1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCCCState.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCPerfectShuffle.h" 20 #include "PPCTargetMachine.h" 21 #include "PPCTargetObjectFile.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/CodeGen/CallingConvLower.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/SelectionDAG.h" 34 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/Format.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetOptions.h" 46 #include <list> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "ppc-lowering" 51 52 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 53 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 54 55 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 56 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 57 58 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 59 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 60 61 static cl::opt<bool> DisableSCO("disable-ppc-sco", 62 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 63 64 STATISTIC(NumTailCalls, "Number of tail calls"); 65 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 66 67 // FIXME: Remove this once the bug has been fixed! 68 extern cl::opt<bool> ANDIGlueBug; 69 70 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 71 const PPCSubtarget &STI) 72 : TargetLowering(TM), Subtarget(STI) { 73 // Use _setjmp/_longjmp instead of setjmp/longjmp. 74 setUseUnderscoreSetJmp(true); 75 setUseUnderscoreLongJmp(true); 76 77 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 78 // arguments are at least 4/8 bytes aligned. 79 bool isPPC64 = Subtarget.isPPC64(); 80 setMinStackArgumentAlignment(isPPC64 ? 8:4); 81 82 // Set up the register classes. 83 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 84 if (!useSoftFloat()) { 85 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 86 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 87 } 88 89 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 90 for (MVT VT : MVT::integer_valuetypes()) { 91 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 92 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 93 } 94 95 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 96 97 // PowerPC has pre-inc load and store's. 98 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 99 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 100 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 101 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 102 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 103 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 104 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 105 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 106 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 107 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 108 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 109 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 110 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 111 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 112 113 if (Subtarget.useCRBits()) { 114 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 115 116 if (isPPC64 || Subtarget.hasFPCVT()) { 117 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 118 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 119 isPPC64 ? MVT::i64 : MVT::i32); 120 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 121 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 122 isPPC64 ? MVT::i64 : MVT::i32); 123 } else { 124 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 125 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 126 } 127 128 // PowerPC does not support direct load / store of condition registers 129 setOperationAction(ISD::LOAD, MVT::i1, Custom); 130 setOperationAction(ISD::STORE, MVT::i1, Custom); 131 132 // FIXME: Remove this once the ANDI glue bug is fixed: 133 if (ANDIGlueBug) 134 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 135 136 for (MVT VT : MVT::integer_valuetypes()) { 137 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 138 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 139 setTruncStoreAction(VT, MVT::i1, Expand); 140 } 141 142 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 143 } 144 145 // This is used in the ppcf128->int sequence. Note it has different semantics 146 // from FP_ROUND: that rounds to nearest, this rounds to zero. 147 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 148 149 // We do not currently implement these libm ops for PowerPC. 150 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 151 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 152 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 153 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 154 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 155 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 156 157 // PowerPC has no SREM/UREM instructions 158 setOperationAction(ISD::SREM, MVT::i32, Expand); 159 setOperationAction(ISD::UREM, MVT::i32, Expand); 160 setOperationAction(ISD::SREM, MVT::i64, Expand); 161 setOperationAction(ISD::UREM, MVT::i64, Expand); 162 163 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 164 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 165 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 166 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 167 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 168 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 169 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 170 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 171 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 172 173 // We don't support sin/cos/sqrt/fmod/pow 174 setOperationAction(ISD::FSIN , MVT::f64, Expand); 175 setOperationAction(ISD::FCOS , MVT::f64, Expand); 176 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 177 setOperationAction(ISD::FREM , MVT::f64, Expand); 178 setOperationAction(ISD::FPOW , MVT::f64, Expand); 179 setOperationAction(ISD::FMA , MVT::f64, Legal); 180 setOperationAction(ISD::FSIN , MVT::f32, Expand); 181 setOperationAction(ISD::FCOS , MVT::f32, Expand); 182 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 183 setOperationAction(ISD::FREM , MVT::f32, Expand); 184 setOperationAction(ISD::FPOW , MVT::f32, Expand); 185 setOperationAction(ISD::FMA , MVT::f32, Legal); 186 187 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 188 189 // If we're enabling GP optimizations, use hardware square root 190 if (!Subtarget.hasFSQRT() && 191 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 192 Subtarget.hasFRE())) 193 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 194 195 if (!Subtarget.hasFSQRT() && 196 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 197 Subtarget.hasFRES())) 198 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 199 200 if (Subtarget.hasFCPSGN()) { 201 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 202 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 203 } else { 204 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 205 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 206 } 207 208 if (Subtarget.hasFPRND()) { 209 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 210 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 211 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 212 setOperationAction(ISD::FROUND, MVT::f64, Legal); 213 214 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 215 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 216 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 217 setOperationAction(ISD::FROUND, MVT::f32, Legal); 218 } 219 220 // PowerPC does not have BSWAP 221 // CTPOP or CTTZ were introduced in P8/P9 respectivelly 222 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 223 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 224 if (Subtarget.isISA3_0()) { 225 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 226 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 227 } else { 228 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 229 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 230 } 231 232 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 233 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 234 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 235 } else { 236 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 237 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 238 } 239 240 // PowerPC does not have ROTR 241 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 242 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 243 244 if (!Subtarget.useCRBits()) { 245 // PowerPC does not have Select 246 setOperationAction(ISD::SELECT, MVT::i32, Expand); 247 setOperationAction(ISD::SELECT, MVT::i64, Expand); 248 setOperationAction(ISD::SELECT, MVT::f32, Expand); 249 setOperationAction(ISD::SELECT, MVT::f64, Expand); 250 } 251 252 // PowerPC wants to turn select_cc of FP into fsel when possible. 253 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 254 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 255 256 // PowerPC wants to optimize integer setcc a bit 257 if (!Subtarget.useCRBits()) 258 setOperationAction(ISD::SETCC, MVT::i32, Custom); 259 260 // PowerPC does not have BRCOND which requires SetCC 261 if (!Subtarget.useCRBits()) 262 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 263 264 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 265 266 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 267 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 268 269 // PowerPC does not have [U|S]INT_TO_FP 270 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 271 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 272 273 if (Subtarget.hasDirectMove() && isPPC64) { 274 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 275 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 276 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 277 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 278 } else { 279 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 280 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 281 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 282 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 283 } 284 285 // We cannot sextinreg(i1). Expand to shifts. 286 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 287 288 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 289 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 290 // support continuation, user-level threading, and etc.. As a result, no 291 // other SjLj exception interfaces are implemented and please don't build 292 // your own exception handling based on them. 293 // LLVM/Clang supports zero-cost DWARF exception handling. 294 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 295 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 296 297 // We want to legalize GlobalAddress and ConstantPool nodes into the 298 // appropriate instructions to materialize the address. 299 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 300 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 301 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 302 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 303 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 304 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 305 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 306 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 307 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 308 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 309 310 // TRAP is legal. 311 setOperationAction(ISD::TRAP, MVT::Other, Legal); 312 313 // TRAMPOLINE is custom lowered. 314 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 315 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 316 317 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 318 setOperationAction(ISD::VASTART , MVT::Other, Custom); 319 320 if (Subtarget.isSVR4ABI()) { 321 if (isPPC64) { 322 // VAARG always uses double-word chunks, so promote anything smaller. 323 setOperationAction(ISD::VAARG, MVT::i1, Promote); 324 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 325 setOperationAction(ISD::VAARG, MVT::i8, Promote); 326 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 327 setOperationAction(ISD::VAARG, MVT::i16, Promote); 328 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 329 setOperationAction(ISD::VAARG, MVT::i32, Promote); 330 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 331 setOperationAction(ISD::VAARG, MVT::Other, Expand); 332 } else { 333 // VAARG is custom lowered with the 32-bit SVR4 ABI. 334 setOperationAction(ISD::VAARG, MVT::Other, Custom); 335 setOperationAction(ISD::VAARG, MVT::i64, Custom); 336 } 337 } else 338 setOperationAction(ISD::VAARG, MVT::Other, Expand); 339 340 if (Subtarget.isSVR4ABI() && !isPPC64) 341 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 342 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 343 else 344 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 345 346 // Use the default implementation. 347 setOperationAction(ISD::VAEND , MVT::Other, Expand); 348 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 349 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 350 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 351 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 352 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 353 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 354 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 355 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 356 357 // We want to custom lower some of our intrinsics. 358 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 359 360 // To handle counter-based loop conditions. 361 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 362 363 // Comparisons that require checking two conditions. 364 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 365 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 366 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 367 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 368 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 369 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 370 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 371 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 372 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 373 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 374 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 375 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 376 377 if (Subtarget.has64BitSupport()) { 378 // They also have instructions for converting between i64 and fp. 379 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 380 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 381 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 382 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 383 // This is just the low 32 bits of a (signed) fp->i64 conversion. 384 // We cannot do this with Promote because i64 is not a legal type. 385 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 386 387 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 388 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 389 } else { 390 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 391 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 392 } 393 394 // With the instructions enabled under FPCVT, we can do everything. 395 if (Subtarget.hasFPCVT()) { 396 if (Subtarget.has64BitSupport()) { 397 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 398 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 399 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 400 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 401 } 402 403 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 404 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 405 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 406 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 407 } 408 409 if (Subtarget.use64BitRegs()) { 410 // 64-bit PowerPC implementations can support i64 types directly 411 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 412 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 413 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 414 // 64-bit PowerPC wants to expand i128 shifts itself. 415 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 416 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 417 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 418 } else { 419 // 32-bit PowerPC wants to expand i64 shifts itself. 420 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 421 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 422 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 423 } 424 425 if (Subtarget.hasAltivec()) { 426 // First set operation action for all vector types to expand. Then we 427 // will selectively turn on ones that can be effectively codegen'd. 428 for (MVT VT : MVT::vector_valuetypes()) { 429 // add/sub are legal for all supported vector VT's. 430 setOperationAction(ISD::ADD, VT, Legal); 431 setOperationAction(ISD::SUB, VT, Legal); 432 433 // Vector instructions introduced in P8 434 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 435 setOperationAction(ISD::CTPOP, VT, Legal); 436 setOperationAction(ISD::CTLZ, VT, Legal); 437 } 438 else { 439 setOperationAction(ISD::CTPOP, VT, Expand); 440 setOperationAction(ISD::CTLZ, VT, Expand); 441 } 442 443 // Vector instructions introduced in P9 444 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 445 setOperationAction(ISD::CTTZ, VT, Legal); 446 else 447 setOperationAction(ISD::CTTZ, VT, Expand); 448 449 // We promote all shuffles to v16i8. 450 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 451 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 452 453 // We promote all non-typed operations to v4i32. 454 setOperationAction(ISD::AND , VT, Promote); 455 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 456 setOperationAction(ISD::OR , VT, Promote); 457 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 458 setOperationAction(ISD::XOR , VT, Promote); 459 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 460 setOperationAction(ISD::LOAD , VT, Promote); 461 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 462 setOperationAction(ISD::SELECT, VT, Promote); 463 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 464 setOperationAction(ISD::SELECT_CC, VT, Promote); 465 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 466 setOperationAction(ISD::STORE, VT, Promote); 467 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 468 469 // No other operations are legal. 470 setOperationAction(ISD::MUL , VT, Expand); 471 setOperationAction(ISD::SDIV, VT, Expand); 472 setOperationAction(ISD::SREM, VT, Expand); 473 setOperationAction(ISD::UDIV, VT, Expand); 474 setOperationAction(ISD::UREM, VT, Expand); 475 setOperationAction(ISD::FDIV, VT, Expand); 476 setOperationAction(ISD::FREM, VT, Expand); 477 setOperationAction(ISD::FNEG, VT, Expand); 478 setOperationAction(ISD::FSQRT, VT, Expand); 479 setOperationAction(ISD::FLOG, VT, Expand); 480 setOperationAction(ISD::FLOG10, VT, Expand); 481 setOperationAction(ISD::FLOG2, VT, Expand); 482 setOperationAction(ISD::FEXP, VT, Expand); 483 setOperationAction(ISD::FEXP2, VT, Expand); 484 setOperationAction(ISD::FSIN, VT, Expand); 485 setOperationAction(ISD::FCOS, VT, Expand); 486 setOperationAction(ISD::FABS, VT, Expand); 487 setOperationAction(ISD::FPOWI, VT, Expand); 488 setOperationAction(ISD::FFLOOR, VT, Expand); 489 setOperationAction(ISD::FCEIL, VT, Expand); 490 setOperationAction(ISD::FTRUNC, VT, Expand); 491 setOperationAction(ISD::FRINT, VT, Expand); 492 setOperationAction(ISD::FNEARBYINT, VT, Expand); 493 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 494 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 495 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 496 setOperationAction(ISD::MULHU, VT, Expand); 497 setOperationAction(ISD::MULHS, VT, Expand); 498 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 499 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 500 setOperationAction(ISD::UDIVREM, VT, Expand); 501 setOperationAction(ISD::SDIVREM, VT, Expand); 502 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 503 setOperationAction(ISD::FPOW, VT, Expand); 504 setOperationAction(ISD::BSWAP, VT, Expand); 505 setOperationAction(ISD::VSELECT, VT, Expand); 506 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 507 setOperationAction(ISD::ROTL, VT, Expand); 508 setOperationAction(ISD::ROTR, VT, Expand); 509 510 for (MVT InnerVT : MVT::vector_valuetypes()) { 511 setTruncStoreAction(VT, InnerVT, Expand); 512 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 513 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 514 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 515 } 516 } 517 518 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 519 // with merges, splats, etc. 520 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 521 522 setOperationAction(ISD::AND , MVT::v4i32, Legal); 523 setOperationAction(ISD::OR , MVT::v4i32, Legal); 524 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 525 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 526 setOperationAction(ISD::SELECT, MVT::v4i32, 527 Subtarget.useCRBits() ? Legal : Expand); 528 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 529 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 530 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 531 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 532 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 533 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 534 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 535 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 536 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 537 538 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 539 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 540 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 541 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 542 543 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 544 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 545 546 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 547 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 548 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 549 } 550 551 if (Subtarget.hasP8Altivec()) 552 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 553 else 554 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 555 556 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 557 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 558 559 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 560 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 561 562 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 563 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 564 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 565 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 566 if (Subtarget.hasP8Altivec()) 567 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 568 if (Subtarget.hasVSX()) 569 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 570 571 // Altivec does not contain unordered floating-point compare instructions 572 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 573 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 574 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 575 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 576 577 if (Subtarget.hasVSX()) { 578 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 579 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 580 if (Subtarget.hasP8Vector()) { 581 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 582 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 583 } 584 if (Subtarget.hasDirectMove() && isPPC64) { 585 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 586 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 587 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 588 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 589 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 590 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 591 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 592 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 593 } 594 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 595 596 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 597 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 598 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 599 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 600 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 601 602 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 603 604 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 605 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 606 607 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 608 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 609 610 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 611 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 612 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 613 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 614 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 615 616 // Share the Altivec comparison restrictions. 617 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 618 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 619 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 620 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 621 622 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 623 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 624 625 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 626 627 if (Subtarget.hasP8Vector()) 628 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 629 630 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 631 632 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 633 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 634 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 635 636 if (Subtarget.hasP8Altivec()) { 637 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 638 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 639 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 640 641 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 642 } 643 else { 644 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 645 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 646 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 647 648 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 649 650 // VSX v2i64 only supports non-arithmetic operations. 651 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 652 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 653 } 654 655 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 656 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 657 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 658 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 659 660 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 661 662 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 663 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 664 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 665 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 666 667 // Vector operation legalization checks the result type of 668 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 669 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 670 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 671 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 672 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 673 674 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 675 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 676 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 677 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 678 679 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 680 } 681 682 if (Subtarget.hasP8Altivec()) { 683 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 684 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 685 } 686 687 if (Subtarget.hasP9Vector()) { 688 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 689 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 690 } 691 692 if (Subtarget.isISA3_0() && Subtarget.hasDirectMove()) 693 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 694 } 695 696 if (Subtarget.hasQPX()) { 697 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 698 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 699 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 700 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 701 702 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 703 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 704 705 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 706 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 707 708 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 709 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 710 711 if (!Subtarget.useCRBits()) 712 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 713 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 714 715 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 716 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 717 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 718 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 719 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 720 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 721 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 722 723 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 724 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 725 726 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 727 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 728 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 729 730 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 731 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 732 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 733 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 734 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 735 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 736 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 737 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 738 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 739 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 740 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 741 742 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 743 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 744 745 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 746 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 747 748 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 749 750 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 751 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 752 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 753 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 754 755 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 756 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 757 758 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 759 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 760 761 if (!Subtarget.useCRBits()) 762 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 763 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 764 765 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 766 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 767 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 768 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 769 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 770 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 771 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 772 773 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 774 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 775 776 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 777 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 778 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 779 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 780 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 781 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 782 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 783 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 784 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 785 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 786 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 787 788 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 789 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 790 791 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 792 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 793 794 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 795 796 setOperationAction(ISD::AND , MVT::v4i1, Legal); 797 setOperationAction(ISD::OR , MVT::v4i1, Legal); 798 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 799 800 if (!Subtarget.useCRBits()) 801 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 802 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 803 804 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 805 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 806 807 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 808 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 809 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 810 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 811 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 812 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 813 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 814 815 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 816 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 817 818 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 819 820 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 821 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 822 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 823 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 824 825 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 826 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 827 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 828 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 829 830 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 831 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 832 833 // These need to set FE_INEXACT, and so cannot be vectorized here. 834 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 835 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 836 837 if (TM.Options.UnsafeFPMath) { 838 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 839 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 840 841 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 842 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 843 } else { 844 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 845 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 846 847 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 848 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 849 } 850 } 851 852 if (Subtarget.has64BitSupport()) 853 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 854 855 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 856 857 if (!isPPC64) { 858 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 859 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 860 } 861 862 setBooleanContents(ZeroOrOneBooleanContent); 863 864 if (Subtarget.hasAltivec()) { 865 // Altivec instructions set fields to all zeros or all ones. 866 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 867 } 868 869 if (!isPPC64) { 870 // These libcalls are not available in 32-bit. 871 setLibcallName(RTLIB::SHL_I128, nullptr); 872 setLibcallName(RTLIB::SRL_I128, nullptr); 873 setLibcallName(RTLIB::SRA_I128, nullptr); 874 } 875 876 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 877 878 // We have target-specific dag combine patterns for the following nodes: 879 setTargetDAGCombine(ISD::SINT_TO_FP); 880 setTargetDAGCombine(ISD::BUILD_VECTOR); 881 if (Subtarget.hasFPCVT()) 882 setTargetDAGCombine(ISD::UINT_TO_FP); 883 setTargetDAGCombine(ISD::LOAD); 884 setTargetDAGCombine(ISD::STORE); 885 setTargetDAGCombine(ISD::BR_CC); 886 if (Subtarget.useCRBits()) 887 setTargetDAGCombine(ISD::BRCOND); 888 setTargetDAGCombine(ISD::BSWAP); 889 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 890 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 891 setTargetDAGCombine(ISD::INTRINSIC_VOID); 892 893 setTargetDAGCombine(ISD::SIGN_EXTEND); 894 setTargetDAGCombine(ISD::ZERO_EXTEND); 895 setTargetDAGCombine(ISD::ANY_EXTEND); 896 897 if (Subtarget.useCRBits()) { 898 setTargetDAGCombine(ISD::TRUNCATE); 899 setTargetDAGCombine(ISD::SETCC); 900 setTargetDAGCombine(ISD::SELECT_CC); 901 } 902 903 // Use reciprocal estimates. 904 if (TM.Options.UnsafeFPMath) { 905 setTargetDAGCombine(ISD::FDIV); 906 setTargetDAGCombine(ISD::FSQRT); 907 } 908 909 // Darwin long double math library functions have $LDBL128 appended. 910 if (Subtarget.isDarwin()) { 911 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 912 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 913 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 914 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 915 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 916 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 917 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 918 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 919 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 920 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 921 } 922 923 // With 32 condition bits, we don't need to sink (and duplicate) compares 924 // aggressively in CodeGenPrep. 925 if (Subtarget.useCRBits()) { 926 setHasMultipleConditionRegisters(); 927 setJumpIsExpensive(); 928 } 929 930 setMinFunctionAlignment(2); 931 if (Subtarget.isDarwin()) 932 setPrefFunctionAlignment(4); 933 934 switch (Subtarget.getDarwinDirective()) { 935 default: break; 936 case PPC::DIR_970: 937 case PPC::DIR_A2: 938 case PPC::DIR_E500mc: 939 case PPC::DIR_E5500: 940 case PPC::DIR_PWR4: 941 case PPC::DIR_PWR5: 942 case PPC::DIR_PWR5X: 943 case PPC::DIR_PWR6: 944 case PPC::DIR_PWR6X: 945 case PPC::DIR_PWR7: 946 case PPC::DIR_PWR8: 947 case PPC::DIR_PWR9: 948 setPrefFunctionAlignment(4); 949 setPrefLoopAlignment(4); 950 break; 951 } 952 953 if (Subtarget.enableMachineScheduler()) 954 setSchedulingPreference(Sched::Source); 955 else 956 setSchedulingPreference(Sched::Hybrid); 957 958 computeRegisterProperties(STI.getRegisterInfo()); 959 960 // The Freescale cores do better with aggressive inlining of memcpy and 961 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 962 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 963 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 964 MaxStoresPerMemset = 32; 965 MaxStoresPerMemsetOptSize = 16; 966 MaxStoresPerMemcpy = 32; 967 MaxStoresPerMemcpyOptSize = 8; 968 MaxStoresPerMemmove = 32; 969 MaxStoresPerMemmoveOptSize = 8; 970 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 971 // The A2 also benefits from (very) aggressive inlining of memcpy and 972 // friends. The overhead of a the function call, even when warm, can be 973 // over one hundred cycles. 974 MaxStoresPerMemset = 128; 975 MaxStoresPerMemcpy = 128; 976 MaxStoresPerMemmove = 128; 977 } 978 } 979 980 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 981 /// the desired ByVal argument alignment. 982 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 983 unsigned MaxMaxAlign) { 984 if (MaxAlign == MaxMaxAlign) 985 return; 986 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 987 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 988 MaxAlign = 32; 989 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 990 MaxAlign = 16; 991 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 992 unsigned EltAlign = 0; 993 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 994 if (EltAlign > MaxAlign) 995 MaxAlign = EltAlign; 996 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 997 for (auto *EltTy : STy->elements()) { 998 unsigned EltAlign = 0; 999 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1000 if (EltAlign > MaxAlign) 1001 MaxAlign = EltAlign; 1002 if (MaxAlign == MaxMaxAlign) 1003 break; 1004 } 1005 } 1006 } 1007 1008 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1009 /// function arguments in the caller parameter area. 1010 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1011 const DataLayout &DL) const { 1012 // Darwin passes everything on 4 byte boundary. 1013 if (Subtarget.isDarwin()) 1014 return 4; 1015 1016 // 16byte and wider vectors are passed on 16byte boundary. 1017 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1018 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1019 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1020 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1021 return Align; 1022 } 1023 1024 bool PPCTargetLowering::useSoftFloat() const { 1025 return Subtarget.useSoftFloat(); 1026 } 1027 1028 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1029 switch ((PPCISD::NodeType)Opcode) { 1030 case PPCISD::FIRST_NUMBER: break; 1031 case PPCISD::FSEL: return "PPCISD::FSEL"; 1032 case PPCISD::FCFID: return "PPCISD::FCFID"; 1033 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1034 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1035 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1036 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1037 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1038 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1039 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1040 case PPCISD::FRE: return "PPCISD::FRE"; 1041 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1042 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1043 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1044 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1045 case PPCISD::VPERM: return "PPCISD::VPERM"; 1046 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1047 case PPCISD::XXINSERT: return "PPCISD::XXINSERT"; 1048 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1049 case PPCISD::CMPB: return "PPCISD::CMPB"; 1050 case PPCISD::Hi: return "PPCISD::Hi"; 1051 case PPCISD::Lo: return "PPCISD::Lo"; 1052 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1053 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1054 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1055 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1056 case PPCISD::SRL: return "PPCISD::SRL"; 1057 case PPCISD::SRA: return "PPCISD::SRA"; 1058 case PPCISD::SHL: return "PPCISD::SHL"; 1059 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1060 case PPCISD::CALL: return "PPCISD::CALL"; 1061 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1062 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1063 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1064 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1065 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1066 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1067 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1068 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1069 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1070 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1071 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1072 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1073 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1074 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1075 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1076 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1077 case PPCISD::VCMP: return "PPCISD::VCMP"; 1078 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1079 case PPCISD::LBRX: return "PPCISD::LBRX"; 1080 case PPCISD::STBRX: return "PPCISD::STBRX"; 1081 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1082 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1083 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1084 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1085 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1086 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1087 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1088 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1089 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1090 case PPCISD::BDZ: return "PPCISD::BDZ"; 1091 case PPCISD::MFFS: return "PPCISD::MFFS"; 1092 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1093 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1094 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1095 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1096 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1097 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1098 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1099 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1100 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1101 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1102 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1103 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1104 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1105 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1106 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1107 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1108 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1109 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1110 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1111 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1112 case PPCISD::SC: return "PPCISD::SC"; 1113 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1114 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1115 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1116 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1117 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1118 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1119 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1120 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1121 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1122 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1123 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1124 } 1125 return nullptr; 1126 } 1127 1128 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1129 EVT VT) const { 1130 if (!VT.isVector()) 1131 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1132 1133 if (Subtarget.hasQPX()) 1134 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1135 1136 return VT.changeVectorElementTypeToInteger(); 1137 } 1138 1139 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1140 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1141 return true; 1142 } 1143 1144 //===----------------------------------------------------------------------===// 1145 // Node matching predicates, for use by the tblgen matching code. 1146 //===----------------------------------------------------------------------===// 1147 1148 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1149 static bool isFloatingPointZero(SDValue Op) { 1150 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1151 return CFP->getValueAPF().isZero(); 1152 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1153 // Maybe this has already been legalized into the constant pool? 1154 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1155 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1156 return CFP->getValueAPF().isZero(); 1157 } 1158 return false; 1159 } 1160 1161 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1162 /// true if Op is undef or if it matches the specified value. 1163 static bool isConstantOrUndef(int Op, int Val) { 1164 return Op < 0 || Op == Val; 1165 } 1166 1167 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1168 /// VPKUHUM instruction. 1169 /// The ShuffleKind distinguishes between big-endian operations with 1170 /// two different inputs (0), either-endian operations with two identical 1171 /// inputs (1), and little-endian operations with two different inputs (2). 1172 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1173 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1174 SelectionDAG &DAG) { 1175 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1176 if (ShuffleKind == 0) { 1177 if (IsLE) 1178 return false; 1179 for (unsigned i = 0; i != 16; ++i) 1180 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1181 return false; 1182 } else if (ShuffleKind == 2) { 1183 if (!IsLE) 1184 return false; 1185 for (unsigned i = 0; i != 16; ++i) 1186 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1187 return false; 1188 } else if (ShuffleKind == 1) { 1189 unsigned j = IsLE ? 0 : 1; 1190 for (unsigned i = 0; i != 8; ++i) 1191 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1192 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1193 return false; 1194 } 1195 return true; 1196 } 1197 1198 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1199 /// VPKUWUM instruction. 1200 /// The ShuffleKind distinguishes between big-endian operations with 1201 /// two different inputs (0), either-endian operations with two identical 1202 /// inputs (1), and little-endian operations with two different inputs (2). 1203 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1204 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1205 SelectionDAG &DAG) { 1206 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1207 if (ShuffleKind == 0) { 1208 if (IsLE) 1209 return false; 1210 for (unsigned i = 0; i != 16; i += 2) 1211 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1212 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1213 return false; 1214 } else if (ShuffleKind == 2) { 1215 if (!IsLE) 1216 return false; 1217 for (unsigned i = 0; i != 16; i += 2) 1218 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1219 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1220 return false; 1221 } else if (ShuffleKind == 1) { 1222 unsigned j = IsLE ? 0 : 2; 1223 for (unsigned i = 0; i != 8; i += 2) 1224 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1225 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1226 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1227 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1228 return false; 1229 } 1230 return true; 1231 } 1232 1233 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1234 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1235 /// current subtarget. 1236 /// 1237 /// The ShuffleKind distinguishes between big-endian operations with 1238 /// two different inputs (0), either-endian operations with two identical 1239 /// inputs (1), and little-endian operations with two different inputs (2). 1240 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1241 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1242 SelectionDAG &DAG) { 1243 const PPCSubtarget& Subtarget = 1244 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1245 if (!Subtarget.hasP8Vector()) 1246 return false; 1247 1248 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1249 if (ShuffleKind == 0) { 1250 if (IsLE) 1251 return false; 1252 for (unsigned i = 0; i != 16; i += 4) 1253 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1254 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1255 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1256 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1257 return false; 1258 } else if (ShuffleKind == 2) { 1259 if (!IsLE) 1260 return false; 1261 for (unsigned i = 0; i != 16; i += 4) 1262 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1263 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1264 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1265 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1266 return false; 1267 } else if (ShuffleKind == 1) { 1268 unsigned j = IsLE ? 0 : 4; 1269 for (unsigned i = 0; i != 8; i += 4) 1270 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1271 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1272 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1273 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1274 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1275 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1276 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1277 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1278 return false; 1279 } 1280 return true; 1281 } 1282 1283 /// isVMerge - Common function, used to match vmrg* shuffles. 1284 /// 1285 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1286 unsigned LHSStart, unsigned RHSStart) { 1287 if (N->getValueType(0) != MVT::v16i8) 1288 return false; 1289 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1290 "Unsupported merge size!"); 1291 1292 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1293 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1294 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1295 LHSStart+j+i*UnitSize) || 1296 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1297 RHSStart+j+i*UnitSize)) 1298 return false; 1299 } 1300 return true; 1301 } 1302 1303 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1304 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1305 /// The ShuffleKind distinguishes between big-endian merges with two 1306 /// different inputs (0), either-endian merges with two identical inputs (1), 1307 /// and little-endian merges with two different inputs (2). For the latter, 1308 /// the input operands are swapped (see PPCInstrAltivec.td). 1309 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1310 unsigned ShuffleKind, SelectionDAG &DAG) { 1311 if (DAG.getDataLayout().isLittleEndian()) { 1312 if (ShuffleKind == 1) // unary 1313 return isVMerge(N, UnitSize, 0, 0); 1314 else if (ShuffleKind == 2) // swapped 1315 return isVMerge(N, UnitSize, 0, 16); 1316 else 1317 return false; 1318 } else { 1319 if (ShuffleKind == 1) // unary 1320 return isVMerge(N, UnitSize, 8, 8); 1321 else if (ShuffleKind == 0) // normal 1322 return isVMerge(N, UnitSize, 8, 24); 1323 else 1324 return false; 1325 } 1326 } 1327 1328 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1329 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1330 /// The ShuffleKind distinguishes between big-endian merges with two 1331 /// different inputs (0), either-endian merges with two identical inputs (1), 1332 /// and little-endian merges with two different inputs (2). For the latter, 1333 /// the input operands are swapped (see PPCInstrAltivec.td). 1334 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1335 unsigned ShuffleKind, SelectionDAG &DAG) { 1336 if (DAG.getDataLayout().isLittleEndian()) { 1337 if (ShuffleKind == 1) // unary 1338 return isVMerge(N, UnitSize, 8, 8); 1339 else if (ShuffleKind == 2) // swapped 1340 return isVMerge(N, UnitSize, 8, 24); 1341 else 1342 return false; 1343 } else { 1344 if (ShuffleKind == 1) // unary 1345 return isVMerge(N, UnitSize, 0, 0); 1346 else if (ShuffleKind == 0) // normal 1347 return isVMerge(N, UnitSize, 0, 16); 1348 else 1349 return false; 1350 } 1351 } 1352 1353 /** 1354 * \brief Common function used to match vmrgew and vmrgow shuffles 1355 * 1356 * The indexOffset determines whether to look for even or odd words in 1357 * the shuffle mask. This is based on the of the endianness of the target 1358 * machine. 1359 * - Little Endian: 1360 * - Use offset of 0 to check for odd elements 1361 * - Use offset of 4 to check for even elements 1362 * - Big Endian: 1363 * - Use offset of 0 to check for even elements 1364 * - Use offset of 4 to check for odd elements 1365 * A detailed description of the vector element ordering for little endian and 1366 * big endian can be found at 1367 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1368 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1369 * compiler differences mean to you 1370 * 1371 * The mask to the shuffle vector instruction specifies the indices of the 1372 * elements from the two input vectors to place in the result. The elements are 1373 * numbered in array-access order, starting with the first vector. These vectors 1374 * are always of type v16i8, thus each vector will contain 16 elements of size 1375 * 8. More info on the shuffle vector can be found in the 1376 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1377 * Language Reference. 1378 * 1379 * The RHSStartValue indicates whether the same input vectors are used (unary) 1380 * or two different input vectors are used, based on the following: 1381 * - If the instruction uses the same vector for both inputs, the range of the 1382 * indices will be 0 to 15. In this case, the RHSStart value passed should 1383 * be 0. 1384 * - If the instruction has two different vectors then the range of the 1385 * indices will be 0 to 31. In this case, the RHSStart value passed should 1386 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1387 * to 31 specify elements in the second vector). 1388 * 1389 * \param[in] N The shuffle vector SD Node to analyze 1390 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1391 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1392 * vector to the shuffle_vector instruction 1393 * \return true iff this shuffle vector represents an even or odd word merge 1394 */ 1395 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1396 unsigned RHSStartValue) { 1397 if (N->getValueType(0) != MVT::v16i8) 1398 return false; 1399 1400 for (unsigned i = 0; i < 2; ++i) 1401 for (unsigned j = 0; j < 4; ++j) 1402 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1403 i*RHSStartValue+j+IndexOffset) || 1404 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1405 i*RHSStartValue+j+IndexOffset+8)) 1406 return false; 1407 return true; 1408 } 1409 1410 /** 1411 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1412 * vmrgow instructions. 1413 * 1414 * \param[in] N The shuffle vector SD Node to analyze 1415 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1416 * \param[in] ShuffleKind Identify the type of merge: 1417 * - 0 = big-endian merge with two different inputs; 1418 * - 1 = either-endian merge with two identical inputs; 1419 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1420 * little-endian merges). 