignment is not a multiple of the pointer size");
3864 
3865       Alignment = BVAlign;
3866     }
3867   }
3868 
3869   // Array members are always packed to their original alignment.
3870   if (Flags.isInConsecutiveRegs()) {
3871     // If the array member was split into multiple registers, the first
3872     // needs to be aligned to the size of the full type.  (Except for
3873     // ppcf128, which is only aligned as its f64 components.)
3874     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3875       Alignment = Align(OrigVT.getStoreSize());
3876     else
3877       Alignment = Align(ArgVT.getStoreSize());
3878   }
3879 
3880   return Alignment;
3881 }
3882 
3883 /// CalculateStackSlotUsed - Return whether this argument will use its
3884 /// stack slot (instead of being passed in registers).  ArgOffset,
3885 /// AvailableFPRs, and AvailableVRs must hold the current argument
3886 /// position, and will be updated to account for this argument.
3887 static bool CalculateStackSlotUsed(const PPCSubtarget &Subtarget, EVT ArgVT,
3888                                    EVT OrigVT, ISD::ArgFlagsTy Flags,
3889                                    unsigned PtrByteSize, unsigned LinkageSize,
3890                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3891                                    unsigned &AvailableFPRs,
3892                                    unsigned &AvailableVRs) {
3893   bool UseMemory = false;
3894 
3895   // Respect alignment of argument on the stack.
3896   Align Alignment =
3897       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3898   ArgOffset = alignTo(ArgOffset, Alignment);
3899   // If there's no space left in the argument save area, we must
3900   // use memory (this check also catches zero-sized arguments).
3901   if (ArgOffset >= LinkageSize + ParamAreaSize)
3902     UseMemory = true;
3903 
3904   // Allocate argument on the stack.
3905   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3906   if (Flags.isInConsecutiveRegsLast())
3907     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3908   // If we overran the argument save area, we must use memory
3909   // (this check catches arguments passed partially in memory)
3910   if (ArgOffset > LinkageSize + ParamAreaSize)
3911     UseMemory = true;
3912 
3913   // However, if the argument is actually passed in an FPR or a VR,
3914   // we don't use memory after all.
3915   if (!Flags.isByVal()) {
3916     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3917       if (AvailableFPRs > 0) {
3918         --AvailableFPRs;
3919         return false;
3920       }
3921     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3922         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3923         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3924         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3925       if (AvailableVRs > 0) {
3926         --AvailableVRs;
3927         return false;
3928       }
3929   } else if (Subtarget.isPPC64() && Subtarget.isELFv2ABI() &&
3930              Flags.getByValSize() >= 8)
3931     // For 64-bit ELF v2, passing by value object whose size is no less than 8
3932     // bytes will be copied to parameter save area. This is for compatibility
3933     // for other compiler which requires byval parameters to be stored in
3934     // caller's parameter save area.
3935     return true;
3936 
3937   return UseMemory;
3938 }
3939 
3940 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3941 /// ensure minimum alignment required for target.
3942 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3943                                      unsigned NumBytes) {
3944   return alignTo(NumBytes, Lowering->getStackAlign());
3945 }
3946 
3947 SDValue PPCTargetLowering::LowerFormalArguments(
3948     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3949     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3950     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3951   if (Subtarget.isAIXABI())
3952     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3953                                     InVals);
3954   if (Subtarget.is64BitELFABI())
3955     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3956                                        InVals);
3957   assert(Subtarget.is32BitELFABI());
3958   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3959                                      InVals);
3960 }
3961 
3962 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3963     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3964     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3965     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3966 
3967   // 32-bit SVR4 ABI Stack Frame Layout:
3968   //              +-----------------------------------+
3969   //        +-->  |            Back chain             |
3970   //        |     +-----------------------------------+
3971   //        |     | Floating-point register save area |
3972   //        |     +-----------------------------------+
3973   //        |     |    General register save area     |
3974   //        |     +-----------------------------------+
3975   //        |     |          CR save word             |
3976   //        |     +-----------------------------------+
3977   //        |     |         VRSAVE save word          |
3978   //        |     +-----------------------------------+
3979   //        |     |         Alignment padding         |
3980   //        |     +-----------------------------------+
3981   //        |     |     Vector register save area     |
3982   //        |     +-----------------------------------+
3983   //        |     |       Local variable space        |
3984   //        |     +-----------------------------------+
3985   //        |     |        Parameter list area        |
3986   //        |     +-----------------------------------+
3987   //        |     |           LR save word            |
3988   //        |     +-----------------------------------+
3989   // SP-->  +---  |            Back chain             |
3990   //              +-----------------------------------+
3991   //
3992   // Specifications:
3993   //   System V Application Binary Interface PowerPC Processor Supplement
3994   //   AltiVec Technology Programming Interface Manual
3995 
3996   MachineFunction &MF = DAG.getMachineFunction();
3997   MachineFrameInfo &MFI = MF.getFrameInfo();
3998   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3999 
4000   EVT PtrVT = getPointerTy(MF.getDataLayout());
4001   // Potential tail calls could cause overwriting of argument stack slots.
4002   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4003                        (CallConv == CallingConv::Fast));
4004   const Align PtrAlign(4);
4005 
4006   // Assign locations to all of the incoming arguments.
4007   SmallVector<CCValAssign, 16> ArgLocs;
4008   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4009                  *DAG.getContext());
4010 
4011   // Reserve space for the linkage area on the stack.
4012   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4013   CCInfo.AllocateStack(LinkageSize, PtrAlign);
4014   if (useSoftFloat())
4015     CCInfo.PreAnalyzeFormalArguments(Ins);
4016 
4017   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
4018   CCInfo.clearWasPPCF128();
4019 
4020   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4021     CCValAssign &VA = ArgLocs[i];
4022 
4023     // Arguments stored in registers.
4024     if (VA.isRegLoc()) {
4025       const TargetRegisterClass *RC;
4026       EVT ValVT = VA.getValVT();
4027 
4028       switch (ValVT.getSimpleVT().SimpleTy) {
4029         default:
4030           llvm_unreachable("ValVT not supported by formal arguments Lowering");
4031         case MVT::i1:
4032         case MVT::i32:
4033           RC = &PPC::GPRCRegClass;
4034           break;
4035         case MVT::f32:
4036           if (Subtarget.hasP8Vector())
4037             RC = &PPC::VSSRCRegClass;
4038           else if (Subtarget.hasSPE())
4039             RC = &PPC::GPRCRegClass;
4040           else
4041             RC = &PPC::F4RCRegClass;
4042           break;
4043         case MVT::f64:
4044           if (Subtarget.hasVSX())
4045             RC = &PPC::VSFRCRegClass;
4046           else if (Subtarget.hasSPE())
4047             // SPE passes doubles in GPR pairs.
4048             RC = &PPC::GPRCRegClass;
4049           else
4050             RC = &PPC::F8RCRegClass;
4051           break;
4052         case MVT::v16i8:
4053         case MVT::v8i16:
4054         case MVT::v4i32:
4055           RC = &PPC::VRRCRegClass;
4056           break;
4057         case MVT::v4f32:
4058           RC = &PPC::VRRCRegClass;
4059           break;
4060         case MVT::v2f64:
4061         case MVT::v2i64:
4062           RC = &PPC::VRRCRegClass;
4063           break;
4064       }
4065 
4066       SDValue ArgValue;
4067       // Transform the arguments stored in physical registers into
4068       // virtual ones.
4069       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4070         assert(i + 1 < e && "No second half of double precision argument");
4071         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4072         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4073         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4074         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4075         if (!Subtarget.isLittleEndian())
4076           std::swap (ArgValueLo, ArgValueHi);
4077         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4078                                ArgValueHi);
4079       } else {
4080         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4081         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4082                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
4083         if (ValVT == MVT::i1)
4084           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4085       }
4086 
4087       InVals.push_back(ArgValue);
4088     } else {
4089       // Argument stored in memory.
4090       assert(VA.isMemLoc());
4091 
4092       // Get the extended size of the argument type in stack
4093       unsigned ArgSize = VA.getLocVT().getStoreSize();
4094       // Get the actual size of the argument type
4095       unsigned ObjSize = VA.getValVT().getStoreSize();
4096       unsigned ArgOffset = VA.getLocMemOffset();
4097       // Stack objects in PPC32 are right justified.
4098       ArgOffset += ArgSize - ObjSize;
4099       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4100 
4101       // Create load nodes to retrieve arguments from the stack.
4102       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4103       InVals.push_back(
4104           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4105     }
4106   }
4107 
4108   // Assign locations to all of the incoming aggregate by value arguments.
4109   // Aggregates passed by value are stored in the local variable space of the
4110   // caller's stack frame, right above the parameter list area.
4111   SmallVector<CCValAssign, 16> ByValArgLocs;
4112   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4113                       ByValArgLocs, *DAG.getContext());
4114 
4115   // Reserve stack space for the allocations in CCInfo.
4116   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
4117 
4118   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4119 
4120   // Area that is at least reserved in the caller of this function.
4121   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
4122   MinReservedArea = std::max(MinReservedArea, LinkageSize);
4123 
4124   // Set the size that is at least reserved in caller of this function.  Tail
4125   // call optimized function's reserved stack space needs to be aligned so that
4126   // taking the difference between two stack areas will result in an aligned
4127   // stack.
4128   MinReservedArea =
4129       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4130   FuncInfo->setMinReservedArea(MinReservedArea);
4131 
4132   SmallVector<SDValue, 8> MemOps;
4133 
4134   // If the function takes variable number of arguments, make a frame index for
4135   // the start of the first vararg value... for expansion of llvm.va_start.
4136   if (isVarArg) {
4137     static const MCPhysReg GPArgRegs[] = {
4138       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4139       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4140     };
4141     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
4142 
4143     static const MCPhysReg FPArgRegs[] = {
4144       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4145       PPC::F8
4146     };
4147     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
4148 
4149     if (useSoftFloat() || hasSPE())
4150        NumFPArgRegs = 0;
4151 
4152     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4153     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4154 
4155     // Make room for NumGPArgRegs and NumFPArgRegs.
4156     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4157                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4158 
4159     FuncInfo->setVarArgsStackOffset(
4160       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4161                             CCInfo.getNextStackOffset(), true));
4162 
4163     FuncInfo->setVarArgsFrameIndex(
4164         MFI.CreateStackObject(Depth, Align(8), false));
4165     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4166 
4167     // The fixed integer arguments of a variadic function are stored to the
4168     // VarArgsFrameIndex on the stack so that they may be loaded by
4169     // dereferencing the result of va_next.
4170     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4171       // Get an existing live-in vreg, or add a new one.
4172       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4173       if (!VReg)
4174         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4175 
4176       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4177       SDValue Store =
4178           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4179       MemOps.push_back(Store);
4180       // Increment the address by four for the next argument to store
4181       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4182       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4183     }
4184 
4185     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4186     // is set.
4187     // The double arguments are stored to the VarArgsFrameIndex
4188     // on the stack.
4189     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4190       // Get an existing live-in vreg, or add a new one.
4191       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4192       if (!VReg)
4193         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4194 
4195       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4196       SDValue Store =
4197           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4198       MemOps.push_back(Store);
4199       // Increment the address by eight for the next argument to store
4200       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4201                                          PtrVT);
4202       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4203     }
4204   }
4205 
4206   if (!MemOps.empty())
4207     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4208 
4209   return Chain;
4210 }
4211 
4212 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4213 // value to MVT::i64 and then truncate to the correct register size.
4214 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4215                                              EVT ObjectVT, SelectionDAG &DAG,
4216                                              SDValue ArgVal,
4217                                              const SDLoc &dl) const {
4218   if (Flags.isSExt())
4219     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4220                          DAG.getValueType(ObjectVT));
4221   else if (Flags.isZExt())
4222     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4223                          DAG.getValueType(ObjectVT));
4224 
4225   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4226 }
4227 
4228 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4229     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4230     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4231     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4232   // TODO: add description of PPC stack frame format, or at least some docs.
4233   //
4234   bool isELFv2ABI = Subtarget.isELFv2ABI();
4235   bool isLittleEndian = Subtarget.isLittleEndian();
4236   MachineFunction &MF = DAG.getMachineFunction();
4237   MachineFrameInfo &MFI = MF.getFrameInfo();
4238   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4239 
4240   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4241          "fastcc not supported on varargs functions");
4242 
4243   EVT PtrVT = getPointerTy(MF.getDataLayout());
4244   // Potential tail calls could cause overwriting of argument stack slots.
4245   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4246                        (CallConv == CallingConv::Fast));
4247   unsigned PtrByteSize = 8;
4248   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4249 
4250   static const MCPhysReg GPR[] = {
4251     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4252     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4253   };
4254   static const MCPhysReg VR[] = {
4255     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4256     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4257   };
4258 
4259   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4260   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4261   const unsigned Num_VR_Regs  = array_lengthof(VR);
4262 
4263   // Do a first pass over the arguments to determine whether the ABI
4264   // guarantees that our caller has allocated the parameter save area
4265   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4266   // in the ELFv2 ABI, it is true if this is a vararg function or if
4267   // any parameter is located in a stack slot.
4268 
4269   bool HasParameterArea = !isELFv2ABI || isVarArg;
4270   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4271   unsigned NumBytes = LinkageSize;
4272   unsigned AvailableFPRs = Num_FPR_Regs;
4273   unsigned AvailableVRs = Num_VR_Regs;
4274   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4275     if (Ins[i].Flags.isNest())
4276       continue;
4277 
4278     if (CalculateStackSlotUsed(Subtarget, Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4279                                PtrByteSize, LinkageSize, ParamAreaSize,
4280                                NumBytes, AvailableFPRs, AvailableVRs))
4281       HasParameterArea = true;
4282   }
4283 
4284   // Add DAG nodes to load the arguments or copy them out of registers.  On
4285   // entry to a function on PPC, the arguments start after the linkage area,
4286   // although the first ones are often in registers.
4287 
4288   unsigned ArgOffset = LinkageSize;
4289   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4290   SmallVector<SDValue, 8> MemOps;
4291   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4292   unsigned CurArgIdx = 0;
4293   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4294     SDValue ArgVal;
4295     bool needsLoad = false;
4296     EVT ObjectVT = Ins[ArgNo].VT;
4297     EVT OrigVT = Ins[ArgNo].ArgVT;
4298     unsigned ObjSize = ObjectVT.getStoreSize();
4299     unsigned ArgSize = ObjSize;
4300     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4301     if (Ins[ArgNo].isOrigArg()) {
4302       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4303       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4304     }
4305     // We re-align the argument offset for each argument, except when using the
4306     // fast calling convention, when we need to make sure we do that only when
4307     // we'll actually use a stack slot.
4308     unsigned CurArgOffset;
4309     Align Alignment;
4310     auto ComputeArgOffset = [&]() {
4311       /* Respect alignment of argument on the stack.  */
4312       Alignment =
4313           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4314       ArgOffset = alignTo(ArgOffset, Alignment);
4315       CurArgOffset = ArgOffset;
4316     };
4317 
4318     if (CallConv != CallingConv::Fast) {
4319       ComputeArgOffset();
4320 
4321       /* Compute GPR index associated with argument offset.  */
4322       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4323       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4324     }
4325 
4326     // FIXME the codegen can be much improved in some cases.
4327     // We do not have to keep everything in memory.
4328     if (Flags.isByVal()) {
4329       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4330 
4331       if (CallConv == CallingConv::Fast)
4332         ComputeArgOffset();
4333 
4334       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4335       ObjSize = Flags.getByValSize();
4336       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4337       // Empty aggregate parameters do not take up registers.  Examples:
4338       //   struct { } a;
4339       //   union  { } b;
4340       //   int c[0];
4341       // etc.  However, we have to provide a place-holder in InVals, so
4342       // pretend we have an 8-byte item at the current address for that
4343       // purpose.
4344       if (!ObjSize) {
4345         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4346         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4347         InVals.push_back(FIN);
4348         continue;
4349       }
4350 
4351       // Create a stack object covering all stack doublewords occupied
4352       // by the argument.  If the argument is (fully or partially) on
4353       // the stack, or if the argument is fully in registers but the
4354       // caller has allocated the parameter save anyway, we can refer
4355       // directly to the caller's stack frame.  Otherwise, create a
4356       // local copy in our own frame.
4357       int FI;
4358       if (HasParameterArea ||
4359           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4360         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4361       else
4362         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4363       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4364 
4365       // Handle aggregates smaller than 8 bytes.
4366       if (ObjSize < PtrByteSize) {
4367         // The value of the object is its address, which differs from the
4368         // address of the enclosing doubleword on big-endian systems.
4369         SDValue Arg = FIN;
4370         if (!isLittleEndian) {
4371           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4372           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4373         }
4374         InVals.push_back(Arg);
4375 
4376         if (GPR_idx != Num_GPR_Regs) {
4377           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4378           FuncInfo->addLiveInAttr(VReg, Flags);
4379           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4380           SDValue Store;
4381 
4382           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4383             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4384                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4385             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4386                                       MachinePointerInfo(&*FuncArg), ObjType);
4387           } else {
4388             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4389             // store the whole register as-is to the parameter save area
4390             // slot.
4391             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4392                                  MachinePointerInfo(&*FuncArg));
4393           }
4394 
4395           MemOps.push_back(Store);
4396         }
4397         // Whether we copied from a register or not, advance the offset
4398         // into the parameter save area by a full doubleword.
4399         ArgOffset += PtrByteSize;
4400         continue;
4401       }
4402 
4403       // The value of the object is its address, which is the address of
4404       // its first stack doubleword.
4405       InVals.push_back(FIN);
4406 
4407       // Store whatever pieces of the object are in registers to memory.
4408       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4409         if (GPR_idx == Num_GPR_Regs)
4410           break;
4411 
4412         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4413         FuncInfo->addLiveInAttr(VReg, Flags);
4414         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4415         SDValue Addr = FIN;
4416         if (j) {
4417           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4418           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4419         }
4420         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4421                                      MachinePointerInfo(&*FuncArg, j));
4422         MemOps.push_back(Store);
4423         ++GPR_idx;
4424       }
4425       ArgOffset += ArgSize;
4426       continue;
4427     }
4428 
4429     switch (ObjectVT.getSimpleVT().SimpleTy) {
4430     default: llvm_unreachable("Unhandled argument type!");
4431     case MVT::i1:
4432     case MVT::i32:
4433     case MVT::i64:
4434       if (Flags.isNest()) {
4435         // The 'nest' parameter, if any, is passed in R11.
4436         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4437         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4438 
4439         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4440           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4441 
4442         break;
4443       }
4444 
4445       // These can be scalar arguments or elements of an integer array type
4446       // passed directly.  Clang may use those instead of "byval" aggregate
4447       // types to avoid forcing arguments to memory unnecessarily.
4448       if (GPR_idx != Num_GPR_Regs) {
4449         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4450         FuncInfo->addLiveInAttr(VReg, Flags);
4451         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4452 
4453         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4454           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4455           // value to MVT::i64 and then truncate to the correct register size.
4456           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4457       } else {
4458         if (CallConv == CallingConv::Fast)
4459           ComputeArgOffset();
4460 
4461         needsLoad = true;
4462         ArgSize = PtrByteSize;
4463       }
4464       if (CallConv != CallingConv::Fast || needsLoad)
4465         ArgOffset += 8;
4466       break;
4467 
4468     case MVT::f32:
4469     case MVT::f64:
4470       // These can be scalar arguments or elements of a float array type
4471       // passed directly.  The latter are used to implement ELFv2 homogenous
4472       // float aggregates.
4473       if (FPR_idx != Num_FPR_Regs) {
4474         unsigned VReg;
4475 
4476         if (ObjectVT == MVT::f32)
4477           VReg = MF.addLiveIn(FPR[FPR_idx],
4478                               Subtarget.hasP8Vector()
4479                                   ? &PPC::VSSRCRegClass
4480                                   : &PPC::F4RCRegClass);
4481         else
4482           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4483                                                 ? &PPC::VSFRCRegClass
4484                                                 : &PPC::F8RCRegClass);
4485 
4486         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4487         ++FPR_idx;
4488       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4489         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4490         // once we support fp <-> gpr moves.
4491 
4492         // This can only ever happen in the presence of f32 array types,
4493         // since otherwise we never run out of FPRs before running out
4494         // of GPRs.
4495         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4496         FuncInfo->addLiveInAttr(VReg, Flags);
4497         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4498 
4499         if (ObjectVT == MVT::f32) {
4500           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4501             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4502                                  DAG.getConstant(32, dl, MVT::i32));
4503           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4504         }
4505 
4506         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4507       } else {
4508         if (CallConv == CallingConv::Fast)
4509           ComputeArgOffset();
4510 
4511         needsLoad = true;
4512       }
4513 
4514       // When passing an array of floats, the array occupies consecutive
4515       // space in the argument area; only round up to the next doubleword
4516       // at the end of the array.  Otherwise, each float takes 8 bytes.
4517       if (CallConv != CallingConv::Fast || needsLoad) {
4518         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4519         ArgOffset += ArgSize;
4520         if (Flags.isInConsecutiveRegsLast())
4521           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4522       }
4523       break;
4524     case MVT::v4f32:
4525     case MVT::v4i32:
4526     case MVT::v8i16:
4527     case MVT::v16i8:
4528     case MVT::v2f64:
4529     case MVT::v2i64:
4530     case MVT::v1i128:
4531     case MVT::f128:
4532       // These can be scalar arguments or elements of a vector array type
4533       // passed directly.  The latter are used to implement ELFv2 homogenous
4534       // vector aggregates.
4535       if (VR_idx != Num_VR_Regs) {
4536         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4537         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4538         ++VR_idx;
4539       } else {
4540         if (CallConv == CallingConv::Fast)
4541           ComputeArgOffset();
4542         needsLoad = true;
4543       }
4544       if (CallConv != CallingConv::Fast || needsLoad)
4545         ArgOffset += 16;
4546       break;
4547     }
4548 
4549     // We need to load the argument to a virtual register if we determined
4550     // above that we ran out of physical registers of the appropriate type.
4551     if (needsLoad) {
4552       if (ObjSize < ArgSize && !isLittleEndian)
4553         CurArgOffset += ArgSize - ObjSize;
4554       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4555       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4556       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4557     }
4558 
4559     InVals.push_back(ArgVal);
4560   }
4561 
4562   // Area that is at least reserved in the caller of this function.
4563   unsigned MinReservedArea;
4564   if (HasParameterArea)
4565     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4566   else
4567     MinReservedArea = LinkageSize;
4568 
4569   // Set the size that is at least reserved in caller of this function.  Tail
4570   // call optimized functions' reserved stack space needs to be aligned so that
4571   // taking the difference between two stack areas will result in an aligned
4572   // stack.
4573   MinReservedArea =
4574       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4575   FuncInfo->setMinReservedArea(MinReservedArea);
4576 
4577   // If the function takes variable number of arguments, make a frame index for
4578   // the start of the first vararg value... for expansion of llvm.va_start.
4579   // On ELFv2ABI spec, it writes:
4580   // C programs that are intended to be *portable* across different compilers
4581   // and architectures must use the header file <stdarg.h> to deal with variable
4582   // argument lists.
4583   if (isVarArg && MFI.hasVAStart()) {
4584     int Depth = ArgOffset;
4585 
4586     FuncInfo->setVarArgsFrameIndex(
4587       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4588     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4589 
4590     // If this function is vararg, store any remaining integer argument regs
4591     // to their spots on the stack so that they may be loaded by dereferencing
4592     // the result of va_next.
4593     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4594          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4595       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4596       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4597       SDValue Store =
4598           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4599       MemOps.push_back(Store);
4600       // Increment the address by four for the next argument to store
4601       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4602       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4603     }
4604   }
4605 
4606   if (!MemOps.empty())
4607     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4608 
4609   return Chain;
4610 }
4611 
4612 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4613 /// adjusted to accommodate the arguments for the tailcall.
4614 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4615                                    unsigned ParamSize) {
4616 
4617   if (!isTailCall) return 0;
4618 
4619   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4620   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4621   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4622   // Remember only if the new adjustment is bigger.
4623   if (SPDiff < FI->getTailCallSPDelta())
4624     FI->setTailCallSPDelta(SPDiff);
4625 
4626   return SPDiff;
4627 }
4628 
4629 static bool isFunctionGlobalAddress(SDValue Callee);
4630 
4631 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4632                               const TargetMachine &TM) {
4633   // It does not make sense to call callsShareTOCBase() with a caller that
4634   // is PC Relative since PC Relative callers do not have a TOC.
4635 #ifndef NDEBUG
4636   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4637   assert(!STICaller->isUsingPCRelativeCalls() &&
4638          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4639 #endif
4640 
4641   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4642   // don't have enough information to determine if the caller and callee share
4643   // the same  TOC base, so we have to pessimistically assume they don't for
4644   // correctness.
4645   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4646   if (!G)
4647     return false;
4648 
4649   const GlobalValue *GV = G->getGlobal();
4650 
4651   // If the callee is preemptable, then the static linker will use a plt-stub
4652   // which saves the toc to the stack, and needs a nop after the call
4653   // instruction to convert to a toc-restore.
4654   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4655     return false;
4656 
4657   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4658   // We may need a TOC restore in the situation where the caller requires a
4659   // valid TOC but the callee is PC Relative and does not.
4660   const Function *F = dyn_cast<Function>(GV);
4661   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4662 
4663   // If we have an Alias we can try to get the function from there.
4664   if (Alias) {
4665     const GlobalObject *GlobalObj = Alias->getBaseObject();
4666     F = dyn_cast<Function>(GlobalObj);
4667   }
4668 
4669   // If we still have no valid function pointer we do not have enough
4670   // information to determine if the callee uses PC Relative calls so we must
4671   // assume that it does.
4672   if (!F)
4673     return false;
4674 
4675   // If the callee uses PC Relative we cannot guarantee that the callee won't
4676   // clobber the TOC of the caller and so we must assume that the two
4677   // functions do not share a TOC base.
4678   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4679   if (STICallee->isUsingPCRelativeCalls())
4680     return false;
4681 
4682   // If the GV is not a strong definition then we need to assume it can be
4683   // replaced by another function at link time. The function that replaces
4684   // it may not share the same TOC as the caller since the callee may be
4685   // replaced by a PC Relative version of the same function.
4686   if (!GV->isStrongDefinitionForLinker())
4687     return false;
4688 
4689   // The medium and large code models are expected to provide a sufficiently
4690   // large TOC to provide all data addressing needs of a module with a
4691   // single TOC.
4692   if (CodeModel::Medium == TM.getCodeModel() ||
4693       CodeModel::Large == TM.getCodeModel())
4694     return true;
4695 
4696   // Any explicitly-specified sections and section prefixes must also match.
4697   // Also, if we're using -ffunction-sections, then each function is always in
4698   // a different section (the same is true for COMDAT functions).
4699   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4700       GV->getSection() != Caller->getSection())
4701     return false;
4702   if (const auto *F = dyn_cast<Function>(GV)) {
4703     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4704       return false;
4705   }
4706 
4707   return true;
4708 }
4709 
4710 static bool
4711 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4712                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4713   assert(Subtarget.is64BitELFABI());
4714 
4715   const unsigned PtrByteSize = 8;
4716   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4717 
4718   static const MCPhysReg GPR[] = {
4719     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4720     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4721   };
4722   static const MCPhysReg VR[] = {
4723     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4724     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4725   };
4726 
4727   const unsigned NumGPRs = array_lengthof(GPR);
4728   const unsigned NumFPRs = 13;
4729   const unsigned NumVRs = array_lengthof(VR);
4730   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4731 
4732   unsigned NumBytes = LinkageSize;
4733   unsigned AvailableFPRs = NumFPRs;
4734   unsigned AvailableVRs = NumVRs;
4735 
4736   for (const ISD::OutputArg& Param : Outs) {
4737     if (Param.Flags.isNest()) continue;
4738 
4739     if (CalculateStackSlotUsed(Subtarget, Param.VT, Param.ArgVT, Param.Flags,
4740                                PtrByteSize, LinkageSize, ParamAreaSize,
4741                                NumBytes, AvailableFPRs, AvailableVRs))
4742       return true;
4743   }
4744   return false;
4745 }
4746 
4747 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4748   if (CB.arg_size() != CallerFn->arg_size())
4749     return false;
4750 
4751   auto CalleeArgIter = CB.arg_begin();
4752   auto CalleeArgEnd = CB.arg_end();
4753   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4754 
4755   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4756     const Value* CalleeArg = *CalleeArgIter;
4757     const Value* CallerArg = &(*CallerArgIter);
4758     if (CalleeArg == CallerArg)
4759       continue;
4760 
4761     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4762     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4763     //      }
4764     // 1st argument of callee is undef and has the same type as caller.
4765     if (CalleeArg->getType() == CallerArg->getType() &&
4766         isa<UndefValue>(CalleeArg))
4767       continue;
4768 
4769     return false;
4770   }
4771 
4772   return true;
4773 }
4774 
4775 // Returns true if TCO is possible between the callers and callees
4776 // calling conventions.
4777 static bool
4778 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4779                                     CallingConv::ID CalleeCC) {
4780   // Tail calls are possible with fastcc and ccc.
4781   auto isTailCallableCC  = [] (CallingConv::ID CC){
4782       return  CC == CallingConv::C || CC == CallingConv::Fast;
4783   };
4784   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4785     return false;
4786 
4787   // We can safely tail call both fastcc and ccc callees from a c calling
4788   // convention caller. If the caller is fastcc, we may have less stack space
4789   // than a non-fastcc caller with the same signature so disable tail-calls in
4790   // that case.
4791   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4792 }
4793 
4794 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4795     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4796     const SmallVectorImpl<ISD::OutputArg> &Outs,
4797     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4798   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4799 
4800   if (DisableSCO && !TailCallOpt) return false;
4801 
4802   // Variadic argument functions are not supported.
4803   if (isVarArg) return false;
4804 
4805   auto &Caller = DAG.getMachineFunction().getFunction();
4806   // Check that the calling conventions are compatible for tco.
4807   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4808     return false;
4809 
4810   // Caller contains any byval parameter is not supported.
4811   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4812     return false;
4813 
4814   // Callee contains any byval parameter is not supported, too.
4815   // Note: This is a quick work around, because in some cases, e.g.
4816   // caller's stack size > callee's stack size, we are still able to apply
4817   // sibling call optimization. For example, gcc is able to do SCO for caller1
4818   // in the following example, but not for caller2.
4819   //   struct test {
4820   //     long int a;
4821   //     char ary[56];
4822   //   } gTest;
4823   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4824   //     b->a = v.a;
4825   //     return 0;
4826   //   }
4827   //   void caller1(struct test a, struct test c, struct test *b) {
4828   //     callee(gTest, b); }
4829   //   void caller2(struct test *b) { callee(gTest, b); }
4830   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4831     return false;
4832 
4833   // If callee and caller use different calling conventions, we cannot pass
4834   // parameters on stack since offsets for the parameter area may be different.
4835   if (Caller.getCallingConv() != CalleeCC &&
4836       needStackSlotPassParameters(Subtarget, Outs))
4837     return false;
4838 
4839   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4840   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4841   // callee potentially have different TOC bases then we cannot tail call since
4842   // we need to restore the TOC pointer after the call.
4843   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4844   // We cannot guarantee this for indirect calls or calls to external functions.
4845   // When PC-Relative addressing is used, the concept of the TOC is no longer
4846   // applicable so this check is not required.
4847   // Check first for indirect calls.
4848   if (!Subtarget.isUsingPCRelativeCalls() &&
4849       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4850     return false;
4851 
4852   // Check if we share the TOC base.
4853   if (!Subtarget.isUsingPCRelativeCalls() &&
4854       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4855     return false;
4856 
4857   // TCO allows altering callee ABI, so we don't have to check further.
4858   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4859     return true;
4860 
4861   if (DisableSCO) return false;
4862 
4863   // If callee use the same argument list that caller is using, then we can
4864   // apply SCO on this case. If it is not, then we need to check if callee needs
4865   // stack for passing arguments.
4866   // PC Relative tail calls may not have a CallBase.
4867   // If there is no CallBase we cannot verify if we have the same argument
4868   // list so assume that we don't have the same argument list.
4869   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4870       needStackSlotPassParameters(Subtarget, Outs))
4871     return false;
4872   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4873     return false;
4874 
4875   return true;
4876 }
4877 
4878 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4879 /// for tail call optimization. Targets which want to do tail call
4880 /// optimization should implement this function.
4881 bool
4882 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4883                                                      CallingConv::ID CalleeCC,
4884                                                      bool isVarArg,
4885                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4886                                                      SelectionDAG& DAG) const {
4887   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4888     return false;
4889 
4890   // Variable argument functions are not supported.
4891   if (isVarArg)
4892     return false;
4893 
4894   MachineFunction &MF = DAG.getMachineFunction();
4895   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4896   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4897     // Functions containing by val parameters are not supported.
4898     for (unsigned i = 0; i != Ins.size(); i++) {
4899        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4900        if (Flags.isByVal()) return false;
4901     }
4902 
4903     // Non-PIC/GOT tail calls are supported.
4904     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4905       return true;
4906 
4907     // At the moment we can only do local tail calls (in same module, hidden
4908     // or protected) if we are generating PIC.
4909     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4910       return G->getGlobal()->hasHiddenVisibility()
4911           || G->getGlobal()->hasProtectedVisibility();
4912   }
4913 
4914   return false;
4915 }
4916 
4917 /// isCallCompatibleAddress - Return the immediate to use if the specified
4918 /// 32-bit value is representable in the immediate field of a BxA instruction.
4919 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4920   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4921   if (!C) return nullptr;
4922 
4923   int Addr = C->getZExtValue();
4924   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4925       SignExtend32<26>(Addr) != Addr)
4926     return nullptr;  // Top 6 bits have to be sext of immediate.
4927 
4928   return DAG
4929       .getConstant(
4930           (int)C->getZExtValue() >> 2, SDLoc(Op),
4931           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4932       .getNode();
4933 }
4934 
4935 namespace {
4936 
4937 struct TailCallArgumentInfo {
4938   SDValue Arg;
4939   SDValue FrameIdxOp;
4940   int FrameIdx = 0;
4941 
4942   TailCallArgumentInfo() = default;
4943 };
4944 
4945 } // end anonymous namespace
4946 
4947 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4948 static void StoreTailCallArgumentsToStackSlot(
4949     SelectionDAG &DAG, SDValue Chain,
4950     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4951     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4952   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4953     SDValue Arg = TailCallArgs[i].Arg;
4954     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4955     int FI = TailCallArgs[i].FrameIdx;
4956     // Store relative to framepointer.
4957     MemOpChains.push_back(DAG.getStore(
4958         Chain, dl, Arg, FIN,
4959         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4960   }
4961 }
4962 
4963 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4964 /// the appropriate stack slot for the tail call optimized function call.
4965 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4966                                              SDValue OldRetAddr, SDValue OldFP,
4967                                              int SPDiff, const SDLoc &dl) {
4968   if (SPDiff) {
4969     // Calculate the new stack slot for the return address.
4970     MachineFunction &MF = DAG.getMachineFunction();
4971     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4972     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4973     bool isPPC64 = Subtarget.isPPC64();
4974     int SlotSize = isPPC64 ? 8 : 4;
4975     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4976     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4977                                                          NewRetAddrLoc, true);
4978     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4979     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4980     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4981                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4982   }
4983   return Chain;
4984 }
4985 
4986 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4987 /// the position of the argument.
4988 static void
4989 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4990                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4991                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4992   int Offset = ArgOffset + SPDiff;
4993   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4994   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4995   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4996   SDValue FIN = DAG.getFrameIndex(FI, VT);
4997   TailCallArgumentInfo Info;
4998   Info.Arg = Arg;
4999   Info.FrameIdxOp = FIN;
5000   Info.FrameIdx = FI;
5001   TailCallArguments.push_back(Info);
5002 }
5003 
5004 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5005 /// stack slot. Returns the chain as result and the loaded frame pointers in
5006 /// LROpOut/FPOpout. Used when tail calling.
5007 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5008     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5009     SDValue &FPOpOut, const SDLoc &dl) const {
5010   if (SPDiff) {
5011     // Load the LR and FP stack slot for later adjusting.
5012     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5013     LROpOut = getReturnAddrFrameIndex(DAG);
5014     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5015     Chain = SDValue(LROpOut.getNode(), 1);
5016   }
5017   return Chain;
5018 }
5019 
5020 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5021 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5022 /// specified by the specific parameter attribute. The copy will be passed as
5023 /// a byval function parameter.
5024 /// Sometimes what we are copying is the end of a larger object, the part that
5025 /// does not fit in registers.
5026 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5027                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5028                                          SelectionDAG &DAG, const SDLoc &dl) {
5029   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5030   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5031                        Flags.getNonZeroByValAlign(), false, false, false,
5032                        MachinePointerInfo(), MachinePointerInfo());
5033 }
5034 
5035 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5036 /// tail calls.
5037 static void LowerMemOpCallTo(
5038     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5039     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5040     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5041     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5042   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5043   if (!isTailCall) {
5044     if (isVector) {
5045       SDValue StackPtr;
5046       if (isPPC64)
5047         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5048       else
5049         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5050       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5051                            DAG.getConstant(ArgOffset, dl, PtrVT));
5052     }
5053     MemOpChains.push_back(
5054         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5055     // Calculate and remember argument location.
5056   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5057                                   TailCallArguments);
5058 }
5059 
5060 static void
5061 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5062                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5063                 SDValue FPOp,
5064                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5065   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5066   // might overwrite each other in case of tail call optimization.
5067   SmallVector<SDValue, 8> MemOpChains2;
5068   // Do not flag preceding copytoreg stuff together with the following stuff.
5069   InFlag = SDValue();
5070   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5071                                     MemOpChains2, dl);
5072   if (!MemOpChains2.empty())
5073     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5074 
5075   // Store the return address to the appropriate stack slot.
5076   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5077 
5078   // Emit callseq_end just before tailcall node.
5079   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5080                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5081   InFlag = Chain.getValue(1);
5082 }
5083 
5084 // Is this global address that of a function that can be called by name? (as
5085 // opposed to something that must hold a descriptor for an indirect call).
5086 static bool isFunctionGlobalAddress(SDValue Callee) {
5087   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5088     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5089         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5090       return false;
5091 
5092     return G->getGlobal()->getValueType()->isFunctionTy();
5093   }
5094 
5095   return false;
5096 }
5097 
5098 SDValue PPCTargetLowering::LowerCallResult(
5099     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5100     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5101     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5102   SmallVector<CCValAssign, 16> RVLocs;
5103   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5104                     *DAG.getContext());
5105 
5106   CCRetInfo.AnalyzeCallResult(
5107       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5108                ? RetCC_PPC_Cold
5109                : RetCC_PPC);
5110 
5111   // Copy all of the result registers out of their specified physreg.
5112   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5113     CCValAssign &VA = RVLocs[i];
5114     assert(VA.isRegLoc() && "Can only return in registers!");
5115 
5116     SDValue Val;
5117 
5118     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5119       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5120                                       InFlag);
5121       Chain = Lo.getValue(1);
5122       InFlag = Lo.getValue(2);
5123       VA = RVLocs[++i]; // skip ahead to next loc
5124       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5125                                       InFlag);
5126       Chain = Hi.getValue(1);
5127       InFlag = Hi.getValue(2);
5128       if (!Subtarget.isLittleEndian())
5129         std::swap (Lo, Hi);
5130       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5131     } else {
5132       Val = DAG.getCopyFromReg(Chain, dl,
5133                                VA.getLocReg(), VA.getLocVT(), InFlag);
5134       Chain = Val.getValue(1);
5135       InFlag = Val.getValue(2);
5136     }
5137 
5138     switch (VA.getLocInfo()) {
5139     default: llvm_unreachable("Unknown loc info!");
5140     case CCValAssign::Full: break;
5141     case CCValAssign::AExt:
5142       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5143       break;
5144     case CCValAssign::ZExt:
5145       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5146                         DAG.getValueType(VA.getValVT()));
5147       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5148       break;
5149     case CCValAssign::SExt:
5150       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5151                         DAG.getValueType(VA.getValVT()));
5152       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5153       break;
5154     }
5155 
5156     InVals.push_back(Val);
5157   }
5158 
5159   return Chain;
5160 }
5161 
5162 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5163                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5164   // PatchPoint calls are not indirect.
5165   if (isPatchPoint)
5166     return false;
5167 
5168   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
5169     return false;
5170 
5171   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5172   // becuase the immediate function pointer points to a descriptor instead of
5173   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5174   // pointer immediate points to the global entry point, while the BLA would
5175   // need to jump to the local entry point (see rL211174).
5176   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5177       isBLACompatibleAddress(Callee, DAG))
5178     return false;
5179 
5180   return true;
5181 }
5182 
5183 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5184 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5185   return Subtarget.isAIXABI() ||
5186          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5187 }
5188 
5189 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5190                               const Function &Caller,
5191                               const SDValue &Callee,
5192                               const PPCSubtarget &Subtarget,
5193                               const TargetMachine &TM) {
5194   if (CFlags.IsTailCall)
5195     return PPCISD::TC_RETURN;
5196 
5197   // This is a call through a function pointer.
5198   if (CFlags.IsIndirect) {
5199     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5200     // indirect calls. The save of the caller's TOC pointer to the stack will be
5201     // inserted into the DAG as part of call lowering. The restore of the TOC
5202     // pointer is modeled by using a pseudo instruction for the call opcode that
5203     // represents the 2 instruction sequence of an indirect branch and link,
5204     // immediately followed by a load of the TOC pointer from the the stack save
5205     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5206     // as it is not saved or used.
5207     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5208                                                : PPCISD::BCTRL;
5209   }
5210 
5211   if (Subtarget.isUsingPCRelativeCalls()) {
5212     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5213     return PPCISD::CALL_NOTOC;
5214   }
5215 
5216   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5217   // immediately following the call instruction if the caller and callee may
5218   // have different TOC bases. At link time if the linker determines the calls
5219   // may not share a TOC base, the call is redirected to a trampoline inserted
5220   // by the linker. The trampoline will (among other things) save the callers
5221   // TOC pointer at an ABI designated offset in the linkage area and the linker
5222   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5223   // into gpr2.
5224   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5225     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5226                                                   : PPCISD::CALL_NOP;
5227 
5228   return PPCISD::CALL;
5229 }
5230 
5231 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5232                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5233   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5234     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5235       return SDValue(Dest, 0);
5236 
5237   // Returns true if the callee is local, and false otherwise.
5238   auto isLocalCallee = [&]() {
5239     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5240     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5241     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5242 
5243     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5244            !dyn_cast_or_null<GlobalIFunc>(GV);
5245   };
5246 
5247   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5248   // a static relocation model causes some versions of GNU LD (2.17.50, at
5249   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5250   // built with secure-PLT.
5251   bool UsePlt =
5252       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5253       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5254 
5255   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5256     const TargetMachine &TM = Subtarget.getTargetMachine();
5257     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5258     MCSymbolXCOFF *S =
5259         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5260 
5261     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5262     return DAG.getMCSymbol(S, PtrVT);
5263   };
5264 
5265   if (isFunctionGlobalAddress(Callee)) {
5266     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5267 
5268     if (Subtarget.isAIXABI()) {
5269       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5270       return getAIXFuncEntryPointSymbolSDNode(GV);
5271     }
5272     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5273                                       UsePlt ? PPCII::MO_PLT : 0);
5274   }
5275 
5276   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5277     const char *SymName = S->getSymbol();
5278     if (Subtarget.isAIXABI()) {
5279       // If there exists a user-declared function whose name is the same as the
5280       // ExternalSymbol's, then we pick up the user-declared version.
5281       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5282       if (const Function *F =
5283               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5284         return getAIXFuncEntryPointSymbolSDNode(F);
5285 
5286       // On AIX, direct function calls reference the symbol for the function's
5287       // entry point, which is named by prepending a "." before the function's
5288       // C-linkage name. A Qualname is returned here because an external
5289       // function entry point is a csect with XTY_ER property.
5290       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5291         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5292         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5293             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5294             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5295         return Sec->getQualNameSymbol();
5296       };
5297 
5298       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5299     }
5300     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5301                                        UsePlt ? PPCII::MO_PLT : 0);
5302   }
5303 
5304   // No transformation needed.
5305   assert(Callee.getNode() && "What no callee?");
5306   return Callee;
5307 }
5308 
5309 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5310   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5311          "Expected a CALLSEQ_STARTSDNode.");
5312 
5313   // The last operand is the chain, except when the node has glue. If the node
5314   // has glue, then the last operand is the glue, and the chain is the second
5315   // last operand.
5316   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5317   if (LastValue.getValueType() != MVT::Glue)
5318     return LastValue;
5319 
5320   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5321 }
5322 
5323 // Creates the node that moves a functions address into the count register
5324 // to prepare for an indirect call instruction.
5325 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5326                                 SDValue &Glue, SDValue &Chain,
5327                                 const SDLoc &dl) {
5328   SDValue MTCTROps[] = {Chain, Callee, Glue};
5329   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5330   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5331                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5332   // The glue is the second value produced.
5333   Glue = Chain.getValue(1);
5334 }
5335 
5336 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5337                                           SDValue &Glue, SDValue &Chain,
5338                                           SDValue CallSeqStart,
5339                                           const CallBase *CB, const SDLoc &dl,
5340                                           bool hasNest,
5341                                           const PPCSubtarget &Subtarget) {
5342   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5343   // entry point, but to the function descriptor (the function entry point
5344   // address is part of the function descriptor though).
5345   // The function descriptor is a three doubleword structure with the
5346   // following fields: function entry point, TOC base address and
5347   // environment pointer.
5348   // Thus for a call through a function pointer, the following actions need
5349   // to be performed:
5350   //   1. Save the TOC of the caller in the TOC save area of its stack
5351   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5352   //   2. Load the address of the function entry point from the function
5353   //      descriptor.
5354   //   3. Load the TOC of the callee from the function descriptor into r2.
5355   //   4. Load the environment pointer from the function descriptor into
5356   //      r11.
5357   //   5. Branch to the function entry point address.
5358   //   6. On return of the callee, the TOC of the caller needs to be
5359   //      restored (this is done in FinishCall()).
5360   //
5361   // The loads are scheduled at the beginning of the call sequence, and the
5362   // register copies are flagged together to ensure that no other
5363   // operations can be scheduled in between. E.g. without flagging the
5364   // copies together, a TOC access in the caller could be scheduled between
5365   // the assignment of the callee TOC and the branch to the callee, which leads
5366   // to incorrect code.
5367 
5368   // Start by loading the function address from the descriptor.
5369   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5370   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5371                       ? (MachineMemOperand::MODereferenceable |
5372                          MachineMemOperand::MOInvariant)
5373                       : MachineMemOperand::MONone;
5374 
5375   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5376 
5377   // Registers used in building the DAG.
5378   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5379   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5380 
5381   // Offsets of descriptor members.
5382   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5383   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5384 
5385   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5386   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5387 
5388   // One load for the functions entry point address.
5389   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5390                                     Alignment, MMOFlags);
5391 
5392   // One for loading the TOC anchor for the module that contains the called
5393   // function.
5394   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5395   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5396   SDValue TOCPtr =
5397       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5398                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5399 
5400   // One for loading the environment pointer.
5401   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5402   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5403   SDValue LoadEnvPtr =
5404       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5405                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5406 
5407 
5408   // Then copy the newly loaded TOC anchor to the TOC pointer.
5409   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5410   Chain = TOCVal.getValue(0);
5411   Glue = TOCVal.getValue(1);
5412 
5413   // If the function call has an explicit 'nest' parameter, it takes the
5414   // place of the environment pointer.
5415   assert((!hasNest || !Subtarget.isAIXABI()) &&
5416          "Nest parameter is not supported on AIX.");
5417   if (!hasNest) {
5418     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5419     Chain = EnvVal.getValue(0);
5420     Glue = EnvVal.getValue(1);
5421   }
5422 
5423   // The rest of the indirect call sequence is the same as the non-descriptor
5424   // DAG.
5425   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5426 }
5427 
5428 static void
5429 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5430                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5431                   SelectionDAG &DAG,
5432                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5433                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5434                   const PPCSubtarget &Subtarget) {
5435   const bool IsPPC64 = Subtarget.isPPC64();
5436   // MVT for a general purpose register.
5437   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5438 
5439   // First operand is always the chain.
5440   Ops.push_back(Chain);
5441 
5442   // If it's a direct call pass the callee as the second operand.
5443   if (!CFlags.IsIndirect)
5444     Ops.push_back(Callee);
5445   else {
5446     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5447 
5448     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5449     // on the stack (this would have been done in `LowerCall_64SVR4` or
5450     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5451     // represents both the indirect branch and a load that restores the TOC
5452     // pointer from the linkage area. The operand for the TOC restore is an add
5453     // of the TOC save offset to the stack pointer. This must be the second
5454     // operand: after the chain input but before any other variadic arguments.
5455     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5456     // saved or used.
5457     if (isTOCSaveRestoreRequired(Subtarget)) {
5458       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5459 
5460       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5461       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5462       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5463       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5464       Ops.push_back(AddTOC);
5465     }
5466 
5467     // Add the register used for the environment pointer.
5468     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5469       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5470                                     RegVT));
5471 
5472 
5473     // Add CTR register as callee so a bctr can be emitted later.
5474     if (CFlags.IsTailCall)
5475       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5476   }
5477 
5478   // If this is a tail call add stack pointer delta.
5479   if (CFlags.IsTailCall)
5480     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5481 
5482   // Add argument registers to the end of the list so that they are known live
5483   // into the call.
5484   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5485     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5486                                   RegsToPass[i].second.getValueType()));
5487 
5488   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5489   // no way to mark dependencies as implicit here.
5490   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5491   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5492        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5493     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5494 
5495   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5496   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5497     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5498 
5499   // Add a register mask operand representing the call-preserved registers.
5500   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5501   const uint32_t *Mask =
5502       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5503   assert(Mask && "Missing call preserved mask for calling convention");
5504   Ops.push_back(DAG.getRegisterMask(Mask));
5505 
5506   // If the glue is valid, it is the last operand.
5507   if (Glue.getNode())
5508     Ops.push_back(Glue);
5509 }
5510 
5511 SDValue PPCTargetLowering::FinishCall(
5512     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5513     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5514     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5515     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5516     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5517 
5518   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5519       Subtarget.isAIXABI())
5520     setUsesTOCBasePtr(DAG);
5521 
5522   unsigned CallOpc =
5523       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5524                     Subtarget, DAG.getTarget());
5525 
5526   if (!CFlags.IsIndirect)
5527     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5528   else if (Subtarget.usesFunctionDescriptors())
5529     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5530                                   dl, CFlags.HasNest, Subtarget);
5531   else
5532     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5533 
5534   // Build the operand list for the call instruction.
5535   SmallVector<SDValue, 8> Ops;
5536   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5537                     SPDiff, Subtarget);
5538 
5539   // Emit tail call.
5540   if (CFlags.IsTailCall) {
5541     // Indirect tail call when using PC Relative calls do not have the same
5542     // constraints.
5543     assert(((Callee.getOpcode() == ISD::Register &&
5544              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5545             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5546             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5547             isa<ConstantSDNode>(Callee) ||
5548             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5549            "Expecting a global address, external symbol, absolute value, "
5550            "register or an indirect tail call when PC Relative calls are "
5551            "used.");
5552     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5553     assert(CallOpc == PPCISD::TC_RETURN &&
5554            "Unexpected call opcode for a tail call.");
5555     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5556     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5557   }
5558 
5559   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5560   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5561   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5562   Glue = Chain.getValue(1);
5563 
5564   // When performing tail call optimization the callee pops its arguments off
5565   // the stack. Account for this here so these bytes can be pushed back on in
5566   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5567   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5568                          getTargetMachine().Options.GuaranteedTailCallOpt)
5569                             ? NumBytes
5570                             : 0;
5571 
5572   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5573                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5574                              Glue, dl);
5575   Glue = Chain.getValue(1);
5576 
5577   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5578                          DAG, InVals);
5579 }
5580 
5581 SDValue
5582 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5583                              SmallVectorImpl<SDValue> &InVals) const {
5584   SelectionDAG &DAG                     = CLI.DAG;
5585   SDLoc &dl                             = CLI.DL;
5586   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5587   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5588   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5589   SDValue Chain                         = CLI.Chain;
5590   SDValue Callee                        = CLI.Callee;
5591   bool &isTailCall                      = CLI.IsTailCall;
5592   CallingConv::ID CallConv              = CLI.CallConv;
5593   bool isVarArg                         = CLI.IsVarArg;
5594   bool isPatchPoint                     = CLI.IsPatchPoint;
5595   const CallBase *CB                    = CLI.CB;
5596 
5597   if (isTailCall) {
5598     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5599       isTailCall = false;
5600     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5601       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5602           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5603     else
5604       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5605                                                      Ins, DAG);
5606     if (isTailCall) {
5607       ++NumTailCalls;
5608       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5609         ++NumSiblingCalls;
5610 
5611       // PC Relative calls no longer guarantee that the callee is a Global
5612       // Address Node. The callee could be an indirect tail call in which
5613       // case the SDValue for the callee could be a load (to load the address
5614       // of a function pointer) or it may be a register copy (to move the
5615       // address of the callee from a function parameter into a virtual
5616       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5617       assert((Subtarget.isUsingPCRelativeCalls() ||
5618               isa<GlobalAddressSDNode>(Callee)) &&
5619              "Callee should be an llvm::Function object.");
5620 
5621       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5622                         << "\nTCO callee: ");
5623       LLVM_DEBUG(Callee.dump());
5624     }
5625   }
5626 
5627   if (!isTailCall && CB && CB->isMustTailCall())
5628     report_fatal_error("failed to perform tail call elimination on a call "
5629                        "site marked musttail");
5630 
5631   // When long calls (i.e. indirect calls) are always used, calls are always
5632   // made via function pointer. If we have a function name, first translate it
5633   // into a pointer.
