1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 STATISTIC(NumTailCalls, "Number of tail calls");
125 STATISTIC(NumSiblingCalls, "Number of sibling calls");
126 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
127 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
128 
129 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
130 
131 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
132 
133 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
134 
135 // FIXME: Remove this once the bug has been fixed!
136 extern cl::opt<bool> ANDIGlueBug;
137 
138 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
139                                      const PPCSubtarget &STI)
140     : TargetLowering(TM), Subtarget(STI) {
141   // Initialize map that relates the PPC addressing modes to the computed flags
142   // of a load/store instruction. The map is used to determine the optimal
143   // addressing mode when selecting load and stores.
144   initializeAddrModeMap();
145   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
146   // arguments are at least 4/8 bytes aligned.
147   bool isPPC64 = Subtarget.isPPC64();
148   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
149 
150   // Set up the register classes.
151   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
152   if (!useSoftFloat()) {
153     if (hasSPE()) {
154       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
155       // EFPU2 APU only supports f32
156       if (!Subtarget.hasEFPU2())
157         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
158     } else {
159       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
160       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
161     }
162   }
163 
164   // Match BITREVERSE to customized fast code sequence in the td file.
165   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
166   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
167 
168   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
169   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
170 
171   // Custom lower inline assembly to check for special registers.
172   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
173   setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
174 
175   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
176   for (MVT VT : MVT::integer_valuetypes()) {
177     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
178     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
179   }
180 
181   if (Subtarget.isISA3_0()) {
182     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
183     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
184     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
185     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
186   } else {
187     // No extending loads from f16 or HW conversions back and forth.
188     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
189     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
190     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
191     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
192     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
193     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
194     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
195     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
196   }
197 
198   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
199 
200   // PowerPC has pre-inc load and store's.
201   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
202   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
203   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
204   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
205   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
206   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
207   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
208   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
209   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
210   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
211   if (!Subtarget.hasSPE()) {
212     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
213     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
214     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
215     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
216   }
217 
218   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
219   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
220   for (MVT VT : ScalarIntVTs) {
221     setOperationAction(ISD::ADDC, VT, Legal);
222     setOperationAction(ISD::ADDE, VT, Legal);
223     setOperationAction(ISD::SUBC, VT, Legal);
224     setOperationAction(ISD::SUBE, VT, Legal);
225   }
226 
227   if (Subtarget.useCRBits()) {
228     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
229 
230     if (isPPC64 || Subtarget.hasFPCVT()) {
231       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
232       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
233                         isPPC64 ? MVT::i64 : MVT::i32);
234       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
235       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
236                         isPPC64 ? MVT::i64 : MVT::i32);
237 
238       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
239       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
240                          isPPC64 ? MVT::i64 : MVT::i32);
241       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
242       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
243                         isPPC64 ? MVT::i64 : MVT::i32);
244 
245       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
246       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
247                         isPPC64 ? MVT::i64 : MVT::i32);
248       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
249       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
250                         isPPC64 ? MVT::i64 : MVT::i32);
251 
252       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
253       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
254                         isPPC64 ? MVT::i64 : MVT::i32);
255       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
256       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
257                         isPPC64 ? MVT::i64 : MVT::i32);
258     } else {
259       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
260       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
261       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
262       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
263     }
264 
265     // PowerPC does not support direct load/store of condition registers.
266     setOperationAction(ISD::LOAD, MVT::i1, Custom);
267     setOperationAction(ISD::STORE, MVT::i1, Custom);
268 
269     // FIXME: Remove this once the ANDI glue bug is fixed:
270     if (ANDIGlueBug)
271       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
272 
273     for (MVT VT : MVT::integer_valuetypes()) {
274       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
275       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
276       setTruncStoreAction(VT, MVT::i1, Expand);
277     }
278 
279     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
280   }
281 
282   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
283   // PPC (the libcall is not available).
284   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
285   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
286   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
287   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
288 
289   // We do not currently implement these libm ops for PowerPC.
290   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
291   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
292   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
293   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
294   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
295   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
296 
297   // PowerPC has no SREM/UREM instructions unless we are on P9
298   // On P9 we may use a hardware instruction to compute the remainder.
299   // When the result of both the remainder and the division is required it is
300   // more efficient to compute the remainder from the result of the division
301   // rather than use the remainder instruction. The instructions are legalized
302   // directly because the DivRemPairsPass performs the transformation at the IR
303   // level.
304   if (Subtarget.isISA3_0()) {
305     setOperationAction(ISD::SREM, MVT::i32, Legal);
306     setOperationAction(ISD::UREM, MVT::i32, Legal);
307     setOperationAction(ISD::SREM, MVT::i64, Legal);
308     setOperationAction(ISD::UREM, MVT::i64, Legal);
309   } else {
310     setOperationAction(ISD::SREM, MVT::i32, Expand);
311     setOperationAction(ISD::UREM, MVT::i32, Expand);
312     setOperationAction(ISD::SREM, MVT::i64, Expand);
313     setOperationAction(ISD::UREM, MVT::i64, Expand);
314   }
315 
316   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
317   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
318   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
319   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
320   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
321   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
322   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
323   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
324   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
325 
326   // Handle constrained floating-point operations of scalar.
327   // TODO: Handle SPE specific operation.
328   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
329   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
330   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
331   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
332   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
333 
334   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
335   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
336   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
337   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
338 
339   if (!Subtarget.hasSPE()) {
340     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
341     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
342   }
343 
344   if (Subtarget.hasVSX()) {
345     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
346     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
347   }
348 
349   if (Subtarget.hasFSQRT()) {
350     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
351     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
352   }
353 
354   if (Subtarget.hasFPRND()) {
355     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
356     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
357     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
358     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
359 
360     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
361     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
362     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
363     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
364   }
365 
366   // We don't support sin/cos/sqrt/fmod/pow
367   setOperationAction(ISD::FSIN , MVT::f64, Expand);
368   setOperationAction(ISD::FCOS , MVT::f64, Expand);
369   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
370   setOperationAction(ISD::FREM , MVT::f64, Expand);
371   setOperationAction(ISD::FPOW , MVT::f64, Expand);
372   setOperationAction(ISD::FSIN , MVT::f32, Expand);
373   setOperationAction(ISD::FCOS , MVT::f32, Expand);
374   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
375   setOperationAction(ISD::FREM , MVT::f32, Expand);
376   setOperationAction(ISD::FPOW , MVT::f32, Expand);
377   if (Subtarget.hasSPE()) {
378     setOperationAction(ISD::FMA  , MVT::f64, Expand);
379     setOperationAction(ISD::FMA  , MVT::f32, Expand);
380   } else {
381     setOperationAction(ISD::FMA  , MVT::f64, Legal);
382     setOperationAction(ISD::FMA  , MVT::f32, Legal);
383   }
384 
385   if (Subtarget.hasSPE())
386     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
387 
388   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
389 
390   // If we're enabling GP optimizations, use hardware square root
391   if (!Subtarget.hasFSQRT() &&
392       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
393         Subtarget.hasFRE()))
394     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
395 
396   if (!Subtarget.hasFSQRT() &&
397       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
398         Subtarget.hasFRES()))
399     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
400 
401   if (Subtarget.hasFCPSGN()) {
402     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
403     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
404   } else {
405     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
406     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
407   }
408 
409   if (Subtarget.hasFPRND()) {
410     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
411     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
412     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
413     setOperationAction(ISD::FROUND, MVT::f64, Legal);
414 
415     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
416     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
417     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
418     setOperationAction(ISD::FROUND, MVT::f32, Legal);
419   }
420 
421   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
422   // to speed up scalar BSWAP64.
423   // CTPOP or CTTZ were introduced in P8/P9 respectively
424   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
425   if (Subtarget.hasP9Vector() && Subtarget.isPPC64())
426     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
427   else
428     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
429   if (Subtarget.isISA3_0()) {
430     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
431     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
432   } else {
433     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
434     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
435   }
436 
437   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
438     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
439     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
440   } else {
441     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
442     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
443   }
444 
445   // PowerPC does not have ROTR
446   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
447   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
448 
449   if (!Subtarget.useCRBits()) {
450     // PowerPC does not have Select
451     setOperationAction(ISD::SELECT, MVT::i32, Expand);
452     setOperationAction(ISD::SELECT, MVT::i64, Expand);
453     setOperationAction(ISD::SELECT, MVT::f32, Expand);
454     setOperationAction(ISD::SELECT, MVT::f64, Expand);
455   }
456 
457   // PowerPC wants to turn select_cc of FP into fsel when possible.
458   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
459   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
460 
461   // PowerPC wants to optimize integer setcc a bit
462   if (!Subtarget.useCRBits())
463     setOperationAction(ISD::SETCC, MVT::i32, Custom);
464 
465   if (Subtarget.hasFPU()) {
466     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
467     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
468     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
469 
470     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
471     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
472     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
473   }
474 
475   // PowerPC does not have BRCOND which requires SetCC
476   if (!Subtarget.useCRBits())
477     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
478 
479   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
480 
481   if (Subtarget.hasSPE()) {
482     // SPE has built-in conversions
483     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
484     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
485     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
486     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
487     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
488     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
489 
490     // SPE supports signaling compare of f32/f64.
491     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
492     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
493   } else {
494     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
495     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
496     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
497 
498     // PowerPC does not have [U|S]INT_TO_FP
499     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
500     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
501     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
502     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
503   }
504 
505   if (Subtarget.hasDirectMove() && isPPC64) {
506     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
507     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
508     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
509     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
510     if (TM.Options.UnsafeFPMath) {
511       setOperationAction(ISD::LRINT, MVT::f64, Legal);
512       setOperationAction(ISD::LRINT, MVT::f32, Legal);
513       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
514       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
515       setOperationAction(ISD::LROUND, MVT::f64, Legal);
516       setOperationAction(ISD::LROUND, MVT::f32, Legal);
517       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
518       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
519     }
520   } else {
521     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
522     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
523     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
524     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
525   }
526 
527   // We cannot sextinreg(i1).  Expand to shifts.
528   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
529 
530   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
531   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
532   // support continuation, user-level threading, and etc.. As a result, no
533   // other SjLj exception interfaces are implemented and please don't build
534   // your own exception handling based on them.
535   // LLVM/Clang supports zero-cost DWARF exception handling.
536   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
537   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
538 
539   // We want to legalize GlobalAddress and ConstantPool nodes into the
540   // appropriate instructions to materialize the address.
541   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
542   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
543   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
544   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
545   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
546   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
547   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
548   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
549   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
550   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
551 
552   // TRAP is legal.
553   setOperationAction(ISD::TRAP, MVT::Other, Legal);
554 
555   // TRAMPOLINE is custom lowered.
556   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
557   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
558 
559   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
560   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
561 
562   if (Subtarget.is64BitELFABI()) {
563     // VAARG always uses double-word chunks, so promote anything smaller.
564     setOperationAction(ISD::VAARG, MVT::i1, Promote);
565     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
566     setOperationAction(ISD::VAARG, MVT::i8, Promote);
567     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
568     setOperationAction(ISD::VAARG, MVT::i16, Promote);
569     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
570     setOperationAction(ISD::VAARG, MVT::i32, Promote);
571     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
572     setOperationAction(ISD::VAARG, MVT::Other, Expand);
573   } else if (Subtarget.is32BitELFABI()) {
574     // VAARG is custom lowered with the 32-bit SVR4 ABI.
575     setOperationAction(ISD::VAARG, MVT::Other, Custom);
576     setOperationAction(ISD::VAARG, MVT::i64, Custom);
577   } else
578     setOperationAction(ISD::VAARG, MVT::Other, Expand);
579 
580   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
581   if (Subtarget.is32BitELFABI())
582     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
583   else
584     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
585 
586   // Use the default implementation.
587   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
588   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
589   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
590   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
591   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
592   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
593   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
594   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
595   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
596 
597   // We want to custom lower some of our intrinsics.
598   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
599 
600   // To handle counter-based loop conditions.
601   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
602 
603   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
604   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
605   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
606   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
607 
608   // Comparisons that require checking two conditions.
609   if (Subtarget.hasSPE()) {
610     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
611     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
612     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
613     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
614   }
615   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
616   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
617   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
618   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
619   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
620   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
621   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
622   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
623   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
624   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
625   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
626   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
627 
628   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
629   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
630 
631   if (Subtarget.has64BitSupport()) {
632     // They also have instructions for converting between i64 and fp.
633     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
634     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
635     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
636     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
637     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
638     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
639     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
640     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
641     // This is just the low 32 bits of a (signed) fp->i64 conversion.
642     // We cannot do this with Promote because i64 is not a legal type.
643     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
644     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
645 
646     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
647       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
648       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
649     }
650   } else {
651     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
652     if (Subtarget.hasSPE()) {
653       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
654       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
655     } else {
656       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
657       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
658     }
659   }
660 
661   // With the instructions enabled under FPCVT, we can do everything.
662   if (Subtarget.hasFPCVT()) {
663     if (Subtarget.has64BitSupport()) {
664       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
665       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
666       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
667       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
668       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
669       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
670       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
671       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
672     }
673 
674     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
675     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
676     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
677     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
678     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
679     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
680     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
681     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
682   }
683 
684   if (Subtarget.use64BitRegs()) {
685     // 64-bit PowerPC implementations can support i64 types directly
686     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
687     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
688     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
689     // 64-bit PowerPC wants to expand i128 shifts itself.
690     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
691     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
692     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
693   } else {
694     // 32-bit PowerPC wants to expand i64 shifts itself.
695     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
696     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
697     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
698   }
699 
700   // PowerPC has better expansions for funnel shifts than the generic
701   // TargetLowering::expandFunnelShift.
702   if (Subtarget.has64BitSupport()) {
703     setOperationAction(ISD::FSHL, MVT::i64, Custom);
704     setOperationAction(ISD::FSHR, MVT::i64, Custom);
705   }
706   setOperationAction(ISD::FSHL, MVT::i32, Custom);
707   setOperationAction(ISD::FSHR, MVT::i32, Custom);
708 
709   if (Subtarget.hasVSX()) {
710     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
711     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
712     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
713     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
714   }
715 
716   if (Subtarget.hasAltivec()) {
717     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
718       setOperationAction(ISD::SADDSAT, VT, Legal);
719       setOperationAction(ISD::SSUBSAT, VT, Legal);
720       setOperationAction(ISD::UADDSAT, VT, Legal);
721       setOperationAction(ISD::USUBSAT, VT, Legal);
722     }
723     // First set operation action for all vector types to expand. Then we
724     // will selectively turn on ones that can be effectively codegen'd.
725     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
726       // add/sub are legal for all supported vector VT's.
727       setOperationAction(ISD::ADD, VT, Legal);
728       setOperationAction(ISD::SUB, VT, Legal);
729 
730       // For v2i64, these are only valid with P8Vector. This is corrected after
731       // the loop.
732       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
733         setOperationAction(ISD::SMAX, VT, Legal);
734         setOperationAction(ISD::SMIN, VT, Legal);
735         setOperationAction(ISD::UMAX, VT, Legal);
736         setOperationAction(ISD::UMIN, VT, Legal);
737       }
738       else {
739         setOperationAction(ISD::SMAX, VT, Expand);
740         setOperationAction(ISD::SMIN, VT, Expand);
741         setOperationAction(ISD::UMAX, VT, Expand);
742         setOperationAction(ISD::UMIN, VT, Expand);
743       }
744 
745       if (Subtarget.hasVSX()) {
746         setOperationAction(ISD::FMAXNUM, VT, Legal);
747         setOperationAction(ISD::FMINNUM, VT, Legal);
748       }
749 
750       // Vector instructions introduced in P8
751       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
752         setOperationAction(ISD::CTPOP, VT, Legal);
753         setOperationAction(ISD::CTLZ, VT, Legal);
754       }
755       else {
756         setOperationAction(ISD::CTPOP, VT, Expand);
757         setOperationAction(ISD::CTLZ, VT, Expand);
758       }
759 
760       // Vector instructions introduced in P9
761       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
762         setOperationAction(ISD::CTTZ, VT, Legal);
763       else
764         setOperationAction(ISD::CTTZ, VT, Expand);
765 
766       // We promote all shuffles to v16i8.
767       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
768       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
769 
770       // We promote all non-typed operations to v4i32.
771       setOperationAction(ISD::AND   , VT, Promote);
772       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
773       setOperationAction(ISD::OR    , VT, Promote);
774       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
775       setOperationAction(ISD::XOR   , VT, Promote);
776       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
777       setOperationAction(ISD::LOAD  , VT, Promote);
778       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
779       setOperationAction(ISD::SELECT, VT, Promote);
780       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
781       setOperationAction(ISD::VSELECT, VT, Legal);
782       setOperationAction(ISD::SELECT_CC, VT, Promote);
783       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
784       setOperationAction(ISD::STORE, VT, Promote);
785       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
786 
787       // No other operations are legal.
788       setOperationAction(ISD::MUL , VT, Expand);
789       setOperationAction(ISD::SDIV, VT, Expand);
790       setOperationAction(ISD::SREM, VT, Expand);
791       setOperationAction(ISD::UDIV, VT, Expand);
792       setOperationAction(ISD::UREM, VT, Expand);
793       setOperationAction(ISD::FDIV, VT, Expand);
794       setOperationAction(ISD::FREM, VT, Expand);
795       setOperationAction(ISD::FNEG, VT, Expand);
796       setOperationAction(ISD::FSQRT, VT, Expand);
797       setOperationAction(ISD::FLOG, VT, Expand);
798       setOperationAction(ISD::FLOG10, VT, Expand);
799       setOperationAction(ISD::FLOG2, VT, Expand);
800       setOperationAction(ISD::FEXP, VT, Expand);
801       setOperationAction(ISD::FEXP2, VT, Expand);
802       setOperationAction(ISD::FSIN, VT, Expand);
803       setOperationAction(ISD::FCOS, VT, Expand);
804       setOperationAction(ISD::FABS, VT, Expand);
805       setOperationAction(ISD::FFLOOR, VT, Expand);
806       setOperationAction(ISD::FCEIL,  VT, Expand);
807       setOperationAction(ISD::FTRUNC, VT, Expand);
808       setOperationAction(ISD::FRINT,  VT, Expand);
809       setOperationAction(ISD::FNEARBYINT, VT, Expand);
810       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
811       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
812       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
813       setOperationAction(ISD::MULHU, VT, Expand);
814       setOperationAction(ISD::MULHS, VT, Expand);
815       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
816       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
817       setOperationAction(ISD::UDIVREM, VT, Expand);
818       setOperationAction(ISD::SDIVREM, VT, Expand);
819       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
820       setOperationAction(ISD::FPOW, VT, Expand);
821       setOperationAction(ISD::BSWAP, VT, Expand);
822       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
823       setOperationAction(ISD::ROTL, VT, Expand);
824       setOperationAction(ISD::ROTR, VT, Expand);
825 
826       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
827         setTruncStoreAction(VT, InnerVT, Expand);
828         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
829         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
830         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
831       }
832     }
833     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
834     if (!Subtarget.hasP8Vector()) {
835       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
836       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
837       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
838       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
839     }
840 
841     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
842     // with merges, splats, etc.
843     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
844 
845     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
846     // are cheap, so handle them before they get expanded to scalar.