1421 * \param[in] DAG The current SelectionDAG 1422 * \return true iff this shuffle mask 1423 */ 1424 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1425 unsigned ShuffleKind, SelectionDAG &DAG) { 1426 if (DAG.getDataLayout().isLittleEndian()) { 1427 unsigned indexOffset = CheckEven ? 4 : 0; 1428 if (ShuffleKind == 1) // Unary 1429 return isVMerge(N, indexOffset, 0); 1430 else if (ShuffleKind == 2) // swapped 1431 return isVMerge(N, indexOffset, 16); 1432 else 1433 return false; 1434 } 1435 else { 1436 unsigned indexOffset = CheckEven ? 0 : 4; 1437 if (ShuffleKind == 1) // Unary 1438 return isVMerge(N, indexOffset, 0); 1439 else if (ShuffleKind == 0) // Normal 1440 return isVMerge(N, indexOffset, 16); 1441 else 1442 return false; 1443 } 1444 return false; 1445 } 1446 1447 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1448 /// amount, otherwise return -1. 1449 /// The ShuffleKind distinguishes between big-endian operations with two 1450 /// different inputs (0), either-endian operations with two identical inputs 1451 /// (1), and little-endian operations with two different inputs (2). For the 1452 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1453 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1454 SelectionDAG &DAG) { 1455 if (N->getValueType(0) != MVT::v16i8) 1456 return -1; 1457 1458 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1459 1460 // Find the first non-undef value in the shuffle mask. 1461 unsigned i; 1462 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1463 /*search*/; 1464 1465 if (i == 16) return -1; // all undef. 1466 1467 // Otherwise, check to see if the rest of the elements are consecutively 1468 // numbered from this value. 1469 unsigned ShiftAmt = SVOp->getMaskElt(i); 1470 if (ShiftAmt < i) return -1; 1471 1472 ShiftAmt -= i; 1473 bool isLE = DAG.getDataLayout().isLittleEndian(); 1474 1475 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1476 // Check the rest of the elements to see if they are consecutive. 1477 for (++i; i != 16; ++i) 1478 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1479 return -1; 1480 } else if (ShuffleKind == 1) { 1481 // Check the rest of the elements to see if they are consecutive. 1482 for (++i; i != 16; ++i) 1483 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1484 return -1; 1485 } else 1486 return -1; 1487 1488 if (isLE) 1489 ShiftAmt = 16 - ShiftAmt; 1490 1491 return ShiftAmt; 1492 } 1493 1494 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1495 /// specifies a splat of a single element that is suitable for input to 1496 /// VSPLTB/VSPLTH/VSPLTW. 1497 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1498 assert(N->getValueType(0) == MVT::v16i8 && 1499 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1500 1501 // The consecutive indices need to specify an element, not part of two 1502 // different elements. So abandon ship early if this isn't the case. 1503 if (N->getMaskElt(0) % EltSize != 0) 1504 return false; 1505 1506 // This is a splat operation if each element of the permute is the same, and 1507 // if the value doesn't reference the second vector. 1508 unsigned ElementBase = N->getMaskElt(0); 1509 1510 // FIXME: Handle UNDEF elements too! 1511 if (ElementBase >= 16) 1512 return false; 1513 1514 // Check that the indices are consecutive, in the case of a multi-byte element 1515 // splatted with a v16i8 mask. 1516 for (unsigned i = 1; i != EltSize; ++i) 1517 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1518 return false; 1519 1520 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1521 if (N->getMaskElt(i) < 0) continue; 1522 for (unsigned j = 0; j != EltSize; ++j) 1523 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1524 return false; 1525 } 1526 return true; 1527 } 1528 1529 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1530 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1531 1532 // Check that the mask is shuffling words 1533 for (unsigned i = 0; i < 4; ++i) { 1534 unsigned B0 = N->getMaskElt(i*4); 1535 unsigned B1 = N->getMaskElt(i*4+1); 1536 unsigned B2 = N->getMaskElt(i*4+2); 1537 unsigned B3 = N->getMaskElt(i*4+3); 1538 if (B0 % 4) 1539 return false; 1540 if (B1 != B0+1 || B2 != B1+1 || B3 != B2+1) 1541 return false; 1542 } 1543 1544 // Now we look at mask elements 0,4,8,12 1545 unsigned M0 = N->getMaskElt(0) / 4; 1546 unsigned M1 = N->getMaskElt(4) / 4; 1547 unsigned M2 = N->getMaskElt(8) / 4; 1548 unsigned M3 = N->getMaskElt(12) / 4; 1549 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1550 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1551 1552 // Below, let H and L be arbitrary elements of the shuffle mask 1553 // where H is in the range [4,7] and L is in the range [0,3]. 1554 // H, 1, 2, 3 or L, 5, 6, 7 1555 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1556 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1557 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1558 InsertAtByte = IsLE ? 12 : 0; 1559 Swap = M0 < 4; 1560 return true; 1561 } 1562 // 0, H, 2, 3 or 4, L, 6, 7 1563 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1564 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1565 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1566 InsertAtByte = IsLE ? 8 : 4; 1567 Swap = M1 < 4; 1568 return true; 1569 } 1570 // 0, 1, H, 3 or 4, 5, L, 7 1571 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1572 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1573 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1574 InsertAtByte = IsLE ? 4 : 8; 1575 Swap = M2 < 4; 1576 return true; 1577 } 1578 // 0, 1, 2, H or 4, 5, 6, L 1579 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1580 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1581 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1582 InsertAtByte = IsLE ? 0 : 12; 1583 Swap = M3 < 4; 1584 return true; 1585 } 1586 1587 // If both vector operands for the shuffle are the same vector, the mask will 1588 // contain only elements from the first one and the second one will be undef. 1589 if (N->getOperand(1).isUndef()) { 1590 ShiftElts = 0; 1591 Swap = true; 1592 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1593 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1594 InsertAtByte = IsLE ? 12 : 0; 1595 return true; 1596 } 1597 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1598 InsertAtByte = IsLE ? 8 : 4; 1599 return true; 1600 } 1601 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1602 InsertAtByte = IsLE ? 4 : 8; 1603 return true; 1604 } 1605 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1606 InsertAtByte = IsLE ? 0 : 12; 1607 return true; 1608 } 1609 } 1610 1611 return false; 1612 } 1613 1614 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1615 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1616 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1617 SelectionDAG &DAG) { 1618 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1619 assert(isSplatShuffleMask(SVOp, EltSize)); 1620 if (DAG.getDataLayout().isLittleEndian()) 1621 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1622 else 1623 return SVOp->getMaskElt(0) / EltSize; 1624 } 1625 1626 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1627 /// by using a vspltis[bhw] instruction of the specified element size, return 1628 /// the constant being splatted. The ByteSize field indicates the number of 1629 /// bytes of each element [124] -> [bhw]. 1630 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1631 SDValue OpVal(nullptr, 0); 1632 1633 // If ByteSize of the splat is bigger than the element size of the 1634 // build_vector, then we have a case where we are checking for a splat where 1635 // multiple elements of the buildvector are folded together into a single 1636 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1637 unsigned EltSize = 16/N->getNumOperands(); 1638 if (EltSize < ByteSize) { 1639 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1640 SDValue UniquedVals[4]; 1641 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1642 1643 // See if all of the elements in the buildvector agree across. 1644 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1645 if (N->getOperand(i).isUndef()) continue; 1646 // If the element isn't a constant, bail fully out. 1647 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1648 1649 1650 if (!UniquedVals[i&(Multiple-1)].getNode()) 1651 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1652 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1653 return SDValue(); // no match. 1654 } 1655 1656 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1657 // either constant or undef values that are identical for each chunk. See 1658 // if these chunks can form into a larger vspltis*. 1659 1660 // Check to see if all of the leading entries are either 0 or -1. If 1661 // neither, then this won't fit into the immediate field. 1662 bool LeadingZero = true; 1663 bool LeadingOnes = true; 1664 for (unsigned i = 0; i != Multiple-1; ++i) { 1665 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1666 1667 LeadingZero &= isNullConstant(UniquedVals[i]); 1668 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 1669 } 1670 // Finally, check the least significant entry. 1671 if (LeadingZero) { 1672 if (!UniquedVals[Multiple-1].getNode()) 1673 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1674 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1675 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1676 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1677 } 1678 if (LeadingOnes) { 1679 if (!UniquedVals[Multiple-1].getNode()) 1680 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1681 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1682 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1683 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1684 } 1685 1686 return SDValue(); 1687 } 1688 1689 // Check to see if this buildvec has a single non-undef value in its elements. 1690 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1691 if (N->getOperand(i).isUndef()) continue; 1692 if (!OpVal.getNode()) 1693 OpVal = N->getOperand(i); 1694 else if (OpVal != N->getOperand(i)) 1695 return SDValue(); 1696 } 1697 1698 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1699 1700 unsigned ValSizeInBytes = EltSize; 1701 uint64_t Value = 0; 1702 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1703 Value = CN->getZExtValue(); 1704 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1705 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1706 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1707 } 1708 1709 // If the splat value is larger than the element value, then we can never do 1710 // this splat. The only case that we could fit the replicated bits into our 1711 // immediate field for would be zero, and we prefer to use vxor for it. 1712 if (ValSizeInBytes < ByteSize) return SDValue(); 1713 1714 // If the element value is larger than the splat value, check if it consists 1715 // of a repeated bit pattern of size ByteSize. 1716 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1717 return SDValue(); 1718 1719 // Properly sign extend the value. 1720 int MaskVal = SignExtend32(Value, ByteSize * 8); 1721 1722 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1723 if (MaskVal == 0) return SDValue(); 1724 1725 // Finally, if this value fits in a 5 bit sext field, return it 1726 if (SignExtend32<5>(MaskVal) == MaskVal) 1727 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1728 return SDValue(); 1729 } 1730 1731 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1732 /// amount, otherwise return -1. 1733 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1734 EVT VT = N->getValueType(0); 1735 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1736 return -1; 1737 1738 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1739 1740 // Find the first non-undef value in the shuffle mask. 1741 unsigned i; 1742 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1743 /*search*/; 1744 1745 if (i == 4) return -1; // all undef. 1746 1747 // Otherwise, check to see if the rest of the elements are consecutively 1748 // numbered from this value. 1749 unsigned ShiftAmt = SVOp->getMaskElt(i); 1750 if (ShiftAmt < i) return -1; 1751 ShiftAmt -= i; 1752 1753 // Check the rest of the elements to see if they are consecutive. 1754 for (++i; i != 4; ++i) 1755 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1756 return -1; 1757 1758 return ShiftAmt; 1759 } 1760 1761 //===----------------------------------------------------------------------===// 1762 // Addressing Mode Selection 1763 //===----------------------------------------------------------------------===// 1764 1765 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1766 /// or 64-bit immediate, and if the value can be accurately represented as a 1767 /// sign extension from a 16-bit value. If so, this returns true and the 1768 /// immediate. 1769 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1770 if (!isa<ConstantSDNode>(N)) 1771 return false; 1772 1773 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1774 if (N->getValueType(0) == MVT::i32) 1775 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1776 else 1777 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1778 } 1779 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1780 return isIntS16Immediate(Op.getNode(), Imm); 1781 } 1782 1783 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1784 /// can be represented as an indexed [r+r] operation. Returns false if it 1785 /// can be more efficiently represented with [r+imm]. 1786 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1787 SDValue &Index, 1788 SelectionDAG &DAG) const { 1789 short imm = 0; 1790 if (N.getOpcode() == ISD::ADD) { 1791 if (isIntS16Immediate(N.getOperand(1), imm)) 1792 return false; // r+i 1793 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1794 return false; // r+i 1795 1796 Base = N.getOperand(0); 1797 Index = N.getOperand(1); 1798 return true; 1799 } else if (N.getOpcode() == ISD::OR) { 1800 if (isIntS16Immediate(N.getOperand(1), imm)) 1801 return false; // r+i can fold it if we can. 1802 1803 // If this is an or of disjoint bitfields, we can codegen this as an add 1804 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1805 // disjoint. 1806 APInt LHSKnownZero, LHSKnownOne; 1807 APInt RHSKnownZero, RHSKnownOne; 1808 DAG.computeKnownBits(N.getOperand(0), 1809 LHSKnownZero, LHSKnownOne); 1810 1811 if (LHSKnownZero.getBoolValue()) { 1812 DAG.computeKnownBits(N.getOperand(1), 1813 RHSKnownZero, RHSKnownOne); 1814 // If all of the bits are known zero on the LHS or RHS, the add won't 1815 // carry. 1816 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1817 Base = N.getOperand(0); 1818 Index = N.getOperand(1); 1819 return true; 1820 } 1821 } 1822 } 1823 1824 return false; 1825 } 1826 1827 // If we happen to be doing an i64 load or store into a stack slot that has 1828 // less than a 4-byte alignment, then the frame-index elimination may need to 1829 // use an indexed load or store instruction (because the offset may not be a 1830 // multiple of 4). The extra register needed to hold the offset comes from the 1831 // register scavenger, and it is possible that the scavenger will need to use 1832 // an emergency spill slot. As a result, we need to make sure that a spill slot 1833 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1834 // stack slot. 1835 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1836 // FIXME: This does not handle the LWA case. 1837 if (VT != MVT::i64) 1838 return; 1839 1840 // NOTE: We'll exclude negative FIs here, which come from argument 1841 // lowering, because there are no known test cases triggering this problem 1842 // using packed structures (or similar). We can remove this exclusion if 1843 // we find such a test case. The reason why this is so test-case driven is 1844 // because this entire 'fixup' is only to prevent crashes (from the 1845 // register scavenger) on not-really-valid inputs. For example, if we have: 1846 // %a = alloca i1 1847 // %b = bitcast i1* %a to i64* 1848 // store i64* a, i64 b 1849 // then the store should really be marked as 'align 1', but is not. If it 1850 // were marked as 'align 1' then the indexed form would have been 1851 // instruction-selected initially, and the problem this 'fixup' is preventing 1852 // won't happen regardless. 1853 if (FrameIdx < 0) 1854 return; 1855 1856 MachineFunction &MF = DAG.getMachineFunction(); 1857 MachineFrameInfo &MFI = MF.getFrameInfo(); 1858 1859 unsigned Align = MFI.getObjectAlignment(FrameIdx); 1860 if (Align >= 4) 1861 return; 1862 1863 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1864 FuncInfo->setHasNonRISpills(); 1865 } 1866 1867 /// Returns true if the address N can be represented by a base register plus 1868 /// a signed 16-bit displacement [r+imm], and if it is not better 1869 /// represented as reg+reg. If Aligned is true, only accept displacements 1870 /// suitable for STD and friends, i.e. multiples of 4. 1871 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1872 SDValue &Base, 1873 SelectionDAG &DAG, 1874 bool Aligned) const { 1875 // FIXME dl should come from parent load or store, not from address 1876 SDLoc dl(N); 1877 // If this can be more profitably realized as r+r, fail. 1878 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1879 return false; 1880 1881 if (N.getOpcode() == ISD::ADD) { 1882 short imm = 0; 1883 if (isIntS16Immediate(N.getOperand(1), imm) && 1884 (!Aligned || (imm & 3) == 0)) { 1885 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1886 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1887 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1888 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1889 } else { 1890 Base = N.getOperand(0); 1891 } 1892 return true; // [r+i] 1893 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1894 // Match LOAD (ADD (X, Lo(G))). 1895 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1896 && "Cannot handle constant offsets yet!"); 1897 Disp = N.getOperand(1).getOperand(0); // The global address. 1898 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1899 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1900 Disp.getOpcode() == ISD::TargetConstantPool || 1901 Disp.getOpcode() == ISD::TargetJumpTable); 1902 Base = N.getOperand(0); 1903 return true; // [&g+r] 1904 } 1905 } else if (N.getOpcode() == ISD::OR) { 1906 short imm = 0; 1907 if (isIntS16Immediate(N.getOperand(1), imm) && 1908 (!Aligned || (imm & 3) == 0)) { 1909 // If this is an or of disjoint bitfields, we can codegen this as an add 1910 // (for better address arithmetic) if the LHS and RHS of the OR are 1911 // provably disjoint. 1912 APInt LHSKnownZero, LHSKnownOne; 1913 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1914 1915 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1916 // If all of the bits are known zero on the LHS or RHS, the add won't 1917 // carry. 1918 if (FrameIndexSDNode *FI = 1919 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1920 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1921 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1922 } else { 1923 Base = N.getOperand(0); 1924 } 1925 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1926 return true; 1927 } 1928 } 1929 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1930 // Loading from a constant address. 1931 1932 // If this address fits entirely in a 16-bit sext immediate field, codegen 1933 // this as "d, 0" 1934 short Imm; 1935 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1936 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1937 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1938 CN->getValueType(0)); 1939 return true; 1940 } 1941 1942 // Handle 32-bit sext immediates with LIS + addr mode. 1943 if ((CN->getValueType(0) == MVT::i32 || 1944 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1945 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1946 int Addr = (int)CN->getZExtValue(); 1947 1948 // Otherwise, break this down into an LIS + disp. 1949 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1950 1951 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1952 MVT::i32); 1953 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1954 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1955 return true; 1956 } 1957 } 1958 1959 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1960 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1961 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1962 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1963 } else 1964 Base = N; 1965 return true; // [r+0] 1966 } 1967 1968 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1969 /// represented as an indexed [r+r] operation. 1970 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1971 SDValue &Index, 1972 SelectionDAG &DAG) const { 1973 // Check to see if we can easily represent this as an [r+r] address. This 1974 // will fail if it thinks that the address is more profitably represented as 1975 // reg+imm, e.g. where imm = 0. 1976 if (SelectAddressRegReg(N, Base, Index, DAG)) 1977 return true; 1978 1979 // If the operand is an addition, always emit this as [r+r], since this is 1980 // better (for code size, and execution, as the memop does the add for free) 1981 // than emitting an explicit add. 1982 if (N.getOpcode() == ISD::ADD) { 1983 Base = N.getOperand(0); 1984 Index = N.getOperand(1); 1985 return true; 1986 } 1987 1988 // Otherwise, do it the hard way, using R0 as the base register. 1989 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1990 N.getValueType()); 1991 Index = N; 1992 return true; 1993 } 1994 1995 /// getPreIndexedAddressParts - returns true by value, base pointer and 1996 /// offset pointer and addressing mode by reference if the node's address 1997 /// can be legally represented as pre-indexed load / store address. 1998 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1999 SDValue &Offset, 2000 ISD::MemIndexedMode &AM, 2001 SelectionDAG &DAG) const { 2002 if (DisablePPCPreinc) return false; 2003 2004 bool isLoad = true; 2005 SDValue Ptr; 2006 EVT VT; 2007 unsigned Alignment; 2008 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2009 Ptr = LD->getBasePtr(); 2010 VT = LD->getMemoryVT(); 2011 Alignment = LD->getAlignment(); 2012 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2013 Ptr = ST->getBasePtr(); 2014 VT = ST->getMemoryVT(); 2015 Alignment = ST->getAlignment(); 2016 isLoad = false; 2017 } else 2018 return false; 2019 2020 // PowerPC doesn't have preinc load/store instructions for vectors (except 2021 // for QPX, which does have preinc r+r forms). 2022 if (VT.isVector()) { 2023 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2024 return false; 2025 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2026 AM = ISD::PRE_INC; 2027 return true; 2028 } 2029 } 2030 2031 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2032 2033 // Common code will reject creating a pre-inc form if the base pointer 2034 // is a frame index, or if N is a store and the base pointer is either 2035 // the same as or a predecessor of the value being stored. Check for 2036 // those situations here, and try with swapped Base/Offset instead. 2037 bool Swap = false; 2038 2039 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2040 Swap = true; 2041 else if (!isLoad) { 2042 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2043 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2044 Swap = true; 2045 } 2046 2047 if (Swap) 2048 std::swap(Base, Offset); 2049 2050 AM = ISD::PRE_INC; 2051 return true; 2052 } 2053 2054 // LDU/STU can only handle immediates that are a multiple of 4. 2055 if (VT != MVT::i64) { 2056 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 2057 return false; 2058 } else { 2059 // LDU/STU need an address with at least 4-byte alignment. 2060 if (Alignment < 4) 2061 return false; 2062 2063 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 2064 return false; 2065 } 2066 2067 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2068 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2069 // sext i32 to i64 when addr mode is r+i. 2070 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2071 LD->getExtensionType() == ISD::SEXTLOAD && 2072 isa<ConstantSDNode>(Offset)) 2073 return false; 2074 } 2075 2076 AM = ISD::PRE_INC; 2077 return true; 2078 } 2079 2080 //===----------------------------------------------------------------------===// 2081 // LowerOperation implementation 2082 //===----------------------------------------------------------------------===// 2083 2084 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2085 /// and LoOpFlags to the target MO flags. 2086 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2087 unsigned &HiOpFlags, unsigned &LoOpFlags, 2088 const GlobalValue *GV = nullptr) { 2089 HiOpFlags = PPCII::MO_HA; 2090 LoOpFlags = PPCII::MO_LO; 2091 2092 // Don't use the pic base if not in PIC relocation model. 2093 if (IsPIC) { 2094 HiOpFlags |= PPCII::MO_PIC_FLAG; 2095 LoOpFlags |= PPCII::MO_PIC_FLAG; 2096 } 2097 2098 // If this is a reference to a global value that requires a non-lazy-ptr, make 2099 // sure that instruction lowering adds it. 2100 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2101 HiOpFlags |= PPCII::MO_NLP_FLAG; 2102 LoOpFlags |= PPCII::MO_NLP_FLAG; 2103 2104 if (GV->hasHiddenVisibility()) { 2105 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2106 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2107 } 2108 } 2109 } 2110 2111 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2112 SelectionDAG &DAG) { 2113 SDLoc DL(HiPart); 2114 EVT PtrVT = HiPart.getValueType(); 2115 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2116 2117 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2118 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2119 2120 // With PIC, the first instruction is actually "GR+hi(&G)". 2121 if (isPIC) 2122 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2123 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2124 2125 // Generate non-pic code that has direct accesses to the constant pool. 2126 // The address of the global is just (hi(&g)+lo(&g)). 2127 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2128 } 2129 2130 static void setUsesTOCBasePtr(MachineFunction &MF) { 2131 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2132 FuncInfo->setUsesTOCBasePtr(); 2133 } 2134 2135 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2136 setUsesTOCBasePtr(DAG.getMachineFunction()); 2137 } 2138 2139 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2140 SDValue GA) { 2141 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2142 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2143 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2144 2145 SDValue Ops[] = { GA, Reg }; 2146 return DAG.getMemIntrinsicNode( 2147 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2148 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2149 false, 0); 2150 } 2151 2152 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2153 SelectionDAG &DAG) const { 2154 EVT PtrVT = Op.getValueType(); 2155 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2156 const Constant *C = CP->getConstVal(); 2157 2158 // 64-bit SVR4 ABI code is always position-independent. 2159 // The actual address of the GlobalValue is stored in the TOC. 2160 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2161 setUsesTOCBasePtr(DAG); 2162 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2163 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2164 } 2165 2166 unsigned MOHiFlag, MOLoFlag; 2167 bool IsPIC = isPositionIndependent(); 2168 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2169 2170 if (IsPIC && Subtarget.isSVR4ABI()) { 2171 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2172 PPCII::MO_PIC_FLAG); 2173 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2174 } 2175 2176 SDValue CPIHi = 2177 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2178 SDValue CPILo = 2179 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2180 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2181 } 2182 2183 // For 64-bit PowerPC, prefer the more compact relative encodings. 2184 // This trades 32 bits per jump table entry for one or two instructions 2185 // on the jump site. 2186 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2187 if (isJumpTableRelative()) 2188 return MachineJumpTableInfo::EK_LabelDifference32; 2189 2190 return TargetLowering::getJumpTableEncoding(); 2191 } 2192 2193 bool PPCTargetLowering::isJumpTableRelative() const { 2194 if (Subtarget.isPPC64()) 2195 return true; 2196 return TargetLowering::isJumpTableRelative(); 2197 } 2198 2199 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2200 SelectionDAG &DAG) const { 2201 if (!Subtarget.isPPC64()) 2202 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2203 2204 switch (getTargetMachine().getCodeModel()) { 2205 case CodeModel::Default: 2206 case CodeModel::Small: 2207 case CodeModel::Medium: 2208 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2209 default: 2210 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2211 getPointerTy(DAG.getDataLayout())); 2212 } 2213 } 2214 2215 const MCExpr * 2216 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2217 unsigned JTI, 2218 MCContext &Ctx) const { 2219 if (!Subtarget.isPPC64()) 2220 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2221 2222 switch (getTargetMachine().getCodeModel()) { 2223 case CodeModel::Default: 2224 case CodeModel::Small: 2225 case CodeModel::Medium: 2226 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2227 default: 2228 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2229 } 2230 } 2231 2232 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2233 EVT PtrVT = Op.getValueType(); 2234 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2235 2236 // 64-bit SVR4 ABI code is always position-independent. 2237 // The actual address of the GlobalValue is stored in the TOC. 2238 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2239 setUsesTOCBasePtr(DAG); 2240 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2241 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2242 } 2243 2244 unsigned MOHiFlag, MOLoFlag; 2245 bool IsPIC = isPositionIndependent(); 2246 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2247 2248 if (IsPIC && Subtarget.isSVR4ABI()) { 2249 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2250 PPCII::MO_PIC_FLAG); 2251 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2252 } 2253 2254 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2255 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2256 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2257 } 2258 2259 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2260 SelectionDAG &DAG) const { 2261 EVT PtrVT = Op.getValueType(); 2262 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2263 const BlockAddress *BA = BASDN->getBlockAddress(); 2264 2265 // 64-bit SVR4 ABI code is always position-independent. 2266 // The actual BlockAddress is stored in the TOC. 2267 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2268 setUsesTOCBasePtr(DAG); 2269 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2270 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2271 } 2272 2273 unsigned MOHiFlag, MOLoFlag; 2274 bool IsPIC = isPositionIndependent(); 2275 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2276 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2277 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2278 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2279 } 2280 2281 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2282 SelectionDAG &DAG) const { 2283 2284 // FIXME: TLS addresses currently use medium model code sequences, 2285 // which is the most useful form. Eventually support for small and 2286 // large models could be added if users need it, at the cost of 2287 // additional complexity. 2288 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2289 if (DAG.getTarget().Options.EmulatedTLS) 2290 return LowerToTLSEmulatedModel(GA, DAG); 2291 2292 SDLoc dl(GA); 2293 const GlobalValue *GV = GA->getGlobal(); 2294 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2295 bool is64bit = Subtarget.isPPC64(); 2296 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2297 PICLevel::Level picLevel = M->getPICLevel(); 2298 2299 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2300 2301 if (Model == TLSModel::LocalExec) { 2302 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2303 PPCII::MO_TPREL_HA); 2304 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2305 PPCII::MO_TPREL_LO); 2306 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2307 is64bit ? MVT::i64 : MVT::i32); 2308 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2309 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2310 } 2311 2312 if (Model == TLSModel::InitialExec) { 2313 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2314 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2315 PPCII::MO_TLS); 2316 SDValue GOTPtr; 2317 if (is64bit) { 2318 setUsesTOCBasePtr(DAG); 2319 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2320 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2321 PtrVT, GOTReg, TGA); 2322 } else 2323 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2324 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2325 PtrVT, TGA, GOTPtr); 2326 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2327 } 2328 2329 if (Model == TLSModel::GeneralDynamic) { 2330 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2331 SDValue GOTPtr; 2332 if (is64bit) { 2333 setUsesTOCBasePtr(DAG); 2334 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2335 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2336 GOTReg, TGA); 2337 } else { 2338 if (picLevel == PICLevel::SmallPIC) 2339 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2340 else 2341 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2342 } 2343 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2344 GOTPtr, TGA, TGA); 2345 } 2346 2347 if (Model == TLSModel::LocalDynamic) { 2348 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2349 SDValue GOTPtr; 2350 if (is64bit) { 2351 setUsesTOCBasePtr(DAG); 2352 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2353 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2354 GOTReg, TGA); 2355 } else { 2356 if (picLevel == PICLevel::SmallPIC) 2357 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2358 else 2359 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2360 } 2361 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2362 PtrVT, GOTPtr, TGA, TGA); 2363 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2364 PtrVT, TLSAddr, TGA); 2365 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2366 } 2367 2368 llvm_unreachable("Unknown TLS model!"); 2369 } 2370 2371 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2372 SelectionDAG &DAG) const { 2373 EVT PtrVT = Op.getValueType(); 2374 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2375 SDLoc DL(GSDN); 2376 const GlobalValue *GV = GSDN->getGlobal(); 2377 2378 // 64-bit SVR4 ABI code is always position-independent. 2379 // The actual address of the GlobalValue is stored in the TOC. 2380 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2381 setUsesTOCBasePtr(DAG); 2382 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2383 return getTOCEntry(DAG, DL, true, GA); 2384 } 2385 2386 unsigned MOHiFlag, MOLoFlag; 2387 bool IsPIC = isPositionIndependent(); 2388 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2389 2390 if (IsPIC && Subtarget.isSVR4ABI()) { 2391 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2392 GSDN->getOffset(), 2393 PPCII::MO_PIC_FLAG); 2394 return getTOCEntry(DAG, DL, false, GA); 2395 } 2396 2397 SDValue GAHi = 2398 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2399 SDValue GALo = 2400 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2401 2402 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2403 2404 // If the global reference is actually to a non-lazy-pointer, we have to do an 2405 // extra load to get the address of the global. 2406 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2407 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2408 return Ptr; 2409 } 2410 2411 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2412 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2413 SDLoc dl(Op); 2414 2415 if (Op.getValueType() == MVT::v2i64) { 2416 // When the operands themselves are v2i64 values, we need to do something 2417 // special because VSX has no underlying comparison operations for these. 2418 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2419 // Equality can be handled by casting to the legal type for Altivec 2420 // comparisons, everything else needs to be expanded. 2421 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2422 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2423 DAG.getSetCC(dl, MVT::v4i32, 2424 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2425 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2426 CC)); 2427 } 2428 2429 return SDValue(); 2430 } 2431 2432 // We handle most of these in the usual way. 2433 return Op; 2434 } 2435 2436 // If we're comparing for equality to zero, expose the fact that this is 2437 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2438 // fold the new nodes. 2439 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2440 return V; 2441 2442 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2443 // Leave comparisons against 0 and -1 alone for now, since they're usually 2444 // optimized. FIXME: revisit this when we can custom lower all setcc 2445 // optimizations. 2446 if (C->isAllOnesValue() || C->isNullValue()) 2447 return SDValue(); 2448 } 2449 2450 // If we have an integer seteq/setne, turn it into a compare against zero 2451 // by xor'ing the rhs with the lhs, which is faster than setting a 2452 // condition register, reading it back out, and masking the correct bit. The 2453 // normal approach here uses sub to do this instead of xor. Using xor exposes 2454 // the result to other bit-twiddling opportunities. 2455 EVT LHSVT = Op.getOperand(0).getValueType(); 2456 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2457 EVT VT = Op.getValueType(); 2458 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2459 Op.getOperand(1)); 2460 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2461 } 2462 return SDValue(); 2463 } 2464 2465 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2466 SDNode *Node = Op.getNode(); 2467 EVT VT = Node->getValueType(0); 2468 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2469 SDValue InChain = Node->getOperand(0); 2470 SDValue VAListPtr = Node->getOperand(1); 2471 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2472 SDLoc dl(Node); 2473 2474 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2475 2476 // gpr_index 2477 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2478 VAListPtr, MachinePointerInfo(SV), MVT::i8); 2479 InChain = GprIndex.getValue(1); 2480 2481 if (VT == MVT::i64) { 2482 // Check if GprIndex is even 2483 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2484 DAG.getConstant(1, dl, MVT::i32)); 2485 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2486 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2487 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2488 DAG.getConstant(1, dl, MVT::i32)); 2489 // Align GprIndex to be even if it isn't 2490 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2491 GprIndex); 2492 } 2493 2494 // fpr index is 1 byte after gpr 2495 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2496 DAG.getConstant(1, dl, MVT::i32)); 2497 2498 // fpr 2499 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2500 FprPtr, MachinePointerInfo(SV), MVT::i8); 2501 InChain = FprIndex.getValue(1); 2502 2503 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2504 DAG.getConstant(8, dl, MVT::i32)); 2505 2506 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2507 DAG.getConstant(4, dl, MVT::i32)); 2508 2509 // areas 2510 SDValue OverflowArea = 2511 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 2512 InChain = OverflowArea.getValue(1); 2513 2514 SDValue RegSaveArea = 2515 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 2516 InChain = RegSaveArea.getValue(1); 2517 2518 // select overflow_area if index > 8 2519 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2520 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2521 2522 // adjustment constant gpr_index * 4/8 2523 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2524 VT.isInteger() ? GprIndex : FprIndex, 2525 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2526 MVT::i32)); 2527 2528 // OurReg = RegSaveArea + RegConstant 2529 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2530 RegConstant); 2531 2532 // Floating types are 32 bytes into RegSaveArea 2533 if (VT.isFloatingPoint()) 2534 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2535 DAG.getConstant(32, dl, MVT::i32)); 2536 2537 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2538 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2539 VT.isInteger() ? GprIndex : FprIndex, 2540 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2541 MVT::i32)); 2542 2543 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2544 VT.isInteger() ? VAListPtr : FprPtr, 2545 MachinePointerInfo(SV), MVT::i8); 2546 2547 // determine if we should load from reg_save_area or overflow_area 2548 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2549 2550 // increase overflow_area by 4/8 if gpr/fpr > 8 2551 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2552 DAG.getConstant(VT.isInteger() ? 4 : 8, 2553 dl, MVT::i32)); 2554 2555 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2556 OverflowAreaPlusN); 2557 2558 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 2559 MachinePointerInfo(), MVT::i32); 2560 2561 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 2562 } 2563 2564 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 2565 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2566 2567 // We have to copy the entire va_list struct: 2568 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2569 return DAG.getMemcpy(Op.getOperand(0), Op, 2570 Op.getOperand(1), Op.getOperand(2), 2571 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2572 false, MachinePointerInfo(), MachinePointerInfo()); 2573 } 2574 2575 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2576 SelectionDAG &DAG) const { 2577 return Op.getOperand(0); 2578 } 2579 2580 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2581 SelectionDAG &DAG) const { 2582 SDValue Chain = Op.getOperand(0); 2583 SDValue Trmp = Op.getOperand(1); // trampoline 2584 SDValue FPtr = Op.getOperand(2); // nested function 2585 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2586 SDLoc dl(Op); 2587 2588 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2589 bool isPPC64 = (PtrVT == MVT::i64); 2590 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2591 2592 TargetLowering::ArgListTy Args; 2593 TargetLowering::ArgListEntry Entry; 2594 2595 Entry.Ty = IntPtrTy; 2596 Entry.Node = Trmp; Args.push_back(Entry); 2597 2598 // TrampSize == (isPPC64 ? 48 : 40); 2599 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2600 isPPC64 ? MVT::i64 : MVT::i32); 2601 Args.push_back(Entry); 2602 2603 Entry.Node = FPtr; Args.push_back(Entry); 2604 Entry.Node = Nest; Args.push_back(Entry); 2605 2606 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2607 TargetLowering::CallLoweringInfo CLI(DAG); 2608 CLI.setDebugLoc(dl).setChain(Chain) 2609 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2610 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2611 std::move(Args)); 2612 2613 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2614 return CallResult.second; 2615 } 2616 2617 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2618 MachineFunction &MF = DAG.getMachineFunction(); 2619 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2620 EVT PtrVT = getPointerTy(MF.getDataLayout()); 2621 2622 SDLoc dl(Op); 2623 2624 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2625 // vastart just stores the address of the VarArgsFrameIndex slot into the 2626 // memory location argument. 2627 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2628 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2629 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2630 MachinePointerInfo(SV)); 2631 } 2632 2633 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2634 // We suppose the given va_list is already allocated. 2635 // 2636 // typedef struct { 2637 // char gpr; /* index into the array of 8 GPRs 2638 // * stored in the register save area 2639 // * gpr=0 corresponds to r3, 2640 // * gpr=1 to r4, etc. 2641 // */ 2642 // char fpr; /* index into the array of 8 FPRs 2643 // * stored in the register save area 2644 // * fpr=0 corresponds to f1, 2645 // * fpr=1 to f2, etc. 2646 // */ 2647 // char *overflow_arg_area; 2648 // /* location on stack that holds 2649 // * the next overflow argument 2650 // */ 2651 // char *reg_save_area; 2652 // /* where r3:r10 and f1:f8 (if saved) 2653 // * are stored 2654 // */ 2655 // } va_list[1]; 2656 2657 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2658 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2659 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2660 PtrVT); 2661 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2662 PtrVT); 2663 2664 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2665 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2666 2667 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2668 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2669 2670 uint64_t FPROffset = 1; 2671 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2672 2673 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2674 2675 // Store first byte : number of int regs 2676 SDValue firstStore = 2677 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 2678 MachinePointerInfo(SV), MVT::i8); 2679 uint64_t nextOffset = FPROffset; 2680 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2681 ConstFPROffset); 2682 2683 // Store second byte : number of float regs 2684 SDValue secondStore = 2685 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2686 MachinePointerInfo(SV, nextOffset), MVT::i8); 2687 nextOffset += StackOffset; 2688 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2689 2690 // Store second word : arguments given on stack 2691 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2692 MachinePointerInfo(SV, nextOffset)); 2693 nextOffset += FrameOffset; 2694 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2695 2696 // Store third word : arguments given in registers 2697 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2698 MachinePointerInfo(SV, nextOffset)); 2699 } 2700 2701 #include "PPCGenCallingConv.inc" 2702 2703 // Function whose sole purpose is to kill compiler warnings 2704 // stemming from unused functions included from PPCGenCallingConv.inc. 2705 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2706 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2707 } 2708 2709 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2710 CCValAssign::LocInfo &LocInfo, 2711 ISD::ArgFlagsTy &ArgFlags, 2712 CCState &State) { 2713 return true; 2714 } 2715 2716 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2717 MVT &LocVT, 2718 CCValAssign::LocInfo &LocInfo, 2719 ISD::ArgFlagsTy &ArgFlags, 2720 CCState &State) { 2721 static const MCPhysReg ArgRegs[] = { 2722 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2723 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2724 }; 2725 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2726 2727 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2728 2729 // Skip one register if the first unallocated register has an even register 2730 // number and there are still argument registers available which have not been 2731 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2732 // need to skip a register if RegNum is odd. 2733 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2734 State.AllocateReg(ArgRegs[RegNum]); 2735 } 2736 2737 // Always return false here, as this function only makes sure that the first 2738 // unallocated register has an odd register number and does not actually 2739 // allocate a register for the current argument. 2740 return false; 2741 } 2742 2743 bool 2744 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT, 2745 MVT &LocVT, 2746 CCValAssign::LocInfo &LocInfo, 2747 ISD::ArgFlagsTy &ArgFlags, 2748 CCState &State) { 2749 static const MCPhysReg ArgRegs[] = { 2750 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2751 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2752 }; 2753 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2754 2755 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2756 int RegsLeft = NumArgRegs - RegNum; 2757 2758 // Skip if there is not enough registers left for long double type (4 gpr regs 2759 // in soft float mode) and put long double argument on the stack. 2760 if (RegNum != NumArgRegs && RegsLeft < 4) { 2761 for (int i = 0; i < RegsLeft; i++) { 2762 State.AllocateReg(ArgRegs[RegNum + i]); 2763 } 2764 } 2765 2766 return false; 2767 } 2768 2769 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2770 MVT &LocVT, 2771 CCValAssign::LocInfo &LocInfo, 2772 ISD::ArgFlagsTy &ArgFlags, 2773 CCState &State) { 2774 static const MCPhysReg ArgRegs[] = { 2775 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2776 PPC::F8 2777 }; 2778 2779 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2780 2781 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2782 2783 // If there is only one Floating-point register left we need to put both f64 2784 // values of a split ppc_fp128 value on the stack. 2785 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2786 State.AllocateReg(ArgRegs[RegNum]); 2787 } 2788 2789 // Always return false here, as this function only makes sure that the two f64 2790 // values a ppc_fp128 value is split into are both passed in registers or both 2791 // passed on the stack and does not actually allocate a register for the 2792 // current argument. 2793 return false; 2794 } 2795 2796 /// FPR - The set of FP registers that should be allocated for arguments, 2797 /// on Darwin. 2798 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2799 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2800 PPC::F11, PPC::F12, PPC::F13}; 2801 2802 /// QFPR - The set of QPX registers that should be allocated for arguments. 2803 static const MCPhysReg QFPR[] = { 2804 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2805 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2806 2807 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2808 /// the stack. 2809 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2810 unsigned PtrByteSize) { 2811 unsigned ArgSize = ArgVT.getStoreSize(); 2812 if (Flags.isByVal()) 2813 ArgSize = Flags.getByValSize(); 2814 2815 // Round up to multiples of the pointer size, except for array members, 2816 // which are always packed. 2817 if (!Flags.isInConsecutiveRegs()) 2818 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2819 2820 return ArgSize; 2821 } 2822 2823 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2824 /// on the stack. 2825 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2826 ISD::ArgFlagsTy Flags, 2827 unsigned PtrByteSize) { 2828 unsigned Align = PtrByteSize; 2829 2830 // Altivec parameters are padded to a 16 byte boundary. 2831 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2832 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2833 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2834 ArgVT == MVT::v1i128) 2835 Align = 16; 2836 // QPX vector types stored in double-precision are padded to a 32 byte 2837 // boundary. 2838 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2839 Align = 32; 2840 2841 // ByVal parameters are aligned as requested. 2842 if (Flags.isByVal()) { 2843 unsigned BVAlign = Flags.getByValAlign(); 2844 if (BVAlign > PtrByteSize) { 2845 if (BVAlign % PtrByteSize != 0) 2846 llvm_unreachable( 2847 "ByVal alignment is not a multiple of the pointer size"); 2848 2849 Align = BVAlign; 2850 } 2851 } 2852 2853 // Array members are always packed to their original alignment. 2854 if (Flags.isInConsecutiveRegs()) { 2855 // If the array member was split into multiple registers, the first 2856 // needs to be aligned to the size of the full type. (Except for 2857 // ppcf128, which is only aligned as its f64 components.) 2858 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2859 Align = OrigVT.getStoreSize(); 2860 else 2861 Align = ArgVT.getStoreSize(); 2862 } 2863 2864 return Align; 2865 } 2866 2867 /// CalculateStackSlotUsed - Return whether this argument will use its 2868 /// stack slot (instead of being passed in registers). ArgOffset, 2869 /// AvailableFPRs, and AvailableVRs must hold the current argument 2870 /// position, and will be updated to account for this argument. 2871 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2872 ISD::ArgFlagsTy Flags, 2873 unsigned PtrByteSize, 2874 unsigned LinkageSize, 2875 unsigned ParamAreaSize, 2876 unsigned &ArgOffset, 2877 unsigned &AvailableFPRs, 2878 unsigned &AvailableVRs, bool HasQPX) { 2879 bool UseMemory = false; 2880 2881 // Respect alignment of argument on the stack. 2882 unsigned Align = 2883 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2884 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2885 // If there's no space left in the argument save area, we must 2886 // use memory (this check also catches zero-sized arguments). 2887 if (ArgOffset >= LinkageSize + ParamAreaSize) 2888 UseMemory = true; 2889 2890 // Allocate argument on the stack. 2891 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2892 if (Flags.isInConsecutiveRegsLast()) 2893 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2894 // If we overran the argument save area, we must use memory 2895 // (this check catches arguments passed partially in memory) 2896 if (ArgOffset > LinkageSize + ParamAreaSize) 2897 UseMemory = true; 2898 2899 // However, if the argument is actually passed in an FPR or a VR, 2900 // we don't use memory after all. 2901 if (!Flags.isByVal()) { 2902 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2903 // QPX registers overlap with the scalar FP registers. 2904 (HasQPX && (ArgVT == MVT::v4f32 || 2905 ArgVT == MVT::v4f64 || 2906 ArgVT == MVT::v4i1))) 2907 if (AvailableFPRs > 0) { 2908 --AvailableFPRs; 2909 return false; 2910 } 2911 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2912 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2913 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2914 ArgVT == MVT::v1i128) 2915 if (AvailableVRs > 0) { 2916 --AvailableVRs; 2917 return false; 2918 } 2919 } 2920 2921 return UseMemory; 2922 } 2923 2924 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2925 /// ensure minimum alignment required for target. 2926 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2927 unsigned NumBytes) { 2928 unsigned TargetAlign = Lowering->getStackAlignment(); 2929 unsigned AlignMask = TargetAlign - 1; 2930 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2931 return NumBytes; 2932 } 2933 2934 SDValue PPCTargetLowering::LowerFormalArguments( 2935 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2936 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2937 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2938 if (Subtarget.isSVR4ABI()) { 2939 if (Subtarget.isPPC64()) 2940 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2941 dl, DAG, InVals); 2942 else 2943 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2944 dl, DAG, InVals); 2945 } else { 2946 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2947 dl, DAG, InVals); 2948 } 2949 } 2950 2951 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 2952 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2953 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2954 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2955 2956 // 32-bit SVR4 ABI Stack Frame Layout: 2957 // +-----------------------------------+ 2958 // +--> | Back chain | 2959 // | +-----------------------------------+ 2960 // | | Floating-point register save area | 2961 // | +-----------------------------------+ 2962 // | | General register save area | 2963 // | +-----------------------------------+ 2964 // | | CR save word | 2965 // | +-----------------------------------+ 2966 // | | VRSAVE save word | 2967 // | +-----------------------------------+ 2968 // | | Alignment padding | 2969 // | +-----------------------------------+ 2970 // | | Vector register save area | 2971 // | +-----------------------------------+ 2972 // | | Local variable space | 2973 // | +-----------------------------------+ 2974 // | | Parameter list area | 2975 // | +-----------------------------------+ 2976 // | | LR save word | 2977 // | +-----------------------------------+ 2978 // SP--> +--- | Back chain | 2979 // +-----------------------------------+ 2980 // 2981 // Specifications: 2982 // System V Application Binary Interface PowerPC Processor Supplement 2983 // AltiVec Technology Programming Interface Manual 2984 2985 MachineFunction &MF = DAG.getMachineFunction(); 2986 MachineFrameInfo &MFI = MF.getFrameInfo(); 2987 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2988 2989 EVT PtrVT = getPointerTy(MF.getDataLayout()); 2990 // Potential tail calls could cause overwriting of argument stack slots. 2991 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2992 (CallConv == CallingConv::Fast)); 2993 unsigned PtrByteSize = 4; 2994 2995 // Assign locations to all of the incoming arguments. 2996 SmallVector<CCValAssign, 16> ArgLocs; 2997 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2998 *DAG.getContext()); 2999 3000 // Reserve space for the linkage area on the stack. 3001 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3002 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3003 if (useSoftFloat()) 3004 CCInfo.PreAnalyzeFormalArguments(Ins); 3005 3006 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3007 CCInfo.clearWasPPCF128(); 3008 3009 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3010 CCValAssign &VA = ArgLocs[i]; 3011 3012 // Arguments stored in registers. 