5634   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5635       !isTailCall)
5636     Callee = LowerGlobalAddress(Callee, DAG);
5637 
5638   CallFlags CFlags(
5639       CallConv, isTailCall, isVarArg, isPatchPoint,
5640       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5641       // hasNest
5642       Subtarget.is64BitELFABI() &&
5643           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5644       CLI.NoMerge);
5645 
5646   if (Subtarget.isAIXABI())
5647     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5648                          InVals, CB);
5649 
5650   assert(Subtarget.isSVR4ABI());
5651   if (Subtarget.isPPC64())
5652     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5653                             InVals, CB);
5654   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5655                           InVals, CB);
5656 }
5657 
5658 SDValue PPCTargetLowering::LowerCall_32SVR4(
5659     SDValue Chain, SDValue Callee, CallFlags CFlags,
5660     const SmallVectorImpl<ISD::OutputArg> &Outs,
5661     const SmallVectorImpl<SDValue> &OutVals,
5662     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5663     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5664     const CallBase *CB) const {
5665   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5666   // of the 32-bit SVR4 ABI stack frame layout.
5667 
5668   const CallingConv::ID CallConv = CFlags.CallConv;
5669   const bool IsVarArg = CFlags.IsVarArg;
5670   const bool IsTailCall = CFlags.IsTailCall;
5671 
5672   assert((CallConv == CallingConv::C ||
5673           CallConv == CallingConv::Cold ||
5674           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5675 
5676   const Align PtrAlign(4);
5677 
5678   MachineFunction &MF = DAG.getMachineFunction();
5679 
5680   // Mark this function as potentially containing a function that contains a
5681   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5682   // and restoring the callers stack pointer in this functions epilog. This is
5683   // done because by tail calling the called function might overwrite the value
5684   // in this function's (MF) stack pointer stack slot 0(SP).
5685   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5686       CallConv == CallingConv::Fast)
5687     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5688 
5689   // Count how many bytes are to be pushed on the stack, including the linkage
5690   // area, parameter list area and the part of the local variable space which
5691   // contains copies of aggregates which are passed by value.
5692 
5693   // Assign locations to all of the outgoing arguments.
5694   SmallVector<CCValAssign, 16> ArgLocs;
5695   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5696 
5697   // Reserve space for the linkage area on the stack.
5698   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5699                        PtrAlign);
5700   if (useSoftFloat())
5701     CCInfo.PreAnalyzeCallOperands(Outs);
5702 
5703   if (IsVarArg) {
5704     // Handle fixed and variable vector arguments differently.
5705     // Fixed vector arguments go into registers as long as registers are
5706     // available. Variable vector arguments always go into memory.
5707     unsigned NumArgs = Outs.size();
5708 
5709     for (unsigned i = 0; i != NumArgs; ++i) {
5710       MVT ArgVT = Outs[i].VT;
5711       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5712       bool Result;
5713 
5714       if (Outs[i].IsFixed) {
5715         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5716                                CCInfo);
5717       } else {
5718         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5719                                       ArgFlags, CCInfo);
5720       }
5721 
5722       if (Result) {
5723 #ifndef NDEBUG
5724         errs() << "Call operand #" << i << " has unhandled type "
5725              << EVT(ArgVT).getEVTString() << "\n";
5726 #endif
5727         llvm_unreachable(nullptr);
5728       }
5729     }
5730   } else {
5731     // All arguments are treated the same.
5732     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5733   }
5734   CCInfo.clearWasPPCF128();
5735 
5736   // Assign locations to all of the outgoing aggregate by value arguments.
5737   SmallVector<CCValAssign, 16> ByValArgLocs;
5738   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5739 
5740   // Reserve stack space for the allocations in CCInfo.
5741   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5742 
5743   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5744 
5745   // Size of the linkage area, parameter list area and the part of the local
5746   // space variable where copies of aggregates which are passed by value are
5747   // stored.
5748   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5749 
5750   // Calculate by how many bytes the stack has to be adjusted in case of tail
5751   // call optimization.
5752   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5753 
5754   // Adjust the stack pointer for the new arguments...
5755   // These operations are automatically eliminated by the prolog/epilog pass
5756   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5757   SDValue CallSeqStart = Chain;
5758 
5759   // Load the return address and frame pointer so it can be moved somewhere else
5760   // later.
5761   SDValue LROp, FPOp;
5762   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5763 
5764   // Set up a copy of the stack pointer for use loading and storing any
5765   // arguments that may not fit in the registers available for argument
5766   // passing.
5767   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5768 
5769   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5770   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5771   SmallVector<SDValue, 8> MemOpChains;
5772 
5773   bool seenFloatArg = false;
5774   // Walk the register/memloc assignments, inserting copies/loads.
5775   // i - Tracks the index into the list of registers allocated for the call
5776   // RealArgIdx - Tracks the index into the list of actual function arguments
5777   // j - Tracks the index into the list of byval arguments
5778   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5779        i != e;
5780        ++i, ++RealArgIdx) {
5781     CCValAssign &VA = ArgLocs[i];
5782     SDValue Arg = OutVals[RealArgIdx];
5783     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5784 
5785     if (Flags.isByVal()) {
5786       // Argument is an aggregate which is passed by value, thus we need to
5787       // create a copy of it in the local variable space of the current stack
5788       // frame (which is the stack frame of the caller) and pass the address of
5789       // this copy to the callee.
5790       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5791       CCValAssign &ByValVA = ByValArgLocs[j++];
5792       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5793 
5794       // Memory reserved in the local variable space of the callers stack frame.
5795       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5796 
5797       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5798       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5799                            StackPtr, PtrOff);
5800 
5801       // Create a copy of the argument in the local area of the current
5802       // stack frame.
5803       SDValue MemcpyCall =
5804         CreateCopyOfByValArgument(Arg, PtrOff,
5805                                   CallSeqStart.getNode()->getOperand(0),
5806                                   Flags, DAG, dl);
5807 
5808       // This must go outside the CALLSEQ_START..END.
5809       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5810                                                      SDLoc(MemcpyCall));
5811       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5812                              NewCallSeqStart.getNode());
5813       Chain = CallSeqStart = NewCallSeqStart;
5814 
5815       // Pass the address of the aggregate copy on the stack either in a
5816       // physical register or in the parameter list area of the current stack
5817       // frame to the callee.
5818       Arg = PtrOff;
5819     }
5820 
5821     // When useCRBits() is true, there can be i1 arguments.
5822     // It is because getRegisterType(MVT::i1) => MVT::i1,
5823     // and for other integer types getRegisterType() => MVT::i32.
5824     // Extend i1 and ensure callee will get i32.
5825     if (Arg.getValueType() == MVT::i1)
5826       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5827                         dl, MVT::i32, Arg);
5828 
5829     if (VA.isRegLoc()) {
5830       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5831       // Put argument in a physical register.
5832       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5833         bool IsLE = Subtarget.isLittleEndian();
5834         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5835                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5836         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5837         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5838                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5839         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5840                              SVal.getValue(0)));
5841       } else
5842         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5843     } else {
5844       // Put argument in the parameter list area of the current stack frame.
5845       assert(VA.isMemLoc());
5846       unsigned LocMemOffset = VA.getLocMemOffset();
5847 
5848       if (!IsTailCall) {
5849         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5850         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5851                              StackPtr, PtrOff);
5852 
5853         MemOpChains.push_back(
5854             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5855       } else {
5856         // Calculate and remember argument location.
5857         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5858                                  TailCallArguments);
5859       }
5860     }
5861   }
5862 
5863   if (!MemOpChains.empty())
5864     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5865 
5866   // Build a sequence of copy-to-reg nodes chained together with token chain
5867   // and flag operands which copy the outgoing args into the appropriate regs.
5868   SDValue InFlag;
5869   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5870     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5871                              RegsToPass[i].second, InFlag);
5872     InFlag = Chain.getValue(1);
5873   }
5874 
5875   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5876   // registers.
5877   if (IsVarArg) {
5878     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5879     SDValue Ops[] = { Chain, InFlag };
5880 
5881     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5882                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5883 
5884     InFlag = Chain.getValue(1);
5885   }
5886 
5887   if (IsTailCall)
5888     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5889                     TailCallArguments);
5890 
5891   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5892                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5893 }
5894 
5895 // Copy an argument into memory, being careful to do this outside the
5896 // call sequence for the call to which the argument belongs.
5897 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5898     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5899     SelectionDAG &DAG, const SDLoc &dl) const {
5900   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5901                         CallSeqStart.getNode()->getOperand(0),
5902                         Flags, DAG, dl);
5903   // The MEMCPY must go outside the CALLSEQ_START..END.
5904   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5905   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5906                                                  SDLoc(MemcpyCall));
5907   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5908                          NewCallSeqStart.getNode());
5909   return NewCallSeqStart;
5910 }
5911 
5912 SDValue PPCTargetLowering::LowerCall_64SVR4(
5913     SDValue Chain, SDValue Callee, CallFlags CFlags,
5914     const SmallVectorImpl<ISD::OutputArg> &Outs,
5915     const SmallVectorImpl<SDValue> &OutVals,
5916     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5917     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5918     const CallBase *CB) const {
5919   bool isELFv2ABI = Subtarget.isELFv2ABI();
5920   bool isLittleEndian = Subtarget.isLittleEndian();
5921   unsigned NumOps = Outs.size();
5922   bool IsSibCall = false;
5923   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5924 
5925   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5926   unsigned PtrByteSize = 8;
5927 
5928   MachineFunction &MF = DAG.getMachineFunction();
5929 
5930   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5931     IsSibCall = true;
5932 
5933   // Mark this function as potentially containing a function that contains a
5934   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5935   // and restoring the callers stack pointer in this functions epilog. This is
5936   // done because by tail calling the called function might overwrite the value
5937   // in this function's (MF) stack pointer stack slot 0(SP).
5938   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5939     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5940 
5941   assert(!(IsFastCall && CFlags.IsVarArg) &&
5942          "fastcc not supported on varargs functions");
5943 
5944   // Count how many bytes are to be pushed on the stack, including the linkage
5945   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5946   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5947   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5948   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5949   unsigned NumBytes = LinkageSize;
5950   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5951 
5952   static const MCPhysReg GPR[] = {
5953     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5954     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5955   };
5956   static const MCPhysReg VR[] = {
5957     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5958     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5959   };
5960 
5961   const unsigned NumGPRs = array_lengthof(GPR);
5962   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5963   const unsigned NumVRs  = array_lengthof(VR);
5964 
5965   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5966   // can be passed to the callee in registers.
5967   // For the fast calling convention, there is another check below.
5968   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5969   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5970   if (!HasParameterArea) {
5971     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5972     unsigned AvailableFPRs = NumFPRs;
5973     unsigned AvailableVRs = NumVRs;
5974     unsigned NumBytesTmp = NumBytes;
5975     for (unsigned i = 0; i != NumOps; ++i) {
5976       if (Outs[i].Flags.isNest()) continue;
5977       if (CalculateStackSlotUsed(Subtarget, Outs[i].VT, Outs[i].ArgVT,
5978                                  Outs[i].Flags, PtrByteSize, LinkageSize,
5979                                  ParamAreaSize, NumBytesTmp, AvailableFPRs,
5980                                  AvailableVRs))
5981         HasParameterArea = true;
5982     }
5983   }
5984 
5985   // When using the fast calling convention, we don't provide backing for
5986   // arguments that will be in registers.
5987   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5988 
5989   // Avoid allocating parameter area for fastcc functions if all the arguments
5990   // can be passed in the registers.
5991   if (IsFastCall)
5992     HasParameterArea = false;
5993 
5994   // Add up all the space actually used.
5995   for (unsigned i = 0; i != NumOps; ++i) {
5996     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5997     EVT ArgVT = Outs[i].VT;
5998     EVT OrigVT = Outs[i].ArgVT;
5999 
6000     if (Flags.isNest())
6001       continue;
6002 
6003     if (IsFastCall) {
6004       if (Flags.isByVal()) {
6005         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6006         if (NumGPRsUsed > NumGPRs)
6007           HasParameterArea = true;
6008       } else {
6009         switch (ArgVT.getSimpleVT().SimpleTy) {
6010         default: llvm_unreachable("Unexpected ValueType for argument!");
6011         case MVT::i1:
6012         case MVT::i32:
6013         case MVT::i64:
6014           if (++NumGPRsUsed <= NumGPRs)
6015             continue;
6016           break;
6017         case MVT::v4i32:
6018         case MVT::v8i16:
6019         case MVT::v16i8:
6020         case MVT::v2f64:
6021         case MVT::v2i64:
6022         case MVT::v1i128:
6023         case MVT::f128:
6024           if (++NumVRsUsed <= NumVRs)
6025             continue;
6026           break;
6027         case MVT::v4f32:
6028           if (++NumVRsUsed <= NumVRs)
6029             continue;
6030           break;
6031         case MVT::f32:
6032         case MVT::f64:
6033           if (++NumFPRsUsed <= NumFPRs)
6034             continue;
6035           break;
6036         }
6037         HasParameterArea = true;
6038       }
6039     }
6040 
6041     /* Respect alignment of argument on the stack.  */
6042     auto Alignement =
6043         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6044     NumBytes = alignTo(NumBytes, Alignement);
6045 
6046     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6047     if (Flags.isInConsecutiveRegsLast())
6048       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6049   }
6050 
6051   unsigned NumBytesActuallyUsed = NumBytes;
6052 
6053   // In the old ELFv1 ABI,
6054   // the prolog code of the callee may store up to 8 GPR argument registers to
6055   // the stack, allowing va_start to index over them in memory if its varargs.
6056   // Because we cannot tell if this is needed on the caller side, we have to
6057   // conservatively assume that it is needed.  As such, make sure we have at
6058   // least enough stack space for the caller to store the 8 GPRs.
6059   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6060   // really requires memory operands, e.g. a vararg function.
6061   if (HasParameterArea)
6062     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6063   else
6064     NumBytes = LinkageSize;
6065 
6066   // Tail call needs the stack to be aligned.
6067   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6068     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6069 
6070   int SPDiff = 0;
6071 
6072   // Calculate by how many bytes the stack has to be adjusted in case of tail
6073   // call optimization.
6074   if (!IsSibCall)
6075     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6076 
6077   // To protect arguments on the stack from being clobbered in a tail call,
6078   // force all the loads to happen before doing any other lowering.
6079   if (CFlags.IsTailCall)
6080     Chain = DAG.getStackArgumentTokenFactor(Chain);
6081 
6082   // Adjust the stack pointer for the new arguments...
6083   // These operations are automatically eliminated by the prolog/epilog pass
6084   if (!IsSibCall)
6085     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6086   SDValue CallSeqStart = Chain;
6087 
6088   // Load the return address and frame pointer so it can be move somewhere else
6089   // later.
6090   SDValue LROp, FPOp;
6091   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6092 
6093   // Set up a copy of the stack pointer for use loading and storing any
6094   // arguments that may not fit in the registers available for argument
6095   // passing.
6096   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6097 
6098   // Figure out which arguments are going to go in registers, and which in
6099   // memory.  Also, if this is a vararg function, floating point operations
6100   // must be stored to our stack, and loaded into integer regs as well, if
6101   // any integer regs are available for argument passing.
6102   unsigned ArgOffset = LinkageSize;
6103 
6104   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6105   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6106 
6107   SmallVector<SDValue, 8> MemOpChains;
6108   for (unsigned i = 0; i != NumOps; ++i) {
6109     SDValue Arg = OutVals[i];
6110     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6111     EVT ArgVT = Outs[i].VT;
6112     EVT OrigVT = Outs[i].ArgVT;
6113 
6114     // PtrOff will be used to store the current argument to the stack if a
6115     // register cannot be found for it.
6116     SDValue PtrOff;
6117 
6118     // We re-align the argument offset for each argument, except when using the
6119     // fast calling convention, when we need to make sure we do that only when
6120     // we'll actually use a stack slot.
6121     auto ComputePtrOff = [&]() {
6122       /* Respect alignment of argument on the stack.  */
6123       auto Alignment =
6124           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6125       ArgOffset = alignTo(ArgOffset, Alignment);
6126 
6127       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6128 
6129       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6130     };
6131 
6132     if (!IsFastCall) {
6133       ComputePtrOff();
6134 
6135       /* Compute GPR index associated with argument offset.  */
6136       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6137       GPR_idx = std::min(GPR_idx, NumGPRs);
6138     }
6139 
6140     // Promote integers to 64-bit values.
6141     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6142       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6143       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6144       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6145     }
6146 
6147     // FIXME memcpy is used way more than necessary.  Correctness first.
6148     // Note: "by value" is code for passing a structure by value, not
6149     // basic types.
6150     if (Flags.isByVal()) {
6151       // Note: Size includes alignment padding, so
6152       //   struct x { short a; char b; }
6153       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6154       // These are the proper values we need for right-justifying the
6155       // aggregate in a parameter register.
6156       unsigned Size = Flags.getByValSize();
6157 
6158       // An empty aggregate parameter takes up no storage and no
6159       // registers.
6160       if (Size == 0)
6161         continue;
6162 
6163       if (IsFastCall)
6164         ComputePtrOff();
6165 
6166       // All aggregates smaller than 8 bytes must be passed right-justified.
6167       if (Size==1 || Size==2 || Size==4) {
6168         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6169         if (GPR_idx != NumGPRs) {
6170           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6171                                         MachinePointerInfo(), VT);
6172           MemOpChains.push_back(Load.getValue(1));
6173           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6174 
6175           ArgOffset += PtrByteSize;
6176           continue;
6177         }
6178       }
6179 
6180       if (GPR_idx == NumGPRs && Size < 8) {
6181         SDValue AddPtr = PtrOff;
6182         if (!isLittleEndian) {
6183           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6184                                           PtrOff.getValueType());
6185           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6186         }
6187         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6188                                                           CallSeqStart,
6189                                                           Flags, DAG, dl);
6190         ArgOffset += PtrByteSize;
6191         continue;
6192       }
6193       // Copy entire object into memory.  There are cases where gcc-generated
6194       // code assumes it is there, even if it could be put entirely into
6195       // registers.  (This is not what the doc says.)
6196 
6197       // FIXME: The above statement is likely due to a misunderstanding of the
6198       // documents.  All arguments must be copied into the parameter area BY
6199       // THE CALLEE in the event that the callee takes the address of any
6200       // formal argument.  That has not yet been implemented.  However, it is
6201       // reasonable to use the stack area as a staging area for the register
6202       // load.
6203 
6204       // Skip this for small aggregates, as we will use the same slot for a
6205       // right-justified copy, below.
6206       if (Size >= 8)
6207         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6208                                                           CallSeqStart,
6209                                                           Flags, DAG, dl);
6210 
6211       // When a register is available, pass a small aggregate right-justified.
6212       if (Size < 8 && GPR_idx != NumGPRs) {
6213         // The easiest way to get this right-justified in a register
6214         // is to copy the structure into the rightmost portion of a
6215         // local variable slot, then load the whole slot into the
6216         // register.
6217         // FIXME: The memcpy seems to produce pretty awful code for
6218         // small aggregates, particularly for packed ones.
6219         // FIXME: It would be preferable to use the slot in the
6220         // parameter save area instead of a new local variable.
6221         SDValue AddPtr = PtrOff;
6222         if (!isLittleEndian) {
6223           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6224           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6225         }
6226         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6227                                                           CallSeqStart,
6228                                                           Flags, DAG, dl);
6229 
6230         // Load the slot into the register.
6231         SDValue Load =
6232             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6233         MemOpChains.push_back(Load.getValue(1));
6234         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6235 
6236         // Done with this argument.
6237         ArgOffset += PtrByteSize;
6238         continue;
6239       }
6240 
6241       // For aggregates larger than PtrByteSize, copy the pieces of the
6242       // object that fit into registers from the parameter save area.
6243       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6244         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6245         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6246         if (GPR_idx != NumGPRs) {
6247           SDValue Load =
6248               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6249           MemOpChains.push_back(Load.getValue(1));
6250           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6251           ArgOffset += PtrByteSize;
6252         } else {
6253           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6254           break;
6255         }
6256       }
6257       continue;
6258     }
6259 
6260     switch (Arg.getSimpleValueType().SimpleTy) {
6261     default: llvm_unreachable("Unexpected ValueType for argument!");
6262     case MVT::i1:
6263     case MVT::i32:
6264     case MVT::i64:
6265       if (Flags.isNest()) {
6266         // The 'nest' parameter, if any, is passed in R11.
6267         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6268         break;
6269       }
6270 
6271       // These can be scalar arguments or elements of an integer array type
6272       // passed directly.  Clang may use those instead of "byval" aggregate
6273       // types to avoid forcing arguments to memory unnecessarily.
6274       if (GPR_idx != NumGPRs) {
6275         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6276       } else {
6277         if (IsFastCall)
6278           ComputePtrOff();
6279 
6280         assert(HasParameterArea &&
6281                "Parameter area must exist to pass an argument in memory.");
6282         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6283                          true, CFlags.IsTailCall, false, MemOpChains,
6284                          TailCallArguments, dl);
6285         if (IsFastCall)
6286           ArgOffset += PtrByteSize;
6287       }
6288       if (!IsFastCall)
6289         ArgOffset += PtrByteSize;
6290       break;
6291     case MVT::f32:
6292     case MVT::f64: {
6293       // These can be scalar arguments or elements of a float array type
6294       // passed directly.  The latter are used to implement ELFv2 homogenous
6295       // float aggregates.
6296 
6297       // Named arguments go into FPRs first, and once they overflow, the
6298       // remaining arguments go into GPRs and then the parameter save area.
6299       // Unnamed arguments for vararg functions always go to GPRs and
6300       // then the parameter save area.  For now, put all arguments to vararg
6301       // routines always in both locations (FPR *and* GPR or stack slot).
6302       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6303       bool NeededLoad = false;
6304 
6305       // First load the argument into the next available FPR.
6306       if (FPR_idx != NumFPRs)
6307         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6308 
6309       // Next, load the argument into GPR or stack slot if needed.
6310       if (!NeedGPROrStack)
6311         ;
6312       else if (GPR_idx != NumGPRs && !IsFastCall) {
6313         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6314         // once we support fp <-> gpr moves.
6315 
6316         // In the non-vararg case, this can only ever happen in the
6317         // presence of f32 array types, since otherwise we never run
6318         // out of FPRs before running out of GPRs.
6319         SDValue ArgVal;
6320 
6321         // Double values are always passed in a single GPR.
6322         if (Arg.getValueType() != MVT::f32) {
6323           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6324 
6325         // Non-array float values are extended and passed in a GPR.
6326         } else if (!Flags.isInConsecutiveRegs()) {
6327           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6328           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6329 
6330         // If we have an array of floats, we collect every odd element
6331         // together with its predecessor into one GPR.
6332         } else if (ArgOffset % PtrByteSize != 0) {
6333           SDValue Lo, Hi;
6334           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6335           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6336           if (!isLittleEndian)
6337             std::swap(Lo, Hi);
6338           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6339 
6340         // The final element, if even, goes into the first half of a GPR.
6341         } else if (Flags.isInConsecutiveRegsLast()) {
6342           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6343           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6344           if (!isLittleEndian)
6345             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6346                                  DAG.getConstant(32, dl, MVT::i32));
6347 
6348         // Non-final even elements are skipped; they will be handled
6349         // together the with subsequent argument on the next go-around.
6350         } else
6351           ArgVal = SDValue();
6352 
6353         if (ArgVal.getNode())
6354           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6355       } else {
6356         if (IsFastCall)
6357           ComputePtrOff();
6358 
6359         // Single-precision floating-point values are mapped to the
6360         // second (rightmost) word of the stack doubleword.
6361         if (Arg.getValueType() == MVT::f32 &&
6362             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6363           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6364           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6365         }
6366 
6367         assert(HasParameterArea &&
6368                "Parameter area must exist to pass an argument in memory.");
6369         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6370                          true, CFlags.IsTailCall, false, MemOpChains,
6371                          TailCallArguments, dl);
6372 
6373         NeededLoad = true;
6374       }
6375       // When passing an array of floats, the array occupies consecutive
6376       // space in the argument area; only round up to the next doubleword
6377       // at the end of the array.  Otherwise, each float takes 8 bytes.
6378       if (!IsFastCall || NeededLoad) {
6379         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6380                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6381         if (Flags.isInConsecutiveRegsLast())
6382           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6383       }
6384       break;
6385     }
6386     case MVT::v4f32:
6387     case MVT::v4i32:
6388     case MVT::v8i16:
6389     case MVT::v16i8:
6390     case MVT::v2f64:
6391     case MVT::v2i64:
6392     case MVT::v1i128:
6393     case MVT::f128:
6394       // These can be scalar arguments or elements of a vector array type
6395       // passed directly.  The latter are used to implement ELFv2 homogenous
6396       // vector aggregates.
6397 
6398       // For a varargs call, named arguments go into VRs or on the stack as
6399       // usual; unnamed arguments always go to the stack or the corresponding
6400       // GPRs when within range.  For now, we always put the value in both
6401       // locations (or even all three).
6402       if (CFlags.IsVarArg) {
6403         assert(HasParameterArea &&
6404                "Parameter area must exist if we have a varargs call.");
6405         // We could elide this store in the case where the object fits
6406         // entirely in R registers.  Maybe later.
6407         SDValue Store =
6408             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6409         MemOpChains.push_back(Store);
6410         if (VR_idx != NumVRs) {
6411           SDValue Load =
6412               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6413           MemOpChains.push_back(Load.getValue(1));
6414           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6415         }
6416         ArgOffset += 16;
6417         for (unsigned i=0; i<16; i+=PtrByteSize) {
6418           if (GPR_idx == NumGPRs)
6419             break;
6420           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6421                                    DAG.getConstant(i, dl, PtrVT));
6422           SDValue Load =
6423               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6424           MemOpChains.push_back(Load.getValue(1));
6425           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6426         }
6427         break;
6428       }
6429 
6430       // Non-varargs Altivec params go into VRs or on the stack.
6431       if (VR_idx != NumVRs) {
6432         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6433       } else {
6434         if (IsFastCall)
6435           ComputePtrOff();
6436 
6437         assert(HasParameterArea &&
6438                "Parameter area must exist to pass an argument in memory.");
6439         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6440                          true, CFlags.IsTailCall, true, MemOpChains,
6441                          TailCallArguments, dl);
6442         if (IsFastCall)
6443           ArgOffset += 16;
6444       }
6445 
6446       if (!IsFastCall)
6447         ArgOffset += 16;
6448       break;
6449     }
6450   }
6451 
6452   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6453          "mismatch in size of parameter area");
6454   (void)NumBytesActuallyUsed;
6455 
6456   if (!MemOpChains.empty())
6457     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6458 
6459   // Check if this is an indirect call (MTCTR/BCTRL).
6460   // See prepareDescriptorIndirectCall and buildCallOperands for more
6461   // information about calls through function pointers in the 64-bit SVR4 ABI.
6462   if (CFlags.IsIndirect) {
6463     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6464     // caller in the TOC save area.
6465     if (isTOCSaveRestoreRequired(Subtarget)) {
6466       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6467       // Load r2 into a virtual register and store it to the TOC save area.
6468       setUsesTOCBasePtr(DAG);
6469       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6470       // TOC save area offset.
6471       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6472       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6473       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6474       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6475                            MachinePointerInfo::getStack(
6476                                DAG.getMachineFunction(), TOCSaveOffset));
6477     }
6478     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6479     // This does not mean the MTCTR instruction must use R12; it's easier
6480     // to model this as an extra parameter, so do that.
6481     if (isELFv2ABI && !CFlags.IsPatchPoint)
6482       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6483   }
6484 
6485   // Build a sequence of copy-to-reg nodes chained together with token chain
6486   // and flag operands which copy the outgoing args into the appropriate regs.
6487   SDValue InFlag;
6488   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6489     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6490                              RegsToPass[i].second, InFlag);
6491     InFlag = Chain.getValue(1);
6492   }
6493 
6494   if (CFlags.IsTailCall && !IsSibCall)
6495     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6496                     TailCallArguments);
6497 
6498   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6499                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6500 }
6501 
6502 // Returns true when the shadow of a general purpose argument register
6503 // in the parameter save area is aligned to at least 'RequiredAlign'.
6504 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6505   assert(RequiredAlign.value() <= 16 &&
6506          "Required alignment greater than stack alignment.");
6507   switch (Reg) {
6508   default:
6509     report_fatal_error("called on invalid register.");
6510   case PPC::R5:
6511   case PPC::R9:
6512   case PPC::X3:
6513   case PPC::X5:
6514   case PPC::X7:
6515   case PPC::X9:
6516     // These registers are 16 byte aligned which is the most strict aligment
6517     // we can support.
6518     return true;
6519   case PPC::R3:
6520   case PPC::R7:
6521   case PPC::X4:
6522   case PPC::X6:
6523   case PPC::X8:
6524   case PPC::X10:
6525     // The shadow of these registers in the PSA is 8 byte aligned.
6526     return RequiredAlign <= 8;
6527   case PPC::R4:
6528   case PPC::R6:
6529   case PPC::R8:
6530   case PPC::R10:
6531     return RequiredAlign <= 4;
6532   }
6533 }
6534 
6535 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6536                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6537                    CCState &S) {
6538   AIXCCState &State = static_cast<AIXCCState &>(S);
6539   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6540       State.getMachineFunction().getSubtarget());
6541   const bool IsPPC64 = Subtarget.isPPC64();
6542   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6543   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6544 
6545   if (ValVT == MVT::f128)
6546     report_fatal_error("f128 is unimplemented on AIX.");
6547 
6548   if (ArgFlags.isNest())
6549     report_fatal_error("Nest arguments are unimplemented.");
6550 
6551   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6552                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6553                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6554   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6555                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6556                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6557 
6558   static const MCPhysReg VR[] = {// Vector registers.
6559                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6560                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6561                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6562 
6563   if (ArgFlags.isByVal()) {
6564     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6565       report_fatal_error("Pass-by-value arguments with alignment greater than "
6566                          "register width are not supported.");
6567 
6568     const unsigned ByValSize = ArgFlags.getByValSize();
6569 
6570     // An empty aggregate parameter takes up no storage and no registers,
6571     // but needs a MemLoc for a stack slot for the formal arguments side.
6572     if (ByValSize == 0) {
6573       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6574                                        State.getNextStackOffset(), RegVT,
6575                                        LocInfo));
6576       return false;
6577     }
6578 
6579     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6580     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6581     for (const unsigned E = Offset + StackSize; Offset < E;
6582          Offset += PtrAlign.value()) {
6583       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6584         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6585       else {
6586         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6587                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6588                                          LocInfo));
6589         break;
6590       }
6591     }
6592     return false;
6593   }
6594 
6595   // Arguments always reserve parameter save area.
6596   switch (ValVT.SimpleTy) {
6597   default:
6598     report_fatal_error("Unhandled value type for argument.");
6599   case MVT::i64:
6600     // i64 arguments should have been split to i32 for PPC32.
6601     assert(IsPPC64 && "PPC32 should have split i64 values.");
6602     LLVM_FALLTHROUGH;
6603   case MVT::i1:
6604   case MVT::i32: {
6605     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6606     // AIX integer arguments are always passed in register width.
6607     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6608       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6609                                   : CCValAssign::LocInfo::ZExt;
6610     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6611       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6612     else
6613       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6614 
6615     return false;
6616   }
6617   case MVT::f32:
6618   case MVT::f64: {
6619     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6620     const unsigned StoreSize = LocVT.getStoreSize();
6621     // Floats are always 4-byte aligned in the PSA on AIX.
6622     // This includes f64 in 64-bit mode for ABI compatibility.
6623     const unsigned Offset =
6624         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6625     unsigned FReg = State.AllocateReg(FPR);
6626     if (FReg)
6627       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6628 
6629     // Reserve and initialize GPRs or initialize the PSA as required.
6630     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6631       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6632         assert(FReg && "An FPR should be available when a GPR is reserved.");
6633         if (State.isVarArg()) {
6634           // Successfully reserved GPRs are only initialized for vararg calls.
6635           // Custom handling is required for:
6636           //   f64 in PPC32 needs to be split into 2 GPRs.
6637           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6638           State.addLoc(
6639               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6640         }
6641       } else {
6642         // If there are insufficient GPRs, the PSA needs to be initialized.
6643         // Initialization occurs even if an FPR was initialized for
6644         // compatibility with the AIX XL compiler. The full memory for the
6645         // argument will be initialized even if a prior word is saved in GPR.
6646         // A custom memLoc is used when the argument also passes in FPR so
6647         // that the callee handling can skip over it easily.
6648         State.addLoc(
6649             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6650                                              LocInfo)
6651                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6652         break;
6653       }
6654     }
6655 
6656     return false;
6657   }
6658   case MVT::v4f32:
6659   case MVT::v4i32:
6660   case MVT::v8i16:
6661   case MVT::v16i8:
6662   case MVT::v2i64:
6663   case MVT::v2f64:
6664   case MVT::v1i128: {
6665     const unsigned VecSize = 16;
6666     const Align VecAlign(VecSize);
6667 
6668     if (!State.isVarArg()) {
6669       // If there are vector registers remaining we don't consume any stack
6670       // space.
6671       if (unsigned VReg = State.AllocateReg(VR)) {
6672         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6673         return false;
6674       }
6675       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6676       // might be allocated in the portion of the PSA that is shadowed by the
6677       // GPRs.
6678       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6679       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6680       return false;
6681     }
6682 
6683     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6684     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6685 
6686     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6687     // Burn any underaligned registers and their shadowed stack space until
6688     // we reach the required alignment.
6689     while (NextRegIndex != GPRs.size() &&
6690            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6691       // Shadow allocate register and its stack shadow.
6692       unsigned Reg = State.AllocateReg(GPRs);
6693       State.AllocateStack(PtrSize, PtrAlign);
6694       assert(Reg && "Allocating register unexpectedly failed.");
6695       (void)Reg;
6696       NextRegIndex = State.getFirstUnallocated(GPRs);
6697     }
6698 
6699     // Vectors that are passed as fixed arguments are handled differently.
6700     // They are passed in VRs if any are available (unlike arguments passed
6701     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6702     // functions)
6703     if (State.isFixed(ValNo)) {
6704       if (unsigned VReg = State.AllocateReg(VR)) {
6705         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6706         // Shadow allocate GPRs and stack space even though we pass in a VR.
6707         for (unsigned I = 0; I != VecSize; I += PtrSize)
6708           State.AllocateReg(GPRs);
6709         State.AllocateStack(VecSize, VecAlign);
6710         return false;
6711       }
6712       // No vector registers remain so pass on the stack.
6713       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6714       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6715       return false;
6716     }
6717 
6718     // If all GPRS are consumed then we pass the argument fully on the stack.
6719     if (NextRegIndex == GPRs.size()) {
6720       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6721       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6722       return false;
6723     }
6724 
6725     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6726     // half of the argument, and then need to pass the remaining half on the
6727     // stack.
6728     if (GPRs[NextRegIndex] == PPC::R9) {
6729       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6730       State.addLoc(
6731           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6732 
6733       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6734       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6735       assert(FirstReg && SecondReg &&
6736              "Allocating R9 or R10 unexpectedly failed.");
6737       State.addLoc(
6738           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6739       State.addLoc(
6740           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6741       return false;
6742     }
6743 
6744     // We have enough GPRs to fully pass the vector argument, and we have
6745     // already consumed any underaligned registers. Start with the custom
6746     // MemLoc and then the custom RegLocs.
6747     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6748     State.addLoc(
6749         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6750     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6751       const unsigned Reg = State.AllocateReg(GPRs);
6752       assert(Reg && "Failed to allocated register for vararg vector argument");
6753       State.addLoc(
6754           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6755     }
6756     return false;
6757   }
6758   }
6759   return true;
6760 }
6761 
6762 // So far, this function is only used by LowerFormalArguments_AIX()
6763 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6764                                                     bool IsPPC64,
6765                                                     bool HasP8Vector,
6766                                                     bool HasVSX) {
6767   assert((IsPPC64 || SVT != MVT::i64) &&
6768          "i64 should have been split for 32-bit codegen.");
6769 
6770   switch (SVT) {
6771   default:
6772     report_fatal_error("Unexpected value type for formal argument");
6773   case MVT::i1:
6774   case MVT::i32:
6775   case MVT::i64:
6776     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6777   case MVT::f32:
6778     return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
6779   case MVT::f64:
6780     return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
6781   case MVT::v4f32:
6782   case MVT::v4i32:
6783   case MVT::v8i16:
6784   case MVT::v16i8:
6785   case MVT::v2i64:
6786   case MVT::v2f64:
6787   case MVT::v1i128:
6788     return &PPC::VRRCRegClass;
6789   }
6790 }
6791 
6792 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6793                                         SelectionDAG &DAG, SDValue ArgValue,
6794                                         MVT LocVT, const SDLoc &dl) {
6795   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6796   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6797 
6798   if (Flags.isSExt())
6799     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6800                            DAG.getValueType(ValVT));
6801   else if (Flags.isZExt())
6802     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6803                            DAG.getValueType(ValVT));
6804 
6805   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6806 }
6807 
6808 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6809   const unsigned LASize = FL->getLinkageSize();
6810 
6811   if (PPC::GPRCRegClass.contains(Reg)) {
6812     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6813            "Reg must be a valid argument register!");
6814     return LASize + 4 * (Reg - PPC::R3);
6815   }
6816 
6817   if (PPC::G8RCRegClass.contains(Reg)) {
6818     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6819            "Reg must be a valid argument register!");
6820     return LASize + 8 * (Reg - PPC::X3);
6821   }
6822 
6823   llvm_unreachable("Only general purpose registers expected.");
6824 }
6825 
6826 //   AIX ABI Stack Frame Layout:
6827 //
6828 //   Low Memory +--------------------------------------------+
6829 //   SP   +---> | Back chain                                 | ---+
6830 //        |     +--------------------------------------------+    |
6831 //        |     | Saved Condition Register                   |    |
6832 //        |     +--------------------------------------------+    |
6833 //        |     | Saved Linkage Register                     |    |
6834 //        |     +--------------------------------------------+    | Linkage Area
6835 //        |     | Reserved for compilers                     |    |
6836 //        |     +--------------------------------------------+    |
6837 //        |     | Reserved for binders                       |    |
6838 //        |     +--------------------------------------------+    |
6839 //        |     | Saved TOC pointer                          | ---+
6840 //        |     +--------------------------------------------+
6841 //        |     | Parameter save area                        |
6842 //        |     +--------------------------------------------+
6843 //        |     | Alloca space                               |
6844 //        |     +--------------------------------------------+
6845 //        |     | Local variable space                       |
6846 //        |     +--------------------------------------------+
6847 //        |     | Float/int conversion temporary             |
6848 //        |     +--------------------------------------------+
6849 //        |     | Save area for AltiVec registers            |
6850 //        |     +--------------------------------------------+
6851 //        |     | AltiVec alignment padding                  |
6852 //        |     +--------------------------------------------+
6853 //        |     | Save area for VRSAVE register              |
6854 //        |     +--------------------------------------------+
6855 //        |     | Save area for General Purpose registers    |
6856 //        |     +--------------------------------------------+
6857 //        |     | Save area for Floating Point registers     |
6858 //        |     +--------------------------------------------+
6859 //        +---- | Back chain                                 |
6860 // High Memory  +--------------------------------------------+
6861 //
6862 //  Specifications:
6863 //  AIX 7.2 Assembler Language Reference
6864 //  Subroutine linkage convention
6865 
6866 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6867     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6868     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6869     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6870 
6871   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6872           CallConv == CallingConv::Fast) &&
6873          "Unexpected calling convention!");
6874 
6875   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6876     report_fatal_error("Tail call support is unimplemented on AIX.");
6877 
6878   if (useSoftFloat())
6879     report_fatal_error("Soft float support is unimplemented on AIX.");
6880 
6881   const PPCSubtarget &Subtarget =
6882       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6883 
6884   const bool IsPPC64 = Subtarget.isPPC64();
6885   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6886 
6887   // Assign locations to all of the incoming arguments.
6888   SmallVector<CCValAssign, 16> ArgLocs;
6889   MachineFunction &MF = DAG.getMachineFunction();
6890   MachineFrameInfo &MFI = MF.getFrameInfo();
6891   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6892   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6893 
6894   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6895   // Reserve space for the linkage area on the stack.
6896   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6897   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6898   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6899 
6900   SmallVector<SDValue, 8> MemOps;
6901 
6902   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6903     CCValAssign &VA = ArgLocs[I++];
6904     MVT LocVT = VA.getLocVT();
6905     MVT ValVT = VA.getValVT();
6906     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6907     // For compatibility with the AIX XL compiler, the float args in the
6908     // parameter save area are initialized even if the argument is available
6909     // in register.  The caller is required to initialize both the register
6910     // and memory, however, the callee can choose to expect it in either.
6911     // The memloc is dismissed here because the argument is retrieved from
6912     // the register.
6913     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6914       continue;
6915 
6916     auto HandleMemLoc = [&]() {
6917       const unsigned LocSize = LocVT.getStoreSize();
6918       const unsigned ValSize = ValVT.getStoreSize();
6919       assert((ValSize <= LocSize) &&
6920              "Object size is larger than size of MemLoc");
6921       int CurArgOffset = VA.getLocMemOffset();
6922       // Objects are right-justified because AIX is big-endian.
6923       if (LocSize > ValSize)
6924         CurArgOffset += LocSize - ValSize;
6925       // Potential tail calls could cause overwriting of argument stack slots.
6926       const bool IsImmutable =
6927           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6928             (CallConv == CallingConv::Fast));
6929       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6930       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6931       SDValue ArgValue =
6932           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6933       InVals.push_back(ArgValue);
6934     };
6935 
6936     // Vector arguments to VaArg functions are passed both on the stack, and
6937     // in any available GPRs. Load the value from the stack and add the GPRs
6938     // as live ins.
6939     if (VA.isMemLoc() && VA.needsCustom()) {
6940       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6941       assert(isVarArg && "Only use custom memloc for vararg.");
6942       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6943       // matching custom RegLocs.
6944       const unsigned OriginalValNo = VA.getValNo();
6945       (void)OriginalValNo;
6946 
6947       auto HandleCustomVecRegLoc = [&]() {
6948         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
6949                "Missing custom RegLoc.");
6950         VA = ArgLocs[I++];
6951         assert(VA.getValVT().isVector() &&
6952                "Unexpected Val type for custom RegLoc.");
6953         assert(VA.getValNo() == OriginalValNo &&
6954                "ValNo mismatch between custom MemLoc and RegLoc.");
6955         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
6956         MF.addLiveIn(VA.getLocReg(),
6957                      getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
6958                                        Subtarget.hasVSX()));
6959       };
6960 
6961       HandleMemLoc();
6962       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
6963       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
6964       // R10.
6965       HandleCustomVecRegLoc();
6966       HandleCustomVecRegLoc();
6967 
6968       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
6969       // we passed the vector in R5, R6, R7 and R8.
6970       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
6971         assert(!IsPPC64 &&
6972                "Only 2 custom RegLocs expected for 64-bit codegen.");
6973         HandleCustomVecRegLoc();
6974         HandleCustomVecRegLoc();
6975       }
6976 
6977       continue;
6978     }
6979 
6980     if (VA.isRegLoc()) {
6981       if (VA.getValVT().isScalarInteger())
6982         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6983       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
6984         switch (VA.getValVT().SimpleTy) {
6985         default:
6986           report_fatal_error("Unhandled value type for argument.");
6987         case MVT::f32:
6988           FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
6989           break;
6990         case MVT::f64:
6991           FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
6992           break;
6993         }
6994       } else if (VA.getValVT().isVector()) {
6995         switch (VA.getValVT().SimpleTy) {
6996         default:
6997           report_fatal_error("Unhandled value type for argument.");
6998         case MVT::v16i8:
6999           FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
7000           break;
7001         case MVT::v8i16:
7002           FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
7003           break;
7004         case MVT::v4i32:
7005         case MVT::v2i64:
7006         case MVT::v1i128:
7007           FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
7008           break;
7009         case MVT::v4f32:
7010         case MVT::v2f64:
7011           FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
7012           break;
7013         }
7014       }
7015     }
7016 
7017     if (Flags.isByVal() && VA.isMemLoc()) {
7018       const unsigned Size =
7019           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7020                   PtrByteSize);
7021       const int FI = MF.getFrameInfo().CreateFixedObject(
7022           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7023           /* IsAliased */ true);
7024       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7025       InVals.push_back(FIN);
7026 
7027       continue;
7028     }
7029 
7030     if (Flags.isByVal()) {
7031       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7032 
7033       const MCPhysReg ArgReg = VA.getLocReg();
7034       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7035 
7036       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7037         report_fatal_error("Over aligned byvals not supported yet.");
7038 
7039       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7040       const int FI = MF.getFrameInfo().CreateFixedObject(
7041           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7042           /* IsAliased */ true);
7043       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7044       InVals.push_back(FIN);
7045 
7046       // Add live ins for all the RegLocs for the same ByVal.
7047       const TargetRegisterClass *RegClass =
7048           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7049 
7050       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7051                                                unsigned Offset) {
7052         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7053         // Since the callers side has left justified the aggregate in the
7054         // register, we can simply store the entire register into the stack
7055         // slot.
7056         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7057         // The store to the fixedstack object is needed becuase accessing a
7058         // field of the ByVal will use a gep and load. Ideally we will optimize
7059         // to extracting the value from the register directly, and elide the
7060         // stores when the arguments address is not taken, but that will need to
7061         // be future work.
7062         SDValue Store = DAG.getStore(
7063             CopyFrom.getValue(1), dl, CopyFrom,
7064             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7065             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7066 
7067         MemOps.push_back(Store);
7068       };
7069 
7070       unsigned Offset = 0;
7071       HandleRegLoc(VA.getLocReg(), Offset);
7072       Offset += PtrByteSize;
7073       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7074            Offset += PtrByteSize) {
7075         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7076                "RegLocs should be for ByVal argument.");
7077 
7078         const CCValAssign RL = ArgLocs[I++];
7079         HandleRegLoc(RL.getLocReg(), Offset);
7080         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7081       }
7082 
7083       if (Offset != StackSize) {
7084         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7085                "Expected MemLoc for remaining bytes.");
7086         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7087         // Consume the MemLoc.The InVal has already been emitted, so nothing
7088         // more needs to be done.
7089         ++I;
7090       }
7091 
7092       continue;
7093     }
7094 
7095     if (VA.isRegLoc() && !VA.needsCustom()) {
7096       MVT::SimpleValueType SVT = ValVT.SimpleTy;
7097       Register VReg =
7098           MF.addLiveIn(VA.getLocReg(),
7099                        getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7100                                          Subtarget.hasVSX()));
7101       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7102       if (ValVT.isScalarInteger() &&
7103           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7104         ArgValue =
7105             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7106       }
7107       InVals.push_back(ArgValue);
7108       continue;
7109     }
7110     if (VA.isMemLoc()) {
7111       HandleMemLoc();
7112       continue;
7113     }
7114   }
7115 
7116   // On AIX a minimum of 8 words is saved to the parameter save area.
7117   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7118   // Area that is at least reserved in the caller of this function.
7119   unsigned CallerReservedArea =
7120       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7121 
7122   // Set the size that is at least reserved in caller of this function. Tail
7123   // call optimized function's reserved stack space needs to be aligned so
7124   // that taking the difference between two stack areas will result in an
7125   // aligned stack.
7126   CallerReservedArea =
7127       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7128   FuncInfo->setMinReservedArea(CallerReservedArea);
7129 
7130   if (isVarArg) {
7131     FuncInfo->setVarArgsFrameIndex(
7132         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7133     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7134 
7135     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7136                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7137 
7138     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7139                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7140     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7141 
7142     // The fixed integer arguments of a variadic function are stored to the
7143     // VarArgsFrameIndex on the stack so that they may be loaded by
7144     // dereferencing the result of va_next.
7145     for (unsigned GPRIndex =
7146              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7147          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7148 
7149       const unsigned VReg =
7150           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7151                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7152 
7153       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7154       SDValue Store =
7155           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7156       MemOps.push_back(Store);
7157       // Increment the address for the next argument to store.
7158       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7159       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7160     }
7161   }
7162 
7163   if (!MemOps.empty())
7164     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7165 
7166   return Chain;
7167 }
7168 
7169 SDValue PPCTargetLowering::LowerCall_AIX(
7170     SDValue Chain, SDValue Callee, CallFlags CFlags,
7171     const SmallVectorImpl<ISD::OutputArg> &Outs,
7172     const SmallVectorImpl<SDValue> &OutVals,
7173     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7174     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7175     const CallBase *CB) const {
7176   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7177   // AIX ABI stack frame layout.
7178 
7179   assert((CFlags.CallConv == CallingConv::C ||
7180           CFlags.CallConv == CallingConv::Cold ||
7181           CFlags.CallConv == CallingConv::Fast) &&
7182          "Unexpected calling convention!");
7183 
7184   if (CFlags.IsPatchPoint)
7185     report_fatal_error("This call type is unimplemented on AIX.");
7186 
7187   const PPCSubtarget& Subtarget =
7188       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7189 
7190   MachineFunction &MF = DAG.getMachineFunction();
7191   SmallVector<CCValAssign, 16> ArgLocs;
7192   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7193                     *DAG.getContext());
7194 
7195   // Reserve space for the linkage save area (LSA) on the stack.
7196   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7197   //   [SP][CR][LR][2 x reserved][TOC].
7198   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7199   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7200   const bool IsPPC64 = Subtarget.isPPC64();
7201   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7202   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7203   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7204   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7205 
7206   // The prolog code of the callee may store up to 8 GPR argument registers to
7207   // the stack, allowing va_start to index over them in memory if the callee
7208   // is variadic.
7209   // Because we cannot tell if this is needed on the caller side, we have to
7210   // conservatively assume that it is needed.  As such, make sure we have at
7211   // least enough stack space for the caller to store the 8 GPRs.
7212   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7213   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7214                                      CCInfo.getNextStackOffset());
7215 
7216   // Adjust the stack pointer for the new arguments...
7217   // These operations are automatically eliminated by the prolog/epilog pass.
7218   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7219   SDValue CallSeqStart = Chain;
7220 
7221   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7222   SmallVector<SDValue, 8> MemOpChains;
7223 
7224   // Set up a copy of the stack pointer for loading and storing any
7225   // arguments that may not fit in the registers available for argument
7226   // passing.
7227   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7228                                    : DAG.getRegister(PPC::R1, MVT::i32);
7229 
7230   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7231     const unsigned ValNo = ArgLocs[I].getValNo();
7232     SDValue Arg = OutVals[ValNo];
7233     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7234 
7235     if (Flags.isByVal()) {
7236       const unsigned ByValSize = Flags.getByValSize();
7237 
7238       // Nothing to do for zero-sized ByVals on the caller side.
7239       if (!ByValSize) {
7240         ++I;
7241         continue;
7242       }
7243 
7244       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7245         return DAG.getExtLoad(
7246             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7247             (LoadOffset != 0)
7248                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7249                 : Arg,
7250             MachinePointerInfo(), VT);
7251       };
7252 
7253       unsigned LoadOffset = 0;
7254 
7255       // Initialize registers, which are fully occupied by the by-val argument.
7256       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7257         SDValue Load = GetLoad(PtrVT, LoadOffset);
7258         MemOpChains.push_back(Load.getValue(1));
7259         LoadOffset += PtrByteSize;
7260         const CCValAssign &ByValVA = ArgLocs[I++];
7261         assert(ByValVA.getValNo() == ValNo &&
7262                "Unexpected location for pass-by-value argument.");
7263         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7264       }
7265 
7266       if (LoadOffset == ByValSize)
7267         continue;
7268 
7269       // There must be one more loc to handle the remainder.
7270       assert(ArgLocs[I].getValNo() == ValNo &&
7271              "Expected additional location for by-value argument.");
7272 
7273       if (ArgLocs[I].isMemLoc()) {
7274         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7275         const CCValAssign &ByValVA = ArgLocs[I++];
7276         ISD::ArgFlagsTy MemcpyFlags = Flags;
7277         // Only memcpy the bytes that don't pass in register.
7278         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7279         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7280             (LoadOffset != 0)
7281                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7282                 : Arg,
7283             DAG.getObjectPtrOffset(dl, StackPtr,
7284                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7285             CallSeqStart, MemcpyFlags, DAG, dl);
7286         continue;
7287       }
7288 
7289       // Initialize the final register residue.
7290       // Any residue that occupies the final by-val arg register must be
7291       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7292       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7293       // 2 and 1 byte loads.
7294       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7295       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7296              "Unexpected register residue for by-value argument.");
7297       SDValue ResidueVal;
7298       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7299         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7300         const MVT VT =
7301             N == 1 ? MVT::i8
7302                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7303         SDValue Load = GetLoad(VT, LoadOffset);
7304         MemOpChains.push_back(Load.getValue(1));
7305         LoadOffset += N;
7306         Bytes += N;
7307 
7308         // By-val arguments are passed left-justfied in register.
7309         // Every load here needs to be shifted, otherwise a full register load
7310         // should have been used.