847     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
848     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
849     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
850     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
851     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
852 
853     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
854     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
855     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
856     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
857     setOperationAction(ISD::SELECT, MVT::v4i32,
858                        Subtarget.useCRBits() ? Legal : Expand);
859     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
860     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
861     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
862     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
863     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
864     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
865     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
866     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
867     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
868     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
869     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
870     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
871     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
872 
873     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
874     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
875     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
876     if (Subtarget.hasAltivec())
877       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
878         setOperationAction(ISD::ROTL, VT, Legal);
879     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
880     if (Subtarget.hasP8Altivec())
881       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
882 
883     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
884     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
885     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
886     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
887 
888     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
889     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
890 
891     if (Subtarget.hasVSX()) {
892       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
893       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
894       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
895     }
896 
897     if (Subtarget.hasP8Altivec())
898       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
899     else
900       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
901 
902     if (Subtarget.isISA3_1()) {
903       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
904       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
905       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
906       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
907       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
908       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
909       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
910       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
911       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
912       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
913       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
914       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
915       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
916       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
917       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
918       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
919       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
920       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
921     }
922 
923     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
924     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
925 
926     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
927     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
928 
929     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
930     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
931     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
932     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
933 
934     // Altivec does not contain unordered floating-point compare instructions
935     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
936     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
937     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
938     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
939 
940     if (Subtarget.hasVSX()) {
941       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
942       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
943       if (Subtarget.hasP8Vector()) {
944         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
945         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
946       }
947       if (Subtarget.hasDirectMove() && isPPC64) {
948         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
949         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
950         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
951         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
952         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
953         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
954         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
955         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
956       }
957       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
958 
959       // The nearbyint variants are not allowed to raise the inexact exception
960       // so we can only code-gen them with unsafe math.
961       if (TM.Options.UnsafeFPMath) {
962         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
963         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
964       }
965 
966       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
967       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
968       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
969       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
970       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
971       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
972       setOperationAction(ISD::FROUND, MVT::f64, Legal);
973       setOperationAction(ISD::FRINT, MVT::f64, Legal);
974 
975       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
976       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
977       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
978       setOperationAction(ISD::FROUND, MVT::f32, Legal);
979       setOperationAction(ISD::FRINT, MVT::f32, Legal);
980 
981       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
982       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
983 
984       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
985       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
986 
987       // Share the Altivec comparison restrictions.
988       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
989       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
990       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
991       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
992 
993       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
994       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
995 
996       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
997 
998       if (Subtarget.hasP8Vector())
999         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1000 
1001       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1002 
1003       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1004       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1005       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1006 
1007       if (Subtarget.hasP8Altivec()) {
1008         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1009         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1010         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1011 
1012         // 128 bit shifts can be accomplished via 3 instructions for SHL and
1013         // SRL, but not for SRA because of the instructions available:
1014         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1015         // doing
1016         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1017         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1018         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1019 
1020         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1021       }
1022       else {
1023         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1024         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1025         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1026 
1027         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1028 
1029         // VSX v2i64 only supports non-arithmetic operations.
1030         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1031         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1032       }
1033 
1034       if (Subtarget.isISA3_1())
1035         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1036       else
1037         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1038 
1039       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1040       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1041       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1042       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1043 
1044       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1045 
1046       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1047       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1048       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1049       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1050       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1051       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1052       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1053       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1054 
1055       // Custom handling for partial vectors of integers converted to
1056       // floating point. We already have optimal handling for v2i32 through
1057       // the DAG combine, so those aren't necessary.
1058       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1059       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1060       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1061       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1062       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1063       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1064       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1065       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1066       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1067       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1068       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1069       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1070       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1071       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1072       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1073       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1074 
1075       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1076       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1077       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1078       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1079       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1080       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1081 
1082       if (Subtarget.hasDirectMove())
1083         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1084       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1085 
1086       // Handle constrained floating-point operations of vector.
1087       // The predictor is `hasVSX` because altivec instruction has
1088       // no exception but VSX vector instruction has.
1089       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1090       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1091       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1092       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1093       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1094       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1095       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1096       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1097       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1098       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1099       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1100       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1101       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1102 
1103       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1104       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1105       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1106       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1107       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1108       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1109       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1110       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1111       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1112       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1113       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1114       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1115       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1116 
1117       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1118       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1119 
1120       for (MVT FPT : MVT::fp_valuetypes())
1121         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1122 
1123       // Expand the SELECT to SELECT_CC
1124       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1125 
1126       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1127       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1128 
1129       // No implementation for these ops for PowerPC.
1130       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1131       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1132       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1133       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1134       setOperationAction(ISD::FREM, MVT::f128, Expand);
1135     }
1136 
1137     if (Subtarget.hasP8Altivec()) {
1138       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1139       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1140     }
1141 
1142     if (Subtarget.hasP9Vector()) {
1143       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1144       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1145 
1146       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1147       // SRL, but not for SRA because of the instructions available:
1148       // VS{RL} and VS{RL}O.
1149       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1150       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1151       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1152 
1153       setOperationAction(ISD::FADD, MVT::f128, Legal);
1154       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1155       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1156       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1157       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1158 
1159       setOperationAction(ISD::FMA, MVT::f128, Legal);
1160       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1161       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1162       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1163       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1164       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1165       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1166 
1167       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1168       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1169       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1170       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1171       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1172       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1173 
1174       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1175       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1176       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1177 
1178       // Handle constrained floating-point operations of fp128
1179       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1180       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1181       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1182       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1183       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1184       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1185       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1186       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1187       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1188       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1189       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1190       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1191       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1192       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1193       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1194       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1195       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1196       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1197       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1198       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1199     } else if (Subtarget.hasVSX()) {
1200       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1201       setOperationAction(ISD::STORE, MVT::f128, Promote);
1202 
1203       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1204       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1205 
1206       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1207       // fp_to_uint and int_to_fp.
1208       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1209       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1210 
1211       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1212       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1213       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1214       setOperationAction(ISD::FABS, MVT::f128, Expand);
1215       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1216       setOperationAction(ISD::FMA, MVT::f128, Expand);
1217       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1218 
1219       // Expand the fp_extend if the target type is fp128.
1220       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1221       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1222 
1223       // Expand the fp_round if the source type is fp128.
1224       for (MVT VT : {MVT::f32, MVT::f64}) {
1225         setOperationAction(ISD::FP_ROUND, VT, Custom);
1226         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1227       }
1228 
1229       setOperationAction(ISD::SETCC, MVT::f128, Custom);
1230       setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1231       setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1232       setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1233 
1234       // Lower following f128 select_cc pattern:
1235       // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1236       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1237 
1238       // We need to handle f128 SELECT_CC with integer result type.
1239       setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1240       setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1241     }
1242 
1243     if (Subtarget.hasP9Altivec()) {
1244       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1245       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1246 
1247       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1248       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1249       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1250       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1251       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1252       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1253       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1254     }
1255 
1256     if (Subtarget.isISA3_1())
1257       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
1258   }
1259 
1260   if (Subtarget.pairedVectorMemops()) {
1261     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1262     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1263     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1264   }
1265   if (Subtarget.hasMMA()) {
1266     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1267     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1268     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1269     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1270   }
1271 
1272   if (Subtarget.has64BitSupport())
1273     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1274 
1275   if (Subtarget.isISA3_1())
1276     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1277 
1278   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1279 
1280   if (!isPPC64) {
1281     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1282     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1283   }
1284 
1285   setBooleanContents(ZeroOrOneBooleanContent);
1286 
1287   if (Subtarget.hasAltivec()) {
1288     // Altivec instructions set fields to all zeros or all ones.
1289     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1290   }
1291 
1292   if (!isPPC64) {
1293     // These libcalls are not available in 32-bit.
1294     setLibcallName(RTLIB::SHL_I128, nullptr);
1295     setLibcallName(RTLIB::SRL_I128, nullptr);
1296     setLibcallName(RTLIB::SRA_I128, nullptr);
1297   }
1298 
1299   if (!isPPC64)
1300     setMaxAtomicSizeInBitsSupported(32);
1301 
1302   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1303 
1304   // We have target-specific dag combine patterns for the following nodes:
1305   setTargetDAGCombine(ISD::ADD);
1306   setTargetDAGCombine(ISD::SHL);
1307   setTargetDAGCombine(ISD::SRA);
1308   setTargetDAGCombine(ISD::SRL);
1309   setTargetDAGCombine(ISD::MUL);
1310   setTargetDAGCombine(ISD::FMA);
1311   setTargetDAGCombine(ISD::SINT_TO_FP);
1312   setTargetDAGCombine(ISD::BUILD_VECTOR);
1313   if (Subtarget.hasFPCVT())
1314     setTargetDAGCombine(ISD::UINT_TO_FP);
1315   setTargetDAGCombine(ISD::LOAD);
1316   setTargetDAGCombine(ISD::STORE);
1317   setTargetDAGCombine(ISD::BR_CC);
1318   if (Subtarget.useCRBits())
1319     setTargetDAGCombine(ISD::BRCOND);
1320   setTargetDAGCombine(ISD::BSWAP);
1321   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1322   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1323   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1324 
1325   setTargetDAGCombine(ISD::SIGN_EXTEND);
1326   setTargetDAGCombine(ISD::ZERO_EXTEND);
1327   setTargetDAGCombine(ISD::ANY_EXTEND);
1328 
1329   setTargetDAGCombine(ISD::TRUNCATE);
1330   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1331 
1332 
1333   if (Subtarget.useCRBits()) {
1334     setTargetDAGCombine(ISD::TRUNCATE);
1335     setTargetDAGCombine(ISD::SETCC);
1336     setTargetDAGCombine(ISD::SELECT_CC);
1337   }
1338 
1339   if (Subtarget.hasP9Altivec()) {
1340     setTargetDAGCombine(ISD::ABS);
1341     setTargetDAGCombine(ISD::VSELECT);
1342   }
1343 
1344   setLibcallName(RTLIB::LOG_F128, "logf128");
1345   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1346   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1347   setLibcallName(RTLIB::EXP_F128, "expf128");
1348   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1349   setLibcallName(RTLIB::SIN_F128, "sinf128");
1350   setLibcallName(RTLIB::COS_F128, "cosf128");
1351   setLibcallName(RTLIB::POW_F128, "powf128");
1352   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1353   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1354   setLibcallName(RTLIB::REM_F128, "fmodf128");
1355   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1356   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1357   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1358   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1359   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1360   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1361   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1362   setLibcallName(RTLIB::RINT_F128, "rintf128");
1363   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1364   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1365   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1366   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1367 
1368   // With 32 condition bits, we don't need to sink (and duplicate) compares
1369   // aggressively in CodeGenPrep.
1370   if (Subtarget.useCRBits()) {
1371     setHasMultipleConditionRegisters();
1372     setJumpIsExpensive();
1373   }
1374 
1375   setMinFunctionAlignment(Align(4));
1376 
1377   switch (Subtarget.getCPUDirective()) {
1378   default: break;
1379   case PPC::DIR_970:
1380   case PPC::DIR_A2:
1381   case PPC::DIR_E500:
1382   case PPC::DIR_E500mc:
1383   case PPC::DIR_E5500:
1384   case PPC::DIR_PWR4:
1385   case PPC::DIR_PWR5:
1386   case PPC::DIR_PWR5X:
1387   case PPC::DIR_PWR6:
1388   case PPC::DIR_PWR6X:
1389   case PPC::DIR_PWR7:
1390   case PPC::DIR_PWR8:
1391   case PPC::DIR_PWR9:
1392   case PPC::DIR_PWR10:
1393   case PPC::DIR_PWR_FUTURE:
1394     setPrefLoopAlignment(Align(16));
1395     setPrefFunctionAlignment(Align(16));
1396     break;
1397   }
1398 
1399   if (Subtarget.enableMachineScheduler())
1400     setSchedulingPreference(Sched::Source);
1401   else
1402     setSchedulingPreference(Sched::Hybrid);
1403 
1404   computeRegisterProperties(STI.getRegisterInfo());
1405 
1406   // The Freescale cores do better with aggressive inlining of memcpy and
1407   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1408   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1409       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1410     MaxStoresPerMemset = 32;
1411     MaxStoresPerMemsetOptSize = 16;
1412     MaxStoresPerMemcpy = 32;
1413     MaxStoresPerMemcpyOptSize = 8;
1414     MaxStoresPerMemmove = 32;
1415     MaxStoresPerMemmoveOptSize = 8;
1416   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1417     // The A2 also benefits from (very) aggressive inlining of memcpy and
1418     // friends. The overhead of a the function call, even when warm, can be
1419     // over one hundred cycles.
1420     MaxStoresPerMemset = 128;
1421     MaxStoresPerMemcpy = 128;
1422     MaxStoresPerMemmove = 128;
1423     MaxLoadsPerMemcmp = 128;
1424   } else {
1425     MaxLoadsPerMemcmp = 8;
1426     MaxLoadsPerMemcmpOptSize = 4;
1427   }
1428 
1429   IsStrictFPEnabled = true;
1430 
1431   // Let the subtarget (CPU) decide if a predictable select is more expensive
1432   // than the corresponding branch. This information is used in CGP to decide
1433   // when to convert selects into branches.
1434   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1435 }
1436 
1437 // *********************************** NOTE ************************************
1438 // For selecting load and store instructions, the addressing modes are defined
1439 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1440 // patterns to match the load the store instructions.
1441 //
1442 // The TD definitions for the addressing modes correspond to their respective
1443 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1444 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1445 // address mode flags of a particular node. Afterwards, the computed address
1446 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1447 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1448 // accordingly, based on the preferred addressing mode.
1449 //
1450 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1451 // MemOpFlags contains all the possible flags that can be used to compute the
1452 // optimal addressing mode for load and store instructions.
1453 // AddrMode contains all the possible load and store addressing modes available
1454 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1455 //
1456 // When adding new load and store instructions, it is possible that new address
1457 // flags may need to be added into MemOpFlags, and a new addressing mode will
1458 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1459 // of the minimal and main distinguishing address flags for the new load/store
1460 // instructions) will need to be added into initializeAddrModeMap() below.
1461 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1462 // need to be updated to account for selecting the optimal addressing mode.
1463 // *****************************************************************************
1464 /// Initialize the map that relates the different addressing modes of the load
1465 /// and store instructions to a set of flags. This ensures the load/store
1466 /// instruction is correctly matched during instruction selection.
1467 void PPCTargetLowering::initializeAddrModeMap() {
1468   AddrModesMap[PPC::AM_DForm] = {
1469       // LWZ, STW
1470       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1471       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1472       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1473       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1474       // LBZ, LHZ, STB, STH
1475       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1476       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1477       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1478       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1479       // LHA
1480       PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1481       PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1482       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1483       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1484       // LFS, LFD, STFS, STFD
1485       PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1486       PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1487       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1488       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1489   };
1490   AddrModesMap[PPC::AM_DSForm] = {
1491       // LWA
1492       PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1493       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1494       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1495       // LD, STD
1496       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1497       PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1498       PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1499       // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1500       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1501       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1502       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1503   };
1504   AddrModesMap[PPC::AM_DQForm] = {
1505       // LXV, STXV
1506       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1507       PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1508       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1509       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10,
1510       PPC::MOF_NotAddNorCst | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10,
1511       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10,
1512   };
1513 }
1514 
1515 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1516 /// the desired ByVal argument alignment.
1517 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1518   if (MaxAlign == MaxMaxAlign)
1519     return;
1520   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1521     if (MaxMaxAlign >= 32 &&
1522         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1523       MaxAlign = Align(32);
1524     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1525              MaxAlign < 16)
1526       MaxAlign = Align(16);
1527   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1528     Align EltAlign;
1529     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1530     if (EltAlign > MaxAlign)
1531       MaxAlign = EltAlign;
1532   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1533     for (auto *EltTy : STy->elements()) {
1534       Align EltAlign;
1535       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1536       if (EltAlign > MaxAlign)
1537         MaxAlign = EltAlign;
1538       if (MaxAlign == MaxMaxAlign)
1539         break;
1540     }
1541   }
1542 }
1543 
1544 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1545 /// function arguments in the caller parameter area.
1546 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1547                                                   const DataLayout &DL) const {
1548   // 16byte and wider vectors are passed on 16byte boundary.
1549   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1550   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1551   if (Subtarget.hasAltivec())
1552     getMaxByValAlign(Ty, Alignment, Align(16));
1553   return Alignment.value();
1554 }
1555 
1556 bool PPCTargetLowering::useSoftFloat() const {
1557   return Subtarget.useSoftFloat();
1558 }
1559 
1560 bool PPCTargetLowering::hasSPE() const {
1561   return Subtarget.hasSPE();
1562 }
1563 
1564 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1565   return VT.isScalarInteger();
1566 }
1567 
1568 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1569   switch ((PPCISD::NodeType)Opcode) {
1570   case PPCISD::FIRST_NUMBER:    break;
1571   case PPCISD::FSEL:            return "PPCISD::FSEL";
1572   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1573   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1574   case PPCISD::FCFID:           return "PPCISD::FCFID";
1575   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1576   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1577   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1578   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1579   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1580   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1581   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1582   case PPCISD::FP_TO_UINT_IN_VSR:
1583                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1584   case PPCISD::FP_TO_SINT_IN_VSR:
1585                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1586   case PPCISD::FRE:             return "PPCISD::FRE";
1587   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1588   case PPCISD::FTSQRT:
1589     return "PPCISD::FTSQRT";
1590   case PPCISD::FSQRT:
1591     return "PPCISD::FSQRT";
1592   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1593   case PPCISD::VPERM:           return "PPCISD::VPERM";
1594   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1595   case PPCISD::XXSPLTI_SP_TO_DP:
1596     return "PPCISD::XXSPLTI_SP_TO_DP";
1597   case PPCISD::XXSPLTI32DX:
1598     return "PPCISD::XXSPLTI32DX";
1599   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1600   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1601   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1602   case PPCISD::CMPB:            return "PPCISD::CMPB";
1603   case PPCISD::Hi:              return "PPCISD::Hi";
1604   case PPCISD::Lo:              return "PPCISD::Lo";
1605   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1606   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1607   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1608   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1609   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1610   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1611   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1612   case PPCISD::SRL:             return "PPCISD::SRL";
1613   case PPCISD::SRA:             return "PPCISD::SRA";
1614   case PPCISD::SHL:             return "PPCISD::SHL";
1615   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1616   case PPCISD::CALL:            return "PPCISD::CALL";
1617   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1618   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1619   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1620   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1621   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1622   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1623   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1624   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1625   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1626   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1627   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1628   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1629   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1630   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1631   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1632   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1633     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1634   case PPCISD::ANDI_rec_1_EQ_BIT:
1635     return "PPCISD::ANDI_rec_1_EQ_BIT";
1636   case PPCISD::ANDI_rec_1_GT_BIT:
1637     return "PPCISD::ANDI_rec_1_GT_BIT";
1638   case PPCISD::VCMP:            return "PPCISD::VCMP";
1639   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1640   case PPCISD::LBRX:            return "PPCISD::LBRX";
1641   case PPCISD::STBRX:           return "PPCISD::STBRX";
1642   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1643   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1644   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1645   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1646   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1647   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1648   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1649   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1650   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1651   case PPCISD::ST_VSR_SCAL_INT:
1652                                 return "PPCISD::ST_VSR_SCAL_INT";
1653   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1654   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1655   case PPCISD::BDZ:             return "PPCISD::BDZ";
1656   case PPCISD::MFFS:            return "PPCISD::MFFS";
1657   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1658   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1659   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1660   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1661   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1662   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1663   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1664   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1665   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1666   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1667   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1668   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1669   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1670   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1671   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1672   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1673   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1674   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1675   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1676   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1677   case PPCISD::PADDI_DTPREL:
1678     return "PPCISD::PADDI_DTPREL";
1679   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1680   case PPCISD::SC:              return "PPCISD::SC";
1681   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1682   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1683   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1684   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1685   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1686   case PPCISD::VABSD:           return "PPCISD::VABSD";
1687   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1688   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1689   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1690   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1691   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1692   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1693   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1694   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1695     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1696   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1697     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1698   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1699   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1700   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1701   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1702   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1703   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1704   case PPCISD::STRICT_FADDRTZ:
1705     return "PPCISD::STRICT_FADDRTZ";
1706   case PPCISD::STRICT_FCTIDZ:
1707     return "PPCISD::STRICT_FCTIDZ";
1708   case PPCISD::STRICT_FCTIWZ:
1709     return "PPCISD::STRICT_FCTIWZ";
1710   case PPCISD::STRICT_FCTIDUZ:
1711     return "PPCISD::STRICT_FCTIDUZ";
1712   case PPCISD::STRICT_FCTIWUZ:
1713     return "PPCISD::STRICT_FCTIWUZ";
1714   case PPCISD::STRICT_FCFID:
1715     return "PPCISD::STRICT_FCFID";
1716   case PPCISD::STRICT_FCFIDU:
1717     return "PPCISD::STRICT_FCFIDU";
1718   case PPCISD::STRICT_FCFIDS:
1719     return "PPCISD::STRICT_FCFIDS";
1720   case PPCISD::STRICT_FCFIDUS:
1721     return "PPCISD::STRICT_FCFIDUS";
1722   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1723   }
1724   return nullptr;
1725 }
1726 
1727 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1728                                           EVT VT) const {
1729   if (!VT.isVector())
1730     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1731 
1732   return VT.changeVectorElementTypeToInteger();
1733 }
1734 
1735 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1736   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1737   return true;
1738 }
1739 
1740 //===----------------------------------------------------------------------===//
1741 // Node matching predicates, for use by the tblgen matching code.