3013 if (VA.isRegLoc()) { 3014 const TargetRegisterClass *RC; 3015 EVT ValVT = VA.getValVT(); 3016 3017 switch (ValVT.getSimpleVT().SimpleTy) { 3018 default: 3019 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3020 case MVT::i1: 3021 case MVT::i32: 3022 RC = &PPC::GPRCRegClass; 3023 break; 3024 case MVT::f32: 3025 if (Subtarget.hasP8Vector()) 3026 RC = &PPC::VSSRCRegClass; 3027 else 3028 RC = &PPC::F4RCRegClass; 3029 break; 3030 case MVT::f64: 3031 if (Subtarget.hasVSX()) 3032 RC = &PPC::VSFRCRegClass; 3033 else 3034 RC = &PPC::F8RCRegClass; 3035 break; 3036 case MVT::v16i8: 3037 case MVT::v8i16: 3038 case MVT::v4i32: 3039 RC = &PPC::VRRCRegClass; 3040 break; 3041 case MVT::v4f32: 3042 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3043 break; 3044 case MVT::v2f64: 3045 case MVT::v2i64: 3046 RC = &PPC::VRRCRegClass; 3047 break; 3048 case MVT::v4f64: 3049 RC = &PPC::QFRCRegClass; 3050 break; 3051 case MVT::v4i1: 3052 RC = &PPC::QBRCRegClass; 3053 break; 3054 } 3055 3056 // Transform the arguments stored in physical registers into virtual ones. 3057 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3058 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3059 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3060 3061 if (ValVT == MVT::i1) 3062 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3063 3064 InVals.push_back(ArgValue); 3065 } else { 3066 // Argument stored in memory. 3067 assert(VA.isMemLoc()); 3068 3069 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3070 int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(), 3071 isImmutable); 3072 3073 // Create load nodes to retrieve arguments from the stack. 3074 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3075 InVals.push_back( 3076 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3077 } 3078 } 3079 3080 // Assign locations to all of the incoming aggregate by value arguments. 3081 // Aggregates passed by value are stored in the local variable space of the 3082 // caller's stack frame, right above the parameter list area. 3083 SmallVector<CCValAssign, 16> ByValArgLocs; 3084 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3085 ByValArgLocs, *DAG.getContext()); 3086 3087 // Reserve stack space for the allocations in CCInfo. 3088 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3089 3090 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3091 3092 // Area that is at least reserved in the caller of this function. 3093 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3094 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3095 3096 // Set the size that is at least reserved in caller of this function. Tail 3097 // call optimized function's reserved stack space needs to be aligned so that 3098 // taking the difference between two stack areas will result in an aligned 3099 // stack. 3100 MinReservedArea = 3101 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3102 FuncInfo->setMinReservedArea(MinReservedArea); 3103 3104 SmallVector<SDValue, 8> MemOps; 3105 3106 // If the function takes variable number of arguments, make a frame index for 3107 // the start of the first vararg value... for expansion of llvm.va_start. 3108 if (isVarArg) { 3109 static const MCPhysReg GPArgRegs[] = { 3110 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3111 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3112 }; 3113 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3114 3115 static const MCPhysReg FPArgRegs[] = { 3116 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3117 PPC::F8 3118 }; 3119 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3120 3121 if (useSoftFloat()) 3122 NumFPArgRegs = 0; 3123 3124 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3125 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3126 3127 // Make room for NumGPArgRegs and NumFPArgRegs. 3128 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3129 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3130 3131 FuncInfo->setVarArgsStackOffset( 3132 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3133 CCInfo.getNextStackOffset(), true)); 3134 3135 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3136 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3137 3138 // The fixed integer arguments of a variadic function are stored to the 3139 // VarArgsFrameIndex on the stack so that they may be loaded by 3140 // dereferencing the result of va_next. 3141 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3142 // Get an existing live-in vreg, or add a new one. 3143 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3144 if (!VReg) 3145 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3146 3147 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3148 SDValue Store = 3149 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3150 MemOps.push_back(Store); 3151 // Increment the address by four for the next argument to store 3152 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3153 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3154 } 3155 3156 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3157 // is set. 3158 // The double arguments are stored to the VarArgsFrameIndex 3159 // on the stack. 3160 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3161 // Get an existing live-in vreg, or add a new one. 3162 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3163 if (!VReg) 3164 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3165 3166 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3167 SDValue Store = 3168 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3169 MemOps.push_back(Store); 3170 // Increment the address by eight for the next argument to store 3171 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3172 PtrVT); 3173 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3174 } 3175 } 3176 3177 if (!MemOps.empty()) 3178 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3179 3180 return Chain; 3181 } 3182 3183 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3184 // value to MVT::i64 and then truncate to the correct register size. 3185 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3186 EVT ObjectVT, SelectionDAG &DAG, 3187 SDValue ArgVal, 3188 const SDLoc &dl) const { 3189 if (Flags.isSExt()) 3190 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3191 DAG.getValueType(ObjectVT)); 3192 else if (Flags.isZExt()) 3193 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3194 DAG.getValueType(ObjectVT)); 3195 3196 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3197 } 3198 3199 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3200 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3201 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3202 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3203 // TODO: add description of PPC stack frame format, or at least some docs. 3204 // 3205 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3206 bool isLittleEndian = Subtarget.isLittleEndian(); 3207 MachineFunction &MF = DAG.getMachineFunction(); 3208 MachineFrameInfo &MFI = MF.getFrameInfo(); 3209 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3210 3211 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3212 "fastcc not supported on varargs functions"); 3213 3214 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3215 // Potential tail calls could cause overwriting of argument stack slots. 3216 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3217 (CallConv == CallingConv::Fast)); 3218 unsigned PtrByteSize = 8; 3219 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3220 3221 static const MCPhysReg GPR[] = { 3222 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3223 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3224 }; 3225 static const MCPhysReg VR[] = { 3226 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3227 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3228 }; 3229 3230 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3231 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3232 const unsigned Num_VR_Regs = array_lengthof(VR); 3233 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3234 3235 // Do a first pass over the arguments to determine whether the ABI 3236 // guarantees that our caller has allocated the parameter save area 3237 // on its stack frame. In the ELFv1 ABI, this is always the case; 3238 // in the ELFv2 ABI, it is true if this is a vararg function or if 3239 // any parameter is located in a stack slot. 3240 3241 bool HasParameterArea = !isELFv2ABI || isVarArg; 3242 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3243 unsigned NumBytes = LinkageSize; 3244 unsigned AvailableFPRs = Num_FPR_Regs; 3245 unsigned AvailableVRs = Num_VR_Regs; 3246 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3247 if (Ins[i].Flags.isNest()) 3248 continue; 3249 3250 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3251 PtrByteSize, LinkageSize, ParamAreaSize, 3252 NumBytes, AvailableFPRs, AvailableVRs, 3253 Subtarget.hasQPX())) 3254 HasParameterArea = true; 3255 } 3256 3257 // Add DAG nodes to load the arguments or copy them out of registers. On 3258 // entry to a function on PPC, the arguments start after the linkage area, 3259 // although the first ones are often in registers. 3260 3261 unsigned ArgOffset = LinkageSize; 3262 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3263 unsigned &QFPR_idx = FPR_idx; 3264 SmallVector<SDValue, 8> MemOps; 3265 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3266 unsigned CurArgIdx = 0; 3267 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3268 SDValue ArgVal; 3269 bool needsLoad = false; 3270 EVT ObjectVT = Ins[ArgNo].VT; 3271 EVT OrigVT = Ins[ArgNo].ArgVT; 3272 unsigned ObjSize = ObjectVT.getStoreSize(); 3273 unsigned ArgSize = ObjSize; 3274 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3275 if (Ins[ArgNo].isOrigArg()) { 3276 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3277 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3278 } 3279 // We re-align the argument offset for each argument, except when using the 3280 // fast calling convention, when we need to make sure we do that only when 3281 // we'll actually use a stack slot. 3282 unsigned CurArgOffset, Align; 3283 auto ComputeArgOffset = [&]() { 3284 /* Respect alignment of argument on the stack. */ 3285 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3286 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3287 CurArgOffset = ArgOffset; 3288 }; 3289 3290 if (CallConv != CallingConv::Fast) { 3291 ComputeArgOffset(); 3292 3293 /* Compute GPR index associated with argument offset. */ 3294 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3295 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3296 } 3297 3298 // FIXME the codegen can be much improved in some cases. 3299 // We do not have to keep everything in memory. 3300 if (Flags.isByVal()) { 3301 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3302 3303 if (CallConv == CallingConv::Fast) 3304 ComputeArgOffset(); 3305 3306 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3307 ObjSize = Flags.getByValSize(); 3308 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3309 // Empty aggregate parameters do not take up registers. Examples: 3310 // struct { } a; 3311 // union { } b; 3312 // int c[0]; 3313 // etc. However, we have to provide a place-holder in InVals, so 3314 // pretend we have an 8-byte item at the current address for that 3315 // purpose. 3316 if (!ObjSize) { 3317 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3318 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3319 InVals.push_back(FIN); 3320 continue; 3321 } 3322 3323 // Create a stack object covering all stack doublewords occupied 3324 // by the argument. If the argument is (fully or partially) on 3325 // the stack, or if the argument is fully in registers but the 3326 // caller has allocated the parameter save anyway, we can refer 3327 // directly to the caller's stack frame. Otherwise, create a 3328 // local copy in our own frame. 3329 int FI; 3330 if (HasParameterArea || 3331 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3332 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3333 else 3334 FI = MFI.CreateStackObject(ArgSize, Align, false); 3335 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3336 3337 // Handle aggregates smaller than 8 bytes. 3338 if (ObjSize < PtrByteSize) { 3339 // The value of the object is its address, which differs from the 3340 // address of the enclosing doubleword on big-endian systems. 3341 SDValue Arg = FIN; 3342 if (!isLittleEndian) { 3343 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3344 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3345 } 3346 InVals.push_back(Arg); 3347 3348 if (GPR_idx != Num_GPR_Regs) { 3349 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3350 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3351 SDValue Store; 3352 3353 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3354 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3355 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3356 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3357 MachinePointerInfo(&*FuncArg), ObjType); 3358 } else { 3359 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3360 // store the whole register as-is to the parameter save area 3361 // slot. 3362 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3363 MachinePointerInfo(&*FuncArg)); 3364 } 3365 3366 MemOps.push_back(Store); 3367 } 3368 // Whether we copied from a register or not, advance the offset 3369 // into the parameter save area by a full doubleword. 3370 ArgOffset += PtrByteSize; 3371 continue; 3372 } 3373 3374 // The value of the object is its address, which is the address of 3375 // its first stack doubleword. 3376 InVals.push_back(FIN); 3377 3378 // Store whatever pieces of the object are in registers to memory. 3379 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3380 if (GPR_idx == Num_GPR_Regs) 3381 break; 3382 3383 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3384 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3385 SDValue Addr = FIN; 3386 if (j) { 3387 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3388 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3389 } 3390 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3391 MachinePointerInfo(&*FuncArg, j)); 3392 MemOps.push_back(Store); 3393 ++GPR_idx; 3394 } 3395 ArgOffset += ArgSize; 3396 continue; 3397 } 3398 3399 switch (ObjectVT.getSimpleVT().SimpleTy) { 3400 default: llvm_unreachable("Unhandled argument type!"); 3401 case MVT::i1: 3402 case MVT::i32: 3403 case MVT::i64: 3404 if (Flags.isNest()) { 3405 // The 'nest' parameter, if any, is passed in R11. 3406 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3407 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3408 3409 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3410 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3411 3412 break; 3413 } 3414 3415 // These can be scalar arguments or elements of an integer array type 3416 // passed directly. Clang may use those instead of "byval" aggregate 3417 // types to avoid forcing arguments to memory unnecessarily. 3418 if (GPR_idx != Num_GPR_Regs) { 3419 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3420 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3421 3422 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3423 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3424 // value to MVT::i64 and then truncate to the correct register size. 3425 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3426 } else { 3427 if (CallConv == CallingConv::Fast) 3428 ComputeArgOffset(); 3429 3430 needsLoad = true; 3431 ArgSize = PtrByteSize; 3432 } 3433 if (CallConv != CallingConv::Fast || needsLoad) 3434 ArgOffset += 8; 3435 break; 3436 3437 case MVT::f32: 3438 case MVT::f64: 3439 // These can be scalar arguments or elements of a float array type 3440 // passed directly. The latter are used to implement ELFv2 homogenous 3441 // float aggregates. 3442 if (FPR_idx != Num_FPR_Regs) { 3443 unsigned VReg; 3444 3445 if (ObjectVT == MVT::f32) 3446 VReg = MF.addLiveIn(FPR[FPR_idx], 3447 Subtarget.hasP8Vector() 3448 ? &PPC::VSSRCRegClass 3449 : &PPC::F4RCRegClass); 3450 else 3451 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3452 ? &PPC::VSFRCRegClass 3453 : &PPC::F8RCRegClass); 3454 3455 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3456 ++FPR_idx; 3457 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3458 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3459 // once we support fp <-> gpr moves. 3460 3461 // This can only ever happen in the presence of f32 array types, 3462 // since otherwise we never run out of FPRs before running out 3463 // of GPRs. 3464 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3465 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3466 3467 if (ObjectVT == MVT::f32) { 3468 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3469 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3470 DAG.getConstant(32, dl, MVT::i32)); 3471 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3472 } 3473 3474 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3475 } else { 3476 if (CallConv == CallingConv::Fast) 3477 ComputeArgOffset(); 3478 3479 needsLoad = true; 3480 } 3481 3482 // When passing an array of floats, the array occupies consecutive 3483 // space in the argument area; only round up to the next doubleword 3484 // at the end of the array. Otherwise, each float takes 8 bytes. 3485 if (CallConv != CallingConv::Fast || needsLoad) { 3486 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3487 ArgOffset += ArgSize; 3488 if (Flags.isInConsecutiveRegsLast()) 3489 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3490 } 3491 break; 3492 case MVT::v4f32: 3493 case MVT::v4i32: 3494 case MVT::v8i16: 3495 case MVT::v16i8: 3496 case MVT::v2f64: 3497 case MVT::v2i64: 3498 case MVT::v1i128: 3499 if (!Subtarget.hasQPX()) { 3500 // These can be scalar arguments or elements of a vector array type 3501 // passed directly. The latter are used to implement ELFv2 homogenous 3502 // vector aggregates. 3503 if (VR_idx != Num_VR_Regs) { 3504 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3505 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3506 ++VR_idx; 3507 } else { 3508 if (CallConv == CallingConv::Fast) 3509 ComputeArgOffset(); 3510 3511 needsLoad = true; 3512 } 3513 if (CallConv != CallingConv::Fast || needsLoad) 3514 ArgOffset += 16; 3515 break; 3516 } // not QPX 3517 3518 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3519 "Invalid QPX parameter type"); 3520 /* fall through */ 3521 3522 case MVT::v4f64: 3523 case MVT::v4i1: 3524 // QPX vectors are treated like their scalar floating-point subregisters 3525 // (except that they're larger). 3526 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3527 if (QFPR_idx != Num_QFPR_Regs) { 3528 const TargetRegisterClass *RC; 3529 switch (ObjectVT.getSimpleVT().SimpleTy) { 3530 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3531 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3532 default: RC = &PPC::QBRCRegClass; break; 3533 } 3534 3535 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3536 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3537 ++QFPR_idx; 3538 } else { 3539 if (CallConv == CallingConv::Fast) 3540 ComputeArgOffset(); 3541 needsLoad = true; 3542 } 3543 if (CallConv != CallingConv::Fast || needsLoad) 3544 ArgOffset += Sz; 3545 break; 3546 } 3547 3548 // We need to load the argument to a virtual register if we determined 3549 // above that we ran out of physical registers of the appropriate type. 3550 if (needsLoad) { 3551 if (ObjSize < ArgSize && !isLittleEndian) 3552 CurArgOffset += ArgSize - ObjSize; 3553 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3554 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3555 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 3556 } 3557 3558 InVals.push_back(ArgVal); 3559 } 3560 3561 // Area that is at least reserved in the caller of this function. 3562 unsigned MinReservedArea; 3563 if (HasParameterArea) 3564 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3565 else 3566 MinReservedArea = LinkageSize; 3567 3568 // Set the size that is at least reserved in caller of this function. Tail 3569 // call optimized functions' reserved stack space needs to be aligned so that 3570 // taking the difference between two stack areas will result in an aligned 3571 // stack. 3572 MinReservedArea = 3573 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3574 FuncInfo->setMinReservedArea(MinReservedArea); 3575 3576 // If the function takes variable number of arguments, make a frame index for 3577 // the start of the first vararg value... for expansion of llvm.va_start. 3578 if (isVarArg) { 3579 int Depth = ArgOffset; 3580 3581 FuncInfo->setVarArgsFrameIndex( 3582 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 3583 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3584 3585 // If this function is vararg, store any remaining integer argument regs 3586 // to their spots on the stack so that they may be loaded by dereferencing 3587 // the result of va_next. 3588 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3589 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3590 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3591 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3592 SDValue Store = 3593 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3594 MemOps.push_back(Store); 3595 // Increment the address by four for the next argument to store 3596 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3597 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3598 } 3599 } 3600 3601 if (!MemOps.empty()) 3602 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3603 3604 return Chain; 3605 } 3606 3607 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 3608 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3609 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3610 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3611 // TODO: add description of PPC stack frame format, or at least some docs. 3612 // 3613 MachineFunction &MF = DAG.getMachineFunction(); 3614 MachineFrameInfo &MFI = MF.getFrameInfo(); 3615 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3616 3617 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3618 bool isPPC64 = PtrVT == MVT::i64; 3619 // Potential tail calls could cause overwriting of argument stack slots. 3620 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3621 (CallConv == CallingConv::Fast)); 3622 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3623 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3624 unsigned ArgOffset = LinkageSize; 3625 // Area that is at least reserved in caller of this function. 3626 unsigned MinReservedArea = ArgOffset; 3627 3628 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3629 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3630 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3631 }; 3632 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3633 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3634 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3635 }; 3636 static const MCPhysReg VR[] = { 3637 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3638 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3639 }; 3640 3641 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3642 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3643 const unsigned Num_VR_Regs = array_lengthof( VR); 3644 3645 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3646 3647 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3648 3649 // In 32-bit non-varargs functions, the stack space for vectors is after the 3650 // stack space for non-vectors. We do not use this space unless we have 3651 // too many vectors to fit in registers, something that only occurs in 3652 // constructed examples:), but we have to walk the arglist to figure 3653 // that out...for the pathological case, compute VecArgOffset as the 3654 // start of the vector parameter area. Computing VecArgOffset is the 3655 // entire point of the following loop. 3656 unsigned VecArgOffset = ArgOffset; 3657 if (!isVarArg && !isPPC64) { 3658 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3659 ++ArgNo) { 3660 EVT ObjectVT = Ins[ArgNo].VT; 3661 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3662 3663 if (Flags.isByVal()) { 3664 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3665 unsigned ObjSize = Flags.getByValSize(); 3666 unsigned ArgSize = 3667 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3668 VecArgOffset += ArgSize; 3669 continue; 3670 } 3671 3672 switch(ObjectVT.getSimpleVT().SimpleTy) { 3673 default: llvm_unreachable("Unhandled argument type!"); 3674 case MVT::i1: 3675 case MVT::i32: 3676 case MVT::f32: 3677 VecArgOffset += 4; 3678 break; 3679 case MVT::i64: // PPC64 3680 case MVT::f64: 3681 // FIXME: We are guaranteed to be !isPPC64 at this point. 3682 // Does MVT::i64 apply? 3683 VecArgOffset += 8; 3684 break; 3685 case MVT::v4f32: 3686 case MVT::v4i32: 3687 case MVT::v8i16: 3688 case MVT::v16i8: 3689 // Nothing to do, we're only looking at Nonvector args here. 3690 break; 3691 } 3692 } 3693 } 3694 // We've found where the vector parameter area in memory is. Skip the 3695 // first 12 parameters; these don't use that memory. 3696 VecArgOffset = ((VecArgOffset+15)/16)*16; 3697 VecArgOffset += 12*16; 3698 3699 // Add DAG nodes to load the arguments or copy them out of registers. On 3700 // entry to a function on PPC, the arguments start after the linkage area, 3701 // although the first ones are often in registers. 3702 3703 SmallVector<SDValue, 8> MemOps; 3704 unsigned nAltivecParamsAtEnd = 0; 3705 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3706 unsigned CurArgIdx = 0; 3707 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3708 SDValue ArgVal; 3709 bool needsLoad = false; 3710 EVT ObjectVT = Ins[ArgNo].VT; 3711 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3712 unsigned ArgSize = ObjSize; 3713 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3714 if (Ins[ArgNo].isOrigArg()) { 3715 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3716 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3717 } 3718 unsigned CurArgOffset = ArgOffset; 3719 3720 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3721 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3722 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3723 if (isVarArg || isPPC64) { 3724 MinReservedArea = ((MinReservedArea+15)/16)*16; 3725 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3726 Flags, 3727 PtrByteSize); 3728 } else nAltivecParamsAtEnd++; 3729 } else 3730 // Calculate min reserved area. 3731 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3732 Flags, 3733 PtrByteSize); 3734 3735 // FIXME the codegen can be much improved in some cases. 3736 // We do not have to keep everything in memory. 3737 if (Flags.isByVal()) { 3738 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3739 3740 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3741 ObjSize = Flags.getByValSize(); 3742 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3743 // Objects of size 1 and 2 are right justified, everything else is 3744 // left justified. This means the memory address is adjusted forwards. 3745 if (ObjSize==1 || ObjSize==2) { 3746 CurArgOffset = CurArgOffset + (4 - ObjSize); 3747 } 3748 // The value of the object is its address. 3749 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 3750 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3751 InVals.push_back(FIN); 3752 if (ObjSize==1 || ObjSize==2) { 3753 if (GPR_idx != Num_GPR_Regs) { 3754 unsigned VReg; 3755 if (isPPC64) 3756 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3757 else 3758 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3759 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3760 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3761 SDValue Store = 3762 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3763 MachinePointerInfo(&*FuncArg), ObjType); 3764 MemOps.push_back(Store); 3765 ++GPR_idx; 3766 } 3767 3768 ArgOffset += PtrByteSize; 3769 3770 continue; 3771 } 3772 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3773 // Store whatever pieces of the object are in registers 3774 // to memory. ArgOffset will be the address of the beginning 3775 // of the object. 3776 if (GPR_idx != Num_GPR_Regs) { 3777 unsigned VReg; 3778 if (isPPC64) 3779 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3780 else 3781 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3782 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3783 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3784 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3785 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3786 MachinePointerInfo(&*FuncArg, j)); 3787 MemOps.push_back(Store); 3788 ++GPR_idx; 3789 ArgOffset += PtrByteSize; 3790 } else { 3791 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3792 break; 3793 } 3794 } 3795 continue; 3796 } 3797 3798 switch (ObjectVT.getSimpleVT().SimpleTy) { 3799 default: llvm_unreachable("Unhandled argument type!"); 3800 case MVT::i1: 3801 case MVT::i32: 3802 if (!isPPC64) { 3803 if (GPR_idx != Num_GPR_Regs) { 3804 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3805 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3806 3807 if (ObjectVT == MVT::i1) 3808 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3809 3810 ++GPR_idx; 3811 } else { 3812 needsLoad = true; 3813 ArgSize = PtrByteSize; 3814 } 3815 // All int arguments reserve stack space in the Darwin ABI. 3816 ArgOffset += PtrByteSize; 3817 break; 3818 } 3819 LLVM_FALLTHROUGH; 3820 case MVT::i64: // PPC64 3821 if (GPR_idx != Num_GPR_Regs) { 3822 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3823 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3824 3825 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3826 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3827 // value to MVT::i64 and then truncate to the correct register size. 3828 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3829 3830 ++GPR_idx; 3831 } else { 3832 needsLoad = true; 3833 ArgSize = PtrByteSize; 3834 } 3835 // All int arguments reserve stack space in the Darwin ABI. 3836 ArgOffset += 8; 3837 break; 3838 3839 case MVT::f32: 3840 case MVT::f64: 3841 // Every 4 bytes of argument space consumes one of the GPRs available for 3842 // argument passing. 3843 if (GPR_idx != Num_GPR_Regs) { 3844 ++GPR_idx; 3845 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3846 ++GPR_idx; 3847 } 3848 if (FPR_idx != Num_FPR_Regs) { 3849 unsigned VReg; 3850 3851 if (ObjectVT == MVT::f32) 3852 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3853 else 3854 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3855 3856 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3857 ++FPR_idx; 3858 } else { 3859 needsLoad = true; 3860 } 3861 3862 // All FP arguments reserve stack space in the Darwin ABI. 3863 ArgOffset += isPPC64 ? 8 : ObjSize; 3864 break; 3865 case MVT::v4f32: 3866 case MVT::v4i32: 3867 case MVT::v8i16: 3868 case MVT::v16i8: 3869 // Note that vector arguments in registers don't reserve stack space, 3870 // except in varargs functions. 3871 if (VR_idx != Num_VR_Regs) { 3872 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3873 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3874 if (isVarArg) { 3875 while ((ArgOffset % 16) != 0) { 3876 ArgOffset += PtrByteSize; 3877 if (GPR_idx != Num_GPR_Regs) 3878 GPR_idx++; 3879 } 3880 ArgOffset += 16; 3881 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3882 } 3883 ++VR_idx; 3884 } else { 3885 if (!isVarArg && !isPPC64) { 3886 // Vectors go after all the nonvectors. 3887 CurArgOffset = VecArgOffset; 3888 VecArgOffset += 16; 3889 } else { 3890 // Vectors are aligned. 3891 ArgOffset = ((ArgOffset+15)/16)*16; 3892 CurArgOffset = ArgOffset; 3893 ArgOffset += 16; 3894 } 3895 needsLoad = true; 3896 } 3897 break; 3898 } 3899 3900 // We need to load the argument to a virtual register if we determined above 3901 // that we ran out of physical registers of the appropriate type. 3902 if (needsLoad) { 3903 int FI = MFI.CreateFixedObject(ObjSize, 3904 CurArgOffset + (ArgSize - ObjSize), 3905 isImmutable); 3906 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3907 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 3908 } 3909 3910 InVals.push_back(ArgVal); 3911 } 3912 3913 // Allow for Altivec parameters at the end, if needed. 3914 if (nAltivecParamsAtEnd) { 3915 MinReservedArea = ((MinReservedArea+15)/16)*16; 3916 MinReservedArea += 16*nAltivecParamsAtEnd; 3917 } 3918 3919 // Area that is at least reserved in the caller of this function. 3920 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3921 3922 // Set the size that is at least reserved in caller of this function. Tail 3923 // call optimized functions' reserved stack space needs to be aligned so that 3924 // taking the difference between two stack areas will result in an aligned 3925 // stack. 3926 MinReservedArea = 3927 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3928 FuncInfo->setMinReservedArea(MinReservedArea); 3929 3930 // If the function takes variable number of arguments, make a frame index for 3931 // the start of the first vararg value... for expansion of llvm.va_start. 3932 if (isVarArg) { 3933 int Depth = ArgOffset; 3934 3935 FuncInfo->setVarArgsFrameIndex( 3936 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3937 Depth, true)); 3938 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3939 3940 // If this function is vararg, store any remaining integer argument regs 3941 // to their spots on the stack so that they may be loaded by dereferencing 3942 // the result of va_next. 3943 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3944 unsigned VReg; 3945 3946 if (isPPC64) 3947 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3948 else 3949 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3950 3951 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3952 SDValue Store = 3953 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3954 MemOps.push_back(Store); 3955 // Increment the address by four for the next argument to store 3956 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3957 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3958 } 3959 } 3960 3961 if (!MemOps.empty()) 3962 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3963 3964 return Chain; 3965 } 3966 3967 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3968 /// adjusted to accommodate the arguments for the tailcall. 3969 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3970 unsigned ParamSize) { 3971 3972 if (!isTailCall) return 0; 3973 3974 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3975 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3976 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3977 // Remember only if the new adjustement is bigger. 3978 if (SPDiff < FI->getTailCallSPDelta()) 3979 FI->setTailCallSPDelta(SPDiff); 3980 3981 return SPDiff; 3982 } 3983 3984 static bool isFunctionGlobalAddress(SDValue Callee); 3985 3986 static bool 3987 resideInSameModule(SDValue Callee, Reloc::Model RelMod) { 3988 // If !G, Callee can be an external symbol. 3989 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 3990 if (!G) return false; 3991 3992 const GlobalValue *GV = G->getGlobal(); 3993 3994 if (GV->isDeclaration()) return false; 3995 3996 switch(GV->getLinkage()) { 3997 default: llvm_unreachable("unknow linkage type"); 3998 case GlobalValue::AvailableExternallyLinkage: 3999 case GlobalValue::ExternalWeakLinkage: 4000 return false; 4001 4002 // Callee with weak linkage is allowed if it has hidden or protected 4003 // visibility 4004 case GlobalValue::LinkOnceAnyLinkage: 4005 case GlobalValue::LinkOnceODRLinkage: // e.g. c++ inline functions 4006 case GlobalValue::WeakAnyLinkage: 4007 case GlobalValue::WeakODRLinkage: // e.g. c++ template instantiation 4008 if (GV->hasDefaultVisibility()) 4009 return false; 4010 4011 case GlobalValue::ExternalLinkage: 4012 case GlobalValue::InternalLinkage: 4013 case GlobalValue::PrivateLinkage: 4014 break; 4015 } 4016 4017 // With '-fPIC', calling default visiblity function need insert 'nop' after 4018 // function call, no matter that function resides in same module or not, so 4019 // we treat it as in different module. 4020 if (RelMod == Reloc::PIC_ && GV->hasDefaultVisibility()) 4021 return false; 4022 4023 return true; 4024 } 4025 4026 static bool 4027 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4028 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4029 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 4030 4031 const unsigned PtrByteSize = 8; 4032 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4033 4034 static const MCPhysReg GPR[] = { 4035 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4036 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4037 }; 4038 static const MCPhysReg VR[] = { 4039 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4040 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4041 }; 4042 4043 const unsigned NumGPRs = array_lengthof(GPR); 4044 const unsigned NumFPRs = 13; 4045 const unsigned NumVRs = array_lengthof(VR); 4046 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4047 4048 unsigned NumBytes = LinkageSize; 4049 unsigned AvailableFPRs = NumFPRs; 4050 unsigned AvailableVRs = NumVRs; 4051 4052 for (const ISD::OutputArg& Param : Outs) { 4053 if (Param.Flags.isNest()) continue; 4054 4055 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4056 PtrByteSize, LinkageSize, ParamAreaSize, 4057 NumBytes, AvailableFPRs, AvailableVRs, 4058 Subtarget.hasQPX())) 4059 return true; 4060 } 4061 return false; 4062 } 4063 4064 static bool 4065 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) { 4066 if (CS->arg_size() != CallerFn->getArgumentList().size()) 4067 return false; 4068 4069 ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin(); 4070 ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end(); 4071 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4072 4073 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4074 const Value* CalleeArg = *CalleeArgIter; 4075 const Value* CallerArg = &(*CallerArgIter); 4076 if (CalleeArg == CallerArg) 4077 continue; 4078 4079 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4080 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4081 // } 4082 // 1st argument of callee is undef and has the same type as caller. 4083 if (CalleeArg->getType() == CallerArg->getType() && 4084 isa<UndefValue>(CalleeArg)) 4085 continue; 4086 4087 return false; 4088 } 4089 4090 return true; 4091 } 4092 4093 bool 4094 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4095 SDValue Callee, 4096 CallingConv::ID CalleeCC, 4097 ImmutableCallSite *CS, 4098 bool isVarArg, 4099 const SmallVectorImpl<ISD::OutputArg> &Outs, 4100 const SmallVectorImpl<ISD::InputArg> &Ins, 4101 SelectionDAG& DAG) const { 4102 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4103 4104 if (DisableSCO && !TailCallOpt) return false; 4105 4106 // Variadic argument functions are not supported. 4107 if (isVarArg) return false; 4108 4109 MachineFunction &MF = DAG.getMachineFunction(); 4110 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4111 4112 // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has 4113 // the same calling convention 4114 if (CallerCC != CalleeCC) return false; 4115 4116 // SCO support C calling convention 4117 if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C) 4118 return false; 4119 4120 // Caller contains any byval parameter is not supported. 4121 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4122 return false; 4123 4124 // Callee contains any byval parameter is not supported, too. 4125 // Note: This is a quick work around, because in some cases, e.g. 4126 // caller's stack size > callee's stack size, we are still able to apply 4127 // sibling call optimization. See: https://reviews.llvm.org/D23441#513574 4128 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4129 return false; 4130 4131 // No TCO/SCO on indirect call because Caller have to restore its TOC 4132 if (!isFunctionGlobalAddress(Callee) && 4133 !isa<ExternalSymbolSDNode>(Callee)) 4134 return false; 4135 4136 // Check if Callee resides in the same module, because for now, PPC64 SVR4 ABI 4137 // (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another 4138 // module. 4139 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4140 if (!resideInSameModule(Callee, getTargetMachine().getRelocationModel())) 4141 return false; 4142 4143 // TCO allows altering callee ABI, so we don't have to check further. 4144 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4145 return true; 4146 4147 if (DisableSCO) return false; 4148 4149 // If callee use the same argument list that caller is using, then we can 4150 // apply SCO on this case. If it is not, then we need to check if callee needs 4151 // stack for passing arguments. 4152 if (!hasSameArgumentList(MF.getFunction(), CS) && 4153 needStackSlotPassParameters(Subtarget, Outs)) { 4154 return false; 4155 } 4156 4157 return true; 4158 } 4159 4160 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4161 /// for tail call optimization. Targets which want to do tail call 4162 /// optimization should implement this function. 4163 bool 4164 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4165 CallingConv::ID CalleeCC, 4166 bool isVarArg, 4167 const SmallVectorImpl<ISD::InputArg> &Ins, 4168 SelectionDAG& DAG) const { 4169 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4170 return false; 4171 4172 // Variable argument functions are not supported. 4173 if (isVarArg) 4174 return false; 4175 4176 MachineFunction &MF = DAG.getMachineFunction(); 4177 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4178 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4179 // Functions containing by val parameters are not supported. 4180 for (unsigned i = 0; i != Ins.size(); i++) { 4181 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4182 if (Flags.isByVal()) return false; 4183 } 4184 4185 // Non-PIC/GOT tail calls are supported. 4186 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4187 return true; 4188 4189 // At the moment we can only do local tail calls (in same module, hidden 4190 // or protected) if we are generating PIC. 4191 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4192 return G->getGlobal()->hasHiddenVisibility() 4193 || G->getGlobal()->hasProtectedVisibility(); 4194 } 4195 4196 return false; 4197 } 4198 4199 /// isCallCompatibleAddress - Return the immediate to use if the specified 4200 /// 32-bit value is representable in the immediate field of a BxA instruction. 4201 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4202 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4203 if (!C) return nullptr; 4204 4205 int Addr = C->getZExtValue(); 4206 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4207 SignExtend32<26>(Addr) != Addr) 4208 return nullptr; // Top 6 bits have to be sext of immediate. 4209 4210 return DAG 4211 .getConstant( 4212 (int)C->getZExtValue() >> 2, SDLoc(Op), 4213 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4214 .getNode(); 4215 } 4216 4217 namespace { 4218 4219 struct TailCallArgumentInfo { 4220 SDValue Arg; 4221 SDValue FrameIdxOp; 4222 int FrameIdx; 4223 4224 TailCallArgumentInfo() : FrameIdx(0) {} 4225 }; 4226 } 4227 4228 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4229 static void StoreTailCallArgumentsToStackSlot( 4230 SelectionDAG &DAG, SDValue Chain, 4231 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4232 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4233 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4234 SDValue Arg = TailCallArgs[i].Arg; 4235 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4236 int FI = TailCallArgs[i].FrameIdx; 4237 // Store relative to framepointer. 4238 MemOpChains.push_back(DAG.getStore( 4239 Chain, dl, Arg, FIN, 4240 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4241 } 4242 } 4243 4244 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4245 /// the appropriate stack slot for the tail call optimized function call. 4246 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4247 SDValue OldRetAddr, SDValue OldFP, 4248 int SPDiff, const SDLoc &dl) { 4249 if (SPDiff) { 4250 // Calculate the new stack slot for the return address. 4251 MachineFunction &MF = DAG.getMachineFunction(); 4252 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4253 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4254 bool isPPC64 = Subtarget.isPPC64(); 4255 int SlotSize = isPPC64 ? 8 : 4; 4256 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4257 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4258 NewRetAddrLoc, true); 4259 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4260 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4261 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4262 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4263 4264 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4265 // slot as the FP is never overwritten. 4266 if (Subtarget.isDarwinABI()) { 4267 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4268 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4269 true); 4270 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4271 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4272 MachinePointerInfo::getFixedStack( 4273 DAG.getMachineFunction(), NewFPIdx)); 4274 } 4275 } 4276 return Chain; 4277 } 4278 4279 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4280 /// the position of the argument. 4281 static void 4282 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4283 SDValue Arg, int SPDiff, unsigned ArgOffset, 4284 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4285 int Offset = ArgOffset + SPDiff; 4286 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4287 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4288 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4289 SDValue FIN = DAG.getFrameIndex(FI, VT); 4290 TailCallArgumentInfo Info; 4291 Info.Arg = Arg; 4292 Info.FrameIdxOp = FIN; 4293 Info.FrameIdx = FI; 4294 TailCallArguments.push_back(Info); 4295 } 4296 4297 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4298 /// stack slot. Returns the chain as result and the loaded frame pointers in 4299 /// LROpOut/FPOpout. Used when tail calling. 4300 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4301 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4302 SDValue &FPOpOut, const SDLoc &dl) const { 4303 if (SPDiff) { 4304 // Load the LR and FP stack slot for later adjusting. 4305 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4306 LROpOut = getReturnAddrFrameIndex(DAG); 4307 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4308 Chain = SDValue(LROpOut.getNode(), 1); 4309 4310 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4311 // slot as the FP is never overwritten. 4312 if (Subtarget.isDarwinABI()) { 4313 FPOpOut = getFramePointerFrameIndex(DAG); 4314 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4315 Chain = SDValue(FPOpOut.getNode(), 1); 4316 } 4317 } 4318 return Chain; 4319 } 4320 4321 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4322 /// by "Src" to address "Dst" of size "Size". Alignment information is 4323 /// specified by the specific parameter attribute. The copy will be passed as 4324 /// a byval function parameter. 4325 /// Sometimes what we are copying is the end of a larger object, the part that 4326 /// does not fit in registers. 4327 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4328 SDValue Chain, ISD::ArgFlagsTy Flags, 4329 SelectionDAG &DAG, const SDLoc &dl) { 4330 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4331 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4332 false, false, false, MachinePointerInfo(), 4333 MachinePointerInfo()); 4334 } 4335 4336 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4337 /// tail calls. 4338 static void LowerMemOpCallTo( 4339 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4340 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4341 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4342 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4343 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4344 if (!isTailCall) { 4345 if (isVector) { 4346 SDValue StackPtr; 4347 if (isPPC64) 4348 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4349 else 4350 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4351 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4352 DAG.getConstant(ArgOffset, dl, PtrVT)); 4353 } 4354 MemOpChains.push_back( 4355 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4356 // Calculate and remember argument location. 4357 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4358 TailCallArguments); 4359 } 4360 4361 static void 4362 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4363 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4364 SDValue FPOp, 4365 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4366 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4367 // might overwrite each other in case of tail call optimization. 4368 SmallVector<SDValue, 8> MemOpChains2; 4369 // Do not flag preceding copytoreg stuff together with the following stuff. 4370 InFlag = SDValue(); 4371 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4372 MemOpChains2, dl); 4373 if (!MemOpChains2.empty()) 4374 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4375 4376 // Store the return address to the appropriate stack slot. 4377 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4378 4379 // Emit callseq_end just before tailcall node. 4380 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4381 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4382 InFlag = Chain.getValue(1); 4383 } 4384 4385 // Is this global address that of a function that can be called by name? (as 4386 // opposed to something that must hold a descriptor for an indirect call). 4387 static bool isFunctionGlobalAddress(SDValue Callee) { 4388 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4389 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4390 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4391 return false; 4392 4393 return G->getGlobal()->getValueType()->isFunctionTy(); 4394 } 4395 4396 return false; 4397 } 4398 4399 static unsigned 4400 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4401 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4402 bool isPatchPoint, bool hasNest, 4403 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4404 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4405 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4406 4407 bool isPPC64 = Subtarget.isPPC64(); 4408 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4409 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4410 4411 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4412 NodeTys.push_back(MVT::Other); // Returns a chain 4413 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4414 4415 unsigned CallOpc = PPCISD::CALL; 4416 4417 bool needIndirectCall = true; 4418 if (!isSVR4ABI || !isPPC64) 4419 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4420 // If this is an absolute destination address, use the munged value. 4421 Callee = SDValue(Dest, 0); 4422 needIndirectCall = false; 4423 } 4424 4425 // PC-relative references to external symbols should go through $stub, unless 4426 // we're building with the leopard linker or later, which automatically 4427 // synthesizes these stubs. 4428 const TargetMachine &TM = DAG.getTarget(); 4429 const Module *Mod = DAG.getMachineFunction().getFunction()->getParent(); 4430 const GlobalValue *GV = nullptr; 4431 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4432 GV = G->getGlobal(); 4433 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4434 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4435 4436 if (isFunctionGlobalAddress(Callee)) { 4437 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4438 // A call to a TLS address is actually an indirect call to a 4439 // thread-specific pointer. 4440 unsigned OpFlags = 0; 4441 if (UsePlt) 4442 OpFlags = PPCII::MO_PLT; 4443 4444 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4445 // every direct call is) turn it into a TargetGlobalAddress / 4446 // TargetExternalSymbol node so that legalize doesn't hack it. 4447 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4448 Callee.getValueType(), 0, OpFlags); 4449 needIndirectCall = false; 4450 } 4451 4452 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4453 unsigned char OpFlags = 0; 4454 4455 if (UsePlt) 4456 OpFlags = PPCII::MO_PLT; 4457 4458 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4459 OpFlags); 4460 needIndirectCall = false; 4461 } 4462 4463 if (isPatchPoint) { 4464 // We'll form an invalid direct call when lowering a patchpoint; the full 4465 // sequence for an indirect call is complicated, and many of the 4466 // instructions introduced might have side effects (and, thus, can't be 4467 // removed later). The call itself will be removed as soon as the 4468 // argument/return lowering is complete, so the fact that it has the wrong 4469 // kind of operands should not really matter. 4470 needIndirectCall = false; 4471 } 4472 4473 if (needIndirectCall) { 4474 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4475 // to do the call, we can't use PPCISD::CALL. 4476 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4477 4478 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4479 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4480 // entry point, but to the function descriptor (the function entry point 4481 // address is part of the function descriptor though). 4482 // The function descriptor is a three doubleword structure with the 4483 // following fields: function entry point, TOC base address and 4484 // environment pointer. 4485 // Thus for a call through a function pointer, the following actions need 4486 // to be performed: 4487 // 1. Save the TOC of the caller in the TOC save area of its stack 4488 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4489 // 2. Load the address of the function entry point from the function 4490 // descriptor. 4491 // 3. Load the TOC of the callee from the function descriptor into r2. 4492 // 4. Load the environment pointer from the function descriptor into 4493 // r11. 4494 // 5. Branch to the function entry point address. 4495 // 6. On return of the callee, the TOC of the caller needs to be 4496 // restored (this is done in FinishCall()). 4497 // 4498 // The loads are scheduled at the beginning of the call sequence, and the 4499 // register copies are flagged together to ensure that no other 4500 // operations can be scheduled in between. E.g. without flagging the 4501 // copies together, a TOC access in the caller could be scheduled between 4502 // the assignment of the callee TOC and the branch to the callee, which 4503 // results in the TOC access going through the TOC of the callee instead 4504 // of going through the TOC of the caller, which leads to incorrect code. 4505 4506 // Load the address of the function entry point from the function 4507 // descriptor. 4508 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4509 if (LDChain.getValueType() == MVT::Glue) 4510 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4511 4512 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 4513 ? (MachineMemOperand::MODereferenceable | 4514 MachineMemOperand::MOInvariant) 4515 : MachineMemOperand::MONone; 4516 4517 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4518 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4519 /* Alignment = */ 8, MMOFlags); 4520 4521 // Load environment pointer into r11. 4522 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4523 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4524 SDValue LoadEnvPtr = 4525 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 4526 /* Alignment = */ 8, MMOFlags); 4527 4528 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4529 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4530 SDValue TOCPtr = 4531 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 4532 /* Alignment = */ 8, MMOFlags); 4533 4534 setUsesTOCBasePtr(DAG); 4535 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4536 InFlag); 4537 Chain = TOCVal.getValue(0); 4538 InFlag = TOCVal.getValue(1); 4539 4540 // If the function call has an explicit 'nest' parameter, it takes the 4541 // place of the environment pointer. 4542 if (!hasNest) { 4543 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4544 InFlag); 4545 4546 Chain = EnvVal.getValue(0); 4547 InFlag = EnvVal.getValue(1); 4548 } 4549 4550 MTCTROps[0] = Chain; 4551 MTCTROps[1] = LoadFuncPtr; 4552 MTCTROps[2] = InFlag; 4553 } 4554 4555 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4556 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4557 InFlag = Chain.getValue(1); 4558 4559 NodeTys.clear(); 4560 NodeTys.push_back(MVT::Other); 4561 NodeTys.push_back(MVT::Glue); 4562 Ops.push_back(Chain); 4563 CallOpc = PPCISD::BCTRL; 4564 Callee.setNode(nullptr); 4565 // Add use of X11 (holding environment pointer) 4566 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4567 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4568 // Add CTR register as callee so a bctr can be emitted later. 4569 if (isTailCall) 4570 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4571 } 4572 4573 // If this is a direct call, pass the chain and the callee. 4574 if (Callee.getNode()) { 4575 Ops.push_back(Chain); 4576 Ops.push_back(Callee); 4577 } 4578 // If this is a tail call add stack pointer delta. 4579 if (isTailCall) 4580 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4581 4582 // Add argument registers to the end of the list so that they are known live 4583 // into the call. 4584 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4585 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4586 RegsToPass[i].second.getValueType())); 4587 4588 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4589 // into the call. 4590 if (isSVR4ABI && isPPC64 && !isPatchPoint) { 4591 setUsesTOCBasePtr(DAG); 4592 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4593 } 4594 4595 return CallOpc; 4596 } 4597 4598 static 4599 bool isLocalCall(const SDValue &Callee) 4600 { 4601 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4602 return G->getGlobal()->isStrongDefinitionForLinker(); 4603 return false; 4604 } 4605 4606 SDValue PPCTargetLowering::LowerCallResult( 4607 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4608 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4609 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4610 4611 SmallVector<CCValAssign, 16> RVLocs; 4612 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4613 *DAG.getContext()); 4614 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4615 4616 // Copy all of the result registers out of their specified physreg. 