7311         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7312                "Unexpected load emitted during handling of pass-by-value "
7313                "argument.");
7314         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7315         EVT ShiftAmountTy =
7316             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7317         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7318         SDValue ShiftedLoad =
7319             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7320         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7321                                               ShiftedLoad)
7322                                 : ShiftedLoad;
7323       }
7324 
7325       const CCValAssign &ByValVA = ArgLocs[I++];
7326       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7327       continue;
7328     }
7329 
7330     CCValAssign &VA = ArgLocs[I++];
7331     const MVT LocVT = VA.getLocVT();
7332     const MVT ValVT = VA.getValVT();
7333 
7334     switch (VA.getLocInfo()) {
7335     default:
7336       report_fatal_error("Unexpected argument extension type.");
7337     case CCValAssign::Full:
7338       break;
7339     case CCValAssign::ZExt:
7340       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7341       break;
7342     case CCValAssign::SExt:
7343       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7344       break;
7345     }
7346 
7347     if (VA.isRegLoc() && !VA.needsCustom()) {
7348       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7349       continue;
7350     }
7351 
7352     // Vector arguments passed to VarArg functions need custom handling when
7353     // they are passed (at least partially) in GPRs.
7354     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7355       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7356       // Store value to its stack slot.
7357       SDValue PtrOff =
7358           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7359       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7360       SDValue Store =
7361           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7362       MemOpChains.push_back(Store);
7363       const unsigned OriginalValNo = VA.getValNo();
7364       // Then load the GPRs from the stack
7365       unsigned LoadOffset = 0;
7366       auto HandleCustomVecRegLoc = [&]() {
7367         assert(I != E && "Unexpected end of CCvalAssigns.");
7368         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7369                "Expected custom RegLoc.");
7370         CCValAssign RegVA = ArgLocs[I++];
7371         assert(RegVA.getValNo() == OriginalValNo &&
7372                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7373         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7374                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7375         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7376         MemOpChains.push_back(Load.getValue(1));
7377         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7378         LoadOffset += PtrByteSize;
7379       };
7380 
7381       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7382       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7383       // R10.
7384       HandleCustomVecRegLoc();
7385       HandleCustomVecRegLoc();
7386 
7387       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7388           ArgLocs[I].getValNo() == OriginalValNo) {
7389         assert(!IsPPC64 &&
7390                "Only 2 custom RegLocs expected for 64-bit codegen.");
7391         HandleCustomVecRegLoc();
7392         HandleCustomVecRegLoc();
7393       }
7394 
7395       continue;
7396     }
7397 
7398     if (VA.isMemLoc()) {
7399       SDValue PtrOff =
7400           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7401       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7402       MemOpChains.push_back(
7403           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7404 
7405       continue;
7406     }
7407 
7408     if (!ValVT.isFloatingPoint())
7409       report_fatal_error(
7410           "Unexpected register handling for calling convention.");
7411 
7412     // Custom handling is used for GPR initializations for vararg float
7413     // arguments.
7414     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7415            LocVT.isInteger() &&
7416            "Custom register handling only expected for VarArg.");
7417 
7418     SDValue ArgAsInt =
7419         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7420 
7421     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7422       // f32 in 32-bit GPR
7423       // f64 in 64-bit GPR
7424       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7425     else if (Arg.getValueType().getFixedSizeInBits() <
7426              LocVT.getFixedSizeInBits())
7427       // f32 in 64-bit GPR.
7428       RegsToPass.push_back(std::make_pair(
7429           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7430     else {
7431       // f64 in two 32-bit GPRs
7432       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7433       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7434              "Unexpected custom register for argument!");
7435       CCValAssign &GPR1 = VA;
7436       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7437                                      DAG.getConstant(32, dl, MVT::i8));
7438       RegsToPass.push_back(std::make_pair(
7439           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7440 
7441       if (I != E) {
7442         // If only 1 GPR was available, there will only be one custom GPR and
7443         // the argument will also pass in memory.
7444         CCValAssign &PeekArg = ArgLocs[I];
7445         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7446           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7447           CCValAssign &GPR2 = ArgLocs[I++];
7448           RegsToPass.push_back(std::make_pair(
7449               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7450         }
7451       }
7452     }
7453   }
7454 
7455   if (!MemOpChains.empty())
7456     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7457 
7458   // For indirect calls, we need to save the TOC base to the stack for
7459   // restoration after the call.
7460   if (CFlags.IsIndirect) {
7461     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7462     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7463     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7464     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7465     const unsigned TOCSaveOffset =
7466         Subtarget.getFrameLowering()->getTOCSaveOffset();
7467 
7468     setUsesTOCBasePtr(DAG);
7469     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7470     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7471     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7472     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7473     Chain = DAG.getStore(
7474         Val.getValue(1), dl, Val, AddPtr,
7475         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7476   }
7477 
7478   // Build a sequence of copy-to-reg nodes chained together with token chain
7479   // and flag operands which copy the outgoing args into the appropriate regs.
7480   SDValue InFlag;
7481   for (auto Reg : RegsToPass) {
7482     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7483     InFlag = Chain.getValue(1);
7484   }
7485 
7486   const int SPDiff = 0;
7487   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7488                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7489 }
7490 
7491 bool
7492 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7493                                   MachineFunction &MF, bool isVarArg,
7494                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7495                                   LLVMContext &Context) const {
7496   SmallVector<CCValAssign, 16> RVLocs;
7497   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7498   return CCInfo.CheckReturn(
7499       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7500                 ? RetCC_PPC_Cold
7501                 : RetCC_PPC);
7502 }
7503 
7504 SDValue
7505 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7506                                bool isVarArg,
7507                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7508                                const SmallVectorImpl<SDValue> &OutVals,
7509                                const SDLoc &dl, SelectionDAG &DAG) const {
7510   SmallVector<CCValAssign, 16> RVLocs;
7511   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7512                  *DAG.getContext());
7513   CCInfo.AnalyzeReturn(Outs,
7514                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7515                            ? RetCC_PPC_Cold
7516                            : RetCC_PPC);
7517 
7518   SDValue Flag;
7519   SmallVector<SDValue, 4> RetOps(1, Chain);
7520 
7521   // Copy the result values into the output registers.
7522   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7523     CCValAssign &VA = RVLocs[i];
7524     assert(VA.isRegLoc() && "Can only return in registers!");
7525 
7526     SDValue Arg = OutVals[RealResIdx];
7527 
7528     switch (VA.getLocInfo()) {
7529     default: llvm_unreachable("Unknown loc info!");
7530     case CCValAssign::Full: break;
7531     case CCValAssign::AExt:
7532       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7533       break;
7534     case CCValAssign::ZExt:
7535       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7536       break;
7537     case CCValAssign::SExt:
7538       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7539       break;
7540     }
7541     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7542       bool isLittleEndian = Subtarget.isLittleEndian();
7543       // Legalize ret f64 -> ret 2 x i32.
7544       SDValue SVal =
7545           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7546                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7547       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7548       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7549       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7550                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7551       Flag = Chain.getValue(1);
7552       VA = RVLocs[++i]; // skip ahead to next loc
7553       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7554     } else
7555       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7556     Flag = Chain.getValue(1);
7557     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7558   }
7559 
7560   RetOps[0] = Chain;  // Update chain.
7561 
7562   // Add the flag if we have it.
7563   if (Flag.getNode())
7564     RetOps.push_back(Flag);
7565 
7566   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7567 }
7568 
7569 SDValue
7570 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7571                                                 SelectionDAG &DAG) const {
7572   SDLoc dl(Op);
7573 
7574   // Get the correct type for integers.
7575   EVT IntVT = Op.getValueType();
7576 
7577   // Get the inputs.
7578   SDValue Chain = Op.getOperand(0);
7579   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7580   // Build a DYNAREAOFFSET node.
7581   SDValue Ops[2] = {Chain, FPSIdx};
7582   SDVTList VTs = DAG.getVTList(IntVT);
7583   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7584 }
7585 
7586 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7587                                              SelectionDAG &DAG) const {
7588   // When we pop the dynamic allocation we need to restore the SP link.
7589   SDLoc dl(Op);
7590 
7591   // Get the correct type for pointers.
7592   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7593 
7594   // Construct the stack pointer operand.
7595   bool isPPC64 = Subtarget.isPPC64();
7596   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7597   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7598 
7599   // Get the operands for the STACKRESTORE.
7600   SDValue Chain = Op.getOperand(0);
7601   SDValue SaveSP = Op.getOperand(1);
7602 
7603   // Load the old link SP.
7604   SDValue LoadLinkSP =
7605       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7606 
7607   // Restore the stack pointer.
7608   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7609 
7610   // Store the old link SP.
7611   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7612 }
7613 
7614 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7615   MachineFunction &MF = DAG.getMachineFunction();
7616   bool isPPC64 = Subtarget.isPPC64();
7617   EVT PtrVT = getPointerTy(MF.getDataLayout());
7618 
7619   // Get current frame pointer save index.  The users of this index will be
7620   // primarily DYNALLOC instructions.
7621   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7622   int RASI = FI->getReturnAddrSaveIndex();
7623 
7624   // If the frame pointer save index hasn't been defined yet.
7625   if (!RASI) {
7626     // Find out what the fix offset of the frame pointer save area.
7627     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7628     // Allocate the frame index for frame pointer save area.
7629     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7630     // Save the result.
7631     FI->setReturnAddrSaveIndex(RASI);
7632   }
7633   return DAG.getFrameIndex(RASI, PtrVT);
7634 }
7635 
7636 SDValue
7637 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7638   MachineFunction &MF = DAG.getMachineFunction();
7639   bool isPPC64 = Subtarget.isPPC64();
7640   EVT PtrVT = getPointerTy(MF.getDataLayout());
7641 
7642   // Get current frame pointer save index.  The users of this index will be
7643   // primarily DYNALLOC instructions.
7644   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7645   int FPSI = FI->getFramePointerSaveIndex();
7646 
7647   // If the frame pointer save index hasn't been defined yet.
7648   if (!FPSI) {
7649     // Find out what the fix offset of the frame pointer save area.
7650     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7651     // Allocate the frame index for frame pointer save area.
7652     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7653     // Save the result.
7654     FI->setFramePointerSaveIndex(FPSI);
7655   }
7656   return DAG.getFrameIndex(FPSI, PtrVT);
7657 }
7658 
7659 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7660                                                    SelectionDAG &DAG) const {
7661   MachineFunction &MF = DAG.getMachineFunction();
7662   // Get the inputs.
7663   SDValue Chain = Op.getOperand(0);
7664   SDValue Size  = Op.getOperand(1);
7665   SDLoc dl(Op);
7666 
7667   // Get the correct type for pointers.
7668   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7669   // Negate the size.
7670   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7671                                 DAG.getConstant(0, dl, PtrVT), Size);
7672   // Construct a node for the frame pointer save index.
7673   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7674   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7675   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7676   if (hasInlineStackProbe(MF))
7677     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7678   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7679 }
7680 
7681 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7682                                                      SelectionDAG &DAG) const {
7683   MachineFunction &MF = DAG.getMachineFunction();
7684 
7685   bool isPPC64 = Subtarget.isPPC64();
7686   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7687 
7688   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7689   return DAG.getFrameIndex(FI, PtrVT);
7690 }
7691 
7692 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7693                                                SelectionDAG &DAG) const {
7694   SDLoc DL(Op);
7695   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7696                      DAG.getVTList(MVT::i32, MVT::Other),
7697                      Op.getOperand(0), Op.getOperand(1));
7698 }
7699 
7700 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7701                                                 SelectionDAG &DAG) const {
7702   SDLoc DL(Op);
7703   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7704                      Op.getOperand(0), Op.getOperand(1));
7705 }
7706 
7707 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7708   if (Op.getValueType().isVector())
7709     return LowerVectorLoad(Op, DAG);
7710 
7711   assert(Op.getValueType() == MVT::i1 &&
7712          "Custom lowering only for i1 loads");
7713 
7714   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7715 
7716   SDLoc dl(Op);
7717   LoadSDNode *LD = cast<LoadSDNode>(Op);
7718 
7719   SDValue Chain = LD->getChain();
7720   SDValue BasePtr = LD->getBasePtr();
7721   MachineMemOperand *MMO = LD->getMemOperand();
7722 
7723   SDValue NewLD =
7724       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7725                      BasePtr, MVT::i8, MMO);
7726   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7727 
7728   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7729   return DAG.getMergeValues(Ops, dl);
7730 }
7731 
7732 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7733   if (Op.getOperand(1).getValueType().isVector())
7734     return LowerVectorStore(Op, DAG);
7735 
7736   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7737          "Custom lowering only for i1 stores");
7738 
7739   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7740 
7741   SDLoc dl(Op);
7742   StoreSDNode *ST = cast<StoreSDNode>(Op);
7743 
7744   SDValue Chain = ST->getChain();
7745   SDValue BasePtr = ST->getBasePtr();
7746   SDValue Value = ST->getValue();
7747   MachineMemOperand *MMO = ST->getMemOperand();
7748 
7749   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7750                       Value);
7751   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7752 }
7753 
7754 // FIXME: Remove this once the ANDI glue bug is fixed:
7755 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7756   assert(Op.getValueType() == MVT::i1 &&
7757          "Custom lowering only for i1 results");
7758 
7759   SDLoc DL(Op);
7760   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7761 }
7762 
7763 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7764                                                SelectionDAG &DAG) const {
7765 
7766   // Implements a vector truncate that fits in a vector register as a shuffle.
7767   // We want to legalize vector truncates down to where the source fits in
7768   // a vector register (and target is therefore smaller than vector register
7769   // size).  At that point legalization will try to custom lower the sub-legal
7770   // result and get here - where we can contain the truncate as a single target
7771   // operation.
7772 
7773   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7774   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7775   //
7776   // We will implement it for big-endian ordering as this (where x denotes
7777   // undefined):
7778   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7779   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7780   //
7781   // The same operation in little-endian ordering will be:
7782   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7783   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7784 
7785   EVT TrgVT = Op.getValueType();
7786   assert(TrgVT.isVector() && "Vector type expected.");
7787   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7788   EVT EltVT = TrgVT.getVectorElementType();
7789   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7790       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7791       !isPowerOf2_32(EltVT.getSizeInBits()))
7792     return SDValue();
7793 
7794   SDValue N1 = Op.getOperand(0);
7795   EVT SrcVT = N1.getValueType();
7796   unsigned SrcSize = SrcVT.getSizeInBits();
7797   if (SrcSize > 256 ||
7798       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7799       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7800     return SDValue();
7801   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7802     return SDValue();
7803 
7804   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7805   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7806 
7807   SDLoc DL(Op);
7808   SDValue Op1, Op2;
7809   if (SrcSize == 256) {
7810     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7811     EVT SplitVT =
7812         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7813     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7814     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7815                       DAG.getConstant(0, DL, VecIdxTy));
7816     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7817                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7818   }
7819   else {
7820     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7821     Op2 = DAG.getUNDEF(WideVT);
7822   }
7823 
7824   // First list the elements we want to keep.
7825   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7826   SmallVector<int, 16> ShuffV;
7827   if (Subtarget.isLittleEndian())
7828     for (unsigned i = 0; i < TrgNumElts; ++i)
7829       ShuffV.push_back(i * SizeMult);
7830   else
7831     for (unsigned i = 1; i <= TrgNumElts; ++i)
7832       ShuffV.push_back(i * SizeMult - 1);
7833 
7834   // Populate the remaining elements with undefs.
7835   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7836     // ShuffV.push_back(i + WideNumElts);
7837     ShuffV.push_back(WideNumElts + 1);
7838 
7839   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7840   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7841   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7842 }
7843 
7844 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7845 /// possible.
7846 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7847   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7848   EVT ResVT = Op.getValueType();
7849   EVT CmpVT = Op.getOperand(0).getValueType();
7850   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7851   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7852   SDLoc dl(Op);
7853 
7854   // Without power9-vector, we don't have native instruction for f128 comparison.
7855   // Following transformation to libcall is needed for setcc:
7856   // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7857   if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
7858     SDValue Z = DAG.getSetCC(
7859         dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
7860         LHS, RHS, CC);
7861     SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
7862     return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
7863   }
7864 
7865   // Not FP, or using SPE? Not a fsel.
7866   if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
7867       Subtarget.hasSPE())
7868     return Op;
7869 
7870   SDNodeFlags Flags = Op.getNode()->getFlags();
7871 
7872   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7873   // presence of infinities.
7874   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7875     switch (CC) {
7876     default:
7877       break;
7878     case ISD::SETOGT:
7879     case ISD::SETGT:
7880       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7881     case ISD::SETOLT:
7882     case ISD::SETLT:
7883       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7884     }
7885   }
7886 
7887   // We might be able to do better than this under some circumstances, but in
7888   // general, fsel-based lowering of select is a finite-math-only optimization.
7889   // For more information, see section F.3 of the 2.06 ISA specification.
7890   // With ISA 3.0
7891   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7892       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7893     return Op;
7894 
7895   // If the RHS of the comparison is a 0.0, we don't need to do the
7896   // subtraction at all.
7897   SDValue Sel1;
7898   if (isFloatingPointZero(RHS))
7899     switch (CC) {
7900     default: break;       // SETUO etc aren't handled by fsel.
7901     case ISD::SETNE:
7902       std::swap(TV, FV);
7903       LLVM_FALLTHROUGH;
7904     case ISD::SETEQ:
7905       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7906         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7907       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7908       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7909         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7910       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7911                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7912     case ISD::SETULT:
7913     case ISD::SETLT:
7914       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7915       LLVM_FALLTHROUGH;
7916     case ISD::SETOGE:
7917     case ISD::SETGE:
7918       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7919         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7920       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7921     case ISD::SETUGT:
7922     case ISD::SETGT:
7923       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7924       LLVM_FALLTHROUGH;
7925     case ISD::SETOLE:
7926     case ISD::SETLE:
7927       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7928         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7929       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7930                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7931     }
7932 
7933   SDValue Cmp;
7934   switch (CC) {
7935   default: break;       // SETUO etc aren't handled by fsel.
7936   case ISD::SETNE:
7937     std::swap(TV, FV);
7938     LLVM_FALLTHROUGH;
7939   case ISD::SETEQ:
7940     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7941     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7942       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7943     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7944     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7945       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7946     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7947                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7948   case ISD::SETULT:
7949   case ISD::SETLT:
7950     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7951     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7952       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7953     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7954   case ISD::SETOGE:
7955   case ISD::SETGE:
7956     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7957     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7958       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7959     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7960   case ISD::SETUGT:
7961   case ISD::SETGT:
7962     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7963     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7964       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7965     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7966   case ISD::SETOLE:
7967   case ISD::SETLE:
7968     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7969     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7970       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7971     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7972   }
7973   return Op;
7974 }
7975 
7976 static unsigned getPPCStrictOpcode(unsigned Opc) {
7977   switch (Opc) {
7978   default:
7979     llvm_unreachable("No strict version of this opcode!");
7980   case PPCISD::FCTIDZ:
7981     return PPCISD::STRICT_FCTIDZ;
7982   case PPCISD::FCTIWZ:
7983     return PPCISD::STRICT_FCTIWZ;
7984   case PPCISD::FCTIDUZ:
7985     return PPCISD::STRICT_FCTIDUZ;
7986   case PPCISD::FCTIWUZ:
7987     return PPCISD::STRICT_FCTIWUZ;
7988   case PPCISD::FCFID:
7989     return PPCISD::STRICT_FCFID;
7990   case PPCISD::FCFIDU:
7991     return PPCISD::STRICT_FCFIDU;
7992   case PPCISD::FCFIDS:
7993     return PPCISD::STRICT_FCFIDS;
7994   case PPCISD::FCFIDUS:
7995     return PPCISD::STRICT_FCFIDUS;
7996   }
7997 }
7998 
7999 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8000                               const PPCSubtarget &Subtarget) {
8001   SDLoc dl(Op);
8002   bool IsStrict = Op->isStrictFPOpcode();
8003   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8004                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8005 
8006   // TODO: Any other flags to propagate?
8007   SDNodeFlags Flags;
8008   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8009 
8010   // For strict nodes, source is the second operand.
8011   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8012   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8013   assert(Src.getValueType().isFloatingPoint());
8014   if (Src.getValueType() == MVT::f32) {
8015     if (IsStrict) {
8016       Src =
8017           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8018                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8019       Chain = Src.getValue(1);
8020     } else
8021       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8022   }
8023   SDValue Conv;
8024   unsigned Opc = ISD::DELETED_NODE;
8025   switch (Op.getSimpleValueType().SimpleTy) {
8026   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8027   case MVT::i32:
8028     Opc = IsSigned ? PPCISD::FCTIWZ
8029                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8030     break;
8031   case MVT::i64:
8032     assert((IsSigned || Subtarget.hasFPCVT()) &&
8033            "i64 FP_TO_UINT is supported only with FPCVT");
8034     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8035   }
8036   if (IsStrict) {
8037     Opc = getPPCStrictOpcode(Opc);
8038     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8039                        {Chain, Src}, Flags);
8040   } else {
8041     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8042   }
8043   return Conv;
8044 }
8045 
8046 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8047                                                SelectionDAG &DAG,
8048                                                const SDLoc &dl) const {
8049   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8050   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8051                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8052   bool IsStrict = Op->isStrictFPOpcode();
8053 
8054   // Convert the FP value to an int value through memory.
8055   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8056                   (IsSigned || Subtarget.hasFPCVT());
8057   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8058   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8059   MachinePointerInfo MPI =
8060       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8061 
8062   // Emit a store to the stack slot.
8063   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8064   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8065   if (i32Stack) {
8066     MachineFunction &MF = DAG.getMachineFunction();
8067     Alignment = Align(4);
8068     MachineMemOperand *MMO =
8069         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8070     SDValue Ops[] = { Chain, Tmp, FIPtr };
8071     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8072               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8073   } else
8074     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8075 
8076   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8077   // add in a bias on big endian.
8078   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8079     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8080                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8081     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8082   }
8083 
8084   RLI.Chain = Chain;
8085   RLI.Ptr = FIPtr;
8086   RLI.MPI = MPI;
8087   RLI.Alignment = Alignment;
8088 }
8089 
8090 /// Custom lowers floating point to integer conversions to use
8091 /// the direct move instructions available in ISA 2.07 to avoid the
8092 /// need for load/store combinations.
8093 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8094                                                     SelectionDAG &DAG,
8095                                                     const SDLoc &dl) const {
8096   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8097   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8098   if (Op->isStrictFPOpcode())
8099     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8100   else
8101     return Mov;
8102 }
8103 
8104 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8105                                           const SDLoc &dl) const {
8106   bool IsStrict = Op->isStrictFPOpcode();
8107   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8108                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8109   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8110   EVT SrcVT = Src.getValueType();
8111   EVT DstVT = Op.getValueType();
8112 
8113   // FP to INT conversions are legal for f128.
8114   if (SrcVT == MVT::f128)
8115     return Subtarget.hasP9Vector() ? Op : SDValue();
8116 
8117   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8118   // PPC (the libcall is not available).
8119   if (SrcVT == MVT::ppcf128) {
8120     if (DstVT == MVT::i32) {
8121       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8122       // set other fast-math flags to FP operations in both strict and
8123       // non-strict cases. (FP_TO_SINT, FSUB)
8124       SDNodeFlags Flags;
8125       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8126 
8127       if (IsSigned) {
8128         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8129                                  DAG.getIntPtrConstant(0, dl));
8130         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8131                                  DAG.getIntPtrConstant(1, dl));
8132 
8133         // Add the two halves of the long double in round-to-zero mode, and use
8134         // a smaller FP_TO_SINT.
8135         if (IsStrict) {
8136           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8137                                     DAG.getVTList(MVT::f64, MVT::Other),
8138                                     {Op.getOperand(0), Lo, Hi}, Flags);
8139           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8140                              DAG.getVTList(MVT::i32, MVT::Other),
8141                              {Res.getValue(1), Res}, Flags);
8142         } else {
8143           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8144           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8145         }
8146       } else {
8147         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8148         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8149         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8150         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8151         if (IsStrict) {
8152           // Sel = Src < 0x80000000
8153           // FltOfs = select Sel, 0.0, 0x80000000
8154           // IntOfs = select Sel, 0, 0x80000000
8155           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8156           SDValue Chain = Op.getOperand(0);
8157           EVT SetCCVT =
8158               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8159           EVT DstSetCCVT =
8160               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8161           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8162                                      Chain, true);
8163           Chain = Sel.getValue(1);
8164 
8165           SDValue FltOfs = DAG.getSelect(
8166               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8167           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8168 
8169           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8170                                     DAG.getVTList(SrcVT, MVT::Other),
8171                                     {Chain, Src, FltOfs}, Flags);
8172           Chain = Val.getValue(1);
8173           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8174                                      DAG.getVTList(DstVT, MVT::Other),
8175                                      {Chain, Val}, Flags);
8176           Chain = SInt.getValue(1);
8177           SDValue IntOfs = DAG.getSelect(
8178               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8179           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8180           return DAG.getMergeValues({Result, Chain}, dl);
8181         } else {
8182           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8183           // FIXME: generated code sucks.
8184           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8185           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8186           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8187           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8188           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8189         }
8190       }
8191     }
8192 
8193     return SDValue();
8194   }
8195 
8196   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8197     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8198 
8199   ReuseLoadInfo RLI;
8200   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8201 
8202   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8203                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8204 }
8205 
8206 // We're trying to insert a regular store, S, and then a load, L. If the
8207 // incoming value, O, is a load, we might just be able to have our load use the
8208 // address used by O. However, we don't know if anything else will store to
8209 // that address before we can load from it. To prevent this situation, we need
8210 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8211 // the same chain operand as O, we create a token factor from the chain results
8212 // of O and L, and we replace all uses of O's chain result with that token
8213 // factor (see spliceIntoChain below for this last part).
8214 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8215                                             ReuseLoadInfo &RLI,
8216                                             SelectionDAG &DAG,
8217                                             ISD::LoadExtType ET) const {
8218   // Conservatively skip reusing for constrained FP nodes.
8219   if (Op->isStrictFPOpcode())
8220     return false;
8221 
8222   SDLoc dl(Op);
8223   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8224                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8225   if (ET == ISD::NON_EXTLOAD &&
8226       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8227       isOperationLegalOrCustom(Op.getOpcode(),
8228                                Op.getOperand(0).getValueType())) {
8229 
8230     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8231     return true;
8232   }
8233 
8234   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8235   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8236       LD->isNonTemporal())
8237     return false;
8238   if (LD->getMemoryVT() != MemVT)
8239     return false;
8240 
8241   // If the result of the load is an illegal type, then we can't build a
8242   // valid chain for reuse since the legalised loads and token factor node that
8243   // ties the legalised loads together uses a different output chain then the
8244   // illegal load.
8245   if (!isTypeLegal(LD->getValueType(0)))
8246     return false;
8247 
8248   RLI.Ptr = LD->getBasePtr();
8249   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8250     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8251            "Non-pre-inc AM on PPC?");
8252     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8253                           LD->getOffset());
8254   }
8255 
8256   RLI.Chain = LD->getChain();
8257   RLI.MPI = LD->getPointerInfo();
8258   RLI.IsDereferenceable = LD->isDereferenceable();
8259   RLI.IsInvariant = LD->isInvariant();
8260   RLI.Alignment = LD->getAlign();
8261   RLI.AAInfo = LD->getAAInfo();
8262   RLI.Ranges = LD->getRanges();
8263 
8264   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8265   return true;
8266 }
8267 
8268 // Given the head of the old chain, ResChain, insert a token factor containing
8269 // it and NewResChain, and make users of ResChain now be users of that token
8270 // factor.
8271 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8272 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8273                                         SDValue NewResChain,
8274                                         SelectionDAG &DAG) const {
8275   if (!ResChain)
8276     return;
8277 
8278   SDLoc dl(NewResChain);
8279 
8280   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8281                            NewResChain, DAG.getUNDEF(MVT::Other));
8282   assert(TF.getNode() != NewResChain.getNode() &&
8283          "A new TF really is required here");
8284 
8285   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8286   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8287 }
8288 
8289 /// Analyze profitability of direct move
8290 /// prefer float load to int load plus direct move
8291 /// when there is no integer use of int load
8292 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8293   SDNode *Origin = Op.getOperand(0).getNode();
8294   if (Origin->getOpcode() != ISD::LOAD)
8295     return true;
8296 
8297   // If there is no LXSIBZX/LXSIHZX, like Power8,
8298   // prefer direct move if the memory size is 1 or 2 bytes.
8299   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8300   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8301     return true;
8302 
8303   for (SDNode::use_iterator UI = Origin->use_begin(),
8304                             UE = Origin->use_end();
8305        UI != UE; ++UI) {
8306 
8307     // Only look at the users of the loaded value.
8308     if (UI.getUse().get().getResNo() != 0)
8309       continue;
8310 
8311     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8312         UI->getOpcode() != ISD::UINT_TO_FP &&
8313         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8314         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8315       return true;
8316   }
8317 
8318   return false;
8319 }
8320 
8321 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8322                               const PPCSubtarget &Subtarget,
8323                               SDValue Chain = SDValue()) {
8324   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8325                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8326   SDLoc dl(Op);
8327 
8328   // TODO: Any other flags to propagate?
8329   SDNodeFlags Flags;
8330   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8331 
8332   // If we have FCFIDS, then use it when converting to single-precision.
8333   // Otherwise, convert to double-precision and then round.
8334   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8335   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8336                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8337   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8338   if (Op->isStrictFPOpcode()) {
8339     if (!Chain)
8340       Chain = Op.getOperand(0);
8341     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8342                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8343   } else
8344     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8345 }
8346 
8347 /// Custom lowers integer to floating point conversions to use
8348 /// the direct move instructions available in ISA 2.07 to avoid the
8349 /// need for load/store combinations.
8350 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8351                                                     SelectionDAG &DAG,
8352                                                     const SDLoc &dl) const {
8353   assert((Op.getValueType() == MVT::f32 ||
8354           Op.getValueType() == MVT::f64) &&
8355          "Invalid floating point type as target of conversion");
8356   assert(Subtarget.hasFPCVT() &&
8357          "Int to FP conversions with direct moves require FPCVT");
8358   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8359   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8360   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8361                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8362   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8363   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8364   return convertIntToFP(Op, Mov, DAG, Subtarget);
8365 }
8366 
8367 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8368 
8369   EVT VecVT = Vec.getValueType();
8370   assert(VecVT.isVector() && "Expected a vector type.");
8371   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8372 
8373   EVT EltVT = VecVT.getVectorElementType();
8374   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8375   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8376 
8377   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8378   SmallVector<SDValue, 16> Ops(NumConcat);
8379   Ops[0] = Vec;
8380   SDValue UndefVec = DAG.getUNDEF(VecVT);
8381   for (unsigned i = 1; i < NumConcat; ++i)
8382     Ops[i] = UndefVec;
8383 
8384   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8385 }
8386 
8387 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8388                                                 const SDLoc &dl) const {
8389   bool IsStrict = Op->isStrictFPOpcode();
8390   unsigned Opc = Op.getOpcode();
8391   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8392   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8393           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8394          "Unexpected conversion type");
8395   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8396          "Supports conversions to v2f64/v4f32 only.");
8397 
8398   // TODO: Any other flags to propagate?
8399   SDNodeFlags Flags;
8400   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8401 
8402   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8403   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8404 
8405   SDValue Wide = widenVec(DAG, Src, dl);
8406   EVT WideVT = Wide.getValueType();
8407   unsigned WideNumElts = WideVT.getVectorNumElements();
8408   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8409 
8410   SmallVector<int, 16> ShuffV;
8411   for (unsigned i = 0; i < WideNumElts; ++i)
8412     ShuffV.push_back(i + WideNumElts);
8413 
8414   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8415   int SaveElts = FourEltRes ? 4 : 2;
8416   if (Subtarget.isLittleEndian())
8417     for (int i = 0; i < SaveElts; i++)
8418       ShuffV[i * Stride] = i;
8419   else
8420     for (int i = 1; i <= SaveElts; i++)
8421       ShuffV[i * Stride - 1] = i - 1;
8422 
8423   SDValue ShuffleSrc2 =
8424       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8425   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8426 
8427   SDValue Extend;
8428   if (SignedConv) {
8429     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8430     EVT ExtVT = Src.getValueType();
8431     if (Subtarget.hasP9Altivec())
8432       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8433                                IntermediateVT.getVectorNumElements());
8434 
8435     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8436                          DAG.getValueType(ExtVT));
8437   } else
8438     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8439 
8440   if (IsStrict)
8441     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8442                        {Op.getOperand(0), Extend}, Flags);
8443 
8444   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8445 }
8446 
8447 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8448                                           SelectionDAG &DAG) const {
8449   SDLoc dl(Op);
8450   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8451                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8452   bool IsStrict = Op->isStrictFPOpcode();
8453   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8454   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8455 
8456   // TODO: Any other flags to propagate?
8457   SDNodeFlags Flags;
8458   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8459 
8460   EVT InVT = Src.getValueType();
8461   EVT OutVT = Op.getValueType();
8462   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8463       isOperationCustom(Op.getOpcode(), InVT))
8464     return LowerINT_TO_FPVector(Op, DAG, dl);
8465 
8466   // Conversions to f128 are legal.
8467   if (Op.getValueType() == MVT::f128)
8468     return Subtarget.hasP9Vector() ? Op : SDValue();
8469 
8470   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8471   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8472     return SDValue();
8473 
8474   if (Src.getValueType() == MVT::i1) {
8475     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8476                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8477                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8478     if (IsStrict)
8479       return DAG.getMergeValues({Sel, Chain}, dl);
8480     else
8481       return Sel;
8482   }
8483 
8484   // If we have direct moves, we can do all the conversion, skip the store/load
8485   // however, without FPCVT we can't do most conversions.
8486   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8487       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8488     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8489 
8490   assert((IsSigned || Subtarget.hasFPCVT()) &&
8491          "UINT_TO_FP is supported only with FPCVT");
8492 
8493   if (Src.getValueType() == MVT::i64) {
8494     SDValue SINT = Src;
8495     // When converting to single-precision, we actually need to convert
8496     // to double-precision first and then round to single-precision.
8497     // To avoid double-rounding effects during that operation, we have
8498     // to prepare the input operand.  Bits that might be truncated when
8499     // converting to double-precision are replaced by a bit that won't
8500     // be lost at this stage, but is below the single-precision rounding
8501     // position.
8502     //
8503     // However, if -enable-unsafe-fp-math is in effect, accept double
8504     // rounding to avoid the extra overhead.
8505     if (Op.getValueType() == MVT::f32 &&
8506         !Subtarget.hasFPCVT() &&
8507         !DAG.getTarget().Options.UnsafeFPMath) {
8508 
8509       // Twiddle input to make sure the low 11 bits are zero.  (If this
8510       // is the case, we are guaranteed the value will fit into the 53 bit
8511       // mantissa of an IEEE double-precision value without rounding.)
8512       // If any of those low 11 bits were not zero originally, make sure
8513       // bit 12 (value 2048) is set instead, so that the final rounding
8514       // to single-precision gets the correct result.
8515       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8516                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8517       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8518                           Round, DAG.getConstant(2047, dl, MVT::i64));
8519       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8520       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8521                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8522 
8523       // However, we cannot use that value unconditionally: if the magnitude
8524       // of the input value is small, the bit-twiddling we did above might
8525       // end up visibly changing the output.  Fortunately, in that case, we
8526       // don't need to twiddle bits since the original input will convert
8527       // exactly to double-precision floating-point already.  Therefore,
8528       // construct a conditional to use the original value if the top 11
8529       // bits are all sign-bit copies, and use the rounded value computed
8530       // above otherwise.
8531       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8532                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8533       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8534                          Cond, DAG.getConstant(1, dl, MVT::i64));
8535       Cond = DAG.getSetCC(
8536           dl,
8537           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8538           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8539 
8540       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8541     }
8542 
8543     ReuseLoadInfo RLI;
8544     SDValue Bits;
8545 
8546     MachineFunction &MF = DAG.getMachineFunction();
8547     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8548       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8549                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8550       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8551     } else if (Subtarget.hasLFIWAX() &&
8552                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8553       MachineMemOperand *MMO =
8554         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8555                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8556       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8557       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8558                                      DAG.getVTList(MVT::f64, MVT::Other),
8559                                      Ops, MVT::i32, MMO);
8560       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8561     } else if (Subtarget.hasFPCVT() &&
8562                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8563       MachineMemOperand *MMO =
8564         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8565                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8566       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8567       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8568                                      DAG.getVTList(MVT::f64, MVT::Other),
8569                                      Ops, MVT::i32, MMO);
8570       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8571     } else if (((Subtarget.hasLFIWAX() &&
8572                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8573                 (Subtarget.hasFPCVT() &&
8574                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8575                SINT.getOperand(0).getValueType() == MVT::i32) {
8576       MachineFrameInfo &MFI = MF.getFrameInfo();
8577       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8578 
8579       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8580       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8581 
8582       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8583                                    MachinePointerInfo::getFixedStack(
8584                                        DAG.getMachineFunction(), FrameIdx));
8585       Chain = Store;
8586 
8587       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8588              "Expected an i32 store");
8589 
8590       RLI.Ptr = FIdx;
8591       RLI.Chain = Chain;
8592       RLI.MPI =
8593           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8594       RLI.Alignment = Align(4);
8595 
8596       MachineMemOperand *MMO =
8597         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8598                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8599       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8600       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8601                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8602                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8603                                      Ops, MVT::i32, MMO);
8604       Chain = Bits.getValue(1);
8605     } else
8606       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8607 
8608     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8609     if (IsStrict)
8610       Chain = FP.getValue(1);
8611 
8612     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8613       if (IsStrict)
8614         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8615                          DAG.getVTList(MVT::f32, MVT::Other),
8616                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8617       else
8618         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8619                          DAG.getIntPtrConstant(0, dl));
8620     }
8621     return FP;
8622   }
8623 
8624   assert(Src.getValueType() == MVT::i32 &&
8625          "Unhandled INT_TO_FP type in custom expander!");
8626   // Since we only generate this in 64-bit mode, we can take advantage of
8627   // 64-bit registers.  In particular, sign extend the input value into the
8628   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8629   // then lfd it and fcfid it.
8630   MachineFunction &MF = DAG.getMachineFunction();
8631   MachineFrameInfo &MFI = MF.getFrameInfo();
8632   EVT PtrVT = getPointerTy(MF.getDataLayout());
8633 
8634   SDValue Ld;
8635   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8636     ReuseLoadInfo RLI;
8637     bool ReusingLoad;
8638     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8639       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8640       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8641 
8642       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8643                                    MachinePointerInfo::getFixedStack(
8644                                        DAG.getMachineFunction(), FrameIdx));
8645       Chain = Store;
8646 
8647       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8648              "Expected an i32 store");
8649 
8650       RLI.Ptr = FIdx;
8651       RLI.Chain = Chain;
8652       RLI.MPI =
8653           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8654       RLI.Alignment = Align(4);
8655     }
8656 
8657     MachineMemOperand *MMO =
8658       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8659                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8660     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8661     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8662                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8663                                  MVT::i32, MMO);
8664     Chain = Ld.getValue(1);
8665     if (ReusingLoad)
8666       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8667   } else {
8668     assert(Subtarget.isPPC64() &&
8669            "i32->FP without LFIWAX supported only on PPC64");
8670 
8671     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8672     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8673 
8674     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8675 
8676     // STD the extended value into the stack slot.
8677     SDValue Store = DAG.getStore(
8678         Chain, dl, Ext64, FIdx,
8679         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8680     Chain = Store;
8681 
8682     // Load the value as a double.
8683     Ld = DAG.getLoad(
8684         MVT::f64, dl, Chain, FIdx,
8685         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8686     Chain = Ld.getValue(1);
8687   }
8688 
8689   // FCFID it and return it.
8690   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8691   if (IsStrict)
8692     Chain = FP.getValue(1);
8693   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8694     if (IsStrict)
8695       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8696                        DAG.getVTList(MVT::f32, MVT::Other),
8697                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8698     else
8699       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8700                        DAG.getIntPtrConstant(0, dl));
8701   }
8702   return FP;
8703 }
8704 
8705 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8706                                             SelectionDAG &DAG) const {
8707   SDLoc dl(Op);
8708   /*
8709    The rounding mode is in bits 30:31 of FPSR, and has the following
8710    settings:
8711      00 Round to nearest
8712      01 Round to 0
8713      10 Round to +inf
8714      11 Round to -inf
8715 
8716   FLT_ROUNDS, on the other hand, expects the following:
8717     -1 Undefined
8718      0 Round to 0
8719      1 Round to nearest
8720      2 Round to +inf
8721      3 Round to -inf
8722 
8723   To perform the conversion, we do:
8724     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8725   */
8726 
8727   MachineFunction &MF = DAG.getMachineFunction();
8728   EVT VT = Op.getValueType();
8729   EVT PtrVT = getPointerTy(MF.getDataLayout());
8730 
8731   // Save FP Control Word to register
8732   SDValue Chain = Op.getOperand(0);
8733   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8734   Chain = MFFS.getValue(1);
8735 
8736   SDValue CWD;
8737   if (isTypeLegal(MVT::i64)) {
8738     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8739                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8740   } else {
8741     // Save FP register to stack slot
8742     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8743     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8744     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8745 
8746     // Load FP Control Word from low 32 bits of stack slot.
8747     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8748            "Stack slot adjustment is valid only on big endian subtargets!");
8749     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8750     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8751     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8752     Chain = CWD.getValue(1);
8753   }
8754 
8755   // Transform as necessary
8756   SDValue CWD1 =
8757     DAG.getNode(ISD::AND, dl, MVT::i32,
8758                 CWD, DAG.getConstant(3, dl, MVT::i32));
8759   SDValue CWD2 =
8760     DAG.getNode(ISD::SRL, dl, MVT::i32,
8761                 DAG.getNode(ISD::AND, dl, MVT::i32,
8762                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8763                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8764                             DAG.getConstant(3, dl, MVT::i32)),
8765                 DAG.getConstant(1, dl, MVT::i32));
8766 
8767   SDValue RetVal =
8768     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8769 
8770   RetVal =
8771       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8772                   dl, VT, RetVal);
8773 
8774   return DAG.getMergeValues({RetVal, Chain}, dl);
8775 }
8776 
8777 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8778   EVT VT = Op.getValueType();
8779   unsigned BitWidth = VT.getSizeInBits();
8780   SDLoc dl(Op);
8781   assert(Op.getNumOperands() == 3 &&
8782          VT == Op.getOperand(1).getValueType() &&
8783          "Unexpected SHL!");
8784 
8785   // Expand into a bunch of logical ops.  Note that these ops
8786   // depend on the PPC behavior for oversized shift amounts.
8787   SDValue Lo = Op.getOperand(0);
8788   SDValue Hi = Op.getOperand(1);
8789   SDValue Amt = Op.getOperand(2);
8790   EVT AmtVT = Amt.getValueType();
8791 
8792   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8793                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8794   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8795   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8796   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8797   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8798                              DAG.getConstant(-BitWidth, dl, AmtVT));
8799   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8800   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8801   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8802   SDValue OutOps[] = { OutLo, OutHi };
8803   return DAG.getMergeValues(OutOps, dl);
8804 }
8805 
8806 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8807   EVT VT = Op.getValueType();
8808   SDLoc dl(Op);
8809   unsigned BitWidth = VT.getSizeInBits();
8810   assert(Op.getNumOperands() == 3 &&
8811          VT == Op.getOperand(1).getValueType() &&
8812          "Unexpected SRL!");
8813 
8814   // Expand into a bunch of logical ops.  Note that these ops
8815   // depend on the PPC behavior for oversized shift amounts.
8816   SDValue Lo = Op.getOperand(0);
8817   SDValue Hi = Op.getOperand(1);
8818   SDValue Amt = Op.getOperand(2);
8819   EVT AmtVT = Amt.getValueType();
8820 
8821   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8822                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8823   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8824   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8825   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8826   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8827                              DAG.getConstant(-BitWidth, dl, AmtVT));
8828   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8829   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8830   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8831   SDValue OutOps[] = { OutLo, OutHi };
8832   return DAG.getMergeValues(OutOps, dl);
8833 }
8834 
8835 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8836   SDLoc dl(Op);
8837   EVT VT = Op.getValueType();
8838   unsigned BitWidth = VT.getSizeInBits();
8839   assert(Op.getNumOperands() == 3 &&
8840          VT == Op.getOperand(1).getValueType() &&
8841          "Unexpected SRA!");
8842 
8843   // Expand into a bunch of logical ops, followed by a select_cc.
8844   SDValue Lo = Op.getOperand(0);
8845   SDValue Hi = Op.getOperand(1);
8846   SDValue Amt = Op.getOperand(2);
8847   EVT AmtVT = Amt.getValueType();
8848 
8849   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8850                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8851   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8852   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8853   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8854   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8855                              DAG.getConstant(-BitWidth, dl, AmtVT));
8856   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8857   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8858   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8859                                   Tmp4, Tmp6, ISD::SETLE);
8860   SDValue OutOps[] = { OutLo, OutHi };
8861   return DAG.getMergeValues(OutOps, dl);
8862 }
8863 
8864 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8865                                             SelectionDAG &DAG) const {
8866   SDLoc dl(Op);
8867   EVT VT = Op.getValueType();
8868   unsigned BitWidth = VT.getSizeInBits();
8869 
8870   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8871   SDValue X = Op.getOperand(0);
8872   SDValue Y = Op.getOperand(1);
8873   SDValue Z = Op.getOperand(2);
8874   EVT AmtVT = Z.getValueType();
8875 
8876   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8877   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8878   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8879   // on PowerPC shift by BW being well defined.
8880   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8881                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8882   SDValue SubZ =
8883       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8884   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8885   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8886   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8887 }
8888 
8889 //===----------------------------------------------------------------------===//
8890 // Vector related lowering.
8891 //
8892 
8893 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8894 /// element size of SplatSize. Cast the result to VT.
8895 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8896                                       SelectionDAG &DAG, const SDLoc &dl) {
8897   static const MVT VTys[] = { // canonical VT to use for each size.
8898     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8899   };
8900 
8901   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8902 
8903   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8904   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8905     SplatSize = 1;
8906     Val = 0xFF;
8907   }
8908 
8909   EVT CanonicalVT = VTys[SplatSize-1];
8910 
8911   // Build a canonical splat for this value.
8912   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8913 }
8914 
8915 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8916 /// specified intrinsic ID.
8917 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8918                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8919   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8920   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8921                      DAG.getConstant(IID, dl, MVT::i32), Op);
8922 }
8923 
8924 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8925 /// specified intrinsic ID.
8926 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8927                                 SelectionDAG &DAG, const SDLoc &dl,
8928                                 EVT DestVT = MVT::Other) {
8929   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8930   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8931                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8932 }
8933 
8934 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8935 /// specified intrinsic ID.
8936 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8937                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8938                                 EVT DestVT = MVT::Other) {
8939   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8940   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8941                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8942 }
8943 
8944 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8945 /// amount.  The result has the specified value type.
8946 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8947                            SelectionDAG &DAG, const SDLoc &dl) {
8948   // Force LHS/RHS to be the right type.
8949   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8950   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8951 
8952   int Ops[16];
8953   for (unsigned i = 0; i != 16; ++i)
8954     Ops[i] = i + Amt;
8955   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8956   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8957 }
8958 
8959 /// Do we have an efficient pattern in a .td file for this node?
8960 ///
8961 /// \param V - pointer to the BuildVectorSDNode being matched
8962 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8963 ///
8964 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8965 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8966 /// the opposite is true (expansion is beneficial) are:
8967 /// - The node builds a vector out of integers that are not 32 or 64-bits
8968 /// - The node builds a vector out of constants
8969 /// - The node is a "load-and-splat"
8970 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8971 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8972                                             bool HasDirectMove,
8973                                             bool HasP8Vector) {
8974   EVT VecVT = V->getValueType(0);
8975   bool RightType = VecVT == MVT::v2f64 ||
8976     (HasP8Vector && VecVT == MVT::v4f32) ||
8977     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8978   if (!RightType)
8979     return false;
8980 
8981   bool IsSplat = true;
8982   bool IsLoad = false;
8983   SDValue Op0 = V->getOperand(0);
8984 
8985   // This function is called in a block that confirms the node is not a constant
8986   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8987   // different constants.
8988   if (V->isConstant())
8989     return false;
8990   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8991     if (V->getOperand(i).isUndef())
8992       return false;
8993     // We want to expand nodes that represent load-and-splat even if the
8994     // loaded value is a floating point truncation or conversion to int.
8995     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8996         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8997          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8998         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8999          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9000         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9001          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9002       IsLoad = true;
9003     // If the operands are different or the input is not a load and has more
9004     // uses than just this BV node, then it isn't a splat.
9005     if (V->getOperand(i) != Op0 ||
9006         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9007       IsSplat = false;
9008   }
9009   return !(IsSplat && IsLoad);
9010 }
9011 
9012 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9013 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9014 
9015   SDLoc dl(Op);
9016   SDValue Op0 = Op->getOperand(0);
9017 
9018   if ((Op.getValueType() != MVT::f128) ||
9019       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9020       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9021       (Op0.getOperand(1).getValueType() != MVT::i64))
9022     return SDValue();
9023 
9024   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9025                      Op0.getOperand(1));
9026 }
9027 
9028 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9029   const SDValue *InputLoad = &Op;
9030   if (InputLoad->getOpcode() == ISD::BITCAST)
9031     InputLoad = &InputLoad->getOperand(0);
9032   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9033       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9034     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9035     InputLoad = &InputLoad->getOperand(0);
9036   }
9037   if (InputLoad->getOpcode() != ISD::LOAD)
9038     return nullptr;
9039   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9040   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9041 }
9042 
9043 // Convert the argument APFloat to a single precision APFloat if there is no
9044 // loss in information during the conversion to single precision APFloat and the
9045 // resulting number is not a denormal number. Return true if successful.
9046 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9047   APFloat APFloatToConvert = ArgAPFloat;
9048   bool LosesInfo = true;
9049   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9050                            &LosesInfo);
9051   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9052   if (Success)
9053     ArgAPFloat = APFloatToConvert;
9054   return Success;
9055 }
9056 
9057 // Bitcast the argument APInt to a double and convert it to a single precision
9058 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9059 // argument if there is no loss in information during the conversion from
9060 // double to single precision APFloat and the resulting number is not a denormal
9061 // number. Return true if successful.
9062 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9063   double DpValue = ArgAPInt.bitsToDouble();
9064   APFloat APFloatDp(DpValue);
9065   bool Success = convertToNonDenormSingle(APFloatDp);
9066   if (Success)
9067     ArgAPInt = APFloatDp.bitcastToAPInt();
9068   return Success;
9069 }
9070 
9071 // Nondestructive check for convertTonNonDenormSingle.
9072 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9073   // Only convert if it loses info, since XXSPLTIDP should
9074   // handle the other case.
9075   APFloat APFloatToConvert = ArgAPFloat;
9076   bool LosesInfo = true;
9077   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9078                            &LosesInfo);
9079 
9080   return (!LosesInfo && !APFloatToConvert.isDenormal());
9081 }
9082 
9083 // If this is a case we can't handle, return null and let the default
9084 // expansion code take care of it.  If we CAN select this case, and if it
9085 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9086 // this case more efficiently than a constant pool load, lower it to the
9087 // sequence of ops that should be used.
9088 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9089                                              SelectionDAG &DAG) const {
9090   SDLoc dl(Op);
9091   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9092   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9093 
9094   // Check if this is a splat of a constant value.
9095   APInt APSplatBits, APSplatUndef;
9096   unsigned SplatBitSize;
9097   bool HasAnyUndefs;
9098   bool BVNIsConstantSplat =
9099       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9100                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9101 
9102   // If it is a splat of a double, check if we can shrink it to a 32 bit
9103   // non-denormal float which when converted back to double gives us the same
9104   // double. This is to exploit the XXSPLTIDP instruction.
9105   // If we lose precision, we use XXSPLTI32DX.
9106   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9107       Subtarget.hasPrefixInstrs()) {
9108     // Check the type first to short-circuit so we don't modify APSplatBits if
9109     // this block isn't executed.
9110     if ((Op->getValueType(0) == MVT::v2f64) &&
9111         convertToNonDenormSingle(APSplatBits)) {
9112       SDValue SplatNode = DAG.getNode(
9113           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9114           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9115       return DAG.getBitcast(Op.getValueType(), SplatNode);
9116     } else {
9117       // We may lose precision, so we have to use XXSPLTI32DX.
9118 
9119       uint32_t Hi =
9120           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9121       uint32_t Lo =
9122           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9123       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9124 
9125       if (!Hi || !Lo)
9126         // If either load is 0, then we should generate XXLXOR to set to 0.
9127         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9128 
9129       if (Hi)
9130         SplatNode = DAG.getNode(
9131             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9132             DAG.getTargetConstant(0, dl, MVT::i32),
9133             DAG.getTargetConstant(Hi, dl, MVT::i32));
9134 
9135       if (Lo)
9136         SplatNode =
9137             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9138                         DAG.getTargetConstant(1, dl, MVT::i32),
9139                         DAG.getTargetConstant(Lo, dl, MVT::i32));
9140 
9141       return DAG.getBitcast(Op.getValueType(), SplatNode);
9142     }
9143   }
9144 
9145   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9146 
9147     bool IsPermutedLoad = false;
9148     const SDValue *InputLoad =
9149         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
9150     // Handle load-and-splat patterns as we have instructions that will do this
9151     // in one go.
9152     if (InputLoad && DAG.isSplatValue(Op, true)) {
9153       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9154 
9155       // We have handling for 4 and 8 byte elements.
9156       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9157 
9158       // Checking for a single use of this load, we have to check for vector
9159       // width (128 bits) / ElementSize uses (since each operand of the
9160       // BUILD_VECTOR is a separate use of the value.