1742 //===----------------------------------------------------------------------===//
1743 
1744 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1745 static bool isFloatingPointZero(SDValue Op) {
1746   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1747     return CFP->getValueAPF().isZero();
1748   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1749     // Maybe this has already been legalized into the constant pool?
1750     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1751       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1752         return CFP->getValueAPF().isZero();
1753   }
1754   return false;
1755 }
1756 
1757 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1758 /// true if Op is undef or if it matches the specified value.
1759 static bool isConstantOrUndef(int Op, int Val) {
1760   return Op < 0 || Op == Val;
1761 }
1762 
1763 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1764 /// VPKUHUM instruction.
1765 /// The ShuffleKind distinguishes between big-endian operations with
1766 /// two different inputs (0), either-endian operations with two identical
1767 /// inputs (1), and little-endian operations with two different inputs (2).
1768 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1769 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1770                                SelectionDAG &DAG) {
1771   bool IsLE = DAG.getDataLayout().isLittleEndian();
1772   if (ShuffleKind == 0) {
1773     if (IsLE)
1774       return false;
1775     for (unsigned i = 0; i != 16; ++i)
1776       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1777         return false;
1778   } else if (ShuffleKind == 2) {
1779     if (!IsLE)
1780       return false;
1781     for (unsigned i = 0; i != 16; ++i)
1782       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1783         return false;
1784   } else if (ShuffleKind == 1) {
1785     unsigned j = IsLE ? 0 : 1;
1786     for (unsigned i = 0; i != 8; ++i)
1787       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1788           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1789         return false;
1790   }
1791   return true;
1792 }
1793 
1794 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1795 /// VPKUWUM instruction.
1796 /// The ShuffleKind distinguishes between big-endian operations with
1797 /// two different inputs (0), either-endian operations with two identical
1798 /// inputs (1), and little-endian operations with two different inputs (2).
1799 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1800 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1801                                SelectionDAG &DAG) {
1802   bool IsLE = DAG.getDataLayout().isLittleEndian();
1803   if (ShuffleKind == 0) {
1804     if (IsLE)
1805       return false;
1806     for (unsigned i = 0; i != 16; i += 2)
1807       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1808           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1809         return false;
1810   } else if (ShuffleKind == 2) {
1811     if (!IsLE)
1812       return false;
1813     for (unsigned i = 0; i != 16; i += 2)
1814       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1815           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1816         return false;
1817   } else if (ShuffleKind == 1) {
1818     unsigned j = IsLE ? 0 : 2;
1819     for (unsigned i = 0; i != 8; i += 2)
1820       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1821           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1822           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1823           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1824         return false;
1825   }
1826   return true;
1827 }
1828 
1829 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1830 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1831 /// current subtarget.
1832 ///
1833 /// The ShuffleKind distinguishes between big-endian operations with
1834 /// two different inputs (0), either-endian operations with two identical
1835 /// inputs (1), and little-endian operations with two different inputs (2).
1836 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1837 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1838                                SelectionDAG &DAG) {
1839   const PPCSubtarget& Subtarget =
1840       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1841   if (!Subtarget.hasP8Vector())
1842     return false;
1843 
1844   bool IsLE = DAG.getDataLayout().isLittleEndian();
1845   if (ShuffleKind == 0) {
1846     if (IsLE)
1847       return false;
1848     for (unsigned i = 0; i != 16; i += 4)
1849       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1850           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1851           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1852           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1853         return false;
1854   } else if (ShuffleKind == 2) {
1855     if (!IsLE)
1856       return false;
1857     for (unsigned i = 0; i != 16; i += 4)
1858       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1859           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1860           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1861           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1862         return false;
1863   } else if (ShuffleKind == 1) {
1864     unsigned j = IsLE ? 0 : 4;
1865     for (unsigned i = 0; i != 8; i += 4)
1866       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1867           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1868           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1869           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1870           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1871           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1872           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1873           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1874         return false;
1875   }
1876   return true;
1877 }
1878 
1879 /// isVMerge - Common function, used to match vmrg* shuffles.
1880 ///
1881 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1882                      unsigned LHSStart, unsigned RHSStart) {
1883   if (N->getValueType(0) != MVT::v16i8)
1884     return false;
1885   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1886          "Unsupported merge size!");
1887 
1888   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1889     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1890       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1891                              LHSStart+j+i*UnitSize) ||
1892           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1893                              RHSStart+j+i*UnitSize))
1894         return false;
1895     }
1896   return true;
1897 }
1898 
1899 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1900 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1901 /// The ShuffleKind distinguishes between big-endian merges with two
1902 /// different inputs (0), either-endian merges with two identical inputs (1),
1903 /// and little-endian merges with two different inputs (2).  For the latter,
1904 /// the input operands are swapped (see PPCInstrAltivec.td).
1905 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1906                              unsigned ShuffleKind, SelectionDAG &DAG) {
1907   if (DAG.getDataLayout().isLittleEndian()) {
1908     if (ShuffleKind == 1) // unary
1909       return isVMerge(N, UnitSize, 0, 0);
1910     else if (ShuffleKind == 2) // swapped
1911       return isVMerge(N, UnitSize, 0, 16);
1912     else
1913       return false;
1914   } else {
1915     if (ShuffleKind == 1) // unary
1916       return isVMerge(N, UnitSize, 8, 8);
1917     else if (ShuffleKind == 0) // normal
1918       return isVMerge(N, UnitSize, 8, 24);
1919     else
1920       return false;
1921   }
1922 }
1923 
1924 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1925 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1926 /// The ShuffleKind distinguishes between big-endian merges with two
1927 /// different inputs (0), either-endian merges with two identical inputs (1),
1928 /// and little-endian merges with two different inputs (2).  For the latter,
1929 /// the input operands are swapped (see PPCInstrAltivec.td).
1930 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1931                              unsigned ShuffleKind, SelectionDAG &DAG) {
1932   if (DAG.getDataLayout().isLittleEndian()) {
1933     if (ShuffleKind == 1) // unary
1934       return isVMerge(N, UnitSize, 8, 8);
1935     else if (ShuffleKind == 2) // swapped
1936       return isVMerge(N, UnitSize, 8, 24);
1937     else
1938       return false;
1939   } else {
1940     if (ShuffleKind == 1) // unary
1941       return isVMerge(N, UnitSize, 0, 0);
1942     else if (ShuffleKind == 0) // normal
1943       return isVMerge(N, UnitSize, 0, 16);
1944     else
1945       return false;
1946   }
1947 }
1948 
1949 /**
1950  * Common function used to match vmrgew and vmrgow shuffles
1951  *
1952  * The indexOffset determines whether to look for even or odd words in
1953  * the shuffle mask. This is based on the of the endianness of the target
1954  * machine.
1955  *   - Little Endian:
1956  *     - Use offset of 0 to check for odd elements
1957  *     - Use offset of 4 to check for even elements
1958  *   - Big Endian:
1959  *     - Use offset of 0 to check for even elements
1960  *     - Use offset of 4 to check for odd elements
1961  * A detailed description of the vector element ordering for little endian and
1962  * big endian can be found at
1963  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1964  * Targeting your applications - what little endian and big endian IBM XL C/C++
1965  * compiler differences mean to you
1966  *
1967  * The mask to the shuffle vector instruction specifies the indices of the
1968  * elements from the two input vectors to place in the result. The elements are
1969  * numbered in array-access order, starting with the first vector. These vectors
1970  * are always of type v16i8, thus each vector will contain 16 elements of size
1971  * 8. More info on the shuffle vector can be found in the
1972  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1973  * Language Reference.
1974  *
1975  * The RHSStartValue indicates whether the same input vectors are used (unary)
1976  * or two different input vectors are used, based on the following:
1977  *   - If the instruction uses the same vector for both inputs, the range of the
1978  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1979  *     be 0.
1980  *   - If the instruction has two different vectors then the range of the
1981  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1982  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1983  *     to 31 specify elements in the second vector).
1984  *
1985  * \param[in] N The shuffle vector SD Node to analyze
1986  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1987  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1988  * vector to the shuffle_vector instruction
1989  * \return true iff this shuffle vector represents an even or odd word merge
1990  */
1991 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1992                      unsigned RHSStartValue) {
1993   if (N->getValueType(0) != MVT::v16i8)
1994     return false;
1995 
1996   for (unsigned i = 0; i < 2; ++i)
1997     for (unsigned j = 0; j < 4; ++j)
1998       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1999                              i*RHSStartValue+j+IndexOffset) ||
2000           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2001                              i*RHSStartValue+j+IndexOffset+8))
2002         return false;
2003   return true;
2004 }
2005 
2006 /**
2007  * Determine if the specified shuffle mask is suitable for the vmrgew or
2008  * vmrgow instructions.
2009  *
2010  * \param[in] N The shuffle vector SD Node to analyze
2011  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2012  * \param[in] ShuffleKind Identify the type of merge:
2013  *   - 0 = big-endian merge with two different inputs;
2014  *   - 1 = either-endian merge with two identical inputs;
2015  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2016  *     little-endian merges).
2017  * \param[in] DAG The current SelectionDAG
2018  * \return true iff this shuffle mask
2019  */
2020 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2021                               unsigned ShuffleKind, SelectionDAG &DAG) {
2022   if (DAG.getDataLayout().isLittleEndian()) {
2023     unsigned indexOffset = CheckEven ? 4 : 0;
2024     if (ShuffleKind == 1) // Unary
2025       return isVMerge(N, indexOffset, 0);
2026     else if (ShuffleKind == 2) // swapped
2027       return isVMerge(N, indexOffset, 16);
2028     else
2029       return false;
2030   }
2031   else {
2032     unsigned indexOffset = CheckEven ? 0 : 4;
2033     if (ShuffleKind == 1) // Unary
2034       return isVMerge(N, indexOffset, 0);
2035     else if (ShuffleKind == 0) // Normal
2036       return isVMerge(N, indexOffset, 16);
2037     else
2038       return false;
2039   }
2040   return false;
2041 }
2042 
2043 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2044 /// amount, otherwise return -1.
2045 /// The ShuffleKind distinguishes between big-endian operations with two
2046 /// different inputs (0), either-endian operations with two identical inputs
2047 /// (1), and little-endian operations with two different inputs (2).  For the
2048 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
2049 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2050                              SelectionDAG &DAG) {
2051   if (N->getValueType(0) != MVT::v16i8)
2052     return -1;
2053 
2054   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2055 
2056   // Find the first non-undef value in the shuffle mask.
2057   unsigned i;
2058   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2059     /*search*/;
2060 
2061   if (i == 16) return -1;  // all undef.
2062 
2063   // Otherwise, check to see if the rest of the elements are consecutively
2064   // numbered from this value.
2065   unsigned ShiftAmt = SVOp->getMaskElt(i);
2066   if (ShiftAmt < i) return -1;
2067 
2068   ShiftAmt -= i;
2069   bool isLE = DAG.getDataLayout().isLittleEndian();
2070 
2071   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2072     // Check the rest of the elements to see if they are consecutive.
2073     for (++i; i != 16; ++i)
2074       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2075         return -1;
2076   } else if (ShuffleKind == 1) {
2077     // Check the rest of the elements to see if they are consecutive.
2078     for (++i; i != 16; ++i)
2079       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2080         return -1;
2081   } else
2082     return -1;
2083 
2084   if (isLE)
2085     ShiftAmt = 16 - ShiftAmt;
2086 
2087   return ShiftAmt;
2088 }
2089 
2090 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2091 /// specifies a splat of a single element that is suitable for input to
2092 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2093 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2094   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2095          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2096 
2097   // The consecutive indices need to specify an element, not part of two
2098   // different elements.  So abandon ship early if this isn't the case.
2099   if (N->getMaskElt(0) % EltSize != 0)
2100     return false;
2101 
2102   // This is a splat operation if each element of the permute is the same, and
2103   // if the value doesn't reference the second vector.
2104   unsigned ElementBase = N->getMaskElt(0);
2105 
2106   // FIXME: Handle UNDEF elements too!
2107   if (ElementBase >= 16)
2108     return false;
2109 
2110   // Check that the indices are consecutive, in the case of a multi-byte element
2111   // splatted with a v16i8 mask.
2112   for (unsigned i = 1; i != EltSize; ++i)
2113     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2114       return false;
2115 
2116   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2117     if (N->getMaskElt(i) < 0) continue;
2118     for (unsigned j = 0; j != EltSize; ++j)
2119       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2120         return false;
2121   }
2122   return true;
2123 }
2124 
2125 /// Check that the mask is shuffling N byte elements. Within each N byte
2126 /// element of the mask, the indices could be either in increasing or
2127 /// decreasing order as long as they are consecutive.
2128 /// \param[in] N the shuffle vector SD Node to analyze
2129 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2130 /// Word/DoubleWord/QuadWord).
2131 /// \param[in] StepLen the delta indices number among the N byte element, if
2132 /// the mask is in increasing/decreasing order then it is 1/-1.
2133 /// \return true iff the mask is shuffling N byte elements.
2134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2135                                    int StepLen) {
2136   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2137          "Unexpected element width.");
2138   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2139 
2140   unsigned NumOfElem = 16 / Width;
2141   unsigned MaskVal[16]; //  Width is never greater than 16
2142   for (unsigned i = 0; i < NumOfElem; ++i) {
2143     MaskVal[0] = N->getMaskElt(i * Width);
2144     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2145       return false;
2146     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2147       return false;
2148     }
2149 
2150     for (unsigned int j = 1; j < Width; ++j) {
2151       MaskVal[j] = N->getMaskElt(i * Width + j);
2152       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2153         return false;
2154       }
2155     }
2156   }
2157 
2158   return true;
2159 }
2160 
2161 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2162                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2163   if (!isNByteElemShuffleMask(N, 4, 1))
2164     return false;
2165 
2166   // Now we look at mask elements 0,4,8,12
2167   unsigned M0 = N->getMaskElt(0) / 4;
2168   unsigned M1 = N->getMaskElt(4) / 4;
2169   unsigned M2 = N->getMaskElt(8) / 4;
2170   unsigned M3 = N->getMaskElt(12) / 4;
2171   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2172   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2173 
2174   // Below, let H and L be arbitrary elements of the shuffle mask
2175   // where H is in the range [4,7] and L is in the range [0,3].
2176   // H, 1, 2, 3 or L, 5, 6, 7
2177   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2178       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2179     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2180     InsertAtByte = IsLE ? 12 : 0;
2181     Swap = M0 < 4;
2182     return true;
2183   }
2184   // 0, H, 2, 3 or 4, L, 6, 7
2185   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2186       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2187     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2188     InsertAtByte = IsLE ? 8 : 4;
2189     Swap = M1 < 4;
2190     return true;
2191   }
2192   // 0, 1, H, 3 or 4, 5, L, 7
2193   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2194       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2195     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2196     InsertAtByte = IsLE ? 4 : 8;
2197     Swap = M2 < 4;
2198     return true;
2199   }
2200   // 0, 1, 2, H or 4, 5, 6, L
2201   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2202       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2203     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2204     InsertAtByte = IsLE ? 0 : 12;
2205     Swap = M3 < 4;
2206     return true;
2207   }
2208 
2209   // If both vector operands for the shuffle are the same vector, the mask will
2210   // contain only elements from the first one and the second one will be undef.
2211   if (N->getOperand(1).isUndef()) {
2212     ShiftElts = 0;
2213     Swap = true;
2214     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2215     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2216       InsertAtByte = IsLE ? 12 : 0;
2217       return true;
2218     }
2219     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2220       InsertAtByte = IsLE ? 8 : 4;
2221       return true;
2222     }
2223     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2224       InsertAtByte = IsLE ? 4 : 8;
2225       return true;
2226     }
2227     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2228       InsertAtByte = IsLE ? 0 : 12;
2229       return true;
2230     }
2231   }
2232 
2233   return false;
2234 }
2235 
2236 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2237                                bool &Swap, bool IsLE) {
2238   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2239   // Ensure each byte index of the word is consecutive.
2240   if (!isNByteElemShuffleMask(N, 4, 1))
2241     return false;
2242 
2243   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2244   unsigned M0 = N->getMaskElt(0) / 4;
2245   unsigned M1 = N->getMaskElt(4) / 4;
2246   unsigned M2 = N->getMaskElt(8) / 4;
2247   unsigned M3 = N->getMaskElt(12) / 4;
2248 
2249   // If both vector operands for the shuffle are the same vector, the mask will
2250   // contain only elements from the first one and the second one will be undef.
2251   if (N->getOperand(1).isUndef()) {
2252     assert(M0 < 4 && "Indexing into an undef vector?");
2253     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2254       return false;
2255 
2256     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2257     Swap = false;
2258     return true;
2259   }
2260 
2261   // Ensure each word index of the ShuffleVector Mask is consecutive.
2262   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2263     return false;
2264 
2265   if (IsLE) {
2266     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2267       // Input vectors don't need to be swapped if the leading element
2268       // of the result is one of the 3 left elements of the second vector
2269       // (or if there is no shift to be done at all).
2270       Swap = false;
2271       ShiftElts = (8 - M0) % 8;
2272     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2273       // Input vectors need to be swapped if the leading element
2274       // of the result is one of the 3 left elements of the first vector
2275       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2276       Swap = true;
2277       ShiftElts = (4 - M0) % 4;
2278     }
2279 
2280     return true;
2281   } else {                                          // BE
2282     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2283       // Input vectors don't need to be swapped if the leading element
2284       // of the result is one of the 4 elements of the first vector.
2285       Swap = false;
2286       ShiftElts = M0;
2287     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2288       // Input vectors need to be swapped if the leading element
2289       // of the result is one of the 4 elements of the right vector.