4617 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4618 CCValAssign &VA = RVLocs[i]; 4619 assert(VA.isRegLoc() && "Can only return in registers!"); 4620 4621 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4622 VA.getLocReg(), VA.getLocVT(), InFlag); 4623 Chain = Val.getValue(1); 4624 InFlag = Val.getValue(2); 4625 4626 switch (VA.getLocInfo()) { 4627 default: llvm_unreachable("Unknown loc info!"); 4628 case CCValAssign::Full: break; 4629 case CCValAssign::AExt: 4630 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4631 break; 4632 case CCValAssign::ZExt: 4633 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4634 DAG.getValueType(VA.getValVT())); 4635 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4636 break; 4637 case CCValAssign::SExt: 4638 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4639 DAG.getValueType(VA.getValVT())); 4640 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4641 break; 4642 } 4643 4644 InVals.push_back(Val); 4645 } 4646 4647 return Chain; 4648 } 4649 4650 SDValue PPCTargetLowering::FinishCall( 4651 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 4652 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 4653 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 4654 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 4655 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 4656 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const { 4657 4658 std::vector<EVT> NodeTys; 4659 SmallVector<SDValue, 8> Ops; 4660 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4661 SPDiff, isTailCall, isPatchPoint, hasNest, 4662 RegsToPass, Ops, NodeTys, CS, Subtarget); 4663 4664 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4665 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4666 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4667 4668 // When performing tail call optimization the callee pops its arguments off 4669 // the stack. Account for this here so these bytes can be pushed back on in 4670 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4671 int BytesCalleePops = 4672 (CallConv == CallingConv::Fast && 4673 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4674 4675 // Add a register mask operand representing the call-preserved registers. 4676 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4677 const uint32_t *Mask = 4678 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4679 assert(Mask && "Missing call preserved mask for calling convention"); 4680 Ops.push_back(DAG.getRegisterMask(Mask)); 4681 4682 if (InFlag.getNode()) 4683 Ops.push_back(InFlag); 4684 4685 // Emit tail call. 4686 if (isTailCall) { 4687 assert(((Callee.getOpcode() == ISD::Register && 4688 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4689 Callee.getOpcode() == ISD::TargetExternalSymbol || 4690 Callee.getOpcode() == ISD::TargetGlobalAddress || 4691 isa<ConstantSDNode>(Callee)) && 4692 "Expecting an global address, external symbol, absolute value or register"); 4693 4694 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 4695 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4696 } 4697 4698 // Add a NOP immediately after the branch instruction when using the 64-bit 4699 // SVR4 ABI. At link time, if caller and callee are in a different module and 4700 // thus have a different TOC, the call will be replaced with a call to a stub 4701 // function which saves the current TOC, loads the TOC of the callee and 4702 // branches to the callee. The NOP will be replaced with a load instruction 4703 // which restores the TOC of the caller from the TOC save slot of the current 4704 // stack frame. If caller and callee belong to the same module (and have the 4705 // same TOC), the NOP will remain unchanged. 4706 4707 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4708 !isPatchPoint) { 4709 if (CallOpc == PPCISD::BCTRL) { 4710 // This is a call through a function pointer. 4711 // Restore the caller TOC from the save area into R2. 4712 // See PrepareCall() for more information about calls through function 4713 // pointers in the 64-bit SVR4 ABI. 4714 // We are using a target-specific load with r2 hard coded, because the 4715 // result of a target-independent load would never go directly into r2, 4716 // since r2 is a reserved register (which prevents the register allocator 4717 // from allocating it), resulting in an additional register being 4718 // allocated and an unnecessary move instruction being generated. 4719 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4720 4721 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4722 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4723 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4724 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4725 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4726 4727 // The address needs to go after the chain input but before the flag (or 4728 // any other variadic arguments). 4729 Ops.insert(std::next(Ops.begin()), AddTOC); 4730 } else if ((CallOpc == PPCISD::CALL) && 4731 (!isLocalCall(Callee) || 4732 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4733 // Otherwise insert NOP for non-local calls. 4734 CallOpc = PPCISD::CALL_NOP; 4735 } 4736 4737 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4738 InFlag = Chain.getValue(1); 4739 4740 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4741 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4742 InFlag, dl); 4743 if (!Ins.empty()) 4744 InFlag = Chain.getValue(1); 4745 4746 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4747 Ins, dl, DAG, InVals); 4748 } 4749 4750 SDValue 4751 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4752 SmallVectorImpl<SDValue> &InVals) const { 4753 SelectionDAG &DAG = CLI.DAG; 4754 SDLoc &dl = CLI.DL; 4755 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4756 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4757 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4758 SDValue Chain = CLI.Chain; 4759 SDValue Callee = CLI.Callee; 4760 bool &isTailCall = CLI.IsTailCall; 4761 CallingConv::ID CallConv = CLI.CallConv; 4762 bool isVarArg = CLI.IsVarArg; 4763 bool isPatchPoint = CLI.IsPatchPoint; 4764 ImmutableCallSite *CS = CLI.CS; 4765 4766 if (isTailCall) { 4767 if (Subtarget.useLongCalls() && !(CS && CS->isMustTailCall())) 4768 isTailCall = false; 4769 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 4770 isTailCall = 4771 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 4772 isVarArg, Outs, Ins, DAG); 4773 else 4774 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4775 Ins, DAG); 4776 if (isTailCall) { 4777 ++NumTailCalls; 4778 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4779 ++NumSiblingCalls; 4780 4781 assert(isa<GlobalAddressSDNode>(Callee) && 4782 "Callee should be an llvm::Function object."); 4783 DEBUG( 4784 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 4785 const unsigned Width = 80 - strlen("TCO caller: ") 4786 - strlen(", callee linkage: 0, 0"); 4787 dbgs() << "TCO caller: " 4788 << left_justify(DAG.getMachineFunction().getName(), Width) 4789 << ", callee linkage: " 4790 << GV->getVisibility() << ", " << GV->getLinkage() << "\n" 4791 ); 4792 } 4793 } 4794 4795 if (!isTailCall && CS && CS->isMustTailCall()) 4796 report_fatal_error("failed to perform tail call elimination on a call " 4797 "site marked musttail"); 4798 4799 // When long calls (i.e. indirect calls) are always used, calls are always 4800 // made via function pointer. If we have a function name, first translate it 4801 // into a pointer. 4802 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 4803 !isTailCall) 4804 Callee = LowerGlobalAddress(Callee, DAG); 4805 4806 if (Subtarget.isSVR4ABI()) { 4807 if (Subtarget.isPPC64()) 4808 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4809 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4810 dl, DAG, InVals, CS); 4811 else 4812 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4813 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4814 dl, DAG, InVals, CS); 4815 } 4816 4817 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4818 isTailCall, isPatchPoint, Outs, OutVals, Ins, 4819 dl, DAG, InVals, CS); 4820 } 4821 4822 SDValue PPCTargetLowering::LowerCall_32SVR4( 4823 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 4824 bool isTailCall, bool isPatchPoint, 4825 const SmallVectorImpl<ISD::OutputArg> &Outs, 4826 const SmallVectorImpl<SDValue> &OutVals, 4827 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4828 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 4829 ImmutableCallSite *CS) const { 4830 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4831 // of the 32-bit SVR4 ABI stack frame layout. 4832 4833 assert((CallConv == CallingConv::C || 4834 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4835 4836 unsigned PtrByteSize = 4; 4837 4838 MachineFunction &MF = DAG.getMachineFunction(); 4839 4840 // Mark this function as potentially containing a function that contains a 4841 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4842 // and restoring the callers stack pointer in this functions epilog. This is 4843 // done because by tail calling the called function might overwrite the value 4844 // in this function's (MF) stack pointer stack slot 0(SP). 4845 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4846 CallConv == CallingConv::Fast) 4847 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4848 4849 // Count how many bytes are to be pushed on the stack, including the linkage 4850 // area, parameter list area and the part of the local variable space which 4851 // contains copies of aggregates which are passed by value. 4852 4853 // Assign locations to all of the outgoing arguments. 4854 SmallVector<CCValAssign, 16> ArgLocs; 4855 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 4856 4857 // Reserve space for the linkage area on the stack. 4858 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4859 PtrByteSize); 4860 if (useSoftFloat()) 4861 CCInfo.PreAnalyzeCallOperands(Outs); 4862 4863 if (isVarArg) { 4864 // Handle fixed and variable vector arguments differently. 4865 // Fixed vector arguments go into registers as long as registers are 4866 // available. Variable vector arguments always go into memory. 4867 unsigned NumArgs = Outs.size(); 4868 4869 for (unsigned i = 0; i != NumArgs; ++i) { 4870 MVT ArgVT = Outs[i].VT; 4871 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4872 bool Result; 4873 4874 if (Outs[i].IsFixed) { 4875 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4876 CCInfo); 4877 } else { 4878 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4879 ArgFlags, CCInfo); 4880 } 4881 4882 if (Result) { 4883 #ifndef NDEBUG 4884 errs() << "Call operand #" << i << " has unhandled type " 4885 << EVT(ArgVT).getEVTString() << "\n"; 4886 #endif 4887 llvm_unreachable(nullptr); 4888 } 4889 } 4890 } else { 4891 // All arguments are treated the same. 4892 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4893 } 4894 CCInfo.clearWasPPCF128(); 4895 4896 // Assign locations to all of the outgoing aggregate by value arguments. 4897 SmallVector<CCValAssign, 16> ByValArgLocs; 4898 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 4899 4900 // Reserve stack space for the allocations in CCInfo. 4901 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4902 4903 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4904 4905 // Size of the linkage area, parameter list area and the part of the local 4906 // space variable where copies of aggregates which are passed by value are 4907 // stored. 4908 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4909 4910 // Calculate by how many bytes the stack has to be adjusted in case of tail 4911 // call optimization. 4912 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4913 4914 // Adjust the stack pointer for the new arguments... 4915 // These operations are automatically eliminated by the prolog/epilog pass 4916 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4917 dl); 4918 SDValue CallSeqStart = Chain; 4919 4920 // Load the return address and frame pointer so it can be moved somewhere else 4921 // later. 4922 SDValue LROp, FPOp; 4923 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 4924 4925 // Set up a copy of the stack pointer for use loading and storing any 4926 // arguments that may not fit in the registers available for argument 4927 // passing. 4928 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4929 4930 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4931 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4932 SmallVector<SDValue, 8> MemOpChains; 4933 4934 bool seenFloatArg = false; 4935 // Walk the register/memloc assignments, inserting copies/loads. 4936 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4937 i != e; 4938 ++i) { 4939 CCValAssign &VA = ArgLocs[i]; 4940 SDValue Arg = OutVals[i]; 4941 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4942 4943 if (Flags.isByVal()) { 4944 // Argument is an aggregate which is passed by value, thus we need to 4945 // create a copy of it in the local variable space of the current stack 4946 // frame (which is the stack frame of the caller) and pass the address of 4947 // this copy to the callee. 4948 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4949 CCValAssign &ByValVA = ByValArgLocs[j++]; 4950 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4951 4952 // Memory reserved in the local variable space of the callers stack frame. 4953 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4954 4955 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4956 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4957 StackPtr, PtrOff); 4958 4959 // Create a copy of the argument in the local area of the current 4960 // stack frame. 4961 SDValue MemcpyCall = 4962 CreateCopyOfByValArgument(Arg, PtrOff, 4963 CallSeqStart.getNode()->getOperand(0), 4964 Flags, DAG, dl); 4965 4966 // This must go outside the CALLSEQ_START..END. 4967 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4968 CallSeqStart.getNode()->getOperand(1), 4969 SDLoc(MemcpyCall)); 4970 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4971 NewCallSeqStart.getNode()); 4972 Chain = CallSeqStart = NewCallSeqStart; 4973 4974 // Pass the address of the aggregate copy on the stack either in a 4975 // physical register or in the parameter list area of the current stack 4976 // frame to the callee. 4977 Arg = PtrOff; 4978 } 4979 4980 if (VA.isRegLoc()) { 4981 if (Arg.getValueType() == MVT::i1) 4982 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4983 4984 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4985 // Put argument in a physical register. 4986 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4987 } else { 4988 // Put argument in the parameter list area of the current stack frame. 4989 assert(VA.isMemLoc()); 4990 unsigned LocMemOffset = VA.getLocMemOffset(); 4991 4992 if (!isTailCall) { 4993 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4994 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4995 StackPtr, PtrOff); 4996 4997 MemOpChains.push_back( 4998 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4999 } else { 5000 // Calculate and remember argument location. 5001 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5002 TailCallArguments); 5003 } 5004 } 5005 } 5006 5007 if (!MemOpChains.empty()) 5008 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5009 5010 // Build a sequence of copy-to-reg nodes chained together with token chain 5011 // and flag operands which copy the outgoing args into the appropriate regs. 5012 SDValue InFlag; 5013 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5014 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5015 RegsToPass[i].second, InFlag); 5016 InFlag = Chain.getValue(1); 5017 } 5018 5019 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5020 // registers. 5021 if (isVarArg) { 5022 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5023 SDValue Ops[] = { Chain, InFlag }; 5024 5025 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5026 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5027 5028 InFlag = Chain.getValue(1); 5029 } 5030 5031 if (isTailCall) 5032 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5033 TailCallArguments); 5034 5035 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5036 /* unused except on PPC64 ELFv1 */ false, DAG, 5037 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5038 NumBytes, Ins, InVals, CS); 5039 } 5040 5041 // Copy an argument into memory, being careful to do this outside the 5042 // call sequence for the call to which the argument belongs. 5043 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5044 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5045 SelectionDAG &DAG, const SDLoc &dl) const { 5046 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5047 CallSeqStart.getNode()->getOperand(0), 5048 Flags, DAG, dl); 5049 // The MEMCPY must go outside the CALLSEQ_START..END. 5050 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 5051 CallSeqStart.getNode()->getOperand(1), 5052 SDLoc(MemcpyCall)); 5053 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5054 NewCallSeqStart.getNode()); 5055 return NewCallSeqStart; 5056 } 5057 5058 SDValue PPCTargetLowering::LowerCall_64SVR4( 5059 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5060 bool isTailCall, bool isPatchPoint, 5061 const SmallVectorImpl<ISD::OutputArg> &Outs, 5062 const SmallVectorImpl<SDValue> &OutVals, 5063 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5064 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5065 ImmutableCallSite *CS) const { 5066 5067 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5068 bool isLittleEndian = Subtarget.isLittleEndian(); 5069 unsigned NumOps = Outs.size(); 5070 bool hasNest = false; 5071 bool IsSibCall = false; 5072 5073 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5074 unsigned PtrByteSize = 8; 5075 5076 MachineFunction &MF = DAG.getMachineFunction(); 5077 5078 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5079 IsSibCall = true; 5080 5081 // Mark this function as potentially containing a function that contains a 5082 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5083 // and restoring the callers stack pointer in this functions epilog. This is 5084 // done because by tail calling the called function might overwrite the value 5085 // in this function's (MF) stack pointer stack slot 0(SP). 5086 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5087 CallConv == CallingConv::Fast) 5088 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5089 5090 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5091 "fastcc not supported on varargs functions"); 5092 5093 // Count how many bytes are to be pushed on the stack, including the linkage 5094 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5095 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5096 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5097 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5098 unsigned NumBytes = LinkageSize; 5099 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5100 unsigned &QFPR_idx = FPR_idx; 5101 5102 static const MCPhysReg GPR[] = { 5103 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5104 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5105 }; 5106 static const MCPhysReg VR[] = { 5107 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5108 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5109 }; 5110 5111 const unsigned NumGPRs = array_lengthof(GPR); 5112 const unsigned NumFPRs = 13; 5113 const unsigned NumVRs = array_lengthof(VR); 5114 const unsigned NumQFPRs = NumFPRs; 5115 5116 // When using the fast calling convention, we don't provide backing for 5117 // arguments that will be in registers. 5118 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5119 5120 // Add up all the space actually used. 5121 for (unsigned i = 0; i != NumOps; ++i) { 5122 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5123 EVT ArgVT = Outs[i].VT; 5124 EVT OrigVT = Outs[i].ArgVT; 5125 5126 if (Flags.isNest()) 5127 continue; 5128 5129 if (CallConv == CallingConv::Fast) { 5130 if (Flags.isByVal()) 5131 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5132 else 5133 switch (ArgVT.getSimpleVT().SimpleTy) { 5134 default: llvm_unreachable("Unexpected ValueType for argument!"); 5135 case MVT::i1: 5136 case MVT::i32: 5137 case MVT::i64: 5138 if (++NumGPRsUsed <= NumGPRs) 5139 continue; 5140 break; 5141 case MVT::v4i32: 5142 case MVT::v8i16: 5143 case MVT::v16i8: 5144 case MVT::v2f64: 5145 case MVT::v2i64: 5146 case MVT::v1i128: 5147 if (++NumVRsUsed <= NumVRs) 5148 continue; 5149 break; 5150 case MVT::v4f32: 5151 // When using QPX, this is handled like a FP register, otherwise, it 5152 // is an Altivec register. 5153 if (Subtarget.hasQPX()) { 5154 if (++NumFPRsUsed <= NumFPRs) 5155 continue; 5156 } else { 5157 if (++NumVRsUsed <= NumVRs) 5158 continue; 5159 } 5160 break; 5161 case MVT::f32: 5162 case MVT::f64: 5163 case MVT::v4f64: // QPX 5164 case MVT::v4i1: // QPX 5165 if (++NumFPRsUsed <= NumFPRs) 5166 continue; 5167 break; 5168 } 5169 } 5170 5171 /* Respect alignment of argument on the stack. */ 5172 unsigned Align = 5173 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5174 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5175 5176 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5177 if (Flags.isInConsecutiveRegsLast()) 5178 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5179 } 5180 5181 unsigned NumBytesActuallyUsed = NumBytes; 5182 5183 // The prolog code of the callee may store up to 8 GPR argument registers to 5184 // the stack, allowing va_start to index over them in memory if its varargs. 5185 // Because we cannot tell if this is needed on the caller side, we have to 5186 // conservatively assume that it is needed. As such, make sure we have at 5187 // least enough stack space for the caller to store the 8 GPRs. 5188 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 5189 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5190 5191 // Tail call needs the stack to be aligned. 5192 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5193 CallConv == CallingConv::Fast) 5194 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5195 5196 int SPDiff = 0; 5197 5198 // Calculate by how many bytes the stack has to be adjusted in case of tail 5199 // call optimization. 5200 if (!IsSibCall) 5201 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5202 5203 // To protect arguments on the stack from being clobbered in a tail call, 5204 // force all the loads to happen before doing any other lowering. 5205 if (isTailCall) 5206 Chain = DAG.getStackArgumentTokenFactor(Chain); 5207 5208 // Adjust the stack pointer for the new arguments... 5209 // These operations are automatically eliminated by the prolog/epilog pass 5210 if (!IsSibCall) 5211 Chain = DAG.getCALLSEQ_START(Chain, 5212 DAG.getIntPtrConstant(NumBytes, dl, true), dl); 5213 SDValue CallSeqStart = Chain; 5214 5215 // Load the return address and frame pointer so it can be move somewhere else 5216 // later. 5217 SDValue LROp, FPOp; 5218 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5219 5220 // Set up a copy of the stack pointer for use loading and storing any 5221 // arguments that may not fit in the registers available for argument 5222 // passing. 5223 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5224 5225 // Figure out which arguments are going to go in registers, and which in 5226 // memory. Also, if this is a vararg function, floating point operations 5227 // must be stored to our stack, and loaded into integer regs as well, if 5228 // any integer regs are available for argument passing. 5229 unsigned ArgOffset = LinkageSize; 5230 5231 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5232 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5233 5234 SmallVector<SDValue, 8> MemOpChains; 5235 for (unsigned i = 0; i != NumOps; ++i) { 5236 SDValue Arg = OutVals[i]; 5237 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5238 EVT ArgVT = Outs[i].VT; 5239 EVT OrigVT = Outs[i].ArgVT; 5240 5241 // PtrOff will be used to store the current argument to the stack if a 5242 // register cannot be found for it. 5243 SDValue PtrOff; 5244 5245 // We re-align the argument offset for each argument, except when using the 5246 // fast calling convention, when we need to make sure we do that only when 5247 // we'll actually use a stack slot. 5248 auto ComputePtrOff = [&]() { 5249 /* Respect alignment of argument on the stack. */ 5250 unsigned Align = 5251 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5252 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5253 5254 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5255 5256 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5257 }; 5258 5259 if (CallConv != CallingConv::Fast) { 5260 ComputePtrOff(); 5261 5262 /* Compute GPR index associated with argument offset. */ 5263 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5264 GPR_idx = std::min(GPR_idx, NumGPRs); 5265 } 5266 5267 // Promote integers to 64-bit values. 5268 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5269 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5270 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5271 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5272 } 5273 5274 // FIXME memcpy is used way more than necessary. Correctness first. 5275 // Note: "by value" is code for passing a structure by value, not 5276 // basic types. 5277 if (Flags.isByVal()) { 5278 // Note: Size includes alignment padding, so 5279 // struct x { short a; char b; } 5280 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5281 // These are the proper values we need for right-justifying the 5282 // aggregate in a parameter register. 5283 unsigned Size = Flags.getByValSize(); 5284 5285 // An empty aggregate parameter takes up no storage and no 5286 // registers. 5287 if (Size == 0) 5288 continue; 5289 5290 if (CallConv == CallingConv::Fast) 5291 ComputePtrOff(); 5292 5293 // All aggregates smaller than 8 bytes must be passed right-justified. 5294 if (Size==1 || Size==2 || Size==4) { 5295 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5296 if (GPR_idx != NumGPRs) { 5297 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5298 MachinePointerInfo(), VT); 5299 MemOpChains.push_back(Load.getValue(1)); 5300 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5301 5302 ArgOffset += PtrByteSize; 5303 continue; 5304 } 5305 } 5306 5307 if (GPR_idx == NumGPRs && Size < 8) { 5308 SDValue AddPtr = PtrOff; 5309 if (!isLittleEndian) { 5310 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5311 PtrOff.getValueType()); 5312 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5313 } 5314 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5315 CallSeqStart, 5316 Flags, DAG, dl); 5317 ArgOffset += PtrByteSize; 5318 continue; 5319 } 5320 // Copy entire object into memory. There are cases where gcc-generated 5321 // code assumes it is there, even if it could be put entirely into 5322 // registers. (This is not what the doc says.) 5323 5324 // FIXME: The above statement is likely due to a misunderstanding of the 5325 // documents. All arguments must be copied into the parameter area BY 5326 // THE CALLEE in the event that the callee takes the address of any 5327 // formal argument. That has not yet been implemented. However, it is 5328 // reasonable to use the stack area as a staging area for the register 5329 // load. 5330 5331 // Skip this for small aggregates, as we will use the same slot for a 5332 // right-justified copy, below. 5333 if (Size >= 8) 5334 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5335 CallSeqStart, 5336 Flags, DAG, dl); 5337 5338 // When a register is available, pass a small aggregate right-justified. 5339 if (Size < 8 && GPR_idx != NumGPRs) { 5340 // The easiest way to get this right-justified in a register 5341 // is to copy the structure into the rightmost portion of a 5342 // local variable slot, then load the whole slot into the 5343 // register. 5344 // FIXME: The memcpy seems to produce pretty awful code for 5345 // small aggregates, particularly for packed ones. 5346 // FIXME: It would be preferable to use the slot in the 5347 // parameter save area instead of a new local variable. 5348 SDValue AddPtr = PtrOff; 5349 if (!isLittleEndian) { 5350 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5351 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5352 } 5353 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5354 CallSeqStart, 5355 Flags, DAG, dl); 5356 5357 // Load the slot into the register. 5358 SDValue Load = 5359 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5360 MemOpChains.push_back(Load.getValue(1)); 5361 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5362 5363 // Done with this argument. 5364 ArgOffset += PtrByteSize; 5365 continue; 5366 } 5367 5368 // For aggregates larger than PtrByteSize, copy the pieces of the 5369 // object that fit into registers from the parameter save area. 5370 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5371 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5372 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5373 if (GPR_idx != NumGPRs) { 5374 SDValue Load = 5375 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5376 MemOpChains.push_back(Load.getValue(1)); 5377 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5378 ArgOffset += PtrByteSize; 5379 } else { 5380 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5381 break; 5382 } 5383 } 5384 continue; 5385 } 5386 5387 switch (Arg.getSimpleValueType().SimpleTy) { 5388 default: llvm_unreachable("Unexpected ValueType for argument!"); 5389 case MVT::i1: 5390 case MVT::i32: 5391 case MVT::i64: 5392 if (Flags.isNest()) { 5393 // The 'nest' parameter, if any, is passed in R11. 5394 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5395 hasNest = true; 5396 break; 5397 } 5398 5399 // These can be scalar arguments or elements of an integer array type 5400 // passed directly. Clang may use those instead of "byval" aggregate 5401 // types to avoid forcing arguments to memory unnecessarily. 5402 if (GPR_idx != NumGPRs) { 5403 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5404 } else { 5405 if (CallConv == CallingConv::Fast) 5406 ComputePtrOff(); 5407 5408 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5409 true, isTailCall, false, MemOpChains, 5410 TailCallArguments, dl); 5411 if (CallConv == CallingConv::Fast) 5412 ArgOffset += PtrByteSize; 5413 } 5414 if (CallConv != CallingConv::Fast) 5415 ArgOffset += PtrByteSize; 5416 break; 5417 case MVT::f32: 5418 case MVT::f64: { 5419 // These can be scalar arguments or elements of a float array type 5420 // passed directly. The latter are used to implement ELFv2 homogenous 5421 // float aggregates. 5422 5423 // Named arguments go into FPRs first, and once they overflow, the 5424 // remaining arguments go into GPRs and then the parameter save area. 5425 // Unnamed arguments for vararg functions always go to GPRs and 5426 // then the parameter save area. For now, put all arguments to vararg 5427 // routines always in both locations (FPR *and* GPR or stack slot). 5428 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5429 bool NeededLoad = false; 5430 5431 // First load the argument into the next available FPR. 5432 if (FPR_idx != NumFPRs) 5433 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5434 5435 // Next, load the argument into GPR or stack slot if needed. 5436 if (!NeedGPROrStack) 5437 ; 5438 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5439 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5440 // once we support fp <-> gpr moves. 5441 5442 // In the non-vararg case, this can only ever happen in the 5443 // presence of f32 array types, since otherwise we never run 5444 // out of FPRs before running out of GPRs. 5445 SDValue ArgVal; 5446 5447 // Double values are always passed in a single GPR. 5448 if (Arg.getValueType() != MVT::f32) { 5449 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5450 5451 // Non-array float values are extended and passed in a GPR. 5452 } else if (!Flags.isInConsecutiveRegs()) { 5453 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5454 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5455 5456 // If we have an array of floats, we collect every odd element 5457 // together with its predecessor into one GPR. 5458 } else if (ArgOffset % PtrByteSize != 0) { 5459 SDValue Lo, Hi; 5460 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5461 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5462 if (!isLittleEndian) 5463 std::swap(Lo, Hi); 5464 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5465 5466 // The final element, if even, goes into the first half of a GPR. 5467 } else if (Flags.isInConsecutiveRegsLast()) { 5468 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5469 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5470 if (!isLittleEndian) 5471 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5472 DAG.getConstant(32, dl, MVT::i32)); 5473 5474 // Non-final even elements are skipped; they will be handled 5475 // together the with subsequent argument on the next go-around. 5476 } else 5477 ArgVal = SDValue(); 5478 5479 if (ArgVal.getNode()) 5480 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5481 } else { 5482 if (CallConv == CallingConv::Fast) 5483 ComputePtrOff(); 5484 5485 // Single-precision floating-point values are mapped to the 5486 // second (rightmost) word of the stack doubleword. 5487 if (Arg.getValueType() == MVT::f32 && 5488 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5489 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5490 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5491 } 5492 5493 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5494 true, isTailCall, false, MemOpChains, 5495 TailCallArguments, dl); 5496 5497 NeededLoad = true; 5498 } 5499 // When passing an array of floats, the array occupies consecutive 5500 // space in the argument area; only round up to the next doubleword 5501 // at the end of the array. Otherwise, each float takes 8 bytes. 5502 if (CallConv != CallingConv::Fast || NeededLoad) { 5503 ArgOffset += (Arg.getValueType() == MVT::f32 && 5504 Flags.isInConsecutiveRegs()) ? 4 : 8; 5505 if (Flags.isInConsecutiveRegsLast()) 5506 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5507 } 5508 break; 5509 } 5510 case MVT::v4f32: 5511 case MVT::v4i32: 5512 case MVT::v8i16: 5513 case MVT::v16i8: 5514 case MVT::v2f64: 5515 case MVT::v2i64: 5516 case MVT::v1i128: 5517 if (!Subtarget.hasQPX()) { 5518 // These can be scalar arguments or elements of a vector array type 5519 // passed directly. The latter are used to implement ELFv2 homogenous 5520 // vector aggregates. 5521 5522 // For a varargs call, named arguments go into VRs or on the stack as 5523 // usual; unnamed arguments always go to the stack or the corresponding 5524 // GPRs when within range. For now, we always put the value in both 5525 // locations (or even all three). 5526 if (isVarArg) { 5527 // We could elide this store in the case where the object fits 5528 // entirely in R registers. Maybe later. 5529 SDValue Store = 5530 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5531 MemOpChains.push_back(Store); 5532 if (VR_idx != NumVRs) { 5533 SDValue Load = 5534 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 5535 MemOpChains.push_back(Load.getValue(1)); 5536 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5537 } 5538 ArgOffset += 16; 5539 for (unsigned i=0; i<16; i+=PtrByteSize) { 5540 if (GPR_idx == NumGPRs) 5541 break; 5542 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5543 DAG.getConstant(i, dl, PtrVT)); 5544 SDValue Load = 5545 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5546 MemOpChains.push_back(Load.getValue(1)); 5547 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5548 } 5549 break; 5550 } 5551 5552 // Non-varargs Altivec params go into VRs or on the stack. 5553 if (VR_idx != NumVRs) { 5554 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5555 } else { 5556 if (CallConv == CallingConv::Fast) 5557 ComputePtrOff(); 5558 5559 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5560 true, isTailCall, true, MemOpChains, 5561 TailCallArguments, dl); 5562 if (CallConv == CallingConv::Fast) 5563 ArgOffset += 16; 5564 } 5565 5566 if (CallConv != CallingConv::Fast) 5567 ArgOffset += 16; 5568 break; 5569 } // not QPX 5570 5571 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5572 "Invalid QPX parameter type"); 5573 5574 /* fall through */ 5575 case MVT::v4f64: 5576 case MVT::v4i1: { 5577 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5578 if (isVarArg) { 5579 // We could elide this store in the case where the object fits 5580 // entirely in R registers. Maybe later. 5581 SDValue Store = 5582 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5583 MemOpChains.push_back(Store); 5584 if (QFPR_idx != NumQFPRs) { 5585 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 5586 PtrOff, MachinePointerInfo()); 5587 MemOpChains.push_back(Load.getValue(1)); 5588 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5589 } 5590 ArgOffset += (IsF32 ? 16 : 32); 5591 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5592 if (GPR_idx == NumGPRs) 5593 break; 5594 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5595 DAG.getConstant(i, dl, PtrVT)); 5596 SDValue Load = 5597 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5598 MemOpChains.push_back(Load.getValue(1)); 5599 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5600 } 5601 break; 5602 } 5603 5604 // Non-varargs QPX params go into registers or on the stack. 5605 if (QFPR_idx != NumQFPRs) { 5606 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5607 } else { 5608 if (CallConv == CallingConv::Fast) 5609 ComputePtrOff(); 5610 5611 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5612 true, isTailCall, true, MemOpChains, 5613 TailCallArguments, dl); 5614 if (CallConv == CallingConv::Fast) 5615 ArgOffset += (IsF32 ? 16 : 32); 5616 } 5617 5618 if (CallConv != CallingConv::Fast) 5619 ArgOffset += (IsF32 ? 16 : 32); 5620 break; 5621 } 5622 } 5623 } 5624 5625 assert(NumBytesActuallyUsed == ArgOffset); 5626 (void)NumBytesActuallyUsed; 5627 5628 if (!MemOpChains.empty()) 5629 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5630 5631 // Check if this is an indirect call (MTCTR/BCTRL). 5632 // See PrepareCall() for more information about calls through function 5633 // pointers in the 64-bit SVR4 ABI. 5634 if (!isTailCall && !isPatchPoint && 5635 !isFunctionGlobalAddress(Callee) && 5636 !isa<ExternalSymbolSDNode>(Callee)) { 5637 // Load r2 into a virtual register and store it to the TOC save area. 5638 setUsesTOCBasePtr(DAG); 5639 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5640 // TOC save area offset. 5641 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5642 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5643 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5644 Chain = DAG.getStore( 5645 Val.getValue(1), dl, Val, AddPtr, 5646 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 5647 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5648 // This does not mean the MTCTR instruction must use R12; it's easier 5649 // to model this as an extra parameter, so do that. 5650 if (isELFv2ABI && !isPatchPoint) 5651 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5652 } 5653 5654 // Build a sequence of copy-to-reg nodes chained together with token chain 5655 // and flag operands which copy the outgoing args into the appropriate regs. 5656 SDValue InFlag; 5657 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5658 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5659 RegsToPass[i].second, InFlag); 5660 InFlag = Chain.getValue(1); 5661 } 5662 5663 if (isTailCall && !IsSibCall) 5664 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5665 TailCallArguments); 5666 5667 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 5668 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5669 SPDiff, NumBytes, Ins, InVals, CS); 5670 } 5671 5672 SDValue PPCTargetLowering::LowerCall_Darwin( 5673 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5674 bool isTailCall, bool isPatchPoint, 5675 const SmallVectorImpl<ISD::OutputArg> &Outs, 5676 const SmallVectorImpl<SDValue> &OutVals, 5677 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5678 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5679 ImmutableCallSite *CS) const { 5680 5681 unsigned NumOps = Outs.size(); 5682 5683 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5684 bool isPPC64 = PtrVT == MVT::i64; 5685 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5686 5687 MachineFunction &MF = DAG.getMachineFunction(); 5688 5689 // Mark this function as potentially containing a function that contains a 5690 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5691 // and restoring the callers stack pointer in this functions epilog. This is 5692 // done because by tail calling the called function might overwrite the value 5693 // in this function's (MF) stack pointer stack slot 0(SP). 5694 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5695 CallConv == CallingConv::Fast) 5696 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5697 5698 // Count how many bytes are to be pushed on the stack, including the linkage 5699 // area, and parameter passing area. We start with 24/48 bytes, which is 5700 // prereserved space for [SP][CR][LR][3 x unused]. 5701 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5702 unsigned NumBytes = LinkageSize; 5703 5704 // Add up all the space actually used. 5705 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5706 // they all go in registers, but we must reserve stack space for them for 5707 // possible use by the caller. In varargs or 64-bit calls, parameters are 5708 // assigned stack space in order, with padding so Altivec parameters are 5709 // 16-byte aligned. 5710 unsigned nAltivecParamsAtEnd = 0; 5711 for (unsigned i = 0; i != NumOps; ++i) { 5712 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5713 EVT ArgVT = Outs[i].VT; 5714 // Varargs Altivec parameters are padded to a 16 byte boundary. 5715 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5716 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5717 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5718 if (!isVarArg && !isPPC64) { 5719 // Non-varargs Altivec parameters go after all the non-Altivec 5720 // parameters; handle those later so we know how much padding we need. 5721 nAltivecParamsAtEnd++; 5722 continue; 5723 } 5724 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5725 NumBytes = ((NumBytes+15)/16)*16; 5726 } 5727 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5728 } 5729 5730 // Allow for Altivec parameters at the end, if needed. 5731 if (nAltivecParamsAtEnd) { 5732 NumBytes = ((NumBytes+15)/16)*16; 5733 NumBytes += 16*nAltivecParamsAtEnd; 5734 } 5735 5736 // The prolog code of the callee may store up to 8 GPR argument registers to 5737 // the stack, allowing va_start to index over them in memory if its varargs. 5738 // Because we cannot tell if this is needed on the caller side, we have to 5739 // conservatively assume that it is needed. As such, make sure we have at 5740 // least enough stack space for the caller to store the 8 GPRs. 5741 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5742 5743 // Tail call needs the stack to be aligned. 5744 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5745 CallConv == CallingConv::Fast) 5746 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5747 5748 // Calculate by how many bytes the stack has to be adjusted in case of tail 5749 // call optimization. 5750 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5751 5752 // To protect arguments on the stack from being clobbered in a tail call, 5753 // force all the loads to happen before doing any other lowering. 5754 if (isTailCall) 5755 Chain = DAG.getStackArgumentTokenFactor(Chain); 5756 5757 // Adjust the stack pointer for the new arguments... 5758 // These operations are automatically eliminated by the prolog/epilog pass 5759 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5760 dl); 5761 SDValue CallSeqStart = Chain; 5762 5763 // Load the return address and frame pointer so it can be move somewhere else 5764 // later. 5765 SDValue LROp, FPOp; 5766 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5767 5768 // Set up a copy of the stack pointer for use loading and storing any 5769 // arguments that may not fit in the registers available for argument 5770 // passing. 5771 SDValue StackPtr; 5772 if (isPPC64) 5773 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5774 else 5775 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5776 5777 // Figure out which arguments are going to go in registers, and which in 5778 // memory. Also, if this is a vararg function, floating point operations 5779 // must be stored to our stack, and loaded into integer regs as well, if 5780 // any integer regs are available for argument passing. 5781 unsigned ArgOffset = LinkageSize; 5782 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5783 5784 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5785 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5786 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5787 }; 5788 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5789 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5790 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5791 }; 5792 static const MCPhysReg VR[] = { 5793 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5794 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5795 }; 5796 const unsigned NumGPRs = array_lengthof(GPR_32); 5797 const unsigned NumFPRs = 13; 5798 const unsigned NumVRs = array_lengthof(VR); 5799 5800 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5801 5802 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5803 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5804 5805 SmallVector<SDValue, 8> MemOpChains; 5806 for (unsigned i = 0; i != NumOps; ++i) { 5807 SDValue Arg = OutVals[i]; 5808 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5809 5810 // PtrOff will be used to store the current argument to the stack if a 5811 // register cannot be found for it. 5812 SDValue PtrOff; 5813 5814 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5815 5816 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5817 5818 // On PPC64, promote integers to 64-bit values. 5819 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5820 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5821 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5822 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5823 } 5824 5825 // FIXME memcpy is used way more than necessary. Correctness first. 5826 // Note: "by value" is code for passing a structure by value, not 5827 // basic types. 5828 if (Flags.isByVal()) { 5829 unsigned Size = Flags.getByValSize(); 5830 // Very small objects are passed right-justified. Everything else is 5831 // passed left-justified. 5832 if (Size==1 || Size==2) { 5833 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5834 if (GPR_idx != NumGPRs) { 5835 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5836 MachinePointerInfo(), VT); 5837 MemOpChains.push_back(Load.getValue(1)); 5838 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5839 5840 ArgOffset += PtrByteSize; 5841 } else { 5842 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5843 PtrOff.getValueType()); 5844 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5845 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5846 CallSeqStart, 5847 Flags, DAG, dl); 5848 ArgOffset += PtrByteSize; 5849 } 5850 continue; 5851 } 5852 // Copy entire object into memory. There are cases where gcc-generated 5853 // code assumes it is there, even if it could be put entirely into 5854 // registers. (This is not what the doc says.) 5855 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5856 CallSeqStart, 5857 Flags, DAG, dl); 5858 5859 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5860 // copy the pieces of the object that fit into registers from the 5861 // parameter save area. 5862 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5863 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5864 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5865 if (GPR_idx != NumGPRs) { 5866 SDValue Load = 5867 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5868 MemOpChains.push_back(Load.getValue(1)); 5869 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5870 ArgOffset += PtrByteSize; 5871 } else { 5872 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5873 break; 5874 } 5875 } 5876 continue; 5877 } 5878 5879 switch (Arg.getSimpleValueType().SimpleTy) { 5880 default: llvm_unreachable("Unexpected ValueType for argument!"); 5881 case MVT::i1: 5882 case MVT::i32: 5883 case MVT::i64: 5884 if (GPR_idx != NumGPRs) { 5885 if (Arg.getValueType() == MVT::i1) 5886 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5887 5888 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5889 } else { 5890 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5891 isPPC64, isTailCall, false, MemOpChains, 5892 TailCallArguments, dl); 5893 } 5894 ArgOffset += PtrByteSize; 5895 break; 5896 case MVT::f32: 5897 case MVT::f64: 5898 if (FPR_idx != NumFPRs) { 5899 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5900 5901 if (isVarArg) { 5902 SDValue Store = 5903 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5904 MemOpChains.push_back(Store); 5905 5906 // Float varargs are always shadowed in available integer registers 5907 if (GPR_idx != NumGPRs) { 5908 SDValue Load = 5909 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 5910 MemOpChains.push_back(Load.getValue(1)); 5911 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5912 } 5913 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5914 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5915 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5916 SDValue Load = 5917 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 5918 MemOpChains.push_back(Load.getValue(1)); 5919 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5920 } 5921 } else { 5922 // If we have any FPRs remaining, we may also have GPRs remaining. 5923 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5924 // GPRs. 5925 if (GPR_idx != NumGPRs) 5926 ++GPR_idx; 5927 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5928 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5929 ++GPR_idx; 5930 } 5931 } else 5932 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5933 isPPC64, isTailCall, false, MemOpChains, 5934 TailCallArguments, dl); 5935 if (isPPC64) 5936 ArgOffset += 8; 5937 else 5938 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5939 break; 5940 case MVT::v4f32: 5941 case MVT::v4i32: 5942 case MVT::v8i16: 5943 case MVT::v16i8: 5944 if (isVarArg) { 5945 // These go aligned on the stack, or in the corresponding R registers 5946 // when within range. The Darwin PPC ABI doc claims they also go in 5947 // V registers; in fact gcc does this only for arguments that are 5948 // prototyped, not for those that match the ... We do it for all 5949 // arguments, seems to work. 5950 while (ArgOffset % 16 !=0) { 5951 ArgOffset += PtrByteSize; 5952 if (GPR_idx != NumGPRs) 5953 GPR_idx++; 5954 } 5955 // We could elide this store in the case where the object fits 5956 // entirely in R registers. Maybe later. 5957 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5958 DAG.getConstant(ArgOffset, dl, PtrVT)); 5959 SDValue Store = 5960 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5961 MemOpChains.push_back(Store); 5962 if (VR_idx != NumVRs) { 5963 SDValue Load = 5964 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 5965 MemOpChains.push_back(Load.getValue(1)); 5966 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5967 } 5968 ArgOffset += 16; 5969 for (unsigned i=0; i<16; i+=PtrByteSize) { 5970 if (GPR_idx == NumGPRs) 5971 break; 5972 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5973 DAG.getConstant(i, dl, PtrVT)); 5974 SDValue Load = 5975 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5976 MemOpChains.push_back(Load.getValue(1)); 5977 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5978 } 5979 break; 5980 } 5981 5982 // Non-varargs Altivec params generally go in registers, but have 5983 // stack space allocated at the end. 5984 if (VR_idx != NumVRs) { 5985 // Doesn't have GPR space allocated. 5986 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5987 } else if (nAltivecParamsAtEnd==0) { 5988 // We are emitting Altivec params in order. 5989 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5990 isPPC64, isTailCall, true, MemOpChains, 5991 TailCallArguments, dl); 5992 ArgOffset += 16; 5993 } 5994 break; 5995 } 5996 } 5997 // If all Altivec parameters fit in registers, as they usually do, 5998 // they get stack space following the non-Altivec parameters. We 5999 // don't track this here because nobody below needs it. 6000 // If there are more Altivec parameters than fit in registers emit 6001 // the stores here. 6002 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6003 unsigned j = 0; 6004 // Offset is aligned; skip 1st 12 params which go in V registers. 6005 ArgOffset = ((ArgOffset+15)/16)*16; 6006 ArgOffset += 12*16; 6007 for (unsigned i = 0; i != NumOps; ++i) { 6008 SDValue Arg = OutVals[i]; 6009 EVT ArgType = Outs[i].VT; 6010 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6011 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6012 if (++j > NumVRs) { 6013 SDValue PtrOff; 6014 // We are emitting Altivec params in order. 6015 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6016 isPPC64, isTailCall, true, MemOpChains, 6017 TailCallArguments, dl); 6018 ArgOffset += 16; 6019 } 6020 } 6021 } 6022 } 6023 6024 if (!MemOpChains.empty()) 6025 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6026 6027 // On Darwin, R12 must contain the address of an indirect callee. This does 6028 // not mean the MTCTR instruction must use R12; it's easier to model this as 6029 // an extra parameter, so do that. 6030 if (!isTailCall && 6031 !isFunctionGlobalAddress(Callee) && 6032 !isa<ExternalSymbolSDNode>(Callee) && 6033 !isBLACompatibleAddress(Callee, DAG)) 6034 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6035 PPC::R12), Callee)); 6036 6037 // Build a sequence of copy-to-reg nodes chained together with token chain 6038 // and flag operands which copy the outgoing args into the appropriate regs. 6039 SDValue InFlag; 6040 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6041 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6042 RegsToPass[i].second, InFlag); 6043 InFlag = Chain.getValue(1); 6044 } 6045 6046 if (isTailCall) 6047 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6048 TailCallArguments); 6049 6050 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6051 /* unused except on PPC64 ELFv1 */ false, DAG, 6052 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6053 NumBytes, Ins, InVals, CS); 6054 } 6055 6056 bool 6057 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6058 MachineFunction &MF, bool isVarArg, 6059 const SmallVectorImpl<ISD::OutputArg> &Outs, 6060 LLVMContext &Context) const { 6061 SmallVector<CCValAssign, 16> RVLocs; 6062 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6063 return CCInfo.CheckReturn(Outs, RetCC_PPC); 6064 } 6065 6066 SDValue 6067 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6068 bool isVarArg, 6069 const SmallVectorImpl<ISD::OutputArg> &Outs, 6070 const SmallVectorImpl<SDValue> &OutVals, 6071 const SDLoc &dl, SelectionDAG &DAG) const { 6072 6073 SmallVector<CCValAssign, 16> RVLocs; 6074 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6075 *DAG.getContext()); 6076 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 6077 6078 SDValue Flag; 6079 SmallVector<SDValue, 4> RetOps(1, Chain); 6080 6081 // Copy the result values into the output registers. 6082 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6083 CCValAssign &VA = RVLocs[i]; 6084 assert(VA.isRegLoc() && "Can only return in registers!"); 6085 6086 SDValue Arg = OutVals[i]; 6087 6088 switch (VA.getLocInfo()) { 6089 default: llvm_unreachable("Unknown loc info!"); 6090 case CCValAssign::Full: break; 6091 case CCValAssign::AExt: 6092 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6093 break; 6094 case CCValAssign::ZExt: 6095 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6096 break; 6097 case CCValAssign::SExt: 6098 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6099 break; 6100 } 6101 6102 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6103 Flag = Chain.getValue(1); 6104 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6105 } 6106 6107 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6108 const MCPhysReg *I = 6109 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6110 if (I) { 6111 for (; *I; ++I) { 6112 6113 if (PPC::G8RCRegClass.contains(*I)) 6114 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6115 else if (PPC::F8RCRegClass.contains(*I)) 6116 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6117 else if (PPC::CRRCRegClass.contains(*I)) 6118 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6119 else if (PPC::VRRCRegClass.contains(*I)) 6120 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6121 else 6122 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6123 } 6124 } 6125 6126 RetOps[0] = Chain; // Update chain. 6127 6128 // Add the flag if we have it. 6129 if (Flag.getNode()) 6130 RetOps.push_back(Flag); 6131 6132 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6133 } 6134 6135 SDValue 6136 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6137 SelectionDAG &DAG) const { 6138 SDLoc dl(Op); 6139 6140 // Get the corect type for integers. 6141 EVT IntVT = Op.getValueType(); 6142 6143 // Get the inputs. 6144 SDValue Chain = Op.getOperand(0); 6145 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6146 // Build a DYNAREAOFFSET node. 6147 SDValue Ops[2] = {Chain, FPSIdx}; 6148 SDVTList VTs = DAG.getVTList(IntVT); 6149 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6150 } 6151 6152 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6153 SelectionDAG &DAG) const { 6154 // When we pop the dynamic allocation we need to restore the SP link. 6155 SDLoc dl(Op); 6156 6157 // Get the corect type for pointers. 