9161       unsigned NumUsesOfInputLD = 128 / ElementSize;
9162       for (SDValue BVInOp : Op->ops())
9163         if (BVInOp.isUndef())
9164           NumUsesOfInputLD--;
9165       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9166       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9167           ((Subtarget.hasVSX() && ElementSize == 64) ||
9168            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9169         SDValue Ops[] = {
9170           LD->getChain(),    // Chain
9171           LD->getBasePtr(),  // Ptr
9172           DAG.getValueType(Op.getValueType()) // VT
9173         };
9174         SDValue LdSplt = DAG.getMemIntrinsicNode(
9175             PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
9176             Ops, LD->getMemoryVT(), LD->getMemOperand());
9177         // Replace all uses of the output chain of the original load with the
9178         // output chain of the new load.
9179         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9180                                       LdSplt.getValue(1));
9181         return LdSplt;
9182       }
9183     }
9184 
9185     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9186     // 32-bits can be lowered to VSX instructions under certain conditions.
9187     // Without VSX, there is no pattern more efficient than expanding the node.
9188     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9189         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9190                                         Subtarget.hasP8Vector()))
9191       return Op;
9192     return SDValue();
9193   }
9194 
9195   uint64_t SplatBits = APSplatBits.getZExtValue();
9196   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9197   unsigned SplatSize = SplatBitSize / 8;
9198 
9199   // First, handle single instruction cases.
9200 
9201   // All zeros?
9202   if (SplatBits == 0) {
9203     // Canonicalize all zero vectors to be v4i32.
9204     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9205       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9206       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9207     }
9208     return Op;
9209   }
9210 
9211   // We have XXSPLTIW for constant splats four bytes wide.
9212   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9213   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9214   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9215   // turned into a 4-byte splat of 0xABABABAB.
9216   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9217     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9218                                   Op.getValueType(), DAG, dl);
9219 
9220   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9221     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9222                                   dl);
9223 
9224   // We have XXSPLTIB for constant splats one byte wide.
9225   if (Subtarget.hasP9Vector() && SplatSize == 1)
9226     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9227                                   dl);
9228 
9229   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9230   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9231                     (32-SplatBitSize));
9232   if (SextVal >= -16 && SextVal <= 15)
9233     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9234                                   dl);
9235 
9236   // Two instruction sequences.
9237 
9238   // If this value is in the range [-32,30] and is even, use:
9239   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9240   // If this value is in the range [17,31] and is odd, use:
9241   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9242   // If this value is in the range [-31,-17] and is odd, use:
9243   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9244   // Note the last two are three-instruction sequences.
9245   if (SextVal >= -32 && SextVal <= 31) {
9246     // To avoid having these optimizations undone by constant folding,
9247     // we convert to a pseudo that will be expanded later into one of
9248     // the above forms.
9249     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9250     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9251               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9252     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9253     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9254     if (VT == Op.getValueType())
9255       return RetVal;
9256     else
9257       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9258   }
9259 
9260   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9261   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9262   // for fneg/fabs.
9263   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9264     // Make -1 and vspltisw -1:
9265     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9266 
9267     // Make the VSLW intrinsic, computing 0x8000_0000.
9268     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9269                                    OnesV, DAG, dl);
9270 
9271     // xor by OnesV to invert it.
9272     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9273     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9274   }
9275 
9276   // Check to see if this is a wide variety of vsplti*, binop self cases.
9277   static const signed char SplatCsts[] = {
9278     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9279     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9280   };
9281 
9282   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9283     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9284     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9285     int i = SplatCsts[idx];
9286 
9287     // Figure out what shift amount will be used by altivec if shifted by i in
9288     // this splat size.
9289     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9290 
9291     // vsplti + shl self.
9292     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9293       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9294       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9295         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9296         Intrinsic::ppc_altivec_vslw
9297       };
9298       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9299       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9300     }
9301 
9302     // vsplti + srl self.
9303     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9304       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9305       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9306         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9307         Intrinsic::ppc_altivec_vsrw
9308       };
9309       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9310       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9311     }
9312 
9313     // vsplti + rol self.
9314     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9315                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9316       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9317       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9318         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9319         Intrinsic::ppc_altivec_vrlw
9320       };
9321       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9322       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9323     }
9324 
9325     // t = vsplti c, result = vsldoi t, t, 1
9326     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9327       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9328       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9329       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9330     }
9331     // t = vsplti c, result = vsldoi t, t, 2
9332     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9333       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9334       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9335       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9336     }
9337     // t = vsplti c, result = vsldoi t, t, 3
9338     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9339       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9340       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9341       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9342     }
9343   }
9344 
9345   return SDValue();
9346 }
9347 
9348 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9349 /// the specified operations to build the shuffle.
9350 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9351                                       SDValue RHS, SelectionDAG &DAG,
9352                                       const SDLoc &dl) {
9353   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9354   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9355   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9356 
9357   enum {
9358     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9359     OP_VMRGHW,
9360     OP_VMRGLW,
9361     OP_VSPLTISW0,
9362     OP_VSPLTISW1,
9363     OP_VSPLTISW2,
9364     OP_VSPLTISW3,
9365     OP_VSLDOI4,
9366     OP_VSLDOI8,
9367     OP_VSLDOI12
9368   };
9369 
9370   if (OpNum == OP_COPY) {
9371     if (LHSID == (1*9+2)*9+3) return LHS;
9372     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9373     return RHS;
9374   }
9375 
9376   SDValue OpLHS, OpRHS;
9377   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9378   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9379 
9380   int ShufIdxs[16];
9381   switch (OpNum) {
9382   default: llvm_unreachable("Unknown i32 permute!");
9383   case OP_VMRGHW:
9384     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9385     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9386     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9387     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9388     break;
9389   case OP_VMRGLW:
9390     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9391     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9392     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9393     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9394     break;
9395   case OP_VSPLTISW0:
9396     for (unsigned i = 0; i != 16; ++i)
9397       ShufIdxs[i] = (i&3)+0;
9398     break;
9399   case OP_VSPLTISW1:
9400     for (unsigned i = 0; i != 16; ++i)
9401       ShufIdxs[i] = (i&3)+4;
9402     break;
9403   case OP_VSPLTISW2:
9404     for (unsigned i = 0; i != 16; ++i)
9405       ShufIdxs[i] = (i&3)+8;
9406     break;
9407   case OP_VSPLTISW3:
9408     for (unsigned i = 0; i != 16; ++i)
9409       ShufIdxs[i] = (i&3)+12;
9410     break;
9411   case OP_VSLDOI4:
9412     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9413   case OP_VSLDOI8:
9414     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9415   case OP_VSLDOI12:
9416     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9417   }
9418   EVT VT = OpLHS.getValueType();
9419   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9420   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9421   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9422   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9423 }
9424 
9425 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9426 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9427 /// SDValue.
9428 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9429                                            SelectionDAG &DAG) const {
9430   const unsigned BytesInVector = 16;
9431   bool IsLE = Subtarget.isLittleEndian();
9432   SDLoc dl(N);
9433   SDValue V1 = N->getOperand(0);
9434   SDValue V2 = N->getOperand(1);
9435   unsigned ShiftElts = 0, InsertAtByte = 0;
9436   bool Swap = false;
9437 
9438   // Shifts required to get the byte we want at element 7.
9439   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9440                                    0, 15, 14, 13, 12, 11, 10, 9};
9441   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9442                                 1, 2,  3,  4,  5,  6,  7,  8};
9443 
9444   ArrayRef<int> Mask = N->getMask();
9445   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9446 
9447   // For each mask element, find out if we're just inserting something
9448   // from V2 into V1 or vice versa.
9449   // Possible permutations inserting an element from V2 into V1:
9450   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9451   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9452   //   ...
9453   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9454   // Inserting from V1 into V2 will be similar, except mask range will be
9455   // [16,31].
9456 
9457   bool FoundCandidate = false;
9458   // If both vector operands for the shuffle are the same vector, the mask
9459   // will contain only elements from the first one and the second one will be
9460   // undef.
9461   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9462   // Go through the mask of half-words to find an element that's being moved
9463   // from one vector to the other.
9464   for (unsigned i = 0; i < BytesInVector; ++i) {
9465     unsigned CurrentElement = Mask[i];
9466     // If 2nd operand is undefined, we should only look for element 7 in the
9467     // Mask.
9468     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9469       continue;
9470 
9471     bool OtherElementsInOrder = true;
9472     // Examine the other elements in the Mask to see if they're in original
9473     // order.
9474     for (unsigned j = 0; j < BytesInVector; ++j) {
9475       if (j == i)
9476         continue;
9477       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9478       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9479       // in which we always assume we're always picking from the 1st operand.
9480       int MaskOffset =
9481           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9482       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9483         OtherElementsInOrder = false;
9484         break;
9485       }
9486     }
9487     // If other elements are in original order, we record the number of shifts
9488     // we need to get the element we want into element 7. Also record which byte
9489     // in the vector we should insert into.
9490     if (OtherElementsInOrder) {
9491       // If 2nd operand is undefined, we assume no shifts and no swapping.
9492       if (V2.isUndef()) {
9493         ShiftElts = 0;
9494         Swap = false;
9495       } else {
9496         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9497         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9498                          : BigEndianShifts[CurrentElement & 0xF];
9499         Swap = CurrentElement < BytesInVector;
9500       }
9501       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9502       FoundCandidate = true;
9503       break;
9504     }
9505   }
9506 
9507   if (!FoundCandidate)
9508     return SDValue();
9509 
9510   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9511   // optionally with VECSHL if shift is required.
9512   if (Swap)
9513     std::swap(V1, V2);
9514   if (V2.isUndef())
9515     V2 = V1;
9516   if (ShiftElts) {
9517     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9518                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9519     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9520                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9521   }
9522   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9523                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9524 }
9525 
9526 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9527 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9528 /// SDValue.
9529 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9530                                            SelectionDAG &DAG) const {
9531   const unsigned NumHalfWords = 8;
9532   const unsigned BytesInVector = NumHalfWords * 2;
9533   // Check that the shuffle is on half-words.
9534   if (!isNByteElemShuffleMask(N, 2, 1))
9535     return SDValue();
9536 
9537   bool IsLE = Subtarget.isLittleEndian();
9538   SDLoc dl(N);
9539   SDValue V1 = N->getOperand(0);
9540   SDValue V2 = N->getOperand(1);
9541   unsigned ShiftElts = 0, InsertAtByte = 0;
9542   bool Swap = false;
9543 
9544   // Shifts required to get the half-word we want at element 3.
9545   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9546   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9547 
9548   uint32_t Mask = 0;
9549   uint32_t OriginalOrderLow = 0x1234567;
9550   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9551   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9552   // 32-bit space, only need 4-bit nibbles per element.
9553   for (unsigned i = 0; i < NumHalfWords; ++i) {
9554     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9555     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9556   }
9557 
9558   // For each mask element, find out if we're just inserting something
9559   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9560   // from V2 into V1:
9561   //   X, 1, 2, 3, 4, 5, 6, 7
9562   //   0, X, 2, 3, 4, 5, 6, 7
9563   //   0, 1, X, 3, 4, 5, 6, 7
9564   //   0, 1, 2, X, 4, 5, 6, 7
9565   //   0, 1, 2, 3, X, 5, 6, 7
9566   //   0, 1, 2, 3, 4, X, 6, 7
9567   //   0, 1, 2, 3, 4, 5, X, 7
9568   //   0, 1, 2, 3, 4, 5, 6, X
9569   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9570 
9571   bool FoundCandidate = false;
9572   // Go through the mask of half-words to find an element that's being moved
9573   // from one vector to the other.
9574   for (unsigned i = 0; i < NumHalfWords; ++i) {
9575     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9576     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9577     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9578     uint32_t TargetOrder = 0x0;
9579 
9580     // If both vector operands for the shuffle are the same vector, the mask
9581     // will contain only elements from the first one and the second one will be
9582     // undef.
9583     if (V2.isUndef()) {
9584       ShiftElts = 0;
9585       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9586       TargetOrder = OriginalOrderLow;
9587       Swap = false;
9588       // Skip if not the correct element or mask of other elements don't equal
9589       // to our expected order.
9590       if (MaskOneElt == VINSERTHSrcElem &&
9591           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9592         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9593         FoundCandidate = true;
9594         break;
9595       }
9596     } else { // If both operands are defined.
9597       // Target order is [8,15] if the current mask is between [0,7].
9598       TargetOrder =
9599           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9600       // Skip if mask of other elements don't equal our expected order.
9601       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9602         // We only need the last 3 bits for the number of shifts.
9603         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9604                          : BigEndianShifts[MaskOneElt & 0x7];
9605         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9606         Swap = MaskOneElt < NumHalfWords;
9607         FoundCandidate = true;
9608         break;
9609       }
9610     }
9611   }
9612 
9613   if (!FoundCandidate)
9614     return SDValue();
9615 
9616   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9617   // optionally with VECSHL if shift is required.
9618   if (Swap)
9619     std::swap(V1, V2);
9620   if (V2.isUndef())
9621     V2 = V1;
9622   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9623   if (ShiftElts) {
9624     // Double ShiftElts because we're left shifting on v16i8 type.
9625     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9626                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9627     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9628     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9629                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9630     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9631   }
9632   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9633   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9634                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9635   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9636 }
9637 
9638 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9639 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9640 /// return the default SDValue.
9641 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9642                                               SelectionDAG &DAG) const {
9643   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9644   // to v16i8. Peek through the bitcasts to get the actual operands.
9645   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9646   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9647 
9648   auto ShuffleMask = SVN->getMask();
9649   SDValue VecShuffle(SVN, 0);
9650   SDLoc DL(SVN);
9651 
9652   // Check that we have a four byte shuffle.
9653   if (!isNByteElemShuffleMask(SVN, 4, 1))
9654     return SDValue();
9655 
9656   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9657   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9658     std::swap(LHS, RHS);
9659     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9660     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9661   }
9662 
9663   // Ensure that the RHS is a vector of constants.
9664   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9665   if (!BVN)
9666     return SDValue();
9667 
9668   // Check if RHS is a splat of 4-bytes (or smaller).
9669   APInt APSplatValue, APSplatUndef;
9670   unsigned SplatBitSize;
9671   bool HasAnyUndefs;
9672   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9673                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9674       SplatBitSize > 32)
9675     return SDValue();
9676 
9677   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9678   // The instruction splats a constant C into two words of the source vector
9679   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9680   // Thus we check that the shuffle mask is the equivalent  of
9681   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9682   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9683   // within each word are consecutive, so we only need to check the first byte.
9684   SDValue Index;
9685   bool IsLE = Subtarget.isLittleEndian();
9686   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9687       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9688        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9689     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9690   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9691            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9692             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9693     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9694   else
9695     return SDValue();
9696 
9697   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9698   // for XXSPLTI32DX.
9699   unsigned SplatVal = APSplatValue.getZExtValue();
9700   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9701     SplatVal |= (SplatVal << SplatBitSize);
9702 
9703   SDValue SplatNode = DAG.getNode(
9704       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9705       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9706   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9707 }
9708 
9709 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9710 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9711 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9712 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9713 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9714   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9715   assert(Op.getValueType() == MVT::v1i128 &&
9716          "Only set v1i128 as custom, other type shouldn't reach here!");
9717   SDLoc dl(Op);
9718   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9719   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9720   unsigned SHLAmt = N1.getConstantOperandVal(0);
9721   if (SHLAmt % 8 == 0) {
9722     SmallVector<int, 16> Mask(16, 0);
9723     std::iota(Mask.begin(), Mask.end(), 0);
9724     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9725     if (SDValue Shuffle =
9726             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9727                                  DAG.getUNDEF(MVT::v16i8), Mask))
9728       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9729   }
9730   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9731   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9732                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9733   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9734                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9735   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9736   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9737 }
9738 
9739 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9740 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9741 /// return the code it can be lowered into.  Worst case, it can always be
9742 /// lowered into a vperm.
9743 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9744                                                SelectionDAG &DAG) const {
9745   SDLoc dl(Op);
9746   SDValue V1 = Op.getOperand(0);
9747   SDValue V2 = Op.getOperand(1);
9748   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9749 
9750   // Any nodes that were combined in the target-independent combiner prior
9751   // to vector legalization will not be sent to the target combine. Try to
9752   // combine it here.
9753   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9754     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9755       return NewShuffle;
9756     Op = NewShuffle;
9757     SVOp = cast<ShuffleVectorSDNode>(Op);
9758     V1 = Op.getOperand(0);
9759     V2 = Op.getOperand(1);
9760   }
9761   EVT VT = Op.getValueType();
9762   bool isLittleEndian = Subtarget.isLittleEndian();
9763 
9764   unsigned ShiftElts, InsertAtByte;
9765   bool Swap = false;
9766 
9767   // If this is a load-and-splat, we can do that with a single instruction
9768   // in some cases. However if the load has multiple uses, we don't want to
9769   // combine it because that will just produce multiple loads.
9770   bool IsPermutedLoad = false;
9771   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9772   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9773       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9774       InputLoad->hasOneUse()) {
9775     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9776     int SplatIdx =
9777       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9778 
9779     // The splat index for permuted loads will be in the left half of the vector
9780     // which is strictly wider than the loaded value by 8 bytes. So we need to
9781     // adjust the splat index to point to the correct address in memory.
9782     if (IsPermutedLoad) {
9783       assert((isLittleEndian || IsFourByte) &&
9784              "Unexpected size for permuted load on big endian target");
9785       SplatIdx += IsFourByte ? 2 : 1;
9786       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9787              "Splat of a value outside of the loaded memory");
9788     }
9789 
9790     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9791     // For 4-byte load-and-splat, we need Power9.
9792     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9793       uint64_t Offset = 0;
9794       if (IsFourByte)
9795         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9796       else
9797         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9798 
9799       // If the width of the load is the same as the width of the splat,
9800       // loading with an offset would load the wrong memory.
9801       if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
9802         Offset = 0;
9803 
9804       SDValue BasePtr = LD->getBasePtr();
9805       if (Offset != 0)
9806         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9807                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9808       SDValue Ops[] = {
9809         LD->getChain(),    // Chain
9810         BasePtr,           // BasePtr
9811         DAG.getValueType(Op.getValueType()) // VT
9812       };
9813       SDVTList VTL =
9814         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9815       SDValue LdSplt =
9816         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9817                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9818       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9819       if (LdSplt.getValueType() != SVOp->getValueType(0))
9820         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9821       return LdSplt;
9822     }
9823   }
9824   if (Subtarget.hasP9Vector() &&
9825       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9826                            isLittleEndian)) {
9827     if (Swap)
9828       std::swap(V1, V2);
9829     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9830     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9831     if (ShiftElts) {
9832       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9833                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9834       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9835                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9836       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9837     }
9838     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9839                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9840     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9841   }
9842 
9843   if (Subtarget.hasPrefixInstrs()) {
9844     SDValue SplatInsertNode;
9845     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9846       return SplatInsertNode;
9847   }
9848 
9849   if (Subtarget.hasP9Altivec()) {
9850     SDValue NewISDNode;
9851     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9852       return NewISDNode;
9853 
9854     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9855       return NewISDNode;
9856   }
9857 
9858   if (Subtarget.hasVSX() &&
9859       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9860     if (Swap)
9861       std::swap(V1, V2);
9862     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9863     SDValue Conv2 =
9864         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9865 
9866     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9867                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9868     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9869   }
9870 
9871   if (Subtarget.hasVSX() &&
9872     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9873     if (Swap)
9874       std::swap(V1, V2);
9875     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9876     SDValue Conv2 =
9877         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9878 
9879     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9880                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9881     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9882   }
9883 
9884   if (Subtarget.hasP9Vector()) {
9885      if (PPC::isXXBRHShuffleMask(SVOp)) {
9886       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9887       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9888       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9889     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9890       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9891       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9892       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9893     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9894       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9895       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9896       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9897     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9898       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9899       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9900       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9901     }
9902   }
9903 
9904   if (Subtarget.hasVSX()) {
9905     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9906       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9907 
9908       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9909       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9910                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9911       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9912     }
9913 
9914     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9915     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9916       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9917       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9918       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9919     }
9920   }
9921 
9922   // Cases that are handled by instructions that take permute immediates
9923   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9924   // selected by the instruction selector.
9925   if (V2.isUndef()) {
9926     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9927         PPC::isSplatShuffleMask(SVOp, 2) ||
9928         PPC::isSplatShuffleMask(SVOp, 4) ||
9929         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9930         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9931         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9932         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9933         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9934         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9935         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9936         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9937         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9938         (Subtarget.hasP8Altivec() && (
9939          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9940          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9941          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9942       return Op;
9943     }
9944   }
9945 
9946   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9947   // and produce a fixed permutation.  If any of these match, do not lower to
9948   // VPERM.
9949   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9950   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9951       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9952       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9953       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9954       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9955       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9956       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9957       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9958       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9959       (Subtarget.hasP8Altivec() && (
9960        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9961        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9962        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9963     return Op;
9964 
9965   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9966   // perfect shuffle table to emit an optimal matching sequence.
9967   ArrayRef<int> PermMask = SVOp->getMask();
9968 
9969   unsigned PFIndexes[4];
9970   bool isFourElementShuffle = true;
9971   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9972     unsigned EltNo = 8;   // Start out undef.
9973     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9974       if (PermMask[i*4+j] < 0)
9975         continue;   // Undef, ignore it.
9976 
9977       unsigned ByteSource = PermMask[i*4+j];
9978       if ((ByteSource & 3) != j) {
9979         isFourElementShuffle = false;
9980         break;
9981       }
9982 
9983       if (EltNo == 8) {
9984         EltNo = ByteSource/4;
9985       } else if (EltNo != ByteSource/4) {
9986         isFourElementShuffle = false;
9987         break;
9988       }
9989     }
9990     PFIndexes[i] = EltNo;
9991   }
9992 
9993   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9994   // perfect shuffle vector to determine if it is cost effective to do this as
9995   // discrete instructions, or whether we should use a vperm.
9996   // For now, we skip this for little endian until such time as we have a
9997   // little-endian perfect shuffle table.
9998   if (isFourElementShuffle && !isLittleEndian) {
9999     // Compute the index in the perfect shuffle table.
10000     unsigned PFTableIndex =
10001       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
10002 
10003     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10004     unsigned Cost  = (PFEntry >> 30);
10005 
10006     // Determining when to avoid vperm is tricky.  Many things affect the cost
10007     // of vperm, particularly how many times the perm mask needs to be computed.
10008     // For example, if the perm mask can be hoisted out of a loop or is already
10009     // used (perhaps because there are multiple permutes with the same shuffle
10010     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
10011     // the loop requires an extra register.
10012     //
10013     // As a compromise, we only emit discrete instructions if the shuffle can be
10014     // generated in 3 or fewer operations.  When we have loop information
10015     // available, if this block is within a loop, we should avoid using vperm
10016     // for 3-operation perms and use a constant pool load instead.
10017     if (Cost < 3)
10018       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10019   }
10020 
10021   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10022   // vector that will get spilled to the constant pool.
10023   if (V2.isUndef()) V2 = V1;
10024 
10025   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10026   // that it is in input element units, not in bytes.  Convert now.
10027 
10028   // For little endian, the order of the input vectors is reversed, and
10029   // the permutation mask is complemented with respect to 31.  This is
10030   // necessary to produce proper semantics with the big-endian-biased vperm
10031   // instruction.
10032   EVT EltVT = V1.getValueType().getVectorElementType();
10033   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10034 
10035   SmallVector<SDValue, 16> ResultMask;
10036   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10037     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10038 
10039     for (unsigned j = 0; j != BytesPerElement; ++j)
10040       if (isLittleEndian)
10041         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10042                                              dl, MVT::i32));
10043       else
10044         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10045                                              MVT::i32));
10046   }
10047 
10048   ShufflesHandledWithVPERM++;
10049   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10050   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10051   LLVM_DEBUG(SVOp->dump());
10052   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10053   LLVM_DEBUG(VPermMask.dump());
10054 
10055   if (isLittleEndian)
10056     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10057                        V2, V1, VPermMask);
10058   else
10059     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10060                        V1, V2, VPermMask);
10061 }
10062 
10063 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10064 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10065 /// information about the intrinsic.
10066 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10067                                  bool &isDot, const PPCSubtarget &Subtarget) {
10068   unsigned IntrinsicID =
10069       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10070   CompareOpc = -1;
10071   isDot = false;
10072   switch (IntrinsicID) {
10073   default:
10074     return false;
10075   // Comparison predicates.
10076   case Intrinsic::ppc_altivec_vcmpbfp_p:
10077     CompareOpc = 966;
10078     isDot = true;
10079     break;
10080   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10081     CompareOpc = 198;
10082     isDot = true;
10083     break;
10084   case Intrinsic::ppc_altivec_vcmpequb_p:
10085     CompareOpc = 6;
10086     isDot = true;
10087     break;
10088   case Intrinsic::ppc_altivec_vcmpequh_p:
10089     CompareOpc = 70;
10090     isDot = true;
10091     break;
10092   case Intrinsic::ppc_altivec_vcmpequw_p:
10093     CompareOpc = 134;
10094     isDot = true;
10095     break;
10096   case Intrinsic::ppc_altivec_vcmpequd_p:
10097     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10098       CompareOpc = 199;
10099       isDot = true;
10100     } else
10101       return false;
10102     break;
10103   case Intrinsic::ppc_altivec_vcmpneb_p:
10104   case Intrinsic::ppc_altivec_vcmpneh_p:
10105   case Intrinsic::ppc_altivec_vcmpnew_p:
10106   case Intrinsic::ppc_altivec_vcmpnezb_p:
10107   case Intrinsic::ppc_altivec_vcmpnezh_p:
10108   case Intrinsic::ppc_altivec_vcmpnezw_p:
10109     if (Subtarget.hasP9Altivec()) {
10110       switch (IntrinsicID) {
10111       default:
10112         llvm_unreachable("Unknown comparison intrinsic.");
10113       case Intrinsic::ppc_altivec_vcmpneb_p:
10114         CompareOpc = 7;
10115         break;
10116       case Intrinsic::ppc_altivec_vcmpneh_p:
10117         CompareOpc = 71;
10118         break;
10119       case Intrinsic::ppc_altivec_vcmpnew_p:
10120         CompareOpc = 135;
10121         break;
10122       case Intrinsic::ppc_altivec_vcmpnezb_p:
10123         CompareOpc = 263;
10124         break;
10125       case Intrinsic::ppc_altivec_vcmpnezh_p:
10126         CompareOpc = 327;
10127         break;
10128       case Intrinsic::ppc_altivec_vcmpnezw_p:
10129         CompareOpc = 391;
10130         break;
10131       }
10132       isDot = true;
10133     } else
10134       return false;
10135     break;
10136   case Intrinsic::ppc_altivec_vcmpgefp_p:
10137     CompareOpc = 454;
10138     isDot = true;
10139     break;
10140   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10141     CompareOpc = 710;
10142     isDot = true;
10143     break;
10144   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10145     CompareOpc = 774;
10146     isDot = true;
10147     break;
10148   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10149     CompareOpc = 838;
10150     isDot = true;
10151     break;
10152   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10153     CompareOpc = 902;
10154     isDot = true;
10155     break;
10156   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10157     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10158       CompareOpc = 967;
10159       isDot = true;
10160     } else
10161       return false;
10162     break;
10163   case Intrinsic::ppc_altivec_vcmpgtub_p:
10164     CompareOpc = 518;
10165     isDot = true;
10166     break;
10167   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10168     CompareOpc = 582;
10169     isDot = true;
10170     break;
10171   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10172     CompareOpc = 646;
10173     isDot = true;
10174     break;
10175   case Intrinsic::ppc_altivec_vcmpgtud_p:
10176     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10177       CompareOpc = 711;
10178       isDot = true;
10179     } else
10180       return false;
10181     break;
10182 
10183   case Intrinsic::ppc_altivec_vcmpequq:
10184   case Intrinsic::ppc_altivec_vcmpgtsq:
10185   case Intrinsic::ppc_altivec_vcmpgtuq:
10186     if (!Subtarget.isISA3_1())
10187       return false;
10188     switch (IntrinsicID) {
10189     default:
10190       llvm_unreachable("Unknown comparison intrinsic.");
10191     case Intrinsic::ppc_altivec_vcmpequq:
10192       CompareOpc = 455;
10193       break;
10194     case Intrinsic::ppc_altivec_vcmpgtsq:
10195       CompareOpc = 903;
10196       break;
10197     case Intrinsic::ppc_altivec_vcmpgtuq:
10198       CompareOpc = 647;
10199       break;
10200     }
10201     break;
10202 
10203   // VSX predicate comparisons use the same infrastructure
10204   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10205   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10206   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10207   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10208   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10209   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10210     if (Subtarget.hasVSX()) {
10211       switch (IntrinsicID) {
10212       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10213         CompareOpc = 99;
10214         break;
10215       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10216         CompareOpc = 115;
10217         break;
10218       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10219         CompareOpc = 107;
10220         break;
10221       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10222         CompareOpc = 67;
10223         break;
10224       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10225         CompareOpc = 83;
10226         break;
10227       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10228         CompareOpc = 75;
10229         break;
10230       }
10231       isDot = true;
10232     } else
10233       return false;
10234     break;
10235 
10236   // Normal Comparisons.
10237   case Intrinsic::ppc_altivec_vcmpbfp:
10238     CompareOpc = 966;
10239     break;
10240   case Intrinsic::ppc_altivec_vcmpeqfp:
10241     CompareOpc = 198;
10242     break;
10243   case Intrinsic::ppc_altivec_vcmpequb:
10244     CompareOpc = 6;
10245     break;
10246   case Intrinsic::ppc_altivec_vcmpequh:
10247     CompareOpc = 70;
10248     break;
10249   case Intrinsic::ppc_altivec_vcmpequw:
10250     CompareOpc = 134;
10251     break;
10252   case Intrinsic::ppc_altivec_vcmpequd:
10253     if (Subtarget.hasP8Altivec())
10254       CompareOpc = 199;
10255     else
10256       return false;
10257     break;
10258   case Intrinsic::ppc_altivec_vcmpneb:
10259   case Intrinsic::ppc_altivec_vcmpneh:
10260   case Intrinsic::ppc_altivec_vcmpnew:
10261   case Intrinsic::ppc_altivec_vcmpnezb:
10262   case Intrinsic::ppc_altivec_vcmpnezh:
10263   case Intrinsic::ppc_altivec_vcmpnezw:
10264     if (Subtarget.hasP9Altivec())
10265       switch (IntrinsicID) {
10266       default:
10267         llvm_unreachable("Unknown comparison intrinsic.");
10268       case Intrinsic::ppc_altivec_vcmpneb:
10269         CompareOpc = 7;
10270         break;
10271       case Intrinsic::ppc_altivec_vcmpneh:
10272         CompareOpc = 71;
10273         break;
10274       case Intrinsic::ppc_altivec_vcmpnew:
10275         CompareOpc = 135;
10276         break;
10277       case Intrinsic::ppc_altivec_vcmpnezb:
10278         CompareOpc = 263;
10279         break;
10280       case Intrinsic::ppc_altivec_vcmpnezh:
10281         CompareOpc = 327;
10282         break;
10283       case Intrinsic::ppc_altivec_vcmpnezw:
10284         CompareOpc = 391;
10285         break;
10286       }
10287     else
10288       return false;
10289     break;
10290   case Intrinsic::ppc_altivec_vcmpgefp:
10291     CompareOpc = 454;
10292     break;
10293   case Intrinsic::ppc_altivec_vcmpgtfp:
10294     CompareOpc = 710;
10295     break;
10296   case Intrinsic::ppc_altivec_vcmpgtsb:
10297     CompareOpc = 774;
10298     break;
10299   case Intrinsic::ppc_altivec_vcmpgtsh:
10300     CompareOpc = 838;
10301     break;
10302   case Intrinsic::ppc_altivec_vcmpgtsw:
10303     CompareOpc = 902;
10304     break;
10305   case Intrinsic::ppc_altivec_vcmpgtsd:
10306     if (Subtarget.hasP8Altivec())
10307       CompareOpc = 967;
10308     else
10309       return false;
10310     break;
10311   case Intrinsic::ppc_altivec_vcmpgtub:
10312     CompareOpc = 518;
10313     break;
10314   case Intrinsic::ppc_altivec_vcmpgtuh:
10315     CompareOpc = 582;
10316     break;
10317   case Intrinsic::ppc_altivec_vcmpgtuw:
10318     CompareOpc = 646;
10319     break;
10320   case Intrinsic::ppc_altivec_vcmpgtud:
10321     if (Subtarget.hasP8Altivec())
10322       CompareOpc = 711;
10323     else
10324       return false;
10325     break;
10326   case Intrinsic::ppc_altivec_vcmpequq_p:
10327   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10328   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10329     if (!Subtarget.isISA3_1())
10330       return false;
10331     switch (IntrinsicID) {
10332     default:
10333       llvm_unreachable("Unknown comparison intrinsic.");
10334     case Intrinsic::ppc_altivec_vcmpequq_p:
10335       CompareOpc = 455;
10336       break;
10337     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10338       CompareOpc = 903;
10339       break;
10340     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10341       CompareOpc = 647;
10342       break;
10343     }
10344     isDot = true;
10345     break;
10346   }
10347   return true;
10348 }
10349 
10350 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10351 /// lower, do it, otherwise return null.
10352 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10353                                                    SelectionDAG &DAG) const {
10354   unsigned IntrinsicID =
10355     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10356 
10357   SDLoc dl(Op);
10358 
10359   switch (IntrinsicID) {
10360   case Intrinsic::thread_pointer:
10361     // Reads the thread pointer register, used for __builtin_thread_pointer.
10362     if (Subtarget.isPPC64())
10363       return DAG.getRegister(PPC::X13, MVT::i64);
10364     return DAG.getRegister(PPC::R2, MVT::i32);
10365 
10366   case Intrinsic::ppc_mma_disassemble_acc:
10367   case Intrinsic::ppc_vsx_disassemble_pair: {
10368     int NumVecs = 2;
10369     SDValue WideVec = Op.getOperand(1);
10370     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10371       NumVecs = 4;
10372       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10373     }
10374     SmallVector<SDValue, 4> RetOps;
10375     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10376       SDValue Extract = DAG.getNode(
10377           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10378           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10379                                                      : VecNo,
10380                           dl, getPointerTy(DAG.getDataLayout())));
10381       RetOps.push_back(Extract);
10382     }
10383     return DAG.getMergeValues(RetOps, dl);
10384   }
10385   }
10386 
10387   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10388   // opcode number of the comparison.
10389   int CompareOpc;
10390   bool isDot;
10391   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10392     return SDValue();    // Don't custom lower most intrinsics.
10393 
10394   // If this is a non-dot comparison, make the VCMP node and we are done.
10395   if (!isDot) {
10396     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10397                               Op.getOperand(1), Op.getOperand(2),
10398                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10399     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10400   }
10401 
10402   // Create the PPCISD altivec 'dot' comparison node.
10403   SDValue Ops[] = {
10404     Op.getOperand(2),  // LHS
10405     Op.getOperand(3),  // RHS
10406     DAG.getConstant(CompareOpc, dl, MVT::i32)
10407   };
10408   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10409   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10410 
10411   // Now that we have the comparison, emit a copy from the CR to a GPR.
10412   // This is flagged to the above dot comparison.
10413   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10414                                 DAG.getRegister(PPC::CR6, MVT::i32),
10415                                 CompNode.getValue(1));
10416 
10417   // Unpack the result based on how the target uses it.
10418   unsigned BitNo;   // Bit # of CR6.
10419   bool InvertBit;   // Invert result?
10420   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10421   default:  // Can't happen, don't crash on invalid number though.
10422   case 0:   // Return the value of the EQ bit of CR6.
10423     BitNo = 0; InvertBit = false;
10424     break;
10425   case 1:   // Return the inverted value of the EQ bit of CR6.
10426     BitNo = 0; InvertBit = true;
10427     break;
10428   case 2:   // Return the value of the LT bit of CR6.
10429     BitNo = 2; InvertBit = false;
10430     break;
10431   case 3:   // Return the inverted value of the LT bit of CR6.
10432     BitNo = 2; InvertBit = true;
10433     break;
10434   }
10435 
10436   // Shift the bit into the low position.
10437   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10438                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10439   // Isolate the bit.
10440   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10441                       DAG.getConstant(1, dl, MVT::i32));
10442 
10443   // If we are supposed to, toggle the bit.
10444   if (InvertBit)
10445     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10446                         DAG.getConstant(1, dl, MVT::i32));
10447   return Flags;
10448 }
10449 
10450 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10451                                                SelectionDAG &DAG) const {
10452   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10453   // the beginning of the argument list.
10454   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10455   SDLoc DL(Op);
10456   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10457   case Intrinsic::ppc_cfence: {
10458     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10459     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10460     SDValue Val = Op.getOperand(ArgStart + 1);
10461     EVT Ty = Val.getValueType();
10462     if (Ty == MVT::i128) {
10463       // FIXME: Testing one of two paired registers is sufficient to guarantee
10464       // ordering?
10465       Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val);
10466     }
10467     return SDValue(
10468         DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10469                            DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val),
10470                            Op.getOperand(0)),
10471         0);
10472   }
10473   default:
10474     break;
10475   }
10476   return SDValue();
10477 }
10478 
10479 // Lower scalar BSWAP64 to xxbrd.
10480 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10481   SDLoc dl(Op);
10482   if (!Subtarget.isPPC64())
10483     return Op;
10484   // MTVSRDD
10485   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10486                    Op.getOperand(0));
10487   // XXBRD
10488   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10489   // MFVSRD
10490   int VectorIndex = 0;
10491   if (Subtarget.isLittleEndian())
10492     VectorIndex = 1;
10493   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10494                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10495   return Op;
10496 }
10497 
10498 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10499 // compared to a value that is atomically loaded (atomic loads zero-extend).
10500 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10501                                                 SelectionDAG &DAG) const {
10502   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10503          "Expecting an atomic compare-and-swap here.");
10504   SDLoc dl(Op);
10505   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10506   EVT MemVT = AtomicNode->getMemoryVT();
10507   if (MemVT.getSizeInBits() >= 32)
10508     return Op;
10509 
10510   SDValue CmpOp = Op.getOperand(2);
10511   // If this is already correctly zero-extended, leave it alone.
10512   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10513   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10514     return Op;
10515 
10516   // Clear the high bits of the compare operand.
10517   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10518   SDValue NewCmpOp =
10519     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10520                 DAG.getConstant(MaskVal, dl, MVT::i32));
10521 
10522   // Replace the existing compare operand with the properly zero-extended one.
10523   SmallVector<SDValue, 4> Ops;
10524   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10525     Ops.push_back(AtomicNode->getOperand(i));
10526   Ops[2] = NewCmpOp;
10527   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10528   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10529   auto NodeTy =
10530     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10531   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10532 }
10533 
10534 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op,
10535                                                   SelectionDAG &DAG) const {
10536   AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode());
10537   EVT MemVT = N->getMemoryVT();
10538   assert(MemVT.getSimpleVT() == MVT::i128 &&
10539          "Expect quadword atomic operations");
10540   SDLoc dl(N);
10541   unsigned Opc = N->getOpcode();
10542   switch (Opc) {
10543   case ISD::ATOMIC_LOAD: {
10544     // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be
10545     // lowered to ppc instructions by pattern matching instruction selector.
10546     SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
10547     SmallVector<SDValue, 4> Ops{
10548         N->getOperand(0),
10549         DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)};
10550     for (int I = 1, E = N->getNumOperands(); I < E; ++I)
10551       Ops.push_back(N->getOperand(I));
10552     SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys,
10553                                                 Ops, MemVT, N->getMemOperand());
10554     SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal);
10555     SDValue ValHi =
10556         DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1));
10557     ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi,
10558                         DAG.getConstant(64, dl, MVT::i32));
10559     SDValue Val =
10560         DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi});
10561     return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other},
10562                        {Val, LoadedVal.getValue(2)});
10563   }
10564   case ISD::ATOMIC_STORE: {
10565     // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be
10566     // lowered to ppc instructions by pattern matching instruction selector.
10567     SDVTList Tys = DAG.getVTList(MVT::Other);
10568     SmallVector<SDValue, 4> Ops{
10569         N->getOperand(0),
10570         DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)};
10571     SDValue Val = N->getOperand(2);
10572     SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val);
10573     SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val,
10574                                 DAG.getConstant(64, dl, MVT::i32));
10575     ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi);
10576     Ops.push_back(ValLo);
10577     Ops.push_back(ValHi);
10578     Ops.push_back(N->getOperand(1));
10579     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT,
10580                                    N->getMemOperand());
10581   }
10582   default:
10583     llvm_unreachable("Unexpected atomic opcode");
10584   }
10585 }
10586 
10587 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10588                                                  SelectionDAG &DAG) const {
10589   SDLoc dl(Op);
10590   // Create a stack slot that is 16-byte aligned.
10591   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10592   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10593   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10594   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10595 
10596   // Store the input value into Value#0 of the stack slot.
10597   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10598                                MachinePointerInfo());
10599   // Load it out.
10600   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10601 }
10602 
10603 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10604                                                   SelectionDAG &DAG) const {
10605   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10606          "Should only be called for ISD::INSERT_VECTOR_ELT");
10607 
10608   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10609 
10610   EVT VT = Op.getValueType();
10611   SDLoc dl(Op);
10612   SDValue V1 = Op.getOperand(0);
10613   SDValue V2 = Op.getOperand(1);
10614   SDValue V3 = Op.getOperand(2);
10615 
10616   if (VT == MVT::v2f64 && C)
10617     return Op;
10618 
10619   if (Subtarget.isISA3_1()) {
10620     if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
10621       return SDValue();
10622     // On P10, we have legal lowering for constant and variable indices for
10623     // integer vectors.
10624     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10625         VT == MVT::v2i64)
10626       return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
10627     // For f32 and f64 vectors, we have legal lowering for variable indices.
10628     // For f32 we also have legal lowering when the element is loaded from
10629     // memory.
10630     if (VT == MVT::v4f32 || VT == MVT::v2f64) {
10631       if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2)))
10632         return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
10633       return Op;
10634     }
10635   }
10636 
10637   // Before P10, we have legal lowering for constant indices but not for
10638   // variable ones.
10639   if (!C)
10640     return SDValue();
10641 
10642   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10643   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10644     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10645     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10646     unsigned InsertAtElement = C->getZExtValue();
10647     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10648     if (Subtarget.isLittleEndian()) {
10649       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10650     }
10651     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10652                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10653   }
10654   return Op;
10655 }
10656 
10657 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10658                                            SelectionDAG &DAG) const {
10659   SDLoc dl(Op);
10660   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10661   SDValue LoadChain = LN->getChain();
10662   SDValue BasePtr = LN->getBasePtr();
10663   EVT VT = Op.getValueType();
10664 
10665   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10666     return Op;
10667 
10668   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10669   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10670   // 2 or 4 vsx registers.
10671   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10672          "Type unsupported without MMA");
10673   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10674          "Type unsupported without paired vector support");
10675   Align Alignment = LN->getAlign();
10676   SmallVector<SDValue, 4> Loads;
10677   SmallVector<SDValue, 4> LoadChains;
10678   unsigned NumVecs = VT.getSizeInBits() / 128;
10679   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10680     SDValue Load =
10681         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10682                     LN->getPointerInfo().getWithOffset(Idx * 16),
10683                     commonAlignment(Alignment, Idx * 16),
10684                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10685     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10686                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10687     Loads.push_back(Load);
10688     LoadChains.push_back(Load.getValue(1));
10689   }
10690   if (Subtarget.isLittleEndian()) {
10691     std::reverse(Loads.begin(), Loads.end());
10692     std::reverse(LoadChains.begin(), LoadChains.end());
10693   }
10694   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10695   SDValue Value =
10696       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10697                   dl, VT, Loads);
10698   SDValue RetOps[] = {Value, TF};
10699   return DAG.getMergeValues(RetOps, dl);
10700 }
10701 
10702 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10703                                             SelectionDAG &DAG) const {
10704   SDLoc dl(Op);
10705   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10706   SDValue StoreChain = SN->getChain();
10707   SDValue BasePtr = SN->getBasePtr();
10708   SDValue Value = SN->getValue();
10709   EVT StoreVT = Value.getValueType();
10710 
10711   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10712     return Op;
10713 
10714   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10715   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10716   // underlying registers individually.
10717   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10718          "Type unsupported without MMA");
10719   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10720          "Type unsupported without paired vector support");
10721   Align Alignment = SN->getAlign();
10722   SmallVector<SDValue, 4> Stores;
10723   unsigned NumVecs = 2;
10724   if (StoreVT == MVT::v512i1) {
10725     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10726     NumVecs = 4;
10727   }
10728   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10729     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10730     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10731                               DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
10732     SDValue Store =
10733         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10734                      SN->getPointerInfo().getWithOffset(Idx * 16),
10735                      commonAlignment(Alignment, Idx * 16),
10736                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10737     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10738                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10739     Stores.push_back(Store);
10740   }
10741   SDValue TF = DAG.getTokenFactor(dl, Stores);
10742   return TF;
10743 }
10744 
10745 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10746   SDLoc dl(Op);
10747   if (Op.getValueType() == MVT::v4i32) {
10748     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10749 
10750     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10751     // +16 as shift amt.
10752     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10753     SDValue RHSSwap =   // = vrlw RHS, 16
10754       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10755 
10756     // Shrinkify inputs to v8i16.
10757     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10758     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10759     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10760 
10761     // Low parts multiplied together, generating 32-bit results (we ignore the
10762     // top parts).
10763     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10764                                         LHS, RHS, DAG, dl, MVT::v4i32);
10765 
10766     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10767                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10768     // Shift the high parts up 16 bits.
10769     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10770                               Neg16, DAG, dl);
10771     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10772   } else if (Op.getValueType() == MVT::v16i8) {
10773     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10774     bool isLittleEndian = Subtarget.isLittleEndian();
10775 
10776     // Multiply the even 8-bit parts, producing 16-bit sums.
10777     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10778                                            LHS, RHS, DAG, dl, MVT::v8i16);
10779     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10780 
10781     // Multiply the odd 8-bit parts, producing 16-bit sums.
10782     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10783                                           LHS, RHS, DAG, dl, MVT::v8i16);
10784     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10785 
10786     // Merge the results together.  Because vmuleub and vmuloub are
10787     // instructions with a big-endian bias, we must reverse the
10788     // element numbering and reverse the meaning of "odd" and "even"
10789     // when generating little endian code.
10790     int Ops[16];
10791     for (unsigned i = 0; i != 8; ++i) {
10792       if (isLittleEndian) {
10793         Ops[i*2  ] = 2*i;
10794         Ops[i*2+1] = 2*i+16;
10795       } else {
10796         Ops[i*2  ] = 2*i+1;
10797         Ops[i*2+1] = 2*i+1+16;
10798       }
10799     }
10800     if (isLittleEndian)
10801       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10802     else
10803       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10804   } else {
10805     llvm_unreachable("Unknown mul to lower!");
10806   }
10807 }
10808 
10809 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10810   bool IsStrict = Op->isStrictFPOpcode();
10811   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
10812       !Subtarget.hasP9Vector())
10813     return SDValue();
10814 
10815   return Op;
10816 }
10817 
10818 // Custom lowering for fpext vf32 to v2f64
10819 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10820 
10821   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10822          "Should only be called for ISD::FP_EXTEND");
10823 
10824   // FIXME: handle extends from half precision float vectors on P9.
10825   // We only want to custom lower an extend from v2f32 to v2f64.
10826   if (Op.getValueType() != MVT::v2f64 ||
10827       Op.getOperand(0).getValueType() != MVT::v2f32)
10828     return SDValue();
10829 
10830   SDLoc dl(Op);
10831   SDValue Op0 = Op.getOperand(0);
10832 
10833   switch (Op0.getOpcode()) {
10834   default:
10835     return SDValue();
10836   case ISD::EXTRACT_SUBVECTOR: {
10837     assert(Op0.getNumOperands() == 2 &&
10838            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10839            "Node should have 2 operands with second one being a constant!");
10840 
10841     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10842       return SDValue();
10843 
10844     // Custom lower is only done for high or low doubleword.
10845     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10846     if (Idx % 2 != 0)
10847       return SDValue();
10848 
10849     // Since input is v4f32, at this point Idx is either 0 or 2.
10850     // Shift to get the doubleword position we want.
10851     int DWord = Idx >> 1;
10852 
10853     // High and low word positions are different on little endian.
10854     if (Subtarget.isLittleEndian())
10855       DWord ^= 0x1;
10856 
10857     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10858                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10859   }
10860   case ISD::FADD:
10861   case ISD::FMUL:
10862   case ISD::FSUB: {
10863     SDValue NewLoad[2];
10864     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10865       // Ensure both input are loads.
10866       SDValue LdOp = Op0.getOperand(i);
10867       if (LdOp.getOpcode() != ISD::LOAD)
10868         return SDValue();
10869       // Generate new load node.
10870       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10871       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10872       NewLoad[i] = DAG.getMemIntrinsicNode(
10873           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10874           LD->getMemoryVT(), LD->getMemOperand());
10875     }
10876     SDValue NewOp =
10877         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10878                     NewLoad[1], Op0.getNode()->getFlags());
10879     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10880                        DAG.getConstant(0, dl, MVT::i32));
10881   }
10882   case ISD::LOAD: {
10883     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10884     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10885     SDValue NewLd = DAG.getMemIntrinsicNode(
10886         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10887         LD->getMemoryVT(), LD->getMemOperand());
10888     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10889                        DAG.getConstant(0, dl, MVT::i32));
10890   }
10891   }
10892   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10893 }
10894 
10895 /// LowerOperation - Provide custom lowering hooks for some operations.
10896 ///
10897 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10898   switch (Op.getOpcode()) {
10899   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10900   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10901   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10902   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10903   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10904   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10905   case ISD::STRICT_FSETCC:
10906   case ISD::STRICT_FSETCCS:
10907   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10908   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10909   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10910 
10911   case ISD::INLINEASM:
10912   case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
10913   // Variable argument lowering.
10914   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10915   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10916   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10917 
10918   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10919   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10920   case ISD::GET_DYNAMIC_AREA_OFFSET:
10921     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10922 
10923   // Exception handling lowering.
10924   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10925   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10926   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10927 
10928   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10929   case ISD::STORE:              return LowerSTORE(Op, DAG);
10930   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10931   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10932   case ISD::STRICT_FP_TO_UINT:
10933   case ISD::STRICT_FP_TO_SINT:
10934   case ISD::FP_TO_UINT:
10935   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10936   case ISD::STRICT_UINT_TO_FP:
10937   case ISD::STRICT_SINT_TO_FP:
10938   case ISD::UINT_TO_FP:
10939   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10940   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10941 
10942   // Lower 64-bit shifts.
10943   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10944   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10945   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10946 
10947   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10948   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10949 
10950   // Vector-related lowering.
10951   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10952   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10953   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10954   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10955   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10956   case ISD::MUL:                return LowerMUL(Op, DAG);
10957   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10958   case ISD::STRICT_FP_ROUND:
10959   case ISD::FP_ROUND:
10960     return LowerFP_ROUND(Op, DAG);
10961   case ISD::ROTL:               return LowerROTL(Op, DAG);
10962 
10963   // For counter-based loop handling.
10964   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10965 
10966   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10967 
10968   // Frame & Return address.
10969   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10970   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10971 
10972   case ISD::INTRINSIC_VOID:
10973     return LowerINTRINSIC_VOID(Op, DAG);
10974   case ISD::BSWAP:
10975     return LowerBSWAP(Op, DAG);
10976   case ISD::ATOMIC_CMP_SWAP:
10977     return LowerATOMIC_CMP_SWAP(Op, DAG);
10978   case ISD::ATOMIC_STORE:
10979     return LowerATOMIC_LOAD_STORE(Op, DAG);
10980   }
10981 }
10982 
10983 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10984                                            SmallVectorImpl<SDValue>&Results,
10985                                            SelectionDAG &DAG) const {
10986   SDLoc dl(N);
10987   switch (N->getOpcode()) {
10988   default:
10989     llvm_unreachable("Do not know how to custom type legalize this operation!");
10990   case ISD::ATOMIC_LOAD: {
10991     SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG);
10992     Results.push_back(Res);
10993     Results.push_back(Res.getValue(1));
10994     break;
10995   }
10996   case ISD::READCYCLECOUNTER: {
10997     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10998     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10999 
11000     Results.push_back(
11001         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11002     Results.push_back(RTB.getValue(2));
11003     break;
11004   }
11005   case ISD::INTRINSIC_W_CHAIN: {
11006     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11007         Intrinsic::loop_decrement)
11008       break;
11009 
11010     assert(N->getValueType(0) == MVT::i1 &&
11011            "Unexpected result type for CTR decrement intrinsic");
11012     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11013                                  N->getValueType(0));
11014     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11015     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11016                                  N->getOperand(1));
11017 
11018     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11019     Results.push_back(NewInt.getValue(1));
11020     break;
11021   }
11022   case ISD::VAARG: {
11023     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11024       return;
11025 
11026     EVT VT = N->getValueType(0);
11027 
11028     if (VT == MVT::i64) {
11029       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11030 
11031       Results.push_back(NewNode);
11032       Results.push_back(NewNode.getValue(1));
11033     }
11034     return;
11035   }
11036   case ISD::STRICT_FP_TO_SINT:
11037   case ISD::STRICT_FP_TO_UINT:
11038   case ISD::FP_TO_SINT:
11039   case ISD::FP_TO_UINT:
11040     // LowerFP_TO_INT() can only handle f32 and f64.