2290       Swap = true;
2291       ShiftElts = M0 - 4;
2292     }
2293 
2294     return true;
2295   }
2296 }
2297 
2298 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2299   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2300 
2301   if (!isNByteElemShuffleMask(N, Width, -1))
2302     return false;
2303 
2304   for (int i = 0; i < 16; i += Width)
2305     if (N->getMaskElt(i) != i + Width - 1)
2306       return false;
2307 
2308   return true;
2309 }
2310 
2311 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2312   return isXXBRShuffleMaskHelper(N, 2);
2313 }
2314 
2315 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2316   return isXXBRShuffleMaskHelper(N, 4);
2317 }
2318 
2319 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2320   return isXXBRShuffleMaskHelper(N, 8);
2321 }
2322 
2323 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2324   return isXXBRShuffleMaskHelper(N, 16);
2325 }
2326 
2327 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2328 /// if the inputs to the instruction should be swapped and set \p DM to the
2329 /// value for the immediate.
2330 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2331 /// AND element 0 of the result comes from the first input (LE) or second input
2332 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2333 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2334 /// mask.
2335 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2336                                bool &Swap, bool IsLE) {
2337   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2338 
2339   // Ensure each byte index of the double word is consecutive.
2340   if (!isNByteElemShuffleMask(N, 8, 1))
2341     return false;
2342 
2343   unsigned M0 = N->getMaskElt(0) / 8;
2344   unsigned M1 = N->getMaskElt(8) / 8;
2345   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2346 
2347   // If both vector operands for the shuffle are the same vector, the mask will
2348   // contain only elements from the first one and the second one will be undef.
2349   if (N->getOperand(1).isUndef()) {
2350     if ((M0 | M1) < 2) {
2351       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2352       Swap = false;
2353       return true;
2354     } else
2355       return false;
2356   }
2357 
2358   if (IsLE) {
2359     if (M0 > 1 && M1 < 2) {
2360       Swap = false;
2361     } else if (M0 < 2 && M1 > 1) {
2362       M0 = (M0 + 2) % 4;
2363       M1 = (M1 + 2) % 4;
2364       Swap = true;
2365     } else
2366       return false;
2367 
2368     // Note: if control flow comes here that means Swap is already set above
2369     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2370     return true;
2371   } else { // BE
2372     if (M0 < 2 && M1 > 1) {
2373       Swap = false;
2374     } else if (M0 > 1 && M1 < 2) {
2375       M0 = (M0 + 2) % 4;
2376       M1 = (M1 + 2) % 4;
2377       Swap = true;
2378     } else
2379       return false;
2380 
2381     // Note: if control flow comes here that means Swap is already set above
2382     DM = (M0 << 1) + (M1 & 1);
2383     return true;
2384   }
2385 }
2386 
2387 
2388 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2389 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2390 /// elements are counted from the left of the vector register).
2391 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2392                                          SelectionDAG &DAG) {
2393   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2394   assert(isSplatShuffleMask(SVOp, EltSize));
2395   if (DAG.getDataLayout().isLittleEndian())
2396     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2397   else
2398     return SVOp->getMaskElt(0) / EltSize;
2399 }
2400 
2401 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2402 /// by using a vspltis[bhw] instruction of the specified element size, return
2403 /// the constant being splatted.  The ByteSize field indicates the number of
2404 /// bytes of each element [124] -> [bhw].
2405 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2406   SDValue OpVal(nullptr, 0);
2407 
2408   // If ByteSize of the splat is bigger than the element size of the
2409   // build_vector, then we have a case where we are checking for a splat where
2410   // multiple elements of the buildvector are folded together into a single
2411   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2412   unsigned EltSize = 16/N->getNumOperands();
2413   if (EltSize < ByteSize) {
2414     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2415     SDValue UniquedVals[4];
2416     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2417 
2418     // See if all of the elements in the buildvector agree across.
2419     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2420       if (N->getOperand(i).isUndef()) continue;
2421       // If the element isn't a constant, bail fully out.
2422       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2423 
2424       if (!UniquedVals[i&(Multiple-1)].getNode())
2425         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2426       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2427         return SDValue();  // no match.
2428     }
2429 
2430     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2431     // either constant or undef values that are identical for each chunk.  See
2432     // if these chunks can form into a larger vspltis*.
2433 
2434     // Check to see if all of the leading entries are either 0 or -1.  If
2435     // neither, then this won't fit into the immediate field.
2436     bool LeadingZero = true;
2437     bool LeadingOnes = true;
2438     for (unsigned i = 0; i != Multiple-1; ++i) {
2439       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2440 
2441       LeadingZero &= isNullConstant(UniquedVals[i]);
2442       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2443     }
2444     // Finally, check the least significant entry.
2445     if (LeadingZero) {
2446       if (!UniquedVals[Multiple-1].getNode())
2447         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2448       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2449       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2450         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2451     }
2452     if (LeadingOnes) {
2453       if (!UniquedVals[Multiple-1].getNode())
2454         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2455       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2456       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2457         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2458     }
2459 
2460     return SDValue();
2461   }
2462 
2463   // Check to see if this buildvec has a single non-undef value in its elements.
2464   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2465     if (N->getOperand(i).isUndef()) continue;
2466     if (!OpVal.getNode())
2467       OpVal = N->getOperand(i);
2468     else if (OpVal != N->getOperand(i))
2469       return SDValue();
2470   }
2471 
2472   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2473 
2474   unsigned ValSizeInBytes = EltSize;
2475   uint64_t Value = 0;
2476   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2477     Value = CN->getZExtValue();
2478   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2479     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2480     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2481   }
2482 
2483   // If the splat value is larger than the element value, then we can never do
2484   // this splat.  The only case that we could fit the replicated bits into our
2485   // immediate field for would be zero, and we prefer to use vxor for it.
2486   if (ValSizeInBytes < ByteSize) return SDValue();
2487 
2488   // If the element value is larger than the splat value, check if it consists
2489   // of a repeated bit pattern of size ByteSize.
2490   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2491     return SDValue();
2492 
2493   // Properly sign extend the value.
2494   int MaskVal = SignExtend32(Value, ByteSize * 8);
2495 
2496   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2497   if (MaskVal == 0) return SDValue();
2498 
2499   // Finally, if this value fits in a 5 bit sext field, return it
2500   if (SignExtend32<5>(MaskVal) == MaskVal)
2501     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2502   return SDValue();
2503 }
2504 
2505 //===----------------------------------------------------------------------===//
2506 //  Addressing Mode Selection
2507 //===----------------------------------------------------------------------===//
2508 
2509 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2510 /// or 64-bit immediate, and if the value can be accurately represented as a
2511 /// sign extension from a 16-bit value.  If so, this returns true and the
2512 /// immediate.
2513 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2514   if (!isa<ConstantSDNode>(N))
2515     return false;
2516 
2517   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2518   if (N->getValueType(0) == MVT::i32)
2519     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2520   else
2521     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2522 }
2523 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2524   return isIntS16Immediate(Op.getNode(), Imm);
2525 }
2526 
2527 /// Used when computing address flags for selecting loads and stores.
2528 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2529 /// An OR of two provably disjoint values is equivalent to an ADD.
2530 /// Most PPC load/store instructions compute the effective address as a sum,
2531 /// so doing this conversion is useful.
2532 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2533   if (N.getOpcode() != ISD::OR)
2534     return false;
2535   KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2536   if (!LHSKnown.Zero.getBoolValue())
2537     return false;
2538   KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2539   return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2540 }
2541 
2542 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2543 /// be represented as an indexed [r+r] operation.
2544 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2545                                                SDValue &Index,
2546                                                SelectionDAG &DAG) const {
2547   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2548       UI != E; ++UI) {
2549     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2550       if (Memop->getMemoryVT() == MVT::f64) {
2551           Base = N.getOperand(0);
2552           Index = N.getOperand(1);
2553           return true;
2554       }
2555     }
2556   }
2557   return false;
2558 }
2559 
2560 /// isIntS34Immediate - This method tests if value of node given can be
2561 /// accurately represented as a sign extension from a 34-bit value.  If so,
2562 /// this returns true and the immediate.
2563 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2564   if (!isa<ConstantSDNode>(N))
2565     return false;
2566 
2567   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2568   return isInt<34>(Imm);
2569 }
2570 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2571   return isIntS34Immediate(Op.getNode(), Imm);
2572 }
2573 
2574 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2575 /// can be represented as an indexed [r+r] operation.  Returns false if it
2576 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2577 /// non-zero and N can be represented by a base register plus a signed 16-bit
2578 /// displacement, make a more precise judgement by checking (displacement % \p
2579 /// EncodingAlignment).
2580 bool PPCTargetLowering::SelectAddressRegReg(
2581     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2582     MaybeAlign EncodingAlignment) const {
2583   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2584   // a [pc+imm].
2585   if (SelectAddressPCRel(N, Base))
2586     return false;
2587 
2588   int16_t Imm = 0;
2589   if (N.getOpcode() == ISD::ADD) {
2590     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2591     // SPE load/store can only handle 8-bit offsets.
2592     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2593         return true;
2594     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2595         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2596       return false; // r+i
2597     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2598       return false;    // r+i
2599 
2600     Base = N.getOperand(0);
2601     Index = N.getOperand(1);
2602     return true;
2603   } else if (N.getOpcode() == ISD::OR) {
2604     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2605         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2606       return false; // r+i can fold it if we can.
2607 
2608     // If this is an or of disjoint bitfields, we can codegen this as an add
2609     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2610     // disjoint.
2611     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2612 
2613     if (LHSKnown.Zero.getBoolValue()) {
2614       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2615       // If all of the bits are known zero on the LHS or RHS, the add won't
2616       // carry.
2617       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2618         Base = N.getOperand(0);
2619         Index = N.getOperand(1);
2620         return true;
2621       }
2622     }
2623   }
2624 
2625   return false;
2626 }
2627 
2628 // If we happen to be doing an i64 load or store into a stack slot that has
2629 // less than a 4-byte alignment, then the frame-index elimination may need to
2630 // use an indexed load or store instruction (because the offset may not be a
2631 // multiple of 4). The extra register needed to hold the offset comes from the
2632 // register scavenger, and it is possible that the scavenger will need to use
2633 // an emergency spill slot. As a result, we need to make sure that a spill slot
2634 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2635 // stack slot.
2636 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2637   // FIXME: This does not handle the LWA case.
2638   if (VT != MVT::i64)
2639     return;
2640 
2641   // NOTE: We'll exclude negative FIs here, which come from argument
2642   // lowering, because there are no known test cases triggering this problem
2643   // using packed structures (or similar). We can remove this exclusion if
2644   // we find such a test case. The reason why this is so test-case driven is
2645   // because this entire 'fixup' is only to prevent crashes (from the
2646   // register scavenger) on not-really-valid inputs. For example, if we have:
2647   //   %a = alloca i1
2648   //   %b = bitcast i1* %a to i64*
2649   //   store i64* a, i64 b
2650   // then the store should really be marked as 'align 1', but is not. If it
2651   // were marked as 'align 1' then the indexed form would have been
2652   // instruction-selected initially, and the problem this 'fixup' is preventing
2653   // won't happen regardless.
2654   if (FrameIdx < 0)
2655     return;
2656 
2657   MachineFunction &MF = DAG.getMachineFunction();
2658   MachineFrameInfo &MFI = MF.getFrameInfo();
2659 
2660   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2661     return;
2662 
2663   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2664   FuncInfo->setHasNonRISpills();
2665 }
2666 
2667 /// Returns true if the address N can be represented by a base register plus
2668 /// a signed 16-bit displacement [r+imm], and if it is not better
2669 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2670 /// displacements that are multiples of that value.
2671 bool PPCTargetLowering::SelectAddressRegImm(
2672     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2673     MaybeAlign EncodingAlignment) const {
2674   // FIXME dl should come from parent load or store, not from address
2675   SDLoc dl(N);
2676 
2677   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2678   // a [pc+imm].
2679   if (SelectAddressPCRel(N, Base))
2680     return false;
2681 
2682   // If this can be more profitably realized as r+r, fail.
2683   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2684     return false;
2685 
2686   if (N.getOpcode() == ISD::ADD) {
2687     int16_t imm = 0;
2688     if (isIntS16Immediate(N.getOperand(1), imm) &&
2689         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2690       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2691       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2692         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2693         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2694       } else {
2695         Base = N.getOperand(0);
2696       }
2697       return true; // [r+i]
2698     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2699       // Match LOAD (ADD (X, Lo(G))).
2700       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2701              && "Cannot handle constant offsets yet!");
2702       Disp = N.getOperand(1).getOperand(0);  // The global address.
2703       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2704              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2705              Disp.getOpcode() == ISD::TargetConstantPool ||
2706              Disp.getOpcode() == ISD::TargetJumpTable);
2707       Base = N.getOperand(0);
2708       return true;  // [&g+r]
2709     }
2710   } else if (N.getOpcode() == ISD::OR) {
2711     int16_t imm = 0;
2712     if (isIntS16Immediate(N.getOperand(1), imm) &&
2713         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2714       // If this is an or of disjoint bitfields, we can codegen this as an add
2715       // (for better address arithmetic) if the LHS and RHS of the OR are
2716       // provably disjoint.
2717       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2718 
2719       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2720         // If all of the bits are known zero on the LHS or RHS, the add won't
2721         // carry.
2722         if (FrameIndexSDNode *FI =
2723               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2724           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2725           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2726         } else {
2727           Base = N.getOperand(0);
2728         }
2729         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2730         return true;
2731       }
2732     }
2733   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2734     // Loading from a constant address.
2735 
2736     // If this address fits entirely in a 16-bit sext immediate field, codegen
2737     // this as "d, 0"
2738     int16_t Imm;
2739     if (isIntS16Immediate(CN, Imm) &&
2740         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2741       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2742       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2743                              CN->getValueType(0));
2744       return true;
2745     }
2746 
2747     // Handle 32-bit sext immediates with LIS + addr mode.
2748     if ((CN->getValueType(0) == MVT::i32 ||
2749          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2750         (!EncodingAlignment ||
2751          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2752       int Addr = (int)CN->getZExtValue();
2753 
2754       // Otherwise, break this down into an LIS + disp.
2755       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2756 
2757       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2758                                    MVT::i32);
2759       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2760       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2761       return true;
2762     }
2763   }
2764 
2765   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2766   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2767     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2768     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2769   } else
2770     Base = N;
2771   return true;      // [r+0]
2772 }
2773 
2774 /// Similar to the 16-bit case but for instructions that take a 34-bit
2775 /// displacement field (prefixed loads/stores).
2776 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2777                                               SDValue &Base,
2778                                               SelectionDAG &DAG) const {
2779   // Only on 64-bit targets.
2780   if (N.getValueType() != MVT::i64)
2781     return false;
2782 
2783   SDLoc dl(N);
2784   int64_t Imm = 0;
2785 
2786   if (N.getOpcode() == ISD::ADD) {
2787     if (!isIntS34Immediate(N.getOperand(1), Imm))
2788       return false;
2789     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2790     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2791       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2792     else
2793       Base = N.getOperand(0);
2794     return true;
2795   }
2796 
2797   if (N.getOpcode() == ISD::OR) {
2798     if (!isIntS34Immediate(N.getOperand(1), Imm))
2799       return false;
2800     // If this is an or of disjoint bitfields, we can codegen this as an add
2801     // (for better address arithmetic) if the LHS and RHS of the OR are
2802     // provably disjoint.
2803     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2804     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2805       return false;
2806     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2807       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2808     else
2809       Base = N.getOperand(0);
2810     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2811     return true;
2812   }
2813 
2814   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2815     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2816     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2817     return true;
2818   }
2819 
2820   return false;
2821 }
2822 
2823 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2824 /// represented as an indexed [r+r] operation.
2825 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2826                                                 SDValue &Index,
2827                                                 SelectionDAG &DAG) const {
2828   // Check to see if we can easily represent this as an [r+r] address.  This
2829   // will fail if it thinks that the address is more profitably represented as
2830   // reg+imm, e.g. where imm = 0.
2831   if (SelectAddressRegReg(N, Base, Index, DAG))
2832     return true;
2833 
2834   // If the address is the result of an add, we will utilize the fact that the
2835   // address calculation includes an implicit add.  However, we can reduce
2836   // register pressure if we do not materialize a constant just for use as the
2837   // index register.  We only get rid of the add if it is not an add of a
2838   // value and a 16-bit signed constant and both have a single use.
2839   int16_t imm = 0;
2840   if (N.getOpcode() == ISD::ADD &&
2841       (!isIntS16Immediate(N.getOperand(1), imm) ||
2842        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2843     Base = N.getOperand(0);
2844     Index = N.getOperand(1);
2845     return true;
2846   }
2847 
2848   // Otherwise, do it the hard way, using R0 as the base register.
2849   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2850                          N.getValueType());
2851   Index = N;
2852   return true;
2853 }
2854 
2855 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2856   Ty *PCRelCand = dyn_cast<Ty>(N);
2857   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2858 }
2859 
2860 /// Returns true if this address is a PC Relative address.
2861 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2862 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2863 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2864   // This is a materialize PC Relative node. Always select this as PC Relative.
2865   Base = N;
2866   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2867     return true;
2868   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2869       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2870       isValidPCRelNode<JumpTableSDNode>(N) ||
2871       isValidPCRelNode<BlockAddressSDNode>(N))
2872     return true;
2873   return false;
2874 }
2875 
2876 /// Returns true if we should use a direct load into vector instruction
2877 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2878 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2879 
2880   // If there are any other uses other than scalar to vector, then we should
2881   // keep it as a scalar load -> direct move pattern to prevent multiple
2882   // loads.
2883   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2884   if (!LD)
2885     return false;
2886 
2887   EVT MemVT = LD->getMemoryVT();
2888   if (!MemVT.isSimple())
2889     return false;
2890   switch(MemVT.getSimpleVT().SimpleTy) {
2891   case MVT::i64:
2892     break;
2893   case MVT::i32:
2894     if (!ST.hasP8Vector())
2895       return false;
2896     break;
2897   case MVT::i16:
2898   case MVT::i8:
2899     if (!ST.hasP9Vector())
2900       return false;
2901     break;
2902   default:
2903     return false;
2904   }
2905 
2906   SDValue LoadedVal(N, 0);
2907   if (!LoadedVal.hasOneUse())
2908     return false;
2909 
2910   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2911        UI != UE; ++UI)
2912     if (UI.getUse().get().getResNo() == 0 &&
2913         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2914         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2915       return false;
2916 
2917   return true;
2918 }
2919 
2920 /// getPreIndexedAddressParts - returns true by value, base pointer and
2921 /// offset pointer and addressing mode by reference if the node's address
2922 /// can be legally represented as pre-indexed load / store address.
2923 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2924                                                   SDValue &Offset,
2925                                                   ISD::MemIndexedMode &AM,
2926                                                   SelectionDAG &DAG) const {
2927   if (DisablePPCPreinc) return false;
2928 
2929   bool isLoad = true;
2930   SDValue Ptr;
2931   EVT VT;
2932   unsigned Alignment;
2933   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2934     Ptr = LD->getBasePtr();
2935     VT = LD->getMemoryVT();
2936     Alignment = LD->getAlignment();
2937   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2938     Ptr = ST->getBasePtr();
2939     VT  = ST->getMemoryVT();
2940     Alignment = ST->getAlignment();
2941     isLoad = false;
2942   } else
2943     return false;
2944 
2945   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2946   // instructions because we can fold these into a more efficient instruction
2947   // instead, (such as LXSD).
2948   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2949     return false;
2950   }
2951 
2952   // PowerPC doesn't have preinc load/store instructions for vectors
2953   if (VT.isVector())
2954     return false;
2955 
2956   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2957     // Common code will reject creating a pre-inc form if the base pointer
2958     // is a frame index, or if N is a store and the base pointer is either
2959     // the same as or a predecessor of the value being stored.  Check for
2960     // those situations here, and try with swapped Base/Offset instead.