6158 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6159 6160 // Construct the stack pointer operand. 6161 bool isPPC64 = Subtarget.isPPC64(); 6162 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6163 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6164 6165 // Get the operands for the STACKRESTORE. 6166 SDValue Chain = Op.getOperand(0); 6167 SDValue SaveSP = Op.getOperand(1); 6168 6169 // Load the old link SP. 6170 SDValue LoadLinkSP = 6171 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6172 6173 // Restore the stack pointer. 6174 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6175 6176 // Store the old link SP. 6177 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6178 } 6179 6180 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6181 MachineFunction &MF = DAG.getMachineFunction(); 6182 bool isPPC64 = Subtarget.isPPC64(); 6183 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6184 6185 // Get current frame pointer save index. The users of this index will be 6186 // primarily DYNALLOC instructions. 6187 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6188 int RASI = FI->getReturnAddrSaveIndex(); 6189 6190 // If the frame pointer save index hasn't been defined yet. 6191 if (!RASI) { 6192 // Find out what the fix offset of the frame pointer save area. 6193 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6194 // Allocate the frame index for frame pointer save area. 6195 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6196 // Save the result. 6197 FI->setReturnAddrSaveIndex(RASI); 6198 } 6199 return DAG.getFrameIndex(RASI, PtrVT); 6200 } 6201 6202 SDValue 6203 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6204 MachineFunction &MF = DAG.getMachineFunction(); 6205 bool isPPC64 = Subtarget.isPPC64(); 6206 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6207 6208 // Get current frame pointer save index. The users of this index will be 6209 // primarily DYNALLOC instructions. 6210 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6211 int FPSI = FI->getFramePointerSaveIndex(); 6212 6213 // If the frame pointer save index hasn't been defined yet. 6214 if (!FPSI) { 6215 // Find out what the fix offset of the frame pointer save area. 6216 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6217 // Allocate the frame index for frame pointer save area. 6218 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6219 // Save the result. 6220 FI->setFramePointerSaveIndex(FPSI); 6221 } 6222 return DAG.getFrameIndex(FPSI, PtrVT); 6223 } 6224 6225 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6226 SelectionDAG &DAG) const { 6227 // Get the inputs. 6228 SDValue Chain = Op.getOperand(0); 6229 SDValue Size = Op.getOperand(1); 6230 SDLoc dl(Op); 6231 6232 // Get the corect type for pointers. 6233 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6234 // Negate the size. 6235 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6236 DAG.getConstant(0, dl, PtrVT), Size); 6237 // Construct a node for the frame pointer save index. 6238 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6239 // Build a DYNALLOC node. 6240 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6241 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6242 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6243 } 6244 6245 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 6246 SelectionDAG &DAG) const { 6247 MachineFunction &MF = DAG.getMachineFunction(); 6248 6249 bool isPPC64 = Subtarget.isPPC64(); 6250 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6251 6252 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 6253 return DAG.getFrameIndex(FI, PtrVT); 6254 } 6255 6256 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6257 SelectionDAG &DAG) const { 6258 SDLoc DL(Op); 6259 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6260 DAG.getVTList(MVT::i32, MVT::Other), 6261 Op.getOperand(0), Op.getOperand(1)); 6262 } 6263 6264 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6265 SelectionDAG &DAG) const { 6266 SDLoc DL(Op); 6267 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6268 Op.getOperand(0), Op.getOperand(1)); 6269 } 6270 6271 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6272 if (Op.getValueType().isVector()) 6273 return LowerVectorLoad(Op, DAG); 6274 6275 assert(Op.getValueType() == MVT::i1 && 6276 "Custom lowering only for i1 loads"); 6277 6278 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6279 6280 SDLoc dl(Op); 6281 LoadSDNode *LD = cast<LoadSDNode>(Op); 6282 6283 SDValue Chain = LD->getChain(); 6284 SDValue BasePtr = LD->getBasePtr(); 6285 MachineMemOperand *MMO = LD->getMemOperand(); 6286 6287 SDValue NewLD = 6288 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6289 BasePtr, MVT::i8, MMO); 6290 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6291 6292 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6293 return DAG.getMergeValues(Ops, dl); 6294 } 6295 6296 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6297 if (Op.getOperand(1).getValueType().isVector()) 6298 return LowerVectorStore(Op, DAG); 6299 6300 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6301 "Custom lowering only for i1 stores"); 6302 6303 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6304 6305 SDLoc dl(Op); 6306 StoreSDNode *ST = cast<StoreSDNode>(Op); 6307 6308 SDValue Chain = ST->getChain(); 6309 SDValue BasePtr = ST->getBasePtr(); 6310 SDValue Value = ST->getValue(); 6311 MachineMemOperand *MMO = ST->getMemOperand(); 6312 6313 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6314 Value); 6315 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6316 } 6317 6318 // FIXME: Remove this once the ANDI glue bug is fixed: 6319 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6320 assert(Op.getValueType() == MVT::i1 && 6321 "Custom lowering only for i1 results"); 6322 6323 SDLoc DL(Op); 6324 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6325 Op.getOperand(0)); 6326 } 6327 6328 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6329 /// possible. 6330 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6331 // Not FP? Not a fsel. 6332 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6333 !Op.getOperand(2).getValueType().isFloatingPoint()) 6334 return Op; 6335 6336 // We might be able to do better than this under some circumstances, but in 6337 // general, fsel-based lowering of select is a finite-math-only optimization. 6338 // For more information, see section F.3 of the 2.06 ISA specification. 6339 if (!DAG.getTarget().Options.NoInfsFPMath || 6340 !DAG.getTarget().Options.NoNaNsFPMath) 6341 return Op; 6342 // TODO: Propagate flags from the select rather than global settings. 6343 SDNodeFlags Flags; 6344 Flags.setNoInfs(true); 6345 Flags.setNoNaNs(true); 6346 6347 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6348 6349 EVT ResVT = Op.getValueType(); 6350 EVT CmpVT = Op.getOperand(0).getValueType(); 6351 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6352 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6353 SDLoc dl(Op); 6354 6355 // If the RHS of the comparison is a 0.0, we don't need to do the 6356 // subtraction at all. 6357 SDValue Sel1; 6358 if (isFloatingPointZero(RHS)) 6359 switch (CC) { 6360 default: break; // SETUO etc aren't handled by fsel. 6361 case ISD::SETNE: 6362 std::swap(TV, FV); 6363 case ISD::SETEQ: 6364 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6365 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6366 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6367 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6368 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6369 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6370 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6371 case ISD::SETULT: 6372 case ISD::SETLT: 6373 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6374 case ISD::SETOGE: 6375 case ISD::SETGE: 6376 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6377 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6378 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6379 case ISD::SETUGT: 6380 case ISD::SETGT: 6381 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6382 case ISD::SETOLE: 6383 case ISD::SETLE: 6384 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6385 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6386 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6387 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6388 } 6389 6390 SDValue Cmp; 6391 switch (CC) { 6392 default: break; // SETUO etc aren't handled by fsel. 6393 case ISD::SETNE: 6394 std::swap(TV, FV); 6395 case ISD::SETEQ: 6396 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6397 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6398 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6399 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6400 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6401 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6402 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6403 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6404 case ISD::SETULT: 6405 case ISD::SETLT: 6406 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6407 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6408 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6409 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6410 case ISD::SETOGE: 6411 case ISD::SETGE: 6412 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6413 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6414 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6415 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6416 case ISD::SETUGT: 6417 case ISD::SETGT: 6418 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6419 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6420 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6421 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6422 case ISD::SETOLE: 6423 case ISD::SETLE: 6424 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6425 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6426 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6427 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6428 } 6429 return Op; 6430 } 6431 6432 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6433 SelectionDAG &DAG, 6434 const SDLoc &dl) const { 6435 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6436 SDValue Src = Op.getOperand(0); 6437 if (Src.getValueType() == MVT::f32) 6438 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6439 6440 SDValue Tmp; 6441 switch (Op.getSimpleValueType().SimpleTy) { 6442 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6443 case MVT::i32: 6444 Tmp = DAG.getNode( 6445 Op.getOpcode() == ISD::FP_TO_SINT 6446 ? PPCISD::FCTIWZ 6447 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6448 dl, MVT::f64, Src); 6449 break; 6450 case MVT::i64: 6451 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6452 "i64 FP_TO_UINT is supported only with FPCVT"); 6453 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6454 PPCISD::FCTIDUZ, 6455 dl, MVT::f64, Src); 6456 break; 6457 } 6458 6459 // Convert the FP value to an int value through memory. 6460 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6461 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6462 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6463 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6464 MachinePointerInfo MPI = 6465 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6466 6467 // Emit a store to the stack slot. 6468 SDValue Chain; 6469 if (i32Stack) { 6470 MachineFunction &MF = DAG.getMachineFunction(); 6471 MachineMemOperand *MMO = 6472 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6473 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6474 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6475 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6476 } else 6477 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 6478 6479 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6480 // add in a bias on big endian. 6481 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6482 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6483 DAG.getConstant(4, dl, FIPtr.getValueType())); 6484 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 6485 } 6486 6487 RLI.Chain = Chain; 6488 RLI.Ptr = FIPtr; 6489 RLI.MPI = MPI; 6490 } 6491 6492 /// \brief Custom lowers floating point to integer conversions to use 6493 /// the direct move instructions available in ISA 2.07 to avoid the 6494 /// need for load/store combinations. 6495 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6496 SelectionDAG &DAG, 6497 const SDLoc &dl) const { 6498 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6499 SDValue Src = Op.getOperand(0); 6500 6501 if (Src.getValueType() == MVT::f32) 6502 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6503 6504 SDValue Tmp; 6505 switch (Op.getSimpleValueType().SimpleTy) { 6506 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6507 case MVT::i32: 6508 Tmp = DAG.getNode( 6509 Op.getOpcode() == ISD::FP_TO_SINT 6510 ? PPCISD::FCTIWZ 6511 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6512 dl, MVT::f64, Src); 6513 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6514 break; 6515 case MVT::i64: 6516 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6517 "i64 FP_TO_UINT is supported only with FPCVT"); 6518 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6519 PPCISD::FCTIDUZ, 6520 dl, MVT::f64, Src); 6521 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6522 break; 6523 } 6524 return Tmp; 6525 } 6526 6527 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6528 const SDLoc &dl) const { 6529 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6530 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6531 6532 ReuseLoadInfo RLI; 6533 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6534 6535 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 6536 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 6537 } 6538 6539 // We're trying to insert a regular store, S, and then a load, L. If the 6540 // incoming value, O, is a load, we might just be able to have our load use the 6541 // address used by O. However, we don't know if anything else will store to 6542 // that address before we can load from it. To prevent this situation, we need 6543 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6544 // the same chain operand as O, we create a token factor from the chain results 6545 // of O and L, and we replace all uses of O's chain result with that token 6546 // factor (see spliceIntoChain below for this last part). 6547 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6548 ReuseLoadInfo &RLI, 6549 SelectionDAG &DAG, 6550 ISD::LoadExtType ET) const { 6551 SDLoc dl(Op); 6552 if (ET == ISD::NON_EXTLOAD && 6553 (Op.getOpcode() == ISD::FP_TO_UINT || 6554 Op.getOpcode() == ISD::FP_TO_SINT) && 6555 isOperationLegalOrCustom(Op.getOpcode(), 6556 Op.getOperand(0).getValueType())) { 6557 6558 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6559 return true; 6560 } 6561 6562 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6563 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6564 LD->isNonTemporal()) 6565 return false; 6566 if (LD->getMemoryVT() != MemVT) 6567 return false; 6568 6569 RLI.Ptr = LD->getBasePtr(); 6570 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 6571 assert(LD->getAddressingMode() == ISD::PRE_INC && 6572 "Non-pre-inc AM on PPC?"); 6573 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6574 LD->getOffset()); 6575 } 6576 6577 RLI.Chain = LD->getChain(); 6578 RLI.MPI = LD->getPointerInfo(); 6579 RLI.IsDereferenceable = LD->isDereferenceable(); 6580 RLI.IsInvariant = LD->isInvariant(); 6581 RLI.Alignment = LD->getAlignment(); 6582 RLI.AAInfo = LD->getAAInfo(); 6583 RLI.Ranges = LD->getRanges(); 6584 6585 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6586 return true; 6587 } 6588 6589 // Given the head of the old chain, ResChain, insert a token factor containing 6590 // it and NewResChain, and make users of ResChain now be users of that token 6591 // factor. 6592 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6593 SDValue NewResChain, 6594 SelectionDAG &DAG) const { 6595 if (!ResChain) 6596 return; 6597 6598 SDLoc dl(NewResChain); 6599 6600 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6601 NewResChain, DAG.getUNDEF(MVT::Other)); 6602 assert(TF.getNode() != NewResChain.getNode() && 6603 "A new TF really is required here"); 6604 6605 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6606 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6607 } 6608 6609 /// \brief Analyze profitability of direct move 6610 /// prefer float load to int load plus direct move 6611 /// when there is no integer use of int load 6612 static bool directMoveIsProfitable(const SDValue &Op) { 6613 SDNode *Origin = Op.getOperand(0).getNode(); 6614 if (Origin->getOpcode() != ISD::LOAD) 6615 return true; 6616 6617 for (SDNode::use_iterator UI = Origin->use_begin(), 6618 UE = Origin->use_end(); 6619 UI != UE; ++UI) { 6620 6621 // Only look at the users of the loaded value. 6622 if (UI.getUse().get().getResNo() != 0) 6623 continue; 6624 6625 if (UI->getOpcode() != ISD::SINT_TO_FP && 6626 UI->getOpcode() != ISD::UINT_TO_FP) 6627 return true; 6628 } 6629 6630 return false; 6631 } 6632 6633 /// \brief Custom lowers integer to floating point conversions to use 6634 /// the direct move instructions available in ISA 2.07 to avoid the 6635 /// need for load/store combinations. 6636 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6637 SelectionDAG &DAG, 6638 const SDLoc &dl) const { 6639 assert((Op.getValueType() == MVT::f32 || 6640 Op.getValueType() == MVT::f64) && 6641 "Invalid floating point type as target of conversion"); 6642 assert(Subtarget.hasFPCVT() && 6643 "Int to FP conversions with direct moves require FPCVT"); 6644 SDValue FP; 6645 SDValue Src = Op.getOperand(0); 6646 bool SinglePrec = Op.getValueType() == MVT::f32; 6647 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6648 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6649 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6650 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6651 6652 if (WordInt) { 6653 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6654 dl, MVT::f64, Src); 6655 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6656 } 6657 else { 6658 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6659 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6660 } 6661 6662 return FP; 6663 } 6664 6665 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6666 SelectionDAG &DAG) const { 6667 SDLoc dl(Op); 6668 6669 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6670 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6671 return SDValue(); 6672 6673 SDValue Value = Op.getOperand(0); 6674 // The values are now known to be -1 (false) or 1 (true). To convert this 6675 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6676 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6677 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6678 6679 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 6680 6681 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6682 6683 if (Op.getValueType() != MVT::v4f64) 6684 Value = DAG.getNode(ISD::FP_ROUND, dl, 6685 Op.getValueType(), Value, 6686 DAG.getIntPtrConstant(1, dl)); 6687 return Value; 6688 } 6689 6690 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6691 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6692 return SDValue(); 6693 6694 if (Op.getOperand(0).getValueType() == MVT::i1) 6695 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6696 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6697 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6698 6699 // If we have direct moves, we can do all the conversion, skip the store/load 6700 // however, without FPCVT we can't do most conversions. 6701 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 6702 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6703 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6704 6705 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6706 "UINT_TO_FP is supported only with FPCVT"); 6707 6708 // If we have FCFIDS, then use it when converting to single-precision. 6709 // Otherwise, convert to double-precision and then round. 6710 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6711 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6712 : PPCISD::FCFIDS) 6713 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6714 : PPCISD::FCFID); 6715 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6716 ? MVT::f32 6717 : MVT::f64; 6718 6719 if (Op.getOperand(0).getValueType() == MVT::i64) { 6720 SDValue SINT = Op.getOperand(0); 6721 // When converting to single-precision, we actually need to convert 6722 // to double-precision first and then round to single-precision. 6723 // To avoid double-rounding effects during that operation, we have 6724 // to prepare the input operand. Bits that might be truncated when 6725 // converting to double-precision are replaced by a bit that won't 6726 // be lost at this stage, but is below the single-precision rounding 6727 // position. 6728 // 6729 // However, if -enable-unsafe-fp-math is in effect, accept double 6730 // rounding to avoid the extra overhead. 6731 if (Op.getValueType() == MVT::f32 && 6732 !Subtarget.hasFPCVT() && 6733 !DAG.getTarget().Options.UnsafeFPMath) { 6734 6735 // Twiddle input to make sure the low 11 bits are zero. (If this 6736 // is the case, we are guaranteed the value will fit into the 53 bit 6737 // mantissa of an IEEE double-precision value without rounding.) 6738 // If any of those low 11 bits were not zero originally, make sure 6739 // bit 12 (value 2048) is set instead, so that the final rounding 6740 // to single-precision gets the correct result. 6741 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6742 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6743 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6744 Round, DAG.getConstant(2047, dl, MVT::i64)); 6745 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6746 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6747 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6748 6749 // However, we cannot use that value unconditionally: if the magnitude 6750 // of the input value is small, the bit-twiddling we did above might 6751 // end up visibly changing the output. Fortunately, in that case, we 6752 // don't need to twiddle bits since the original input will convert 6753 // exactly to double-precision floating-point already. Therefore, 6754 // construct a conditional to use the original value if the top 11 6755 // bits are all sign-bit copies, and use the rounded value computed 6756 // above otherwise. 6757 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6758 SINT, DAG.getConstant(53, dl, MVT::i32)); 6759 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6760 Cond, DAG.getConstant(1, dl, MVT::i64)); 6761 Cond = DAG.getSetCC(dl, MVT::i32, 6762 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6763 6764 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6765 } 6766 6767 ReuseLoadInfo RLI; 6768 SDValue Bits; 6769 6770 MachineFunction &MF = DAG.getMachineFunction(); 6771 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6772 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 6773 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 6774 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6775 } else if (Subtarget.hasLFIWAX() && 6776 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6777 MachineMemOperand *MMO = 6778 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6779 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6780 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6781 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6782 DAG.getVTList(MVT::f64, MVT::Other), 6783 Ops, MVT::i32, MMO); 6784 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6785 } else if (Subtarget.hasFPCVT() && 6786 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6787 MachineMemOperand *MMO = 6788 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6789 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6790 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6791 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6792 DAG.getVTList(MVT::f64, MVT::Other), 6793 Ops, MVT::i32, MMO); 6794 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6795 } else if (((Subtarget.hasLFIWAX() && 6796 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6797 (Subtarget.hasFPCVT() && 6798 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6799 SINT.getOperand(0).getValueType() == MVT::i32) { 6800 MachineFrameInfo &MFI = MF.getFrameInfo(); 6801 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6802 6803 int FrameIdx = MFI.CreateStackObject(4, 4, false); 6804 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6805 6806 SDValue Store = 6807 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6808 MachinePointerInfo::getFixedStack( 6809 DAG.getMachineFunction(), FrameIdx)); 6810 6811 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6812 "Expected an i32 store"); 6813 6814 RLI.Ptr = FIdx; 6815 RLI.Chain = Store; 6816 RLI.MPI = 6817 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6818 RLI.Alignment = 4; 6819 6820 MachineMemOperand *MMO = 6821 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6822 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6823 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6824 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6825 PPCISD::LFIWZX : PPCISD::LFIWAX, 6826 dl, DAG.getVTList(MVT::f64, MVT::Other), 6827 Ops, MVT::i32, MMO); 6828 } else 6829 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6830 6831 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6832 6833 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6834 FP = DAG.getNode(ISD::FP_ROUND, dl, 6835 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6836 return FP; 6837 } 6838 6839 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6840 "Unhandled INT_TO_FP type in custom expander!"); 6841 // Since we only generate this in 64-bit mode, we can take advantage of 6842 // 64-bit registers. In particular, sign extend the input value into the 6843 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6844 // then lfd it and fcfid it. 6845 MachineFunction &MF = DAG.getMachineFunction(); 6846 MachineFrameInfo &MFI = MF.getFrameInfo(); 6847 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6848 6849 SDValue Ld; 6850 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6851 ReuseLoadInfo RLI; 6852 bool ReusingLoad; 6853 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6854 DAG))) { 6855 int FrameIdx = MFI.CreateStackObject(4, 4, false); 6856 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6857 6858 SDValue Store = 6859 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6860 MachinePointerInfo::getFixedStack( 6861 DAG.getMachineFunction(), FrameIdx)); 6862 6863 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6864 "Expected an i32 store"); 6865 6866 RLI.Ptr = FIdx; 6867 RLI.Chain = Store; 6868 RLI.MPI = 6869 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6870 RLI.Alignment = 4; 6871 } 6872 6873 MachineMemOperand *MMO = 6874 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6875 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6876 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6877 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6878 PPCISD::LFIWZX : PPCISD::LFIWAX, 6879 dl, DAG.getVTList(MVT::f64, MVT::Other), 6880 Ops, MVT::i32, MMO); 6881 if (ReusingLoad) 6882 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6883 } else { 6884 assert(Subtarget.isPPC64() && 6885 "i32->FP without LFIWAX supported only on PPC64"); 6886 6887 int FrameIdx = MFI.CreateStackObject(8, 8, false); 6888 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6889 6890 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6891 Op.getOperand(0)); 6892 6893 // STD the extended value into the stack slot. 6894 SDValue Store = DAG.getStore( 6895 DAG.getEntryNode(), dl, Ext64, FIdx, 6896 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 6897 6898 // Load the value as a double. 6899 Ld = DAG.getLoad( 6900 MVT::f64, dl, Store, FIdx, 6901 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 6902 } 6903 6904 // FCFID it and return it. 6905 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6906 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6907 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6908 DAG.getIntPtrConstant(0, dl)); 6909 return FP; 6910 } 6911 6912 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6913 SelectionDAG &DAG) const { 6914 SDLoc dl(Op); 6915 /* 6916 The rounding mode is in bits 30:31 of FPSR, and has the following 6917 settings: 6918 00 Round to nearest 6919 01 Round to 0 6920 10 Round to +inf 6921 11 Round to -inf 6922 6923 FLT_ROUNDS, on the other hand, expects the following: 6924 -1 Undefined 6925 0 Round to 0 6926 1 Round to nearest 6927 2 Round to +inf 6928 3 Round to -inf 6929 6930 To perform the conversion, we do: 6931 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6932 */ 6933 6934 MachineFunction &MF = DAG.getMachineFunction(); 6935 EVT VT = Op.getValueType(); 6936 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6937 6938 // Save FP Control Word to register 6939 EVT NodeTys[] = { 6940 MVT::f64, // return register 6941 MVT::Glue // unused in this context 6942 }; 6943 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6944 6945 // Save FP register to stack slot 6946 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 6947 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6948 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 6949 MachinePointerInfo()); 6950 6951 // Load FP Control Word from low 32 bits of stack slot. 6952 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6953 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6954 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 6955 6956 // Transform as necessary 6957 SDValue CWD1 = 6958 DAG.getNode(ISD::AND, dl, MVT::i32, 6959 CWD, DAG.getConstant(3, dl, MVT::i32)); 6960 SDValue CWD2 = 6961 DAG.getNode(ISD::SRL, dl, MVT::i32, 6962 DAG.getNode(ISD::AND, dl, MVT::i32, 6963 DAG.getNode(ISD::XOR, dl, MVT::i32, 6964 CWD, DAG.getConstant(3, dl, MVT::i32)), 6965 DAG.getConstant(3, dl, MVT::i32)), 6966 DAG.getConstant(1, dl, MVT::i32)); 6967 6968 SDValue RetVal = 6969 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6970 6971 return DAG.getNode((VT.getSizeInBits() < 16 ? 6972 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6973 } 6974 6975 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6976 EVT VT = Op.getValueType(); 6977 unsigned BitWidth = VT.getSizeInBits(); 6978 SDLoc dl(Op); 6979 assert(Op.getNumOperands() == 3 && 6980 VT == Op.getOperand(1).getValueType() && 6981 "Unexpected SHL!"); 6982 6983 // Expand into a bunch of logical ops. Note that these ops 6984 // depend on the PPC behavior for oversized shift amounts. 6985 SDValue Lo = Op.getOperand(0); 6986 SDValue Hi = Op.getOperand(1); 6987 SDValue Amt = Op.getOperand(2); 6988 EVT AmtVT = Amt.getValueType(); 6989 6990 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6991 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6992 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6993 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6994 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6995 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6996 DAG.getConstant(-BitWidth, dl, AmtVT)); 6997 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6998 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6999 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7000 SDValue OutOps[] = { OutLo, OutHi }; 7001 return DAG.getMergeValues(OutOps, dl); 7002 } 7003 7004 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7005 EVT VT = Op.getValueType(); 7006 SDLoc dl(Op); 7007 unsigned BitWidth = VT.getSizeInBits(); 7008 assert(Op.getNumOperands() == 3 && 7009 VT == Op.getOperand(1).getValueType() && 7010 "Unexpected SRL!"); 7011 7012 // Expand into a bunch of logical ops. Note that these ops 7013 // depend on the PPC behavior for oversized shift amounts. 7014 SDValue Lo = Op.getOperand(0); 7015 SDValue Hi = Op.getOperand(1); 7016 SDValue Amt = Op.getOperand(2); 7017 EVT AmtVT = Amt.getValueType(); 7018 7019 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7020 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7021 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7022 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7023 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7024 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7025 DAG.getConstant(-BitWidth, dl, AmtVT)); 7026 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 7027 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7028 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 7029 SDValue OutOps[] = { OutLo, OutHi }; 7030 return DAG.getMergeValues(OutOps, dl); 7031 } 7032 7033 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 7034 SDLoc dl(Op); 7035 EVT VT = Op.getValueType(); 7036 unsigned BitWidth = VT.getSizeInBits(); 7037 assert(Op.getNumOperands() == 3 && 7038 VT == Op.getOperand(1).getValueType() && 7039 "Unexpected SRA!"); 7040 7041 // Expand into a bunch of logical ops, followed by a select_cc. 7042 SDValue Lo = Op.getOperand(0); 7043 SDValue Hi = Op.getOperand(1); 7044 SDValue Amt = Op.getOperand(2); 7045 EVT AmtVT = Amt.getValueType(); 7046 7047 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7048 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7049 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7050 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7051 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7052 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7053 DAG.getConstant(-BitWidth, dl, AmtVT)); 7054 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7055 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7056 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7057 Tmp4, Tmp6, ISD::SETLE); 7058 SDValue OutOps[] = { OutLo, OutHi }; 7059 return DAG.getMergeValues(OutOps, dl); 7060 } 7061 7062 //===----------------------------------------------------------------------===// 7063 // Vector related lowering. 7064 // 7065 7066 /// BuildSplatI - Build a canonical splati of Val with an element size of 7067 /// SplatSize. Cast the result to VT. 7068 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 7069 SelectionDAG &DAG, const SDLoc &dl) { 7070 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 7071 7072 static const MVT VTys[] = { // canonical VT to use for each size. 7073 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 7074 }; 7075 7076 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7077 7078 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7079 if (Val == -1) 7080 SplatSize = 1; 7081 7082 EVT CanonicalVT = VTys[SplatSize-1]; 7083 7084 // Build a canonical splat for this value. 7085 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7086 } 7087 7088 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7089 /// specified intrinsic ID. 7090 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 7091 const SDLoc &dl, EVT DestVT = MVT::Other) { 7092 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7093 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7094 DAG.getConstant(IID, dl, MVT::i32), Op); 7095 } 7096 7097 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7098 /// specified intrinsic ID. 7099 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7100 SelectionDAG &DAG, const SDLoc &dl, 7101 EVT DestVT = MVT::Other) { 7102 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7103 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7104 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7105 } 7106 7107 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7108 /// specified intrinsic ID. 7109 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7110 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 7111 EVT DestVT = MVT::Other) { 7112 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7113 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7114 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7115 } 7116 7117 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7118 /// amount. The result has the specified value type. 7119 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7120 SelectionDAG &DAG, const SDLoc &dl) { 7121 // Force LHS/RHS to be the right type. 7122 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7123 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7124 7125 int Ops[16]; 7126 for (unsigned i = 0; i != 16; ++i) 7127 Ops[i] = i + Amt; 7128 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7129 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7130 } 7131 7132 static bool isNonConstSplatBV(BuildVectorSDNode *BVN, EVT Type) { 7133 if (BVN->isConstant() || BVN->getValueType(0) != Type) 7134 return false; 7135 auto OpZero = BVN->getOperand(0); 7136 for (int i = 1, e = BVN->getNumOperands(); i < e; i++) 7137 if (BVN->getOperand(i) != OpZero) 7138 return false; 7139 return true; 7140 } 7141 7142 // If this is a case we can't handle, return null and let the default 7143 // expansion code take care of it. If we CAN select this case, and if it 7144 // selects to a single instruction, return Op. Otherwise, if we can codegen 7145 // this case more efficiently than a constant pool load, lower it to the 7146 // sequence of ops that should be used. 7147 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7148 SelectionDAG &DAG) const { 7149 SDLoc dl(Op); 7150 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7151 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7152 7153 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7154 // We first build an i32 vector, load it into a QPX register, 7155 // then convert it to a floating-point vector and compare it 7156 // to a zero vector to get the boolean result. 7157 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7158 int FrameIdx = MFI.CreateStackObject(16, 16, false); 7159 MachinePointerInfo PtrInfo = 7160 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7161 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7162 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7163 7164 assert(BVN->getNumOperands() == 4 && 7165 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7166 7167 bool IsConst = true; 7168 for (unsigned i = 0; i < 4; ++i) { 7169 if (BVN->getOperand(i).isUndef()) continue; 7170 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7171 IsConst = false; 7172 break; 7173 } 7174 } 7175 7176 if (IsConst) { 7177 Constant *One = 7178 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7179 Constant *NegOne = 7180 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7181 7182 Constant *CV[4]; 7183 for (unsigned i = 0; i < 4; ++i) { 7184 if (BVN->getOperand(i).isUndef()) 7185 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7186 else if (isNullConstant(BVN->getOperand(i))) 7187 CV[i] = NegOne; 7188 else 7189 CV[i] = One; 7190 } 7191 7192 Constant *CP = ConstantVector::get(CV); 7193 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7194 16 /* alignment */); 7195 7196 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7197 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7198 return DAG.getMemIntrinsicNode( 7199 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7200 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7201 } 7202 7203 SmallVector<SDValue, 4> Stores; 7204 for (unsigned i = 0; i < 4; ++i) { 7205 if (BVN->getOperand(i).isUndef()) continue; 7206 7207 unsigned Offset = 4*i; 7208 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7209 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7210 7211 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7212 if (StoreSize > 4) { 7213 Stores.push_back( 7214 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 7215 PtrInfo.getWithOffset(Offset), MVT::i32)); 7216 } else { 7217 SDValue StoreValue = BVN->getOperand(i); 7218 if (StoreSize < 4) 7219 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7220 7221 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 7222 PtrInfo.getWithOffset(Offset))); 7223 } 7224 } 7225 7226 SDValue StoreChain; 7227 if (!Stores.empty()) 7228 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7229 else 7230 StoreChain = DAG.getEntryNode(); 7231 7232 // Now load from v4i32 into the QPX register; this will extend it to 7233 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7234 // is typed as v4f64 because the QPX register integer states are not 7235 // explicitly represented. 7236 7237 SDValue Ops[] = {StoreChain, 7238 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 7239 FIdx}; 7240 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 7241 7242 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 7243 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7244 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7245 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 7246 LoadedVect); 7247 7248 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 7249 7250 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 7251 } 7252 7253 // All other QPX vectors are handled by generic code. 7254 if (Subtarget.hasQPX()) 7255 return SDValue(); 7256 7257 // Check if this is a splat of a constant value. 7258 APInt APSplatBits, APSplatUndef; 7259 unsigned SplatBitSize; 7260 bool HasAnyUndefs; 7261 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 7262 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 7263 SplatBitSize > 32) { 7264 // We can splat a non-const value on CPU's that implement ISA 3.0 7265 // in two ways: LXVWSX (load and splat) and MTVSRWS(move and splat). 7266 auto OpZero = BVN->getOperand(0); 7267 bool CanLoadAndSplat = OpZero.getOpcode() == ISD::LOAD && 7268 BVN->isOnlyUserOf(OpZero.getNode()); 7269 if (Subtarget.isISA3_0() && !CanLoadAndSplat && 7270 (isNonConstSplatBV(BVN, MVT::v4i32) || 7271 isNonConstSplatBV(BVN, MVT::v2i64))) 7272 return Op; 7273 return SDValue(); 7274 } 7275 7276 unsigned SplatBits = APSplatBits.getZExtValue(); 7277 unsigned SplatUndef = APSplatUndef.getZExtValue(); 7278 unsigned SplatSize = SplatBitSize / 8; 7279 7280 // First, handle single instruction cases. 7281 7282 // All zeros? 7283 if (SplatBits == 0) { 7284 // Canonicalize all zero vectors to be v4i32. 7285 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 7286 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 7287 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 7288 } 7289 return Op; 7290 } 7291 7292 // We have XXSPLTIB for constant splats one byte wide 7293 if (Subtarget.isISA3_0() && Op.getValueType() == MVT::v16i8) 7294 return Op; 7295 7296 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 7297 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 7298 (32-SplatBitSize)); 7299 if (SextVal >= -16 && SextVal <= 15) 7300 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 7301 7302 // Two instruction sequences. 7303 7304 // If this value is in the range [-32,30] and is even, use: 7305 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 7306 // If this value is in the range [17,31] and is odd, use: 7307 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 7308 // If this value is in the range [-31,-17] and is odd, use: 7309 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 7310 // Note the last two are three-instruction sequences. 7311 if (SextVal >= -32 && SextVal <= 31) { 7312 // To avoid having these optimizations undone by constant folding, 7313 // we convert to a pseudo that will be expanded later into one of 7314 // the above forms. 7315 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 7316 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 7317 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 7318 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 7319 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 7320 if (VT == Op.getValueType()) 7321 return RetVal; 7322 else 7323 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 7324 } 7325 7326 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 7327 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 7328 // for fneg/fabs. 7329 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 7330 // Make -1 and vspltisw -1: 7331 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 7332 7333 // Make the VSLW intrinsic, computing 0x8000_0000. 7334 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 7335 OnesV, DAG, dl); 7336 7337 // xor by OnesV to invert it. 7338 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 7339 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7340 } 7341 7342 // Check to see if this is a wide variety of vsplti*, binop self cases. 7343 static const signed char SplatCsts[] = { 7344 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 7345 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 7346 }; 7347 7348 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 7349 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 7350 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 7351 int i = SplatCsts[idx]; 7352 7353 // Figure out what shift amount will be used by altivec if shifted by i in 7354 // this splat size. 7355 unsigned TypeShiftAmt = i & (SplatBitSize-1); 7356 7357 // vsplti + shl self. 7358 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7359 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7360 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7361 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7362 Intrinsic::ppc_altivec_vslw 7363 }; 7364 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7365 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7366 } 7367 7368 // vsplti + srl self. 7369 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7370 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7371 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7372 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7373 Intrinsic::ppc_altivec_vsrw 7374 }; 7375 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7376 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7377 } 7378 7379 // vsplti + sra self. 7380 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7381 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7382 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7383 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7384 Intrinsic::ppc_altivec_vsraw 7385 }; 7386 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7387 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7388 } 7389 7390 // vsplti + rol self. 7391 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7392 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7393 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7394 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7395 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7396 Intrinsic::ppc_altivec_vrlw 7397 }; 7398 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7399 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7400 } 7401 7402 // t = vsplti c, result = vsldoi t, t, 1 7403 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7404 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7405 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7406 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7407 } 7408 // t = vsplti c, result = vsldoi t, t, 2 7409 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7410 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7411 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7412 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7413 } 7414 // t = vsplti c, result = vsldoi t, t, 3 7415 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7416 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7417 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7418 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7419 } 7420 } 7421 7422 return SDValue(); 7423 } 7424 7425 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7426 /// the specified operations to build the shuffle. 7427 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7428 SDValue RHS, SelectionDAG &DAG, 7429 const SDLoc &dl) { 7430 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7431 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7432 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7433 7434 enum { 7435 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7436 OP_VMRGHW, 7437 OP_VMRGLW, 7438 OP_VSPLTISW0, 7439 OP_VSPLTISW1, 7440 OP_VSPLTISW2, 7441 OP_VSPLTISW3, 7442 OP_VSLDOI4, 7443 OP_VSLDOI8, 7444 OP_VSLDOI12 7445 }; 7446 7447 if (OpNum == OP_COPY) { 7448 if (LHSID == (1*9+2)*9+3) return LHS; 7449 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7450 return RHS; 7451 } 7452 7453 SDValue OpLHS, OpRHS; 7454 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7455 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7456 7457 int ShufIdxs[16]; 7458 switch (OpNum) { 7459 default: llvm_unreachable("Unknown i32 permute!"); 7460 case OP_VMRGHW: 7461 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7462 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7463 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7464 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7465 break; 7466 case OP_VMRGLW: 7467 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7468 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7469 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7470 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7471 break; 7472 case OP_VSPLTISW0: 7473 for (unsigned i = 0; i != 16; ++i) 7474 ShufIdxs[i] = (i&3)+0; 7475 break; 7476 case OP_VSPLTISW1: 7477 for (unsigned i = 0; i != 16; ++i) 7478 ShufIdxs[i] = (i&3)+4; 7479 break; 7480 case OP_VSPLTISW2: 7481 for (unsigned i = 0; i != 16; ++i) 7482 ShufIdxs[i] = (i&3)+8; 7483 break; 7484 case OP_VSPLTISW3: 7485 for (unsigned i = 0; i != 16; ++i) 7486 ShufIdxs[i] = (i&3)+12; 7487 break; 7488 case OP_VSLDOI4: 7489 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7490 case OP_VSLDOI8: 7491 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7492 case OP_VSLDOI12: 7493 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7494 } 7495 EVT VT = OpLHS.getValueType(); 7496 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7497 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7498 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7499 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7500 } 7501 7502 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7503 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7504 /// return the code it can be lowered into. Worst case, it can always be 7505 /// lowered into a vperm. 7506 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7507 SelectionDAG &DAG) const { 7508 SDLoc dl(Op); 7509 SDValue V1 = Op.getOperand(0); 7510 SDValue V2 = Op.getOperand(1); 7511 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7512 EVT VT = Op.getValueType(); 7513 bool isLittleEndian = Subtarget.isLittleEndian(); 7514 7515 unsigned ShiftElts, InsertAtByte; 7516 bool Swap; 7517 if (Subtarget.hasP9Vector() && 7518 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 7519 isLittleEndian)) { 7520 if (Swap) 7521 std::swap(V1, V2); 7522 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7523 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 7524 if (ShiftElts) { 7525 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 7526 DAG.getConstant(ShiftElts, dl, MVT::i32)); 7527 SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Shl, 7528 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 7529 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 7530 } 7531 SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Conv2, 7532 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 7533 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 7534 } 7535 7536 if (Subtarget.hasVSX()) { 7537 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 7538 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 7539 7540 // If the source for the shuffle is a scalar_to_vector that came from a 7541 // 32-bit load, it will have used LXVWSX so we don't need to splat again. 7542 if (Subtarget.isISA3_0() && 7543 ((isLittleEndian && SplatIdx == 3) || 7544 (!isLittleEndian && SplatIdx == 0))) { 7545 SDValue Src = V1.getOperand(0); 7546 if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR && 7547 Src.getOperand(0).getOpcode() == ISD::LOAD && 7548 Src.getOperand(0).hasOneUse()) 7549 return V1; 7550 } 7551 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7552 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 7553 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7554 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 7555 } 7556 7557 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 7558 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 7559 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 7560 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 7561 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 7562 } 7563 7564 } 7565 7566 if (Subtarget.hasQPX()) { 7567 if (VT.getVectorNumElements() != 4) 7568 return SDValue(); 7569 7570 if (V2.isUndef()) V2 = V1; 7571 7572 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7573 if (AlignIdx != -1) { 7574 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7575 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7576 } else if (SVOp->isSplat()) { 7577 int SplatIdx = SVOp->getSplatIndex(); 7578 if (SplatIdx >= 4) { 7579 std::swap(V1, V2); 7580 SplatIdx -= 4; 7581 } 7582 7583 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7584 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7585 } 7586 7587 // Lower this into a qvgpci/qvfperm pair. 7588 7589 // Compute the qvgpci literal 7590 unsigned idx = 0; 7591 for (unsigned i = 0; i < 4; ++i) { 7592 int m = SVOp->getMaskElt(i); 7593 unsigned mm = m >= 0 ? (unsigned) m : i; 7594 idx |= mm << (3-i)*3; 7595 } 7596 7597 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7598 DAG.getConstant(idx, dl, MVT::i32)); 7599 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7600 } 7601 7602 // Cases that are handled by instructions that take permute immediates 7603 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7604 // selected by the instruction selector. 7605 if (V2.isUndef()) { 7606 if (PPC::isSplatShuffleMask(SVOp, 1) || 7607 PPC::isSplatShuffleMask(SVOp, 2) || 7608 PPC::isSplatShuffleMask(SVOp, 4) || 7609 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7610 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7611 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7612 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7613 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7614 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7615 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7616 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7617 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7618 (Subtarget.hasP8Altivec() && ( 7619 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7620 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7621 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7622 return Op; 7623 } 7624 } 7625 7626 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7627 // and produce a fixed permutation. If any of these match, do not lower to 7628 // VPERM. 7629 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7630 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7631 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7632 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7633 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7634 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7635 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7636 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7637 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7638 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7639 (Subtarget.hasP8Altivec() && ( 7640 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7641 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7642 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7643 return Op; 7644 7645 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7646 // perfect shuffle table to emit an optimal matching sequence. 7647 ArrayRef<int> PermMask = SVOp->getMask(); 7648 7649 unsigned PFIndexes[4]; 7650 bool isFourElementShuffle = true; 7651 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7652 unsigned EltNo = 8; // Start out undef. 7653 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7654 if (PermMask[i*4+j] < 0) 7655 continue; // Undef, ignore it. 7656 7657 unsigned ByteSource = PermMask[i*4+j]; 7658 if ((ByteSource & 3) != j) { 7659 isFourElementShuffle = false; 7660 break; 7661 } 7662 7663 if (EltNo == 8) { 7664 EltNo = ByteSource/4; 7665 } else if (EltNo != ByteSource/4) { 7666 isFourElementShuffle = false; 7667 break; 7668 } 7669 } 7670 PFIndexes[i] = EltNo; 7671 } 7672 7673 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7674 // perfect shuffle vector to determine if it is cost effective to do this as 7675 // discrete instructions, or whether we should use a vperm. 7676 // For now, we skip this for little endian until such time as we have a 7677 // little-endian perfect shuffle table. 7678 if (isFourElementShuffle && !isLittleEndian) { 7679 // Compute the index in the perfect shuffle table. 7680 unsigned PFTableIndex = 7681 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7682 7683 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7684 unsigned Cost = (PFEntry >> 30); 7685 7686 // Determining when to avoid vperm is tricky. Many things affect the cost 7687 // of vperm, particularly how many times the perm mask needs to be computed. 7688 // For example, if the perm mask can be hoisted out of a loop or is already 7689 // used (perhaps because there are multiple permutes with the same shuffle 7690 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7691 // the loop requires an extra register. 