11041     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
11042         MVT::ppcf128)
11043       return;
11044     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
11045     return;
11046   case ISD::TRUNCATE: {
11047     if (!N->getValueType(0).isVector())
11048       return;
11049     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
11050     if (Lowered)
11051       Results.push_back(Lowered);
11052     return;
11053   }
11054   case ISD::FSHL:
11055   case ISD::FSHR:
11056     // Don't handle funnel shifts here.
11057     return;
11058   case ISD::BITCAST:
11059     // Don't handle bitcast here.
11060     return;
11061   case ISD::FP_EXTEND:
11062     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11063     if (Lowered)
11064       Results.push_back(Lowered);
11065     return;
11066   }
11067 }
11068 
11069 //===----------------------------------------------------------------------===//
11070 //  Other Lowering Code
11071 //===----------------------------------------------------------------------===//
11072 
11073 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
11074   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11075   Function *Func = Intrinsic::getDeclaration(M, Id);
11076   return Builder.CreateCall(Func, {});
11077 }
11078 
11079 // The mappings for emitLeading/TrailingFence is taken from
11080 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11081 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11082                                                  Instruction *Inst,
11083                                                  AtomicOrdering Ord) const {
11084   if (Ord == AtomicOrdering::SequentiallyConsistent)
11085     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11086   if (isReleaseOrStronger(Ord))
11087     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11088   return nullptr;
11089 }
11090 
11091 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11092                                                   Instruction *Inst,
11093                                                   AtomicOrdering Ord) const {
11094   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11095     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11096     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11097     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11098     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11099       return Builder.CreateCall(
11100           Intrinsic::getDeclaration(
11101               Builder.GetInsertBlock()->getParent()->getParent(),
11102               Intrinsic::ppc_cfence, {Inst->getType()}),
11103           {Inst});
11104     // FIXME: Can use isync for rmw operation.
11105     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11106   }
11107   return nullptr;
11108 }
11109 
11110 MachineBasicBlock *
11111 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11112                                     unsigned AtomicSize,
11113                                     unsigned BinOpcode,
11114                                     unsigned CmpOpcode,
11115                                     unsigned CmpPred) const {
11116   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11117   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11118 
11119   auto LoadMnemonic = PPC::LDARX;
11120   auto StoreMnemonic = PPC::STDCX;
11121   switch (AtomicSize) {
11122   default:
11123     llvm_unreachable("Unexpected size of atomic entity");
11124   case 1:
11125     LoadMnemonic = PPC::LBARX;
11126     StoreMnemonic = PPC::STBCX;
11127     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11128     break;
11129   case 2:
11130     LoadMnemonic = PPC::LHARX;
11131     StoreMnemonic = PPC::STHCX;
11132     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11133     break;
11134   case 4:
11135     LoadMnemonic = PPC::LWARX;
11136     StoreMnemonic = PPC::STWCX;
11137     break;
11138   case 8:
11139     LoadMnemonic = PPC::LDARX;
11140     StoreMnemonic = PPC::STDCX;
11141     break;
11142   }
11143 
11144   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11145   MachineFunction *F = BB->getParent();
11146   MachineFunction::iterator It = ++BB->getIterator();
11147 
11148   Register dest = MI.getOperand(0).getReg();
11149   Register ptrA = MI.getOperand(1).getReg();
11150   Register ptrB = MI.getOperand(2).getReg();
11151   Register incr = MI.getOperand(3).getReg();
11152   DebugLoc dl = MI.getDebugLoc();
11153 
11154   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11155   MachineBasicBlock *loop2MBB =
11156     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11157   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11158   F->insert(It, loopMBB);
11159   if (CmpOpcode)
11160     F->insert(It, loop2MBB);
11161   F->insert(It, exitMBB);
11162   exitMBB->splice(exitMBB->begin(), BB,
11163                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11164   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11165 
11166   MachineRegisterInfo &RegInfo = F->getRegInfo();
11167   Register TmpReg = (!BinOpcode) ? incr :
11168     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11169                                            : &PPC::GPRCRegClass);
11170 
11171   //  thisMBB:
11172   //   ...
11173   //   fallthrough --> loopMBB
11174   BB->addSuccessor(loopMBB);
11175 
11176   //  loopMBB:
11177   //   l[wd]arx dest, ptr
11178   //   add r0, dest, incr
11179   //   st[wd]cx. r0, ptr
11180   //   bne- loopMBB
11181   //   fallthrough --> exitMBB
11182 
11183   // For max/min...
11184   //  loopMBB:
11185   //   l[wd]arx dest, ptr
11186   //   cmpl?[wd] incr, dest
11187   //   bgt exitMBB
11188   //  loop2MBB:
11189   //   st[wd]cx. dest, ptr
11190   //   bne- loopMBB
11191   //   fallthrough --> exitMBB
11192 
11193   BB = loopMBB;
11194   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11195     .addReg(ptrA).addReg(ptrB);
11196   if (BinOpcode)
11197     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11198   if (CmpOpcode) {
11199     // Signed comparisons of byte or halfword values must be sign-extended.
11200     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11201       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11202       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11203               ExtReg).addReg(dest);
11204       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11205         .addReg(incr).addReg(ExtReg);
11206     } else
11207       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11208         .addReg(incr).addReg(dest);
11209 
11210     BuildMI(BB, dl, TII->get(PPC::BCC))
11211       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11212     BB->addSuccessor(loop2MBB);
11213     BB->addSuccessor(exitMBB);
11214     BB = loop2MBB;
11215   }
11216   BuildMI(BB, dl, TII->get(StoreMnemonic))
11217     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11218   BuildMI(BB, dl, TII->get(PPC::BCC))
11219     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11220   BB->addSuccessor(loopMBB);
11221   BB->addSuccessor(exitMBB);
11222 
11223   //  exitMBB:
11224   //   ...
11225   BB = exitMBB;
11226   return BB;
11227 }
11228 
11229 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11230   switch(MI.getOpcode()) {
11231   default:
11232     return false;
11233   case PPC::COPY:
11234     return TII->isSignExtended(MI);
11235   case PPC::LHA:
11236   case PPC::LHA8:
11237   case PPC::LHAU:
11238   case PPC::LHAU8:
11239   case PPC::LHAUX:
11240   case PPC::LHAUX8:
11241   case PPC::LHAX:
11242   case PPC::LHAX8:
11243   case PPC::LWA:
11244   case PPC::LWAUX:
11245   case PPC::LWAX:
11246   case PPC::LWAX_32:
11247   case PPC::LWA_32:
11248   case PPC::PLHA:
11249   case PPC::PLHA8:
11250   case PPC::PLHA8pc:
11251   case PPC::PLHApc:
11252   case PPC::PLWA:
11253   case PPC::PLWA8:
11254   case PPC::PLWA8pc:
11255   case PPC::PLWApc:
11256   case PPC::EXTSB:
11257   case PPC::EXTSB8:
11258   case PPC::EXTSB8_32_64:
11259   case PPC::EXTSB8_rec:
11260   case PPC::EXTSB_rec:
11261   case PPC::EXTSH:
11262   case PPC::EXTSH8:
11263   case PPC::EXTSH8_32_64:
11264   case PPC::EXTSH8_rec:
11265   case PPC::EXTSH_rec:
11266   case PPC::EXTSW:
11267   case PPC::EXTSWSLI:
11268   case PPC::EXTSWSLI_32_64:
11269   case PPC::EXTSWSLI_32_64_rec:
11270   case PPC::EXTSWSLI_rec:
11271   case PPC::EXTSW_32:
11272   case PPC::EXTSW_32_64:
11273   case PPC::EXTSW_32_64_rec:
11274   case PPC::EXTSW_rec:
11275   case PPC::SRAW:
11276   case PPC::SRAWI:
11277   case PPC::SRAWI_rec:
11278   case PPC::SRAW_rec:
11279     return true;
11280   }
11281   return false;
11282 }
11283 
11284 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11285     MachineInstr &MI, MachineBasicBlock *BB,
11286     bool is8bit, // operation
11287     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11288   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11289   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11290 
11291   // If this is a signed comparison and the value being compared is not known
11292   // to be sign extended, sign extend it here.
11293   DebugLoc dl = MI.getDebugLoc();
11294   MachineFunction *F = BB->getParent();
11295   MachineRegisterInfo &RegInfo = F->getRegInfo();
11296   Register incr = MI.getOperand(3).getReg();
11297   bool IsSignExtended = Register::isVirtualRegister(incr) &&
11298     isSignExtended(*RegInfo.getVRegDef(incr), TII);
11299 
11300   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
11301     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11302     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
11303         .addReg(MI.getOperand(3).getReg());
11304     MI.getOperand(3).setReg(ValueReg);
11305   }
11306   // If we support part-word atomic mnemonics, just use them
11307   if (Subtarget.hasPartwordAtomics())
11308     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11309                             CmpPred);
11310 
11311   // In 64 bit mode we have to use 64 bits for addresses, even though the
11312   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11313   // registers without caring whether they're 32 or 64, but here we're
11314   // doing actual arithmetic on the addresses.
11315   bool is64bit = Subtarget.isPPC64();
11316   bool isLittleEndian = Subtarget.isLittleEndian();
11317   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11318 
11319   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11320   MachineFunction::iterator It = ++BB->getIterator();
11321 
11322   Register dest = MI.getOperand(0).getReg();
11323   Register ptrA = MI.getOperand(1).getReg();
11324   Register ptrB = MI.getOperand(2).getReg();
11325 
11326   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11327   MachineBasicBlock *loop2MBB =
11328       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11329   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11330   F->insert(It, loopMBB);
11331   if (CmpOpcode)
11332     F->insert(It, loop2MBB);
11333   F->insert(It, exitMBB);
11334   exitMBB->splice(exitMBB->begin(), BB,
11335                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11336   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11337 
11338   const TargetRegisterClass *RC =
11339       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11340   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11341 
11342   Register PtrReg = RegInfo.createVirtualRegister(RC);
11343   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11344   Register ShiftReg =
11345       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11346   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11347   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11348   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11349   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11350   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11351   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11352   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11353   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11354   Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
11355   Register Ptr1Reg;
11356   Register TmpReg =
11357       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11358 
11359   //  thisMBB:
11360   //   ...
11361   //   fallthrough --> loopMBB
11362   BB->addSuccessor(loopMBB);
11363 
11364   // The 4-byte load must be aligned, while a char or short may be
11365   // anywhere in the word.  Hence all this nasty bookkeeping code.
11366   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11367   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11368   //   xori shift, shift1, 24 [16]
11369   //   rlwinm ptr, ptr1, 0, 0, 29
11370   //   slw incr2, incr, shift
11371   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11372   //   slw mask, mask2, shift
11373   //  loopMBB:
11374   //   lwarx tmpDest, ptr
11375   //   add tmp, tmpDest, incr2
11376   //   andc tmp2, tmpDest, mask
11377   //   and tmp3, tmp, mask
11378   //   or tmp4, tmp3, tmp2
11379   //   stwcx. tmp4, ptr
11380   //   bne- loopMBB
11381   //   fallthrough --> exitMBB
11382   //   srw SrwDest, tmpDest, shift
11383   //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11384   if (ptrA != ZeroReg) {
11385     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11386     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11387         .addReg(ptrA)
11388         .addReg(ptrB);
11389   } else {
11390     Ptr1Reg = ptrB;
11391   }
11392   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11393   // mode.
11394   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11395       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11396       .addImm(3)
11397       .addImm(27)
11398       .addImm(is8bit ? 28 : 27);
11399   if (!isLittleEndian)
11400     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11401         .addReg(Shift1Reg)
11402         .addImm(is8bit ? 24 : 16);
11403   if (is64bit)
11404     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11405         .addReg(Ptr1Reg)
11406         .addImm(0)
11407         .addImm(61);
11408   else
11409     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11410         .addReg(Ptr1Reg)
11411         .addImm(0)
11412         .addImm(0)
11413         .addImm(29);
11414   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11415   if (is8bit)
11416     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11417   else {
11418     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11419     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11420         .addReg(Mask3Reg)
11421         .addImm(65535);
11422   }
11423   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11424       .addReg(Mask2Reg)
11425       .addReg(ShiftReg);
11426 
11427   BB = loopMBB;
11428   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11429       .addReg(ZeroReg)
11430       .addReg(PtrReg);
11431   if (BinOpcode)
11432     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11433         .addReg(Incr2Reg)
11434         .addReg(TmpDestReg);
11435   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11436       .addReg(TmpDestReg)
11437       .addReg(MaskReg);
11438   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11439   if (CmpOpcode) {
11440     // For unsigned comparisons, we can directly compare the shifted values.
11441     // For signed comparisons we shift and sign extend.
11442     Register SReg = RegInfo.createVirtualRegister(GPRC);
11443     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11444         .addReg(TmpDestReg)
11445         .addReg(MaskReg);
11446     unsigned ValueReg = SReg;
11447     unsigned CmpReg = Incr2Reg;
11448     if (CmpOpcode == PPC::CMPW) {
11449       ValueReg = RegInfo.createVirtualRegister(GPRC);
11450       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11451           .addReg(SReg)
11452           .addReg(ShiftReg);
11453       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11454       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11455           .addReg(ValueReg);
11456       ValueReg = ValueSReg;
11457       CmpReg = incr;
11458     }
11459     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11460         .addReg(CmpReg)
11461         .addReg(ValueReg);
11462     BuildMI(BB, dl, TII->get(PPC::BCC))
11463         .addImm(CmpPred)
11464         .addReg(PPC::CR0)
11465         .addMBB(exitMBB);
11466     BB->addSuccessor(loop2MBB);
11467     BB->addSuccessor(exitMBB);
11468     BB = loop2MBB;
11469   }
11470   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11471   BuildMI(BB, dl, TII->get(PPC::STWCX))
11472       .addReg(Tmp4Reg)
11473       .addReg(ZeroReg)
11474       .addReg(PtrReg);
11475   BuildMI(BB, dl, TII->get(PPC::BCC))
11476       .addImm(PPC::PRED_NE)
11477       .addReg(PPC::CR0)
11478       .addMBB(loopMBB);
11479   BB->addSuccessor(loopMBB);
11480   BB->addSuccessor(exitMBB);
11481 
11482   //  exitMBB:
11483   //   ...
11484   BB = exitMBB;
11485   // Since the shift amount is not a constant, we need to clear
11486   // the upper bits with a separate RLWINM.
11487   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
11488       .addReg(SrwDestReg)
11489       .addImm(0)
11490       .addImm(is8bit ? 24 : 16)
11491       .addImm(31);
11492   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
11493       .addReg(TmpDestReg)
11494       .addReg(ShiftReg);
11495   return BB;
11496 }
11497 
11498 llvm::MachineBasicBlock *
11499 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11500                                     MachineBasicBlock *MBB) const {
11501   DebugLoc DL = MI.getDebugLoc();
11502   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11503   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11504 
11505   MachineFunction *MF = MBB->getParent();
11506   MachineRegisterInfo &MRI = MF->getRegInfo();
11507 
11508   const BasicBlock *BB = MBB->getBasicBlock();
11509   MachineFunction::iterator I = ++MBB->getIterator();
11510 
11511   Register DstReg = MI.getOperand(0).getReg();
11512   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11513   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11514   Register mainDstReg = MRI.createVirtualRegister(RC);
11515   Register restoreDstReg = MRI.createVirtualRegister(RC);
11516 
11517   MVT PVT = getPointerTy(MF->getDataLayout());
11518   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11519          "Invalid Pointer Size!");
11520   // For v = setjmp(buf), we generate
11521   //
11522   // thisMBB:
11523   //  SjLjSetup mainMBB
11524   //  bl mainMBB
11525   //  v_restore = 1
11526   //  b sinkMBB
11527   //
11528   // mainMBB:
11529   //  buf[LabelOffset] = LR
11530   //  v_main = 0
11531   //
11532   // sinkMBB:
11533   //  v = phi(main, restore)
11534   //
11535 
11536   MachineBasicBlock *thisMBB = MBB;
11537   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11538   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11539   MF->insert(I, mainMBB);
11540   MF->insert(I, sinkMBB);
11541 
11542   MachineInstrBuilder MIB;
11543 
11544   // Transfer the remainder of BB and its successor edges to sinkMBB.
11545   sinkMBB->splice(sinkMBB->begin(), MBB,
11546                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11547   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11548 
11549   // Note that the structure of the jmp_buf used here is not compatible
11550   // with that used by libc, and is not designed to be. Specifically, it
11551   // stores only those 'reserved' registers that LLVM does not otherwise
11552   // understand how to spill. Also, by convention, by the time this
11553   // intrinsic is called, Clang has already stored the frame address in the
11554   // first slot of the buffer and stack address in the third. Following the
11555   // X86 target code, we'll store the jump address in the second slot. We also
11556   // need to save the TOC pointer (R2) to handle jumps between shared
11557   // libraries, and that will be stored in the fourth slot. The thread
11558   // identifier (R13) is not affected.
11559 
11560   // thisMBB:
11561   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11562   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11563   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11564 
11565   // Prepare IP either in reg.
11566   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11567   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11568   Register BufReg = MI.getOperand(1).getReg();
11569 
11570   if (Subtarget.is64BitELFABI()) {
11571     setUsesTOCBasePtr(*MBB->getParent());
11572     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11573               .addReg(PPC::X2)
11574               .addImm(TOCOffset)
11575               .addReg(BufReg)
11576               .cloneMemRefs(MI);
11577   }
11578 
11579   // Naked functions never have a base pointer, and so we use r1. For all
11580   // other functions, this decision must be delayed until during PEI.
11581   unsigned BaseReg;
11582   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11583     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11584   else
11585     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11586 
11587   MIB = BuildMI(*thisMBB, MI, DL,
11588                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11589             .addReg(BaseReg)
11590             .addImm(BPOffset)
11591             .addReg(BufReg)
11592             .cloneMemRefs(MI);
11593 
11594   // Setup
11595   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11596   MIB.addRegMask(TRI->getNoPreservedMask());
11597 
11598   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11599 
11600   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11601           .addMBB(mainMBB);
11602   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11603 
11604   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11605   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11606 
11607   // mainMBB:
11608   //  mainDstReg = 0
11609   MIB =
11610       BuildMI(mainMBB, DL,
11611               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11612 
11613   // Store IP
11614   if (Subtarget.isPPC64()) {
11615     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11616             .addReg(LabelReg)
11617             .addImm(LabelOffset)
11618             .addReg(BufReg);
11619   } else {
11620     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11621             .addReg(LabelReg)
11622             .addImm(LabelOffset)
11623             .addReg(BufReg);
11624   }
11625   MIB.cloneMemRefs(MI);
11626 
11627   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11628   mainMBB->addSuccessor(sinkMBB);
11629 
11630   // sinkMBB:
11631   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11632           TII->get(PPC::PHI), DstReg)
11633     .addReg(mainDstReg).addMBB(mainMBB)
11634     .addReg(restoreDstReg).addMBB(thisMBB);
11635 
11636   MI.eraseFromParent();
11637   return sinkMBB;
11638 }
11639 
11640 MachineBasicBlock *
11641 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11642                                      MachineBasicBlock *MBB) const {
11643   DebugLoc DL = MI.getDebugLoc();
11644   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11645 
11646   MachineFunction *MF = MBB->getParent();
11647   MachineRegisterInfo &MRI = MF->getRegInfo();
11648 
11649   MVT PVT = getPointerTy(MF->getDataLayout());
11650   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11651          "Invalid Pointer Size!");
11652 
11653   const TargetRegisterClass *RC =
11654     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11655   Register Tmp = MRI.createVirtualRegister(RC);
11656   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11657   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11658   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11659   unsigned BP =
11660       (PVT == MVT::i64)
11661           ? PPC::X30
11662           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11663                                                               : PPC::R30);
11664 
11665   MachineInstrBuilder MIB;
11666 
11667   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11668   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11669   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11670   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11671 
11672   Register BufReg = MI.getOperand(0).getReg();
11673 
11674   // Reload FP (the jumped-to function may not have had a
11675   // frame pointer, and if so, then its r31 will be restored
11676   // as necessary).
11677   if (PVT == MVT::i64) {
11678     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11679             .addImm(0)
11680             .addReg(BufReg);
11681   } else {
11682     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11683             .addImm(0)
11684             .addReg(BufReg);
11685   }
11686   MIB.cloneMemRefs(MI);
11687 
11688   // Reload IP
11689   if (PVT == MVT::i64) {
11690     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11691             .addImm(LabelOffset)
11692             .addReg(BufReg);
11693   } else {
11694     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11695             .addImm(LabelOffset)
11696             .addReg(BufReg);
11697   }
11698   MIB.cloneMemRefs(MI);
11699 
11700   // Reload SP
11701   if (PVT == MVT::i64) {
11702     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11703             .addImm(SPOffset)
11704             .addReg(BufReg);
11705   } else {
11706     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11707             .addImm(SPOffset)
11708             .addReg(BufReg);
11709   }
11710   MIB.cloneMemRefs(MI);
11711 
11712   // Reload BP
11713   if (PVT == MVT::i64) {
11714     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11715             .addImm(BPOffset)
11716             .addReg(BufReg);
11717   } else {
11718     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11719             .addImm(BPOffset)
11720             .addReg(BufReg);
11721   }
11722   MIB.cloneMemRefs(MI);
11723 
11724   // Reload TOC
11725   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11726     setUsesTOCBasePtr(*MBB->getParent());
11727     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11728               .addImm(TOCOffset)
11729               .addReg(BufReg)
11730               .cloneMemRefs(MI);
11731   }
11732 
11733   // Jump
11734   BuildMI(*MBB, MI, DL,
11735           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11736   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11737 
11738   MI.eraseFromParent();
11739   return MBB;
11740 }
11741 
11742 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11743   // If the function specifically requests inline stack probes, emit them.
11744   if (MF.getFunction().hasFnAttribute("probe-stack"))
11745     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11746            "inline-asm";
11747   return false;
11748 }
11749 
11750 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11751   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11752   unsigned StackAlign = TFI->getStackAlignment();
11753   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11754          "Unexpected stack alignment");
11755   // The default stack probe size is 4096 if the function has no
11756   // stack-probe-size attribute.
11757   unsigned StackProbeSize = 4096;
11758   const Function &Fn = MF.getFunction();
11759   if (Fn.hasFnAttribute("stack-probe-size"))
11760     Fn.getFnAttribute("stack-probe-size")
11761         .getValueAsString()
11762         .getAsInteger(0, StackProbeSize);
11763   // Round down to the stack alignment.
11764   StackProbeSize &= ~(StackAlign - 1);
11765   return StackProbeSize ? StackProbeSize : StackAlign;
11766 }
11767 
11768 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11769 // into three phases. In the first phase, it uses pseudo instruction
11770 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11771 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11772 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11773 // MaxCallFrameSize so that it can calculate correct data area pointer.
11774 MachineBasicBlock *
11775 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11776                                     MachineBasicBlock *MBB) const {
11777   const bool isPPC64 = Subtarget.isPPC64();
11778   MachineFunction *MF = MBB->getParent();
11779   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11780   DebugLoc DL = MI.getDebugLoc();
11781   const unsigned ProbeSize = getStackProbeSize(*MF);
11782   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11783   MachineRegisterInfo &MRI = MF->getRegInfo();
11784   // The CFG of probing stack looks as
11785   //         +-----+
11786   //         | MBB |
11787   //         +--+--+
11788   //            |
11789   //       +----v----+
11790   //  +--->+ TestMBB +---+
11791   //  |    +----+----+   |
11792   //  |         |        |
11793   //  |   +-----v----+   |
11794   //  +---+ BlockMBB |   |
11795   //      +----------+   |
11796   //                     |
11797   //       +---------+   |
11798   //       | TailMBB +<--+
11799   //       +---------+
11800   // In MBB, calculate previous frame pointer and final stack pointer.
11801   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11802   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11803   // TailMBB is spliced via \p MI.
11804   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11805   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11806   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11807 
11808   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11809   MF->insert(MBBIter, TestMBB);
11810   MF->insert(MBBIter, BlockMBB);
11811   MF->insert(MBBIter, TailMBB);
11812 
11813   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11814   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11815 
11816   Register DstReg = MI.getOperand(0).getReg();
11817   Register NegSizeReg = MI.getOperand(1).getReg();
11818   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11819   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11820   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11821   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11822 
11823   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11824   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11825   // NegSize.
11826   unsigned ProbeOpc;
11827   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11828     ProbeOpc =
11829         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11830   else
11831     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11832     // and NegSizeReg will be allocated in the same phyreg to avoid
11833     // redundant copy when NegSizeReg has only one use which is current MI and
11834     // will be replaced by PREPARE_PROBED_ALLOCA then.
11835     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11836                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11837   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11838       .addDef(ActualNegSizeReg)
11839       .addReg(NegSizeReg)
11840       .add(MI.getOperand(2))
11841       .add(MI.getOperand(3));
11842 
11843   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11844   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11845           FinalStackPtr)
11846       .addReg(SPReg)
11847       .addReg(ActualNegSizeReg);
11848 
11849   // Materialize a scratch register for update.
11850   int64_t NegProbeSize = -(int64_t)ProbeSize;
11851   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11852   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11853   if (!isInt<16>(NegProbeSize)) {
11854     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11855     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11856         .addImm(NegProbeSize >> 16);
11857     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11858             ScratchReg)
11859         .addReg(TempReg)
11860         .addImm(NegProbeSize & 0xFFFF);
11861   } else
11862     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11863         .addImm(NegProbeSize);
11864 
11865   {
11866     // Probing leading residual part.
11867     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11868     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11869         .addReg(ActualNegSizeReg)
11870         .addReg(ScratchReg);
11871     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11872     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11873         .addReg(Div)
11874         .addReg(ScratchReg);
11875     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11876     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11877         .addReg(Mul)
11878         .addReg(ActualNegSizeReg);
11879     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11880         .addReg(FramePointer)
11881         .addReg(SPReg)
11882         .addReg(NegMod);
11883   }
11884 
11885   {
11886     // Remaining part should be multiple of ProbeSize.
11887     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11888     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11889         .addReg(SPReg)
11890         .addReg(FinalStackPtr);
11891     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11892         .addImm(PPC::PRED_EQ)
11893         .addReg(CmpResult)
11894         .addMBB(TailMBB);
11895     TestMBB->addSuccessor(BlockMBB);
11896     TestMBB->addSuccessor(TailMBB);
11897   }
11898 
11899   {
11900     // Touch the block.
11901     // |P...|P...|P...
11902     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11903         .addReg(FramePointer)
11904         .addReg(SPReg)
11905         .addReg(ScratchReg);
11906     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11907     BlockMBB->addSuccessor(TestMBB);
11908   }
11909 
11910   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11911   // DYNAREAOFFSET pseudo instruction to get the future result.
11912   Register MaxCallFrameSizeReg =
11913       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11914   BuildMI(TailMBB, DL,
11915           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11916           MaxCallFrameSizeReg)
11917       .add(MI.getOperand(2))
11918       .add(MI.getOperand(3));
11919   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11920       .addReg(SPReg)
11921       .addReg(MaxCallFrameSizeReg);
11922 
11923   // Splice instructions after MI to TailMBB.
11924   TailMBB->splice(TailMBB->end(), MBB,
11925                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11926   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11927   MBB->addSuccessor(TestMBB);
11928 
11929   // Delete the pseudo instruction.
11930   MI.eraseFromParent();
11931 
11932   ++NumDynamicAllocaProbed;
11933   return TailMBB;
11934 }
11935 
11936 MachineBasicBlock *
11937 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11938                                                MachineBasicBlock *BB) const {
11939   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11940       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11941     if (Subtarget.is64BitELFABI() &&
11942         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11943         !Subtarget.isUsingPCRelativeCalls()) {
11944       // Call lowering should have added an r2 operand to indicate a dependence
11945       // on the TOC base pointer value. It can't however, because there is no
11946       // way to mark the dependence as implicit there, and so the stackmap code
11947       // will confuse it with a regular operand. Instead, add the dependence
11948       // here.
11949       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11950     }
11951 
11952     return emitPatchPoint(MI, BB);
11953   }
11954 
11955   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11956       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11957     return emitEHSjLjSetJmp(MI, BB);
11958   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11959              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11960     return emitEHSjLjLongJmp(MI, BB);
11961   }
11962 
11963   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11964 
11965   // To "insert" these instructions we actually have to insert their
11966   // control-flow patterns.
11967   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11968   MachineFunction::iterator It = ++BB->getIterator();
11969 
11970   MachineFunction *F = BB->getParent();
11971 
11972   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11973       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11974       MI.getOpcode() == PPC::SELECT_I8) {
11975     SmallVector<MachineOperand, 2> Cond;
11976     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11977         MI.getOpcode() == PPC::SELECT_CC_I8)
11978       Cond.push_back(MI.getOperand(4));
11979     else
11980       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11981     Cond.push_back(MI.getOperand(1));
11982 
11983     DebugLoc dl = MI.getDebugLoc();
11984     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11985                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11986   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11987              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11988              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11989              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11990              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11991              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11992              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11993              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11994              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11995              MI.getOpcode() == PPC::SELECT_F4 ||
11996              MI.getOpcode() == PPC::SELECT_F8 ||
11997              MI.getOpcode() == PPC::SELECT_F16 ||
11998              MI.getOpcode() == PPC::SELECT_SPE ||
11999              MI.getOpcode() == PPC::SELECT_SPE4 ||
12000              MI.getOpcode() == PPC::SELECT_VRRC ||
12001              MI.getOpcode() == PPC::SELECT_VSFRC ||
12002              MI.getOpcode() == PPC::SELECT_VSSRC ||
12003              MI.getOpcode() == PPC::SELECT_VSRC) {
12004     // The incoming instruction knows the destination vreg to set, the
12005     // condition code register to branch on, the true/false values to
12006     // select between, and a branch opcode to use.
12007 
12008     //  thisMBB:
12009     //  ...
12010     //   TrueVal = ...
12011     //   cmpTY ccX, r1, r2
12012     //   bCC copy1MBB
12013     //   fallthrough --> copy0MBB
12014     MachineBasicBlock *thisMBB = BB;
12015     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12016     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12017     DebugLoc dl = MI.getDebugLoc();
12018     F->insert(It, copy0MBB);
12019     F->insert(It, sinkMBB);
12020 
12021     // Transfer the remainder of BB and its successor edges to sinkMBB.
12022     sinkMBB->splice(sinkMBB->begin(), BB,
12023                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12024     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12025 
12026     // Next, add the true and fallthrough blocks as its successors.
12027     BB->addSuccessor(copy0MBB);
12028     BB->addSuccessor(sinkMBB);
12029 
12030     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
12031         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
12032         MI.getOpcode() == PPC::SELECT_F16 ||
12033         MI.getOpcode() == PPC::SELECT_SPE4 ||
12034         MI.getOpcode() == PPC::SELECT_SPE ||
12035         MI.getOpcode() == PPC::SELECT_VRRC ||
12036         MI.getOpcode() == PPC::SELECT_VSFRC ||
12037         MI.getOpcode() == PPC::SELECT_VSSRC ||
12038         MI.getOpcode() == PPC::SELECT_VSRC) {
12039       BuildMI(BB, dl, TII->get(PPC::BC))
12040           .addReg(MI.getOperand(1).getReg())
12041           .addMBB(sinkMBB);
12042     } else {
12043       unsigned SelectPred = MI.getOperand(4).getImm();
12044       BuildMI(BB, dl, TII->get(PPC::BCC))
12045           .addImm(SelectPred)
12046           .addReg(MI.getOperand(1).getReg())
12047           .addMBB(sinkMBB);
12048     }
12049 
12050     //  copy0MBB:
12051     //   %FalseValue = ...
12052     //   # fallthrough to sinkMBB
12053     BB = copy0MBB;
12054 
12055     // Update machine-CFG edges
12056     BB->addSuccessor(sinkMBB);
12057 
12058     //  sinkMBB:
12059     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12060     //  ...
12061     BB = sinkMBB;
12062     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
12063         .addReg(MI.getOperand(3).getReg())
12064         .addMBB(copy0MBB)
12065         .addReg(MI.getOperand(2).getReg())
12066         .addMBB(thisMBB);
12067   } else if (MI.getOpcode() == PPC::ReadTB) {
12068     // To read the 64-bit time-base register on a 32-bit target, we read the
12069     // two halves. Should the counter have wrapped while it was being read, we
12070     // need to try again.
12071     // ...
12072     // readLoop:
12073     // mfspr Rx,TBU # load from TBU
12074     // mfspr Ry,TB  # load from TB
12075     // mfspr Rz,TBU # load from TBU
12076     // cmpw crX,Rx,Rz # check if 'old'='new'
12077     // bne readLoop   # branch if they're not equal
12078     // ...
12079 
12080     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
12081     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12082     DebugLoc dl = MI.getDebugLoc();
12083     F->insert(It, readMBB);
12084     F->insert(It, sinkMBB);
12085 
12086     // Transfer the remainder of BB and its successor edges to sinkMBB.
12087     sinkMBB->splice(sinkMBB->begin(), BB,
12088                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12089     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12090 
12091     BB->addSuccessor(readMBB);
12092     BB = readMBB;
12093 
12094     MachineRegisterInfo &RegInfo = F->getRegInfo();
12095     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12096     Register LoReg = MI.getOperand(0).getReg();
12097     Register HiReg = MI.getOperand(1).getReg();
12098 
12099     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12100     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12101     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12102 
12103     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12104 
12105     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12106         .addReg(HiReg)
12107         .addReg(ReadAgainReg);
12108     BuildMI(BB, dl, TII->get(PPC::BCC))
12109         .addImm(PPC::PRED_NE)
12110         .addReg(CmpReg)
12111         .addMBB(readMBB);
12112 
12113     BB->addSuccessor(readMBB);
12114     BB->addSuccessor(sinkMBB);
12115   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12116     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12117   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12118     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12119   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12120     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12121   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12122     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12123 
12124   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12125     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12126   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12127     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12128   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12129     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12130   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12131     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12132 
12133   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12134     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12135   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12136     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12137   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12138     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12139   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12140     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12141 
12142   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12143     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12144   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12145     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12146   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12147     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12148   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12149     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12150 
12151   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12152     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12153   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12154     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12155   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12156     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12157   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12158     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12159 
12160   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12161     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12162   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12163     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12164   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12165     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12166   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12167     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12168 
12169   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12170     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12171   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12172     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12173   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12174     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12175   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12176     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12177 
12178   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12179     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12180   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12181     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12182   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12183     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12184   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12185     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12186 
12187   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12188     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12189   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12190     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12191   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12192     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12193   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12194     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12195 
12196   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12197     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12198   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12199     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12200   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12201     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12202   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12203     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12204 
12205   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12206     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12207   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12208     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12209   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12210     BB = EmitAtomicBinary(MI, BB, 4, 0);
12211   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12212     BB = EmitAtomicBinary(MI, BB, 8, 0);
12213   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12214            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12215            (Subtarget.hasPartwordAtomics() &&
12216             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12217            (Subtarget.hasPartwordAtomics() &&
12218             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12219     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12220 
12221     auto LoadMnemonic = PPC::LDARX;
12222     auto StoreMnemonic = PPC::STDCX;
12223     switch (MI.getOpcode()) {
12224     default:
12225       llvm_unreachable("Compare and swap of unknown size");
12226     case PPC::ATOMIC_CMP_SWAP_I8:
12227       LoadMnemonic = PPC::LBARX;
12228       StoreMnemonic = PPC::STBCX;
12229       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12230       break;
12231     case PPC::ATOMIC_CMP_SWAP_I16:
12232       LoadMnemonic = PPC::LHARX;
12233       StoreMnemonic = PPC::STHCX;
12234       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12235       break;
12236     case PPC::ATOMIC_CMP_SWAP_I32:
12237       LoadMnemonic = PPC::LWARX;
12238       StoreMnemonic = PPC::STWCX;
12239       break;
12240     case PPC::ATOMIC_CMP_SWAP_I64:
12241       LoadMnemonic = PPC::LDARX;
12242       StoreMnemonic = PPC::STDCX;
12243       break;
12244     }
12245     Register dest = MI.getOperand(0).getReg();
12246     Register ptrA = MI.getOperand(1).getReg();
12247     Register ptrB = MI.getOperand(2).getReg();
12248     Register oldval = MI.getOperand(3).getReg();
12249     Register newval = MI.getOperand(4).getReg();
12250     DebugLoc dl = MI.getDebugLoc();
12251 
12252     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12253     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12254     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12255     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12256     F->insert(It, loop1MBB);
12257     F->insert(It, loop2MBB);
12258     F->insert(It, midMBB);
12259     F->insert(It, exitMBB);
12260     exitMBB->splice(exitMBB->begin(), BB,
12261                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12262     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12263 
12264     //  thisMBB:
12265     //   ...
12266     //   fallthrough --> loopMBB
12267     BB->addSuccessor(loop1MBB);
12268 
12269     // loop1MBB:
12270     //   l[bhwd]arx dest, ptr
12271     //   cmp[wd] dest, oldval
12272     //   bne- midMBB
12273     // loop2MBB:
12274     //   st[bhwd]cx. newval, ptr
12275     //   bne- loopMBB
12276     //   b exitBB
12277     // midMBB:
12278     //   st[bhwd]cx. dest, ptr
12279     // exitBB:
12280     BB = loop1MBB;
12281     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12282     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12283         .addReg(oldval)
12284         .addReg(dest);
12285     BuildMI(BB, dl, TII->get(PPC::BCC))
12286         .addImm(PPC::PRED_NE)
12287         .addReg(PPC::CR0)
12288         .addMBB(midMBB);
12289     BB->addSuccessor(loop2MBB);
12290     BB->addSuccessor(midMBB);
12291 
12292     BB = loop2MBB;
12293     BuildMI(BB, dl, TII->get(StoreMnemonic))
12294         .addReg(newval)
12295         .addReg(ptrA)
12296         .addReg(ptrB);
12297     BuildMI(BB, dl, TII->get(PPC::BCC))
12298         .addImm(PPC::PRED_NE)
12299         .addReg(PPC::CR0)
12300         .addMBB(loop1MBB);
12301     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12302     BB->addSuccessor(loop1MBB);
12303     BB->addSuccessor(exitMBB);
12304 
12305     BB = midMBB;
12306     BuildMI(BB, dl, TII->get(StoreMnemonic))
12307         .addReg(dest)
12308         .addReg(ptrA)
12309         .addReg(ptrB);
12310     BB->addSuccessor(exitMBB);
12311 
12312     //  exitMBB:
12313     //   ...
12314     BB = exitMBB;
12315   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12316              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12317     // We must use 64-bit registers for addresses when targeting 64-bit,
12318     // since we're actually doing arithmetic on them.  Other registers
12319     // can be 32-bit.
12320     bool is64bit = Subtarget.isPPC64();
12321     bool isLittleEndian = Subtarget.isLittleEndian();
12322     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12323 
12324     Register dest = MI.getOperand(0).getReg();
12325     Register ptrA = MI.getOperand(1).getReg();
12326     Register ptrB = MI.getOperand(2).getReg();
12327     Register oldval = MI.getOperand(3).getReg();
12328     Register newval = MI.getOperand(4).getReg();
12329     DebugLoc dl = MI.getDebugLoc();
12330 
12331     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12332     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12333     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12334     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12335     F->insert(It, loop1MBB);
12336     F->insert(It, loop2MBB);
12337     F->insert(It, midMBB);
12338     F->insert(It, exitMBB);
12339     exitMBB->splice(exitMBB->begin(), BB,
12340                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12341     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12342 
12343     MachineRegisterInfo &RegInfo = F->getRegInfo();
12344     const TargetRegisterClass *RC =
12345         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12346     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12347 
12348     Register PtrReg = RegInfo.createVirtualRegister(RC);
12349     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12350     Register ShiftReg =
12351         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12352     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12353     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12354     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12355     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12356     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12357     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12358     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12359     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12360     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12361     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12362     Register Ptr1Reg;
12363     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12364     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12365     //  thisMBB:
12366     //   ...
12367     //   fallthrough --> loopMBB
12368     BB->addSuccessor(loop1MBB);
12369 
12370     // The 4-byte load must be aligned, while a char or short may be
12371     // anywhere in the word.  Hence all this nasty bookkeeping code.
12372     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12373     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12374     //   xori shift, shift1, 24 [16]
12375     //   rlwinm ptr, ptr1, 0, 0, 29
12376     //   slw newval2, newval, shift
12377     //   slw oldval2, oldval,shift
12378     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12379     //   slw mask, mask2, shift
12380     //   and newval3, newval2, mask
12381     //   and oldval3, oldval2, mask
12382     // loop1MBB:
12383     //   lwarx tmpDest, ptr
12384     //   and tmp, tmpDest, mask
12385     //   cmpw tmp, oldval3
12386     //   bne- midMBB
12387     // loop2MBB:
12388     //   andc tmp2, tmpDest, mask
12389     //   or tmp4, tmp2, newval3
12390     //   stwcx. tmp4, ptr
12391     //   bne- loop1MBB
12392     //   b exitBB
12393     // midMBB:
12394     //   stwcx. tmpDest, ptr
12395     // exitBB:
12396     //   srw dest, tmpDest, shift
12397     if (ptrA != ZeroReg) {
12398       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12399       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12400           .addReg(ptrA)
12401           .addReg(ptrB);
12402     } else {
12403       Ptr1Reg = ptrB;
12404     }
12405 
12406     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12407     // mode.
12408     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12409         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12410         .addImm(3)
12411         .addImm(27)
12412         .addImm(is8bit ? 28 : 27);
12413     if (!isLittleEndian)
12414       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12415           .addReg(Shift1Reg)
12416           .addImm(is8bit ? 24 : 16);
12417     if (is64bit)
12418       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12419           .addReg(Ptr1Reg)
12420           .addImm(0)
12421           .addImm(61);
12422     else
12423       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12424           .addReg(Ptr1Reg)
12425           .addImm(0)
12426           .addImm(0)
12427           .addImm(29);
12428     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12429         .addReg(newval)
12430         .addReg(ShiftReg);
12431     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12432         .addReg(oldval)
12433         .addReg(ShiftReg);
12434     if (is8bit)
12435       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12436     else {
12437       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12438       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12439           .addReg(Mask3Reg)
12440           .addImm(65535);
12441     }
12442     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12443         .addReg(Mask2Reg)
12444         .addReg(ShiftReg);
12445     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12446         .addReg(NewVal2Reg)
12447         .addReg(MaskReg);
12448     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12449         .addReg(OldVal2Reg)
12450         .addReg(MaskReg);
12451 
12452     BB = loop1MBB;
12453     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12454         .addReg(ZeroReg)
12455         .addReg(PtrReg);
12456     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12457         .addReg(TmpDestReg)
12458         .addReg(MaskReg);
12459     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12460         .addReg(TmpReg)
12461         .addReg(OldVal3Reg);
12462     BuildMI(BB, dl, TII->get(PPC::BCC))
12463         .addImm(PPC::PRED_NE)
12464         .addReg(PPC::CR0)
12465         .addMBB(midMBB);
12466     BB->addSuccessor(loop2MBB);
12467     BB->addSuccessor(midMBB);
12468 
12469     BB = loop2MBB;
12470     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12471         .addReg(TmpDestReg)
12472         .addReg(MaskReg);
12473     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12474         .addReg(Tmp2Reg)
12475         .addReg(NewVal3Reg);
12476     BuildMI(BB, dl, TII->get(PPC::STWCX))
12477         .addReg(Tmp4Reg)
12478         .addReg(ZeroReg)
12479         .addReg(PtrReg);
12480     BuildMI(BB, dl, TII->get(PPC::BCC))
12481         .addImm(PPC::PRED_NE)
12482         .addReg(PPC::CR0)
12483         .addMBB(loop1MBB);
12484     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12485     BB->addSuccessor(loop1MBB);
12486     BB->addSuccessor(exitMBB);
12487 
12488     BB = midMBB;
12489     BuildMI(BB, dl, TII->get(PPC::STWCX))
12490         .addReg(TmpDestReg)
12491         .addReg(ZeroReg)
12492         .addReg(PtrReg);
12493     BB->addSuccessor(exitMBB);
12494 
12495     //  exitMBB:
12496     //   ...
12497     BB = exitMBB;
12498     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12499         .addReg(TmpReg)
12500         .addReg(ShiftReg);
12501   } else if (MI.getOpcode() == PPC::FADDrtz) {
12502     // This pseudo performs an FADD with rounding mode temporarily forced
12503     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12504     // is not modeled at the SelectionDAG level.
12505     Register Dest = MI.getOperand(0).getReg();
12506     Register Src1 = MI.getOperand(1).getReg();
12507     Register Src2 = MI.getOperand(2).getReg();
12508     DebugLoc dl = MI.getDebugLoc();
12509 
12510     MachineRegisterInfo &RegInfo = F->getRegInfo();
12511     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12512 
12513     // Save FPSCR value.
12514     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12515 
12516     // Set rounding mode to round-to-zero.
12517     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12518         .addImm(31)
12519         .addReg(PPC::RM, RegState::ImplicitDefine);
12520 
12521     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12522         .addImm(30)
12523         .addReg(PPC::RM, RegState::ImplicitDefine);
12524 
12525     // Perform addition.
12526     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12527                    .addReg(Src1)
12528                    .addReg(Src2);
12529     if (MI.getFlag(MachineInstr::NoFPExcept))
12530       MIB.setMIFlag(MachineInstr::NoFPExcept);
12531 
12532     // Restore FPSCR value.
12533     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12534   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12535              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12536              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12537              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12538     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12539                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12540                           ? PPC::ANDI8_rec
12541                           : PPC::ANDI_rec;
12542     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12543                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12544 
12545     MachineRegisterInfo &RegInfo = F->getRegInfo();
12546     Register Dest = RegInfo.createVirtualRegister(
12547         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12548 
12549     DebugLoc Dl = MI.getDebugLoc();
12550     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12551         .addReg(MI.getOperand(1).getReg())
12552         .addImm(1);
12553     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12554             MI.getOperand(0).getReg())
12555         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12556   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12557     DebugLoc Dl = MI.getDebugLoc();
12558     MachineRegisterInfo &RegInfo = F->getRegInfo();
12559     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12560     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12561     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12562             MI.getOperand(0).getReg())
12563         .addReg(CRReg);
12564   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12565     DebugLoc Dl = MI.getDebugLoc();
12566     unsigned Imm = MI.getOperand(1).getImm();
12567     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12568     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12569             MI.getOperand(0).getReg())
12570         .addReg(PPC::CR0EQ);
12571   } else if (MI.getOpcode() == PPC::SETRNDi) {
12572     DebugLoc dl = MI.getDebugLoc();
12573     Register OldFPSCRReg = MI.getOperand(0).getReg();
12574 
12575     // Save FPSCR value.
12576     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12577 
12578     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12579     // the following settings:
12580     //   00 Round to nearest
12581     //   01 Round to 0
12582     //   10 Round to +inf
12583     //   11 Round to -inf
12584 
12585     // When the operand is immediate, using the two least significant bits of
12586     // the immediate to set the bits 62:63 of FPSCR.
12587     unsigned Mode = MI.getOperand(1).getImm();
12588     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12589         .addImm(31)
12590         .addReg(PPC::RM, RegState::ImplicitDefine);
12591 
12592     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12593         .addImm(30)
12594         .addReg(PPC::RM, RegState::ImplicitDefine);
12595   } else if (MI.getOpcode() == PPC::SETRND) {
12596     DebugLoc dl = MI.getDebugLoc();
12597 
12598     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12599     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12600     // If the target doesn't have DirectMove, we should use stack to do the
12601     // conversion, because the target doesn't have the instructions like mtvsrd
12602     // or mfvsrd to do this conversion directly.
12603     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12604       if (Subtarget.hasDirectMove()) {
12605         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12606           .addReg(SrcReg);
12607       } else {
12608         // Use stack to do the register copy.
12609         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12610         MachineRegisterInfo &RegInfo = F->getRegInfo();
12611         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12612         if (RC == &PPC::F8RCRegClass) {
12613           // Copy register from F8RCRegClass to G8RCRegclass.
12614           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12615                  "Unsupported RegClass.");
12616 
12617           StoreOp = PPC::STFD;
12618           LoadOp = PPC::LD;
12619         } else {
12620           // Copy register from G8RCRegClass to F8RCRegclass.
12621           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12622                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12623                  "Unsupported RegClass.");
12624         }
12625 
12626         MachineFrameInfo &MFI = F->getFrameInfo();
12627         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12628 
12629         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12630             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12631             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12632             MFI.getObjectAlign(FrameIdx));
12633 
12634         // Store the SrcReg into the stack.
12635         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12636           .addReg(SrcReg)
12637           .addImm(0)
12638           .addFrameIndex(FrameIdx)
12639           .addMemOperand(MMOStore);
12640 
12641         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12642             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12643             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12644             MFI.getObjectAlign(FrameIdx));
12645 
12646         // Load from the stack where SrcReg is stored, and save to DestReg,
12647         // so we have done the RegClass conversion from RegClass::SrcReg to
12648         // RegClass::DestReg.
12649         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12650           .addImm(0)
12651           .addFrameIndex(FrameIdx)
12652           .addMemOperand(MMOLoad);
12653       }
12654     };
12655 
12656     Register OldFPSCRReg = MI.getOperand(0).getReg();
12657 
12658     // Save FPSCR value.
12659     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12660 
12661     // When the operand is gprc register, use two least significant bits of the
12662     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12663     //
12664     // copy OldFPSCRTmpReg, OldFPSCRReg
12665     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12666     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12667     // copy NewFPSCRReg, NewFPSCRTmpReg
12668     // mtfsf 255, NewFPSCRReg
12669     MachineOperand SrcOp = MI.getOperand(1);
12670     MachineRegisterInfo &RegInfo = F->getRegInfo();
12671     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12672 
12673     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12674 
12675     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12676     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12677 
12678     // The first operand of INSERT_SUBREG should be a register which has
12679     // subregisters, we only care about its RegClass, so we should use an
12680     // IMPLICIT_DEF register.
12681     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12682     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12683       .addReg(ImDefReg)
12684       .add(SrcOp)
12685       .addImm(1);
12686 
12687     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12688     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12689       .addReg(OldFPSCRTmpReg)
12690       .addReg(ExtSrcReg)
12691       .addImm(0)
12692       .addImm(62);
12693 
12694     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12695     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12696 
12697     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12698     // bits of FPSCR.
12699     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12700       .addImm(255)
12701       .addReg(NewFPSCRReg)
12702       .addImm(0)
12703       .addImm(0);
12704   } else if (MI.getOpcode() == PPC::SETFLM) {
12705     DebugLoc Dl = MI.getDebugLoc();
12706 
12707     // Result of setflm is previous FPSCR content, so we need to save it first.
12708     Register OldFPSCRReg = MI.getOperand(0).getReg();
12709     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12710 
12711     // Put bits in 32:63 to FPSCR.
12712     Register NewFPSCRReg = MI.getOperand(1).getReg();
12713     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12714         .addImm(255)
12715         .addReg(NewFPSCRReg)
12716         .addImm(0)
12717         .addImm(0);
12718   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12719              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12720     return emitProbedAlloca(MI, BB);
12721   } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) {
12722     DebugLoc DL = MI.getDebugLoc();
12723     Register Src = MI.getOperand(2).getReg();
12724     Register Lo = MI.getOperand(0).getReg();
12725     Register Hi = MI.getOperand(1).getReg();
12726     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12727         .addDef(Lo)
12728         .addUse(Src, 0, PPC::sub_gp8_x1);
12729     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12730         .addDef(Hi)
12731         .addUse(Src, 0, PPC::sub_gp8_x0);
12732   } else if (MI.getOpcode() == PPC::LQX_PSEUDO ||
12733              MI.getOpcode() == PPC::STQX_PSEUDO) {
12734     DebugLoc DL = MI.getDebugLoc();
12735     // Ptr is used as the ptr_rc_no_r0 part
12736     // of LQ/STQ's memory operand and adding result of RA and RB,
12737     // so it has to be g8rc_and_g8rc_nox0.
12738     Register Ptr =
12739         F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
12740     Register Val = MI.getOperand(0).getReg();
12741     Register RA = MI.getOperand(1).getReg();
12742     Register RB = MI.getOperand(2).getReg();
12743     BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB);
12744     BuildMI(*BB, MI, DL,
12745             MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ)
12746                                               : TII->get(PPC::STQ))
12747         .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0)
12748         .addImm(0)
12749         .addReg(Ptr);
12750   } else {
12751     llvm_unreachable("Unexpected instr type to insert");
12752   }
12753 
12754   MI.eraseFromParent(); // The pseudo instruction is gone now.
12755   return BB;
12756 }
12757 
12758 //===----------------------------------------------------------------------===//
12759 // Target Optimization Hooks
12760 //===----------------------------------------------------------------------===//
12761 
12762 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12763   // For the estimates, convergence is quadratic, so we essentially double the
12764   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12765   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12766   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12767   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12768   if (VT.getScalarType() == MVT::f64)
12769     RefinementSteps++;
12770   return RefinementSteps;
12771 }
12772 
12773 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
12774                                             const DenormalMode &Mode) const {
12775   // We only have VSX Vector Test for software Square Root.
12776   EVT VT = Op.getValueType();
12777   if (!isTypeLegal(MVT::i1) ||
12778       (VT != MVT::f64 &&
12779        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
12780     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
12781 
12782   SDLoc DL(Op);
12783   // The output register of FTSQRT is CR field.
12784   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
12785   // ftsqrt BF,FRB
12786   // Let e_b be the unbiased exponent of the double-precision
12787   // floating-point operand in register FRB.
12788   // fe_flag is set to 1 if either of the following conditions occurs.