2961     bool Swap = false;
2962 
2963     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2964       Swap = true;
2965     else if (!isLoad) {
2966       SDValue Val = cast<StoreSDNode>(N)->getValue();
2967       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2968         Swap = true;
2969     }
2970 
2971     if (Swap)
2972       std::swap(Base, Offset);
2973 
2974     AM = ISD::PRE_INC;
2975     return true;
2976   }
2977 
2978   // LDU/STU can only handle immediates that are a multiple of 4.
2979   if (VT != MVT::i64) {
2980     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2981       return false;
2982   } else {
2983     // LDU/STU need an address with at least 4-byte alignment.
2984     if (Alignment < 4)
2985       return false;
2986 
2987     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2988       return false;
2989   }
2990 
2991   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2992     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2993     // sext i32 to i64 when addr mode is r+i.
2994     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2995         LD->getExtensionType() == ISD::SEXTLOAD &&
2996         isa<ConstantSDNode>(Offset))
2997       return false;
2998   }
2999 
3000   AM = ISD::PRE_INC;
3001   return true;
3002 }
3003 
3004 //===----------------------------------------------------------------------===//
3005 //  LowerOperation implementation
3006 //===----------------------------------------------------------------------===//
3007 
3008 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3009 /// and LoOpFlags to the target MO flags.
3010 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3011                                unsigned &HiOpFlags, unsigned &LoOpFlags,
3012                                const GlobalValue *GV = nullptr) {
3013   HiOpFlags = PPCII::MO_HA;
3014   LoOpFlags = PPCII::MO_LO;
3015 
3016   // Don't use the pic base if not in PIC relocation model.
3017   if (IsPIC) {
3018     HiOpFlags |= PPCII::MO_PIC_FLAG;
3019     LoOpFlags |= PPCII::MO_PIC_FLAG;
3020   }
3021 }
3022 
3023 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3024                              SelectionDAG &DAG) {
3025   SDLoc DL(HiPart);
3026   EVT PtrVT = HiPart.getValueType();
3027   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3028 
3029   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3030   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3031 
3032   // With PIC, the first instruction is actually "GR+hi(&G)".
3033   if (isPIC)
3034     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3035                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3036 
3037   // Generate non-pic code that has direct accesses to the constant pool.
3038   // The address of the global is just (hi(&g)+lo(&g)).
3039   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3040 }
3041 
3042 static void setUsesTOCBasePtr(MachineFunction &MF) {
3043   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3044   FuncInfo->setUsesTOCBasePtr();
3045 }
3046 
3047 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3048   setUsesTOCBasePtr(DAG.getMachineFunction());
3049 }
3050 
3051 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3052                                        SDValue GA) const {
3053   const bool Is64Bit = Subtarget.isPPC64();
3054   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3055   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3056                         : Subtarget.isAIXABI()
3057                               ? DAG.getRegister(PPC::R2, VT)
3058                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3059   SDValue Ops[] = { GA, Reg };
3060   return DAG.getMemIntrinsicNode(
3061       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3062       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
3063       MachineMemOperand::MOLoad);
3064 }
3065 
3066 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3067                                              SelectionDAG &DAG) const {
3068   EVT PtrVT = Op.getValueType();
3069   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3070   const Constant *C = CP->getConstVal();
3071 
3072   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3073   // The actual address of the GlobalValue is stored in the TOC.
3074   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3075     if (Subtarget.isUsingPCRelativeCalls()) {
3076       SDLoc DL(CP);
3077       EVT Ty = getPointerTy(DAG.getDataLayout());
3078       SDValue ConstPool = DAG.getTargetConstantPool(
3079           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3080       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3081     }
3082     setUsesTOCBasePtr(DAG);
3083     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3084     return getTOCEntry(DAG, SDLoc(CP), GA);
3085   }
3086 
3087   unsigned MOHiFlag, MOLoFlag;
3088   bool IsPIC = isPositionIndependent();
3089   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3090 
3091   if (IsPIC && Subtarget.isSVR4ABI()) {
3092     SDValue GA =
3093         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3094     return getTOCEntry(DAG, SDLoc(CP), GA);
3095   }
3096 
3097   SDValue CPIHi =
3098       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3099   SDValue CPILo =
3100       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3101   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3102 }
3103 
3104 // For 64-bit PowerPC, prefer the more compact relative encodings.
3105 // This trades 32 bits per jump table entry for one or two instructions
3106 // on the jump site.
3107 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3108   if (isJumpTableRelative())
3109     return MachineJumpTableInfo::EK_LabelDifference32;
3110 
3111   return TargetLowering::getJumpTableEncoding();
3112 }
3113 
3114 bool PPCTargetLowering::isJumpTableRelative() const {
3115   if (UseAbsoluteJumpTables)
3116     return false;
3117   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3118     return true;
3119   return TargetLowering::isJumpTableRelative();
3120 }
3121 
3122 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3123                                                     SelectionDAG &DAG) const {
3124   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3125     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3126 
3127   switch (getTargetMachine().getCodeModel()) {
3128   case CodeModel::Small:
3129   case CodeModel::Medium:
3130     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3131   default:
3132     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3133                        getPointerTy(DAG.getDataLayout()));
3134   }
3135 }
3136 
3137 const MCExpr *
3138 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3139                                                 unsigned JTI,
3140                                                 MCContext &Ctx) const {
3141   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3142     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3143 
3144   switch (getTargetMachine().getCodeModel()) {
3145   case CodeModel::Small:
3146   case CodeModel::Medium:
3147     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3148   default:
3149     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3150   }
3151 }
3152 
3153 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3154   EVT PtrVT = Op.getValueType();
3155   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3156 
3157   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3158   if (Subtarget.isUsingPCRelativeCalls()) {
3159     SDLoc DL(JT);
3160     EVT Ty = getPointerTy(DAG.getDataLayout());
3161     SDValue GA =
3162         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3163     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3164     return MatAddr;
3165   }
3166 
3167   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3168   // The actual address of the GlobalValue is stored in the TOC.
3169   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3170     setUsesTOCBasePtr(DAG);
3171     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3172     return getTOCEntry(DAG, SDLoc(JT), GA);
3173   }
3174 
3175   unsigned MOHiFlag, MOLoFlag;
3176   bool IsPIC = isPositionIndependent();
3177   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3178 
3179   if (IsPIC && Subtarget.isSVR4ABI()) {
3180     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3181                                         PPCII::MO_PIC_FLAG);
3182     return getTOCEntry(DAG, SDLoc(GA), GA);
3183   }
3184 
3185   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3186   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3187   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3188 }
3189 
3190 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3191                                              SelectionDAG &DAG) const {
3192   EVT PtrVT = Op.getValueType();
3193   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3194   const BlockAddress *BA = BASDN->getBlockAddress();
3195 
3196   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3197   if (Subtarget.isUsingPCRelativeCalls()) {
3198     SDLoc DL(BASDN);
3199     EVT Ty = getPointerTy(DAG.getDataLayout());
3200     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3201                                            PPCII::MO_PCREL_FLAG);
3202     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3203     return MatAddr;
3204   }
3205 
3206   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3207   // The actual BlockAddress is stored in the TOC.
3208   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3209     setUsesTOCBasePtr(DAG);
3210     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3211     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3212   }
3213 
3214   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3215   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3216     return getTOCEntry(
3217         DAG, SDLoc(BASDN),
3218         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3219 
3220   unsigned MOHiFlag, MOLoFlag;
3221   bool IsPIC = isPositionIndependent();
3222   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3223   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3224   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3225   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3226 }
3227 
3228 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3229                                               SelectionDAG &DAG) const {
3230   if (Subtarget.isAIXABI())
3231     return LowerGlobalTLSAddressAIX(Op, DAG);
3232 
3233   return LowerGlobalTLSAddressLinux(Op, DAG);
3234 }
3235 
3236 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3237                                                     SelectionDAG &DAG) const {
3238   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3239 
3240   if (DAG.getTarget().useEmulatedTLS())
3241     report_fatal_error("Emulated TLS is not yet supported on AIX");
3242 
3243   SDLoc dl(GA);
3244   const GlobalValue *GV = GA->getGlobal();
3245   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3246 
3247   // The general-dynamic model is the only access model supported for now, so
3248   // all the GlobalTLSAddress nodes are lowered with this model.
3249   // We need to generate two TOC entries, one for the variable offset, one for
3250   // the region handle. The global address for the TOC entry of the region
3251   // handle is created with the MO_TLSGDM_FLAG flag and the global address
3252   // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3253   SDValue VariableOffsetTGA =
3254       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3255   SDValue RegionHandleTGA =
3256       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3257   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3258   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3259   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3260                      RegionHandle);
3261 }
3262 
3263 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3264                                                       SelectionDAG &DAG) const {
3265   // FIXME: TLS addresses currently use medium model code sequences,
3266   // which is the most useful form.  Eventually support for small and
3267   // large models could be added if users need it, at the cost of
3268   // additional complexity.
3269   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3270   if (DAG.getTarget().useEmulatedTLS())
3271     return LowerToTLSEmulatedModel(GA, DAG);
3272 
3273   SDLoc dl(GA);
3274   const GlobalValue *GV = GA->getGlobal();
3275   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3276   bool is64bit = Subtarget.isPPC64();
3277   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3278   PICLevel::Level picLevel = M->getPICLevel();
3279 
3280   const TargetMachine &TM = getTargetMachine();
3281   TLSModel::Model Model = TM.getTLSModel(GV);
3282 
3283   if (Model == TLSModel::LocalExec) {
3284     if (Subtarget.isUsingPCRelativeCalls()) {
3285       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3286       SDValue TGA = DAG.getTargetGlobalAddress(
3287           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3288       SDValue MatAddr =
3289           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3290       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3291     }
3292 
3293     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3294                                                PPCII::MO_TPREL_HA);
3295     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3296                                                PPCII::MO_TPREL_LO);
3297     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3298                              : DAG.getRegister(PPC::R2, MVT::i32);
3299 
3300     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3301     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3302   }
3303 
3304   if (Model == TLSModel::InitialExec) {
3305     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3306     SDValue TGA = DAG.getTargetGlobalAddress(
3307         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3308     SDValue TGATLS = DAG.getTargetGlobalAddress(
3309         GV, dl, PtrVT, 0,
3310         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3311     SDValue TPOffset;
3312     if (IsPCRel) {
3313       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3314       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3315                              MachinePointerInfo());
3316     } else {
3317       SDValue GOTPtr;
3318       if (is64bit) {
3319         setUsesTOCBasePtr(DAG);
3320         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3321         GOTPtr =
3322             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3323       } else {
3324         if (!TM.isPositionIndependent())
3325           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3326         else if (picLevel == PICLevel::SmallPIC)
3327           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3328         else
3329           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3330       }
3331       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3332     }
3333     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3334   }
3335 
3336   if (Model == TLSModel::GeneralDynamic) {
3337     if (Subtarget.isUsingPCRelativeCalls()) {
3338       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3339                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3340       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3341     }
3342 
3343     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3344     SDValue GOTPtr;
3345     if (is64bit) {
3346       setUsesTOCBasePtr(DAG);
3347       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3348       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3349                                    GOTReg, TGA);
3350     } else {
3351       if (picLevel == PICLevel::SmallPIC)
3352         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3353       else
3354         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3355     }
3356     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3357                        GOTPtr, TGA, TGA);
3358   }
3359 
3360   if (Model == TLSModel::LocalDynamic) {
3361     if (Subtarget.isUsingPCRelativeCalls()) {
3362       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3363                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3364       SDValue MatPCRel =
3365           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3366       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3367     }
3368 
3369     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3370     SDValue GOTPtr;
3371     if (is64bit) {
3372       setUsesTOCBasePtr(DAG);
3373       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3374       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3375                            GOTReg, TGA);
3376     } else {
3377       if (picLevel == PICLevel::SmallPIC)
3378         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3379       else
3380         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3381     }
3382     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3383                                   PtrVT, GOTPtr, TGA, TGA);
3384     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3385                                       PtrVT, TLSAddr, TGA);
3386     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3387   }
3388 
3389   llvm_unreachable("Unknown TLS model!");
3390 }
3391 
3392 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3393                                               SelectionDAG &DAG) const {
3394   EVT PtrVT = Op.getValueType();
3395   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3396   SDLoc DL(GSDN);
3397   const GlobalValue *GV = GSDN->getGlobal();
3398 
3399   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3400   // The actual address of the GlobalValue is stored in the TOC.
3401   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3402     if (Subtarget.isUsingPCRelativeCalls()) {
3403       EVT Ty = getPointerTy(DAG.getDataLayout());
3404       if (isAccessedAsGotIndirect(Op)) {
3405         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3406                                                 PPCII::MO_PCREL_FLAG |
3407                                                     PPCII::MO_GOT_FLAG);
3408         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3409         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3410                                    MachinePointerInfo());
3411         return Load;
3412       } else {
3413         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3414                                                 PPCII::MO_PCREL_FLAG);
3415         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3416       }
3417     }
3418     setUsesTOCBasePtr(DAG);
3419     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3420     return getTOCEntry(DAG, DL, GA);
3421   }
3422 
3423   unsigned MOHiFlag, MOLoFlag;
3424   bool IsPIC = isPositionIndependent();
3425   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3426 
3427   if (IsPIC && Subtarget.isSVR4ABI()) {
3428     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3429                                             GSDN->getOffset(),
3430                                             PPCII::MO_PIC_FLAG);
3431     return getTOCEntry(DAG, DL, GA);
3432   }
3433 
3434   SDValue GAHi =
3435     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3436   SDValue GALo =
3437     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3438 
3439   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3440 }
3441 
3442 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3443   bool IsStrict = Op->isStrictFPOpcode();
3444   ISD::CondCode CC =
3445       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3446   SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3447   SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3448   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3449   EVT LHSVT = LHS.getValueType();
3450   SDLoc dl(Op);
3451 
3452   // Soften the setcc with libcall if it is fp128.
3453   if (LHSVT == MVT::f128) {
3454     assert(!Subtarget.hasP9Vector() &&
3455            "SETCC for f128 is already legal under Power9!");
3456     softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3457                         Op->getOpcode() == ISD::STRICT_FSETCCS);
3458     if (RHS.getNode())
3459       LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3460                         DAG.getCondCode(CC));
3461     if (IsStrict)
3462       return DAG.getMergeValues({LHS, Chain}, dl);
3463     return LHS;
3464   }
3465 
3466   assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3467 
3468   if (Op.getValueType() == MVT::v2i64) {
3469     // When the operands themselves are v2i64 values, we need to do something
3470     // special because VSX has no underlying comparison operations for these.
3471     if (LHS.getValueType() == MVT::v2i64) {
3472       // Equality can be handled by casting to the legal type for Altivec
3473       // comparisons, everything else needs to be expanded.
3474       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3475         return DAG.getNode(
3476             ISD::BITCAST, dl, MVT::v2i64,
3477             DAG.getSetCC(dl, MVT::v4i32,
3478                          DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3479                          DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC));
3480       }
3481 
3482       return SDValue();
3483     }
3484 
3485     // We handle most of these in the usual way.
3486     return Op;
3487   }
3488 
3489   // If we're comparing for equality to zero, expose the fact that this is
3490   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3491   // fold the new nodes.
3492   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3493     return V;
3494 
3495   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3496     // Leave comparisons against 0 and -1 alone for now, since they're usually
3497     // optimized.  FIXME: revisit this when we can custom lower all setcc
3498     // optimizations.
3499     if (C->isAllOnesValue() || C->isNullValue())
3500       return SDValue();
3501   }
3502 
3503   // If we have an integer seteq/setne, turn it into a compare against zero
3504   // by xor'ing the rhs with the lhs, which is faster than setting a
3505   // condition register, reading it back out, and masking the correct bit.  The
3506   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3507   // the result to other bit-twiddling opportunities.
3508   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3509     EVT VT = Op.getValueType();
3510     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3511     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3512   }
3513   return SDValue();
3514 }
3515 
3516 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3517   SDNode *Node = Op.getNode();
3518   EVT VT = Node->getValueType(0);
3519   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3520   SDValue InChain = Node->getOperand(0);
3521   SDValue VAListPtr = Node->getOperand(1);
3522   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3523   SDLoc dl(Node);
3524 
3525   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3526 
3527   // gpr_index
3528   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3529                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3530   InChain = GprIndex.getValue(1);
3531 
3532   if (VT == MVT::i64) {
3533     // Check if GprIndex is even
3534     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3535                                  DAG.getConstant(1, dl, MVT::i32));
3536     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3537                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3538     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3539                                           DAG.getConstant(1, dl, MVT::i32));
3540     // Align GprIndex to be even if it isn't
3541     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3542                            GprIndex);
3543   }
3544 
3545   // fpr index is 1 byte after gpr
3546   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3547                                DAG.getConstant(1, dl, MVT::i32));
3548 
3549   // fpr
3550   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3551                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3552   InChain = FprIndex.getValue(1);
3553 
3554   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3555                                        DAG.getConstant(8, dl, MVT::i32));
3556 
3557   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3558                                         DAG.getConstant(4, dl, MVT::i32));
3559 
3560   // areas
3561   SDValue OverflowArea =
3562       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3563   InChain = OverflowArea.getValue(1);
3564 
3565   SDValue RegSaveArea =
3566       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3567   InChain = RegSaveArea.getValue(1);
3568 
3569   // select overflow_area if index > 8
3570   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3571                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3572 
3573   // adjustment constant gpr_index * 4/8
3574   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3575                                     VT.isInteger() ? GprIndex : FprIndex,
3576                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3577                                                     MVT::i32));
3578 
3579   // OurReg = RegSaveArea + RegConstant
3580   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3581                                RegConstant);
3582 
3583   // Floating types are 32 bytes into RegSaveArea
3584   if (VT.isFloatingPoint())
3585     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3586                          DAG.getConstant(32, dl, MVT::i32));
3587 
3588   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3589   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3590                                    VT.isInteger() ? GprIndex : FprIndex,
3591                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3592                                                    MVT::i32));
3593 
3594   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3595                               VT.isInteger() ? VAListPtr : FprPtr,
3596                               MachinePointerInfo(SV), MVT::i8);
3597 
3598   // determine if we should load from reg_save_area or overflow_area
3599   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3600 
3601   // increase overflow_area by 4/8 if gpr/fpr > 8
3602   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3603                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3604                                           dl, MVT::i32));
3605 
3606   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3607                              OverflowAreaPlusN);
3608 
3609   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3610                               MachinePointerInfo(), MVT::i32);
3611 
3612   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3613 }
3614 
3615 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3616   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3617 
3618   // We have to copy the entire va_list struct:
3619   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3620   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3621                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3622                        false, true, false, MachinePointerInfo(),
3623                        MachinePointerInfo());
3624 }
3625 
3626 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3627                                                   SelectionDAG &DAG) const {
3628   if (Subtarget.isAIXABI())
3629     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3630 
3631   return Op.getOperand(0);
3632 }
3633 
3634 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3635   MachineFunction &MF = DAG.getMachineFunction();
3636   PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3637 
3638   assert((Op.getOpcode() == ISD::INLINEASM ||
3639           Op.getOpcode() == ISD::INLINEASM_BR) &&
3640          "Expecting Inline ASM node.");
3641 
3642   // If an LR store is already known to be required then there is not point in
3643   // checking this ASM as well.
3644   if (MFI.isLRStoreRequired())
3645     return Op;
3646 
3647   // Inline ASM nodes have an optional last operand that is an incoming Flag of
3648   // type MVT::Glue. We want to ignore this last operand if that is the case.
3649   unsigned NumOps = Op.getNumOperands();
3650   if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3651     --NumOps;
3652 
3653   // Check all operands that may contain the LR.