7692 // 7693 // As a compromise, we only emit discrete instructions if the shuffle can be 7694 // generated in 3 or fewer operations. When we have loop information 7695 // available, if this block is within a loop, we should avoid using vperm 7696 // for 3-operation perms and use a constant pool load instead. 7697 if (Cost < 3) 7698 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7699 } 7700 7701 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7702 // vector that will get spilled to the constant pool. 7703 if (V2.isUndef()) V2 = V1; 7704 7705 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7706 // that it is in input element units, not in bytes. Convert now. 7707 7708 // For little endian, the order of the input vectors is reversed, and 7709 // the permutation mask is complemented with respect to 31. This is 7710 // necessary to produce proper semantics with the big-endian-biased vperm 7711 // instruction. 7712 EVT EltVT = V1.getValueType().getVectorElementType(); 7713 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7714 7715 SmallVector<SDValue, 16> ResultMask; 7716 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7717 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7718 7719 for (unsigned j = 0; j != BytesPerElement; ++j) 7720 if (isLittleEndian) 7721 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7722 dl, MVT::i32)); 7723 else 7724 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7725 MVT::i32)); 7726 } 7727 7728 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 7729 if (isLittleEndian) 7730 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7731 V2, V1, VPermMask); 7732 else 7733 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7734 V1, V2, VPermMask); 7735 } 7736 7737 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7738 /// vector comparison. If it is, return true and fill in Opc/isDot with 7739 /// information about the intrinsic. 7740 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7741 bool &isDot, const PPCSubtarget &Subtarget) { 7742 unsigned IntrinsicID = 7743 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7744 CompareOpc = -1; 7745 isDot = false; 7746 switch (IntrinsicID) { 7747 default: return false; 7748 // Comparison predicates. 7749 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7750 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7751 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7752 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7753 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7754 case Intrinsic::ppc_altivec_vcmpequd_p: 7755 if (Subtarget.hasP8Altivec()) { 7756 CompareOpc = 199; 7757 isDot = 1; 7758 } else 7759 return false; 7760 7761 break; 7762 case Intrinsic::ppc_altivec_vcmpneb_p: 7763 case Intrinsic::ppc_altivec_vcmpneh_p: 7764 case Intrinsic::ppc_altivec_vcmpnew_p: 7765 case Intrinsic::ppc_altivec_vcmpnezb_p: 7766 case Intrinsic::ppc_altivec_vcmpnezh_p: 7767 case Intrinsic::ppc_altivec_vcmpnezw_p: 7768 if (Subtarget.hasP9Altivec()) { 7769 switch(IntrinsicID) { 7770 default: llvm_unreachable("Unknown comparison intrinsic."); 7771 case Intrinsic::ppc_altivec_vcmpneb_p: CompareOpc = 7; break; 7772 case Intrinsic::ppc_altivec_vcmpneh_p: CompareOpc = 71; break; 7773 case Intrinsic::ppc_altivec_vcmpnew_p: CompareOpc = 135; break; 7774 case Intrinsic::ppc_altivec_vcmpnezb_p: CompareOpc = 263; break; 7775 case Intrinsic::ppc_altivec_vcmpnezh_p: CompareOpc = 327; break; 7776 case Intrinsic::ppc_altivec_vcmpnezw_p: CompareOpc = 391; break; 7777 } 7778 isDot = 1; 7779 } else 7780 return false; 7781 7782 break; 7783 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7784 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7785 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7786 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7787 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7788 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7789 if (Subtarget.hasP8Altivec()) { 7790 CompareOpc = 967; 7791 isDot = 1; 7792 } else 7793 return false; 7794 7795 break; 7796 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7797 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7798 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7799 case Intrinsic::ppc_altivec_vcmpgtud_p: 7800 if (Subtarget.hasP8Altivec()) { 7801 CompareOpc = 711; 7802 isDot = 1; 7803 } else 7804 return false; 7805 7806 break; 7807 // VSX predicate comparisons use the same infrastructure 7808 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7809 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7810 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7811 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7812 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7813 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7814 if (Subtarget.hasVSX()) { 7815 switch (IntrinsicID) { 7816 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; 7817 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; 7818 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; 7819 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; 7820 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; 7821 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; 7822 } 7823 isDot = 1; 7824 } 7825 else 7826 return false; 7827 7828 break; 7829 7830 // Normal Comparisons. 7831 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7832 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7833 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7834 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7835 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7836 case Intrinsic::ppc_altivec_vcmpequd: 7837 if (Subtarget.hasP8Altivec()) { 7838 CompareOpc = 199; 7839 isDot = 0; 7840 } else 7841 return false; 7842 7843 break; 7844 case Intrinsic::ppc_altivec_vcmpneb: 7845 case Intrinsic::ppc_altivec_vcmpneh: 7846 case Intrinsic::ppc_altivec_vcmpnew: 7847 case Intrinsic::ppc_altivec_vcmpnezb: 7848 case Intrinsic::ppc_altivec_vcmpnezh: 7849 case Intrinsic::ppc_altivec_vcmpnezw: 7850 if (Subtarget.hasP9Altivec()) { 7851 switch (IntrinsicID) { 7852 default: llvm_unreachable("Unknown comparison intrinsic."); 7853 case Intrinsic::ppc_altivec_vcmpneb: CompareOpc = 7; break; 7854 case Intrinsic::ppc_altivec_vcmpneh: CompareOpc = 71; break; 7855 case Intrinsic::ppc_altivec_vcmpnew: CompareOpc = 135; break; 7856 case Intrinsic::ppc_altivec_vcmpnezb: CompareOpc = 263; break; 7857 case Intrinsic::ppc_altivec_vcmpnezh: CompareOpc = 327; break; 7858 case Intrinsic::ppc_altivec_vcmpnezw: CompareOpc = 391; break; 7859 } 7860 isDot = 0; 7861 } else 7862 return false; 7863 break; 7864 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7865 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7866 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7867 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7868 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7869 case Intrinsic::ppc_altivec_vcmpgtsd: 7870 if (Subtarget.hasP8Altivec()) { 7871 CompareOpc = 967; 7872 isDot = 0; 7873 } else 7874 return false; 7875 7876 break; 7877 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7878 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7879 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7880 case Intrinsic::ppc_altivec_vcmpgtud: 7881 if (Subtarget.hasP8Altivec()) { 7882 CompareOpc = 711; 7883 isDot = 0; 7884 } else 7885 return false; 7886 7887 break; 7888 } 7889 return true; 7890 } 7891 7892 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7893 /// lower, do it, otherwise return null. 7894 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7895 SelectionDAG &DAG) const { 7896 unsigned IntrinsicID = 7897 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7898 7899 if (IntrinsicID == Intrinsic::thread_pointer) { 7900 // Reads the thread pointer register, used for __builtin_thread_pointer. 7901 bool is64bit = Subtarget.isPPC64(); 7902 return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 7903 is64bit ? MVT::i64 : MVT::i32); 7904 } 7905 7906 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7907 // opcode number of the comparison. 7908 SDLoc dl(Op); 7909 int CompareOpc; 7910 bool isDot; 7911 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7912 return SDValue(); // Don't custom lower most intrinsics. 7913 7914 // If this is a non-dot comparison, make the VCMP node and we are done. 7915 if (!isDot) { 7916 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7917 Op.getOperand(1), Op.getOperand(2), 7918 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7919 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7920 } 7921 7922 // Create the PPCISD altivec 'dot' comparison node. 7923 SDValue Ops[] = { 7924 Op.getOperand(2), // LHS 7925 Op.getOperand(3), // RHS 7926 DAG.getConstant(CompareOpc, dl, MVT::i32) 7927 }; 7928 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7929 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7930 7931 // Now that we have the comparison, emit a copy from the CR to a GPR. 7932 // This is flagged to the above dot comparison. 7933 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7934 DAG.getRegister(PPC::CR6, MVT::i32), 7935 CompNode.getValue(1)); 7936 7937 // Unpack the result based on how the target uses it. 7938 unsigned BitNo; // Bit # of CR6. 7939 bool InvertBit; // Invert result? 7940 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7941 default: // Can't happen, don't crash on invalid number though. 7942 case 0: // Return the value of the EQ bit of CR6. 7943 BitNo = 0; InvertBit = false; 7944 break; 7945 case 1: // Return the inverted value of the EQ bit of CR6. 7946 BitNo = 0; InvertBit = true; 7947 break; 7948 case 2: // Return the value of the LT bit of CR6. 7949 BitNo = 2; InvertBit = false; 7950 break; 7951 case 3: // Return the inverted value of the LT bit of CR6. 7952 BitNo = 2; InvertBit = true; 7953 break; 7954 } 7955 7956 // Shift the bit into the low position. 7957 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7958 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7959 // Isolate the bit. 7960 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7961 DAG.getConstant(1, dl, MVT::i32)); 7962 7963 // If we are supposed to, toggle the bit. 7964 if (InvertBit) 7965 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7966 DAG.getConstant(1, dl, MVT::i32)); 7967 return Flags; 7968 } 7969 7970 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7971 SelectionDAG &DAG) const { 7972 SDLoc dl(Op); 7973 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7974 // instructions), but for smaller types, we need to first extend up to v2i32 7975 // before doing going farther. 7976 if (Op.getValueType() == MVT::v2i64) { 7977 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7978 if (ExtVT != MVT::v2i32) { 7979 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7980 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7981 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7982 ExtVT.getVectorElementType(), 4))); 7983 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7984 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7985 DAG.getValueType(MVT::v2i32)); 7986 } 7987 7988 return Op; 7989 } 7990 7991 return SDValue(); 7992 } 7993 7994 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7995 SelectionDAG &DAG) const { 7996 SDLoc dl(Op); 7997 // Create a stack slot that is 16-byte aligned. 7998 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7999 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8000 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8001 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8002 8003 // Store the input value into Value#0 of the stack slot. 8004 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8005 MachinePointerInfo()); 8006 // Load it out. 8007 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 8008 } 8009 8010 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 8011 SelectionDAG &DAG) const { 8012 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 8013 "Should only be called for ISD::INSERT_VECTOR_ELT"); 8014 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 8015 // We have legal lowering for constant indices but not for variable ones. 8016 if (C) 8017 return Op; 8018 return SDValue(); 8019 } 8020 8021 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 8022 SelectionDAG &DAG) const { 8023 SDLoc dl(Op); 8024 SDNode *N = Op.getNode(); 8025 8026 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 8027 "Unknown extract_vector_elt type"); 8028 8029 SDValue Value = N->getOperand(0); 8030 8031 // The first part of this is like the store lowering except that we don't 8032 // need to track the chain. 8033 8034 // The values are now known to be -1 (false) or 1 (true). To convert this 8035 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8036 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8037 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8038 8039 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 8040 // understand how to form the extending load. 8041 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8042 8043 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8044 8045 // Now convert to an integer and store. 8046 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8047 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 8048 Value); 8049 8050 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8051 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8052 MachinePointerInfo PtrInfo = 8053 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8054 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8055 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8056 8057 SDValue StoreChain = DAG.getEntryNode(); 8058 SDValue Ops[] = {StoreChain, 8059 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 8060 Value, FIdx}; 8061 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 8062 8063 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 8064 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8065 8066 // Extract the value requested. 8067 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 8068 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8069 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8070 8071 SDValue IntVal = 8072 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 8073 8074 if (!Subtarget.useCRBits()) 8075 return IntVal; 8076 8077 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 8078 } 8079 8080 /// Lowering for QPX v4i1 loads 8081 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 8082 SelectionDAG &DAG) const { 8083 SDLoc dl(Op); 8084 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 8085 SDValue LoadChain = LN->getChain(); 8086 SDValue BasePtr = LN->getBasePtr(); 8087 8088 if (Op.getValueType() == MVT::v4f64 || 8089 Op.getValueType() == MVT::v4f32) { 8090 EVT MemVT = LN->getMemoryVT(); 8091 unsigned Alignment = LN->getAlignment(); 8092 8093 // If this load is properly aligned, then it is legal. 8094 if (Alignment >= MemVT.getStoreSize()) 8095 return Op; 8096 8097 EVT ScalarVT = Op.getValueType().getScalarType(), 8098 ScalarMemVT = MemVT.getScalarType(); 8099 unsigned Stride = ScalarMemVT.getStoreSize(); 8100 8101 SDValue Vals[4], LoadChains[4]; 8102 for (unsigned Idx = 0; Idx < 4; ++Idx) { 8103 SDValue Load; 8104 if (ScalarVT != ScalarMemVT) 8105 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 8106 BasePtr, 8107 LN->getPointerInfo().getWithOffset(Idx * Stride), 8108 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 8109 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 8110 else 8111 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 8112 LN->getPointerInfo().getWithOffset(Idx * Stride), 8113 MinAlign(Alignment, Idx * Stride), 8114 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 8115 8116 if (Idx == 0 && LN->isIndexed()) { 8117 assert(LN->getAddressingMode() == ISD::PRE_INC && 8118 "Unknown addressing mode on vector load"); 8119 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 8120 LN->getAddressingMode()); 8121 } 8122 8123 Vals[Idx] = Load; 8124 LoadChains[Idx] = Load.getValue(1); 8125 8126 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8127 DAG.getConstant(Stride, dl, 8128 BasePtr.getValueType())); 8129 } 8130 8131 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8132 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 8133 8134 if (LN->isIndexed()) { 8135 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 8136 return DAG.getMergeValues(RetOps, dl); 8137 } 8138 8139 SDValue RetOps[] = { Value, TF }; 8140 return DAG.getMergeValues(RetOps, dl); 8141 } 8142 8143 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 8144 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 8145 8146 // To lower v4i1 from a byte array, we load the byte elements of the 8147 // vector and then reuse the BUILD_VECTOR logic. 8148 8149 SDValue VectElmts[4], VectElmtChains[4]; 8150 for (unsigned i = 0; i < 4; ++i) { 8151 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8152 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8153 8154 VectElmts[i] = DAG.getExtLoad( 8155 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 8156 LN->getPointerInfo().getWithOffset(i), MVT::i8, 8157 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 8158 VectElmtChains[i] = VectElmts[i].getValue(1); 8159 } 8160 8161 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 8162 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 8163 8164 SDValue RVals[] = { Value, LoadChain }; 8165 return DAG.getMergeValues(RVals, dl); 8166 } 8167 8168 /// Lowering for QPX v4i1 stores 8169 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 8170 SelectionDAG &DAG) const { 8171 SDLoc dl(Op); 8172 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 8173 SDValue StoreChain = SN->getChain(); 8174 SDValue BasePtr = SN->getBasePtr(); 8175 SDValue Value = SN->getValue(); 8176 8177 if (Value.getValueType() == MVT::v4f64 || 8178 Value.getValueType() == MVT::v4f32) { 8179 EVT MemVT = SN->getMemoryVT(); 8180 unsigned Alignment = SN->getAlignment(); 8181 8182 // If this store is properly aligned, then it is legal. 8183 if (Alignment >= MemVT.getStoreSize()) 8184 return Op; 8185 8186 EVT ScalarVT = Value.getValueType().getScalarType(), 8187 ScalarMemVT = MemVT.getScalarType(); 8188 unsigned Stride = ScalarMemVT.getStoreSize(); 8189 8190 SDValue Stores[4]; 8191 for (unsigned Idx = 0; Idx < 4; ++Idx) { 8192 SDValue Ex = DAG.getNode( 8193 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 8194 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 8195 SDValue Store; 8196 if (ScalarVT != ScalarMemVT) 8197 Store = 8198 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 8199 SN->getPointerInfo().getWithOffset(Idx * Stride), 8200 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 8201 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 8202 else 8203 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 8204 SN->getPointerInfo().getWithOffset(Idx * Stride), 8205 MinAlign(Alignment, Idx * Stride), 8206 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 8207 8208 if (Idx == 0 && SN->isIndexed()) { 8209 assert(SN->getAddressingMode() == ISD::PRE_INC && 8210 "Unknown addressing mode on vector store"); 8211 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 8212 SN->getAddressingMode()); 8213 } 8214 8215 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8216 DAG.getConstant(Stride, dl, 8217 BasePtr.getValueType())); 8218 Stores[Idx] = Store; 8219 } 8220 8221 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8222 8223 if (SN->isIndexed()) { 8224 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 8225 return DAG.getMergeValues(RetOps, dl); 8226 } 8227 8228 return TF; 8229 } 8230 8231 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 8232 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 8233 8234 // The values are now known to be -1 (false) or 1 (true). To convert this 8235 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8236 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8237 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8238 8239 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 8240 // understand how to form the extending load. 8241 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8242 8243 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8244 8245 // Now convert to an integer and store. 8246 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8247 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 8248 Value); 8249 8250 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8251 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8252 MachinePointerInfo PtrInfo = 8253 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8254 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8255 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8256 8257 SDValue Ops[] = {StoreChain, 8258 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 8259 Value, FIdx}; 8260 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 8261 8262 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 8263 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8264 8265 // Move data into the byte array. 8266 SDValue Loads[4], LoadChains[4]; 8267 for (unsigned i = 0; i < 4; ++i) { 8268 unsigned Offset = 4*i; 8269 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8270 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8271 8272 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 8273 PtrInfo.getWithOffset(Offset)); 8274 LoadChains[i] = Loads[i].getValue(1); 8275 } 8276 8277 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8278 8279 SDValue Stores[4]; 8280 for (unsigned i = 0; i < 4; ++i) { 8281 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8282 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8283 8284 Stores[i] = DAG.getTruncStore( 8285 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 8286 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 8287 SN->getAAInfo()); 8288 } 8289 8290 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8291 8292 return StoreChain; 8293 } 8294 8295 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 8296 SDLoc dl(Op); 8297 if (Op.getValueType() == MVT::v4i32) { 8298 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8299 8300 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 8301 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 8302 8303 SDValue RHSSwap = // = vrlw RHS, 16 8304 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 8305 8306 // Shrinkify inputs to v8i16. 8307 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 8308 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 8309 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 8310 8311 // Low parts multiplied together, generating 32-bit results (we ignore the 8312 // top parts). 8313 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 8314 LHS, RHS, DAG, dl, MVT::v4i32); 8315 8316 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 8317 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 8318 // Shift the high parts up 16 bits. 8319 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 8320 Neg16, DAG, dl); 8321 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 8322 } else if (Op.getValueType() == MVT::v8i16) { 8323 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8324 8325 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 8326 8327 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 8328 LHS, RHS, Zero, DAG, dl); 8329 } else if (Op.getValueType() == MVT::v16i8) { 8330 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8331 bool isLittleEndian = Subtarget.isLittleEndian(); 8332 8333 // Multiply the even 8-bit parts, producing 16-bit sums. 8334 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 8335 LHS, RHS, DAG, dl, MVT::v8i16); 8336 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 8337 8338 // Multiply the odd 8-bit parts, producing 16-bit sums. 8339 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 8340 LHS, RHS, DAG, dl, MVT::v8i16); 8341 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 8342 8343 // Merge the results together. Because vmuleub and vmuloub are 8344 // instructions with a big-endian bias, we must reverse the 8345 // element numbering and reverse the meaning of "odd" and "even" 8346 // when generating little endian code. 8347 int Ops[16]; 8348 for (unsigned i = 0; i != 8; ++i) { 8349 if (isLittleEndian) { 8350 Ops[i*2 ] = 2*i; 8351 Ops[i*2+1] = 2*i+16; 8352 } else { 8353 Ops[i*2 ] = 2*i+1; 8354 Ops[i*2+1] = 2*i+1+16; 8355 } 8356 } 8357 if (isLittleEndian) 8358 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 8359 else 8360 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 8361 } else { 8362 llvm_unreachable("Unknown mul to lower!"); 8363 } 8364 } 8365 8366 /// LowerOperation - Provide custom lowering hooks for some operations. 8367 /// 8368 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8369 switch (Op.getOpcode()) { 8370 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 8371 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 8372 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 8373 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 8374 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 8375 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 8376 case ISD::SETCC: return LowerSETCC(Op, DAG); 8377 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 8378 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 8379 case ISD::VASTART: 8380 return LowerVASTART(Op, DAG); 8381 8382 case ISD::VAARG: 8383 return LowerVAARG(Op, DAG); 8384 8385 case ISD::VACOPY: 8386 return LowerVACOPY(Op, DAG); 8387 8388 case ISD::STACKRESTORE: 8389 return LowerSTACKRESTORE(Op, DAG); 8390 8391 case ISD::DYNAMIC_STACKALLOC: 8392 return LowerDYNAMIC_STACKALLOC(Op, DAG); 8393 8394 case ISD::GET_DYNAMIC_AREA_OFFSET: 8395 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 8396 8397 case ISD::EH_DWARF_CFA: 8398 return LowerEH_DWARF_CFA(Op, DAG); 8399 8400 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 8401 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 8402 8403 case ISD::LOAD: return LowerLOAD(Op, DAG); 8404 case ISD::STORE: return LowerSTORE(Op, DAG); 8405 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 8406 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 8407 case ISD::FP_TO_UINT: 8408 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 8409 SDLoc(Op)); 8410 case ISD::UINT_TO_FP: 8411 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 8412 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 8413 8414 // Lower 64-bit shifts. 8415 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 8416 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 8417 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 8418 8419 // Vector-related lowering. 8420 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 8421 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 8422 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 8423 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 8424 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 8425 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 8426 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 8427 case ISD::MUL: return LowerMUL(Op, DAG); 8428 8429 // For counter-based loop handling. 8430 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 8431 8432 // Frame & Return address. 8433 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 8434 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 8435 } 8436 } 8437 8438 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 8439 SmallVectorImpl<SDValue>&Results, 8440 SelectionDAG &DAG) const { 8441 SDLoc dl(N); 8442 switch (N->getOpcode()) { 8443 default: 8444 llvm_unreachable("Do not know how to custom type legalize this operation!"); 8445 case ISD::READCYCLECOUNTER: { 8446 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 8447 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 8448 8449 Results.push_back(RTB); 8450 Results.push_back(RTB.getValue(1)); 8451 Results.push_back(RTB.getValue(2)); 8452 break; 8453 } 8454 case ISD::INTRINSIC_W_CHAIN: { 8455 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8456 Intrinsic::ppc_is_decremented_ctr_nonzero) 8457 break; 8458 8459 assert(N->getValueType(0) == MVT::i1 && 8460 "Unexpected result type for CTR decrement intrinsic"); 8461 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8462 N->getValueType(0)); 8463 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8464 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8465 N->getOperand(1)); 8466 8467 Results.push_back(NewInt); 8468 Results.push_back(NewInt.getValue(1)); 8469 break; 8470 } 8471 case ISD::VAARG: { 8472 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8473 return; 8474 8475 EVT VT = N->getValueType(0); 8476 8477 if (VT == MVT::i64) { 8478 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 8479 8480 Results.push_back(NewNode); 8481 Results.push_back(NewNode.getValue(1)); 8482 } 8483 return; 8484 } 8485 case ISD::FP_ROUND_INREG: { 8486 assert(N->getValueType(0) == MVT::ppcf128); 8487 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8488 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8489 MVT::f64, N->getOperand(0), 8490 DAG.getIntPtrConstant(0, dl)); 8491 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8492 MVT::f64, N->getOperand(0), 8493 DAG.getIntPtrConstant(1, dl)); 8494 8495 // Add the two halves of the long double in round-to-zero mode. 8496 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8497 8498 // We know the low half is about to be thrown away, so just use something 8499 // convenient. 8500 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8501 FPreg, FPreg)); 8502 return; 8503 } 8504 case ISD::FP_TO_SINT: 8505 case ISD::FP_TO_UINT: 8506 // LowerFP_TO_INT() can only handle f32 and f64. 8507 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8508 return; 8509 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8510 return; 8511 } 8512 } 8513 8514 //===----------------------------------------------------------------------===// 8515 // Other Lowering Code 8516 //===----------------------------------------------------------------------===// 8517 8518 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8519 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8520 Function *Func = Intrinsic::getDeclaration(M, Id); 8521 return Builder.CreateCall(Func, {}); 8522 } 8523 8524 // The mappings for emitLeading/TrailingFence is taken from 8525 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8526 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8527 AtomicOrdering Ord, bool IsStore, 8528 bool IsLoad) const { 8529 if (Ord == AtomicOrdering::SequentiallyConsistent) 8530 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8531 if (isReleaseOrStronger(Ord)) 8532 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8533 return nullptr; 8534 } 8535 8536 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8537 AtomicOrdering Ord, bool IsStore, 8538 bool IsLoad) const { 8539 if (IsLoad && isAcquireOrStronger(Ord)) 8540 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8541 // FIXME: this is too conservative, a dependent branch + isync is enough. 8542 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8543 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8544 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8545 return nullptr; 8546 } 8547 8548 MachineBasicBlock * 8549 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 8550 unsigned AtomicSize, 8551 unsigned BinOpcode, 8552 unsigned CmpOpcode, 8553 unsigned CmpPred) const { 8554 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8555 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8556 8557 auto LoadMnemonic = PPC::LDARX; 8558 auto StoreMnemonic = PPC::STDCX; 8559 switch (AtomicSize) { 8560 default: 8561 llvm_unreachable("Unexpected size of atomic entity"); 8562 case 1: 8563 LoadMnemonic = PPC::LBARX; 8564 StoreMnemonic = PPC::STBCX; 8565 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8566 break; 8567 case 2: 8568 LoadMnemonic = PPC::LHARX; 8569 StoreMnemonic = PPC::STHCX; 8570 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8571 break; 8572 case 4: 8573 LoadMnemonic = PPC::LWARX; 8574 StoreMnemonic = PPC::STWCX; 8575 break; 8576 case 8: 8577 LoadMnemonic = PPC::LDARX; 8578 StoreMnemonic = PPC::STDCX; 8579 break; 8580 } 8581 8582 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8583 MachineFunction *F = BB->getParent(); 8584 MachineFunction::iterator It = ++BB->getIterator(); 8585 8586 unsigned dest = MI.getOperand(0).getReg(); 8587 unsigned ptrA = MI.getOperand(1).getReg(); 8588 unsigned ptrB = MI.getOperand(2).getReg(); 8589 unsigned incr = MI.getOperand(3).getReg(); 8590 DebugLoc dl = MI.getDebugLoc(); 8591 8592 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8593 MachineBasicBlock *loop2MBB = 8594 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 8595 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8596 F->insert(It, loopMBB); 8597 if (CmpOpcode) 8598 F->insert(It, loop2MBB); 8599 F->insert(It, exitMBB); 8600 exitMBB->splice(exitMBB->begin(), BB, 8601 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8602 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8603 8604 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8605 unsigned TmpReg = (!BinOpcode) ? incr : 8606 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8607 : &PPC::GPRCRegClass); 8608 8609 // thisMBB: 8610 // ... 8611 // fallthrough --> loopMBB 8612 BB->addSuccessor(loopMBB); 8613 8614 // loopMBB: 8615 // l[wd]arx dest, ptr 8616 // add r0, dest, incr 8617 // st[wd]cx. r0, ptr 8618 // bne- loopMBB 8619 // fallthrough --> exitMBB 8620 8621 // For max/min... 8622 // loopMBB: 8623 // l[wd]arx dest, ptr 8624 // cmpl?[wd] incr, dest 8625 // bgt exitMBB 8626 // loop2MBB: 8627 // st[wd]cx. dest, ptr 8628 // bne- loopMBB 8629 // fallthrough --> exitMBB 8630 8631 BB = loopMBB; 8632 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8633 .addReg(ptrA).addReg(ptrB); 8634 if (BinOpcode) 8635 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8636 if (CmpOpcode) { 8637 // Signed comparisons of byte or halfword values must be sign-extended. 8638 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 8639 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8640 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 8641 ExtReg).addReg(dest); 8642 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 8643 .addReg(incr).addReg(ExtReg); 8644 } else 8645 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 8646 .addReg(incr).addReg(dest); 8647 8648 BuildMI(BB, dl, TII->get(PPC::BCC)) 8649 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 8650 BB->addSuccessor(loop2MBB); 8651 BB->addSuccessor(exitMBB); 8652 BB = loop2MBB; 8653 } 8654 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8655 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8656 BuildMI(BB, dl, TII->get(PPC::BCC)) 8657 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8658 BB->addSuccessor(loopMBB); 8659 BB->addSuccessor(exitMBB); 8660 8661 // exitMBB: 8662 // ... 8663 BB = exitMBB; 8664 return BB; 8665 } 8666 8667 MachineBasicBlock * 8668 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI, 8669 MachineBasicBlock *BB, 8670 bool is8bit, // operation 8671 unsigned BinOpcode, 8672 unsigned CmpOpcode, 8673 unsigned CmpPred) const { 8674 // If we support part-word atomic mnemonics, just use them 8675 if (Subtarget.hasPartwordAtomics()) 8676 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, 8677 CmpOpcode, CmpPred); 8678 8679 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8680 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8681 // In 64 bit mode we have to use 64 bits for addresses, even though the 8682 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8683 // registers without caring whether they're 32 or 64, but here we're 8684 // doing actual arithmetic on the addresses. 8685 bool is64bit = Subtarget.isPPC64(); 8686 bool isLittleEndian = Subtarget.isLittleEndian(); 8687 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8688 8689 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8690 MachineFunction *F = BB->getParent(); 8691 MachineFunction::iterator It = ++BB->getIterator(); 8692 8693 unsigned dest = MI.getOperand(0).getReg(); 8694 unsigned ptrA = MI.getOperand(1).getReg(); 8695 unsigned ptrB = MI.getOperand(2).getReg(); 8696 unsigned incr = MI.getOperand(3).getReg(); 8697 DebugLoc dl = MI.getDebugLoc(); 8698 8699 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8700 MachineBasicBlock *loop2MBB = 8701 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 8702 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8703 F->insert(It, loopMBB); 8704 if (CmpOpcode) 8705 F->insert(It, loop2MBB); 8706 F->insert(It, exitMBB); 8707 exitMBB->splice(exitMBB->begin(), BB, 8708 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8709 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8710 8711 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8712 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8713 : &PPC::GPRCRegClass; 8714 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8715 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8716 unsigned ShiftReg = 8717 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 8718 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8719 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8720 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8721 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8722 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8723 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8724 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8725 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8726 unsigned Ptr1Reg; 8727 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8728 8729 // thisMBB: 8730 // ... 8731 // fallthrough --> loopMBB 8732 BB->addSuccessor(loopMBB); 8733 8734 // The 4-byte load must be aligned, while a char or short may be 8735 // anywhere in the word. Hence all this nasty bookkeeping code. 8736 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8737 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8738 // xori shift, shift1, 24 [16] 8739 // rlwinm ptr, ptr1, 0, 0, 29 8740 // slw incr2, incr, shift 8741 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8742 // slw mask, mask2, shift 8743 // loopMBB: 8744 // lwarx tmpDest, ptr 8745 // add tmp, tmpDest, incr2 8746 // andc tmp2, tmpDest, mask 8747 // and tmp3, tmp, mask 8748 // or tmp4, tmp3, tmp2 8749 // stwcx. tmp4, ptr 8750 // bne- loopMBB 8751 // fallthrough --> exitMBB 8752 // srw dest, tmpDest, shift 8753 if (ptrA != ZeroReg) { 8754 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8755 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8756 .addReg(ptrA).addReg(ptrB); 8757 } else { 8758 Ptr1Reg = ptrB; 8759 } 8760 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8761 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8762 if (!isLittleEndian) 8763 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8764 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8765 if (is64bit) 8766 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8767 .addReg(Ptr1Reg).addImm(0).addImm(61); 8768 else 8769 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8770 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8771 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8772 .addReg(incr).addReg(ShiftReg); 8773 if (is8bit) 8774 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8775 else { 8776 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8777 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8778 } 8779 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8780 .addReg(Mask2Reg).addReg(ShiftReg); 8781 8782 BB = loopMBB; 8783 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8784 .addReg(ZeroReg).addReg(PtrReg); 8785 if (BinOpcode) 8786 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8787 .addReg(Incr2Reg).addReg(TmpDestReg); 8788 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8789 .addReg(TmpDestReg).addReg(MaskReg); 8790 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8791 .addReg(TmpReg).addReg(MaskReg); 8792 if (CmpOpcode) { 8793 // For unsigned comparisons, we can directly compare the shifted values. 8794 // For signed comparisons we shift and sign extend. 8795 unsigned SReg = RegInfo.createVirtualRegister(RC); 8796 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg) 8797 .addReg(TmpDestReg).addReg(MaskReg); 8798 unsigned ValueReg = SReg; 8799 unsigned CmpReg = Incr2Reg; 8800 if (CmpOpcode == PPC::CMPW) { 8801 ValueReg = RegInfo.createVirtualRegister(RC); 8802 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 8803 .addReg(SReg).addReg(ShiftReg); 8804 unsigned ValueSReg = RegInfo.createVirtualRegister(RC); 8805 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 8806 .addReg(ValueReg); 8807 ValueReg = ValueSReg; 8808 CmpReg = incr; 8809 } 8810 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 8811 .addReg(CmpReg).addReg(ValueReg); 8812 BuildMI(BB, dl, TII->get(PPC::BCC)) 8813 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 8814 BB->addSuccessor(loop2MBB); 8815 BB->addSuccessor(exitMBB); 8816 BB = loop2MBB; 8817 } 8818 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8819 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8820 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8821 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8822 BuildMI(BB, dl, TII->get(PPC::BCC)) 8823 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8824 BB->addSuccessor(loopMBB); 8825 BB->addSuccessor(exitMBB); 8826 8827 // exitMBB: 8828 // ... 8829 BB = exitMBB; 8830 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8831 .addReg(ShiftReg); 8832 return BB; 8833 } 8834 8835 llvm::MachineBasicBlock * 8836 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 8837 MachineBasicBlock *MBB) const { 8838 DebugLoc DL = MI.getDebugLoc(); 8839 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8840 8841 MachineFunction *MF = MBB->getParent(); 8842 MachineRegisterInfo &MRI = MF->getRegInfo(); 8843 8844 const BasicBlock *BB = MBB->getBasicBlock(); 8845 MachineFunction::iterator I = ++MBB->getIterator(); 8846 8847 // Memory Reference 8848 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 8849 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 8850 8851 unsigned DstReg = MI.getOperand(0).getReg(); 8852 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8853 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8854 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8855 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8856 8857 MVT PVT = getPointerTy(MF->getDataLayout()); 8858 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8859 "Invalid Pointer Size!"); 8860 // For v = setjmp(buf), we generate 8861 // 8862 // thisMBB: 8863 // SjLjSetup mainMBB 8864 // bl mainMBB 8865 // v_restore = 1 8866 // b sinkMBB 8867 // 8868 // mainMBB: 8869 // buf[LabelOffset] = LR 8870 // v_main = 0 8871 // 8872 // sinkMBB: 8873 // v = phi(main, restore) 8874 // 8875 8876 MachineBasicBlock *thisMBB = MBB; 8877 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8878 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8879 MF->insert(I, mainMBB); 8880 MF->insert(I, sinkMBB); 8881 8882 MachineInstrBuilder MIB; 8883 8884 // Transfer the remainder of BB and its successor edges to sinkMBB. 8885 sinkMBB->splice(sinkMBB->begin(), MBB, 8886 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8887 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8888 8889 // Note that the structure of the jmp_buf used here is not compatible 8890 // with that used by libc, and is not designed to be. Specifically, it 8891 // stores only those 'reserved' registers that LLVM does not otherwise 8892 // understand how to spill. Also, by convention, by the time this 8893 // intrinsic is called, Clang has already stored the frame address in the 8894 // first slot of the buffer and stack address in the third. Following the 8895 // X86 target code, we'll store the jump address in the second slot. We also 8896 // need to save the TOC pointer (R2) to handle jumps between shared 8897 // libraries, and that will be stored in the fourth slot. The thread 8898 // identifier (R13) is not affected. 8899 8900 // thisMBB: 8901 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8902 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8903 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8904 8905 // Prepare IP either in reg. 8906 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8907 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8908 unsigned BufReg = MI.getOperand(1).getReg(); 8909 8910 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8911 setUsesTOCBasePtr(*MBB->getParent()); 8912 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8913 .addReg(PPC::X2) 8914 .addImm(TOCOffset) 8915 .addReg(BufReg); 8916 MIB.setMemRefs(MMOBegin, MMOEnd); 8917 } 8918 8919 // Naked functions never have a base pointer, and so we use r1. For all 8920 // other functions, this decision must be delayed until during PEI. 8921 unsigned BaseReg; 8922 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8923 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8924 else 8925 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8926 8927 MIB = BuildMI(*thisMBB, MI, DL, 8928 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8929 .addReg(BaseReg) 8930 .addImm(BPOffset) 8931 .addReg(BufReg); 8932 MIB.setMemRefs(MMOBegin, MMOEnd); 8933 8934 // Setup 8935 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8936 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8937 MIB.addRegMask(TRI->getNoPreservedMask()); 8938 8939 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8940 8941 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8942 .addMBB(mainMBB); 8943 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8944 8945 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 8946 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 8947 8948 // mainMBB: 8949 // mainDstReg = 0 8950 MIB = 8951 BuildMI(mainMBB, DL, 8952 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8953 8954 // Store IP 8955 if (Subtarget.isPPC64()) { 8956 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8957 .addReg(LabelReg) 8958 .addImm(LabelOffset) 8959 .addReg(BufReg); 8960 } else { 8961 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8962 .addReg(LabelReg) 8963 .addImm(LabelOffset) 8964 .addReg(BufReg); 8965 } 8966 8967 MIB.setMemRefs(MMOBegin, MMOEnd); 8968 8969 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8970 mainMBB->addSuccessor(sinkMBB); 8971 8972 // sinkMBB: 8973 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8974 TII->get(PPC::PHI), DstReg) 8975 .addReg(mainDstReg).addMBB(mainMBB) 8976 .addReg(restoreDstReg).addMBB(thisMBB); 8977 8978 MI.eraseFromParent(); 8979 return sinkMBB; 8980 } 8981 8982 MachineBasicBlock * 8983 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 8984 MachineBasicBlock *MBB) const { 8985 DebugLoc DL = MI.getDebugLoc(); 8986 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8987 8988 MachineFunction *MF = MBB->getParent(); 8989 MachineRegisterInfo &MRI = MF->getRegInfo(); 8990 8991 // Memory Reference 8992 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 8993 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 8994 8995 MVT PVT = getPointerTy(MF->getDataLayout()); 8996 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8997 "Invalid Pointer Size!"); 8998 8999 const TargetRegisterClass *RC = 9000 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 9001 unsigned Tmp = MRI.createVirtualRegister(RC); 9002 // Since FP is only updated here but NOT referenced, it's treated as GPR. 9003 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 9004 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 9005 unsigned BP = 9006 (PVT == MVT::i64) 9007 ? PPC::X30 9008 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 9009 : PPC::R30); 9010 9011 MachineInstrBuilder MIB; 9012 9013 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 9014 const int64_t SPOffset = 2 * PVT.getStoreSize(); 9015 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 9016 const int64_t BPOffset = 4 * PVT.getStoreSize(); 9017 9018 unsigned BufReg = MI.getOperand(0).getReg(); 9019 9020 // Reload FP (the jumped-to function may not have had a 9021 // frame pointer, and if so, then its r31 will be restored 9022 // as necessary). 9023 if (PVT == MVT::i64) { 9024 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 9025 .addImm(0) 9026 .addReg(BufReg); 9027 } else { 9028 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 9029 .addImm(0) 9030 .addReg(BufReg); 9031 } 9032 MIB.setMemRefs(MMOBegin, MMOEnd); 9033 9034 // Reload IP 9035 if (PVT == MVT::i64) { 9036 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 9037 .addImm(LabelOffset) 9038 .addReg(BufReg); 9039 } else { 9040 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 9041 .addImm(LabelOffset) 9042 .addReg(BufReg); 9043 } 9044 MIB.setMemRefs(MMOBegin, MMOEnd); 9045 9046 // Reload SP 9047 if (PVT == MVT::i64) { 9048 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 9049 .addImm(SPOffset) 9050 .addReg(BufReg); 9051 } else { 9052 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 9053 .addImm(SPOffset) 9054 .addReg(BufReg); 9055 } 9056 MIB.setMemRefs(MMOBegin, MMOEnd); 9057 9058 // Reload BP 9059 if (PVT == MVT::i64) { 9060 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 9061 .addImm(BPOffset) 9062 .addReg(BufReg); 9063 } else { 9064 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 9065 .addImm(BPOffset) 9066 .addReg(BufReg); 9067 } 9068 MIB.setMemRefs(MMOBegin, MMOEnd); 9069 9070 // Reload TOC 9071 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 9072 setUsesTOCBasePtr(*MBB->getParent()); 9073 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 9074 .addImm(TOCOffset) 9075 .addReg(BufReg); 9076 9077 MIB.setMemRefs(MMOBegin, MMOEnd); 9078 } 9079 9080 // Jump 9081 BuildMI(*MBB, MI, DL, 9082 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 9083 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 9084 9085 MI.eraseFromParent(); 9086 return MBB; 9087 } 9088 9089 MachineBasicBlock * 9090 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9091 MachineBasicBlock *BB) const { 9092 if (MI.getOpcode() == TargetOpcode::STACKMAP || 9093 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 9094 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 9095 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 9096 // Call lowering should have added an r2 operand to indicate a dependence 9097 // on the TOC base pointer value. It can't however, because there is no 9098 // way to mark the dependence as implicit there, and so the stackmap code 9099 // will confuse it with a regular operand. Instead, add the dependence 9100 // here. 9101 setUsesTOCBasePtr(*BB->getParent()); 9102 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 9103 } 9104 9105 return emitPatchPoint(MI, BB); 9106 } 9107 9108 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 9109 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 9110 return emitEHSjLjSetJmp(MI, BB); 9111 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 9112 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 9113 return emitEHSjLjLongJmp(MI, BB); 9114 } 9115 9116 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9117 9118 // To "insert" these instructions we actually have to insert their 9119 // control-flow patterns. 9120 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9121 MachineFunction::iterator It = ++BB->getIterator(); 9122 9123 MachineFunction *F = BB->getParent(); 9124 9125 if (Subtarget.hasISEL() && 9126 (MI.getOpcode() == PPC::SELECT_CC_I4 || 9127 MI.getOpcode() == PPC::SELECT_CC_I8 || 9128 MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8)) { 9129 SmallVector<MachineOperand, 2> Cond; 9130 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 9131 MI.getOpcode() == PPC::SELECT_CC_I8) 9132 Cond.push_back(MI.getOperand(4)); 9133 else 9134 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 9135 Cond.push_back(MI.getOperand(1)); 9136 9137 DebugLoc dl = MI.getDebugLoc(); 9138 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 9139 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 9140 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 9141 MI.getOpcode() == PPC::SELECT_CC_I8 || 9142 MI.getOpcode() == PPC::SELECT_CC_F4 || 9143 MI.getOpcode() == PPC::SELECT_CC_F8 || 9144 MI.getOpcode() == PPC::SELECT_CC_QFRC || 9145 MI.getOpcode() == PPC::SELECT_CC_QSRC || 9146 MI.getOpcode() == PPC::SELECT_CC_QBRC || 9147 MI.getOpcode() == PPC::SELECT_CC_VRRC || 9148 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 9149 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 9150 MI.getOpcode() == PPC::SELECT_CC_VSRC || 9151 MI.getOpcode() == PPC::SELECT_I4 || 9152 MI.getOpcode() == PPC::SELECT_I8 || 9153 MI.getOpcode() == PPC::SELECT_F4 || 9154 MI.getOpcode() == PPC::SELECT_F8 || 9155 MI.getOpcode() == PPC::SELECT_QFRC || 9156 MI.getOpcode() == PPC::SELECT_QSRC || 9157 MI.getOpcode() == PPC::SELECT_QBRC || 9158 MI.getOpcode() == PPC::SELECT_VRRC || 9159 MI.getOpcode() == PPC::SELECT_VSFRC || 9160 MI.getOpcode() == PPC::SELECT_VSSRC || 9161 MI.getOpcode() == PPC::SELECT_VSRC) { 9162 // The incoming instruction knows the destination vreg to set, the 9163 // condition code register to branch on, the true/false values to 9164 // select between, and a branch opcode to use. 9165 9166 // thisMBB: 9167 // ... 9168 // TrueVal = ... 9169 // cmpTY ccX, r1, r2 9170 // bCC copy1MBB 9171 // fallthrough --> copy0MBB 9172 MachineBasicBlock *thisMBB = BB; 9173 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 9174 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9175 DebugLoc dl = MI.getDebugLoc(); 9176 F->insert(It, copy0MBB); 9177 F->insert(It, sinkMBB); 9178 9179 // Transfer the remainder of BB and its successor edges to sinkMBB. 9180 sinkMBB->splice(sinkMBB->begin(), BB, 9181 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9182 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 9183 9184 // Next, add the true and fallthrough blocks as its successors. 9185 BB->addSuccessor(copy0MBB); 9186 BB->addSuccessor(sinkMBB); 9187 9188 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 9189 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 9190 MI.getOpcode() == PPC::SELECT_QFRC || 9191 MI.getOpcode() == PPC::SELECT_QSRC || 9192 MI.getOpcode() == PPC::SELECT_QBRC || 9193 MI.getOpcode() == PPC::SELECT_VRRC || 9194 MI.getOpcode() == PPC::SELECT_VSFRC || 9195 MI.getOpcode() == PPC::SELECT_VSSRC || 9196 MI.getOpcode() == PPC::SELECT_VSRC) { 9197 BuildMI(BB, dl, TII->get(PPC::BC)) 9198 .addReg(MI.getOperand(1).getReg()) 9199 .addMBB(sinkMBB); 9200 } else { 9201 unsigned SelectPred = MI.getOperand(4).getImm(); 9202 BuildMI(BB, dl, TII->get(PPC::BCC)) 9203 .addImm(SelectPred) 9204 .addReg(MI.getOperand(1).getReg()) 9205 .addMBB(sinkMBB); 9206 } 9207 9208 // copy0MBB: 9209 // %FalseValue = ... 9210 // # fallthrough to sinkMBB 9211 BB = copy0MBB; 9212 9213 // Update machine-CFG edges 9214 BB->addSuccessor(sinkMBB); 9215 9216 // sinkMBB: 9217 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 9218 // ... 9219 BB = sinkMBB; 9220 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 9221 .addReg(MI.getOperand(3).getReg()) 9222 .addMBB(copy0MBB) 9223 .addReg(MI.getOperand(2).getReg()) 9224 .addMBB(thisMBB); 9225 } else if (MI.getOpcode() == PPC::ReadTB) { 9226 // To read the 64-bit time-base register on a 32-bit target, we read the 9227 // two halves. Should the counter have wrapped while it was being read, we 9228 // need to try again. 9229 // ... 9230 // readLoop: 9231 // mfspr Rx,TBU # load from TBU 9232 // mfspr Ry,TB # load from TB 9233 // mfspr Rz,TBU # load from TBU 9234 // cmpw crX,Rx,Rz # check if 'old'='new' 9235 // bne readLoop # branch if they're not equal 9236 // ... 9237 9238 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 9239 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9240 DebugLoc dl = MI.getDebugLoc(); 9241 F->insert(It, readMBB); 9242 F->insert(It, sinkMBB); 9243 9244 // Transfer the remainder of BB and its successor edges to sinkMBB. 