12789   //   - The double-precision floating-point operand in register FRB is a zero,
12790   //     a NaN, or an infinity, or a negative value.
12791   //   - e_b is less than or equal to -970.
12792   // Otherwise fe_flag is set to 0.
12793   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
12794   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
12795   // exponent is less than -970)
12796   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
12797   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
12798                                     FTSQRT, SRIdxVal),
12799                  0);
12800 }
12801 
12802 SDValue
12803 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
12804                                                SelectionDAG &DAG) const {
12805   // We only have VSX Vector Square Root.
12806   EVT VT = Op.getValueType();
12807   if (VT != MVT::f64 &&
12808       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
12809     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
12810 
12811   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
12812 }
12813 
12814 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12815                                            int Enabled, int &RefinementSteps,
12816                                            bool &UseOneConstNR,
12817                                            bool Reciprocal) const {
12818   EVT VT = Operand.getValueType();
12819   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12820       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12821       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12822       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12823     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12824       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12825 
12826     // The Newton-Raphson computation with a single constant does not provide
12827     // enough accuracy on some CPUs.
12828     UseOneConstNR = !Subtarget.needsTwoConstNR();
12829     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12830   }
12831   return SDValue();
12832 }
12833 
12834 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12835                                             int Enabled,
12836                                             int &RefinementSteps) const {
12837   EVT VT = Operand.getValueType();
12838   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12839       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12840       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12841       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12842     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12843       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12844     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12845   }
12846   return SDValue();
12847 }
12848 
12849 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12850   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12851   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12852   // enabled for division), this functionality is redundant with the default
12853   // combiner logic (once the division -> reciprocal/multiply transformation
12854   // has taken place). As a result, this matters more for older cores than for
12855   // newer ones.
12856 
12857   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12858   // reciprocal if there are two or more FDIVs (for embedded cores with only
12859   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12860   switch (Subtarget.getCPUDirective()) {
12861   default:
12862     return 3;
12863   case PPC::DIR_440:
12864   case PPC::DIR_A2:
12865   case PPC::DIR_E500:
12866   case PPC::DIR_E500mc:
12867   case PPC::DIR_E5500:
12868     return 2;
12869   }
12870 }
12871 
12872 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12873 // collapsed, and so we need to look through chains of them.
12874 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12875                                      int64_t& Offset, SelectionDAG &DAG) {
12876   if (DAG.isBaseWithConstantOffset(Loc)) {
12877     Base = Loc.getOperand(0);
12878     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12879 
12880     // The base might itself be a base plus an offset, and if so, accumulate
12881     // that as well.
12882     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12883   }
12884 }
12885 
12886 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12887                             unsigned Bytes, int Dist,
12888                             SelectionDAG &DAG) {
12889   if (VT.getSizeInBits() / 8 != Bytes)
12890     return false;
12891 
12892   SDValue BaseLoc = Base->getBasePtr();
12893   if (Loc.getOpcode() == ISD::FrameIndex) {
12894     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12895       return false;
12896     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12897     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12898     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12899     int FS  = MFI.getObjectSize(FI);
12900     int BFS = MFI.getObjectSize(BFI);
12901     if (FS != BFS || FS != (int)Bytes) return false;
12902     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12903   }
12904 
12905   SDValue Base1 = Loc, Base2 = BaseLoc;
12906   int64_t Offset1 = 0, Offset2 = 0;
12907   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12908   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12909   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12910     return true;
12911 
12912   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12913   const GlobalValue *GV1 = nullptr;
12914   const GlobalValue *GV2 = nullptr;
12915   Offset1 = 0;
12916   Offset2 = 0;
12917   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12918   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12919   if (isGA1 && isGA2 && GV1 == GV2)
12920     return Offset1 == (Offset2 + Dist*Bytes);
12921   return false;
12922 }
12923 
12924 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12925 // not enforce equality of the chain operands.
12926 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12927                             unsigned Bytes, int Dist,
12928                             SelectionDAG &DAG) {
12929   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12930     EVT VT = LS->getMemoryVT();
12931     SDValue Loc = LS->getBasePtr();
12932     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12933   }
12934 
12935   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12936     EVT VT;
12937     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12938     default: return false;
12939     case Intrinsic::ppc_altivec_lvx:
12940     case Intrinsic::ppc_altivec_lvxl:
12941     case Intrinsic::ppc_vsx_lxvw4x:
12942     case Intrinsic::ppc_vsx_lxvw4x_be:
12943       VT = MVT::v4i32;
12944       break;
12945     case Intrinsic::ppc_vsx_lxvd2x:
12946     case Intrinsic::ppc_vsx_lxvd2x_be:
12947       VT = MVT::v2f64;
12948       break;
12949     case Intrinsic::ppc_altivec_lvebx:
12950       VT = MVT::i8;
12951       break;
12952     case Intrinsic::ppc_altivec_lvehx:
12953       VT = MVT::i16;
12954       break;
12955     case Intrinsic::ppc_altivec_lvewx:
12956       VT = MVT::i32;
12957       break;
12958     }
12959 
12960     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12961   }
12962 
12963   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12964     EVT VT;
12965     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12966     default: return false;
12967     case Intrinsic::ppc_altivec_stvx:
12968     case Intrinsic::ppc_altivec_stvxl:
12969     case Intrinsic::ppc_vsx_stxvw4x:
12970       VT = MVT::v4i32;
12971       break;
12972     case Intrinsic::ppc_vsx_stxvd2x:
12973       VT = MVT::v2f64;
12974       break;
12975     case Intrinsic::ppc_vsx_stxvw4x_be:
12976       VT = MVT::v4i32;
12977       break;
12978     case Intrinsic::ppc_vsx_stxvd2x_be:
12979       VT = MVT::v2f64;
12980       break;
12981     case Intrinsic::ppc_altivec_stvebx:
12982       VT = MVT::i8;
12983       break;
12984     case Intrinsic::ppc_altivec_stvehx:
12985       VT = MVT::i16;
12986       break;
12987     case Intrinsic::ppc_altivec_stvewx:
12988       VT = MVT::i32;
12989       break;
12990     }
12991 
12992     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12993   }
12994 
12995   return false;
12996 }
12997 
12998 // Return true is there is a nearyby consecutive load to the one provided
12999 // (regardless of alignment). We search up and down the chain, looking though
13000 // token factors and other loads (but nothing else). As a result, a true result
13001 // indicates that it is safe to create a new consecutive load adjacent to the
13002 // load provided.
13003 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
13004   SDValue Chain = LD->getChain();
13005   EVT VT = LD->getMemoryVT();
13006 
13007   SmallSet<SDNode *, 16> LoadRoots;
13008   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
13009   SmallSet<SDNode *, 16> Visited;
13010 
13011   // First, search up the chain, branching to follow all token-factor operands.
13012   // If we find a consecutive load, then we're done, otherwise, record all
13013   // nodes just above the top-level loads and token factors.
13014   while (!Queue.empty()) {
13015     SDNode *ChainNext = Queue.pop_back_val();
13016     if (!Visited.insert(ChainNext).second)
13017       continue;
13018 
13019     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
13020       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13021         return true;
13022 
13023       if (!Visited.count(ChainLD->getChain().getNode()))
13024         Queue.push_back(ChainLD->getChain().getNode());
13025     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
13026       for (const SDUse &O : ChainNext->ops())
13027         if (!Visited.count(O.getNode()))
13028           Queue.push_back(O.getNode());
13029     } else
13030       LoadRoots.insert(ChainNext);
13031   }
13032 
13033   // Second, search down the chain, starting from the top-level nodes recorded
13034   // in the first phase. These top-level nodes are the nodes just above all
13035   // loads and token factors. Starting with their uses, recursively look though
13036   // all loads (just the chain uses) and token factors to find a consecutive
13037   // load.
13038   Visited.clear();
13039   Queue.clear();
13040 
13041   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
13042        IE = LoadRoots.end(); I != IE; ++I) {
13043     Queue.push_back(*I);
13044 
13045     while (!Queue.empty()) {
13046       SDNode *LoadRoot = Queue.pop_back_val();
13047       if (!Visited.insert(LoadRoot).second)
13048         continue;
13049 
13050       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
13051         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13052           return true;
13053 
13054       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
13055            UE = LoadRoot->use_end(); UI != UE; ++UI)
13056         if (((isa<MemSDNode>(*UI) &&
13057             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
13058             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
13059           Queue.push_back(*UI);
13060     }
13061   }
13062 
13063   return false;
13064 }
13065 
13066 /// This function is called when we have proved that a SETCC node can be replaced
13067 /// by subtraction (and other supporting instructions) so that the result of
13068 /// comparison is kept in a GPR instead of CR. This function is purely for
13069 /// codegen purposes and has some flags to guide the codegen process.
13070 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
13071                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
13072   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13073 
13074   // Zero extend the operands to the largest legal integer. Originally, they
13075   // must be of a strictly smaller size.
13076   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
13077                          DAG.getConstant(Size, DL, MVT::i32));
13078   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
13079                          DAG.getConstant(Size, DL, MVT::i32));
13080 
13081   // Swap if needed. Depends on the condition code.
13082   if (Swap)
13083     std::swap(Op0, Op1);
13084 
13085   // Subtract extended integers.
13086   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
13087 
13088   // Move the sign bit to the least significant position and zero out the rest.
13089   // Now the least significant bit carries the result of original comparison.
13090   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
13091                              DAG.getConstant(Size - 1, DL, MVT::i32));
13092   auto Final = Shifted;
13093 
13094   // Complement the result if needed. Based on the condition code.
13095   if (Complement)
13096     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
13097                         DAG.getConstant(1, DL, MVT::i64));
13098 
13099   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
13100 }
13101 
13102 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
13103                                                   DAGCombinerInfo &DCI) const {
13104   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13105 
13106   SelectionDAG &DAG = DCI.DAG;
13107   SDLoc DL(N);
13108 
13109   // Size of integers being compared has a critical role in the following
13110   // analysis, so we prefer to do this when all types are legal.
13111   if (!DCI.isAfterLegalizeDAG())
13112     return SDValue();
13113 
13114   // If all users of SETCC extend its value to a legal integer type
13115   // then we replace SETCC with a subtraction
13116   for (SDNode::use_iterator UI = N->use_begin(),
13117        UE = N->use_end(); UI != UE; ++UI) {
13118     if (UI->getOpcode() != ISD::ZERO_EXTEND)
13119       return SDValue();
13120   }
13121 
13122   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13123   auto OpSize = N->getOperand(0).getValueSizeInBits();
13124 
13125   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13126 
13127   if (OpSize < Size) {
13128     switch (CC) {
13129     default: break;
13130     case ISD::SETULT:
13131       return generateEquivalentSub(N, Size, false, false, DL, DAG);
13132     case ISD::SETULE:
13133       return generateEquivalentSub(N, Size, true, true, DL, DAG);
13134     case ISD::SETUGT:
13135       return generateEquivalentSub(N, Size, false, true, DL, DAG);
13136     case ISD::SETUGE:
13137       return generateEquivalentSub(N, Size, true, false, DL, DAG);
13138     }
13139   }
13140 
13141   return SDValue();
13142 }
13143 
13144 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13145                                                   DAGCombinerInfo &DCI) const {
13146   SelectionDAG &DAG = DCI.DAG;
13147   SDLoc dl(N);
13148 
13149   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13150   // If we're tracking CR bits, we need to be careful that we don't have:
13151   //   trunc(binary-ops(zext(x), zext(y)))
13152   // or
13153   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13154   // such that we're unnecessarily moving things into GPRs when it would be
13155   // better to keep them in CR bits.
13156 
13157   // Note that trunc here can be an actual i1 trunc, or can be the effective
13158   // truncation that comes from a setcc or select_cc.
13159   if (N->getOpcode() == ISD::TRUNCATE &&
13160       N->getValueType(0) != MVT::i1)
13161     return SDValue();
13162 
13163   if (N->getOperand(0).getValueType() != MVT::i32 &&
13164       N->getOperand(0).getValueType() != MVT::i64)
13165     return SDValue();
13166 
13167   if (N->getOpcode() == ISD::SETCC ||
13168       N->getOpcode() == ISD::SELECT_CC) {
13169     // If we're looking at a comparison, then we need to make sure that the
13170     // high bits (all except for the first) don't matter the result.
13171     ISD::CondCode CC =
13172       cast<CondCodeSDNode>(N->getOperand(
13173         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13174     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13175 
13176     if (ISD::isSignedIntSetCC(CC)) {
13177       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13178           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13179         return SDValue();
13180     } else if (ISD::isUnsignedIntSetCC(CC)) {
13181       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13182                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13183           !DAG.MaskedValueIsZero(N->getOperand(1),
13184                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13185         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13186                                              : SDValue());
13187     } else {
13188       // This is neither a signed nor an unsigned comparison, just make sure
13189       // that the high bits are equal.
13190       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13191       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13192 
13193       // We don't really care about what is known about the first bit (if
13194       // anything), so pretend that it is known zero for both to ensure they can
13195       // be compared as constants.
13196       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13197       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13198 
13199       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13200           Op1Known.getConstant() != Op2Known.getConstant())
13201         return SDValue();
13202     }
13203   }
13204 
13205   // We now know that the higher-order bits are irrelevant, we just need to
13206   // make sure that all of the intermediate operations are bit operations, and
13207   // all inputs are extensions.
13208   if (N->getOperand(0).getOpcode() != ISD::AND &&
13209       N->getOperand(0).getOpcode() != ISD::OR  &&
13210       N->getOperand(0).getOpcode() != ISD::XOR &&
13211       N->getOperand(0).getOpcode() != ISD::SELECT &&
13212       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13213       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13214       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13215       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13216       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13217     return SDValue();
13218 
13219   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13220       N->getOperand(1).getOpcode() != ISD::AND &&
13221       N->getOperand(1).getOpcode() != ISD::OR  &&
13222       N->getOperand(1).getOpcode() != ISD::XOR &&
13223       N->getOperand(1).getOpcode() != ISD::SELECT &&
13224       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13225       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13226       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13227       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13228       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13229     return SDValue();
13230 
13231   SmallVector<SDValue, 4> Inputs;
13232   SmallVector<SDValue, 8> BinOps, PromOps;
13233   SmallPtrSet<SDNode *, 16> Visited;
13234 
13235   for (unsigned i = 0; i < 2; ++i) {
13236     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13237           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13238           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13239           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13240         isa<ConstantSDNode>(N->getOperand(i)))
13241       Inputs.push_back(N->getOperand(i));
13242     else
13243       BinOps.push_back(N->getOperand(i));
13244 
13245     if (N->getOpcode() == ISD::TRUNCATE)
13246       break;
13247   }
13248 
13249   // Visit all inputs, collect all binary operations (and, or, xor and
13250   // select) that are all fed by extensions.
13251   while (!BinOps.empty()) {
13252     SDValue BinOp = BinOps.pop_back_val();
13253 
13254     if (!Visited.insert(BinOp.getNode()).second)
13255       continue;
13256 
13257     PromOps.push_back(BinOp);
13258 
13259     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13260       // The condition of the select is not promoted.
13261       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13262         continue;
13263       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13264         continue;
13265 
13266       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13267             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13268             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13269            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13270           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13271         Inputs.push_back(BinOp.getOperand(i));
13272       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13273                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13274                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13275                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13276                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13277                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13278                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13279                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13280                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13281         BinOps.push_back(BinOp.getOperand(i));
13282       } else {
13283         // We have an input that is not an extension or another binary
13284         // operation; we'll abort this transformation.
13285         return SDValue();
13286       }
13287     }
13288   }
13289 
13290   // Make sure that this is a self-contained cluster of operations (which
13291   // is not quite the same thing as saying that everything has only one
13292   // use).
13293   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13294     if (isa<ConstantSDNode>(Inputs[i]))
13295       continue;
13296 
13297     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13298                               UE = Inputs[i].getNode()->use_end();
13299          UI != UE; ++UI) {
13300       SDNode *User = *UI;
13301       if (User != N && !Visited.count(User))
13302         return SDValue();
13303 
13304       // Make sure that we're not going to promote the non-output-value
13305       // operand(s) or SELECT or SELECT_CC.
13306       // FIXME: Although we could sometimes handle this, and it does occur in
13307       // practice that one of the condition inputs to the select is also one of
13308       // the outputs, we currently can't deal with this.
13309       if (User->getOpcode() == ISD::SELECT) {
13310         if (User->getOperand(0) == Inputs[i])
13311           return SDValue();
13312       } else if (User->getOpcode() == ISD::SELECT_CC) {
13313         if (User->getOperand(0) == Inputs[i] ||
13314             User->getOperand(1) == Inputs[i])
13315           return SDValue();
13316       }
13317     }
13318   }
13319 
13320   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13321     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13322                               UE = PromOps[i].getNode()->use_end();
13323          UI != UE; ++UI) {
13324       SDNode *User = *UI;
13325       if (User != N && !Visited.count(User))
13326         return SDValue();
13327 
13328       // Make sure that we're not going to promote the non-output-value
13329       // operand(s) or SELECT or SELECT_CC.
13330       // FIXME: Although we could sometimes handle this, and it does occur in
13331       // practice that one of the condition inputs to the select is also one of
13332       // the outputs, we currently can't deal with this.
13333       if (User->getOpcode() == ISD::SELECT) {
13334         if (User->getOperand(0) == PromOps[i])
13335           return SDValue();
13336       } else if (User->getOpcode() == ISD::SELECT_CC) {
13337         if (User->getOperand(0) == PromOps[i] ||
13338             User->getOperand(1) == PromOps[i])
13339           return SDValue();
13340       }
13341     }
13342   }
13343 
13344   // Replace all inputs with the extension operand.
13345   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13346     // Constants may have users outside the cluster of to-be-promoted nodes,
13347     // and so we need to replace those as we do the promotions.
13348     if (isa<ConstantSDNode>(Inputs[i]))
13349       continue;
13350     else
13351       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13352   }
13353 
13354   std::list<HandleSDNode> PromOpHandles;
13355   for (auto &PromOp : PromOps)
13356     PromOpHandles.emplace_back(PromOp);
13357 
13358   // Replace all operations (these are all the same, but have a different
13359   // (i1) return type). DAG.getNode will validate that the types of
13360   // a binary operator match, so go through the list in reverse so that
13361   // we've likely promoted both operands first. Any intermediate truncations or
13362   // extensions disappear.
13363   while (!PromOpHandles.empty()) {
13364     SDValue PromOp = PromOpHandles.back().getValue();
13365     PromOpHandles.pop_back();
13366 
13367     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13368         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13369         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13370         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13371       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13372           PromOp.getOperand(0).getValueType() != MVT::i1) {
13373         // The operand is not yet ready (see comment below).
13374         PromOpHandles.emplace_front(PromOp);
13375         continue;
13376       }
13377 
13378       SDValue RepValue = PromOp.getOperand(0);
13379       if (isa<ConstantSDNode>(RepValue))
13380         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13381 
13382       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13383       continue;
13384     }
13385 
13386     unsigned C;
13387     switch (PromOp.getOpcode()) {
13388     default:             C = 0; break;
13389     case ISD::SELECT:    C = 1; break;
13390     case ISD::SELECT_CC: C = 2; break;
13391     }
13392 
13393     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13394          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13395         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13396          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13397       // The to-be-promoted operands of this node have not yet been
13398       // promoted (this should be rare because we're going through the
13399       // list backward, but if one of the operands has several users in
13400       // this cluster of to-be-promoted nodes, it is possible).
13401       PromOpHandles.emplace_front(PromOp);
13402       continue;
13403     }
13404 
13405     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13406                                 PromOp.getNode()->op_end());
13407 
13408     // If there are any constant inputs, make sure they're replaced now.
13409     for (unsigned i = 0; i < 2; ++i)
13410       if (isa<ConstantSDNode>(Ops[C+i]))
13411         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13412 
13413     DAG.ReplaceAllUsesOfValueWith(PromOp,
13414       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13415   }
13416 
13417   // Now we're left with the initial truncation itself.
13418   if (N->getOpcode() == ISD::TRUNCATE)
13419     return N->getOperand(0);
13420 
13421   // Otherwise, this is a comparison. The operands to be compared have just
13422   // changed type (to i1), but everything else is the same.
13423   return SDValue(N, 0);
13424 }
13425 
13426 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13427                                                   DAGCombinerInfo &DCI) const {
13428   SelectionDAG &DAG = DCI.DAG;
13429   SDLoc dl(N);
13430 
13431   // If we're tracking CR bits, we need to be careful that we don't have:
13432   //   zext(binary-ops(trunc(x), trunc(y)))
13433   // or
13434   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13435   // such that we're unnecessarily moving things into CR bits that can more
13436   // efficiently stay in GPRs. Note that if we're not certain that the high
13437   // bits are set as required by the final extension, we still may need to do
13438   // some masking to get the proper behavior.
13439 
13440   // This same functionality is important on PPC64 when dealing with
13441   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13442   // the return values of functions. Because it is so similar, it is handled
13443   // here as well.
13444 
13445   if (N->getValueType(0) != MVT::i32 &&
13446       N->getValueType(0) != MVT::i64)
13447     return SDValue();
13448 
13449   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13450         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13451     return SDValue();
13452 
13453   if (N->getOperand(0).getOpcode() != ISD::AND &&
13454       N->getOperand(0).getOpcode() != ISD::OR  &&
13455       N->getOperand(0).getOpcode() != ISD::XOR &&
13456       N->getOperand(0).getOpcode() != ISD::SELECT &&
13457       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13458     return SDValue();
13459 
13460   SmallVector<SDValue, 4> Inputs;
13461   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13462   SmallPtrSet<SDNode *, 16> Visited;
13463 
13464   // Visit all inputs, collect all binary operations (and, or, xor and
13465   // select) that are all fed by truncations.
13466   while (!BinOps.empty()) {
13467     SDValue BinOp = BinOps.pop_back_val();
13468 
13469     if (!Visited.insert(BinOp.getNode()).second)
13470       continue;
13471 
13472     PromOps.push_back(BinOp);
13473 
13474     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13475       // The condition of the select is not promoted.
13476       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13477         continue;
13478       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13479         continue;
13480 
13481       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13482           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13483         Inputs.push_back(BinOp.getOperand(i));
13484       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13485                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13486                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13487                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13488                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13489         BinOps.push_back(BinOp.getOperand(i));
13490       } else {
13491         // We have an input that is not a truncation or another binary
13492         // operation; we'll abort this transformation.
13493         return SDValue();
13494       }
13495     }
13496   }
13497 
13498   // The operands of a select that must be truncated when the select is
13499   // promoted because the operand is actually part of the to-be-promoted set.
13500   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13501 
13502   // Make sure that this is a self-contained cluster of operations (which
13503   // is not quite the same thing as saying that everything has only one
13504   // use).
13505   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13506     if (isa<ConstantSDNode>(Inputs[i]))
13507       continue;
13508 
13509     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13510                               UE = Inputs[i].getNode()->use_end();
13511          UI != UE; ++UI) {
13512       SDNode *User = *UI;
13513       if (User != N && !Visited.count(User))
13514         return SDValue();
13515 
13516       // If we're going to promote the non-output-value operand(s) or SELECT or
13517       // SELECT_CC, record them for truncation.
13518       if (User->getOpcode() == ISD::SELECT) {
13519         if (User->getOperand(0) == Inputs[i])
13520           SelectTruncOp[0].insert(std::make_pair(User,
13521                                     User->getOperand(0).getValueType()));
13522       } else if (User->getOpcode() == ISD::SELECT_CC) {
13523         if (User->getOperand(0) == Inputs[i])
13524           SelectTruncOp[0].insert(std::make_pair(User,
13525                                     User->getOperand(0).getValueType()));
13526         if (User->getOperand(1) == Inputs[i])
13527           SelectTruncOp[1].insert(std::make_pair(User,
13528                                     User->getOperand(1).getValueType()));
13529       }
13530     }
13531   }
13532 
13533   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13534     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13535                               UE = PromOps[i].getNode()->use_end();
13536          UI != UE; ++UI) {
13537       SDNode *User = *UI;
13538       if (User != N && !Visited.count(User))
13539         return SDValue();
13540 
13541       // If we're going to promote the non-output-value operand(s) or SELECT or
13542       // SELECT_CC, record them for truncation.
13543       if (User->getOpcode() == ISD::SELECT) {
13544         if (User->getOperand(0) == PromOps[i])
13545           SelectTruncOp[0].insert(std::make_pair(User,
13546                                     User->getOperand(0).getValueType()));
13547       } else if (User->getOpcode() == ISD::SELECT_CC) {
13548         if (User->getOperand(0) == PromOps[i])
13549           SelectTruncOp[0].insert(std::make_pair(User,
13550                                     User->getOperand(0).getValueType()));
13551         if (User->getOperand(1) == PromOps[i])
13552           SelectTruncOp[1].insert(std::make_pair(User,
13553                                     User->getOperand(1).getValueType()));
13554       }
13555     }
13556   }
13557 
13558   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13559   bool ReallyNeedsExt = false;
13560   if (N->getOpcode() != ISD::ANY_EXTEND) {
13561     // If all of the inputs are not already sign/zero extended, then
13562     // we'll still need to do that at the end.
13563     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13564       if (isa<ConstantSDNode>(Inputs[i]))
13565         continue;
13566 
13567       unsigned OpBits =
13568         Inputs[i].getOperand(0).getValueSizeInBits();
13569       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13570 
13571       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13572            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13573                                   APInt::getHighBitsSet(OpBits,
13574                                                         OpBits-PromBits))) ||
13575           (N->getOpcode() == ISD::SIGN_EXTEND &&
13576            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13577              (OpBits-(PromBits-1)))) {
13578         ReallyNeedsExt = true;
13579         break;
13580       }
13581     }
13582   }
13583 
13584   // Replace all inputs, either with the truncation operand, or a
13585   // truncation or extension to the final output type.
13586   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13587     // Constant inputs need to be replaced with the to-be-promoted nodes that
13588     // use them because they might have users outside of the cluster of
13589     // promoted nodes.
13590     if (isa<ConstantSDNode>(Inputs[i]))
13591       continue;
13592 
13593     SDValue InSrc = Inputs[i].getOperand(0);
13594     if (Inputs[i].getValueType() == N->getValueType(0))
13595       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13596     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13597       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13598         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13599     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13600       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13601         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13602     else
13603       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13604         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13605   }
13606 
13607   std::list<HandleSDNode> PromOpHandles;
13608   for (auto &PromOp : PromOps)
13609     PromOpHandles.emplace_back(PromOp);
13610 
13611   // Replace all operations (these are all the same, but have a different
13612   // (promoted) return type). DAG.getNode will validate that the types of
13613   // a binary operator match, so go through the list in reverse so that
13614   // we've likely promoted both operands first.
13615   while (!PromOpHandles.empty()) {
13616     SDValue PromOp = PromOpHandles.back().getValue();
13617     PromOpHandles.pop_back();
13618 
13619     unsigned C;
13620     switch (PromOp.getOpcode()) {
13621     default:             C = 0; break;
13622     case ISD::SELECT:    C = 1; break;
13623     case ISD::SELECT_CC: C = 2; break;
13624     }
13625 
13626     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13627          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13628         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13629          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13630       // The to-be-promoted operands of this node have not yet been
13631       // promoted (this should be rare because we're going through the
13632       // list backward, but if one of the operands has several users in
13633       // this cluster of to-be-promoted nodes, it is possible).
13634       PromOpHandles.emplace_front(PromOp);
13635       continue;
13636     }
13637 
13638     // For SELECT and SELECT_CC nodes, we do a similar check for any
13639     // to-be-promoted comparison inputs.
13640     if (PromOp.getOpcode() == ISD::SELECT ||
13641         PromOp.getOpcode() == ISD::SELECT_CC) {
13642       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13643            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13644           (SelectTruncOp[1].count(PromOp.getNode()) &&
13645            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13646         PromOpHandles.emplace_front(PromOp);
13647         continue;
13648       }
13649     }
13650 
13651     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13652                                 PromOp.getNode()->op_end());
13653 
13654     // If this node has constant inputs, then they'll need to be promoted here.
13655     for (unsigned i = 0; i < 2; ++i) {
13656       if (!isa<ConstantSDNode>(Ops[C+i]))
13657         continue;
13658       if (Ops[C+i].getValueType() == N->getValueType(0))
13659         continue;
13660 
13661       if (N->getOpcode() == ISD::SIGN_EXTEND)
13662         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13663       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13664         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13665       else
13666         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13667     }
13668 
13669     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13670     // truncate them again to the original value type.
13671     if (PromOp.getOpcode() == ISD::SELECT ||
13672         PromOp.getOpcode() == ISD::SELECT_CC) {
13673       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13674       if (SI0 != SelectTruncOp[0].end())
13675         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13676       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13677       if (SI1 != SelectTruncOp[1].end())
13678         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13679     }
13680 
13681     DAG.ReplaceAllUsesOfValueWith(PromOp,
13682       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13683   }
13684 
13685   // Now we're left with the initial extension itself.
13686   if (!ReallyNeedsExt)
13687     return N->getOperand(0);
13688 
13689   // To zero extend, just mask off everything except for the first bit (in the
13690   // i1 case).
13691   if (N->getOpcode() == ISD::ZERO_EXTEND)
13692     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13693                        DAG.getConstant(APInt::getLowBitsSet(
13694                                          N->getValueSizeInBits(0), PromBits),
13695                                        dl, N->getValueType(0)));
13696 
13697   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13698          "Invalid extension type");
13699   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13700   SDValue ShiftCst =
13701       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13702   return DAG.getNode(
13703       ISD::SRA, dl, N->getValueType(0),
13704       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13705       ShiftCst);
13706 }
13707 
13708 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13709                                         DAGCombinerInfo &DCI) const {
13710   assert(N->getOpcode() == ISD::SETCC &&
13711          "Should be called with a SETCC node");
13712 
13713   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13714   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13715     SDValue LHS = N->getOperand(0);
13716     SDValue RHS = N->getOperand(1);
13717 
13718     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13719     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13720         LHS.hasOneUse())
13721       std::swap(LHS, RHS);
13722 
13723     // x == 0-y --> x+y == 0
13724     // x != 0-y --> x+y != 0
13725     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13726         RHS.hasOneUse()) {
13727       SDLoc DL(N);
13728       SelectionDAG &DAG = DCI.DAG;
13729       EVT VT = N->getValueType(0);
13730       EVT OpVT = LHS.getValueType();
13731       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13732       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13733     }
13734   }
13735 
13736   return DAGCombineTruncBoolExt(N, DCI);
13737 }
13738 
13739 // Is this an extending load from an f32 to an f64?
13740 static bool isFPExtLoad(SDValue Op) {
13741   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13742     return LD->getExtensionType() == ISD::EXTLOAD &&
13743       Op.getValueType() == MVT::f64;
13744   return false;
13745 }
13746 
13747 /// Reduces the number of fp-to-int conversion when building a vector.
13748 ///
13749 /// If this vector is built out of floating to integer conversions,
13750 /// transform it to a vector built out of floating point values followed by a
13751 /// single floating to integer conversion of the vector.
13752 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13753 /// becomes (fptosi (build_vector ($A, $B, ...)))
13754 SDValue PPCTargetLowering::
13755 combineElementTruncationToVectorTruncation(SDNode *N,
13756                                            DAGCombinerInfo &DCI) const {
13757   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13758          "Should be called with a BUILD_VECTOR node");
13759 
13760   SelectionDAG &DAG = DCI.DAG;
13761   SDLoc dl(N);
13762 
13763   SDValue FirstInput = N->getOperand(0);
13764   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13765          "The input operand must be an fp-to-int conversion.");
13766 
13767   // This combine happens after legalization so the fp_to_[su]i nodes are
13768   // already converted to PPCSISD nodes.
13769   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13770   if (FirstConversion == PPCISD::FCTIDZ ||
13771       FirstConversion == PPCISD::FCTIDUZ ||
13772       FirstConversion == PPCISD::FCTIWZ ||
13773       FirstConversion == PPCISD::FCTIWUZ) {
13774     bool IsSplat = true;
13775     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13776       FirstConversion == PPCISD::FCTIWUZ;
13777     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13778     SmallVector<SDValue, 4> Ops;
13779     EVT TargetVT = N->getValueType(0);
13780     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13781       SDValue NextOp = N->getOperand(i);
13782       if (NextOp.getOpcode() != PPCISD::MFVSR)
13783         return SDValue();
13784       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13785       if (NextConversion != FirstConversion)
13786         return SDValue();
13787       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13788       // This is not valid if the input was originally double precision. It is
13789       // also not profitable to do unless this is an extending load in which
13790       // case doing this combine will allow us to combine consecutive loads.
13791       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13792         return SDValue();
13793       if (N->getOperand(i) != FirstInput)
13794         IsSplat = false;
13795     }
13796 
13797     // If this is a splat, we leave it as-is since there will be only a single
13798     // fp-to-int conversion followed by a splat of the integer. This is better
13799     // for 32-bit and smaller ints and neutral for 64-bit ints.
13800     if (IsSplat)
13801       return SDValue();
13802 
13803     // Now that we know we have the right type of node, get its operands
13804     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13805       SDValue In = N->getOperand(i).getOperand(0);
13806       if (Is32Bit) {
13807         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13808         // here, we know that all inputs are extending loads so this is safe).
13809         if (In.isUndef())
13810           Ops.push_back(DAG.getUNDEF(SrcVT));
13811         else {
13812           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13813                                       MVT::f32, In.getOperand(0),
13814                                       DAG.getIntPtrConstant(1, dl));
13815           Ops.push_back(Trunc);
13816         }
13817       } else
13818         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13819     }
13820 
13821     unsigned Opcode;
13822     if (FirstConversion == PPCISD::FCTIDZ ||
13823         FirstConversion == PPCISD::FCTIWZ)
13824       Opcode = ISD::FP_TO_SINT;
13825     else
13826       Opcode = ISD::FP_TO_UINT;
13827 
13828     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13829     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13830     return DAG.getNode(Opcode, dl, TargetVT, BV);
13831   }
13832   return SDValue();
13833 }
13834 
13835 /// Reduce the number of loads when building a vector.
13836 ///
13837 /// Building a vector out of multiple loads can be converted to a load
13838 /// of the vector type if the loads are consecutive. If the loads are
13839 /// consecutive but in descending order, a shuffle is added at the end
13840 /// to reorder the vector.
13841 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13842   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13843          "Should be called with a BUILD_VECTOR node");
13844 
13845   SDLoc dl(N);
13846 
13847   // Return early for non byte-sized type, as they can't be consecutive.
13848   if (!N->getValueType(0).getVectorElementType().isByteSized())
13849     return SDValue();
13850 
13851   bool InputsAreConsecutiveLoads = true;
13852   bool InputsAreReverseConsecutive = true;
13853   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13854   SDValue FirstInput = N->getOperand(0);
13855   bool IsRoundOfExtLoad = false;
13856 
13857   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13858       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13859     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13860     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13861   }
13862   // Not a build vector of (possibly fp_rounded) loads.
13863   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13864       N->getNumOperands() == 1)
13865     return SDValue();
13866 
13867   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13868     // If any inputs are fp_round(extload), they all must be.
13869     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13870       return SDValue();
13871 
13872     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13873       N->getOperand(i);
13874     if (NextInput.getOpcode() != ISD::LOAD)
13875       return SDValue();
13876 
13877     SDValue PreviousInput =
13878       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13879     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13880     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13881 
13882     // If any inputs are fp_round(extload), they all must be.
13883     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13884       return SDValue();
13885 
13886     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13887       InputsAreConsecutiveLoads = false;
13888     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13889       InputsAreReverseConsecutive = false;
13890 
13891     // Exit early if the loads are neither consecutive nor reverse consecutive.
13892     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13893       return SDValue();
13894   }
13895 
13896   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13897          "The loads cannot be both consecutive and reverse consecutive.");
13898 
13899   SDValue FirstLoadOp =
13900     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13901   SDValue LastLoadOp =
13902     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13903                        N->getOperand(N->getNumOperands()-1);
13904 
13905   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13906   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13907   if (InputsAreConsecutiveLoads) {
13908     assert(LD1 && "Input needs to be a LoadSDNode.");
13909     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13910                        LD1->getBasePtr(), LD1->getPointerInfo(),
13911                        LD1->getAlignment());
13912   }
13913   if (InputsAreReverseConsecutive) {
13914     assert(LDL && "Input needs to be a LoadSDNode.");
13915     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13916                                LDL->getBasePtr(), LDL->getPointerInfo(),
13917                                LDL->getAlignment());
13918     SmallVector<int, 16> Ops;
13919     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13920       Ops.push_back(i);
13921 
13922     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13923                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13924   }
13925   return SDValue();
13926 }
13927 
13928 // This function adds the required vector_shuffle needed to get
13929 // the elements of the vector extract in the correct position
13930 // as specified by the CorrectElems encoding.
13931 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13932                                       SDValue Input, uint64_t Elems,
13933                                       uint64_t CorrectElems) {
13934   SDLoc dl(N);
13935 
13936   unsigned NumElems = Input.getValueType().getVectorNumElements();
13937   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13938 
13939   // Knowing the element indices being extracted from the original
13940   // vector and the order in which they're being inserted, just put
13941   // them at element indices required for the instruction.
13942   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13943     if (DAG.getDataLayout().isLittleEndian())
13944       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13945     else
13946       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13947     CorrectElems = CorrectElems >> 8;
13948     Elems = Elems >> 8;
13949   }
13950 
13951   SDValue Shuffle =
13952       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13953                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13954 
13955   EVT VT = N->getValueType(0);
13956   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13957 
13958   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13959                                Input.getValueType().getVectorElementType(),
13960                                VT.getVectorNumElements());
13961   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13962                      DAG.getValueType(ExtVT));
13963 }
13964 
13965 // Look for build vector patterns where input operands come from sign
13966 // extended vector_extract elements of specific indices. If the correct indices
13967 // aren't used, add a vector shuffle to fix up the indices and create
13968 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13969 // during instruction selection.
13970 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13971   // This array encodes the indices that the vector sign extend instructions
13972   // extract from when extending from one type to another for both BE and LE.
13973   // The right nibble of each byte corresponds to the LE incides.
13974   // and the left nibble of each byte corresponds to the BE incides.
13975   // For example: 0x3074B8FC  byte->word
13976   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13977   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13978   // For example: 0x000070F8  byte->double word
13979   // For LE: the allowed indices are: 0x0,0x8
13980   // For BE: the allowed indices are: 0x7,0xF
13981   uint64_t TargetElems[] = {
13982       0x3074B8FC, // b->w
13983       0x000070F8, // b->d
13984       0x10325476, // h->w
13985       0x00003074, // h->d
13986       0x00001032, // w->d
13987   };
13988 
13989   uint64_t Elems = 0;
13990   int Index;
13991   SDValue Input;
13992 
13993   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13994     if (!Op)
13995       return false;
13996     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13997         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13998       return false;
13999 
14000     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
14001     // of the right width.
14002     SDValue Extract = Op.getOperand(0);
14003     if (Extract.getOpcode() == ISD::ANY_EXTEND)
14004       Extract = Extract.getOperand(0);
14005     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14006       return false;
14007 
14008     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
14009     if (!ExtOp)
14010       return false;
14011 
14012     Index = ExtOp->getZExtValue();
14013     if (Input && Input != Extract.getOperand(0))
14014       return false;
14015 
14016     if (!Input)
14017       Input = Extract.getOperand(0);
14018 
14019     Elems = Elems << 8;
14020     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
14021     Elems |= Index;
14022 
14023     return true;
14024   };
14025 
14026   // If the build vector operands aren't sign extended vector extracts,
14027   // of the same input vector, then return.
14028   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14029     if (!isSExtOfVecExtract(N->getOperand(i))) {
14030       return SDValue();
14031     }
14032   }
14033 
14034   // If the vector extract indicies are not correct, add the appropriate
14035   // vector_shuffle.
14036   int TgtElemArrayIdx;
14037   int InputSize = Input.getValueType().getScalarSizeInBits();
14038   int OutputSize = N->getValueType(0).getScalarSizeInBits();
14039   if (InputSize + OutputSize == 40)
14040     TgtElemArrayIdx = 0;
14041   else if (InputSize + OutputSize == 72)
14042     TgtElemArrayIdx = 1;
14043   else if (InputSize + OutputSize == 48)
14044     TgtElemArrayIdx = 2;
14045   else if (InputSize + OutputSize == 80)
14046     TgtElemArrayIdx = 3;
14047   else if (InputSize + OutputSize == 96)
14048     TgtElemArrayIdx = 4;
14049   else
14050     return SDValue();
14051 
14052   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
14053   CorrectElems = DAG.getDataLayout().isLittleEndian()
14054                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
14055                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
14056   if (Elems != CorrectElems) {
14057     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
14058   }
14059 
14060   // Regular lowering will catch cases where a shuffle is not needed.
14061   return SDValue();
14062 }
14063 
14064 // Look for the pattern of a load from a narrow width to i128, feeding
14065 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
14066 // (LXVRZX). This node represents a zero extending load that will be matched
14067 // to the Load VSX Vector Rightmost instructions.
14068 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
14069   SDLoc DL(N);
14070 
14071   // This combine is only eligible for a BUILD_VECTOR of v1i128.
14072   if (N->getValueType(0) != MVT::v1i128)
14073     return SDValue();
14074 
14075   SDValue Operand = N->getOperand(0);
14076   // Proceed with the transformation if the operand to the BUILD_VECTOR
14077   // is a load instruction.
14078   if (Operand.getOpcode() != ISD::LOAD)
14079     return SDValue();
14080 
14081   auto *LD = cast<LoadSDNode>(Operand);
14082   EVT MemoryType = LD->getMemoryVT();
14083 
14084   // This transformation is only valid if the we are loading either a byte,
14085   // halfword, word, or doubleword.
14086   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
14087                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
14088 
14089   // Ensure that the load from the narrow width is being zero extended to i128.
14090   if (!ValidLDType ||
14091       (LD->getExtensionType() != ISD::ZEXTLOAD &&
14092        LD->getExtensionType() != ISD::EXTLOAD))
14093     return SDValue();
14094 
14095   SDValue LoadOps[] = {
14096       LD->getChain(), LD->getBasePtr(),
14097       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
14098 
14099   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
14100                                  DAG.getVTList(MVT::v1i128, MVT::Other),
14101                                  LoadOps, MemoryType, LD->getMemOperand());
14102 }
14103 
14104 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
14105                                                  DAGCombinerInfo &DCI) const {
14106   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14107          "Should be called with a BUILD_VECTOR node");
14108 
14109   SelectionDAG &DAG = DCI.DAG;
14110   SDLoc dl(N);
14111 
14112   if (!Subtarget.hasVSX())
14113     return SDValue();
14114 
14115   // The target independent DAG combiner will leave a build_vector of
14116   // float-to-int conversions intact. We can generate MUCH better code for
14117   // a float-to-int conversion of a vector of floats.
14118   SDValue FirstInput = N->getOperand(0);
14119   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
14120     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
14121     if (Reduced)
14122       return Reduced;
14123   }
14124 
14125   // If we're building a vector out of consecutive loads, just load that
14126   // vector type.
14127   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14128   if (Reduced)
14129     return Reduced;
14130 
14131   // If we're building a vector out of extended elements from another vector
14132   // we have P9 vector integer extend instructions. The code assumes legal
14133   // input types (i.e. it can't handle things like v4i16) so do not run before
14134   // legalization.
14135   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14136     Reduced = combineBVOfVecSExt(N, DAG);
14137     if (Reduced)
14138       return Reduced;
14139   }
14140 
14141   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14142   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14143   // is a load from <valid narrow width> to i128.
14144   if (Subtarget.isISA3_1()) {
14145     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14146     if (BVOfZLoad)
14147       return BVOfZLoad;
14148   }
14149 
14150   if (N->getValueType(0) != MVT::v2f64)
14151     return SDValue();
14152 
14153   // Looking for:
14154   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14155   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14156       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14157     return SDValue();
14158   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14159       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14160     return SDValue();
14161   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14162     return SDValue();
14163 
14164   SDValue Ext1 = FirstInput.getOperand(0);
14165   SDValue Ext2 = N->getOperand(1).getOperand(0);
14166   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14167      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14168     return SDValue();
14169 
14170   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14171   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14172   if (!Ext1Op || !Ext2Op)
14173     return SDValue();
14174   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14175       Ext1.getOperand(0) != Ext2.getOperand(0))
14176     return SDValue();
14177 
14178   int FirstElem = Ext1Op->getZExtValue();
14179   int SecondElem = Ext2Op->getZExtValue();
14180   int SubvecIdx;
14181   if (FirstElem == 0 && SecondElem == 1)
14182     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14183   else if (FirstElem == 2 && SecondElem == 3)
14184     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14185   else
14186     return SDValue();
14187 
14188   SDValue SrcVec = Ext1.getOperand(0);
14189   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14190     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14191   return DAG.getNode(NodeType, dl, MVT::v2f64,
14192                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14193 }
14194 
14195 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14196                                               DAGCombinerInfo &DCI) const {
14197   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14198           N->getOpcode() == ISD::UINT_TO_FP) &&
14199          "Need an int -> FP conversion node here");
14200 
14201   if (useSoftFloat() || !Subtarget.has64BitSupport())
14202     return SDValue();
14203 
14204   SelectionDAG &DAG = DCI.DAG;
14205   SDLoc dl(N);
14206   SDValue Op(N, 0);
14207 
14208   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14209   // from the hardware.
14210   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14211     return SDValue();
14212   if (!Op.getOperand(0).getValueType().isSimple())
14213     return SDValue();
14214   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14215       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14216     return SDValue();
14217 
14218   SDValue FirstOperand(Op.getOperand(0));
14219   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14220     (FirstOperand.getValueType() == MVT::i8 ||
14221      FirstOperand.getValueType() == MVT::i16);
14222   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14223     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14224     bool DstDouble = Op.getValueType() == MVT::f64;
14225     unsigned ConvOp = Signed ?
14226       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14227       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14228     SDValue WidthConst =
14229       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14230                             dl, false);
14231     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14232     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14233     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14234                                          DAG.getVTList(MVT::f64, MVT::Other),
14235                                          Ops, MVT::i8, LDN->getMemOperand());
14236 
14237     // For signed conversion, we need to sign-extend the value in the VSR
14238     if (Signed) {
14239       SDValue ExtOps[] = { Ld, WidthConst };
14240       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14241       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14242     } else
14243       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14244   }
14245 
14246 
14247   // For i32 intermediate values, unfortunately, the conversion functions
14248   // leave the upper 32 bits of the value are undefined. Within the set of
14249   // scalar instructions, we have no method for zero- or sign-extending the
14250   // value. Thus, we cannot handle i32 intermediate values here.
14251   if (Op.getOperand(0).getValueType() == MVT::i32)
14252     return SDValue();
14253 
14254   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14255          "UINT_TO_FP is supported only with FPCVT");
14256 
14257   // If we have FCFIDS, then use it when converting to single-precision.
14258   // Otherwise, convert to double-precision and then round.
14259   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14260                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14261                                                             : PPCISD::FCFIDS)
14262                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14263                                                             : PPCISD::FCFID);
14264   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14265                   ? MVT::f32
14266                   : MVT::f64;
14267 
14268   // If we're converting from a float, to an int, and back to a float again,
14269   // then we don't need the store/load pair at all.
14270   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14271        Subtarget.hasFPCVT()) ||
14272       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14273     SDValue Src = Op.getOperand(0).getOperand(0);
14274     if (Src.getValueType() == MVT::f32) {
14275       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14276       DCI.AddToWorklist(Src.getNode());
14277     } else if (Src.getValueType() != MVT::f64) {
14278       // Make sure that we don't pick up a ppc_fp128 source value.
14279       return SDValue();
14280     }
14281 
14282     unsigned FCTOp =
14283       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14284                                                         PPCISD::FCTIDUZ;
14285 
14286     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14287     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14288 
14289     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14290       FP = DAG.getNode(ISD::FP_ROUND, dl,
14291                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14292       DCI.AddToWorklist(FP.getNode());
14293     }
14294 
14295     return FP;
14296   }
14297 
14298   return SDValue();
14299 }
14300 
14301 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14302 // builtins) into loads with swaps.
14303 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14304                                               DAGCombinerInfo &DCI) const {
14305   SelectionDAG &DAG = DCI.DAG;
14306   SDLoc dl(N);
14307   SDValue Chain;
14308   SDValue Base;
14309   MachineMemOperand *MMO;
14310 
14311   switch (N->getOpcode()) {
14312   default:
14313     llvm_unreachable("Unexpected opcode for little endian VSX load");
14314   case ISD::LOAD: {
14315     LoadSDNode *LD = cast<LoadSDNode>(N);
14316     Chain = LD->getChain();
14317     Base = LD->getBasePtr();
14318     MMO = LD->getMemOperand();
14319     // If the MMO suggests this isn't a load of a full vector, leave
14320     // things alone.  For a built-in, we have to make the change for
14321     // correctness, so if there is a size problem that will be a bug.
14322     if (MMO->getSize() < 16)
14323       return SDValue();
14324     break;
14325   }
14326   case ISD::INTRINSIC_W_CHAIN: {
14327     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14328     Chain = Intrin->getChain();
14329     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14330     // us what we want. Get operand 2 instead.
14331     Base = Intrin->getOperand(2);
14332     MMO = Intrin->getMemOperand();
14333     break;
14334   }
14335   }
14336 
14337   MVT VecTy = N->getValueType(0).getSimpleVT();
14338 
14339   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14340   // aligned and the type is a vector with elements up to 4 bytes
14341   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14342       VecTy.getScalarSizeInBits() <= 32) {
14343     return SDValue();
14344   }
14345 
14346   SDValue LoadOps[] = { Chain, Base };
14347   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14348                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14349                                          LoadOps, MVT::v2f64, MMO);
14350 
14351   DCI.AddToWorklist(Load.getNode());
14352   Chain = Load.getValue(1);
14353   SDValue Swap = DAG.getNode(
14354       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14355   DCI.AddToWorklist(Swap.getNode());
14356 
14357   // Add a bitcast if the resulting load type doesn't match v2f64.
14358   if (VecTy != MVT::v2f64) {
14359     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14360     DCI.AddToWorklist(N.getNode());
14361     // Package {bitcast value, swap's chain} to match Load's shape.
14362     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14363                        N, Swap.getValue(1));
14364   }
14365 
14366   return Swap;
14367 }
14368 
14369 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14370 // builtins) into stores with swaps.
14371 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14372                                                DAGCombinerInfo &DCI) const {
14373   SelectionDAG &DAG = DCI.DAG;
14374   SDLoc dl(N);
14375   SDValue Chain;
14376   SDValue Base;
14377   unsigned SrcOpnd;
14378   MachineMemOperand *MMO;
14379 
14380   switch (N->getOpcode()) {
14381   default:
14382     llvm_unreachable("Unexpected opcode for little endian VSX store");
14383   case ISD::STORE: {
14384     StoreSDNode *ST = cast<StoreSDNode>(N);
14385     Chain = ST->getChain();
14386     Base = ST->getBasePtr();
14387     MMO = ST->getMemOperand();
14388     SrcOpnd = 1;
14389     // If the MMO suggests this isn't a store of a full vector, leave
14390     // things alone.  For a built-in, we have to make the change for
14391     // correctness, so if there is a size problem that will be a bug.
14392     if (MMO->getSize() < 16)
14393       return SDValue();
14394     break;
14395   }
14396   case ISD::INTRINSIC_VOID: {
14397     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14398     Chain = Intrin->getChain();
14399     // Intrin->getBasePtr() oddly does not get what we want.
14400     Base = Intrin->getOperand(3);
14401     MMO = Intrin->getMemOperand();
14402     SrcOpnd = 2;
14403     break;
14404   }
14405   }
14406 
14407   SDValue Src = N->getOperand(SrcOpnd);
14408   MVT VecTy = Src.getValueType().getSimpleVT();
14409 
14410   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14411   // aligned and the type is a vector with elements up to 4 bytes
14412   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14413       VecTy.getScalarSizeInBits() <= 32) {
14414     return SDValue();
14415   }
14416 
14417   // All stores are done as v2f64 and possible bit cast.
14418   if (VecTy != MVT::v2f64) {
14419     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14420     DCI.AddToWorklist(Src.getNode());
14421   }
14422 
14423   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14424                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14425   DCI.AddToWorklist(Swap.getNode());
14426   Chain = Swap.getValue(1);
14427   SDValue StoreOps[] = { Chain, Swap, Base };
14428   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14429                                           DAG.getVTList(MVT::Other),
14430                                           StoreOps, VecTy, MMO);
14431   DCI.AddToWorklist(Store.getNode());
14432   return Store;
14433 }
14434 
14435 // Handle DAG combine for STORE (FP_TO_INT F).
14436 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14437                                                DAGCombinerInfo &DCI) const {
14438 
14439   SelectionDAG &DAG = DCI.DAG;
14440   SDLoc dl(N);
14441   unsigned Opcode = N->getOperand(1).getOpcode();
14442 
14443   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14444          && "Not a FP_TO_INT Instruction!");
14445 
14446   SDValue Val = N->getOperand(1).getOperand(0);
14447   EVT Op1VT = N->getOperand(1).getValueType();
14448   EVT ResVT = Val.getValueType();
14449 
14450   if (!isTypeLegal(ResVT))
14451     return SDValue();
14452 
14453   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14454   bool ValidTypeForStoreFltAsInt =
14455         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14456          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14457 
14458   if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
14459     return SDValue();
14460 
14461   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14462       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14463     return SDValue();
14464 
14465   // Extend f32 values to f64
14466   if (ResVT.getScalarSizeInBits() == 32) {
14467     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14468     DCI.AddToWorklist(Val.getNode());
14469   }
14470 
14471   // Set signed or unsigned conversion opcode.