3654   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3655     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
3656     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
3657     ++i; // Skip the ID value.
3658 
3659     switch (InlineAsm::getKind(Flags)) {
3660     default:
3661       llvm_unreachable("Bad flags!");
3662     case InlineAsm::Kind_RegUse:
3663     case InlineAsm::Kind_Imm:
3664     case InlineAsm::Kind_Mem:
3665       i += NumVals;
3666       break;
3667     case InlineAsm::Kind_Clobber:
3668     case InlineAsm::Kind_RegDef:
3669     case InlineAsm::Kind_RegDefEarlyClobber: {
3670       for (; NumVals; --NumVals, ++i) {
3671         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3672         if (Reg != PPC::LR && Reg != PPC::LR8)
3673           continue;
3674         MFI.setLRStoreRequired();
3675         return Op;
3676       }
3677       break;
3678     }
3679     }
3680   }
3681 
3682   return Op;
3683 }
3684 
3685 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3686                                                 SelectionDAG &DAG) const {
3687   if (Subtarget.isAIXABI())
3688     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3689 
3690   SDValue Chain = Op.getOperand(0);
3691   SDValue Trmp = Op.getOperand(1); // trampoline
3692   SDValue FPtr = Op.getOperand(2); // nested function
3693   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3694   SDLoc dl(Op);
3695 
3696   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3697   bool isPPC64 = (PtrVT == MVT::i64);
3698   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3699 
3700   TargetLowering::ArgListTy Args;
3701   TargetLowering::ArgListEntry Entry;
3702 
3703   Entry.Ty = IntPtrTy;
3704   Entry.Node = Trmp; Args.push_back(Entry);
3705 
3706   // TrampSize == (isPPC64 ? 48 : 40);
3707   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3708                                isPPC64 ? MVT::i64 : MVT::i32);
3709   Args.push_back(Entry);
3710 
3711   Entry.Node = FPtr; Args.push_back(Entry);
3712   Entry.Node = Nest; Args.push_back(Entry);
3713 
3714   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3715   TargetLowering::CallLoweringInfo CLI(DAG);
3716   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3717       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3718       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3719 
3720   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3721   return CallResult.second;
3722 }
3723 
3724 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3725   MachineFunction &MF = DAG.getMachineFunction();
3726   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3727   EVT PtrVT = getPointerTy(MF.getDataLayout());
3728 
3729   SDLoc dl(Op);
3730 
3731   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3732     // vastart just stores the address of the VarArgsFrameIndex slot into the
3733     // memory location argument.
3734     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3735     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3736     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3737                         MachinePointerInfo(SV));
3738   }
3739 
3740   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3741   // We suppose the given va_list is already allocated.
3742   //
3743   // typedef struct {
3744   //  char gpr;     /* index into the array of 8 GPRs
3745   //                 * stored in the register save area
3746   //                 * gpr=0 corresponds to r3,
3747   //                 * gpr=1 to r4, etc.
3748   //                 */
3749   //  char fpr;     /* index into the array of 8 FPRs
3750   //                 * stored in the register save area
3751   //                 * fpr=0 corresponds to f1,
3752   //                 * fpr=1 to f2, etc.
3753   //                 */
3754   //  char *overflow_arg_area;
3755   //                /* location on stack that holds
3756   //                 * the next overflow argument
3757   //                 */
3758   //  char *reg_save_area;
3759   //               /* where r3:r10 and f1:f8 (if saved)
3760   //                * are stored
3761   //                */
3762   // } va_list[1];
3763 
3764   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3765   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3766   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3767                                             PtrVT);
3768   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3769                                  PtrVT);
3770 
3771   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3772   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3773 
3774   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3775   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3776 
3777   uint64_t FPROffset = 1;
3778   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3779 
3780   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3781 
3782   // Store first byte : number of int regs
3783   SDValue firstStore =
3784       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3785                         MachinePointerInfo(SV), MVT::i8);
3786   uint64_t nextOffset = FPROffset;
3787   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3788                                   ConstFPROffset);
3789 
3790   // Store second byte : number of float regs
3791   SDValue secondStore =
3792       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3793                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3794   nextOffset += StackOffset;
3795   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3796 
3797   // Store second word : arguments given on stack
3798   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3799                                     MachinePointerInfo(SV, nextOffset));
3800   nextOffset += FrameOffset;
3801   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3802 
3803   // Store third word : arguments given in registers
3804   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3805                       MachinePointerInfo(SV, nextOffset));
3806 }
3807 
3808 /// FPR - The set of FP registers that should be allocated for arguments
3809 /// on Darwin and AIX.
3810 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3811                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3812                                 PPC::F11, PPC::F12, PPC::F13};
3813 
3814 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3815 /// the stack.
3816 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3817                                        unsigned PtrByteSize) {
3818   unsigned ArgSize = ArgVT.getStoreSize();
3819   if (Flags.isByVal())
3820     ArgSize = Flags.getByValSize();
3821 
3822   // Round up to multiples of the pointer size, except for array members,
3823   // which are always packed.
3824   if (!Flags.isInConsecutiveRegs())
3825     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3826 
3827   return ArgSize;
3828 }
3829 
3830 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3831 /// on the stack.
3832 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3833                                          ISD::ArgFlagsTy Flags,
3834                                          unsigned PtrByteSize) {
3835   Align Alignment(PtrByteSize);
3836 
3837   // Altivec parameters are padded to a 16 byte boundary.
3838   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3839       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3840       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3841       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3842     Alignment = Align(16);
3843 
3844   // ByVal parameters are aligned as requested.
3845   if (Flags.isByVal()) {
3846     auto BVAlign = Flags.getNonZeroByValAlign();
3847     if (BVAlign > PtrByteSize) {
3848       if (BVAlign.value() % PtrByteSize != 0)
3849         llvm_unreachable(
3850             "ByVal alignment is not a multiple of the pointer size");
3851 
3852       Alignment = BVAlign;
3853     }
3854   }
3855 
3856   // Array members are always packed to their original alignment.
3857   if (Flags.isInConsecutiveRegs()) {
3858     // If the array member was split into multiple registers, the first
3859     // needs to be aligned to the size of the full type.  (Except for
3860     // ppcf128, which is only aligned as its f64 components.)
3861     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3862       Alignment = Align(OrigVT.getStoreSize());
3863     else
3864       Alignment = Align(ArgVT.getStoreSize());
3865   }
3866 
3867   return Alignment;
3868 }
3869 
3870 /// CalculateStackSlotUsed - Return whether this argument will use its
3871 /// stack slot (instead of being passed in registers).  ArgOffset,
3872 /// AvailableFPRs, and AvailableVRs must hold the current argument
3873 /// position, and will be updated to account for this argument.
3874 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3875                                    unsigned PtrByteSize, unsigned LinkageSize,
3876                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3877                                    unsigned &AvailableFPRs,
3878                                    unsigned &AvailableVRs) {
3879   bool UseMemory = false;
3880 
3881   // Respect alignment of argument on the stack.
3882   Align Alignment =
3883       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3884   ArgOffset = alignTo(ArgOffset, Alignment);
3885   // If there's no space left in the argument save area, we must
3886   // use memory (this check also catches zero-sized arguments).
3887   if (ArgOffset >= LinkageSize + ParamAreaSize)
3888     UseMemory = true;
3889 
3890   // Allocate argument on the stack.
3891   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3892   if (Flags.isInConsecutiveRegsLast())
3893     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3894   // If we overran the argument save area, we must use memory
3895   // (this check catches arguments passed partially in memory)
3896   if (ArgOffset > LinkageSize + ParamAreaSize)
3897     UseMemory = true;
3898 
3899   // However, if the argument is actually passed in an FPR or a VR,
3900   // we don't use memory after all.
3901   if (!Flags.isByVal()) {
3902     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3903       if (AvailableFPRs > 0) {
3904         --AvailableFPRs;
3905         return false;
3906       }
3907     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3908         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3909         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3910         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3911       if (AvailableVRs > 0) {
3912         --AvailableVRs;
3913         return false;
3914       }
3915   }
3916 
3917   return UseMemory;
3918 }
3919 
3920 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3921 /// ensure minimum alignment required for target.
3922 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3923                                      unsigned NumBytes) {
3924   return alignTo(NumBytes, Lowering->getStackAlign());
3925 }
3926 
3927 SDValue PPCTargetLowering::LowerFormalArguments(
3928     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3929     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3930     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3931   if (Subtarget.isAIXABI())
3932     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3933                                     InVals);
3934   if (Subtarget.is64BitELFABI())
3935     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3936                                        InVals);
3937   assert(Subtarget.is32BitELFABI());
3938   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3939                                      InVals);
3940 }
3941 
3942 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3943     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3944     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3945     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3946 
3947   // 32-bit SVR4 ABI Stack Frame Layout:
3948   //              +-----------------------------------+
3949   //        +-->  |            Back chain             |
3950   //        |     +-----------------------------------+
3951   //        |     | Floating-point register save area |
3952   //        |     +-----------------------------------+
3953   //        |     |    General register save area     |
3954   //        |     +-----------------------------------+
3955   //        |     |          CR save word             |
3956   //        |     +-----------------------------------+
3957   //        |     |         VRSAVE save word          |
3958   //        |     +-----------------------------------+
3959   //        |     |         Alignment padding         |
3960   //        |     +-----------------------------------+
3961   //        |     |     Vector register save area     |
3962   //        |     +-----------------------------------+
3963   //        |     |       Local variable space        |
3964   //        |     +-----------------------------------+
3965   //        |     |        Parameter list area        |
3966   //        |     +-----------------------------------+
3967   //        |     |           LR save word            |
3968   //        |     +-----------------------------------+
3969   // SP-->  +---  |            Back chain             |
3970   //              +-----------------------------------+
3971   //
3972   // Specifications:
3973   //   System V Application Binary Interface PowerPC Processor Supplement
3974   //   AltiVec Technology Programming Interface Manual
3975 
3976   MachineFunction &MF = DAG.getMachineFunction();
3977   MachineFrameInfo &MFI = MF.getFrameInfo();
3978   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3979 
3980   EVT PtrVT = getPointerTy(MF.getDataLayout());
3981   // Potential tail calls could cause overwriting of argument stack slots.
3982   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3983                        (CallConv == CallingConv::Fast));
3984   const Align PtrAlign(4);
3985 
3986   // Assign locations to all of the incoming arguments.
3987   SmallVector<CCValAssign, 16> ArgLocs;
3988   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3989                  *DAG.getContext());
3990 
3991   // Reserve space for the linkage area on the stack.
3992   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3993   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3994   if (useSoftFloat())
3995     CCInfo.PreAnalyzeFormalArguments(Ins);
3996 
3997   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3998   CCInfo.clearWasPPCF128();
3999 
4000   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4001     CCValAssign &VA = ArgLocs[i];
4002 
4003     // Arguments stored in registers.
4004     if (VA.isRegLoc()) {
4005       const TargetRegisterClass *RC;
4006       EVT ValVT = VA.getValVT();
4007 
4008       switch (ValVT.getSimpleVT().SimpleTy) {
4009         default:
4010           llvm_unreachable("ValVT not supported by formal arguments Lowering");
4011         case MVT::i1:
4012         case MVT::i32:
4013           RC = &PPC::GPRCRegClass;
4014           break;
4015         case MVT::f32:
4016           if (Subtarget.hasP8Vector())
4017             RC = &PPC::VSSRCRegClass;
4018           else if (Subtarget.hasSPE())
4019             RC = &PPC::GPRCRegClass;
4020           else
4021             RC = &PPC::F4RCRegClass;
4022           break;
4023         case MVT::f64:
4024           if (Subtarget.hasVSX())
4025             RC = &PPC::VSFRCRegClass;
4026           else if (Subtarget.hasSPE())
4027             // SPE passes doubles in GPR pairs.
4028             RC = &PPC::GPRCRegClass;
4029           else
4030             RC = &PPC::F8RCRegClass;
4031           break;
4032         case MVT::v16i8:
4033         case MVT::v8i16:
4034         case MVT::v4i32:
4035           RC = &PPC::VRRCRegClass;
4036           break;
4037         case MVT::v4f32:
4038           RC = &PPC::VRRCRegClass;
4039           break;
4040         case MVT::v2f64:
4041         case MVT::v2i64:
4042           RC = &PPC::VRRCRegClass;
4043           break;
4044       }
4045 
4046       SDValue ArgValue;
4047       // Transform the arguments stored in physical registers into
4048       // virtual ones.
4049       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4050         assert(i + 1 < e && "No second half of double precision argument");
4051         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4052         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4053         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4054         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4055         if (!Subtarget.isLittleEndian())
4056           std::swap (ArgValueLo, ArgValueHi);
4057         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4058                                ArgValueHi);
4059       } else {
4060         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4061         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4062                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
4063         if (ValVT == MVT::i1)
4064           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4065       }
4066 
4067       InVals.push_back(ArgValue);
4068     } else {
4069       // Argument stored in memory.
4070       assert(VA.isMemLoc());
4071 
4072       // Get the extended size of the argument type in stack
4073       unsigned ArgSize = VA.getLocVT().getStoreSize();
4074       // Get the actual size of the argument type
4075       unsigned ObjSize = VA.getValVT().getStoreSize();
4076       unsigned ArgOffset = VA.getLocMemOffset();
4077       // Stack objects in PPC32 are right justified.
4078       ArgOffset += ArgSize - ObjSize;
4079       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4080 
4081       // Create load nodes to retrieve arguments from the stack.
4082       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4083       InVals.push_back(
4084           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4085     }
4086   }
4087 
4088   // Assign locations to all of the incoming aggregate by value arguments.
4089   // Aggregates passed by value are stored in the local variable space of the
4090   // caller's stack frame, right above the parameter list area.
4091   SmallVector<CCValAssign, 16> ByValArgLocs;
4092   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4093                       ByValArgLocs, *DAG.getContext());
4094 
4095   // Reserve stack space for the allocations in CCInfo.
4096   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
4097 
4098   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4099 
4100   // Area that is at least reserved in the caller of this function.
4101   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
4102   MinReservedArea = std::max(MinReservedArea, LinkageSize);
4103 
4104   // Set the size that is at least reserved in caller of this function.  Tail
4105   // call optimized function's reserved stack space needs to be aligned so that
4106   // taking the difference between two stack areas will result in an aligned
4107   // stack.
4108   MinReservedArea =
4109       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4110   FuncInfo->setMinReservedArea(MinReservedArea);
4111 
4112   SmallVector<SDValue, 8> MemOps;
4113 
4114   // If the function takes variable number of arguments, make a frame index for
4115   // the start of the first vararg value... for expansion of llvm.va_start.
4116   if (isVarArg) {
4117     static const MCPhysReg GPArgRegs[] = {
4118       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4119       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4120     };
4121     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
4122 
4123     static const MCPhysReg FPArgRegs[] = {
4124       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4125       PPC::F8
4126     };
4127     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
4128 
4129     if (useSoftFloat() || hasSPE())
4130        NumFPArgRegs = 0;
4131 
4132     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4133     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4134 
4135     // Make room for NumGPArgRegs and NumFPArgRegs.
4136     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4137                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4138 
4139     FuncInfo->setVarArgsStackOffset(
4140       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4141                             CCInfo.getNextStackOffset(), true));
4142 
4143     FuncInfo->setVarArgsFrameIndex(
4144         MFI.CreateStackObject(Depth, Align(8), false));
4145     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4146 
4147     // The fixed integer arguments of a variadic function are stored to the
4148     // VarArgsFrameIndex on the stack so that they may be loaded by
4149     // dereferencing the result of va_next.
4150     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4151       // Get an existing live-in vreg, or add a new one.
4152       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4153       if (!VReg)
4154         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4155 
4156       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4157       SDValue Store =
4158           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4159       MemOps.push_back(Store);
4160       // Increment the address by four for the next argument to store
4161       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4162       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4163     }
4164 
4165     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4166     // is set.
4167     // The double arguments are stored to the VarArgsFrameIndex
4168     // on the stack.
4169     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4170       // Get an existing live-in vreg, or add a new one.
4171       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4172       if (!VReg)
4173         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4174 
4175       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4176       SDValue Store =
4177           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4178       MemOps.push_back(Store);
4179       // Increment the address by eight for the next argument to store
4180       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4181                                          PtrVT);
4182       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4183     }
4184   }
4185 
4186   if (!MemOps.empty())
4187     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4188 
4189   return Chain;
4190 }
4191 
4192 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4193 // value to MVT::i64 and then truncate to the correct register size.
4194 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4195                                              EVT ObjectVT, SelectionDAG &DAG,
4196                                              SDValue ArgVal,
4197                                              const SDLoc &dl) const {
4198   if (Flags.isSExt())
4199     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4200                          DAG.getValueType(ObjectVT));
4201   else if (Flags.isZExt())
4202     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4203                          DAG.getValueType(ObjectVT));
4204 
4205   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4206 }
4207 
4208 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4209     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4210     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4211     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4212   // TODO: add description of PPC stack frame format, or at least some docs.
4213   //
4214   bool isELFv2ABI = Subtarget.isELFv2ABI();
4215   bool isLittleEndian = Subtarget.isLittleEndian();
4216   MachineFunction &MF = DAG.getMachineFunction();
4217   MachineFrameInfo &MFI = MF.getFrameInfo();
4218   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4219 
4220   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4221          "fastcc not supported on varargs functions");
4222 
4223   EVT PtrVT = getPointerTy(MF.getDataLayout());
4224   // Potential tail calls could cause overwriting of argument stack slots.
4225   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4226                        (CallConv == CallingConv::Fast));
4227   unsigned PtrByteSize = 8;
4228   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4229 
4230   static const MCPhysReg GPR[] = {
4231     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4232     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4233   };
4234   static const MCPhysReg VR[] = {
4235     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4236     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4237   };
4238 
4239   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4240   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4241   const unsigned Num_VR_Regs  = array_lengthof(VR);
4242 
4243   // Do a first pass over the arguments to determine whether the ABI
4244   // guarantees that our caller has allocated the parameter save area
4245   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4246   // in the ELFv2 ABI, it is true if this is a vararg function or if
4247   // any parameter is located in a stack slot.
4248 
4249   bool HasParameterArea = !isELFv2ABI || isVarArg;
4250   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4251   unsigned NumBytes = LinkageSize;
4252   unsigned AvailableFPRs = Num_FPR_Regs;
4253   unsigned AvailableVRs = Num_VR_Regs;
4254   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4255     if (Ins[i].Flags.isNest())
4256       continue;
4257 
4258     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4259                                PtrByteSize, LinkageSize, ParamAreaSize,
4260                                NumBytes, AvailableFPRs, AvailableVRs))
4261       HasParameterArea = true;
4262   }
4263 
4264   // Add DAG nodes to load the arguments or copy them out of registers.  On
4265   // entry to a function on PPC, the arguments start after the linkage area,
4266   // although the first ones are often in registers.
4267 
4268   unsigned ArgOffset = LinkageSize;
4269   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4270   SmallVector<SDValue, 8> MemOps;
4271   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4272   unsigned CurArgIdx = 0;
4273   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4274     SDValue ArgVal;
4275     bool needsLoad = false;
4276     EVT ObjectVT = Ins[ArgNo].VT;
4277     EVT OrigVT = Ins[ArgNo].ArgVT;
4278     unsigned ObjSize = ObjectVT.getStoreSize();
4279     unsigned ArgSize = ObjSize;
4280     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4281     if (Ins[ArgNo].isOrigArg()) {
4282       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4283       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4284     }
4285     // We re-align the argument offset for each argument, except when using the
4286     // fast calling convention, when we need to make sure we do that only when
4287     // we'll actually use a stack slot.