9245 sinkMBB->splice(sinkMBB->begin(), BB, 9246 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9247 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 9248 9249 BB->addSuccessor(readMBB); 9250 BB = readMBB; 9251 9252 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9253 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 9254 unsigned LoReg = MI.getOperand(0).getReg(); 9255 unsigned HiReg = MI.getOperand(1).getReg(); 9256 9257 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 9258 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 9259 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 9260 9261 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9262 9263 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 9264 .addReg(HiReg).addReg(ReadAgainReg); 9265 BuildMI(BB, dl, TII->get(PPC::BCC)) 9266 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 9267 9268 BB->addSuccessor(readMBB); 9269 BB->addSuccessor(sinkMBB); 9270 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 9271 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 9272 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 9273 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 9274 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 9275 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 9276 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 9277 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 9278 9279 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 9280 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 9281 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 9282 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 9283 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 9284 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 9285 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 9286 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 9287 9288 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 9289 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 9290 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 9291 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 9292 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 9293 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 9294 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 9295 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 9296 9297 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 9298 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 9299 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 9300 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 9301 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 9302 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 9303 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 9304 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 9305 9306 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 9307 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 9308 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 9309 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 9310 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 9311 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 9312 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 9313 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 9314 9315 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 9316 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 9317 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 9318 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 9319 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 9320 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 9321 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 9322 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 9323 9324 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 9325 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 9326 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 9327 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 9328 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 9329 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 9330 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 9331 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 9332 9333 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 9334 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 9335 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 9336 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 9337 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 9338 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 9339 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 9340 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 9341 9342 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 9343 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 9344 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 9345 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 9346 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 9347 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 9348 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 9349 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 9350 9351 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 9352 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 9353 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 9354 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 9355 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 9356 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 9357 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 9358 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 9359 9360 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 9361 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 9362 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 9363 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 9364 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 9365 BB = EmitAtomicBinary(MI, BB, 4, 0); 9366 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 9367 BB = EmitAtomicBinary(MI, BB, 8, 0); 9368 9369 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 9370 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 9371 (Subtarget.hasPartwordAtomics() && 9372 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 9373 (Subtarget.hasPartwordAtomics() && 9374 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 9375 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 9376 9377 auto LoadMnemonic = PPC::LDARX; 9378 auto StoreMnemonic = PPC::STDCX; 9379 switch (MI.getOpcode()) { 9380 default: 9381 llvm_unreachable("Compare and swap of unknown size"); 9382 case PPC::ATOMIC_CMP_SWAP_I8: 9383 LoadMnemonic = PPC::LBARX; 9384 StoreMnemonic = PPC::STBCX; 9385 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9386 break; 9387 case PPC::ATOMIC_CMP_SWAP_I16: 9388 LoadMnemonic = PPC::LHARX; 9389 StoreMnemonic = PPC::STHCX; 9390 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9391 break; 9392 case PPC::ATOMIC_CMP_SWAP_I32: 9393 LoadMnemonic = PPC::LWARX; 9394 StoreMnemonic = PPC::STWCX; 9395 break; 9396 case PPC::ATOMIC_CMP_SWAP_I64: 9397 LoadMnemonic = PPC::LDARX; 9398 StoreMnemonic = PPC::STDCX; 9399 break; 9400 } 9401 unsigned dest = MI.getOperand(0).getReg(); 9402 unsigned ptrA = MI.getOperand(1).getReg(); 9403 unsigned ptrB = MI.getOperand(2).getReg(); 9404 unsigned oldval = MI.getOperand(3).getReg(); 9405 unsigned newval = MI.getOperand(4).getReg(); 9406 DebugLoc dl = MI.getDebugLoc(); 9407 9408 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9409 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9410 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9411 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9412 F->insert(It, loop1MBB); 9413 F->insert(It, loop2MBB); 9414 F->insert(It, midMBB); 9415 F->insert(It, exitMBB); 9416 exitMBB->splice(exitMBB->begin(), BB, 9417 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9418 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9419 9420 // thisMBB: 9421 // ... 9422 // fallthrough --> loopMBB 9423 BB->addSuccessor(loop1MBB); 9424 9425 // loop1MBB: 9426 // l[bhwd]arx dest, ptr 9427 // cmp[wd] dest, oldval 9428 // bne- midMBB 9429 // loop2MBB: 9430 // st[bhwd]cx. newval, ptr 9431 // bne- loopMBB 9432 // b exitBB 9433 // midMBB: 9434 // st[bhwd]cx. dest, ptr 9435 // exitBB: 9436 BB = loop1MBB; 9437 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9438 .addReg(ptrA).addReg(ptrB); 9439 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 9440 .addReg(oldval).addReg(dest); 9441 BuildMI(BB, dl, TII->get(PPC::BCC)) 9442 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9443 BB->addSuccessor(loop2MBB); 9444 BB->addSuccessor(midMBB); 9445 9446 BB = loop2MBB; 9447 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9448 .addReg(newval).addReg(ptrA).addReg(ptrB); 9449 BuildMI(BB, dl, TII->get(PPC::BCC)) 9450 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9451 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9452 BB->addSuccessor(loop1MBB); 9453 BB->addSuccessor(exitMBB); 9454 9455 BB = midMBB; 9456 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9457 .addReg(dest).addReg(ptrA).addReg(ptrB); 9458 BB->addSuccessor(exitMBB); 9459 9460 // exitMBB: 9461 // ... 9462 BB = exitMBB; 9463 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 9464 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 9465 // We must use 64-bit registers for addresses when targeting 64-bit, 9466 // since we're actually doing arithmetic on them. Other registers 9467 // can be 32-bit. 9468 bool is64bit = Subtarget.isPPC64(); 9469 bool isLittleEndian = Subtarget.isLittleEndian(); 9470 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 9471 9472 unsigned dest = MI.getOperand(0).getReg(); 9473 unsigned ptrA = MI.getOperand(1).getReg(); 9474 unsigned ptrB = MI.getOperand(2).getReg(); 9475 unsigned oldval = MI.getOperand(3).getReg(); 9476 unsigned newval = MI.getOperand(4).getReg(); 9477 DebugLoc dl = MI.getDebugLoc(); 9478 9479 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9480 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9481 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9482 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9483 F->insert(It, loop1MBB); 9484 F->insert(It, loop2MBB); 9485 F->insert(It, midMBB); 9486 F->insert(It, exitMBB); 9487 exitMBB->splice(exitMBB->begin(), BB, 9488 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9489 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9490 9491 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9492 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 9493 : &PPC::GPRCRegClass; 9494 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9495 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 9496 unsigned ShiftReg = 9497 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 9498 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 9499 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 9500 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 9501 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 9502 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 9503 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 9504 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 9505 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 9506 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 9507 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 9508 unsigned Ptr1Reg; 9509 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 9510 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9511 // thisMBB: 9512 // ... 9513 // fallthrough --> loopMBB 9514 BB->addSuccessor(loop1MBB); 9515 9516 // The 4-byte load must be aligned, while a char or short may be 9517 // anywhere in the word. Hence all this nasty bookkeeping code. 9518 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9519 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9520 // xori shift, shift1, 24 [16] 9521 // rlwinm ptr, ptr1, 0, 0, 29 9522 // slw newval2, newval, shift 9523 // slw oldval2, oldval,shift 9524 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9525 // slw mask, mask2, shift 9526 // and newval3, newval2, mask 9527 // and oldval3, oldval2, mask 9528 // loop1MBB: 9529 // lwarx tmpDest, ptr 9530 // and tmp, tmpDest, mask 9531 // cmpw tmp, oldval3 9532 // bne- midMBB 9533 // loop2MBB: 9534 // andc tmp2, tmpDest, mask 9535 // or tmp4, tmp2, newval3 9536 // stwcx. tmp4, ptr 9537 // bne- loop1MBB 9538 // b exitBB 9539 // midMBB: 9540 // stwcx. tmpDest, ptr 9541 // exitBB: 9542 // srw dest, tmpDest, shift 9543 if (ptrA != ZeroReg) { 9544 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9545 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9546 .addReg(ptrA).addReg(ptrB); 9547 } else { 9548 Ptr1Reg = ptrB; 9549 } 9550 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9551 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9552 if (!isLittleEndian) 9553 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9554 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9555 if (is64bit) 9556 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9557 .addReg(Ptr1Reg).addImm(0).addImm(61); 9558 else 9559 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9560 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9561 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9562 .addReg(newval).addReg(ShiftReg); 9563 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9564 .addReg(oldval).addReg(ShiftReg); 9565 if (is8bit) 9566 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9567 else { 9568 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9569 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9570 .addReg(Mask3Reg).addImm(65535); 9571 } 9572 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9573 .addReg(Mask2Reg).addReg(ShiftReg); 9574 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9575 .addReg(NewVal2Reg).addReg(MaskReg); 9576 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9577 .addReg(OldVal2Reg).addReg(MaskReg); 9578 9579 BB = loop1MBB; 9580 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9581 .addReg(ZeroReg).addReg(PtrReg); 9582 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9583 .addReg(TmpDestReg).addReg(MaskReg); 9584 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9585 .addReg(TmpReg).addReg(OldVal3Reg); 9586 BuildMI(BB, dl, TII->get(PPC::BCC)) 9587 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9588 BB->addSuccessor(loop2MBB); 9589 BB->addSuccessor(midMBB); 9590 9591 BB = loop2MBB; 9592 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9593 .addReg(TmpDestReg).addReg(MaskReg); 9594 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9595 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9596 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9597 .addReg(ZeroReg).addReg(PtrReg); 9598 BuildMI(BB, dl, TII->get(PPC::BCC)) 9599 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9600 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9601 BB->addSuccessor(loop1MBB); 9602 BB->addSuccessor(exitMBB); 9603 9604 BB = midMBB; 9605 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9606 .addReg(ZeroReg).addReg(PtrReg); 9607 BB->addSuccessor(exitMBB); 9608 9609 // exitMBB: 9610 // ... 9611 BB = exitMBB; 9612 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9613 .addReg(ShiftReg); 9614 } else if (MI.getOpcode() == PPC::FADDrtz) { 9615 // This pseudo performs an FADD with rounding mode temporarily forced 9616 // to round-to-zero. We emit this via custom inserter since the FPSCR 9617 // is not modeled at the SelectionDAG level. 9618 unsigned Dest = MI.getOperand(0).getReg(); 9619 unsigned Src1 = MI.getOperand(1).getReg(); 9620 unsigned Src2 = MI.getOperand(2).getReg(); 9621 DebugLoc dl = MI.getDebugLoc(); 9622 9623 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9624 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9625 9626 // Save FPSCR value. 9627 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9628 9629 // Set rounding mode to round-to-zero. 9630 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9631 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9632 9633 // Perform addition. 9634 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9635 9636 // Restore FPSCR value. 9637 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9638 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 9639 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 9640 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9641 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9642 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9643 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 9644 ? PPC::ANDIo8 9645 : PPC::ANDIo; 9646 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 9647 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9648 9649 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9650 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9651 &PPC::GPRCRegClass : 9652 &PPC::G8RCRegClass); 9653 9654 DebugLoc dl = MI.getDebugLoc(); 9655 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9656 .addReg(MI.getOperand(1).getReg()) 9657 .addImm(1); 9658 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9659 MI.getOperand(0).getReg()) 9660 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9661 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 9662 DebugLoc Dl = MI.getDebugLoc(); 9663 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9664 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9665 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9666 return BB; 9667 } else { 9668 llvm_unreachable("Unexpected instr type to insert"); 9669 } 9670 9671 MI.eraseFromParent(); // The pseudo instruction is gone now. 9672 return BB; 9673 } 9674 9675 //===----------------------------------------------------------------------===// 9676 // Target Optimization Hooks 9677 //===----------------------------------------------------------------------===// 9678 9679 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 9680 // For the estimates, convergence is quadratic, so we essentially double the 9681 // number of digits correct after every iteration. For both FRE and FRSQRTE, 9682 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 9683 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 9684 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 9685 if (VT.getScalarType() == MVT::f64) 9686 RefinementSteps++; 9687 return RefinementSteps; 9688 } 9689 9690 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 9691 int Enabled, int &RefinementSteps, 9692 bool &UseOneConstNR, 9693 bool Reciprocal) const { 9694 EVT VT = Operand.getValueType(); 9695 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9696 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9697 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9698 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9699 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9700 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9701 if (RefinementSteps == ReciprocalEstimate::Unspecified) 9702 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 9703 9704 UseOneConstNR = true; 9705 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9706 } 9707 return SDValue(); 9708 } 9709 9710 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 9711 int Enabled, 9712 int &RefinementSteps) const { 9713 EVT VT = Operand.getValueType(); 9714 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9715 (VT == MVT::f64 && Subtarget.hasFRE()) || 9716 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9717 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9718 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9719 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9720 if (RefinementSteps == ReciprocalEstimate::Unspecified) 9721 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 9722 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9723 } 9724 return SDValue(); 9725 } 9726 9727 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9728 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9729 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9730 // enabled for division), this functionality is redundant with the default 9731 // combiner logic (once the division -> reciprocal/multiply transformation 9732 // has taken place). As a result, this matters more for older cores than for 9733 // newer ones. 9734 9735 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9736 // reciprocal if there are two or more FDIVs (for embedded cores with only 9737 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9738 switch (Subtarget.getDarwinDirective()) { 9739 default: 9740 return 3; 9741 case PPC::DIR_440: 9742 case PPC::DIR_A2: 9743 case PPC::DIR_E500mc: 9744 case PPC::DIR_E5500: 9745 return 2; 9746 } 9747 } 9748 9749 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9750 // collapsed, and so we need to look through chains of them. 9751 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9752 int64_t& Offset, SelectionDAG &DAG) { 9753 if (DAG.isBaseWithConstantOffset(Loc)) { 9754 Base = Loc.getOperand(0); 9755 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9756 9757 // The base might itself be a base plus an offset, and if so, accumulate 9758 // that as well. 9759 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9760 } 9761 } 9762 9763 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9764 unsigned Bytes, int Dist, 9765 SelectionDAG &DAG) { 9766 if (VT.getSizeInBits() / 8 != Bytes) 9767 return false; 9768 9769 SDValue BaseLoc = Base->getBasePtr(); 9770 if (Loc.getOpcode() == ISD::FrameIndex) { 9771 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9772 return false; 9773 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9774 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9775 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9776 int FS = MFI.getObjectSize(FI); 9777 int BFS = MFI.getObjectSize(BFI); 9778 if (FS != BFS || FS != (int)Bytes) return false; 9779 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 9780 } 9781 9782 SDValue Base1 = Loc, Base2 = BaseLoc; 9783 int64_t Offset1 = 0, Offset2 = 0; 9784 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 9785 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 9786 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 9787 return true; 9788 9789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9790 const GlobalValue *GV1 = nullptr; 9791 const GlobalValue *GV2 = nullptr; 9792 Offset1 = 0; 9793 Offset2 = 0; 9794 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9795 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9796 if (isGA1 && isGA2 && GV1 == GV2) 9797 return Offset1 == (Offset2 + Dist*Bytes); 9798 return false; 9799 } 9800 9801 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9802 // not enforce equality of the chain operands. 9803 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9804 unsigned Bytes, int Dist, 9805 SelectionDAG &DAG) { 9806 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9807 EVT VT = LS->getMemoryVT(); 9808 SDValue Loc = LS->getBasePtr(); 9809 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9810 } 9811 9812 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9813 EVT VT; 9814 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9815 default: return false; 9816 case Intrinsic::ppc_qpx_qvlfd: 9817 case Intrinsic::ppc_qpx_qvlfda: 9818 VT = MVT::v4f64; 9819 break; 9820 case Intrinsic::ppc_qpx_qvlfs: 9821 case Intrinsic::ppc_qpx_qvlfsa: 9822 VT = MVT::v4f32; 9823 break; 9824 case Intrinsic::ppc_qpx_qvlfcd: 9825 case Intrinsic::ppc_qpx_qvlfcda: 9826 VT = MVT::v2f64; 9827 break; 9828 case Intrinsic::ppc_qpx_qvlfcs: 9829 case Intrinsic::ppc_qpx_qvlfcsa: 9830 VT = MVT::v2f32; 9831 break; 9832 case Intrinsic::ppc_qpx_qvlfiwa: 9833 case Intrinsic::ppc_qpx_qvlfiwz: 9834 case Intrinsic::ppc_altivec_lvx: 9835 case Intrinsic::ppc_altivec_lvxl: 9836 case Intrinsic::ppc_vsx_lxvw4x: 9837 case Intrinsic::ppc_vsx_lxvw4x_be: 9838 VT = MVT::v4i32; 9839 break; 9840 case Intrinsic::ppc_vsx_lxvd2x: 9841 case Intrinsic::ppc_vsx_lxvd2x_be: 9842 VT = MVT::v2f64; 9843 break; 9844 case Intrinsic::ppc_altivec_lvebx: 9845 VT = MVT::i8; 9846 break; 9847 case Intrinsic::ppc_altivec_lvehx: 9848 VT = MVT::i16; 9849 break; 9850 case Intrinsic::ppc_altivec_lvewx: 9851 VT = MVT::i32; 9852 break; 9853 } 9854 9855 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9856 } 9857 9858 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9859 EVT VT; 9860 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9861 default: return false; 9862 case Intrinsic::ppc_qpx_qvstfd: 9863 case Intrinsic::ppc_qpx_qvstfda: 9864 VT = MVT::v4f64; 9865 break; 9866 case Intrinsic::ppc_qpx_qvstfs: 9867 case Intrinsic::ppc_qpx_qvstfsa: 9868 VT = MVT::v4f32; 9869 break; 9870 case Intrinsic::ppc_qpx_qvstfcd: 9871 case Intrinsic::ppc_qpx_qvstfcda: 9872 VT = MVT::v2f64; 9873 break; 9874 case Intrinsic::ppc_qpx_qvstfcs: 9875 case Intrinsic::ppc_qpx_qvstfcsa: 9876 VT = MVT::v2f32; 9877 break; 9878 case Intrinsic::ppc_qpx_qvstfiw: 9879 case Intrinsic::ppc_qpx_qvstfiwa: 9880 case Intrinsic::ppc_altivec_stvx: 9881 case Intrinsic::ppc_altivec_stvxl: 9882 case Intrinsic::ppc_vsx_stxvw4x: 9883 VT = MVT::v4i32; 9884 break; 9885 case Intrinsic::ppc_vsx_stxvd2x: 9886 VT = MVT::v2f64; 9887 break; 9888 case Intrinsic::ppc_vsx_stxvw4x_be: 9889 VT = MVT::v4i32; 9890 break; 9891 case Intrinsic::ppc_vsx_stxvd2x_be: 9892 VT = MVT::v2f64; 9893 break; 9894 case Intrinsic::ppc_altivec_stvebx: 9895 VT = MVT::i8; 9896 break; 9897 case Intrinsic::ppc_altivec_stvehx: 9898 VT = MVT::i16; 9899 break; 9900 case Intrinsic::ppc_altivec_stvewx: 9901 VT = MVT::i32; 9902 break; 9903 } 9904 9905 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9906 } 9907 9908 return false; 9909 } 9910 9911 // Return true is there is a nearyby consecutive load to the one provided 9912 // (regardless of alignment). We search up and down the chain, looking though 9913 // token factors and other loads (but nothing else). As a result, a true result 9914 // indicates that it is safe to create a new consecutive load adjacent to the 9915 // load provided. 9916 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9917 SDValue Chain = LD->getChain(); 9918 EVT VT = LD->getMemoryVT(); 9919 9920 SmallSet<SDNode *, 16> LoadRoots; 9921 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9922 SmallSet<SDNode *, 16> Visited; 9923 9924 // First, search up the chain, branching to follow all token-factor operands. 9925 // If we find a consecutive load, then we're done, otherwise, record all 9926 // nodes just above the top-level loads and token factors. 9927 while (!Queue.empty()) { 9928 SDNode *ChainNext = Queue.pop_back_val(); 9929 if (!Visited.insert(ChainNext).second) 9930 continue; 9931 9932 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9933 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9934 return true; 9935 9936 if (!Visited.count(ChainLD->getChain().getNode())) 9937 Queue.push_back(ChainLD->getChain().getNode()); 9938 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9939 for (const SDUse &O : ChainNext->ops()) 9940 if (!Visited.count(O.getNode())) 9941 Queue.push_back(O.getNode()); 9942 } else 9943 LoadRoots.insert(ChainNext); 9944 } 9945 9946 // Second, search down the chain, starting from the top-level nodes recorded 9947 // in the first phase. These top-level nodes are the nodes just above all 9948 // loads and token factors. Starting with their uses, recursively look though 9949 // all loads (just the chain uses) and token factors to find a consecutive 9950 // load. 9951 Visited.clear(); 9952 Queue.clear(); 9953 9954 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9955 IE = LoadRoots.end(); I != IE; ++I) { 9956 Queue.push_back(*I); 9957 9958 while (!Queue.empty()) { 9959 SDNode *LoadRoot = Queue.pop_back_val(); 9960 if (!Visited.insert(LoadRoot).second) 9961 continue; 9962 9963 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9964 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9965 return true; 9966 9967 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9968 UE = LoadRoot->use_end(); UI != UE; ++UI) 9969 if (((isa<MemSDNode>(*UI) && 9970 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9971 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9972 Queue.push_back(*UI); 9973 } 9974 } 9975 9976 return false; 9977 } 9978 9979 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9980 DAGCombinerInfo &DCI) const { 9981 SelectionDAG &DAG = DCI.DAG; 9982 SDLoc dl(N); 9983 9984 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9985 // If we're tracking CR bits, we need to be careful that we don't have: 9986 // trunc(binary-ops(zext(x), zext(y))) 9987 // or 9988 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9989 // such that we're unnecessarily moving things into GPRs when it would be 9990 // better to keep them in CR bits. 9991 9992 // Note that trunc here can be an actual i1 trunc, or can be the effective 9993 // truncation that comes from a setcc or select_cc. 9994 if (N->getOpcode() == ISD::TRUNCATE && 9995 N->getValueType(0) != MVT::i1) 9996 return SDValue(); 9997 9998 if (N->getOperand(0).getValueType() != MVT::i32 && 9999 N->getOperand(0).getValueType() != MVT::i64) 10000 return SDValue(); 10001 10002 if (N->getOpcode() == ISD::SETCC || 10003 N->getOpcode() == ISD::SELECT_CC) { 10004 // If we're looking at a comparison, then we need to make sure that the 10005 // high bits (all except for the first) don't matter the result. 10006 ISD::CondCode CC = 10007 cast<CondCodeSDNode>(N->getOperand( 10008 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 10009 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 10010 10011 if (ISD::isSignedIntSetCC(CC)) { 10012 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 10013 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 10014 return SDValue(); 10015 } else if (ISD::isUnsignedIntSetCC(CC)) { 10016 if (!DAG.MaskedValueIsZero(N->getOperand(0), 10017 APInt::getHighBitsSet(OpBits, OpBits-1)) || 10018 !DAG.MaskedValueIsZero(N->getOperand(1), 10019 APInt::getHighBitsSet(OpBits, OpBits-1))) 10020 return SDValue(); 10021 } else { 10022 // This is neither a signed nor an unsigned comparison, just make sure 10023 // that the high bits are equal. 10024 APInt Op1Zero, Op1One; 10025 APInt Op2Zero, Op2One; 10026 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 10027 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 10028 10029 // We don't really care about what is known about the first bit (if 10030 // anything), so clear it in all masks prior to comparing them. 10031 Op1Zero.clearBit(0); Op1One.clearBit(0); 10032 Op2Zero.clearBit(0); Op2One.clearBit(0); 10033 10034 if (Op1Zero != Op2Zero || Op1One != Op2One) 10035 return SDValue(); 10036 } 10037 } 10038 10039 // We now know that the higher-order bits are irrelevant, we just need to 10040 // make sure that all of the intermediate operations are bit operations, and 10041 // all inputs are extensions. 10042 if (N->getOperand(0).getOpcode() != ISD::AND && 10043 N->getOperand(0).getOpcode() != ISD::OR && 10044 N->getOperand(0).getOpcode() != ISD::XOR && 10045 N->getOperand(0).getOpcode() != ISD::SELECT && 10046 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 10047 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 10048 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 10049 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 10050 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 10051 return SDValue(); 10052 10053 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 10054 N->getOperand(1).getOpcode() != ISD::AND && 10055 N->getOperand(1).getOpcode() != ISD::OR && 10056 N->getOperand(1).getOpcode() != ISD::XOR && 10057 N->getOperand(1).getOpcode() != ISD::SELECT && 10058 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 10059 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 10060 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 10061 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 10062 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 10063 return SDValue(); 10064 10065 SmallVector<SDValue, 4> Inputs; 10066 SmallVector<SDValue, 8> BinOps, PromOps; 10067 SmallPtrSet<SDNode *, 16> Visited; 10068 10069 for (unsigned i = 0; i < 2; ++i) { 10070 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 10071 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 10072 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 10073 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 10074 isa<ConstantSDNode>(N->getOperand(i))) 10075 Inputs.push_back(N->getOperand(i)); 10076 else 10077 BinOps.push_back(N->getOperand(i)); 10078 10079 if (N->getOpcode() == ISD::TRUNCATE) 10080 break; 10081 } 10082 10083 // Visit all inputs, collect all binary operations (and, or, xor and 10084 // select) that are all fed by extensions. 10085 while (!BinOps.empty()) { 10086 SDValue BinOp = BinOps.back(); 10087 BinOps.pop_back(); 10088 10089 if (!Visited.insert(BinOp.getNode()).second) 10090 continue; 10091 10092 PromOps.push_back(BinOp); 10093 10094 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 10095 // The condition of the select is not promoted. 10096 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 10097 continue; 10098 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 10099 continue; 10100 10101 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 10102 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 10103 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 10104 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 10105 isa<ConstantSDNode>(BinOp.getOperand(i))) { 10106 Inputs.push_back(BinOp.getOperand(i)); 10107 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 10108 BinOp.getOperand(i).getOpcode() == ISD::OR || 10109 BinOp.getOperand(i).getOpcode() == ISD::XOR || 10110 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 10111 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 10112 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 10113 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 10114 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 10115 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 10116 BinOps.push_back(BinOp.getOperand(i)); 10117 } else { 10118 // We have an input that is not an extension or another binary 10119 // operation; we'll abort this transformation. 10120 return SDValue(); 10121 } 10122 } 10123 } 10124 10125 // Make sure that this is a self-contained cluster of operations (which 10126 // is not quite the same thing as saying that everything has only one 10127 // use). 10128 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10129 if (isa<ConstantSDNode>(Inputs[i])) 10130 continue; 10131 10132 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 10133 UE = Inputs[i].getNode()->use_end(); 10134 UI != UE; ++UI) { 10135 SDNode *User = *UI; 10136 if (User != N && !Visited.count(User)) 10137 return SDValue(); 10138 10139 // Make sure that we're not going to promote the non-output-value 10140 // operand(s) or SELECT or SELECT_CC. 10141 // FIXME: Although we could sometimes handle this, and it does occur in 10142 // practice that one of the condition inputs to the select is also one of 10143 // the outputs, we currently can't deal with this. 10144 if (User->getOpcode() == ISD::SELECT) { 10145 if (User->getOperand(0) == Inputs[i]) 10146 return SDValue(); 10147 } else if (User->getOpcode() == ISD::SELECT_CC) { 10148 if (User->getOperand(0) == Inputs[i] || 10149 User->getOperand(1) == Inputs[i]) 10150 return SDValue(); 10151 } 10152 } 10153 } 10154 10155 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 10156 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 10157 UE = PromOps[i].getNode()->use_end(); 10158 UI != UE; ++UI) { 10159 SDNode *User = *UI; 10160 if (User != N && !Visited.count(User)) 10161 return SDValue(); 10162 10163 // Make sure that we're not going to promote the non-output-value 10164 // operand(s) or SELECT or SELECT_CC. 10165 // FIXME: Although we could sometimes handle this, and it does occur in 10166 // practice that one of the condition inputs to the select is also one of 10167 // the outputs, we currently can't deal with this. 10168 if (User->getOpcode() == ISD::SELECT) { 10169 if (User->getOperand(0) == PromOps[i]) 10170 return SDValue(); 10171 } else if (User->getOpcode() == ISD::SELECT_CC) { 10172 if (User->getOperand(0) == PromOps[i] || 10173 User->getOperand(1) == PromOps[i]) 10174 return SDValue(); 10175 } 10176 } 10177 } 10178 10179 // Replace all inputs with the extension operand. 10180 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10181 // Constants may have users outside the cluster of to-be-promoted nodes, 10182 // and so we need to replace those as we do the promotions. 10183 if (isa<ConstantSDNode>(Inputs[i])) 10184 continue; 10185 else 10186 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 10187 } 10188 10189 std::list<HandleSDNode> PromOpHandles; 10190 for (auto &PromOp : PromOps) 10191 PromOpHandles.emplace_back(PromOp); 10192 10193 // Replace all operations (these are all the same, but have a different 10194 // (i1) return type). DAG.getNode will validate that the types of 10195 // a binary operator match, so go through the list in reverse so that 10196 // we've likely promoted both operands first. Any intermediate truncations or 10197 // extensions disappear. 10198 while (!PromOpHandles.empty()) { 10199 SDValue PromOp = PromOpHandles.back().getValue(); 10200 PromOpHandles.pop_back(); 10201 10202 if (PromOp.getOpcode() == ISD::TRUNCATE || 10203 PromOp.getOpcode() == ISD::SIGN_EXTEND || 10204 PromOp.getOpcode() == ISD::ZERO_EXTEND || 10205 PromOp.getOpcode() == ISD::ANY_EXTEND) { 10206 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 10207 PromOp.getOperand(0).getValueType() != MVT::i1) { 10208 // The operand is not yet ready (see comment below). 10209 PromOpHandles.emplace_front(PromOp); 10210 continue; 10211 } 10212 10213 SDValue RepValue = PromOp.getOperand(0); 10214 if (isa<ConstantSDNode>(RepValue)) 10215 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 10216 10217 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 10218 continue; 10219 } 10220 10221 unsigned C; 10222 switch (PromOp.getOpcode()) { 10223 default: C = 0; break; 10224 case ISD::SELECT: C = 1; break; 10225 case ISD::SELECT_CC: C = 2; break; 10226 } 10227 10228 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 10229 PromOp.getOperand(C).getValueType() != MVT::i1) || 10230 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 10231 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 10232 // The to-be-promoted operands of this node have not yet been 10233 // promoted (this should be rare because we're going through the 10234 // list backward, but if one of the operands has several users in 10235 // this cluster of to-be-promoted nodes, it is possible). 10236 PromOpHandles.emplace_front(PromOp); 10237 continue; 10238 } 10239 10240 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10241 PromOp.getNode()->op_end()); 10242 10243 // If there are any constant inputs, make sure they're replaced now. 10244 for (unsigned i = 0; i < 2; ++i) 10245 if (isa<ConstantSDNode>(Ops[C+i])) 10246 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 10247 10248 DAG.ReplaceAllUsesOfValueWith(PromOp, 10249 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 10250 } 10251 10252 // Now we're left with the initial truncation itself. 10253 if (N->getOpcode() == ISD::TRUNCATE) 10254 return N->getOperand(0); 10255 10256 // Otherwise, this is a comparison. The operands to be compared have just 10257 // changed type (to i1), but everything else is the same. 10258 return SDValue(N, 0); 10259 } 10260 10261 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 10262 DAGCombinerInfo &DCI) const { 10263 SelectionDAG &DAG = DCI.DAG; 10264 SDLoc dl(N); 10265 10266 // If we're tracking CR bits, we need to be careful that we don't have: 10267 // zext(binary-ops(trunc(x), trunc(y))) 10268 // or 10269 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 10270 // such that we're unnecessarily moving things into CR bits that can more 10271 // efficiently stay in GPRs. Note that if we're not certain that the high 10272 // bits are set as required by the final extension, we still may need to do 10273 // some masking to get the proper behavior. 10274 10275 // This same functionality is important on PPC64 when dealing with 10276 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 10277 // the return values of functions. Because it is so similar, it is handled 10278 // here as well. 10279 10280 if (N->getValueType(0) != MVT::i32 && 10281 N->getValueType(0) != MVT::i64) 10282 return SDValue(); 10283 10284 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 10285 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 10286 return SDValue(); 10287 10288 if (N->getOperand(0).getOpcode() != ISD::AND && 10289 N->getOperand(0).getOpcode() != ISD::OR && 10290 N->getOperand(0).getOpcode() != ISD::XOR && 10291 N->getOperand(0).getOpcode() != ISD::SELECT && 10292 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 10293 return SDValue(); 10294 10295 SmallVector<SDValue, 4> Inputs; 10296 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 10297 SmallPtrSet<SDNode *, 16> Visited; 10298 10299 // Visit all inputs, collect all binary operations (and, or, xor and 10300 // select) that are all fed by truncations. 10301 while (!BinOps.empty()) { 10302 SDValue BinOp = BinOps.back(); 10303 BinOps.pop_back(); 10304 10305 if (!Visited.insert(BinOp.getNode()).second) 10306 continue; 10307 10308 PromOps.push_back(BinOp); 10309 10310 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 10311 // The condition of the select is not promoted. 10312 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 10313 continue; 10314 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 10315 continue; 10316 10317 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 10318 isa<ConstantSDNode>(BinOp.getOperand(i))) { 10319 Inputs.push_back(BinOp.getOperand(i)); 10320 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 10321 BinOp.getOperand(i).getOpcode() == ISD::OR || 10322 BinOp.getOperand(i).getOpcode() == ISD::XOR || 10323 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 10324 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 10325 BinOps.push_back(BinOp.getOperand(i)); 10326 } else { 10327 // We have an input that is not a truncation or another binary 10328 // operation; we'll abort this transformation. 10329 return SDValue(); 10330 } 10331 } 10332 } 10333 10334 // The operands of a select that must be truncated when the select is 10335 // promoted because the operand is actually part of the to-be-promoted set. 10336 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 10337 10338 // Make sure that this is a self-contained cluster of operations (which 10339 // is not quite the same thing as saying that everything has only one 10340 // use). 10341 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10342 if (isa<ConstantSDNode>(Inputs[i])) 10343 continue; 10344 10345 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 10346 UE = Inputs[i].getNode()->use_end(); 10347 UI != UE; ++UI) { 10348 SDNode *User = *UI; 10349 if (User != N && !Visited.count(User)) 10350 return SDValue(); 10351 10352 // If we're going to promote the non-output-value operand(s) or SELECT or 10353 // SELECT_CC, record them for truncation. 10354 if (User->getOpcode() == ISD::SELECT) { 10355 if (User->getOperand(0) == Inputs[i]) 10356 SelectTruncOp[0].insert(std::make_pair(User, 10357 User->getOperand(0).getValueType())); 10358 } else if (User->getOpcode() == ISD::SELECT_CC) { 10359 if (User->getOperand(0) == Inputs[i]) 10360 SelectTruncOp[0].insert(std::make_pair(User, 10361 User->getOperand(0).getValueType())); 10362 if (User->getOperand(1) == Inputs[i]) 10363 SelectTruncOp[1].insert(std::make_pair(User, 10364 User->getOperand(1).getValueType())); 10365 } 10366 } 10367 } 10368 10369 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 10370 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 10371 UE = PromOps[i].getNode()->use_end(); 10372 UI != UE; ++UI) { 10373 SDNode *User = *UI; 10374 if (User != N && !Visited.count(User)) 10375 return SDValue(); 10376 10377 // If we're going to promote the non-output-value operand(s) or SELECT or 10378 // SELECT_CC, record them for truncation. 10379 if (User->getOpcode() == ISD::SELECT) { 10380 if (User->getOperand(0) == PromOps[i]) 10381 SelectTruncOp[0].insert(std::make_pair(User, 10382 User->getOperand(0).getValueType())); 10383 } else if (User->getOpcode() == ISD::SELECT_CC) { 10384 if (User->getOperand(0) == PromOps[i]) 10385 SelectTruncOp[0].insert(std::make_pair(User, 10386 User->getOperand(0).getValueType())); 10387 if (User->getOperand(1) == PromOps[i]) 10388 SelectTruncOp[1].insert(std::make_pair(User, 10389 User->getOperand(1).getValueType())); 10390 } 10391 } 10392 } 10393 10394 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 10395 bool ReallyNeedsExt = false; 10396 if (N->getOpcode() != ISD::ANY_EXTEND) { 10397 // If all of the inputs are not already sign/zero extended, then 10398 // we'll still need to do that at the end. 10399 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10400 if (isa<ConstantSDNode>(Inputs[i])) 10401 continue; 10402 10403 unsigned OpBits = 10404 Inputs[i].getOperand(0).getValueSizeInBits(); 10405 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 10406 10407 if ((N->getOpcode() == ISD::ZERO_EXTEND && 10408 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 10409 APInt::getHighBitsSet(OpBits, 10410 OpBits-PromBits))) || 10411 (N->getOpcode() == ISD::SIGN_EXTEND && 10412 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 10413 (OpBits-(PromBits-1)))) { 10414 ReallyNeedsExt = true; 10415 break; 10416 } 10417 } 10418 } 10419 10420 // Replace all inputs, either with the truncation operand, or a 10421 // truncation or extension to the final output type. 10422 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10423 // Constant inputs need to be replaced with the to-be-promoted nodes that 10424 // use them because they might have users outside of the cluster of 10425 // promoted nodes. 10426 if (isa<ConstantSDNode>(Inputs[i])) 10427 continue; 10428 10429 SDValue InSrc = Inputs[i].getOperand(0); 10430 if (Inputs[i].getValueType() == N->getValueType(0)) 10431 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 10432 else if (N->getOpcode() == ISD::SIGN_EXTEND) 10433 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10434 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 10435 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10436 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10437 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 10438 else 10439 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10440 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 10441 } 10442 10443 std::list<HandleSDNode> PromOpHandles; 10444 for (auto &PromOp : PromOps) 10445 PromOpHandles.emplace_back(PromOp); 10446 10447 // Replace all operations (these are all the same, but have a different 10448 // (promoted) return type). DAG.getNode will validate that the types of 10449 // a binary operator match, so go through the list in reverse so that 10450 // we've likely promoted both operands first. 10451 while (!PromOpHandles.empty()) { 10452 SDValue PromOp = PromOpHandles.back().getValue(); 10453 PromOpHandles.pop_back(); 10454 10455 unsigned C; 10456 switch (PromOp.getOpcode()) { 10457 default: C = 0; break; 10458 case ISD::SELECT: C = 1; break; 10459 case ISD::SELECT_CC: C = 2; break; 10460 } 10461 10462 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 10463 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 10464 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 10465 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 10466 // The to-be-promoted operands of this node have not yet been 10467 // promoted (this should be rare because we're going through the 10468 // list backward, but if one of the operands has several users in 10469 // this cluster of to-be-promoted nodes, it is possible). 10470 PromOpHandles.emplace_front(PromOp); 10471 continue; 10472 } 10473 10474 // For SELECT and SELECT_CC nodes, we do a similar check for any 10475 // to-be-promoted comparison inputs. 10476 if (PromOp.getOpcode() == ISD::SELECT || 10477 PromOp.getOpcode() == ISD::SELECT_CC) { 10478 if ((SelectTruncOp[0].count(PromOp.getNode()) && 10479 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 10480 (SelectTruncOp[1].count(PromOp.getNode()) && 10481 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 10482 PromOpHandles.emplace_front(PromOp); 10483 continue; 10484 } 10485 } 10486 10487 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10488 PromOp.getNode()->op_end()); 10489 10490 // If this node has constant inputs, then they'll need to be promoted here. 10491 for (unsigned i = 0; i < 2; ++i) { 10492 if (!isa<ConstantSDNode>(Ops[C+i])) 10493 continue; 10494 if (Ops[C+i].getValueType() == N->getValueType(0)) 10495 continue; 10496 10497 if (N->getOpcode() == ISD::SIGN_EXTEND) 10498 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10499 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10500 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10501 else 10502 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10503 } 10504 10505 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 10506 // truncate them again to the original value type. 10507 if (PromOp.getOpcode() == ISD::SELECT || 10508 PromOp.getOpcode() == ISD::SELECT_CC) { 10509 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 10510 if (SI0 != SelectTruncOp[0].end()) 10511 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 10512 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 10513 if (SI1 != SelectTruncOp[1].end()) 10514 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 10515 } 10516 10517 DAG.ReplaceAllUsesOfValueWith(PromOp, 10518 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 10519 } 10520 10521 // Now we're left with the initial extension itself. 10522 if (!ReallyNeedsExt) 10523 return N->getOperand(0); 10524 10525 // To zero extend, just mask off everything except for the first bit (in the 10526 // i1 case). 10527 if (N->getOpcode() == ISD::ZERO_EXTEND) 10528 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 10529 DAG.getConstant(APInt::getLowBitsSet( 10530 N->getValueSizeInBits(0), PromBits), 10531 dl, N->getValueType(0))); 10532 10533 assert(N->getOpcode() == ISD::SIGN_EXTEND && 10534 "Invalid extension type"); 10535 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 10536 SDValue ShiftCst = 10537 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 10538 return DAG.getNode( 10539 ISD::SRA, dl, N->getValueType(0), 10540 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 10541 ShiftCst); 10542 } 10543 10544 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 10545 DAGCombinerInfo &DCI) const { 10546 assert(N->getOpcode() == ISD::BUILD_VECTOR && 10547 "Should be called with a BUILD_VECTOR node"); 10548 10549 SelectionDAG &DAG = DCI.DAG; 10550 SDLoc dl(N); 10551 if (N->getValueType(0) != MVT::v2f64 || !Subtarget.hasVSX()) 10552 return SDValue(); 10553 10554 // Looking for: 10555 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 10556 if (N->getOperand(0).getOpcode() != ISD::SINT_TO_FP && 10557 N->getOperand(0).getOpcode() != ISD::UINT_TO_FP) 10558 return SDValue(); 10559 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 10560 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 10561 return SDValue(); 10562 if (N->getOperand(0).getOpcode() != N->getOperand(1).getOpcode()) 10563 return SDValue(); 10564 10565 SDValue Ext1 = N->getOperand(0).getOperand(0); 10566 SDValue Ext2 = N->getOperand(1).getOperand(0); 10567 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10568 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10569 return SDValue(); 10570 10571 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 10572 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 10573 if (!Ext1Op || !Ext2Op) 10574 return SDValue(); 10575 if (Ext1.getValueType() != MVT::i32 || 10576 Ext2.getValueType() != MVT::i32) 10577 if (Ext1.getOperand(0) != Ext2.getOperand(0)) 10578 return SDValue(); 10579 10580 int FirstElem = Ext1Op->getZExtValue(); 10581 int SecondElem = Ext2Op->getZExtValue(); 10582 int SubvecIdx; 10583 if (FirstElem == 0 && SecondElem == 1) 10584 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 10585 else if (FirstElem == 2 && SecondElem == 3) 10586 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 10587 else 10588 return SDValue(); 10589 10590 SDValue SrcVec = Ext1.getOperand(0); 10591 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 10592 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 10593 return DAG.getNode(NodeType, dl, MVT::v2f64, 10594 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 10595 } 10596 10597 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 10598 DAGCombinerInfo &DCI) const { 10599 assert((N->getOpcode() == ISD::SINT_TO_FP || 10600 N->getOpcode() == ISD::UINT_TO_FP) && 10601 "Need an int -> FP conversion node here"); 10602 10603 if (useSoftFloat() || !Subtarget.has64BitSupport()) 10604 return SDValue(); 10605 10606 SelectionDAG &DAG = DCI.DAG; 10607 SDLoc dl(N); 10608 SDValue Op(N, 0); 10609 10610 SDValue FirstOperand(Op.getOperand(0)); 10611 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 10612 (FirstOperand.getValueType() == MVT::i8 || 10613 FirstOperand.getValueType() == MVT::i16); 10614 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 10615 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 10616 bool DstDouble = Op.getValueType() == MVT::f64; 10617 unsigned ConvOp = Signed ? 10618 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 10619 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 10620 SDValue WidthConst = 10621 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 10622 dl, false); 10623 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 10624 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 10625 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 10626 DAG.getVTList(MVT::f64, MVT::Other), 10627 Ops, MVT::i8, LDN->getMemOperand()); 10628 10629 // For signed conversion, we need to sign-extend the value in the VSR 10630 if (Signed) { 10631 SDValue ExtOps[] = { Ld, WidthConst }; 10632 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 10633 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 10634 } else 10635 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 10636 } 10637 10638 // Don't handle ppc_fp128 here or i1 conversions. 10639 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 10640 return SDValue(); 10641 if (Op.getOperand(0).getValueType() == MVT::i1) 10642 return SDValue(); 10643 10644 // For i32 intermediate values, unfortunately, the conversion functions 10645 // leave the upper 32 bits of the value are undefined. Within the set of 10646 // scalar instructions, we have no method for zero- or sign-extending the 10647 // value. Thus, we cannot handle i32 intermediate values here. 10648 if (Op.getOperand(0).getValueType() == MVT::i32) 10649 return SDValue(); 10650 10651 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 10652 "UINT_TO_FP is supported only with FPCVT"); 10653 10654 // If we have FCFIDS, then use it when converting to single-precision. 10655 // Otherwise, convert to double-precision and then round. 10656 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10657 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 10658 : PPCISD::FCFIDS) 10659 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 10660 : PPCISD::FCFID); 10661 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10662 ? MVT::f32 10663 : MVT::f64; 10664 10665 // If we're converting from a float, to an int, and back to a float again, 10666 // then we don't need the store/load pair at all. 10667 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 10668 Subtarget.hasFPCVT()) || 10669 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 10670 SDValue Src = Op.getOperand(0).getOperand(0); 10671 if (Src.getValueType() == MVT::f32) { 10672 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 10673 DCI.AddToWorklist(Src.getNode()); 10674 } else if (Src.getValueType() != MVT::f64) { 10675 // Make sure that we don't pick up a ppc_fp128 source value. 10676 return SDValue(); 10677 } 10678 10679 unsigned FCTOp = 10680 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 10681 PPCISD::FCTIDUZ; 10682 10683 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 10684 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 10685 10686 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 10687 FP = DAG.getNode(ISD::FP_ROUND, dl, 10688 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 10689 DCI.AddToWorklist(FP.getNode()); 10690 } 10691 10692 return FP; 10693 } 10694 10695 return SDValue(); 10696 } 10697 10698 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 10699 // builtins) into loads with swaps. 10700 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 10701 DAGCombinerInfo &DCI) const { 10702 SelectionDAG &DAG = DCI.DAG; 10703 SDLoc dl(N); 10704 SDValue Chain; 10705 SDValue Base; 10706 MachineMemOperand *MMO; 10707 10708 switch (N->getOpcode()) { 10709 default: 10710 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10711 case ISD::LOAD: { 10712 LoadSDNode *LD = cast<LoadSDNode>(N); 10713 Chain = LD->getChain(); 10714 Base = LD->getBasePtr(); 10715 MMO = LD->getMemOperand(); 10716 // If the MMO suggests this isn't a load of a full vector, leave 10717 // things alone. For a built-in, we have to make the change for 10718 // correctness, so if there is a size problem that will be a bug. 10719 if (MMO->getSize() < 16) 10720 return SDValue(); 10721 break; 10722 } 10723 case ISD::INTRINSIC_W_CHAIN: { 10724 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10725 Chain = Intrin->getChain(); 10726 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10727 // us what we want. Get operand 2 instead. 10728 Base = Intrin->getOperand(2); 10729 MMO = Intrin->getMemOperand(); 10730 break; 10731 } 10732 } 10733 10734 MVT VecTy = N->getValueType(0).getSimpleVT(); 10735 SDValue LoadOps[] = { Chain, Base }; 10736 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10737 DAG.getVTList(MVT::v2f64, MVT::Other), 10738 LoadOps, MVT::v2f64, MMO); 10739 10740 DCI.AddToWorklist(Load.getNode()); 10741 Chain = Load.getValue(1); 10742 SDValue Swap = DAG.getNode( 10743 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 10744 DCI.AddToWorklist(Swap.getNode()); 10745 10746 // Add a bitcast if the resulting load type doesn't match v2f64. 10747 if (VecTy != MVT::v2f64) { 10748 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 10749 DCI.AddToWorklist(N.getNode()); 10750 // Package {bitcast value, swap's chain} to match Load's shape. 10751 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 10752 N, Swap.getValue(1)); 10753 } 10754 10755 return Swap; 10756 } 10757 10758 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10759 // builtins) into stores with swaps. 10760 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10761 DAGCombinerInfo &DCI) const { 10762 SelectionDAG &DAG = DCI.DAG; 10763 SDLoc dl(N); 10764 SDValue Chain; 10765 SDValue Base; 10766 unsigned SrcOpnd; 10767 MachineMemOperand *MMO; 10768 10769 switch (N->getOpcode()) { 10770 default: 10771 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10772 case ISD::STORE: { 10773 StoreSDNode *ST = cast<StoreSDNode>(N); 10774 Chain = ST->getChain(); 10775 Base = ST->getBasePtr(); 10776 MMO = ST->getMemOperand(); 10777 SrcOpnd = 1; 10778 // If the MMO suggests this isn't a store of a full vector, leave 10779 // things alone. For a built-in, we have to make the change for 10780 // correctness, so if there is a size problem that will be a bug. 10781 if (MMO->getSize() < 16) 10782 return SDValue(); 10783 break; 10784 } 10785 case ISD::INTRINSIC_VOID: { 10786 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10787 Chain = Intrin->getChain(); 10788 // Intrin->getBasePtr() oddly does not get what we want. 10789 Base = Intrin->getOperand(3); 10790 MMO = Intrin->getMemOperand(); 10791 SrcOpnd = 2; 10792 break; 10793 } 10794 } 10795 10796 SDValue Src = N->getOperand(SrcOpnd); 10797 MVT VecTy = Src.getValueType().getSimpleVT(); 10798 10799 // All stores are done as v2f64 and possible bit cast. 10800 if (VecTy != MVT::v2f64) { 10801 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 10802 DCI.AddToWorklist(Src.getNode()); 10803 } 10804 10805 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10806 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 10807 DCI.AddToWorklist(Swap.getNode()); 10808 Chain = Swap.getValue(1); 10809 SDValue StoreOps[] = { Chain, Swap, Base }; 10810 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10811 DAG.getVTList(MVT::Other), 10812 StoreOps, VecTy, MMO); 10813 DCI.AddToWorklist(Store.getNode()); 10814 return Store; 10815 } 10816 10817 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10818 DAGCombinerInfo &DCI) const { 10819 SelectionDAG &DAG = DCI.DAG; 10820 SDLoc dl(N); 10821 switch (N->getOpcode()) { 10822 default: break; 10823 case PPCISD::SHL: 10824 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 10825 return N->getOperand(0); 10826 break; 10827 case PPCISD::SRL: 10828 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 10829 return N->getOperand(0); 10830 break; 10831 case PPCISD::SRA: 10832 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10833 if (C->isNullValue() || // 0 >>s V -> 0. 