14472   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14473                           PPCISD::FP_TO_SINT_IN_VSR :
14474                           PPCISD::FP_TO_UINT_IN_VSR;
14475 
14476   Val = DAG.getNode(ConvOpcode,
14477                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14478   DCI.AddToWorklist(Val.getNode());
14479 
14480   // Set number of bytes being converted.
14481   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14482   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14483                     DAG.getIntPtrConstant(ByteSize, dl, false),
14484                     DAG.getValueType(Op1VT) };
14485 
14486   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14487           DAG.getVTList(MVT::Other), Ops,
14488           cast<StoreSDNode>(N)->getMemoryVT(),
14489           cast<StoreSDNode>(N)->getMemOperand());
14490 
14491   DCI.AddToWorklist(Val.getNode());
14492   return Val;
14493 }
14494 
14495 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14496   // Check that the source of the element keeps flipping
14497   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14498   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14499   for (int i = 1, e = Mask.size(); i < e; i++) {
14500     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14501       return false;
14502     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14503       return false;
14504     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14505   }
14506   return true;
14507 }
14508 
14509 static bool isSplatBV(SDValue Op) {
14510   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14511     return false;
14512   SDValue FirstOp;
14513 
14514   // Find first non-undef input.
14515   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14516     FirstOp = Op.getOperand(i);
14517     if (!FirstOp.isUndef())
14518       break;
14519   }
14520 
14521   // All inputs are undef or the same as the first non-undef input.
14522   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14523     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14524       return false;
14525   return true;
14526 }
14527 
14528 static SDValue isScalarToVec(SDValue Op) {
14529   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14530     return Op;
14531   if (Op.getOpcode() != ISD::BITCAST)
14532     return SDValue();
14533   Op = Op.getOperand(0);
14534   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14535     return Op;
14536   return SDValue();
14537 }
14538 
14539 // Fix up the shuffle mask to account for the fact that the result of
14540 // scalar_to_vector is not in lane zero. This just takes all values in
14541 // the ranges specified by the min/max indices and adds the number of
14542 // elements required to ensure each element comes from the respective
14543 // position in the valid lane.
14544 // On little endian, that's just the corresponding element in the other
14545 // half of the vector. On big endian, it is in the same half but right
14546 // justified rather than left justified in that half.
14547 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14548                                             int LHSMaxIdx, int RHSMinIdx,
14549                                             int RHSMaxIdx, int HalfVec,
14550                                             unsigned ValidLaneWidth,
14551                                             const PPCSubtarget &Subtarget) {
14552   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14553     int Idx = ShuffV[i];
14554     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14555       ShuffV[i] +=
14556           Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
14557   }
14558 }
14559 
14560 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14561 // the original is:
14562 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14563 // In such a case, just change the shuffle mask to extract the element
14564 // from the permuted index.
14565 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
14566                                const PPCSubtarget &Subtarget) {
14567   SDLoc dl(OrigSToV);
14568   EVT VT = OrigSToV.getValueType();
14569   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14570          "Expecting a SCALAR_TO_VECTOR here");
14571   SDValue Input = OrigSToV.getOperand(0);
14572 
14573   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14574     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14575     SDValue OrigVector = Input.getOperand(0);
14576 
14577     // Can't handle non-const element indices or different vector types
14578     // for the input to the extract and the output of the scalar_to_vector.
14579     if (Idx && VT == OrigVector.getValueType()) {
14580       unsigned NumElts = VT.getVectorNumElements();
14581       assert(
14582           NumElts > 1 &&
14583           "Cannot produce a permuted scalar_to_vector for one element vector");
14584       SmallVector<int, 16> NewMask(NumElts, -1);
14585       unsigned ResultInElt = NumElts / 2;
14586       ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
14587       NewMask[ResultInElt] = Idx->getZExtValue();
14588       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14589     }
14590   }
14591   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14592                      OrigSToV.getOperand(0));
14593 }
14594 
14595 // On little endian subtargets, combine shuffles such as:
14596 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14597 // into:
14598 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14599 // because the latter can be matched to a single instruction merge.
14600 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14601 // to put the value into element zero. Adjust the shuffle mask so that the
14602 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14603 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
14604 // nodes with elements smaller than doubleword because all the ways
14605 // of getting scalar data into a vector register put the value in the
14606 // rightmost element of the left half of the vector.
14607 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14608                                                 SelectionDAG &DAG) const {
14609   SDValue LHS = SVN->getOperand(0);
14610   SDValue RHS = SVN->getOperand(1);
14611   auto Mask = SVN->getMask();
14612   int NumElts = LHS.getValueType().getVectorNumElements();
14613   SDValue Res(SVN, 0);
14614   SDLoc dl(SVN);
14615   bool IsLittleEndian = Subtarget.isLittleEndian();
14616 
14617   // On big endian targets this is only useful for subtargets with direct moves.
14618   // On little endian targets it would be useful for all subtargets with VSX.
14619   // However adding special handling for LE subtargets without direct moves
14620   // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
14621   // which includes direct moves.
14622   if (!Subtarget.hasDirectMove())
14623     return Res;
14624 
14625   // If this is not a shuffle of a shuffle and the first element comes from
14626   // the second vector, canonicalize to the commuted form. This will make it
14627   // more likely to match one of the single instruction patterns.
14628   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14629       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14630     std::swap(LHS, RHS);
14631     Res = DAG.getCommutedVectorShuffle(*SVN);
14632     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14633   }
14634 
14635   // Adjust the shuffle mask if either input vector comes from a
14636   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14637   // form (to prevent the need for a swap).
14638   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14639   SDValue SToVLHS = isScalarToVec(LHS);
14640   SDValue SToVRHS = isScalarToVec(RHS);
14641   if (SToVLHS || SToVRHS) {
14642     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14643                             : SToVRHS.getValueType().getVectorNumElements();
14644     int NumEltsOut = ShuffV.size();
14645     // The width of the "valid lane" (i.e. the lane that contains the value that
14646     // is vectorized) needs to be expressed in terms of the number of elements
14647     // of the shuffle. It is thereby the ratio of the values before and after
14648     // any bitcast.
14649     unsigned ValidLaneWidth =
14650         SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() /
14651                       LHS.getValueType().getScalarSizeInBits()
14652                 : SToVRHS.getValueType().getScalarSizeInBits() /
14653                       RHS.getValueType().getScalarSizeInBits();
14654 
14655     // Initially assume that neither input is permuted. These will be adjusted
14656     // accordingly if either input is.
14657     int LHSMaxIdx = -1;
14658     int RHSMinIdx = -1;
14659     int RHSMaxIdx = -1;
14660     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14661 
14662     // Get the permuted scalar to vector nodes for the source(s) that come from
14663     // ISD::SCALAR_TO_VECTOR.
14664     // On big endian systems, this only makes sense for element sizes smaller
14665     // than 64 bits since for 64-bit elements, all instructions already put
14666     // the value into element zero. Since scalar size of LHS and RHS may differ
14667     // after isScalarToVec, this should be checked using their own sizes.
14668     if (SToVLHS) {
14669       if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64)
14670         return Res;
14671       // Set up the values for the shuffle vector fixup.
14672       LHSMaxIdx = NumEltsOut / NumEltsIn;
14673       SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
14674       if (SToVLHS.getValueType() != LHS.getValueType())
14675         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14676       LHS = SToVLHS;
14677     }
14678     if (SToVRHS) {
14679       if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64)
14680         return Res;
14681       RHSMinIdx = NumEltsOut;
14682       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14683       SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
14684       if (SToVRHS.getValueType() != RHS.getValueType())
14685         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14686       RHS = SToVRHS;
14687     }
14688 
14689     // Fix up the shuffle mask to reflect where the desired element actually is.
14690     // The minimum and maximum indices that correspond to element zero for both
14691     // the LHS and RHS are computed and will control which shuffle mask entries
14692     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14693     // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
14694     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14695                                     HalfVec, ValidLaneWidth, Subtarget);
14696     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14697 
14698     // We may have simplified away the shuffle. We won't be able to do anything
14699     // further with it here.
14700     if (!isa<ShuffleVectorSDNode>(Res))
14701       return Res;
14702     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14703   }
14704 
14705   SDValue TheSplat = IsLittleEndian ? RHS : LHS;
14706   // The common case after we commuted the shuffle is that the RHS is a splat
14707   // and we have elements coming in from the splat at indices that are not
14708   // conducive to using a merge.
14709   // Example:
14710   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14711   if (!isSplatBV(TheSplat))
14712     return Res;
14713 
14714   // We are looking for a mask such that all even elements are from
14715   // one vector and all odd elements from the other.
14716   if (!isAlternatingShuffMask(Mask, NumElts))
14717     return Res;
14718 
14719   // Adjust the mask so we are pulling in the same index from the splat
14720   // as the index from the interesting vector in consecutive elements.
14721   if (IsLittleEndian) {
14722     // Example (even elements from first vector):
14723     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14724     if (Mask[0] < NumElts)
14725       for (int i = 1, e = Mask.size(); i < e; i += 2)
14726         ShuffV[i] = (ShuffV[i - 1] + NumElts);
14727     // Example (odd elements from first vector):
14728     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14729     else
14730       for (int i = 0, e = Mask.size(); i < e; i += 2)
14731         ShuffV[i] = (ShuffV[i + 1] + NumElts);
14732   } else {
14733     // Example (even elements from first vector):
14734     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
14735     if (Mask[0] < NumElts)
14736       for (int i = 0, e = Mask.size(); i < e; i += 2)
14737         ShuffV[i] = ShuffV[i + 1] - NumElts;
14738     // Example (odd elements from first vector):
14739     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
14740     else
14741       for (int i = 1, e = Mask.size(); i < e; i += 2)
14742         ShuffV[i] = ShuffV[i - 1] - NumElts;
14743   }
14744 
14745   // If the RHS has undefs, we need to remove them since we may have created
14746   // a shuffle that adds those instead of the splat value.
14747   SDValue SplatVal =
14748       cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
14749   TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
14750 
14751   if (IsLittleEndian)
14752     RHS = TheSplat;
14753   else
14754     LHS = TheSplat;
14755   return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14756 }
14757 
14758 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14759                                                 LSBaseSDNode *LSBase,
14760                                                 DAGCombinerInfo &DCI) const {
14761   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14762         "Not a reverse memop pattern!");
14763 
14764   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14765     auto Mask = SVN->getMask();
14766     int i = 0;
14767     auto I = Mask.rbegin();
14768     auto E = Mask.rend();
14769 
14770     for (; I != E; ++I) {
14771       if (*I != i)
14772         return false;
14773       i++;
14774     }
14775     return true;
14776   };
14777 
14778   SelectionDAG &DAG = DCI.DAG;
14779   EVT VT = SVN->getValueType(0);
14780 
14781   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14782     return SDValue();
14783 
14784   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14785   // See comment in PPCVSXSwapRemoval.cpp.
14786   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14787   if (!Subtarget.hasP9Vector())
14788     return SDValue();
14789 
14790   if(!IsElementReverse(SVN))
14791     return SDValue();
14792 
14793   if (LSBase->getOpcode() == ISD::LOAD) {
14794     // If the load return value 0 has more than one user except the
14795     // shufflevector instruction, it is not profitable to replace the
14796     // shufflevector with a reverse load.
14797     for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
14798          UI != UE; ++UI)
14799       if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
14800         return SDValue();
14801 
14802     SDLoc dl(LSBase);
14803     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14804     return DAG.getMemIntrinsicNode(
14805         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14806         LSBase->getMemoryVT(), LSBase->getMemOperand());
14807   }
14808 
14809   if (LSBase->getOpcode() == ISD::STORE) {
14810     // If there are other uses of the shuffle, the swap cannot be avoided.
14811     // Forcing the use of an X-Form (since swapped stores only have
14812     // X-Forms) without removing the swap is unprofitable.
14813     if (!SVN->hasOneUse())
14814       return SDValue();
14815 
14816     SDLoc dl(LSBase);
14817     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14818                           LSBase->getBasePtr()};
14819     return DAG.getMemIntrinsicNode(
14820         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14821         LSBase->getMemoryVT(), LSBase->getMemOperand());
14822   }
14823 
14824   llvm_unreachable("Expected a load or store node here");
14825 }
14826 
14827 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14828                                              DAGCombinerInfo &DCI) const {
14829   SelectionDAG &DAG = DCI.DAG;
14830   SDLoc dl(N);
14831   switch (N->getOpcode()) {
14832   default: break;
14833   case ISD::ADD:
14834     return combineADD(N, DCI);
14835   case ISD::SHL:
14836     return combineSHL(N, DCI);
14837   case ISD::SRA:
14838     return combineSRA(N, DCI);
14839   case ISD::SRL:
14840     return combineSRL(N, DCI);
14841   case ISD::MUL:
14842     return combineMUL(N, DCI);
14843   case ISD::FMA:
14844   case PPCISD::FNMSUB:
14845     return combineFMALike(N, DCI);
14846   case PPCISD::SHL:
14847     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14848         return N->getOperand(0);
14849     break;
14850   case PPCISD::SRL:
14851     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14852         return N->getOperand(0);
14853     break;
14854   case PPCISD::SRA:
14855     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14856       if (C->isNullValue() ||   //  0 >>s V -> 0.
14857           C->isAllOnesValue())    // -1 >>s V -> -1.
14858         return N->getOperand(0);
14859     }
14860     break;
14861   case ISD::SIGN_EXTEND:
14862   case ISD::ZERO_EXTEND:
14863   case ISD::ANY_EXTEND:
14864     return DAGCombineExtBoolTrunc(N, DCI);
14865   case ISD::TRUNCATE:
14866     return combineTRUNCATE(N, DCI);
14867   case ISD::SETCC:
14868     if (SDValue CSCC = combineSetCC(N, DCI))
14869       return CSCC;
14870     LLVM_FALLTHROUGH;
14871   case ISD::SELECT_CC:
14872     return DAGCombineTruncBoolExt(N, DCI);
14873   case ISD::SINT_TO_FP:
14874   case ISD::UINT_TO_FP:
14875     return combineFPToIntToFP(N, DCI);
14876   case ISD::VECTOR_SHUFFLE:
14877     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14878       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14879       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14880     }
14881     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14882   case ISD::STORE: {
14883 
14884     EVT Op1VT = N->getOperand(1).getValueType();
14885     unsigned Opcode = N->getOperand(1).getOpcode();
14886 
14887     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14888       SDValue Val= combineStoreFPToInt(N, DCI);
14889       if (Val)
14890         return Val;
14891     }
14892 
14893     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14894       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14895       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14896       if (Val)
14897         return Val;
14898     }
14899 
14900     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14901     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14902         N->getOperand(1).getNode()->hasOneUse() &&
14903         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14904          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14905 
14906       // STBRX can only handle simple types and it makes no sense to store less
14907       // two bytes in byte-reversed order.
14908       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14909       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14910         break;
14911 
14912       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14913       // Do an any-extend to 32-bits if this is a half-word input.
14914       if (BSwapOp.getValueType() == MVT::i16)
14915         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14916 
14917       // If the type of BSWAP operand is wider than stored memory width
14918       // it need to be shifted to the right side before STBRX.
14919       if (Op1VT.bitsGT(mVT)) {
14920         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14921         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14922                               DAG.getConstant(Shift, dl, MVT::i32));
14923         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14924         if (Op1VT == MVT::i64)
14925           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14926       }
14927 
14928       SDValue Ops[] = {
14929         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14930       };
14931       return
14932         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14933                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14934                                 cast<StoreSDNode>(N)->getMemOperand());
14935     }
14936 
14937     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14938     // So it can increase the chance of CSE constant construction.
14939     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14940         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14941       // Need to sign-extended to 64-bits to handle negative values.
14942       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14943       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14944                                     MemVT.getSizeInBits());
14945       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14946 
14947       // DAG.getTruncStore() can't be used here because it doesn't accept
14948       // the general (base + offset) addressing mode.
14949       // So we use UpdateNodeOperands and setTruncatingStore instead.
14950       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14951                              N->getOperand(3));
14952       cast<StoreSDNode>(N)->setTruncatingStore(true);
14953       return SDValue(N, 0);
14954     }
14955 
14956     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14957     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14958     if (Op1VT.isSimple()) {
14959       MVT StoreVT = Op1VT.getSimpleVT();
14960       if (Subtarget.needsSwapsForVSXMemOps() &&
14961           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14962            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14963         return expandVSXStoreForLE(N, DCI);
14964     }
14965     break;
14966   }
14967   case ISD::LOAD: {
14968     LoadSDNode *LD = cast<LoadSDNode>(N);
14969     EVT VT = LD->getValueType(0);
14970 
14971     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14972     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14973     if (VT.isSimple()) {
14974       MVT LoadVT = VT.getSimpleVT();
14975       if (Subtarget.needsSwapsForVSXMemOps() &&
14976           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14977            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14978         return expandVSXLoadForLE(N, DCI);
14979     }
14980 
14981     // We sometimes end up with a 64-bit integer load, from which we extract
14982     // two single-precision floating-point numbers. This happens with
14983     // std::complex<float>, and other similar structures, because of the way we
14984     // canonicalize structure copies. However, if we lack direct moves,
14985     // then the final bitcasts from the extracted integer values to the
14986     // floating-point numbers turn into store/load pairs. Even with direct moves,
14987     // just loading the two floating-point numbers is likely better.
14988     auto ReplaceTwoFloatLoad = [&]() {
14989       if (VT != MVT::i64)
14990         return false;
14991 
14992       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14993           LD->isVolatile())
14994         return false;
14995 
14996       //  We're looking for a sequence like this:
14997       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14998       //      t16: i64 = srl t13, Constant:i32<32>
14999       //    t17: i32 = truncate t16
15000       //  t18: f32 = bitcast t17
15001       //    t19: i32 = truncate t13
15002       //  t20: f32 = bitcast t19
15003 
15004       if (!LD->hasNUsesOfValue(2, 0))
15005         return false;
15006 
15007       auto UI = LD->use_begin();
15008       while (UI.getUse().getResNo() != 0) ++UI;
15009       SDNode *Trunc = *UI++;
15010       while (UI.getUse().getResNo() != 0) ++UI;
15011       SDNode *RightShift = *UI;
15012       if (Trunc->getOpcode() != ISD::TRUNCATE)
15013         std::swap(Trunc, RightShift);
15014 
15015       if (Trunc->getOpcode() != ISD::TRUNCATE ||
15016           Trunc->getValueType(0) != MVT::i32 ||
15017           !Trunc->hasOneUse())
15018         return false;
15019       if (RightShift->getOpcode() != ISD::SRL ||
15020           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
15021           RightShift->getConstantOperandVal(1) != 32 ||
15022           !RightShift->hasOneUse())
15023         return false;
15024 
15025       SDNode *Trunc2 = *RightShift->use_begin();
15026       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
15027           Trunc2->getValueType(0) != MVT::i32 ||
15028           !Trunc2->hasOneUse())
15029         return false;
15030 
15031       SDNode *Bitcast = *Trunc->use_begin();
15032       SDNode *Bitcast2 = *Trunc2->use_begin();
15033 
15034       if (Bitcast->getOpcode() != ISD::BITCAST ||
15035           Bitcast->getValueType(0) != MVT::f32)
15036         return false;
15037       if (Bitcast2->getOpcode() != ISD::BITCAST ||
15038           Bitcast2->getValueType(0) != MVT::f32)
15039         return false;
15040 
15041       if (Subtarget.isLittleEndian())
15042         std::swap(Bitcast, Bitcast2);
15043 
15044       // Bitcast has the second float (in memory-layout order) and Bitcast2
15045       // has the first one.
15046 
15047       SDValue BasePtr = LD->getBasePtr();
15048       if (LD->isIndexed()) {
15049         assert(LD->getAddressingMode() == ISD::PRE_INC &&
15050                "Non-pre-inc AM on PPC?");
15051         BasePtr =
15052           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15053                       LD->getOffset());
15054       }
15055 
15056       auto MMOFlags =
15057           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
15058       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
15059                                       LD->getPointerInfo(), LD->getAlignment(),
15060                                       MMOFlags, LD->getAAInfo());
15061       SDValue AddPtr =
15062         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
15063                     BasePtr, DAG.getIntPtrConstant(4, dl));
15064       SDValue FloatLoad2 = DAG.getLoad(
15065           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
15066           LD->getPointerInfo().getWithOffset(4),
15067           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
15068 
15069       if (LD->isIndexed()) {
15070         // Note that DAGCombine should re-form any pre-increment load(s) from
15071         // what is produced here if that makes sense.
15072         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
15073       }
15074 
15075       DCI.CombineTo(Bitcast2, FloatLoad);
15076       DCI.CombineTo(Bitcast, FloatLoad2);
15077 
15078       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
15079                                     SDValue(FloatLoad2.getNode(), 1));
15080       return true;
15081     };
15082 
15083     if (ReplaceTwoFloatLoad())
15084       return SDValue(N, 0);
15085 
15086     EVT MemVT = LD->getMemoryVT();
15087     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
15088     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
15089     if (LD->isUnindexed() && VT.isVector() &&
15090         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
15091           // P8 and later hardware should just use LOAD.
15092           !Subtarget.hasP8Vector() &&
15093           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
15094            VT == MVT::v4f32))) &&
15095         LD->getAlign() < ABIAlignment) {
15096       // This is a type-legal unaligned Altivec load.
15097       SDValue Chain = LD->getChain();
15098       SDValue Ptr = LD->getBasePtr();
15099       bool isLittleEndian = Subtarget.isLittleEndian();
15100 
15101       // This implements the loading of unaligned vectors as described in
15102       // the venerable Apple Velocity Engine overview. Specifically:
15103       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15104       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15105       //
15106       // The general idea is to expand a sequence of one or more unaligned
15107       // loads into an alignment-based permutation-control instruction (lvsl
15108       // or lvsr), a series of regular vector loads (which always truncate
15109       // their input address to an aligned address), and a series of
15110       // permutations.  The results of these permutations are the requested
15111       // loaded values.  The trick is that the last "extra" load is not taken
15112       // from the address you might suspect (sizeof(vector) bytes after the
15113       // last requested load), but rather sizeof(vector) - 1 bytes after the
15114       // last requested vector. The point of this is to avoid a page fault if
15115       // the base address happened to be aligned. This works because if the
15116       // base address is aligned, then adding less than a full vector length
15117       // will cause the last vector in the sequence to be (re)loaded.
15118       // Otherwise, the next vector will be fetched as you might suspect was
15119       // necessary.
15120 
15121       // We might be able to reuse the permutation generation from
15122       // a different base address offset from this one by an aligned amount.
15123       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15124       // optimization later.
15125       Intrinsic::ID Intr, IntrLD, IntrPerm;
15126       MVT PermCntlTy, PermTy, LDTy;
15127       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15128                             : Intrinsic::ppc_altivec_lvsl;
15129       IntrLD = Intrinsic::ppc_altivec_lvx;
15130       IntrPerm = Intrinsic::ppc_altivec_vperm;
15131       PermCntlTy = MVT::v16i8;
15132       PermTy = MVT::v4i32;
15133       LDTy = MVT::v4i32;
15134 
15135       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15136 
15137       // Create the new MMO for the new base load. It is like the original MMO,
15138       // but represents an area in memory almost twice the vector size centered
15139       // on the original address. If the address is unaligned, we might start
15140       // reading up to (sizeof(vector)-1) bytes below the address of the
15141       // original unaligned load.
15142       MachineFunction &MF = DAG.getMachineFunction();
15143       MachineMemOperand *BaseMMO =
15144         MF.getMachineMemOperand(LD->getMemOperand(),
15145                                 -(long)MemVT.getStoreSize()+1,
15146                                 2*MemVT.getStoreSize()-1);
15147 
15148       // Create the new base load.
15149       SDValue LDXIntID =
15150           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15151       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15152       SDValue BaseLoad =
15153         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15154                                 DAG.getVTList(PermTy, MVT::Other),
15155                                 BaseLoadOps, LDTy, BaseMMO);
15156 
15157       // Note that the value of IncOffset (which is provided to the next
15158       // load's pointer info offset value, and thus used to calculate the
15159       // alignment), and the value of IncValue (which is actually used to
15160       // increment the pointer value) are different! This is because we
15161       // require the next load to appear to be aligned, even though it
15162       // is actually offset from the base pointer by a lesser amount.
15163       int IncOffset = VT.getSizeInBits() / 8;
15164       int IncValue = IncOffset;
15165 
15166       // Walk (both up and down) the chain looking for another load at the real
15167       // (aligned) offset (the alignment of the other load does not matter in
15168       // this case). If found, then do not use the offset reduction trick, as
15169       // that will prevent the loads from being later combined (as they would
15170       // otherwise be duplicates).
15171       if (!findConsecutiveLoad(LD, DAG))
15172         --IncValue;
15173 
15174       SDValue Increment =
15175           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15176       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15177 
15178       MachineMemOperand *ExtraMMO =
15179         MF.getMachineMemOperand(LD->getMemOperand(),
15180                                 1, 2*MemVT.getStoreSize()-1);
15181       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15182       SDValue ExtraLoad =
15183         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15184                                 DAG.getVTList(PermTy, MVT::Other),
15185                                 ExtraLoadOps, LDTy, ExtraMMO);
15186 
15187       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15188         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15189 
15190       // Because vperm has a big-endian bias, we must reverse the order
15191       // of the input vectors and complement the permute control vector
15192       // when generating little endian code.  We have already handled the
15193       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15194       // and ExtraLoad here.
15195       SDValue Perm;
15196       if (isLittleEndian)
15197         Perm = BuildIntrinsicOp(IntrPerm,
15198                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15199       else
15200         Perm = BuildIntrinsicOp(IntrPerm,
15201                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15202 
15203       if (VT != PermTy)
15204         Perm = Subtarget.hasAltivec()
15205                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15206                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15207                                  DAG.getTargetConstant(1, dl, MVT::i64));
15208                                // second argument is 1 because this rounding
15209                                // is always exact.
15210 
15211       // The output of the permutation is our loaded result, the TokenFactor is
15212       // our new chain.
15213       DCI.CombineTo(N, Perm, TF);
15214       return SDValue(N, 0);
15215     }
15216     }
15217     break;
15218     case ISD::INTRINSIC_WO_CHAIN: {
15219       bool isLittleEndian = Subtarget.isLittleEndian();
15220       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15221       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15222                                            : Intrinsic::ppc_altivec_lvsl);
15223       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15224         SDValue Add = N->getOperand(1);
15225 
15226         int Bits = 4 /* 16 byte alignment */;
15227 
15228         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15229                                   APInt::getAllOnesValue(Bits /* alignment */)
15230                                       .zext(Add.getScalarValueSizeInBits()))) {
15231           SDNode *BasePtr = Add->getOperand(0).getNode();
15232           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15233                                     UE = BasePtr->use_end();
15234                UI != UE; ++UI) {
15235             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15236                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
15237                     IID) {
15238               // We've found another LVSL/LVSR, and this address is an aligned
15239               // multiple of that one. The results will be the same, so use the
15240               // one we've just found instead.
15241 
15242               return SDValue(*UI, 0);
15243             }
15244           }
15245         }
15246 
15247         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15248           SDNode *BasePtr = Add->getOperand(0).getNode();
15249           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15250                UE = BasePtr->use_end(); UI != UE; ++UI) {
15251             if (UI->getOpcode() == ISD::ADD &&
15252                 isa<ConstantSDNode>(UI->getOperand(1)) &&
15253                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15254                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
15255                 (1ULL << Bits) == 0) {
15256               SDNode *OtherAdd = *UI;
15257               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
15258                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
15259                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15260                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
15261                   return SDValue(*VI, 0);
15262                 }
15263               }
15264             }
15265           }
15266         }
15267       }
15268 
15269       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15270       // Expose the vabsduw/h/b opportunity for down stream
15271       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15272           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15273            IID == Intrinsic::ppc_altivec_vmaxsh ||
15274            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15275         SDValue V1 = N->getOperand(1);
15276         SDValue V2 = N->getOperand(2);
15277         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15278              V1.getSimpleValueType() == MVT::v8i16 ||
15279              V1.getSimpleValueType() == MVT::v16i8) &&
15280             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15281           // (0-a, a)
15282           if (V1.getOpcode() == ISD::SUB &&
15283               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15284               V1.getOperand(1) == V2) {
15285             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15286           }
15287           // (a, 0-a)
15288           if (V2.getOpcode() == ISD::SUB &&
15289               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15290               V2.getOperand(1) == V1) {
15291             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15292           }
15293           // (x-y, y-x)
15294           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15295               V1.getOperand(0) == V2.getOperand(1) &&
15296               V1.getOperand(1) == V2.getOperand(0)) {
15297             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15298           }
15299         }
15300       }
15301     }
15302 
15303     break;
15304   case ISD::INTRINSIC_W_CHAIN:
15305     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15306     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15307     if (Subtarget.needsSwapsForVSXMemOps()) {
15308       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15309       default:
15310         break;
15311       case Intrinsic::ppc_vsx_lxvw4x:
15312       case Intrinsic::ppc_vsx_lxvd2x:
15313         return expandVSXLoadForLE(N, DCI);
15314       }
15315     }
15316     break;
15317   case ISD::INTRINSIC_VOID:
15318     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15319     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15320     if (Subtarget.needsSwapsForVSXMemOps()) {
15321       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15322       default:
15323         break;
15324       case Intrinsic::ppc_vsx_stxvw4x:
15325       case Intrinsic::ppc_vsx_stxvd2x:
15326         return expandVSXStoreForLE(N, DCI);
15327       }
15328     }
15329     break;
15330   case ISD::BSWAP: {
15331     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15332     // For subtargets without LDBRX, we can still do better than the default
15333     // expansion even for 64-bit BSWAP (LOAD).
15334     bool Is64BitBswapOn64BitTgt =
15335         Subtarget.isPPC64() && N->getValueType(0) == MVT::i64;
15336     bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) &&
15337                                N->getOperand(0).hasOneUse();
15338     if (IsSingleUseNormalLd &&
15339         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15340          (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
15341       SDValue Load = N->getOperand(0);
15342       LoadSDNode *LD = cast<LoadSDNode>(Load);
15343       // Create the byte-swapping load.
15344       SDValue Ops[] = {
15345         LD->getChain(),    // Chain
15346         LD->getBasePtr(),  // Ptr
15347         DAG.getValueType(N->getValueType(0)) // VT
15348       };
15349       SDValue BSLoad =
15350         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15351                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15352                                               MVT::i64 : MVT::i32, MVT::Other),
15353                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15354 
15355       // If this is an i16 load, insert the truncate.
15356       SDValue ResVal = BSLoad;
15357       if (N->getValueType(0) == MVT::i16)
15358         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15359 
15360       // First, combine the bswap away.  This makes the value produced by the
15361       // load dead.
15362       DCI.CombineTo(N, ResVal);
15363 
15364       // Next, combine the load away, we give it a bogus result value but a real
15365       // chain result.  The result value is dead because the bswap is dead.
15366       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15367 
15368       // Return N so it doesn't get rechecked!
15369       return SDValue(N, 0);
15370     }
15371     // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
15372     // before legalization so that the BUILD_PAIR is handled correctly.
15373     if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt ||
15374         !IsSingleUseNormalLd)
15375       return SDValue();
15376     LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0));
15377 
15378     // Can't split volatile or atomic loads.
15379     if (!LD->isSimple())
15380       return SDValue();
15381     SDValue BasePtr = LD->getBasePtr();
15382     SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr,
15383                              LD->getPointerInfo(), LD->getAlignment());
15384     Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo);
15385     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15386                           DAG.getIntPtrConstant(4, dl));
15387     MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand(
15388         LD->getMemOperand(), 4, 4);
15389     SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO);
15390     Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi);
15391     SDValue Res;
15392     if (Subtarget.isLittleEndian())
15393       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo);
15394     else
15395       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
15396     SDValue TF =
15397         DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15398                     Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1));
15399     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF);
15400     return Res;
15401   }
15402   case PPCISD::VCMP:
15403     // If a VCMP_rec node already exists with exactly the same operands as this
15404     // node, use its result instead of this node (VCMP_rec computes both a CR6
15405     // and a normal output).
15406     //
15407     if (!N->getOperand(0).hasOneUse() &&
15408         !N->getOperand(1).hasOneUse() &&
15409         !N->getOperand(2).hasOneUse()) {
15410 
15411       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15412       SDNode *VCMPrecNode = nullptr;
15413 
15414       SDNode *LHSN = N->getOperand(0).getNode();
15415       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15416            UI != E; ++UI)
15417         if (UI->getOpcode() == PPCISD::VCMP_rec &&
15418             UI->getOperand(1) == N->getOperand(1) &&
15419             UI->getOperand(2) == N->getOperand(2) &&
15420             UI->getOperand(0) == N->getOperand(0)) {
15421           VCMPrecNode = *UI;
15422           break;
15423         }
15424 
15425       // If there is no VCMP_rec node, or if the flag value has a single use,
15426       // don't transform this.
15427       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
15428         break;
15429 
15430       // Look at the (necessarily single) use of the flag value.  If it has a
15431       // chain, this transformation is more complex.  Note that multiple things
15432       // could use the value result, which we should ignore.
15433       SDNode *FlagUser = nullptr;
15434       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
15435            FlagUser == nullptr; ++UI) {
15436         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
15437         SDNode *User = *UI;
15438         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15439           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
15440             FlagUser = User;
15441             break;
15442           }
15443         }
15444       }
15445 
15446       // If the user is a MFOCRF instruction, we know this is safe.
15447       // Otherwise we give up for right now.
15448       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15449         return SDValue(VCMPrecNode, 0);
15450     }
15451     break;
15452   case ISD::BRCOND: {
15453     SDValue Cond = N->getOperand(1);
15454     SDValue Target = N->getOperand(2);
15455 
15456     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15457         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15458           Intrinsic::loop_decrement) {
15459 
15460       // We now need to make the intrinsic dead (it cannot be instruction
15461       // selected).
15462       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15463       assert(Cond.getNode()->hasOneUse() &&
15464              "Counter decrement has more than one use");
15465 
15466       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15467                          N->getOperand(0), Target);
15468     }
15469   }
15470   break;
15471   case ISD::BR_CC: {
15472     // If this is a branch on an altivec predicate comparison, lower this so
15473     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15474     // lowering is done pre-legalize, because the legalizer lowers the predicate
15475     // compare down to code that is difficult to reassemble.
15476     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15477     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15478 
15479     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15480     // value. If so, pass-through the AND to get to the intrinsic.
15481     if (LHS.getOpcode() == ISD::AND &&
15482         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15483         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15484           Intrinsic::loop_decrement &&
15485         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15486         !isNullConstant(LHS.getOperand(1)))
15487       LHS = LHS.getOperand(0);
15488 
15489     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15490         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15491           Intrinsic::loop_decrement &&
15492         isa<ConstantSDNode>(RHS)) {
15493       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15494              "Counter decrement comparison is not EQ or NE");
15495 
15496       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15497       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15498                     (CC == ISD::SETNE && !Val);
15499 
15500       // We now need to make the intrinsic dead (it cannot be instruction
15501       // selected).
15502       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15503       assert(LHS.getNode()->hasOneUse() &&
15504              "Counter decrement has more than one use");
15505 
15506       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15507                          N->getOperand(0), N->getOperand(4));
15508     }
15509 
15510     int CompareOpc;
15511     bool isDot;
15512 
15513     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15514         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15515         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15516       assert(isDot && "Can't compare against a vector result!");
15517 
15518       // If this is a comparison against something other than 0/1, then we know
15519       // that the condition is never/always true.
15520       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15521       if (Val != 0 && Val != 1) {
15522         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15523           return N->getOperand(0);
15524         // Always !=, turn it into an unconditional branch.
15525         return DAG.getNode(ISD::BR, dl, MVT::Other,
15526                            N->getOperand(0), N->getOperand(4));
15527       }
15528 
15529       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15530 
15531       // Create the PPCISD altivec 'dot' comparison node.
15532       SDValue Ops[] = {
15533         LHS.getOperand(2),  // LHS of compare
15534         LHS.getOperand(3),  // RHS of compare
15535         DAG.getConstant(CompareOpc, dl, MVT::i32)
15536       };
15537       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15538       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15539 
15540       // Unpack the result based on how the target uses it.
15541       PPC::Predicate CompOpc;
15542       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15543       default:  // Can't happen, don't crash on invalid number though.
15544       case 0:   // Branch on the value of the EQ bit of CR6.
15545         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15546         break;
15547       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15548         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15549         break;
15550       case 2:   // Branch on the value of the LT bit of CR6.
15551         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15552         break;
15553       case 3:   // Branch on the inverted value of the LT bit of CR6.
15554         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15555         break;
15556       }
15557 
15558       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15559                          DAG.getConstant(CompOpc, dl, MVT::i32),
15560                          DAG.getRegister(PPC::CR6, MVT::i32),
15561                          N->getOperand(4), CompNode.getValue(1));
15562     }
15563     break;
15564   }
15565   case ISD::BUILD_VECTOR:
15566     return DAGCombineBuildVector(N, DCI);
15567   case ISD::ABS:
15568     return combineABS(N, DCI);
15569   case ISD::VSELECT:
15570     return combineVSelect(N, DCI);
15571   }
15572 
15573   return SDValue();
15574 }
15575 
15576 SDValue
15577 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15578                                  SelectionDAG &DAG,
15579                                  SmallVectorImpl<SDNode *> &Created) const {
15580   // fold (sdiv X, pow2)
15581   EVT VT = N->getValueType(0);
15582   if (VT == MVT::i64 && !Subtarget.isPPC64())
15583     return SDValue();
15584   if ((VT != MVT::i32 && VT != MVT::i64) ||
15585       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15586     return SDValue();
15587 
15588   SDLoc DL(N);
15589   SDValue N0 = N->getOperand(0);
15590 
15591   bool IsNegPow2 = (-Divisor).isPowerOf2();
15592   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15593   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15594 
15595   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15596   Created.push_back(Op.getNode());
15597 
15598   if (IsNegPow2) {
15599     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15600     Created.push_back(Op.getNode());
15601   }
15602 
15603   return Op;
15604 }
15605 
15606 //===----------------------------------------------------------------------===//
15607 // Inline Assembly Support
15608 //===----------------------------------------------------------------------===//
15609 
15610 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15611                                                       KnownBits &Known,
15612                                                       const APInt &DemandedElts,
15613                                                       const SelectionDAG &DAG,
15614                                                       unsigned Depth) const {
15615   Known.resetAll();
15616   switch (Op.getOpcode()) {
15617   default: break;
15618   case PPCISD::LBRX: {
15619     // lhbrx is known to have the top bits cleared out.
15620     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15621       Known.Zero = 0xFFFF0000;
15622     break;
15623   }
15624   case ISD::INTRINSIC_WO_CHAIN: {
15625     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15626     default: break;
15627     case Intrinsic::ppc_altivec_vcmpbfp_p:
15628     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15629     case Intrinsic::ppc_altivec_vcmpequb_p:
15630     case Intrinsic::ppc_altivec_vcmpequh_p:
15631     case Intrinsic::ppc_altivec_vcmpequw_p:
15632     case Intrinsic::ppc_altivec_vcmpequd_p:
15633     case Intrinsic::ppc_altivec_vcmpequq_p:
15634     case Intrinsic::ppc_altivec_vcmpgefp_p:
15635     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15636     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15637     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15638     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15639     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15640     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15641     case Intrinsic::ppc_altivec_vcmpgtub_p:
15642     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15643     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15644     case Intrinsic::ppc_altivec_vcmpgtud_p:
15645     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15646       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15647       break;
15648     }
15649   }
15650   }
15651 }
15652 
15653 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15654   switch (Subtarget.getCPUDirective()) {
15655   default: break;
15656   case PPC::DIR_970:
15657   case PPC::DIR_PWR4:
15658   case PPC::DIR_PWR5:
15659   case PPC::DIR_PWR5X:
15660   case PPC::DIR_PWR6:
15661   case PPC::DIR_PWR6X:
15662   case PPC::DIR_PWR7:
15663   case PPC::DIR_PWR8:
15664   case PPC::DIR_PWR9:
15665   case PPC::DIR_PWR10:
15666   case PPC::DIR_PWR_FUTURE: {
15667     if (!ML)
15668       break;
15669 
15670     if (!DisableInnermostLoopAlign32) {
15671       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15672       // so that we can decrease cache misses and branch-prediction misses.
15673       // Actual alignment of the loop will depend on the hotness check and other
15674       // logic in alignBlocks.
15675       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15676         return Align(32);
15677     }
15678 
15679     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15680 
15681     // For small loops (between 5 and 8 instructions), align to a 32-byte
15682     // boundary so that the entire loop fits in one instruction-cache line.
15683     uint64_t LoopSize = 0;
15684     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15685       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15686         LoopSize += TII->getInstSizeInBytes(*J);
15687         if (LoopSize > 32)
15688           break;
15689       }
15690 
15691     if (LoopSize > 16 && LoopSize <= 32)
15692       return Align(32);
15693 
15694     break;
15695   }
15696   }
15697 
15698   return TargetLowering::getPrefLoopAlignment(ML);
15699 }
15700 
15701 /// getConstraintType - Given a constraint, return the type of
15702 /// constraint it is for this target.
15703 PPCTargetLowering::ConstraintType
15704 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15705   if (Constraint.size() == 1) {
15706     switch (Constraint[0]) {
15707     default: break;
15708     case 'b':
15709     case 'r':
15710     case 'f':
15711     case 'd':
15712     case 'v':
15713     case 'y':
15714       return C_RegisterClass;
15715     case 'Z':
15716       // FIXME: While Z does indicate a memory constraint, it specifically
15717       // indicates an r+r address (used in conjunction with the 'y' modifier
15718       // in the replacement string). Currently, we're forcing the base
15719       // register to be r0 in the asm printer (which is interpreted as zero)
15720       // and forming the complete address in the second register. This is
15721       // suboptimal.
15722       return C_Memory;
15723     }
15724   } else if (Constraint == "wc") { // individual CR bits.
15725     return C_RegisterClass;
15726   } else if (Constraint == "wa" || Constraint == "wd" ||
15727              Constraint == "wf" || Constraint == "ws" ||
15728              Constraint == "wi" || Constraint == "ww") {
15729     return C_RegisterClass; // VSX registers.
15730   }
15731   return TargetLowering::getConstraintType(Constraint);
15732 }
15733 
15734 /// Examine constraint type and operand type and determine a weight value.
15735 /// This object must already have been set up with the operand type
15736 /// and the current alternative constraint selected.
15737 TargetLowering::ConstraintWeight
15738 PPCTargetLowering::getSingleConstraintMatchWeight(
15739     AsmOperandInfo &info, const char *constraint) const {
15740   ConstraintWeight weight = CW_Invalid;
15741   Value *CallOperandVal = info.CallOperandVal;
15742     // If we don't have a value, we can't do a match,
15743     // but allow it at the lowest weight.
15744   if (!CallOperandVal)
15745     return CW_Default;
15746   Type *type = CallOperandVal->getType();
15747 
15748   // Look at the constraint type.
15749   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15750     return CW_Register; // an individual CR bit.
15751   else if ((StringRef(constraint) == "wa" ||
15752             StringRef(constraint) == "wd" ||
15753             StringRef(constraint) == "wf") &&
15754            type->isVectorTy())
15755     return CW_Register;
15756   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15757     return CW_Register; // just hold 64-bit integers data.
15758   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15759     return CW_Register;
15760   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15761     return CW_Register;
15762 
15763   switch (*constraint) {
15764   default:
15765     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15766     break;
15767   case 'b':
15768     if (type->isIntegerTy())
15769       weight = CW_Register;
15770     break;
15771   case 'f':
15772     if (type->isFloatTy())
15773       weight = CW_Register;
15774     break;
15775   case 'd':
15776     if (type->isDoubleTy())
15777       weight = CW_Register;
15778     break;
15779   case 'v':
15780     if (type->isVectorTy())
15781       weight = CW_Register;
15782     break;
15783   case 'y':
15784     weight = CW_Register;
15785     break;
15786   case 'Z':
15787     weight = CW_Memory;
15788     break;
15789   }
15790   return weight;
15791 }
15792 
15793 std::pair<unsigned, const TargetRegisterClass *>
15794 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15795                                                 StringRef Constraint,
15796                                                 MVT VT) const {
15797   if (Constraint.size() == 1) {
15798     // GCC RS6000 Constraint Letters
15799     switch (Constraint[0]) {
15800     case 'b':   // R1-R31
15801       if (VT == MVT::i64 && Subtarget.isPPC64())
15802         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15803       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15804     case 'r':   // R0-R31
15805       if (VT == MVT::i64 && Subtarget.isPPC64())
15806         return std::make_pair(0U, &PPC::G8RCRegClass);
15807       return std::make_pair(0U, &PPC::GPRCRegClass);
15808     // 'd' and 'f' constraints are both defined to be "the floating point
15809     // registers", where one is for 32-bit and the other for 64-bit. We don't
15810     // really care overly much here so just give them all the same reg classes.
15811     case 'd':
15812     case 'f':
15813       if (Subtarget.hasSPE()) {
15814         if (VT == MVT::f32 || VT == MVT::i32)
15815           return std::make_pair(0U, &PPC::GPRCRegClass);
15816         if (VT == MVT::f64 || VT == MVT::i64)
15817           return std::make_pair(0U, &PPC::SPERCRegClass);
15818       } else {
15819         if (VT == MVT::f32 || VT == MVT::i32)
15820           return std::make_pair(0U, &PPC::F4RCRegClass);
15821         if (VT == MVT::f64 || VT == MVT::i64)
15822           return std::make_pair(0U, &PPC::F8RCRegClass);
15823       }
15824       break;
15825     case 'v':
15826       if (Subtarget.hasAltivec())
15827         return std::make_pair(0U, &PPC::VRRCRegClass);
15828       break;
15829     case 'y':   // crrc
15830       return std::make_pair(0U, &PPC::CRRCRegClass);
15831     }
15832   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15833     // An individual CR bit.
15834     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15835   } else if ((Constraint == "wa" || Constraint == "wd" ||
15836              Constraint == "wf" || Constraint == "wi") &&
15837              Subtarget.hasVSX()) {
15838     // A VSX register for either a scalar (FP) or vector. There is no
15839     // support for single precision scalars on subtargets prior to Power8.
15840     if (VT.isVector())
15841       return std::make_pair(0U, &PPC::VSRCRegClass);
15842     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15843       return std::make_pair(0U, &PPC::VSSRCRegClass);
15844     return std::make_pair(0U, &PPC::VSFRCRegClass);
15845   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15846     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15847       return std::make_pair(0U, &PPC::VSSRCRegClass);
15848     else
15849       return std::make_pair(0U, &PPC::VSFRCRegClass);
15850   } else if (Constraint == "lr") {
15851     if (VT == MVT::i64)
15852       return std::make_pair(0U, &PPC::LR8RCRegClass);
15853     else
15854       return std::make_pair(0U, &PPC::LRRCRegClass);
15855   }
15856 
15857   // Handle special cases of physical registers that are not properly handled
15858   // by the base class.
15859   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
15860     // If we name a VSX register, we can't defer to the base class because it
15861     // will not recognize the correct register (their names will be VSL{0-31}
15862     // and V{0-31} so they won't match). So we match them here.
15863     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15864       int VSNum = atoi(Constraint.data() + 3);
15865       assert(VSNum >= 0 && VSNum <= 63 &&
15866              "Attempted to access a vsr out of range");
15867       if (VSNum < 32)
15868         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15869       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15870     }
15871 
15872     // For float registers, we can't defer to the base class as it will match
15873     // the SPILLTOVSRRC class.
15874     if (Constraint.size() > 3 && Constraint[1] == 'f') {
15875       int RegNum = atoi(Constraint.data() + 2);
15876       if (RegNum > 31 || RegNum < 0)
15877         report_fatal_error("Invalid floating point register number");
15878       if (VT == MVT::f32 || VT == MVT::i32)
15879         return Subtarget.hasSPE()
15880                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
15881                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
15882       if (VT == MVT::f64 || VT == MVT::i64)
15883         return Subtarget.hasSPE()
15884                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
15885                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
15886     }
15887   }
15888 
15889   std::pair<unsigned, const TargetRegisterClass *> R =
15890       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15891 
15892   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15893   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15894   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15895   // register.
15896   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15897   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15898   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15899       PPC::GPRCRegClass.contains(R.first))
15900     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15901                             PPC::sub_32, &PPC::G8RCRegClass),
15902                           &PPC::G8RCRegClass);
15903 
15904   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15905   if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) {
15906     R.first = PPC::CR0;
15907     R.second = &PPC::CRRCRegClass;
15908   }
15909   // FIXME: This warning should ideally be emitted in the front end.
15910   const auto &TM = getTargetMachine();
15911   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
15912     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
15913          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
15914         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
15915       errs() << "warning: vector registers 20 to 32 are reserved in the "
15916                 "default AIX AltiVec ABI and cannot be used\n";
15917   }
15918 
15919   return R;
15920 }
15921 
15922 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15923 /// vector.  If it is invalid, don't add anything to Ops.
15924 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15925                                                      std::string &Constraint,
15926                                                      std::vector<SDValue>&Ops,
15927                                                      SelectionDAG &DAG) const {
15928   SDValue Result;
15929 
15930   // Only support length 1 constraints.
15931   if (Constraint.length() > 1) return;
15932 
15933   char Letter = Constraint[0];
15934   switch (Letter) {
15935   default: break;
15936   case 'I':
15937   case 'J':
15938   case 'K':
15939   case 'L':
15940   case 'M':
15941   case 'N':
15942   case 'O':
15943   case 'P': {
15944     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15945     if (!CST) return; // Must be an immediate to match.
15946     SDLoc dl(Op);
15947     int64_t Value = CST->getSExtValue();
15948     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15949                          // numbers are printed as such.
15950     switch (Letter) {
15951     default: llvm_unreachable("Unknown constraint letter!");
15952     case 'I':  // "I" is a signed 16-bit constant.
15953       if (isInt<16>(Value))
15954         Result = DAG.getTargetConstant(Value, dl, TCVT);
15955       break;
15956     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15957       if (isShiftedUInt<16, 16>(Value))
15958         Result = DAG.getTargetConstant(Value, dl, TCVT);
15959       break;
15960     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15961       if (isShiftedInt<16, 16>(Value))
15962         Result = DAG.getTargetConstant(Value, dl, TCVT);
15963       break;
15964     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15965       if (isUInt<16>(Value))
15966         Result = DAG.getTargetConstant(Value, dl, TCVT);
15967       break;
15968     case 'M':  // "M" is a constant that is greater than 31.
15969       if (Value > 31)
15970         Result = DAG.getTargetConstant(Value, dl, TCVT);
15971       break;
15972     case 'N':  // "N" is a positive constant that is an exact power of two.
15973       if (Value > 0 && isPowerOf2_64(Value))
15974         Result = DAG.getTargetConstant(Value, dl, TCVT);
15975       break;
15976     case 'O':  // "O" is the constant zero.
15977       if (Value == 0)
15978         Result = DAG.getTargetConstant(Value, dl, TCVT);
15979       break;
15980     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15981       if (isInt<16>(-Value))
15982         Result = DAG.getTargetConstant(Value, dl, TCVT);
15983       break;
15984     }
15985     break;
15986   }
15987   }
15988 
15989   if (Result.getNode()) {
15990     Ops.push_back(Result);
15991     return;
15992   }
15993 
15994   // Handle standard constraint letters.
15995   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15996 }
15997 
15998 // isLegalAddressingMode - Return true if the addressing mode represented
15999 // by AM is legal for this target, for a load/store of the specified type.
16000 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
16001                                               const AddrMode &AM, Type *Ty,
16002                                               unsigned AS,
16003                                               Instruction *I) const {
16004   // Vector type r+i form is supported since power9 as DQ form. We don't check
16005   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
16006   // imm form is preferred and the offset can be adjusted to use imm form later
16007   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
16008   // max offset to check legal addressing mode, we should be a little aggressive
16009   // to contain other offsets for that LSRUse.
16010   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
16011     return false;
16012 
16013   // PPC allows a sign-extended 16-bit immediate field.
16014   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
16015     return false;
16016 
16017   // No global is ever allowed as a base.
16018   if (AM.BaseGV)
16019     return false;
16020 
16021   // PPC only support r+r,
16022   switch (AM.Scale) {
16023   case 0:  // "r+i" or just "i", depending on HasBaseReg.
16024     break;
16025   case 1:
16026     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
16027       return false;
16028     // Otherwise we have r+r or r+i.
16029     break;
16030   case 2:
16031     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
16032       return false;
16033     // Allow 2*r as r+r.
16034     break;
16035   default:
16036     // No other scales are supported.
16037     return false;
16038   }
16039 
16040   return true;
16041 }
16042 
16043 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
16044                                            SelectionDAG &DAG) const {
16045   MachineFunction &MF = DAG.getMachineFunction();
16046   MachineFrameInfo &MFI = MF.getFrameInfo();
16047   MFI.setReturnAddressIsTaken(true);
16048 
16049   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
16050     return SDValue();
16051 
16052   SDLoc dl(Op);
16053   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16054 
16055   // Make sure the function does not optimize away the store of the RA to
16056   // the stack.
16057   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
16058   FuncInfo->setLRStoreRequired();
16059   bool isPPC64 = Subtarget.isPPC64();
16060   auto PtrVT = getPointerTy(MF.getDataLayout());
16061 
16062   if (Depth > 0) {
16063     // The link register (return address) is saved in the caller's frame
16064     // not the callee's stack frame. So we must get the caller's frame
16065     // address and load the return address at the LR offset from there.