4288     unsigned CurArgOffset;
4289     Align Alignment;
4290     auto ComputeArgOffset = [&]() {
4291       /* Respect alignment of argument on the stack.  */
4292       Alignment =
4293           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4294       ArgOffset = alignTo(ArgOffset, Alignment);
4295       CurArgOffset = ArgOffset;
4296     };
4297 
4298     if (CallConv != CallingConv::Fast) {
4299       ComputeArgOffset();
4300 
4301       /* Compute GPR index associated with argument offset.  */
4302       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4303       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4304     }
4305 
4306     // FIXME the codegen can be much improved in some cases.
4307     // We do not have to keep everything in memory.
4308     if (Flags.isByVal()) {
4309       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4310 
4311       if (CallConv == CallingConv::Fast)
4312         ComputeArgOffset();
4313 
4314       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4315       ObjSize = Flags.getByValSize();
4316       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4317       // Empty aggregate parameters do not take up registers.  Examples:
4318       //   struct { } a;
4319       //   union  { } b;
4320       //   int c[0];
4321       // etc.  However, we have to provide a place-holder in InVals, so
4322       // pretend we have an 8-byte item at the current address for that
4323       // purpose.
4324       if (!ObjSize) {
4325         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4326         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4327         InVals.push_back(FIN);
4328         continue;
4329       }
4330 
4331       // Create a stack object covering all stack doublewords occupied
4332       // by the argument.  If the argument is (fully or partially) on
4333       // the stack, or if the argument is fully in registers but the
4334       // caller has allocated the parameter save anyway, we can refer
4335       // directly to the caller's stack frame.  Otherwise, create a
4336       // local copy in our own frame.
4337       int FI;
4338       if (HasParameterArea ||
4339           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4340         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4341       else
4342         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4343       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4344 
4345       // Handle aggregates smaller than 8 bytes.
4346       if (ObjSize < PtrByteSize) {
4347         // The value of the object is its address, which differs from the
4348         // address of the enclosing doubleword on big-endian systems.
4349         SDValue Arg = FIN;
4350         if (!isLittleEndian) {
4351           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4352           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4353         }
4354         InVals.push_back(Arg);
4355 
4356         if (GPR_idx != Num_GPR_Regs) {
4357           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4358           FuncInfo->addLiveInAttr(VReg, Flags);
4359           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4360           SDValue Store;
4361 
4362           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4363             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4364                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4365             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4366                                       MachinePointerInfo(&*FuncArg), ObjType);
4367           } else {
4368             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4369             // store the whole register as-is to the parameter save area
4370             // slot.
4371             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4372                                  MachinePointerInfo(&*FuncArg));
4373           }
4374 
4375           MemOps.push_back(Store);
4376         }
4377         // Whether we copied from a register or not, advance the offset
4378         // into the parameter save area by a full doubleword.
4379         ArgOffset += PtrByteSize;
4380         continue;
4381       }
4382 
4383       // The value of the object is its address, which is the address of
4384       // its first stack doubleword.
4385       InVals.push_back(FIN);
4386 
4387       // Store whatever pieces of the object are in registers to memory.
4388       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4389         if (GPR_idx == Num_GPR_Regs)
4390           break;
4391 
4392         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4393         FuncInfo->addLiveInAttr(VReg, Flags);
4394         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4395         SDValue Addr = FIN;
4396         if (j) {
4397           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4398           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4399         }
4400         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4401                                      MachinePointerInfo(&*FuncArg, j));
4402         MemOps.push_back(Store);
4403         ++GPR_idx;
4404       }
4405       ArgOffset += ArgSize;
4406       continue;
4407     }
4408 
4409     switch (ObjectVT.getSimpleVT().SimpleTy) {
4410     default: llvm_unreachable("Unhandled argument type!");
4411     case MVT::i1:
4412     case MVT::i32:
4413     case MVT::i64:
4414       if (Flags.isNest()) {
4415         // The 'nest' parameter, if any, is passed in R11.
4416         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4417         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4418 
4419         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4420           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4421 
4422         break;
4423       }
4424 
4425       // These can be scalar arguments or elements of an integer array type
4426       // passed directly.  Clang may use those instead of "byval" aggregate
4427       // types to avoid forcing arguments to memory unnecessarily.
4428       if (GPR_idx != Num_GPR_Regs) {
4429         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4430         FuncInfo->addLiveInAttr(VReg, Flags);
4431         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4432 
4433         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4434           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4435           // value to MVT::i64 and then truncate to the correct register size.
4436           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4437       } else {
4438         if (CallConv == CallingConv::Fast)
4439           ComputeArgOffset();
4440 
4441         needsLoad = true;
4442         ArgSize = PtrByteSize;
4443       }
4444       if (CallConv != CallingConv::Fast || needsLoad)
4445         ArgOffset += 8;
4446       break;
4447 
4448     case MVT::f32:
4449     case MVT::f64:
4450       // These can be scalar arguments or elements of a float array type
4451       // passed directly.  The latter are used to implement ELFv2 homogenous
4452       // float aggregates.
4453       if (FPR_idx != Num_FPR_Regs) {
4454         unsigned VReg;
4455 
4456         if (ObjectVT == MVT::f32)
4457           VReg = MF.addLiveIn(FPR[FPR_idx],
4458                               Subtarget.hasP8Vector()
4459                                   ? &PPC::VSSRCRegClass
4460                                   : &PPC::F4RCRegClass);
4461         else
4462           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4463                                                 ? &PPC::VSFRCRegClass
4464                                                 : &PPC::F8RCRegClass);
4465 
4466         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4467         ++FPR_idx;
4468       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4469         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4470         // once we support fp <-> gpr moves.
4471 
4472         // This can only ever happen in the presence of f32 array types,
4473         // since otherwise we never run out of FPRs before running out
4474         // of GPRs.
4475         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4476         FuncInfo->addLiveInAttr(VReg, Flags);
4477         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4478 
4479         if (ObjectVT == MVT::f32) {
4480           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4481             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4482                                  DAG.getConstant(32, dl, MVT::i32));
4483           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4484         }
4485 
4486         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4487       } else {
4488         if (CallConv == CallingConv::Fast)
4489           ComputeArgOffset();
4490 
4491         needsLoad = true;
4492       }
4493 
4494       // When passing an array of floats, the array occupies consecutive
4495       // space in the argument area; only round up to the next doubleword
4496       // at the end of the array.  Otherwise, each float takes 8 bytes.
4497       if (CallConv != CallingConv::Fast || needsLoad) {
4498         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4499         ArgOffset += ArgSize;
4500         if (Flags.isInConsecutiveRegsLast())
4501           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4502       }
4503       break;
4504     case MVT::v4f32:
4505     case MVT::v4i32:
4506     case MVT::v8i16:
4507     case MVT::v16i8:
4508     case MVT::v2f64:
4509     case MVT::v2i64:
4510     case MVT::v1i128:
4511     case MVT::f128:
4512       // These can be scalar arguments or elements of a vector array type
4513       // passed directly.  The latter are used to implement ELFv2 homogenous
4514       // vector aggregates.
4515       if (VR_idx != Num_VR_Regs) {
4516         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4517         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4518         ++VR_idx;
4519       } else {
4520         if (CallConv == CallingConv::Fast)
4521           ComputeArgOffset();
4522         needsLoad = true;
4523       }
4524       if (CallConv != CallingConv::Fast || needsLoad)
4525         ArgOffset += 16;
4526       break;
4527     }
4528 
4529     // We need to load the argument to a virtual register if we determined
4530     // above that we ran out of physical registers of the appropriate type.
4531     if (needsLoad) {
4532       if (ObjSize < ArgSize && !isLittleEndian)
4533         CurArgOffset += ArgSize - ObjSize;
4534       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4535       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4536       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4537     }
4538 
4539     InVals.push_back(ArgVal);
4540   }
4541 
4542   // Area that is at least reserved in the caller of this function.
4543   unsigned MinReservedArea;
4544   if (HasParameterArea)
4545     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4546   else
4547     MinReservedArea = LinkageSize;
4548 
4549   // Set the size that is at least reserved in caller of this function.  Tail
4550   // call optimized functions' reserved stack space needs to be aligned so that
4551   // taking the difference between two stack areas will result in an aligned
4552   // stack.
4553   MinReservedArea =
4554       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4555   FuncInfo->setMinReservedArea(MinReservedArea);
4556 
4557   // If the function takes variable number of arguments, make a frame index for
4558   // the start of the first vararg value... for expansion of llvm.va_start.
4559   // On ELFv2ABI spec, it writes:
4560   // C programs that are intended to be *portable* across different compilers
4561   // and architectures must use the header file <stdarg.h> to deal with variable
4562   // argument lists.
4563   if (isVarArg && MFI.hasVAStart()) {
4564     int Depth = ArgOffset;
4565 
4566     FuncInfo->setVarArgsFrameIndex(
4567       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4568     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4569 
4570     // If this function is vararg, store any remaining integer argument regs
4571     // to their spots on the stack so that they may be loaded by dereferencing
4572     // the result of va_next.
4573     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4574          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4575       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4576       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4577       SDValue Store =
4578           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4579       MemOps.push_back(Store);
4580       // Increment the address by four for the next argument to store
4581       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4582       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4583     }
4584   }
4585 
4586   if (!MemOps.empty())
4587     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4588 
4589   return Chain;
4590 }
4591 
4592 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4593 /// adjusted to accommodate the arguments for the tailcall.
4594 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4595                                    unsigned ParamSize) {
4596 
4597   if (!isTailCall) return 0;
4598 
4599   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4600   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4601   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4602   // Remember only if the new adjustment is bigger.
4603   if (SPDiff < FI->getTailCallSPDelta())
4604     FI->setTailCallSPDelta(SPDiff);
4605 
4606   return SPDiff;
4607 }
4608 
4609 static bool isFunctionGlobalAddress(SDValue Callee);
4610 
4611 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4612                               const TargetMachine &TM) {
4613   // It does not make sense to call callsShareTOCBase() with a caller that
4614   // is PC Relative since PC Relative callers do not have a TOC.
4615 #ifndef NDEBUG
4616   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4617   assert(!STICaller->isUsingPCRelativeCalls() &&
4618          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4619 #endif
4620 
4621   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4622   // don't have enough information to determine if the caller and callee share
4623   // the same  TOC base, so we have to pessimistically assume they don't for
4624   // correctness.
4625   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4626   if (!G)
4627     return false;
4628 
4629   const GlobalValue *GV = G->getGlobal();
4630 
4631   // If the callee is preemptable, then the static linker will use a plt-stub
4632   // which saves the toc to the stack, and needs a nop after the call
4633   // instruction to convert to a toc-restore.
4634   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4635     return false;
4636 
4637   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4638   // We may need a TOC restore in the situation where the caller requires a
4639   // valid TOC but the callee is PC Relative and does not.
4640   const Function *F = dyn_cast<Function>(GV);
4641   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4642 
4643   // If we have an Alias we can try to get the function from there.
4644   if (Alias) {
4645     const GlobalObject *GlobalObj = Alias->getBaseObject();
4646     F = dyn_cast<Function>(GlobalObj);
4647   }
4648 
4649   // If we still have no valid function pointer we do not have enough
4650   // information to determine if the callee uses PC Relative calls so we must
4651   // assume that it does.
4652   if (!F)
4653     return false;
4654 
4655   // If the callee uses PC Relative we cannot guarantee that the callee won't
4656   // clobber the TOC of the caller and so we must assume that the two
4657   // functions do not share a TOC base.
4658   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4659   if (STICallee->isUsingPCRelativeCalls())
4660     return false;
4661 
4662   // If the GV is not a strong definition then we need to assume it can be
4663   // replaced by another function at link time. The function that replaces
4664   // it may not share the same TOC as the caller since the callee may be
4665   // replaced by a PC Relative version of the same function.
4666   if (!GV->isStrongDefinitionForLinker())
4667     return false;
4668 
4669   // The medium and large code models are expected to provide a sufficiently
4670   // large TOC to provide all data addressing needs of a module with a
4671   // single TOC.
4672   if (CodeModel::Medium == TM.getCodeModel() ||
4673       CodeModel::Large == TM.getCodeModel())
4674     return true;
4675 
4676   // Any explicitly-specified sections and section prefixes must also match.
4677   // Also, if we're using -ffunction-sections, then each function is always in
4678   // a different section (the same is true for COMDAT functions).
4679   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4680       GV->getSection() != Caller->getSection())
4681     return false;
4682   if (const auto *F = dyn_cast<Function>(GV)) {
4683     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4684       return false;
4685   }
4686 
4687   return true;
4688 }
4689 
4690 static bool
4691 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4692                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4693   assert(Subtarget.is64BitELFABI());
4694 
4695   const unsigned PtrByteSize = 8;
4696   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4697 
4698   static const MCPhysReg GPR[] = {
4699     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4700     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4701   };
4702   static const MCPhysReg VR[] = {
4703     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4704     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4705   };
4706 
4707   const unsigned NumGPRs = array_lengthof(GPR);
4708   const unsigned NumFPRs = 13;
4709   const unsigned NumVRs = array_lengthof(VR);
4710   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4711 
4712   unsigned NumBytes = LinkageSize;
4713   unsigned AvailableFPRs = NumFPRs;
4714   unsigned AvailableVRs = NumVRs;
4715 
4716   for (const ISD::OutputArg& Param : Outs) {
4717     if (Param.Flags.isNest()) continue;
4718 
4719     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4720                                LinkageSize, ParamAreaSize, NumBytes,
4721                                AvailableFPRs, AvailableVRs))
4722       return true;
4723   }
4724   return false;
4725 }
4726 
4727 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4728   if (CB.arg_size() != CallerFn->arg_size())
4729     return false;
4730 
4731   auto CalleeArgIter = CB.arg_begin();
4732   auto CalleeArgEnd = CB.arg_end();
4733   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4734 
4735   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4736     const Value* CalleeArg = *CalleeArgIter;
4737     const Value* CallerArg = &(*CallerArgIter);
4738     if (CalleeArg == CallerArg)
4739       continue;
4740 
4741     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4742     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4743     //      }
4744     // 1st argument of callee is undef and has the same type as caller.
4745     if (CalleeArg->getType() == CallerArg->getType() &&
4746         isa<UndefValue>(CalleeArg))
4747       continue;
4748 
4749     return false;
4750   }
4751 
4752   return true;
4753 }
4754 
4755 // Returns true if TCO is possible between the callers and callees
4756 // calling conventions.
4757 static bool
4758 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4759                                     CallingConv::ID CalleeCC) {
4760   // Tail calls are possible with fastcc and ccc.
4761   auto isTailCallableCC  = [] (CallingConv::ID CC){
4762       return  CC == CallingConv::C || CC == CallingConv::Fast;
4763   };
4764   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4765     return false;
4766 
4767   // We can safely tail call both fastcc and ccc callees from a c calling
4768   // convention caller. If the caller is fastcc, we may have less stack space
4769   // than a non-fastcc caller with the same signature so disable tail-calls in
4770   // that case.
4771   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4772 }
4773 
4774 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4775     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4776     const SmallVectorImpl<ISD::OutputArg> &Outs,
4777     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4778   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4779 
4780   if (DisableSCO && !TailCallOpt) return false;
4781 
4782   // Variadic argument functions are not supported.
4783   if (isVarArg) return false;
4784 
4785   auto &Caller = DAG.getMachineFunction().getFunction();
4786   // Check that the calling conventions are compatible for tco.
4787   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4788     return false;
4789 
4790   // Caller contains any byval parameter is not supported.
4791   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4792     return false;
4793 
4794   // Callee contains any byval parameter is not supported, too.
4795   // Note: This is a quick work around, because in some cases, e.g.
4796   // caller's stack size > callee's stack size, we are still able to apply
4797   // sibling call optimization. For example, gcc is able to do SCO for caller1
4798   // in the following example, but not for caller2.
4799   //   struct test {
4800   //     long int a;
4801   //     char ary[56];
4802   //   } gTest;
4803   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4804   //     b->a = v.a;
4805   //     return 0;
4806   //   }
4807   //   void caller1(struct test a, struct test c, struct test *b) {
4808   //     callee(gTest, b); }
4809   //   void caller2(struct test *b) { callee(gTest, b); }
4810   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4811     return false;
4812 
4813   // If callee and caller use different calling conventions, we cannot pass
4814   // parameters on stack since offsets for the parameter area may be different.
4815   if (Caller.getCallingConv() != CalleeCC &&
4816       needStackSlotPassParameters(Subtarget, Outs))
4817     return false;
4818 
4819   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4820   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4821   // callee potentially have different TOC bases then we cannot tail call since
4822   // we need to restore the TOC pointer after the call.
4823   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4824   // We cannot guarantee this for indirect calls or calls to external functions.
4825   // When PC-Relative addressing is used, the concept of the TOC is no longer
4826   // applicable so this check is not required.
4827   // Check first for indirect calls.
4828   if (!Subtarget.isUsingPCRelativeCalls() &&
4829       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4830     return false;
4831 
4832   // Check if we share the TOC base.
4833   if (!Subtarget.isUsingPCRelativeCalls() &&
4834       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4835     return false;
4836 
4837   // TCO allows altering callee ABI, so we don't have to check further.
4838   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4839     return true;
4840 
4841   if (DisableSCO) return false;
4842 
4843   // If callee use the same argument list that caller is using, then we can
4844   // apply SCO on this case. If it is not, then we need to check if callee needs
4845   // stack for passing arguments.
4846   // PC Relative tail calls may not have a CallBase.
4847   // If there is no CallBase we cannot verify if we have the same argument
4848   // list so assume that we don't have the same argument list.
4849   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4850       needStackSlotPassParameters(Subtarget, Outs))
4851     return false;
4852   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4853     return false;
4854 
4855   return true;
4856 }
4857 
4858 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4859 /// for tail call optimization. Targets which want to do tail call
4860 /// optimization should implement this function.
4861 bool
4862 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4863                                                      CallingConv::ID CalleeCC,
4864                                                      bool isVarArg,
4865                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4866                                                      SelectionDAG& DAG) const {
4867   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4868     return false;
4869 
4870   // Variable argument functions are not supported.
4871   if (isVarArg)
4872     return false;
4873 
4874   MachineFunction &MF = DAG.getMachineFunction();
4875   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4876   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4877     // Functions containing by val parameters are not supported.
4878     for (unsigned i = 0; i != Ins.size(); i++) {
4879        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4880        if (Flags.isByVal()) return false;
4881     }
4882 
4883     // Non-PIC/GOT tail calls are supported.
4884     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4885       return true;
4886 
4887     // At the moment we can only do local tail calls (in same module, hidden
4888     // or protected) if we are generating PIC.
4889     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4890       return G->getGlobal()->hasHiddenVisibility()
4891           || G->getGlobal()->hasProtectedVisibility();
4892   }
4893 
4894   return false;
4895 }
4896 
4897 /// isCallCompatibleAddress - Return the immediate to use if the specified
4898 /// 32-bit value is representable in the immediate field of a BxA instruction.
4899 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4900   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4901   if (!C) return nullptr;
4902 
4903   int Addr = C->getZExtValue();
4904   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4905       SignExtend32<26>(Addr) != Addr)
4906     return nullptr;  // Top 6 bits have to be sext of immediate.