10834 C->isAllOnesValue()) // -1 >>s V -> -1. 10835 return N->getOperand(0); 10836 } 10837 break; 10838 case ISD::SIGN_EXTEND: 10839 case ISD::ZERO_EXTEND: 10840 case ISD::ANY_EXTEND: 10841 return DAGCombineExtBoolTrunc(N, DCI); 10842 case ISD::TRUNCATE: 10843 case ISD::SETCC: 10844 case ISD::SELECT_CC: 10845 return DAGCombineTruncBoolExt(N, DCI); 10846 case ISD::SINT_TO_FP: 10847 case ISD::UINT_TO_FP: 10848 return combineFPToIntToFP(N, DCI); 10849 case ISD::STORE: { 10850 EVT Op1VT = N->getOperand(1).getValueType(); 10851 bool ValidTypeForStoreFltAsInt = (Op1VT == MVT::i32) || 10852 (Subtarget.hasP9Vector() && (Op1VT == MVT::i8 || Op1VT == MVT::i16)); 10853 10854 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10855 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10856 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10857 ValidTypeForStoreFltAsInt && 10858 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10859 SDValue Val = N->getOperand(1).getOperand(0); 10860 if (Val.getValueType() == MVT::f32) { 10861 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10862 DCI.AddToWorklist(Val.getNode()); 10863 } 10864 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10865 DCI.AddToWorklist(Val.getNode()); 10866 10867 if (Op1VT == MVT::i32) { 10868 SDValue Ops[] = { 10869 N->getOperand(0), Val, N->getOperand(2), 10870 DAG.getValueType(N->getOperand(1).getValueType()) 10871 }; 10872 10873 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10874 DAG.getVTList(MVT::Other), Ops, 10875 cast<StoreSDNode>(N)->getMemoryVT(), 10876 cast<StoreSDNode>(N)->getMemOperand()); 10877 } else { 10878 unsigned WidthInBytes = 10879 N->getOperand(1).getValueType() == MVT::i8 ? 1 : 2; 10880 SDValue WidthConst = DAG.getIntPtrConstant(WidthInBytes, dl, false); 10881 10882 SDValue Ops[] = { 10883 N->getOperand(0), Val, N->getOperand(2), WidthConst, 10884 DAG.getValueType(N->getOperand(1).getValueType()) 10885 }; 10886 Val = DAG.getMemIntrinsicNode(PPCISD::STXSIX, dl, 10887 DAG.getVTList(MVT::Other), Ops, 10888 cast<StoreSDNode>(N)->getMemoryVT(), 10889 cast<StoreSDNode>(N)->getMemOperand()); 10890 } 10891 10892 DCI.AddToWorklist(Val.getNode()); 10893 return Val; 10894 } 10895 10896 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10897 if (cast<StoreSDNode>(N)->isUnindexed() && 10898 N->getOperand(1).getOpcode() == ISD::BSWAP && 10899 N->getOperand(1).getNode()->hasOneUse() && 10900 (N->getOperand(1).getValueType() == MVT::i32 || 10901 N->getOperand(1).getValueType() == MVT::i16 || 10902 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10903 N->getOperand(1).getValueType() == MVT::i64))) { 10904 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10905 // Do an any-extend to 32-bits if this is a half-word input. 10906 if (BSwapOp.getValueType() == MVT::i16) 10907 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10908 10909 SDValue Ops[] = { 10910 N->getOperand(0), BSwapOp, N->getOperand(2), 10911 DAG.getValueType(N->getOperand(1).getValueType()) 10912 }; 10913 return 10914 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10915 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10916 cast<StoreSDNode>(N)->getMemOperand()); 10917 } 10918 10919 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10920 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 10921 EVT VT = N->getOperand(1).getValueType(); 10922 if (VT.isSimple()) { 10923 MVT StoreVT = VT.getSimpleVT(); 10924 if (Subtarget.needsSwapsForVSXMemOps() && 10925 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10926 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10927 return expandVSXStoreForLE(N, DCI); 10928 } 10929 break; 10930 } 10931 case ISD::LOAD: { 10932 LoadSDNode *LD = cast<LoadSDNode>(N); 10933 EVT VT = LD->getValueType(0); 10934 10935 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10936 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 10937 if (VT.isSimple()) { 10938 MVT LoadVT = VT.getSimpleVT(); 10939 if (Subtarget.needsSwapsForVSXMemOps() && 10940 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10941 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10942 return expandVSXLoadForLE(N, DCI); 10943 } 10944 10945 // We sometimes end up with a 64-bit integer load, from which we extract 10946 // two single-precision floating-point numbers. This happens with 10947 // std::complex<float>, and other similar structures, because of the way we 10948 // canonicalize structure copies. However, if we lack direct moves, 10949 // then the final bitcasts from the extracted integer values to the 10950 // floating-point numbers turn into store/load pairs. Even with direct moves, 10951 // just loading the two floating-point numbers is likely better. 10952 auto ReplaceTwoFloatLoad = [&]() { 10953 if (VT != MVT::i64) 10954 return false; 10955 10956 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 10957 LD->isVolatile()) 10958 return false; 10959 10960 // We're looking for a sequence like this: 10961 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 10962 // t16: i64 = srl t13, Constant:i32<32> 10963 // t17: i32 = truncate t16 10964 // t18: f32 = bitcast t17 10965 // t19: i32 = truncate t13 10966 // t20: f32 = bitcast t19 10967 10968 if (!LD->hasNUsesOfValue(2, 0)) 10969 return false; 10970 10971 auto UI = LD->use_begin(); 10972 while (UI.getUse().getResNo() != 0) ++UI; 10973 SDNode *Trunc = *UI++; 10974 while (UI.getUse().getResNo() != 0) ++UI; 10975 SDNode *RightShift = *UI; 10976 if (Trunc->getOpcode() != ISD::TRUNCATE) 10977 std::swap(Trunc, RightShift); 10978 10979 if (Trunc->getOpcode() != ISD::TRUNCATE || 10980 Trunc->getValueType(0) != MVT::i32 || 10981 !Trunc->hasOneUse()) 10982 return false; 10983 if (RightShift->getOpcode() != ISD::SRL || 10984 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 10985 RightShift->getConstantOperandVal(1) != 32 || 10986 !RightShift->hasOneUse()) 10987 return false; 10988 10989 SDNode *Trunc2 = *RightShift->use_begin(); 10990 if (Trunc2->getOpcode() != ISD::TRUNCATE || 10991 Trunc2->getValueType(0) != MVT::i32 || 10992 !Trunc2->hasOneUse()) 10993 return false; 10994 10995 SDNode *Bitcast = *Trunc->use_begin(); 10996 SDNode *Bitcast2 = *Trunc2->use_begin(); 10997 10998 if (Bitcast->getOpcode() != ISD::BITCAST || 10999 Bitcast->getValueType(0) != MVT::f32) 11000 return false; 11001 if (Bitcast2->getOpcode() != ISD::BITCAST || 11002 Bitcast2->getValueType(0) != MVT::f32) 11003 return false; 11004 11005 if (Subtarget.isLittleEndian()) 11006 std::swap(Bitcast, Bitcast2); 11007 11008 // Bitcast has the second float (in memory-layout order) and Bitcast2 11009 // has the first one. 11010 11011 SDValue BasePtr = LD->getBasePtr(); 11012 if (LD->isIndexed()) { 11013 assert(LD->getAddressingMode() == ISD::PRE_INC && 11014 "Non-pre-inc AM on PPC?"); 11015 BasePtr = 11016 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 11017 LD->getOffset()); 11018 } 11019 11020 auto MMOFlags = 11021 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 11022 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 11023 LD->getPointerInfo(), LD->getAlignment(), 11024 MMOFlags, LD->getAAInfo()); 11025 SDValue AddPtr = 11026 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 11027 BasePtr, DAG.getIntPtrConstant(4, dl)); 11028 SDValue FloatLoad2 = DAG.getLoad( 11029 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 11030 LD->getPointerInfo().getWithOffset(4), 11031 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 11032 11033 if (LD->isIndexed()) { 11034 // Note that DAGCombine should re-form any pre-increment load(s) from 11035 // what is produced here if that makes sense. 11036 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 11037 } 11038 11039 DCI.CombineTo(Bitcast2, FloatLoad); 11040 DCI.CombineTo(Bitcast, FloatLoad2); 11041 11042 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 11043 SDValue(FloatLoad2.getNode(), 1)); 11044 return true; 11045 }; 11046 11047 if (ReplaceTwoFloatLoad()) 11048 return SDValue(N, 0); 11049 11050 EVT MemVT = LD->getMemoryVT(); 11051 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 11052 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 11053 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 11054 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 11055 if (LD->isUnindexed() && VT.isVector() && 11056 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 11057 // P8 and later hardware should just use LOAD. 11058 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 11059 VT == MVT::v4i32 || VT == MVT::v4f32)) || 11060 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 11061 LD->getAlignment() >= ScalarABIAlignment)) && 11062 LD->getAlignment() < ABIAlignment) { 11063 // This is a type-legal unaligned Altivec or QPX load. 11064 SDValue Chain = LD->getChain(); 11065 SDValue Ptr = LD->getBasePtr(); 11066 bool isLittleEndian = Subtarget.isLittleEndian(); 11067 11068 // This implements the loading of unaligned vectors as described in 11069 // the venerable Apple Velocity Engine overview. Specifically: 11070 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 11071 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 11072 // 11073 // The general idea is to expand a sequence of one or more unaligned 11074 // loads into an alignment-based permutation-control instruction (lvsl 11075 // or lvsr), a series of regular vector loads (which always truncate 11076 // their input address to an aligned address), and a series of 11077 // permutations. The results of these permutations are the requested 11078 // loaded values. The trick is that the last "extra" load is not taken 11079 // from the address you might suspect (sizeof(vector) bytes after the 11080 // last requested load), but rather sizeof(vector) - 1 bytes after the 11081 // last requested vector. The point of this is to avoid a page fault if 11082 // the base address happened to be aligned. This works because if the 11083 // base address is aligned, then adding less than a full vector length 11084 // will cause the last vector in the sequence to be (re)loaded. 11085 // Otherwise, the next vector will be fetched as you might suspect was 11086 // necessary. 11087 11088 // We might be able to reuse the permutation generation from 11089 // a different base address offset from this one by an aligned amount. 11090 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 11091 // optimization later. 11092 Intrinsic::ID Intr, IntrLD, IntrPerm; 11093 MVT PermCntlTy, PermTy, LDTy; 11094 if (Subtarget.hasAltivec()) { 11095 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 11096 Intrinsic::ppc_altivec_lvsl; 11097 IntrLD = Intrinsic::ppc_altivec_lvx; 11098 IntrPerm = Intrinsic::ppc_altivec_vperm; 11099 PermCntlTy = MVT::v16i8; 11100 PermTy = MVT::v4i32; 11101 LDTy = MVT::v4i32; 11102 } else { 11103 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 11104 Intrinsic::ppc_qpx_qvlpcls; 11105 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 11106 Intrinsic::ppc_qpx_qvlfs; 11107 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 11108 PermCntlTy = MVT::v4f64; 11109 PermTy = MVT::v4f64; 11110 LDTy = MemVT.getSimpleVT(); 11111 } 11112 11113 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 11114 11115 // Create the new MMO for the new base load. It is like the original MMO, 11116 // but represents an area in memory almost twice the vector size centered 11117 // on the original address. If the address is unaligned, we might start 11118 // reading up to (sizeof(vector)-1) bytes below the address of the 11119 // original unaligned load. 11120 MachineFunction &MF = DAG.getMachineFunction(); 11121 MachineMemOperand *BaseMMO = 11122 MF.getMachineMemOperand(LD->getMemOperand(), 11123 -(long)MemVT.getStoreSize()+1, 11124 2*MemVT.getStoreSize()-1); 11125 11126 // Create the new base load. 11127 SDValue LDXIntID = 11128 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 11129 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 11130 SDValue BaseLoad = 11131 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 11132 DAG.getVTList(PermTy, MVT::Other), 11133 BaseLoadOps, LDTy, BaseMMO); 11134 11135 // Note that the value of IncOffset (which is provided to the next 11136 // load's pointer info offset value, and thus used to calculate the 11137 // alignment), and the value of IncValue (which is actually used to 11138 // increment the pointer value) are different! This is because we 11139 // require the next load to appear to be aligned, even though it 11140 // is actually offset from the base pointer by a lesser amount. 11141 int IncOffset = VT.getSizeInBits() / 8; 11142 int IncValue = IncOffset; 11143 11144 // Walk (both up and down) the chain looking for another load at the real 11145 // (aligned) offset (the alignment of the other load does not matter in 11146 // this case). If found, then do not use the offset reduction trick, as 11147 // that will prevent the loads from being later combined (as they would 11148 // otherwise be duplicates). 11149 if (!findConsecutiveLoad(LD, DAG)) 11150 --IncValue; 11151 11152 SDValue Increment = 11153 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 11154 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 11155 11156 MachineMemOperand *ExtraMMO = 11157 MF.getMachineMemOperand(LD->getMemOperand(), 11158 1, 2*MemVT.getStoreSize()-1); 11159 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 11160 SDValue ExtraLoad = 11161 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 11162 DAG.getVTList(PermTy, MVT::Other), 11163 ExtraLoadOps, LDTy, ExtraMMO); 11164 11165 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 11166 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 11167 11168 // Because vperm has a big-endian bias, we must reverse the order 11169 // of the input vectors and complement the permute control vector 11170 // when generating little endian code. We have already handled the 11171 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 11172 // and ExtraLoad here. 11173 SDValue Perm; 11174 if (isLittleEndian) 11175 Perm = BuildIntrinsicOp(IntrPerm, 11176 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 11177 else 11178 Perm = BuildIntrinsicOp(IntrPerm, 11179 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 11180 11181 if (VT != PermTy) 11182 Perm = Subtarget.hasAltivec() ? 11183 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 11184 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 11185 DAG.getTargetConstant(1, dl, MVT::i64)); 11186 // second argument is 1 because this rounding 11187 // is always exact. 11188 11189 // The output of the permutation is our loaded result, the TokenFactor is 11190 // our new chain. 11191 DCI.CombineTo(N, Perm, TF); 11192 return SDValue(N, 0); 11193 } 11194 } 11195 break; 11196 case ISD::INTRINSIC_WO_CHAIN: { 11197 bool isLittleEndian = Subtarget.isLittleEndian(); 11198 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 11199 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 11200 : Intrinsic::ppc_altivec_lvsl); 11201 if ((IID == Intr || 11202 IID == Intrinsic::ppc_qpx_qvlpcld || 11203 IID == Intrinsic::ppc_qpx_qvlpcls) && 11204 N->getOperand(1)->getOpcode() == ISD::ADD) { 11205 SDValue Add = N->getOperand(1); 11206 11207 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 11208 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 11209 11210 if (DAG.MaskedValueIsZero(Add->getOperand(1), 11211 APInt::getAllOnesValue(Bits /* alignment */) 11212 .zext(Add.getScalarValueSizeInBits()))) { 11213 SDNode *BasePtr = Add->getOperand(0).getNode(); 11214 for (SDNode::use_iterator UI = BasePtr->use_begin(), 11215 UE = BasePtr->use_end(); 11216 UI != UE; ++UI) { 11217 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11218 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 11219 // We've found another LVSL/LVSR, and this address is an aligned 11220 // multiple of that one. The results will be the same, so use the 11221 // one we've just found instead. 11222 11223 return SDValue(*UI, 0); 11224 } 11225 } 11226 } 11227 11228 if (isa<ConstantSDNode>(Add->getOperand(1))) { 11229 SDNode *BasePtr = Add->getOperand(0).getNode(); 11230 for (SDNode::use_iterator UI = BasePtr->use_begin(), 11231 UE = BasePtr->use_end(); UI != UE; ++UI) { 11232 if (UI->getOpcode() == ISD::ADD && 11233 isa<ConstantSDNode>(UI->getOperand(1)) && 11234 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 11235 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 11236 (1ULL << Bits) == 0) { 11237 SDNode *OtherAdd = *UI; 11238 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 11239 VE = OtherAdd->use_end(); VI != VE; ++VI) { 11240 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11241 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 11242 return SDValue(*VI, 0); 11243 } 11244 } 11245 } 11246 } 11247 } 11248 } 11249 } 11250 11251 break; 11252 case ISD::INTRINSIC_W_CHAIN: { 11253 // For little endian, VSX loads require generating lxvd2x/xxswapd. 11254 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 11255 if (Subtarget.needsSwapsForVSXMemOps()) { 11256 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11257 default: 11258 break; 11259 case Intrinsic::ppc_vsx_lxvw4x: 11260 case Intrinsic::ppc_vsx_lxvd2x: 11261 return expandVSXLoadForLE(N, DCI); 11262 } 11263 } 11264 break; 11265 } 11266 case ISD::INTRINSIC_VOID: { 11267 // For little endian, VSX stores require generating xxswapd/stxvd2x. 11268 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 11269 if (Subtarget.needsSwapsForVSXMemOps()) { 11270 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11271 default: 11272 break; 11273 case Intrinsic::ppc_vsx_stxvw4x: 11274 case Intrinsic::ppc_vsx_stxvd2x: 11275 return expandVSXStoreForLE(N, DCI); 11276 } 11277 } 11278 break; 11279 } 11280 case ISD::BSWAP: 11281 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 11282 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 11283 N->getOperand(0).hasOneUse() && 11284 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 11285 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 11286 N->getValueType(0) == MVT::i64))) { 11287 SDValue Load = N->getOperand(0); 11288 LoadSDNode *LD = cast<LoadSDNode>(Load); 11289 // Create the byte-swapping load. 11290 SDValue Ops[] = { 11291 LD->getChain(), // Chain 11292 LD->getBasePtr(), // Ptr 11293 DAG.getValueType(N->getValueType(0)) // VT 11294 }; 11295 SDValue BSLoad = 11296 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 11297 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 11298 MVT::i64 : MVT::i32, MVT::Other), 11299 Ops, LD->getMemoryVT(), LD->getMemOperand()); 11300 11301 // If this is an i16 load, insert the truncate. 11302 SDValue ResVal = BSLoad; 11303 if (N->getValueType(0) == MVT::i16) 11304 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 11305 11306 // First, combine the bswap away. This makes the value produced by the 11307 // load dead. 11308 DCI.CombineTo(N, ResVal); 11309 11310 // Next, combine the load away, we give it a bogus result value but a real 11311 // chain result. The result value is dead because the bswap is dead. 11312 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 11313 11314 // Return N so it doesn't get rechecked! 11315 return SDValue(N, 0); 11316 } 11317 11318 break; 11319 case PPCISD::VCMP: { 11320 // If a VCMPo node already exists with exactly the same operands as this 11321 // node, use its result instead of this node (VCMPo computes both a CR6 and 11322 // a normal output). 11323 // 11324 if (!N->getOperand(0).hasOneUse() && 11325 !N->getOperand(1).hasOneUse() && 11326 !N->getOperand(2).hasOneUse()) { 11327 11328 // Scan all of the users of the LHS, looking for VCMPo's that match. 11329 SDNode *VCMPoNode = nullptr; 11330 11331 SDNode *LHSN = N->getOperand(0).getNode(); 11332 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 11333 UI != E; ++UI) 11334 if (UI->getOpcode() == PPCISD::VCMPo && 11335 UI->getOperand(1) == N->getOperand(1) && 11336 UI->getOperand(2) == N->getOperand(2) && 11337 UI->getOperand(0) == N->getOperand(0)) { 11338 VCMPoNode = *UI; 11339 break; 11340 } 11341 11342 // If there is no VCMPo node, or if the flag value has a single use, don't 11343 // transform this. 11344 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 11345 break; 11346 11347 // Look at the (necessarily single) use of the flag value. If it has a 11348 // chain, this transformation is more complex. Note that multiple things 11349 // could use the value result, which we should ignore. 11350 SDNode *FlagUser = nullptr; 11351 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 11352 FlagUser == nullptr; ++UI) { 11353 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 11354 SDNode *User = *UI; 11355 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 11356 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 11357 FlagUser = User; 11358 break; 11359 } 11360 } 11361 } 11362 11363 // If the user is a MFOCRF instruction, we know this is safe. 11364 // Otherwise we give up for right now. 11365 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 11366 return SDValue(VCMPoNode, 0); 11367 } 11368 break; 11369 } 11370 case ISD::BRCOND: { 11371 SDValue Cond = N->getOperand(1); 11372 SDValue Target = N->getOperand(2); 11373 11374 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 11375 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 11376 Intrinsic::ppc_is_decremented_ctr_nonzero) { 11377 11378 // We now need to make the intrinsic dead (it cannot be instruction 11379 // selected). 11380 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 11381 assert(Cond.getNode()->hasOneUse() && 11382 "Counter decrement has more than one use"); 11383 11384 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 11385 N->getOperand(0), Target); 11386 } 11387 } 11388 break; 11389 case ISD::BR_CC: { 11390 // If this is a branch on an altivec predicate comparison, lower this so 11391 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 11392 // lowering is done pre-legalize, because the legalizer lowers the predicate 11393 // compare down to code that is difficult to reassemble. 11394 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 11395 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 11396 11397 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 11398 // value. If so, pass-through the AND to get to the intrinsic. 11399 if (LHS.getOpcode() == ISD::AND && 11400 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 11401 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 11402 Intrinsic::ppc_is_decremented_ctr_nonzero && 11403 isa<ConstantSDNode>(LHS.getOperand(1)) && 11404 !isNullConstant(LHS.getOperand(1))) 11405 LHS = LHS.getOperand(0); 11406 11407 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 11408 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 11409 Intrinsic::ppc_is_decremented_ctr_nonzero && 11410 isa<ConstantSDNode>(RHS)) { 11411 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 11412 "Counter decrement comparison is not EQ or NE"); 11413 11414 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 11415 bool isBDNZ = (CC == ISD::SETEQ && Val) || 11416 (CC == ISD::SETNE && !Val); 11417 11418 // We now need to make the intrinsic dead (it cannot be instruction 11419 // selected). 11420 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 11421 assert(LHS.getNode()->hasOneUse() && 11422 "Counter decrement has more than one use"); 11423 11424 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 11425 N->getOperand(0), N->getOperand(4)); 11426 } 11427 11428 int CompareOpc; 11429 bool isDot; 11430 11431 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11432 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 11433 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 11434 assert(isDot && "Can't compare against a vector result!"); 11435 11436 // If this is a comparison against something other than 0/1, then we know 11437 // that the condition is never/always true. 11438 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 11439 if (Val != 0 && Val != 1) { 11440 if (CC == ISD::SETEQ) // Cond never true, remove branch. 11441 return N->getOperand(0); 11442 // Always !=, turn it into an unconditional branch. 11443 return DAG.getNode(ISD::BR, dl, MVT::Other, 11444 N->getOperand(0), N->getOperand(4)); 11445 } 11446 11447 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 11448 11449 // Create the PPCISD altivec 'dot' comparison node. 11450 SDValue Ops[] = { 11451 LHS.getOperand(2), // LHS of compare 11452 LHS.getOperand(3), // RHS of compare 11453 DAG.getConstant(CompareOpc, dl, MVT::i32) 11454 }; 11455 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 11456 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 11457 11458 // Unpack the result based on how the target uses it. 11459 PPC::Predicate CompOpc; 11460 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 11461 default: // Can't happen, don't crash on invalid number though. 11462 case 0: // Branch on the value of the EQ bit of CR6. 11463 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 11464 break; 11465 case 1: // Branch on the inverted value of the EQ bit of CR6. 11466 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 11467 break; 11468 case 2: // Branch on the value of the LT bit of CR6. 11469 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 11470 break; 11471 case 3: // Branch on the inverted value of the LT bit of CR6. 11472 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 11473 break; 11474 } 11475 11476 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 11477 DAG.getConstant(CompOpc, dl, MVT::i32), 11478 DAG.getRegister(PPC::CR6, MVT::i32), 11479 N->getOperand(4), CompNode.getValue(1)); 11480 } 11481 break; 11482 } 11483 case ISD::BUILD_VECTOR: 11484 return DAGCombineBuildVector(N, DCI); 11485 } 11486 11487 return SDValue(); 11488 } 11489 11490 SDValue 11491 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11492 SelectionDAG &DAG, 11493 std::vector<SDNode *> *Created) const { 11494 // fold (sdiv X, pow2) 11495 EVT VT = N->getValueType(0); 11496 if (VT == MVT::i64 && !Subtarget.isPPC64()) 11497 return SDValue(); 11498 if ((VT != MVT::i32 && VT != MVT::i64) || 11499 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 11500 return SDValue(); 11501 11502 SDLoc DL(N); 11503 SDValue N0 = N->getOperand(0); 11504 11505 bool IsNegPow2 = (-Divisor).isPowerOf2(); 11506 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 11507 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 11508 11509 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 11510 if (Created) 11511 Created->push_back(Op.getNode()); 11512 11513 if (IsNegPow2) { 11514 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 11515 if (Created) 11516 Created->push_back(Op.getNode()); 11517 } 11518 11519 return Op; 11520 } 11521 11522 //===----------------------------------------------------------------------===// 11523 // Inline Assembly Support 11524 //===----------------------------------------------------------------------===// 11525 11526 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 11527 APInt &KnownZero, 11528 APInt &KnownOne, 11529 const SelectionDAG &DAG, 11530 unsigned Depth) const { 11531 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 11532 switch (Op.getOpcode()) { 11533 default: break; 11534 case PPCISD::LBRX: { 11535 // lhbrx is known to have the top bits cleared out. 11536 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 11537 KnownZero = 0xFFFF0000; 11538 break; 11539 } 11540 case ISD::INTRINSIC_WO_CHAIN: { 11541 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 11542 default: break; 11543 case Intrinsic::ppc_altivec_vcmpbfp_p: 11544 case Intrinsic::ppc_altivec_vcmpeqfp_p: 11545 case Intrinsic::ppc_altivec_vcmpequb_p: 11546 case Intrinsic::ppc_altivec_vcmpequh_p: 11547 case Intrinsic::ppc_altivec_vcmpequw_p: 11548 case Intrinsic::ppc_altivec_vcmpequd_p: 11549 case Intrinsic::ppc_altivec_vcmpgefp_p: 11550 case Intrinsic::ppc_altivec_vcmpgtfp_p: 11551 case Intrinsic::ppc_altivec_vcmpgtsb_p: 11552 case Intrinsic::ppc_altivec_vcmpgtsh_p: 11553 case Intrinsic::ppc_altivec_vcmpgtsw_p: 11554 case Intrinsic::ppc_altivec_vcmpgtsd_p: 11555 case Intrinsic::ppc_altivec_vcmpgtub_p: 11556 case Intrinsic::ppc_altivec_vcmpgtuh_p: 11557 case Intrinsic::ppc_altivec_vcmpgtuw_p: 11558 case Intrinsic::ppc_altivec_vcmpgtud_p: 11559 KnownZero = ~1U; // All bits but the low one are known to be zero. 11560 break; 11561 } 11562 } 11563 } 11564 } 11565 11566 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 11567 switch (Subtarget.getDarwinDirective()) { 11568 default: break; 11569 case PPC::DIR_970: 11570 case PPC::DIR_PWR4: 11571 case PPC::DIR_PWR5: 11572 case PPC::DIR_PWR5X: 11573 case PPC::DIR_PWR6: 11574 case PPC::DIR_PWR6X: 11575 case PPC::DIR_PWR7: 11576 case PPC::DIR_PWR8: 11577 case PPC::DIR_PWR9: { 11578 if (!ML) 11579 break; 11580 11581 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11582 11583 // For small loops (between 5 and 8 instructions), align to a 32-byte 11584 // boundary so that the entire loop fits in one instruction-cache line. 11585 uint64_t LoopSize = 0; 11586 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 11587 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 11588 LoopSize += TII->getInstSizeInBytes(*J); 11589 if (LoopSize > 32) 11590 break; 11591 } 11592 11593 if (LoopSize > 16 && LoopSize <= 32) 11594 return 5; 11595 11596 break; 11597 } 11598 } 11599 11600 return TargetLowering::getPrefLoopAlignment(ML); 11601 } 11602 11603 /// getConstraintType - Given a constraint, return the type of 11604 /// constraint it is for this target. 11605 PPCTargetLowering::ConstraintType 11606 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 11607 if (Constraint.size() == 1) { 11608 switch (Constraint[0]) { 11609 default: break; 11610 case 'b': 11611 case 'r': 11612 case 'f': 11613 case 'd': 11614 case 'v': 11615 case 'y': 11616 return C_RegisterClass; 11617 case 'Z': 11618 // FIXME: While Z does indicate a memory constraint, it specifically 11619 // indicates an r+r address (used in conjunction with the 'y' modifier 11620 // in the replacement string). Currently, we're forcing the base 11621 // register to be r0 in the asm printer (which is interpreted as zero) 11622 // and forming the complete address in the second register. This is 11623 // suboptimal. 11624 return C_Memory; 11625 } 11626 } else if (Constraint == "wc") { // individual CR bits. 11627 return C_RegisterClass; 11628 } else if (Constraint == "wa" || Constraint == "wd" || 11629 Constraint == "wf" || Constraint == "ws") { 11630 return C_RegisterClass; // VSX registers. 11631 } 11632 return TargetLowering::getConstraintType(Constraint); 11633 } 11634 11635 /// Examine constraint type and operand type and determine a weight value. 11636 /// This object must already have been set up with the operand type 11637 /// and the current alternative constraint selected. 11638 TargetLowering::ConstraintWeight 11639 PPCTargetLowering::getSingleConstraintMatchWeight( 11640 AsmOperandInfo &info, const char *constraint) const { 11641 ConstraintWeight weight = CW_Invalid; 11642 Value *CallOperandVal = info.CallOperandVal; 11643 // If we don't have a value, we can't do a match, 11644 // but allow it at the lowest weight. 11645 if (!CallOperandVal) 11646 return CW_Default; 11647 Type *type = CallOperandVal->getType(); 11648 11649 // Look at the constraint type. 11650 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 11651 return CW_Register; // an individual CR bit. 11652 else if ((StringRef(constraint) == "wa" || 11653 StringRef(constraint) == "wd" || 11654 StringRef(constraint) == "wf") && 11655 type->isVectorTy()) 11656 return CW_Register; 11657 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 11658 return CW_Register; 11659 11660 switch (*constraint) { 11661 default: 11662 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 11663 break; 11664 case 'b': 11665 if (type->isIntegerTy()) 11666 weight = CW_Register; 11667 break; 11668 case 'f': 11669 if (type->isFloatTy()) 11670 weight = CW_Register; 11671 break; 11672 case 'd': 11673 if (type->isDoubleTy()) 11674 weight = CW_Register; 11675 break; 11676 case 'v': 11677 if (type->isVectorTy()) 11678 weight = CW_Register; 11679 break; 11680 case 'y': 11681 weight = CW_Register; 11682 break; 11683 case 'Z': 11684 weight = CW_Memory; 11685 break; 11686 } 11687 return weight; 11688 } 11689 11690 std::pair<unsigned, const TargetRegisterClass *> 11691 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11692 StringRef Constraint, 11693 MVT VT) const { 11694 if (Constraint.size() == 1) { 11695 // GCC RS6000 Constraint Letters 11696 switch (Constraint[0]) { 11697 case 'b': // R1-R31 11698 if (VT == MVT::i64 && Subtarget.isPPC64()) 11699 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 11700 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 11701 case 'r': // R0-R31 11702 if (VT == MVT::i64 && Subtarget.isPPC64()) 11703 return std::make_pair(0U, &PPC::G8RCRegClass); 11704 return std::make_pair(0U, &PPC::GPRCRegClass); 11705 // 'd' and 'f' constraints are both defined to be "the floating point 11706 // registers", where one is for 32-bit and the other for 64-bit. We don't 11707 // really care overly much here so just give them all the same reg classes. 11708 case 'd': 11709 case 'f': 11710 if (VT == MVT::f32 || VT == MVT::i32) 11711 return std::make_pair(0U, &PPC::F4RCRegClass); 11712 if (VT == MVT::f64 || VT == MVT::i64) 11713 return std::make_pair(0U, &PPC::F8RCRegClass); 11714 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 11715 return std::make_pair(0U, &PPC::QFRCRegClass); 11716 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 11717 return std::make_pair(0U, &PPC::QSRCRegClass); 11718 break; 11719 case 'v': 11720 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 11721 return std::make_pair(0U, &PPC::QFRCRegClass); 11722 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 11723 return std::make_pair(0U, &PPC::QSRCRegClass); 11724 if (Subtarget.hasAltivec()) 11725 return std::make_pair(0U, &PPC::VRRCRegClass); 11726 case 'y': // crrc 11727 return std::make_pair(0U, &PPC::CRRCRegClass); 11728 } 11729 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 11730 // An individual CR bit. 11731 return std::make_pair(0U, &PPC::CRBITRCRegClass); 11732 } else if ((Constraint == "wa" || Constraint == "wd" || 11733 Constraint == "wf") && Subtarget.hasVSX()) { 11734 return std::make_pair(0U, &PPC::VSRCRegClass); 11735 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 11736 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 11737 return std::make_pair(0U, &PPC::VSSRCRegClass); 11738 else 11739 return std::make_pair(0U, &PPC::VSFRCRegClass); 11740 } 11741 11742 std::pair<unsigned, const TargetRegisterClass *> R = 11743 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11744 11745 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 11746 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 11747 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 11748 // register. 11749 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 11750 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 11751 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 11752 PPC::GPRCRegClass.contains(R.first)) 11753 return std::make_pair(TRI->getMatchingSuperReg(R.first, 11754 PPC::sub_32, &PPC::G8RCRegClass), 11755 &PPC::G8RCRegClass); 11756 11757 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 11758 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 11759 R.first = PPC::CR0; 11760 R.second = &PPC::CRRCRegClass; 11761 } 11762 11763 return R; 11764 } 11765 11766 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 11767 /// vector. If it is invalid, don't add anything to Ops. 11768 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 11769 std::string &Constraint, 11770 std::vector<SDValue>&Ops, 11771 SelectionDAG &DAG) const { 11772 SDValue Result; 11773 11774 // Only support length 1 constraints. 11775 if (Constraint.length() > 1) return; 11776 11777 char Letter = Constraint[0]; 11778 switch (Letter) { 11779 default: break; 11780 case 'I': 11781 case 'J': 11782 case 'K': 11783 case 'L': 11784 case 'M': 11785 case 'N': 11786 case 'O': 11787 case 'P': { 11788 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 11789 if (!CST) return; // Must be an immediate to match. 11790 SDLoc dl(Op); 11791 int64_t Value = CST->getSExtValue(); 11792 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 11793 // numbers are printed as such. 11794 switch (Letter) { 11795 default: llvm_unreachable("Unknown constraint letter!"); 11796 case 'I': // "I" is a signed 16-bit constant. 11797 if (isInt<16>(Value)) 11798 Result = DAG.getTargetConstant(Value, dl, TCVT); 11799 break; 11800 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 11801 if (isShiftedUInt<16, 16>(Value)) 11802 Result = DAG.getTargetConstant(Value, dl, TCVT); 11803 break; 11804 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 11805 if (isShiftedInt<16, 16>(Value)) 11806 Result = DAG.getTargetConstant(Value, dl, TCVT); 11807 break; 11808 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 11809 if (isUInt<16>(Value)) 11810 Result = DAG.getTargetConstant(Value, dl, TCVT); 11811 break; 11812 case 'M': // "M" is a constant that is greater than 31. 11813 if (Value > 31) 11814 Result = DAG.getTargetConstant(Value, dl, TCVT); 11815 break; 11816 case 'N': // "N" is a positive constant that is an exact power of two. 11817 if (Value > 0 && isPowerOf2_64(Value)) 11818 Result = DAG.getTargetConstant(Value, dl, TCVT); 11819 break; 11820 case 'O': // "O" is the constant zero. 11821 if (Value == 0) 11822 Result = DAG.getTargetConstant(Value, dl, TCVT); 11823 break; 11824 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 11825 if (isInt<16>(-Value)) 11826 Result = DAG.getTargetConstant(Value, dl, TCVT); 11827 break; 11828 } 11829 break; 11830 } 11831 } 11832 11833 if (Result.getNode()) { 11834 Ops.push_back(Result); 11835 return; 11836 } 11837 11838 // Handle standard constraint letters. 11839 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11840 } 11841 11842 // isLegalAddressingMode - Return true if the addressing mode represented 11843 // by AM is legal for this target, for a load/store of the specified type. 11844 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 11845 const AddrMode &AM, Type *Ty, 11846 unsigned AS) const { 11847 // PPC does not allow r+i addressing modes for vectors! 11848 if (Ty->isVectorTy() && AM.BaseOffs != 0) 11849 return false; 11850 11851 // PPC allows a sign-extended 16-bit immediate field. 11852 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 11853 return false; 11854 11855 // No global is ever allowed as a base. 11856 if (AM.BaseGV) 11857 return false; 11858 11859 // PPC only support r+r, 11860 switch (AM.Scale) { 11861 case 0: // "r+i" or just "i", depending on HasBaseReg. 11862 break; 11863 case 1: 11864 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11865 return false; 11866 // Otherwise we have r+r or r+i. 11867 break; 11868 case 2: 11869 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11870 return false; 11871 // Allow 2*r as r+r. 11872 break; 11873 default: 11874 // No other scales are supported. 11875 return false; 11876 } 11877 11878 return true; 11879 } 11880 11881 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11882 SelectionDAG &DAG) const { 11883 MachineFunction &MF = DAG.getMachineFunction(); 11884 MachineFrameInfo &MFI = MF.getFrameInfo(); 11885 MFI.setReturnAddressIsTaken(true); 11886 11887 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11888 return SDValue(); 11889 11890 SDLoc dl(Op); 11891 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11892 11893 // Make sure the function does not optimize away the store of the RA to 11894 // the stack. 11895 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11896 FuncInfo->setLRStoreRequired(); 11897 bool isPPC64 = Subtarget.isPPC64(); 11898 auto PtrVT = getPointerTy(MF.getDataLayout()); 11899 11900 if (Depth > 0) { 11901 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11902 SDValue Offset = 11903 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11904 isPPC64 ? MVT::i64 : MVT::i32); 11905 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11906 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11907 MachinePointerInfo()); 11908 } 11909 11910 // Just load the return address off the stack. 11911 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11912 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11913 MachinePointerInfo()); 11914 } 11915 11916 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11917 SelectionDAG &DAG) const { 11918 SDLoc dl(Op); 11919 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11920 11921 MachineFunction &MF = DAG.getMachineFunction(); 11922 MachineFrameInfo &MFI = MF.getFrameInfo(); 11923 MFI.setFrameAddressIsTaken(true); 11924 11925 EVT PtrVT = getPointerTy(MF.getDataLayout()); 11926 bool isPPC64 = PtrVT == MVT::i64; 11927 11928 // Naked functions never have a frame pointer, and so we use r1. For all 11929 // other functions, this decision must be delayed until during PEI. 11930 unsigned FrameReg; 11931 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11932 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11933 else 11934 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11935 11936 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11937 PtrVT); 11938 while (Depth--) 11939 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11940 FrameAddr, MachinePointerInfo()); 11941 return FrameAddr; 11942 } 11943 11944 // FIXME? Maybe this could be a TableGen attribute on some registers and 11945 // this table could be generated automatically from RegInfo. 11946 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11947 SelectionDAG &DAG) const { 11948 bool isPPC64 = Subtarget.isPPC64(); 11949 bool isDarwinABI = Subtarget.isDarwinABI(); 11950 11951 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11952 (!isPPC64 && VT != MVT::i32)) 11953 report_fatal_error("Invalid register global variable type"); 11954 11955 bool is64Bit = isPPC64 && VT == MVT::i64; 11956 unsigned Reg = StringSwitch<unsigned>(RegName) 11957 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11958 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11959 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11960 (is64Bit ? PPC::X13 : PPC::R13)) 11961 .Default(0); 11962 11963 if (Reg) 11964 return Reg; 11965 report_fatal_error("Invalid register name global variable"); 11966 } 11967 11968 bool 11969 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11970 // The PowerPC target isn't yet aware of offsets. 11971 return false; 11972 } 11973 11974 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11975 const CallInst &I, 11976 unsigned Intrinsic) const { 11977 11978 switch (Intrinsic) { 11979 case Intrinsic::ppc_qpx_qvlfd: 11980 case Intrinsic::ppc_qpx_qvlfs: 11981 case Intrinsic::ppc_qpx_qvlfcd: 11982 case Intrinsic::ppc_qpx_qvlfcs: 11983 case Intrinsic::ppc_qpx_qvlfiwa: 11984 case Intrinsic::ppc_qpx_qvlfiwz: 11985 case Intrinsic::ppc_altivec_lvx: 11986 case Intrinsic::ppc_altivec_lvxl: 11987 case Intrinsic::ppc_altivec_lvebx: 11988 case Intrinsic::ppc_altivec_lvehx: 11989 case Intrinsic::ppc_altivec_lvewx: 11990 case Intrinsic::ppc_vsx_lxvd2x: 11991 case Intrinsic::ppc_vsx_lxvw4x: { 11992 EVT VT; 11993 switch (Intrinsic) { 11994 case Intrinsic::ppc_altivec_lvebx: 11995 VT = MVT::i8; 11996 break; 11997 case Intrinsic::ppc_altivec_lvehx: 11998 VT = MVT::i16; 11999 break; 12000 case Intrinsic::ppc_altivec_lvewx: 12001 VT = MVT::i32; 12002 break; 12003 case Intrinsic::ppc_vsx_lxvd2x: 12004 VT = MVT::v2f64; 12005 break; 12006 case Intrinsic::ppc_qpx_qvlfd: 12007 VT = MVT::v4f64; 12008 break; 12009 case Intrinsic::ppc_qpx_qvlfs: 12010 VT = MVT::v4f32; 12011 break; 12012 case Intrinsic::ppc_qpx_qvlfcd: 12013 VT = MVT::v2f64; 12014 break; 12015 case Intrinsic::ppc_qpx_qvlfcs: 12016 VT = MVT::v2f32; 12017 break; 12018 default: 12019 VT = MVT::v4i32; 12020 break; 12021 } 12022 12023 Info.opc = ISD::INTRINSIC_W_CHAIN; 12024 Info.memVT = VT; 12025 Info.ptrVal = I.getArgOperand(0); 12026 Info.offset = -VT.getStoreSize()+1; 12027 Info.size = 2*VT.getStoreSize()-1; 12028 Info.align = 1; 12029 Info.vol = false; 12030 Info.readMem = true; 12031 Info.writeMem = false; 12032 return true; 12033 } 12034 case Intrinsic::ppc_qpx_qvlfda: 12035 case Intrinsic::ppc_qpx_qvlfsa: 12036 case Intrinsic::ppc_qpx_qvlfcda: 12037 case Intrinsic::ppc_qpx_qvlfcsa: 12038 case Intrinsic::ppc_qpx_qvlfiwaa: 12039 case Intrinsic::ppc_qpx_qvlfiwza: { 12040 EVT VT; 12041 switch (Intrinsic) { 12042 case Intrinsic::ppc_qpx_qvlfda: 12043 VT = MVT::v4f64; 12044 break; 12045 case Intrinsic::ppc_qpx_qvlfsa: 12046 VT = MVT::v4f32; 12047 break; 12048 case Intrinsic::ppc_qpx_qvlfcda: 12049 VT = MVT::v2f64; 12050 break; 12051 case Intrinsic::ppc_qpx_qvlfcsa: 12052 VT = MVT::v2f32; 12053 break; 12054 default: 12055 VT = MVT::v4i32; 12056 break; 12057 } 12058 12059 Info.opc = ISD::INTRINSIC_W_CHAIN; 12060 Info.memVT = VT; 12061 Info.ptrVal = I.getArgOperand(0); 12062 Info.offset = 0; 12063 Info.size = VT.getStoreSize(); 12064 Info.align = 1; 12065 Info.vol = false; 12066 Info.readMem = true; 12067 Info.writeMem = false; 12068 return true; 12069 } 12070 case Intrinsic::ppc_qpx_qvstfd: 12071 case Intrinsic::ppc_qpx_qvstfs: 12072 case Intrinsic::ppc_qpx_qvstfcd: 12073 case Intrinsic::ppc_qpx_qvstfcs: 12074 case Intrinsic::ppc_qpx_qvstfiw: 12075 case Intrinsic::ppc_altivec_stvx: 12076 case Intrinsic::ppc_altivec_stvxl: 12077 case Intrinsic::ppc_altivec_stvebx: 12078 case Intrinsic::ppc_altivec_stvehx: 12079 case Intrinsic::ppc_altivec_stvewx: 12080 case Intrinsic::ppc_vsx_stxvd2x: 12081 case Intrinsic::ppc_vsx_stxvw4x: { 12082 EVT VT; 12083 switch (Intrinsic) { 12084 case Intrinsic::ppc_altivec_stvebx: 12085 VT = MVT::i8; 12086 break; 12087 case Intrinsic::ppc_altivec_stvehx: 12088 VT = MVT::i16; 12089 break; 12090 case Intrinsic::ppc_altivec_stvewx: 12091 VT = MVT::i32; 12092 break; 12093 case Intrinsic::ppc_vsx_stxvd2x: 12094 VT = MVT::v2f64; 12095 break; 12096 case Intrinsic::ppc_qpx_qvstfd: 12097 VT = MVT::v4f64; 12098 break; 12099 case Intrinsic::ppc_qpx_qvstfs: 12100 VT = MVT::v4f32; 12101 break; 12102 case Intrinsic::ppc_qpx_qvstfcd: 12103 VT = MVT::v2f64; 12104 break; 12105 case Intrinsic::ppc_qpx_qvstfcs: 12106 VT = MVT::v2f32; 12107 break; 12108 default: 12109 VT = MVT::v4i32; 12110 break; 12111 } 12112 12113 Info.opc = ISD::INTRINSIC_VOID; 12114 Info.memVT = VT; 12115 Info.ptrVal = I.getArgOperand(1); 12116 Info.offset = -VT.getStoreSize()+1; 12117 Info.size = 2*VT.getStoreSize()-1; 12118 Info.align = 1; 12119 Info.vol = false; 12120 Info.readMem = false; 12121 Info.writeMem = true; 12122 return true; 12123 } 12124 case Intrinsic::ppc_qpx_qvstfda: 12125 case Intrinsic::ppc_qpx_qvstfsa: 12126 case Intrinsic::ppc_qpx_qvstfcda: 12127 case Intrinsic::ppc_qpx_qvstfcsa: 12128 case Intrinsic::ppc_qpx_qvstfiwa: { 12129 EVT VT; 12130 switch (Intrinsic) { 12131 case Intrinsic::ppc_qpx_qvstfda: 12132 VT = MVT::v4f64; 12133 break; 12134 case Intrinsic::ppc_qpx_qvstfsa: 12135 VT = MVT::v4f32; 12136 break; 12137 case Intrinsic::ppc_qpx_qvstfcda: 12138 VT = MVT::v2f64; 12139 break; 12140 case Intrinsic::ppc_qpx_qvstfcsa: 12141 VT = MVT::v2f32; 12142 break; 12143 default: 12144 VT = MVT::v4i32; 12145 break; 12146 } 12147 12148 Info.opc = ISD::INTRINSIC_VOID; 12149 Info.memVT = VT; 12150 Info.ptrVal = I.getArgOperand(1); 12151 Info.offset = 0; 12152 Info.size = VT.getStoreSize(); 12153 Info.align = 1; 12154 Info.vol = false; 12155 Info.readMem = false; 12156 Info.writeMem = true; 12157 return true; 12158 } 12159 default: 12160 break; 12161 } 12162 12163 return false; 12164 } 12165 12166 /// getOptimalMemOpType - Returns the target specific optimal type for load 12167 /// and store operations as a result of memset, memcpy, and memmove 12168 /// lowering. If DstAlign is zero that means it's safe to destination 12169 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 12170 /// means there isn't a need to check it against alignment requirement, 12171 /// probably because the source does not need to be loaded. If 'IsMemset' is 12172 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 12173 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 12174 /// source is constant so it does not need to be loaded. 12175 /// It returns EVT::Other if the type should be determined using generic 12176 /// target-independent logic. 12177 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 12178 unsigned DstAlign, unsigned SrcAlign, 12179 bool IsMemset, bool ZeroMemset, 12180 bool MemcpyStrSrc, 12181 MachineFunction &MF) const { 12182 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 12183 const Function *F = MF.getFunction(); 12184 // When expanding a memset, require at least two QPX instructions to cover 12185 // the cost of loading the value to be stored from the constant pool. 12186 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 12187 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 12188 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 12189 return MVT::v4f64; 12190 } 12191 12192 // We should use Altivec/VSX loads and stores when available. For unaligned 12193 // addresses, unaligned VSX loads are only fast starting with the P8. 12194 if (Subtarget.hasAltivec() && Size >= 16 && 12195 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 12196 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 12197 return MVT::v4i32; 12198 } 12199 12200 if (Subtarget.isPPC64()) { 12201 return MVT::i64; 12202 } 12203 12204 return MVT::i32; 12205 } 12206 12207 /// \brief Returns true if it is beneficial to convert a load of a constant 12208 /// to just the constant itself. 12209 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 12210 Type *Ty) const { 12211 assert(Ty->isIntegerTy()); 12212 12213 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 12214 return !(BitSize == 0 || BitSize > 64); 12215 } 12216 12217 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 12218 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 12219 return false; 12220 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 12221 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 12222 return NumBits1 == 64 && NumBits2 == 32; 12223 } 12224 12225 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 12226 if (!VT1.isInteger() || !VT2.isInteger()) 12227 return false; 12228 unsigned NumBits1 = VT1.getSizeInBits(); 12229 unsigned NumBits2 = VT2.getSizeInBits(); 12230 return NumBits1 == 64 && NumBits2 == 32; 12231 } 12232 12233 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 12234 // Generally speaking, zexts are not free, but they are free when they can be 12235 // folded with other operations. 12236 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 12237 EVT MemVT = LD->getMemoryVT(); 12238 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 12239 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 12240 (LD->getExtensionType() == ISD::NON_EXTLOAD || 12241 LD->getExtensionType() == ISD::ZEXTLOAD)) 12242 return true; 12243 } 12244 12245 // FIXME: Add other cases... 12246 // - 32-bit shifts with a zext to i64 12247 // - zext after ctlz, bswap, etc. 12248 // - zext after and by a constant mask 12249 12250 return TargetLowering::isZExtFree(Val, VT2); 12251 } 12252 12253 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 12254 assert(VT.isFloatingPoint()); 12255 return true; 12256 } 12257 12258 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 12259 return isInt<16>(Imm) || isUInt<16>(Imm); 12260 } 12261 12262 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 12263 return isInt<16>(Imm) || isUInt<16>(Imm); 12264 } 12265 12266 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 12267 unsigned, 12268 unsigned, 12269 bool *Fast) const { 12270 if (DisablePPCUnaligned) 12271 return false; 12272 12273 // PowerPC supports unaligned memory access for simple non-vector types. 12274 // Although accessing unaligned addresses is not as efficient as accessing 12275 // aligned addresses, it is generally more efficient than manual expansion, 12276 // and generally only traps for software emulation when crossing page 12277 // boundaries. 12278 12279 if (!VT.isSimple()) 12280 return false; 12281 12282 if (VT.getSimpleVT().isVector()) { 12283 if (Subtarget.hasVSX()) { 12284 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 12285 VT != MVT::v4f32 && VT != MVT::v4i32) 12286 return false; 12287 } else { 12288 return false; 12289 } 12290 } 12291 12292 if (VT == MVT::ppcf128) 12293 return false; 12294 12295 if (Fast) 12296 *Fast = true; 12297 12298 return true; 12299 } 12300 12301 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 12302 VT = VT.getScalarType(); 12303 12304 if (!VT.isSimple()) 12305 return false; 12306 12307 switch (VT.getSimpleVT().SimpleTy) { 12308 case MVT::f32: 12309 case MVT::f64: 12310 return true; 12311 default: 12312 break; 12313 } 12314 12315 return false; 12316 } 12317 12318 const MCPhysReg * 12319 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 12320 // LR is a callee-save register, but we must treat it as clobbered by any call 12321 // site. Hence we include LR in the scratch registers, which are in turn added 12322 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 12323 // to CTR, which is used by any indirect call. 12324 static const MCPhysReg ScratchRegs[] = { 12325 PPC::X12, PPC::LR8, PPC::CTR8, 0 12326 }; 12327 12328 return ScratchRegs; 12329 } 12330 12331 unsigned PPCTargetLowering::getExceptionPointerRegister( 12332 const Constant *PersonalityFn) const { 12333 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 12334 } 12335 12336 unsigned PPCTargetLowering::getExceptionSelectorRegister( 12337 const Constant *PersonalityFn) const { 12338 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 12339 } 12340 12341 bool 12342 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 12343 EVT VT , unsigned DefinedValues) const { 12344 if (VT == MVT::v2i64) 12345 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 12346 12347 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 12348 return true; 12349 12350 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 12351 } 12352 12353 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 12354 if (DisableILPPref || Subtarget.enableMachineScheduler()) 12355 return TargetLowering::getSchedulingPreference(N); 12356 12357 return Sched::ILP; 12358 } 12359 12360 // Create a fast isel object. 12361 FastISel * 12362 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 12363 const TargetLibraryInfo *LibInfo) const { 12364 return PPC::createFastISel(FuncInfo, LibInfo); 12365 } 12366 12367 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 12368 if (Subtarget.isDarwinABI()) return; 12369 if (!Subtarget.isPPC64()) return; 12370 12371 // Update IsSplitCSR in PPCFunctionInfo 12372 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 12373 PFI->setIsSplitCSR(true); 12374 } 12375 12376 void PPCTargetLowering::insertCopiesSplitCSR( 12377 MachineBasicBlock *Entry, 12378 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 12379 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 12380 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 12381 if (!IStart) 12382 return; 12383 12384 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12385 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 12386 MachineBasicBlock::iterator MBBI = Entry->begin(); 12387 for (const MCPhysReg *I = IStart; *I; ++I) { 12388 const TargetRegisterClass *RC = nullptr; 12389 if (PPC::G8RCRegClass.contains(*I)) 12390 RC = &PPC::G8RCRegClass; 12391 else if (PPC::F8RCRegClass.contains(*I)) 12392 RC = &PPC::F8RCRegClass; 12393 else if (PPC::CRRCRegClass.contains(*I)) 12394 RC = &PPC::CRRCRegClass; 12395 else if (PPC::VRRCRegClass.contains(*I)) 12396 RC = &PPC::VRRCRegClass; 12397 else 12398 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 12399 12400 unsigned NewVR = MRI->createVirtualRegister(RC); 12401 // Create copy from CSR to a virtual register. 12402 // FIXME: this currently does not emit CFI pseudo-instructions, it works 12403 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 12404 // nounwind. If we want to generalize this later, we may need to emit 12405 // CFI pseudo-instructions. 12406 assert(Entry->getParent()->getFunction()->hasFnAttribute( 12407 Attribute::NoUnwind) && 12408 "Function should be nounwind in insertCopiesSplitCSR!"); 12409 Entry->addLiveIn(*I); 12410 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 12411 .addReg(*I); 12412 12413 // Insert the copy-back instructions right before the terminator 12414 for (auto *Exit : Exits) 12415 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 12416 TII->get(TargetOpcode::COPY), *I) 12417 .addReg(NewVR); 12418 } 12419 } 12420 12421 // Override to enable LOAD_STACK_GUARD lowering on Linux. 12422 bool PPCTargetLowering::useLoadStackGuardNode() const { 12423 if (!Subtarget.isTargetLinux()) 12424 return TargetLowering::useLoadStackGuardNode(); 12425 return true; 12426 } 12427 12428 // Override to disable global variable loading on Linux. 12429 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 12430 if (!Subtarget.isTargetLinux()) 12431 return TargetLowering::insertSSPDeclarations(M); 12432 } 12433 12434 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 12435 12436 if (!VT.isSimple() || !Subtarget.hasVSX()) 12437 return false; 12438 12439 switch(VT.getSimpleVT().SimpleTy) { 12440 default: 12441 // For FP types that are currently not supported by PPC backend, return 12442 // false. Examples: f16, f80. 12443 return false; 12444 case MVT::f32: 12445 case MVT::f64: 12446 case MVT::ppcf128: 12447 return Imm.isPosZero(); 12448 } 12449 } 12450