16066     SDValue FrameAddr =
16067         DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16068                     LowerFRAMEADDR(Op, DAG), MachinePointerInfo());
16069     SDValue Offset =
16070         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
16071                         isPPC64 ? MVT::i64 : MVT::i32);
16072     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
16073                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
16074                        MachinePointerInfo());
16075   }
16076 
16077   // Just load the return address off the stack.
16078   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
16079   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
16080                      MachinePointerInfo());
16081 }
16082 
16083 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
16084                                           SelectionDAG &DAG) const {
16085   SDLoc dl(Op);
16086   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16087 
16088   MachineFunction &MF = DAG.getMachineFunction();
16089   MachineFrameInfo &MFI = MF.getFrameInfo();
16090   MFI.setFrameAddressIsTaken(true);
16091 
16092   EVT PtrVT = getPointerTy(MF.getDataLayout());
16093   bool isPPC64 = PtrVT == MVT::i64;
16094 
16095   // Naked functions never have a frame pointer, and so we use r1. For all
16096   // other functions, this decision must be delayed until during PEI.
16097   unsigned FrameReg;
16098   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
16099     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
16100   else
16101     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
16102 
16103   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
16104                                          PtrVT);
16105   while (Depth--)
16106     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16107                             FrameAddr, MachinePointerInfo());
16108   return FrameAddr;
16109 }
16110 
16111 // FIXME? Maybe this could be a TableGen attribute on some registers and
16112 // this table could be generated automatically from RegInfo.
16113 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
16114                                               const MachineFunction &MF) const {
16115   bool isPPC64 = Subtarget.isPPC64();
16116 
16117   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
16118   if (!is64Bit && VT != LLT::scalar(32))
16119     report_fatal_error("Invalid register global variable type");
16120 
16121   Register Reg = StringSwitch<Register>(RegName)
16122                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
16123                      .Case("r2", isPPC64 ? Register() : PPC::R2)
16124                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
16125                      .Default(Register());
16126 
16127   if (Reg)
16128     return Reg;
16129   report_fatal_error("Invalid register name global variable");
16130 }
16131 
16132 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
16133   // 32-bit SVR4 ABI access everything as got-indirect.
16134   if (Subtarget.is32BitELFABI())
16135     return true;
16136 
16137   // AIX accesses everything indirectly through the TOC, which is similar to
16138   // the GOT.
16139   if (Subtarget.isAIXABI())
16140     return true;
16141 
16142   CodeModel::Model CModel = getTargetMachine().getCodeModel();
16143   // If it is small or large code model, module locals are accessed
16144   // indirectly by loading their address from .toc/.got.
16145   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
16146     return true;
16147 
16148   // JumpTable and BlockAddress are accessed as got-indirect.
16149   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
16150     return true;
16151 
16152   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
16153     return Subtarget.isGVIndirectSymbol(G->getGlobal());
16154 
16155   return false;
16156 }
16157 
16158 bool
16159 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16160   // The PowerPC target isn't yet aware of offsets.
16161   return false;
16162 }
16163 
16164 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16165                                            const CallInst &I,
16166                                            MachineFunction &MF,
16167                                            unsigned Intrinsic) const {
16168   switch (Intrinsic) {
16169   case Intrinsic::ppc_atomicrmw_xchg_i128:
16170   case Intrinsic::ppc_atomicrmw_add_i128:
16171   case Intrinsic::ppc_atomicrmw_sub_i128:
16172   case Intrinsic::ppc_atomicrmw_nand_i128:
16173   case Intrinsic::ppc_atomicrmw_and_i128:
16174   case Intrinsic::ppc_atomicrmw_or_i128:
16175   case Intrinsic::ppc_atomicrmw_xor_i128:
16176   case Intrinsic::ppc_cmpxchg_i128:
16177     Info.opc = ISD::INTRINSIC_W_CHAIN;
16178     Info.memVT = MVT::i128;
16179     Info.ptrVal = I.getArgOperand(0);
16180     Info.offset = 0;
16181     Info.align = Align(16);
16182     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
16183                  MachineMemOperand::MOVolatile;
16184     return true;
16185   case Intrinsic::ppc_atomic_load_i128:
16186     Info.opc = ISD::INTRINSIC_W_CHAIN;
16187     Info.memVT = MVT::i128;
16188     Info.ptrVal = I.getArgOperand(0);
16189     Info.offset = 0;
16190     Info.align = Align(16);
16191     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16192     return true;
16193   case Intrinsic::ppc_atomic_store_i128:
16194     Info.opc = ISD::INTRINSIC_VOID;
16195     Info.memVT = MVT::i128;
16196     Info.ptrVal = I.getArgOperand(2);
16197     Info.offset = 0;
16198     Info.align = Align(16);
16199     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16200     return true;
16201   case Intrinsic::ppc_altivec_lvx:
16202   case Intrinsic::ppc_altivec_lvxl:
16203   case Intrinsic::ppc_altivec_lvebx:
16204   case Intrinsic::ppc_altivec_lvehx:
16205   case Intrinsic::ppc_altivec_lvewx:
16206   case Intrinsic::ppc_vsx_lxvd2x:
16207   case Intrinsic::ppc_vsx_lxvw4x:
16208   case Intrinsic::ppc_vsx_lxvd2x_be:
16209   case Intrinsic::ppc_vsx_lxvw4x_be:
16210   case Intrinsic::ppc_vsx_lxvl:
16211   case Intrinsic::ppc_vsx_lxvll: {
16212     EVT VT;
16213     switch (Intrinsic) {
16214     case Intrinsic::ppc_altivec_lvebx:
16215       VT = MVT::i8;
16216       break;
16217     case Intrinsic::ppc_altivec_lvehx:
16218       VT = MVT::i16;
16219       break;
16220     case Intrinsic::ppc_altivec_lvewx:
16221       VT = MVT::i32;
16222       break;
16223     case Intrinsic::ppc_vsx_lxvd2x:
16224     case Intrinsic::ppc_vsx_lxvd2x_be:
16225       VT = MVT::v2f64;
16226       break;
16227     default:
16228       VT = MVT::v4i32;
16229       break;
16230     }
16231 
16232     Info.opc = ISD::INTRINSIC_W_CHAIN;
16233     Info.memVT = VT;
16234     Info.ptrVal = I.getArgOperand(0);
16235     Info.offset = -VT.getStoreSize()+1;
16236     Info.size = 2*VT.getStoreSize()-1;
16237     Info.align = Align(1);
16238     Info.flags = MachineMemOperand::MOLoad;
16239     return true;
16240   }
16241   case Intrinsic::ppc_altivec_stvx:
16242   case Intrinsic::ppc_altivec_stvxl:
16243   case Intrinsic::ppc_altivec_stvebx:
16244   case Intrinsic::ppc_altivec_stvehx:
16245   case Intrinsic::ppc_altivec_stvewx:
16246   case Intrinsic::ppc_vsx_stxvd2x:
16247   case Intrinsic::ppc_vsx_stxvw4x:
16248   case Intrinsic::ppc_vsx_stxvd2x_be:
16249   case Intrinsic::ppc_vsx_stxvw4x_be:
16250   case Intrinsic::ppc_vsx_stxvl:
16251   case Intrinsic::ppc_vsx_stxvll: {
16252     EVT VT;
16253     switch (Intrinsic) {
16254     case Intrinsic::ppc_altivec_stvebx:
16255       VT = MVT::i8;
16256       break;
16257     case Intrinsic::ppc_altivec_stvehx:
16258       VT = MVT::i16;
16259       break;
16260     case Intrinsic::ppc_altivec_stvewx:
16261       VT = MVT::i32;
16262       break;
16263     case Intrinsic::ppc_vsx_stxvd2x:
16264     case Intrinsic::ppc_vsx_stxvd2x_be:
16265       VT = MVT::v2f64;
16266       break;
16267     default:
16268       VT = MVT::v4i32;
16269       break;
16270     }
16271 
16272     Info.opc = ISD::INTRINSIC_VOID;
16273     Info.memVT = VT;
16274     Info.ptrVal = I.getArgOperand(1);
16275     Info.offset = -VT.getStoreSize()+1;
16276     Info.size = 2*VT.getStoreSize()-1;
16277     Info.align = Align(1);
16278     Info.flags = MachineMemOperand::MOStore;
16279     return true;
16280   }
16281   default:
16282     break;
16283   }
16284 
16285   return false;
16286 }
16287 
16288 /// It returns EVT::Other if the type should be determined using generic
16289 /// target-independent logic.
16290 EVT PPCTargetLowering::getOptimalMemOpType(
16291     const MemOp &Op, const AttributeList &FuncAttributes) const {
16292   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16293     // We should use Altivec/VSX loads and stores when available. For unaligned
16294     // addresses, unaligned VSX loads are only fast starting with the P8.
16295     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16296         (Op.isAligned(Align(16)) ||
16297          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16298       return MVT::v4i32;
16299   }
16300 
16301   if (Subtarget.isPPC64()) {
16302     return MVT::i64;
16303   }
16304 
16305   return MVT::i32;
16306 }
16307 
16308 /// Returns true if it is beneficial to convert a load of a constant
16309 /// to just the constant itself.
16310 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16311                                                           Type *Ty) const {
16312   assert(Ty->isIntegerTy());
16313 
16314   unsigned BitSize = Ty->getPrimitiveSizeInBits();
16315   return !(BitSize == 0 || BitSize > 64);
16316 }
16317 
16318 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16319   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16320     return false;
16321   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16322   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16323   return NumBits1 == 64 && NumBits2 == 32;
16324 }
16325 
16326 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16327   if (!VT1.isInteger() || !VT2.isInteger())
16328     return false;
16329   unsigned NumBits1 = VT1.getSizeInBits();
16330   unsigned NumBits2 = VT2.getSizeInBits();
16331   return NumBits1 == 64 && NumBits2 == 32;
16332 }
16333 
16334 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16335   // Generally speaking, zexts are not free, but they are free when they can be
16336   // folded with other operations.
16337   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16338     EVT MemVT = LD->getMemoryVT();
16339     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16340          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16341         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16342          LD->getExtensionType() == ISD::ZEXTLOAD))
16343       return true;
16344   }
16345 
16346   // FIXME: Add other cases...
16347   //  - 32-bit shifts with a zext to i64
16348   //  - zext after ctlz, bswap, etc.
16349   //  - zext after and by a constant mask
16350 
16351   return TargetLowering::isZExtFree(Val, VT2);
16352 }
16353 
16354 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16355   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16356          "invalid fpext types");
16357   // Extending to float128 is not free.
16358   if (DestVT == MVT::f128)
16359     return false;
16360   return true;
16361 }
16362 
16363 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16364   return isInt<16>(Imm) || isUInt<16>(Imm);
16365 }
16366 
16367 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16368   return isInt<16>(Imm) || isUInt<16>(Imm);
16369 }
16370 
16371 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
16372                                                        MachineMemOperand::Flags,
16373                                                        bool *Fast) const {
16374   if (DisablePPCUnaligned)
16375     return false;
16376 
16377   // PowerPC supports unaligned memory access for simple non-vector types.
16378   // Although accessing unaligned addresses is not as efficient as accessing
16379   // aligned addresses, it is generally more efficient than manual expansion,
16380   // and generally only traps for software emulation when crossing page
16381   // boundaries.
16382 
16383   if (!VT.isSimple())
16384     return false;
16385 
16386   if (VT.isFloatingPoint() && !VT.isVector() &&
16387       !Subtarget.allowsUnalignedFPAccess())
16388     return false;
16389 
16390   if (VT.getSimpleVT().isVector()) {
16391     if (Subtarget.hasVSX()) {
16392       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16393           VT != MVT::v4f32 && VT != MVT::v4i32)
16394         return false;
16395     } else {
16396       return false;
16397     }
16398   }
16399 
16400   if (VT == MVT::ppcf128)
16401     return false;
16402 
16403   if (Fast)
16404     *Fast = true;
16405 
16406   return true;
16407 }
16408 
16409 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16410                                                SDValue C) const {
16411   // Check integral scalar types.
16412   if (!VT.isScalarInteger())
16413     return false;
16414   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16415     if (!ConstNode->getAPIntValue().isSignedIntN(64))
16416       return false;
16417     // This transformation will generate >= 2 operations. But the following
16418     // cases will generate <= 2 instructions during ISEL. So exclude them.
16419     // 1. If the constant multiplier fits 16 bits, it can be handled by one
16420     // HW instruction, ie. MULLI
16421     // 2. If the multiplier after shifted fits 16 bits, an extra shift
16422     // instruction is needed than case 1, ie. MULLI and RLDICR
16423     int64_t Imm = ConstNode->getSExtValue();
16424     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16425     Imm >>= Shift;
16426     if (isInt<16>(Imm))
16427       return false;
16428     uint64_t UImm = static_cast<uint64_t>(Imm);
16429     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16430         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16431       return true;
16432   }
16433   return false;
16434 }
16435 
16436 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16437                                                    EVT VT) const {
16438   return isFMAFasterThanFMulAndFAdd(
16439       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16440 }
16441 
16442 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16443                                                    Type *Ty) const {
16444   switch (Ty->getScalarType()->getTypeID()) {
16445   case Type::FloatTyID:
16446   case Type::DoubleTyID:
16447     return true;
16448   case Type::FP128TyID:
16449     return Subtarget.hasP9Vector();
16450   default:
16451     return false;
16452   }
16453 }
16454 
16455 // FIXME: add more patterns which are not profitable to hoist.
16456 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16457   if (!I->hasOneUse())
16458     return true;
16459 
16460   Instruction *User = I->user_back();
16461   assert(User && "A single use instruction with no uses.");
16462 
16463   switch (I->getOpcode()) {
16464   case Instruction::FMul: {
16465     // Don't break FMA, PowerPC prefers FMA.
16466     if (User->getOpcode() != Instruction::FSub &&
16467         User->getOpcode() != Instruction::FAdd)
16468       return true;
16469 
16470     const TargetOptions &Options = getTargetMachine().Options;
16471     const Function *F = I->getFunction();
16472     const DataLayout &DL = F->getParent()->getDataLayout();
16473     Type *Ty = User->getOperand(0)->getType();
16474 
16475     return !(
16476         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16477         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16478         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16479   }
16480   case Instruction::Load: {
16481     // Don't break "store (load float*)" pattern, this pattern will be combined
16482     // to "store (load int32)" in later InstCombine pass. See function
16483     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16484     // cycles than loading a 32 bit integer.
16485     LoadInst *LI = cast<LoadInst>(I);
16486     // For the loads that combineLoadToOperationType does nothing, like
16487     // ordered load, it should be profitable to hoist them.
16488     // For swifterror load, it can only be used for pointer to pointer type, so
16489     // later type check should get rid of this case.
16490     if (!LI->isUnordered())
16491       return true;
16492 
16493     if (User->getOpcode() != Instruction::Store)
16494       return true;
16495 
16496     if (I->getType()->getTypeID() != Type::FloatTyID)
16497       return true;
16498 
16499     return false;
16500   }
16501   default:
16502     return true;
16503   }
16504   return true;
16505 }
16506 
16507 const MCPhysReg *
16508 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16509   // LR is a callee-save register, but we must treat it as clobbered by any call
16510   // site. Hence we include LR in the scratch registers, which are in turn added
16511   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16512   // to CTR, which is used by any indirect call.
16513   static const MCPhysReg ScratchRegs[] = {
16514     PPC::X12, PPC::LR8, PPC::CTR8, 0
16515   };
16516 
16517   return ScratchRegs;
16518 }
16519 
16520 Register PPCTargetLowering::getExceptionPointerRegister(
16521     const Constant *PersonalityFn) const {
16522   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16523 }
16524 
16525 Register PPCTargetLowering::getExceptionSelectorRegister(
16526     const Constant *PersonalityFn) const {
16527   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16528 }
16529 
16530 bool
16531 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16532                      EVT VT , unsigned DefinedValues) const {
16533   if (VT == MVT::v2i64)
16534     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16535 
16536   if (Subtarget.hasVSX())
16537     return true;
16538 
16539   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16540 }
16541 
16542 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16543   if (DisableILPPref || Subtarget.enableMachineScheduler())
16544     return TargetLowering::getSchedulingPreference(N);
16545 
16546   return Sched::ILP;
16547 }
16548 
16549 // Create a fast isel object.
16550 FastISel *
16551 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16552                                   const TargetLibraryInfo *LibInfo) const {
16553   return PPC::createFastISel(FuncInfo, LibInfo);
16554 }
16555 
16556 // 'Inverted' means the FMA opcode after negating one multiplicand.
16557 // For example, (fma -a b c) = (fnmsub a b c)
16558 static unsigned invertFMAOpcode(unsigned Opc) {
16559   switch (Opc) {
16560   default:
16561     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16562   case ISD::FMA:
16563     return PPCISD::FNMSUB;
16564   case PPCISD::FNMSUB:
16565     return ISD::FMA;
16566   }
16567 }
16568 
16569 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16570                                                 bool LegalOps, bool OptForSize,
16571                                                 NegatibleCost &Cost,
16572                                                 unsigned Depth) const {
16573   if (Depth > SelectionDAG::MaxRecursionDepth)
16574     return SDValue();
16575 
16576   unsigned Opc = Op.getOpcode();
16577   EVT VT = Op.getValueType();
16578   SDNodeFlags Flags = Op.getNode()->getFlags();
16579 
16580   switch (Opc) {
16581   case PPCISD::FNMSUB:
16582     if (!Op.hasOneUse() || !isTypeLegal(VT))
16583       break;
16584 
16585     const TargetOptions &Options = getTargetMachine().Options;
16586     SDValue N0 = Op.getOperand(0);
16587     SDValue N1 = Op.getOperand(1);
16588     SDValue N2 = Op.getOperand(2);
16589     SDLoc Loc(Op);
16590 
16591     NegatibleCost N2Cost = NegatibleCost::Expensive;
16592     SDValue NegN2 =
16593         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16594 
16595     if (!NegN2)
16596       return SDValue();
16597 
16598     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16599     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16600     // These transformations may change sign of zeroes. For example,
16601     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16602     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16603       // Try and choose the cheaper one to negate.
16604       NegatibleCost N0Cost = NegatibleCost::Expensive;
16605       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16606                                            N0Cost, Depth + 1);
16607 
16608       NegatibleCost N1Cost = NegatibleCost::Expensive;
16609       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16610                                            N1Cost, Depth + 1);
16611 
16612       if (NegN0 && N0Cost <= N1Cost) {
16613         Cost = std::min(N0Cost, N2Cost);
16614         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16615       } else if (NegN1) {
16616         Cost = std::min(N1Cost, N2Cost);
16617         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16618       }
16619     }
16620 
16621     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16622     if (isOperationLegal(ISD::FMA, VT)) {
16623       Cost = N2Cost;
16624       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16625     }
16626 
16627     break;
16628   }
16629 
16630   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16631                                               Cost, Depth);
16632 }
16633 
16634 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16635 bool PPCTargetLowering::useLoadStackGuardNode() const {
16636   if (!Subtarget.isTargetLinux())
16637     return TargetLowering::useLoadStackGuardNode();
16638   return true;
16639 }
16640 
16641 // Override to disable global variable loading on Linux and insert AIX canary
16642 // word declaration.
16643 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16644   if (Subtarget.isAIXABI()) {
16645     M.getOrInsertGlobal(AIXSSPCanaryWordName,
16646                         Type::getInt8PtrTy(M.getContext()));
16647     return;
16648   }
16649   if (!Subtarget.isTargetLinux())
16650     return TargetLowering::insertSSPDeclarations(M);
16651 }
16652 
16653 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
16654   if (Subtarget.isAIXABI())
16655     return M.getGlobalVariable(AIXSSPCanaryWordName);
16656   return TargetLowering::getSDagStackGuard(M);
16657 }
16658 
16659 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16660                                      bool ForCodeSize) const {
16661   if (!VT.isSimple() || !Subtarget.hasVSX())
16662     return false;
16663 
16664   switch(VT.getSimpleVT().SimpleTy) {
16665   default:
16666     // For FP types that are currently not supported by PPC backend, return
16667     // false. Examples: f16, f80.
16668     return false;
16669   case MVT::f32:
16670   case MVT::f64:
16671     if (Subtarget.hasPrefixInstrs()) {
16672       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
16673       return true;
16674     }
16675     LLVM_FALLTHROUGH;
16676   case MVT::ppcf128:
16677     return Imm.isPosZero();
16678   }
16679 }
16680 
16681 // For vector shift operation op, fold
16682 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16683 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16684                                   SelectionDAG &DAG) {
16685   SDValue N0 = N->getOperand(0);
16686   SDValue N1 = N->getOperand(1);
16687   EVT VT = N0.getValueType();
16688   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16689   unsigned Opcode = N->getOpcode();
16690   unsigned TargetOpcode;
16691 
16692   switch (Opcode) {
16693   default:
16694     llvm_unreachable("Unexpected shift operation");
16695   case ISD::SHL:
16696     TargetOpcode = PPCISD::SHL;
16697     break;
16698   case ISD::SRL:
16699     TargetOpcode = PPCISD::SRL;
16700     break;
16701   case ISD::SRA:
16702     TargetOpcode = PPCISD::SRA;
16703     break;
16704   }
16705 
16706   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16707       N1->getOpcode() == ISD::AND)
16708     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16709       if (Mask->getZExtValue() == OpSizeInBits - 1)
16710         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16711 
16712   return SDValue();
16713 }
16714 
16715 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16716   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16717     return Value;
16718 
16719   SDValue N0 = N->getOperand(0);
16720   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16721   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
16722       N0.getOpcode() != ISD::SIGN_EXTEND ||
16723       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
16724       N->getValueType(0) != MVT::i64)
16725     return SDValue();
16726 
16727   // We can't save an operation here if the value is already extended, and
16728   // the existing shift is easier to combine.
16729   SDValue ExtsSrc = N0.getOperand(0);
16730   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16731       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16732     return SDValue();
16733 
16734   SDLoc DL(N0);
16735   SDValue ShiftBy = SDValue(CN1, 0);
16736   // We want the shift amount to be i32 on the extswli, but the shift could
16737   // have an i64.
16738   if (ShiftBy.getValueType() == MVT::i64)
16739     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16740 
16741   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16742                          ShiftBy);
16743 }
16744 
16745 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16746   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16747     return Value;
16748 
16749   return SDValue();
16750 }
16751 
16752 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16753   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16754     return Value;
16755 
16756   return SDValue();
16757 }
16758 
16759 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16760 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16761 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16762 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16763 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16764                                  const PPCSubtarget &Subtarget) {
16765   if (!Subtarget.isPPC64())
16766     return SDValue();
16767 
16768   SDValue LHS = N->getOperand(0);
16769   SDValue RHS = N->getOperand(1);
16770 
16771   auto isZextOfCompareWithConstant = [](SDValue Op) {
16772     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16773         Op.getValueType() != MVT::i64)
16774       return false;
16775 
16776     SDValue Cmp = Op.getOperand(0);
16777     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16778         Cmp.getOperand(0).getValueType() != MVT::i64)
16779       return false;
16780 
16781     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16782       int64_t NegConstant = 0 - Constant->getSExtValue();
16783       // Due to the limitations of the addi instruction,
16784       // -C is required to be [-32768, 32767].
16785       return isInt<16>(NegConstant);
16786     }
16787 
16788     return false;
16789   };
16790 
16791   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16792   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16793 
16794   // If there is a pattern, canonicalize a zext operand to the RHS.
16795   if (LHSHasPattern && !RHSHasPattern)
16796     std::swap(LHS, RHS);
16797   else if (!LHSHasPattern && !RHSHasPattern)
16798     return SDValue();
16799 
16800   SDLoc DL(N);
16801   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16802   SDValue Cmp = RHS.getOperand(0);
16803   SDValue Z = Cmp.getOperand(0);
16804   auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
16805   int64_t NegConstant = 0 - Constant->getSExtValue();
16806 
16807   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16808   default: break;
16809   case ISD::SETNE: {
16810     //                                 when C == 0
16811     //                             --> addze X, (addic Z, -1).carry
16812     //                            /
16813     // add X, (zext(setne Z, C))--
16814     //                            \    when -32768 <= -C <= 32767 && C != 0
16815     //                             --> addze X, (addic (addi Z, -C), -1).carry
16816     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16817                               DAG.getConstant(NegConstant, DL, MVT::i64));
16818     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16819     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16820                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16821     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16822                        SDValue(Addc.getNode(), 1));
16823     }
16824   case ISD::SETEQ: {
16825     //                                 when C == 0
16826     //                             --> addze X, (subfic Z, 0).carry
16827     //                            /
16828     // add X, (zext(sete  Z, C))--
16829     //                            \    when -32768 <= -C <= 32767 && C != 0
16830     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16831     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16832                               DAG.getConstant(NegConstant, DL, MVT::i64));
16833     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16834     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16835                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16836     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16837                        SDValue(Subc.getNode(), 1));
16838     }
16839   }
16840 
16841   return SDValue();
16842 }
16843 
16844 // Transform
16845 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16846 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16847 // In this case both C1 and C2 must be known constants.
16848 // C1+C2 must fit into a 34 bit signed integer.
16849 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16850                                           const PPCSubtarget &Subtarget) {
16851   if (!Subtarget.isUsingPCRelativeCalls())
16852     return SDValue();
16853 
16854   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16855   // If we find that node try to cast the Global Address and the Constant.
16856   SDValue LHS = N->getOperand(0);
16857   SDValue RHS = N->getOperand(1);
16858 
16859   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16860     std::swap(LHS, RHS);
16861 
16862   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16863     return SDValue();
16864 
16865   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16866   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16867   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16868 
16869   // Check that both casts succeeded.
16870   if (!GSDN || !ConstNode)
16871     return SDValue();
16872 
16873   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16874   SDLoc DL(GSDN);
16875 
16876   // The signed int offset needs to fit in 34 bits.
16877   if (!isInt<34>(NewOffset))
16878     return SDValue();
16879 
16880   // The new global address is a copy of the old global address except
16881   // that it has the updated Offset.
16882   SDValue GA =
16883       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16884                                  NewOffset, GSDN->getTargetFlags());
16885   SDValue MatPCRel =
16886       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16887   return MatPCRel;
16888 }
16889 
16890 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16891   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16892     return Value;
16893 
16894   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16895     return Value;
16896 
16897   return SDValue();
16898 }
16899 
16900 // Detect TRUNCATE operations on bitcasts of float128 values.
16901 // What we are looking for here is the situtation where we extract a subset
16902 // of bits from a 128 bit float.
16903 // This can be of two forms:
16904 // 1) BITCAST of f128 feeding TRUNCATE
16905 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16906 // The reason this is required is because we do not have a legal i128 type
16907 // and so we want to prevent having to store the f128 and then reload part
16908 // of it.
16909 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16910                                            DAGCombinerInfo &DCI) const {
16911   // If we are using CRBits then try that first.
16912   if (Subtarget.useCRBits()) {
16913     // Check if CRBits did anything and return that if it did.
16914     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16915       return CRTruncValue;
16916   }
16917 
16918   SDLoc dl(N);
16919   SDValue Op0 = N->getOperand(0);
16920 
16921   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16922   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16923     EVT VT = N->getValueType(0);
16924     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16925       return SDValue();
16926     SDValue Sub = Op0.getOperand(0);
16927     if (Sub.getOpcode() == ISD::SUB) {
16928       SDValue SubOp0 = Sub.getOperand(0);
16929       SDValue SubOp1 = Sub.getOperand(1);
16930       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16931           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16932         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16933                                SubOp1.getOperand(0),
16934                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16935       }
16936     }
16937   }
16938 
16939   // Looking for a truncate of i128 to i64.
16940   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16941     return SDValue();
16942 
16943   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16944 
16945   // SRL feeding TRUNCATE.
16946   if (Op0.getOpcode() == ISD::SRL) {
16947     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16948     // The right shift has to be by 64 bits.
16949     if (!ConstNode || ConstNode->getZExtValue() != 64)
16950       return SDValue();
16951 
16952     // Switch the element number to extract.
16953     EltToExtract = EltToExtract ? 0 : 1;
16954     // Update Op0 past the SRL.
16955     Op0 = Op0.getOperand(0);
16956   }
16957 
16958   // BITCAST feeding a TRUNCATE possibly via SRL.
16959   if (Op0.getOpcode() == ISD::BITCAST &&
16960       Op0.getValueType() == MVT::i128 &&
16961       Op0.getOperand(0).getValueType() == MVT::f128) {
16962     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16963     return DCI.DAG.getNode(
16964         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16965         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16966   }
16967   return SDValue();
16968 }
16969 
16970 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16971   SelectionDAG &DAG = DCI.DAG;
16972 
16973   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16974   if (!ConstOpOrElement)
16975     return SDValue();
16976 
16977   // An imul is usually smaller than the alternative sequence for legal type.
16978   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16979       isOperationLegal(ISD::MUL, N->getValueType(0)))
16980     return SDValue();
16981 
16982   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16983     switch (this->Subtarget.getCPUDirective()) {
16984     default:
16985       // TODO: enhance the condition for subtarget before pwr8
16986       return false;
16987     case PPC::DIR_PWR8:
16988       //  type        mul     add    shl
16989       // scalar        4       1      1
16990       // vector        7       2      2
16991       return true;
16992     case PPC::DIR_PWR9:
16993     case PPC::DIR_PWR10:
16994     case PPC::DIR_PWR_FUTURE:
16995       //  type        mul     add    shl
16996       // scalar        5       2      2
16997       // vector        7       2      2
16998 
16999       // The cycle RATIO of related operations are showed as a table above.
17000       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
17001       // scalar and vector type. For 2 instrs patterns, add/sub + shl
17002       // are 4, it is always profitable; but for 3 instrs patterns
17003       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
17004       // So we should only do it for vector type.
17005       return IsAddOne && IsNeg ? VT.isVector() : true;
17006     }
17007   };
17008 
17009   EVT VT = N->getValueType(0);
17010   SDLoc DL(N);
17011 
17012   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
17013   bool IsNeg = MulAmt.isNegative();
17014   APInt MulAmtAbs = MulAmt.abs();
17015 
17016   if ((MulAmtAbs - 1).isPowerOf2()) {
17017     // (mul x, 2^N + 1) => (add (shl x, N), x)
17018     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
17019 
17020     if (!IsProfitable(IsNeg, true, VT))
17021       return SDValue();
17022 
17023     SDValue Op0 = N->getOperand(0);
17024     SDValue Op1 =
17025         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17026                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
17027     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
17028 
17029     if (!IsNeg)
17030       return Res;
17031 
17032     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
17033   } else if ((MulAmtAbs + 1).isPowerOf2()) {
17034     // (mul x, 2^N - 1) => (sub (shl x, N), x)
17035     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
17036 
17037     if (!IsProfitable(IsNeg, false, VT))
17038       return SDValue();
17039 
17040     SDValue Op0 = N->getOperand(0);
17041     SDValue Op1 =
17042         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17043                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
17044 
17045     if (!IsNeg)
17046       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
17047     else
17048       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
17049 
17050   } else {
17051     return SDValue();
17052   }
17053 }
17054 
17055 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
17056 // in combiner since we need to check SD flags and other subtarget features.
17057 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
17058                                           DAGCombinerInfo &DCI) const {
17059   SDValue N0 = N->getOperand(0);
17060   SDValue N1 = N->getOperand(1);
17061   SDValue N2 = N->getOperand(2);
17062   SDNodeFlags Flags = N->getFlags();
17063   EVT VT = N->getValueType(0);
17064   SelectionDAG &DAG = DCI.DAG;
17065   const TargetOptions &Options = getTargetMachine().Options;
17066   unsigned Opc = N->getOpcode();
17067   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
17068   bool LegalOps = !DCI.isBeforeLegalizeOps();
17069   SDLoc Loc(N);
17070 
17071   if (!isOperationLegal(ISD::FMA, VT))
17072     return SDValue();
17073 
17074   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
17075   // since (fnmsub a b c)=-0 while c-ab=+0.
17076   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
17077     return SDValue();
17078 
17079   // (fma (fneg a) b c) => (fnmsub a b c)
17080   // (fnmsub (fneg a) b c) => (fma a b c)
17081   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
17082     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
17083 
17084   // (fma a (fneg b) c) => (fnmsub a b c)
17085   // (fnmsub a (fneg b) c) => (fma a b c)
17086   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
17087     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
17088 
17089   return SDValue();
17090 }
17091 
17092 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
17093   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
17094   if (!Subtarget.is64BitELFABI())
17095     return false;
17096 
17097   // If not a tail call then no need to proceed.
17098   if (!CI->isTailCall())
17099     return false;
17100 
17101   // If sibling calls have been disabled and tail-calls aren't guaranteed
17102   // there is no reason to duplicate.
17103   auto &TM = getTargetMachine();
17104   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
17105     return false;
17106 
17107   // Can't tail call a function called indirectly, or if it has variadic args.
17108   const Function *Callee = CI->getCalledFunction();
17109   if (!Callee || Callee->isVarArg())
17110     return false;
17111 
17112   // Make sure the callee and caller calling conventions are eligible for tco.
17113   const Function *Caller = CI->getParent()->getParent();
17114   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
17115                                            CI->getCallingConv()))
17116       return false;
17117 
17118   // If the function is local then we have a good chance at tail-calling it
17119   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
17120 }
17121 
17122 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
17123   if (!Subtarget.hasVSX())
17124     return false;
17125   if (Subtarget.hasP9Vector() && VT == MVT::f128)
17126     return true;
17127   return VT == MVT::f32 || VT == MVT::f64 ||
17128     VT == MVT::v4f32 || VT == MVT::v2f64;
17129 }
17130 
17131 bool PPCTargetLowering::
17132 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
17133   const Value *Mask = AndI.getOperand(1);
17134   // If the mask is suitable for andi. or andis. we should sink the and.
17135   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
17136     // Can't handle constants wider than 64-bits.
17137     if (CI->getBitWidth() > 64)
17138       return false;
17139     int64_t ConstVal = CI->getZExtValue();
17140     return isUInt<16>(ConstVal) ||
17141       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
17142   }
17143 
17144   // For non-constant masks, we can always use the record-form and.
17145   return true;
17146 }
17147 
17148 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
17149 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
17150 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
17151 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
17152 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
17153 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
17154   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
17155   assert(Subtarget.hasP9Altivec() &&
17156          "Only combine this when P9 altivec supported!");
17157   EVT VT = N->getValueType(0);
17158   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17159     return SDValue();
17160 
17161   SelectionDAG &DAG = DCI.DAG;
17162   SDLoc dl(N);
17163   if (N->getOperand(0).getOpcode() == ISD::SUB) {
17164     // Even for signed integers, if it's known to be positive (as signed
17165     // integer) due to zero-extended inputs.
17166     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
17167     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
17168     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
17169          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
17170         (SubOpcd1 == ISD::ZERO_EXTEND ||
17171          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
17172       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17173                          N->getOperand(0)->getOperand(0),
17174                          N->getOperand(0)->getOperand(1),
17175                          DAG.getTargetConstant(0, dl, MVT::i32));
17176     }
17177 
17178     // For type v4i32, it can be optimized with xvnegsp + vabsduw
17179     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
17180         N->getOperand(0).hasOneUse()) {
17181       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17182                          N->getOperand(0)->getOperand(0),
17183                          N->getOperand(0)->getOperand(1),
17184                          DAG.getTargetConstant(1, dl, MVT::i32));
17185     }
17186   }
17187 
17188   return SDValue();
17189 }
17190 
17191 // For type v4i32/v8ii16/v16i8, transform
17192 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
17193 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
17194 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
17195 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17196 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
17197                                           DAGCombinerInfo &DCI) const {
17198   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
17199   assert(Subtarget.hasP9Altivec() &&
17200          "Only combine this when P9 altivec supported!");
17201 
17202   SelectionDAG &DAG = DCI.DAG;
17203   SDLoc dl(N);
17204   SDValue Cond = N->getOperand(0);
17205   SDValue TrueOpnd = N->getOperand(1);
17206   SDValue FalseOpnd = N->getOperand(2);
17207   EVT VT = N->getOperand(1).getValueType();
17208 
17209   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
17210       FalseOpnd.getOpcode() != ISD::SUB)
17211     return SDValue();
17212 
17213   // ABSD only available for type v4i32/v8i16/v16i8
17214   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17215     return SDValue();
17216 
17217   // At least to save one more dependent computation
17218   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
17219     return SDValue();
17220 
17221   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17222 
17223   // Can only handle unsigned comparison here
17224   switch (CC) {
17225   default:
17226     return SDValue();
17227   case ISD::SETUGT:
17228   case ISD::SETUGE:
17229     break;
17230   case ISD::SETULT:
17231   case ISD::SETULE:
17232     std::swap(TrueOpnd, FalseOpnd);
17233     break;
17234   }
17235 
17236   SDValue CmpOpnd1 = Cond.getOperand(0);
17237   SDValue CmpOpnd2 = Cond.getOperand(1);
17238 
17239   // SETCC CmpOpnd1 CmpOpnd2 cond
17240   // TrueOpnd = CmpOpnd1 - CmpOpnd2
17241   // FalseOpnd = CmpOpnd2 - CmpOpnd1
17242   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17243       TrueOpnd.getOperand(1) == CmpOpnd2 &&
17244       FalseOpnd.getOperand(0) == CmpOpnd2 &&
17245       FalseOpnd.getOperand(1) == CmpOpnd1) {
17246     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17247                        CmpOpnd1, CmpOpnd2,
17248                        DAG.getTargetConstant(0, dl, MVT::i32));
17249   }
17250 
17251   return SDValue();
17252 }
17253 
17254 /// getAddrModeForFlags - Based on the set of address flags, select the most
17255 /// optimal instruction format to match by.
17256 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17257   // This is not a node we should be handling here.
17258   if (Flags == PPC::MOF_None)
17259     return PPC::AM_None;
17260   // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17261   for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17262     if ((Flags & FlagSet) == FlagSet)
17263       return PPC::AM_DForm;
17264   for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
17265     if ((Flags & FlagSet) == FlagSet)
17266       return PPC::AM_DSForm;
17267   for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
17268     if ((Flags & FlagSet) == FlagSet)
17269       return PPC::AM_DQForm;
17270   // If no other forms are selected, return an X-Form as it is the most
17271   // general addressing mode.
17272   return PPC::AM_XForm;
17273 }
17274 
17275 /// Set alignment flags based on whether or not the Frame Index is aligned.
17276 /// Utilized when computing flags for address computation when selecting
17277 /// load and store instructions.
17278 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
17279                                SelectionDAG &DAG) {
17280   bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
17281   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
17282   if (!FI)
17283     return;
17284   const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
17285   unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
17286   // If this is (add $FI, $S16Imm), the alignment flags are already set
17287   // based on the immediate. We just need to clear the alignment flags
17288   // if the FI alignment is weaker.
17289   if ((FrameIndexAlign % 4) != 0)
17290     FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
17291   if ((FrameIndexAlign % 16) != 0)
17292     FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
17293   // If the address is a plain FrameIndex, set alignment flags based on
17294   // FI alignment.
17295   if (!IsAdd) {
17296     if ((FrameIndexAlign % 4) == 0)
17297       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17298     if ((FrameIndexAlign % 16) == 0)
17299       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17300   }
17301 }
17302 
17303 /// Given a node, compute flags that are used for address computation when
17304 /// selecting load and store instructions. The flags computed are stored in
17305 /// FlagSet. This function takes into account whether the node is a constant,
17306 /// an ADD, OR, or a constant, and computes the address flags accordingly.
17307 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
17308                                               SelectionDAG &DAG) {
17309   // Set the alignment flags for the node depending on if the node is
17310   // 4-byte or 16-byte aligned.
17311   auto SetAlignFlagsForImm = [&](uint64_t Imm) {
17312     if ((Imm & 0x3) == 0)
17313       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17314     if ((Imm & 0xf) == 0)
17315       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17316   };
17317 
17318   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
17319     // All 32-bit constants can be computed as LIS + Disp.
17320     const APInt &ConstImm = CN->getAPIntValue();
17321     if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17322       FlagSet |= PPC::MOF_AddrIsSImm32;
17323       SetAlignFlagsForImm(ConstImm.getZExtValue());
17324       setAlignFlagsForFI(N, FlagSet, DAG);
17325     }
17326     if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
17327       FlagSet |= PPC::MOF_RPlusSImm34;
17328     else // Let constant materialization handle large constants.
17329       FlagSet |= PPC::MOF_NotAddNorCst;
17330   } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
17331     // This address can be represented as an addition of:
17332     // - Register + Imm16 (possibly a multiple of 4/16)
17333     // - Register + Imm34
17334     // - Register + PPCISD::Lo
17335     // - Register + Register
17336     // In any case, we won't have to match this as Base + Zero.
17337     SDValue RHS = N.getOperand(1);
17338     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
17339       const APInt &ConstImm = CN->getAPIntValue();
17340       if (ConstImm.isSignedIntN(16)) {
17341         FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
17342         SetAlignFlagsForImm(ConstImm.getZExtValue());
17343         setAlignFlagsForFI(N, FlagSet, DAG);
17344       }
17345       if (ConstImm.isSignedIntN(34))
17346         FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
17347       else
17348         FlagSet |= PPC::MOF_RPlusR; // Register.
17349     } else if (RHS.getOpcode() == PPCISD::Lo &&
17350                !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
17351       FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
17352     else
17353       FlagSet |= PPC::MOF_RPlusR;
17354   } else { // The address computation is not a constant or an addition.
17355     setAlignFlagsForFI(N, FlagSet, DAG);
17356     FlagSet |= PPC::MOF_NotAddNorCst;
17357   }
17358 }
17359 
17360 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17361 /// the address flags of the load/store instruction that is to be matched.
17362 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
17363                                            SelectionDAG &DAG) const {
17364   unsigned FlagSet = PPC::MOF_None;
17365 
17366   // Compute subtarget flags.
17367   if (!Subtarget.hasP9Vector())
17368     FlagSet |= PPC::MOF_SubtargetBeforeP9;
17369   else {
17370     FlagSet |= PPC::MOF_SubtargetP9;
17371     if (Subtarget.hasPrefixInstrs())
17372       FlagSet |= PPC::MOF_SubtargetP10;
17373   }
17374   if (Subtarget.hasSPE())
17375     FlagSet |= PPC::MOF_SubtargetSPE;
17376 
17377   // Mark this as something we don't want to handle here if it is atomic
17378   // or pre-increment instruction.
17379   if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
17380     if (LSB->isIndexed())
17381       return PPC::MOF_None;
17382 
17383   // Compute in-memory type flags. This is based on if there are scalars,
17384   // floats or vectors.
17385   const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
17386   assert(MN && "Parent should be a MemSDNode!");
17387   EVT MemVT = MN->getMemoryVT();
17388   unsigned Size = MemVT.getSizeInBits();
17389   if (MemVT.isScalarInteger()) {
17390     assert(Size <= 128 &&
17391            "Not expecting scalar integers larger than 16 bytes!");
17392     if (Size < 32)
17393       FlagSet |= PPC::MOF_SubWordInt;
17394     else if (Size == 32)
17395       FlagSet |= PPC::MOF_WordInt;
17396     else
17397       FlagSet |= PPC::MOF_DoubleWordInt;
17398   } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
17399     if (Size == 128)
17400       FlagSet |= PPC::MOF_Vector;
17401     else if (Size == 256)
17402       FlagSet |= PPC::MOF_Vector256;
17403     else
17404       llvm_unreachable("Not expecting illegal vectors!");
17405   } else { // Floating point type: can be scalar, f128 or vector types.
17406     if (Size == 32 || Size == 64)
17407       FlagSet |= PPC::MOF_ScalarFloat;
17408     else if (MemVT == MVT::f128 || MemVT.isVector())
17409       FlagSet |= PPC::MOF_Vector;
17410     else
17411       llvm_unreachable("Not expecting illegal scalar floats!");
17412   }
17413 
17414   // Compute flags for address computation.
17415   computeFlagsForAddressComputation(N, FlagSet, DAG);
17416 
17417   // Compute type extension flags.
17418   if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
17419     switch (LN->getExtensionType()) {
17420     case ISD::SEXTLOAD:
17421       FlagSet |= PPC::MOF_SExt;
17422       break;
17423     case ISD::EXTLOAD:
17424     case ISD::ZEXTLOAD:
17425       FlagSet |= PPC::MOF_ZExt;
17426       break;
17427     case ISD::NON_EXTLOAD:
17428       FlagSet |= PPC::MOF_NoExt;
17429       break;
17430     }
17431   } else
17432     FlagSet |= PPC::MOF_NoExt;
17433 
17434   // For integers, no extension is the same as zero extension.
17435   // We set the extension mode to zero extension so we don't have
17436   // to add separate entries in AddrModesMap for loads and stores.
17437   if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
17438     FlagSet |= PPC::MOF_ZExt;
17439     FlagSet &= ~PPC::MOF_NoExt;
17440   }
17441 
17442   // If we don't have prefixed instructions, 34-bit constants should be
17443   // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17444   bool IsNonP1034BitConst =
17445       ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
17446        FlagSet) == PPC::MOF_RPlusSImm34;
17447   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
17448       IsNonP1034BitConst)
17449     FlagSet |= PPC::MOF_NotAddNorCst;
17450 
17451   return FlagSet;
17452 }
17453 
17454 /// SelectForceXFormMode - Given the specified address, force it to be
17455 /// represented as an indexed [r+r] operation (an XForm instruction).
17456 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
17457                                                       SDValue &Base,
17458                                                       SelectionDAG &DAG) const {
17459 
17460   PPC::AddrMode Mode = PPC::AM_XForm;
17461   int16_t ForceXFormImm = 0;
17462   if (provablyDisjointOr(DAG, N) &&
17463       !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
17464     Disp = N.getOperand(0);
17465     Base = N.getOperand(1);
17466     return Mode;
17467   }
17468 
17469   // If the address is the result of an add, we will utilize the fact that the
17470   // address calculation includes an implicit add.  However, we can reduce
17471   // register pressure if we do not materialize a constant just for use as the
17472   // index register.  We only get rid of the add if it is not an add of a
17473   // value and a 16-bit signed constant and both have a single use.
17474   if (N.getOpcode() == ISD::ADD &&
17475       (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
17476        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
17477     Disp = N.getOperand(0);
17478     Base = N.getOperand(1);
17479     return Mode;
17480   }
17481 
17482   // Otherwise, use R0 as the base register.
17483   Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17484                          N.getValueType());
17485   Base = N;
17486 
17487   return Mode;
17488 }
17489 
17490 // If we happen to match to an aligned D-Form, check if the Frame Index is
17491 // adequately aligned. If it is not, reset the mode to match to X-Form.
17492 static void setXFormForUnalignedFI(SDValue N, unsigned Flags,
17493                                    PPC::AddrMode &Mode) {
17494   if (!isa<FrameIndexSDNode>(N))
17495     return;
17496   if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) ||
17497       (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16)))
17498     Mode = PPC::AM_XForm;
17499 }
17500 
17501 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
17502 /// compute the address flags of the node, get the optimal address mode based
17503 /// on the flags, and set the Base and Disp based on the address mode.
17504 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
17505                                                        SDValue N, SDValue &Disp,
17506                                                        SDValue &Base,
17507                                                        SelectionDAG &DAG,
17508                                                        MaybeAlign Align) const {
17509   SDLoc DL(Parent);
17510 
17511   // Compute the address flags.
17512   unsigned Flags = computeMOFlags(Parent, N, DAG);
17513 
17514   // Get the optimal address mode based on the Flags.
17515   PPC::AddrMode Mode = getAddrModeForFlags(Flags);
17516 
17517   // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
17518   // Select an X-Form load if it is not.
17519   setXFormForUnalignedFI(N, Flags, Mode);
17520 
17521   // Set Base and Disp accordingly depending on the address mode.
17522   switch (Mode) {
17523   case PPC::AM_DForm:
17524   case PPC::AM_DSForm:
17525   case PPC::AM_DQForm: {
17526     // This is a register plus a 16-bit immediate. The base will be the
17527     // register and the displacement will be the immediate unless it
17528     // isn't sufficiently aligned.
17529     if (Flags & PPC::MOF_RPlusSImm16) {
17530       SDValue Op0 = N.getOperand(0);
17531       SDValue Op1 = N.getOperand(1);
17532       int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
17533       if (!Align || isAligned(*Align, Imm)) {
17534         Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
17535         Base = Op0;
17536         if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
17537           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17538           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17539         }
17540         break;
17541       }
17542     }
17543     // This is a register plus the @lo relocation. The base is the register
17544     // and the displacement is the global address.
17545     else if (Flags & PPC::MOF_RPlusLo) {
17546       Disp = N.getOperand(1).getOperand(0); // The global address.
17547       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
17548              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
17549              Disp.getOpcode() == ISD::TargetConstantPool ||
17550              Disp.getOpcode() == ISD::TargetJumpTable);
17551       Base = N.getOperand(0);
17552       break;
17553     }
17554     // This is a constant address at most 32 bits. The base will be
17555     // zero or load-immediate-shifted and the displacement will be
17556     // the low 16 bits of the address.
17557     else if (Flags & PPC::MOF_AddrIsSImm32) {
17558       auto *CN = cast<ConstantSDNode>(N);
17559       EVT CNType = CN->getValueType(0);
17560       uint64_t CNImm = CN->getZExtValue();
17561       // If this address fits entirely in a 16-bit sext immediate field, codegen
17562       // this as "d, 0".
17563       int16_t Imm;
17564       if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
17565         Disp = DAG.getTargetConstant(Imm, DL, CNType);
17566         Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17567                                CNType);
17568         break;
17569       }
17570       // Handle 32-bit sext immediate with LIS + Addr mode.
17571       if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
17572           (!Align || isAligned(*Align, CNImm))) {
17573         int32_t Addr = (int32_t)CNImm;
17574         // Otherwise, break this down into LIS + Disp.
17575         Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
17576         Base =
17577             DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
17578         uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
17579         Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
17580         break;
17581       }
17582     }
17583     // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
17584     Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
17585     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
17586       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17587       fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17588     } else
17589       Base = N;
17590     break;
17591   }
17592   case PPC::AM_None:
17593     break;
17594   default: { // By default, X-Form is always available to be selected.
17595     // When a frame index is not aligned, we also match by XForm.
17596     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
17597     Base = FI ? N : N.getOperand(1);
17598     Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17599                                 N.getValueType())
17600               : N.getOperand(0);
17601     break;
17602   }
17603   }
17604   return Mode;
17605 }
17606 
17607 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
17608                                                  bool Return,
17609                                                  bool IsVarArg) const {
17610   switch (CC) {
17611   case CallingConv::Cold:
17612     return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
17613   default:
17614     return CC_PPC64_ELF_FIS;
17615   }
17616 }
17617 
17618 TargetLowering::AtomicExpansionKind
17619 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
17620   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
17621   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
17622     return AtomicExpansionKind::MaskedIntrinsic;
17623   return TargetLowering::shouldExpandAtomicRMWInIR(AI);
17624 }
17625 
17626 TargetLowering::AtomicExpansionKind
17627 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
17628   unsigned Size = AI->getPointerOperand()
17629                       ->getType()
17630                       ->getPointerElementType()
17631                       ->getPrimitiveSizeInBits();
17632   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
17633     return AtomicExpansionKind::MaskedIntrinsic;
17634   return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI);
17635 }
17636 
17637 static Intrinsic::ID
17638 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) {
17639   switch (BinOp) {
17640   default:
17641     llvm_unreachable("Unexpected AtomicRMW BinOp");
17642   case AtomicRMWInst::Xchg:
17643     return Intrinsic::ppc_atomicrmw_xchg_i128;
17644   case AtomicRMWInst::Add:
17645     return Intrinsic::ppc_atomicrmw_add_i128;
17646   case AtomicRMWInst::Sub:
17647     return Intrinsic::ppc_atomicrmw_sub_i128;
17648   case AtomicRMWInst::And:
17649     return Intrinsic::ppc_atomicrmw_and_i128;
17650   case AtomicRMWInst::Or:
17651     return Intrinsic::ppc_atomicrmw_or_i128;
17652   case AtomicRMWInst::Xor:
17653     return Intrinsic::ppc_atomicrmw_xor_i128;
17654   case AtomicRMWInst::Nand:
17655     return Intrinsic::ppc_atomicrmw_nand_i128;
17656   }
17657 }
17658 
17659 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
17660     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
17661     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
17662   assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
17663          "Only support quadword now");
17664   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
17665   Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType();
17666   assert(ValTy->getPrimitiveSizeInBits() == 128);
17667   Function *RMW = Intrinsic::getDeclaration(
17668       M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation()));
17669   Type *Int64Ty = Type::getInt64Ty(M->getContext());
17670   Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo");
17671   Value *IncrHi =
17672       Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi");
17673   Value *Addr =
17674       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
17675   Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi});
17676   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
17677   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
17678   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
17679   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
17680   return Builder.CreateOr(
17681       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
17682 }
17683 
17684 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
17685     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
17686     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
17687   assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
17688          "Only support quadword now");
17689   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
17690   Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType();
17691   assert(ValTy->getPrimitiveSizeInBits() == 128);
17692   Function *IntCmpXchg =
17693       Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128);
17694   Type *Int64Ty = Type::getInt64Ty(M->getContext());
17695   Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo");
17696   Value *CmpHi =
17697       Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi");
17698   Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo");
17699   Value *NewHi =
17700       Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi");
17701   Value *Addr =
17702       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
17703   emitLeadingFence(Builder, CI, Ord);
17704   Value *LoHi =
17705       Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi});
17706   emitTrailingFence(Builder, CI, Ord);
17707   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
17708   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
17709   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
17710   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
17711   return Builder.CreateOr(
17712       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
17713 }
17714