4907 
4908   return DAG
4909       .getConstant(
4910           (int)C->getZExtValue() >> 2, SDLoc(Op),
4911           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4912       .getNode();
4913 }
4914 
4915 namespace {
4916 
4917 struct TailCallArgumentInfo {
4918   SDValue Arg;
4919   SDValue FrameIdxOp;
4920   int FrameIdx = 0;
4921 
4922   TailCallArgumentInfo() = default;
4923 };
4924 
4925 } // end anonymous namespace
4926 
4927 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4928 static void StoreTailCallArgumentsToStackSlot(
4929     SelectionDAG &DAG, SDValue Chain,
4930     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4931     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4932   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4933     SDValue Arg = TailCallArgs[i].Arg;
4934     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4935     int FI = TailCallArgs[i].FrameIdx;
4936     // Store relative to framepointer.
4937     MemOpChains.push_back(DAG.getStore(
4938         Chain, dl, Arg, FIN,
4939         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4940   }
4941 }
4942 
4943 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4944 /// the appropriate stack slot for the tail call optimized function call.
4945 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4946                                              SDValue OldRetAddr, SDValue OldFP,
4947                                              int SPDiff, const SDLoc &dl) {
4948   if (SPDiff) {
4949     // Calculate the new stack slot for the return address.
4950     MachineFunction &MF = DAG.getMachineFunction();
4951     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4952     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4953     bool isPPC64 = Subtarget.isPPC64();
4954     int SlotSize = isPPC64 ? 8 : 4;
4955     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4956     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4957                                                          NewRetAddrLoc, true);
4958     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4959     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4960     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4961                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4962   }
4963   return Chain;
4964 }
4965 
4966 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4967 /// the position of the argument.
4968 static void
4969 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4970                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4971                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4972   int Offset = ArgOffset + SPDiff;
4973   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4974   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4975   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4976   SDValue FIN = DAG.getFrameIndex(FI, VT);
4977   TailCallArgumentInfo Info;
4978   Info.Arg = Arg;
4979   Info.FrameIdxOp = FIN;
4980   Info.FrameIdx = FI;
4981   TailCallArguments.push_back(Info);
4982 }
4983 
4984 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4985 /// stack slot. Returns the chain as result and the loaded frame pointers in
4986 /// LROpOut/FPOpout. Used when tail calling.
4987 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4988     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4989     SDValue &FPOpOut, const SDLoc &dl) const {
4990   if (SPDiff) {
4991     // Load the LR and FP stack slot for later adjusting.
4992     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4993     LROpOut = getReturnAddrFrameIndex(DAG);
4994     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4995     Chain = SDValue(LROpOut.getNode(), 1);
4996   }
4997   return Chain;
4998 }
4999 
5000 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5001 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5002 /// specified by the specific parameter attribute. The copy will be passed as
5003 /// a byval function parameter.
5004 /// Sometimes what we are copying is the end of a larger object, the part that
5005 /// does not fit in registers.
5006 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5007                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5008                                          SelectionDAG &DAG, const SDLoc &dl) {
5009   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5010   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5011                        Flags.getNonZeroByValAlign(), false, false, false,
5012                        MachinePointerInfo(), MachinePointerInfo());
5013 }
5014 
5015 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5016 /// tail calls.
5017 static void LowerMemOpCallTo(
5018     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5019     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5020     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5021     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5022   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5023   if (!isTailCall) {
5024     if (isVector) {
5025       SDValue StackPtr;
5026       if (isPPC64)
5027         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5028       else
5029         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5030       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5031                            DAG.getConstant(ArgOffset, dl, PtrVT));
5032     }
5033     MemOpChains.push_back(
5034         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5035     // Calculate and remember argument location.
5036   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5037                                   TailCallArguments);
5038 }
5039 
5040 static void
5041 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5042                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5043                 SDValue FPOp,
5044                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5045   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5046   // might overwrite each other in case of tail call optimization.
5047   SmallVector<SDValue, 8> MemOpChains2;
5048   // Do not flag preceding copytoreg stuff together with the following stuff.
5049   InFlag = SDValue();
5050   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5051                                     MemOpChains2, dl);
5052   if (!MemOpChains2.empty())
5053     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5054 
5055   // Store the return address to the appropriate stack slot.
5056   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5057 
5058   // Emit callseq_end just before tailcall node.
5059   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5060                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5061   InFlag = Chain.getValue(1);
5062 }
5063 
5064 // Is this global address that of a function that can be called by name? (as
5065 // opposed to something that must hold a descriptor for an indirect call).
5066 static bool isFunctionGlobalAddress(SDValue Callee) {
5067   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5068     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5069         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5070       return false;
5071 
5072     return G->getGlobal()->getValueType()->isFunctionTy();
5073   }
5074 
5075   return false;
5076 }
5077 
5078 SDValue PPCTargetLowering::LowerCallResult(
5079     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5080     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5081     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5082   SmallVector<CCValAssign, 16> RVLocs;
5083   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5084                     *DAG.getContext());
5085 
5086   CCRetInfo.AnalyzeCallResult(
5087       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5088                ? RetCC_PPC_Cold
5089                : RetCC_PPC);
5090 
5091   // Copy all of the result registers out of their specified physreg.
5092   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5093     CCValAssign &VA = RVLocs[i];
5094     assert(VA.isRegLoc() && "Can only return in registers!");
5095 
5096     SDValue Val;
5097 
5098     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5099       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5100                                       InFlag);
5101       Chain = Lo.getValue(1);
5102       InFlag = Lo.getValue(2);
5103       VA = RVLocs[++i]; // skip ahead to next loc
5104       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5105                                       InFlag);
5106       Chain = Hi.getValue(1);
5107       InFlag = Hi.getValue(2);
5108       if (!Subtarget.isLittleEndian())
5109         std::swap (Lo, Hi);
5110       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5111     } else {
5112       Val = DAG.getCopyFromReg(Chain, dl,
5113                                VA.getLocReg(), VA.getLocVT(), InFlag);
5114       Chain = Val.getValue(1);
5115       InFlag = Val.getValue(2);
5116     }
5117 
5118     switch (VA.getLocInfo()) {
5119     default: llvm_unreachable("Unknown loc info!");
5120     case CCValAssign::Full: break;
5121     case CCValAssign::AExt:
5122       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5123       break;
5124     case CCValAssign::ZExt:
5125       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5126                         DAG.getValueType(VA.getValVT()));
5127       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5128       break;
5129     case CCValAssign::SExt:
5130       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5131                         DAG.getValueType(VA.getValVT()));
5132       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5133       break;
5134     }
5135 
5136     InVals.push_back(Val);
5137   }
5138 
5139   return Chain;
5140 }
5141 
5142 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5143                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5144   // PatchPoint calls are not indirect.
5145   if (isPatchPoint)
5146     return false;
5147 
5148   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
5149     return false;
5150 
5151   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5152   // becuase the immediate function pointer points to a descriptor instead of
5153   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5154   // pointer immediate points to the global entry point, while the BLA would
5155   // need to jump to the local entry point (see rL211174).
5156   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5157       isBLACompatibleAddress(Callee, DAG))
5158     return false;
5159 
5160   return true;
5161 }
5162 
5163 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5164 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5165   return Subtarget.isAIXABI() ||
5166          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5167 }
5168 
5169 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5170                               const Function &Caller,
5171                               const SDValue &Callee,
5172                               const PPCSubtarget &Subtarget,
5173                               const TargetMachine &TM) {
5174   if (CFlags.IsTailCall)
5175     return PPCISD::TC_RETURN;
5176 
5177   // This is a call through a function pointer.
5178   if (CFlags.IsIndirect) {
5179     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5180     // indirect calls. The save of the caller's TOC pointer to the stack will be
5181     // inserted into the DAG as part of call lowering. The restore of the TOC
5182     // pointer is modeled by using a pseudo instruction for the call opcode that
5183     // represents the 2 instruction sequence of an indirect branch and link,
5184     // immediately followed by a load of the TOC pointer from the the stack save
5185     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5186     // as it is not saved or used.
5187     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5188                                                : PPCISD::BCTRL;
5189   }
5190 
5191   if (Subtarget.isUsingPCRelativeCalls()) {
5192     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5193     return PPCISD::CALL_NOTOC;
5194   }
5195 
5196   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5197   // immediately following the call instruction if the caller and callee may
5198   // have different TOC bases. At link time if the linker determines the calls
5199   // may not share a TOC base, the call is redirected to a trampoline inserted
5200   // by the linker. The trampoline will (among other things) save the callers
5201   // TOC pointer at an ABI designated offset in the linkage area and the linker
5202   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5203   // into gpr2.
5204   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5205     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5206                                                   : PPCISD::CALL_NOP;
5207 
5208   return PPCISD::CALL;
5209 }
5210 
5211 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5212                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5213   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5214     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5215       return SDValue(Dest, 0);
5216 
5217   // Returns true if the callee is local, and false otherwise.
5218   auto isLocalCallee = [&]() {
5219     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5220     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5221     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5222 
5223     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5224            !dyn_cast_or_null<GlobalIFunc>(GV);
5225   };
5226 
5227   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5228   // a static relocation model causes some versions of GNU LD (2.17.50, at
5229   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5230   // built with secure-PLT.
5231   bool UsePlt =
5232       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5233       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5234 
5235   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5236     const TargetMachine &TM = Subtarget.getTargetMachine();
5237     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5238     MCSymbolXCOFF *S =
5239         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5240 
5241     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5242     return DAG.getMCSymbol(S, PtrVT);
5243   };
5244 
5245   if (isFunctionGlobalAddress(Callee)) {
5246     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5247 
5248     if (Subtarget.isAIXABI()) {
5249       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5250       return getAIXFuncEntryPointSymbolSDNode(GV);
5251     }
5252     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5253                                       UsePlt ? PPCII::MO_PLT : 0);
5254   }
5255 
5256   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5257     const char *SymName = S->getSymbol();
5258     if (Subtarget.isAIXABI()) {
5259       // If there exists a user-declared function whose name is the same as the
5260       // ExternalSymbol's, then we pick up the user-declared version.
5261       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5262       if (const Function *F =
5263               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5264         return getAIXFuncEntryPointSymbolSDNode(F);
5265 
5266       // On AIX, direct function calls reference the symbol for the function's
5267       // entry point, which is named by prepending a "." before the function's
5268       // C-linkage name. A Qualname is returned here because an external
5269       // function entry point is a csect with XTY_ER property.
5270       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5271         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5272         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5273             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5274             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5275         return Sec->getQualNameSymbol();
5276       };
5277 
5278       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5279     }
5280     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5281                                        UsePlt ? PPCII::MO_PLT : 0);
5282   }
5283 
5284   // No transformation needed.
5285   assert(Callee.getNode() && "What no callee?");
5286   return Callee;
5287 }
5288 
5289 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5290   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5291          "Expected a CALLSEQ_STARTSDNode.");
5292 
5293   // The last operand is the chain, except when the node has glue. If the node
5294   // has glue, then the last operand is the glue, and the chain is the second
5295   // last operand.
5296   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5297   if (LastValue.getValueType() != MVT::Glue)
5298     return LastValue;
5299 
5300   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5301 }
5302 
5303 // Creates the node that moves a functions address into the count register
5304 // to prepare for an indirect call instruction.
5305 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5306                                 SDValue &Glue, SDValue &Chain,
5307                                 const SDLoc &dl) {
5308   SDValue MTCTROps[] = {Chain, Callee, Glue};
5309   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5310   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5311                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5312   // The glue is the second value produced.
5313   Glue = Chain.getValue(1);
5314 }
5315 
5316 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5317                                           SDValue &Glue, SDValue &Chain,
5318                                           SDValue CallSeqStart,
5319                                           const CallBase *CB, const SDLoc &dl,
5320                                           bool hasNest,
5321                                           const PPCSubtarget &Subtarget) {
5322   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5323   // entry point, but to the function descriptor (the function entry point
5324   // address is part of the function descriptor though).
5325   // The function descriptor is a three doubleword structure with the
5326   // following fields: function entry point, TOC base address and
5327   // environment pointer.
5328   // Thus for a call through a function pointer, the following actions need
5329   // to be performed:
5330   //   1. Save the TOC of the caller in the TOC save area of its stack
5331   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5332   //   2. Load the address of the function entry point from the function
5333   //      descriptor.
5334   //   3. Load the TOC of the callee from the function descriptor into r2.
5335   //   4. Load the environment pointer from the function descriptor into
5336   //      r11.
5337   //   5. Branch to the function entry point address.
5338   //   6. On return of the callee, the TOC of the caller needs to be
5339   //      restored (this is done in FinishCall()).
5340   //
5341   // The loads are scheduled at the beginning of the call sequence, and the
5342   // register copies are flagged together to ensure that no other
5343   // operations can be scheduled in between. E.g. without flagging the
5344   // copies together, a TOC access in the caller could be scheduled between
5345   // the assignment of the callee TOC and the branch to the callee, which leads
5346   // to incorrect code.
5347 
5348   // Start by loading the function address from the descriptor.
5349   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5350   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5351                       ? (MachineMemOperand::MODereferenceable |
5352                          MachineMemOperand::MOInvariant)
5353                       : MachineMemOperand::MONone;
5354 
5355   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5356 
5357   // Registers used in building the DAG.
5358   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5359   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5360 
5361   // Offsets of descriptor members.
5362   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5363   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5364 
5365   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5366   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5367 
5368   // One load for the functions entry point address.
5369   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5370                                     Alignment, MMOFlags);
5371 
5372   // One for loading the TOC anchor for the module that contains the called
5373   // function.
5374   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5375   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5376   SDValue TOCPtr =
5377       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5378                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5379 
5380   // One for loading the environment pointer.
5381   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5382   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5383   SDValue LoadEnvPtr =
5384       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5385                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5386 
5387 
5388   // Then copy the newly loaded TOC anchor to the TOC pointer.
5389   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5390   Chain = TOCVal.getValue(0);
5391   Glue = TOCVal.getValue(1);
5392 
5393   // If the function call has an explicit 'nest' parameter, it takes the
5394   // place of the environment pointer.
5395   assert((!hasNest || !Subtarget.isAIXABI()) &&
5396          "Nest parameter is not supported on AIX.");
5397   if (!hasNest) {
5398     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5399     Chain = EnvVal.getValue(0);
5400     Glue = EnvVal.getValue(1);
5401   }
5402 
5403   // The rest of the indirect call sequence is the same as the non-descriptor
5404   // DAG.
5405   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5406 }
5407 
5408 static void
5409 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5410                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5411                   SelectionDAG &DAG,
5412                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5413                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5414                   const PPCSubtarget &Subtarget) {
5415   const bool IsPPC64 = Subtarget.isPPC64();
5416   // MVT for a general purpose register.
5417   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5418 
5419   // First operand is always the chain.
5420   Ops.push_back(Chain);
5421 
5422   // If it's a direct call pass the callee as the second operand.
5423   if (!CFlags.IsIndirect)
5424     Ops.push_back(Callee);
5425   else {
5426     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5427 
5428     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5429     // on the stack (this would have been done in `LowerCall_64SVR4` or
5430     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5431     // represents both the indirect branch and a load that restores the TOC
5432     // pointer from the linkage area. The operand for the TOC restore is an add
5433     // of the TOC save offset to the stack pointer. This must be the second
5434     // operand: after the chain input but before any other variadic arguments.
5435     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5436     // saved or used.
5437     if (isTOCSaveRestoreRequired(Subtarget)) {
5438       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5439 
5440       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5441       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5442       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5443       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5444       Ops.push_back(AddTOC);
5445     }
5446 
5447     // Add the register used for the environment pointer.
5448     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5449       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5450                                     RegVT));
5451 
5452 
5453     // Add CTR register as callee so a bctr can be emitted later.
5454     if (CFlags.IsTailCall)
5455       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5456   }
5457 
5458   // If this is a tail call add stack pointer delta.
5459   if (CFlags.IsTailCall)
5460     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5461 
5462   // Add argument registers to the end of the list so that they are known live
5463   // into the call.
5464   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5465     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5466                                   RegsToPass[i].second.getValueType()));
5467 
5468   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5469   // no way to mark dependencies as implicit here.
5470   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5471   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5472        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5473     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5474 
5475   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5476   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5477     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5478 
5479   // Add a register mask operand representing the call-preserved registers.
5480   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5481   const uint32_t *Mask =
5482       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5483   assert(Mask && "Missing call preserved mask for calling convention");
5484   Ops.push_back(DAG.getRegisterMask(Mask));
5485 
5486   // If the glue is valid, it is the last operand.
5487   if (Glue.getNode())
5488     Ops.push_back(Glue);
5489 }
5490 
5491 SDValue PPCTargetLowering::FinishCall(
5492     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5493     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5494     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5495     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5496     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5497 
5498   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5499       Subtarget.isAIXABI())
5500     setUsesTOCBasePtr(DAG);
5501 
5502   unsigned CallOpc =
5503       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5504                     Subtarget, DAG.getTarget());
5505 
5506   if (!CFlags.IsIndirect)
5507     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5508   else if (Subtarget.usesFunctionDescriptors())
5509     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5510                                   dl, CFlags.HasNest, Subtarget);
5511   else
5512     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5513 
5514   // Build the operand list for the call instruction.
5515   SmallVector<SDValue, 8> Ops;
5516   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5517                     SPDiff, Subtarget);
5518 
5519   // Emit tail call.
5520   if (CFlags.IsTailCall) {
5521     // Indirect tail call when using PC Relative calls do not have the same
5522     // constraints.
5523     assert(((Callee.getOpcode() == ISD::Register &&
5524              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5525             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5526             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5527             isa<ConstantSDNode>(Callee) ||
5528             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5529            "Expecting a global address, external symbol, absolute value, "
5530            "register or an indirect tail call when PC Relative calls are "
5531            "used.");
5532     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5533     assert(CallOpc == PPCISD::TC_RETURN &&
5534            "Unexpected call opcode for a tail call.");
5535     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5536     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5537   }
5538 
5539   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5540   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5541   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5542   Glue = Chain.getValue(1);
5543 
5544   // When performing tail call optimization the callee pops its arguments off
5545   // the stack. Account for this here so these bytes can be pushed back on in
5546   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5547   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5548                          getTargetMachine().Options.GuaranteedTailCallOpt)
5549                             ? NumBytes
5550                             : 0;
5551 
5552   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5553                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5554                              Glue, dl);
5555   Glue = Chain.getValue(1);
5556 
5557   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5558                          DAG, InVals);
5559 }
5560 
5561 SDValue
5562 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5563                              SmallVectorImpl<SDValue> &InVals) const {
5564   SelectionDAG &DAG                     = CLI.DAG;
5565   SDLoc &dl                             = CLI.DL;
5566   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5567   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5568   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5569   SDValue Chain                         = CLI.Chain;
5570   SDValue Callee                        = CLI.Callee;
5571   bool &isTailCall                      = CLI.IsTailCall;
5572   CallingConv::ID CallConv              = CLI.CallConv;
5573   bool isVarArg                         = CLI.IsVarArg;
5574   bool isPatchPoint                     = CLI.IsPatchPoint;
5575   const CallBase *CB                    = CLI.CB;
5576 
5577   if (isTailCall) {
5578     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5579       isTailCall = false;
5580     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5581       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5582           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5583     else
5584       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5585                                                      Ins, DAG);
5586     if (isTailCall) {
5587       ++NumTailCalls;
5588       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5589         ++NumSiblingCalls;
5590 
5591       // PC Relative calls no longer guarantee that the callee is a Global
5592       // Address Node. The callee could be an indirect tail call in which
5593       // case the SDValue for the callee could be a load (to load the address
5594       // of a function pointer) or it may be a register copy (to move the
5595       // address of the callee from a function parameter into a virtual
5596       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5597       assert((Subtarget.isUsingPCRelativeCalls() ||
5598               isa<GlobalAddressSDNode>(Callee)) &&
5599              "Callee should be an llvm::Function object.");
5600 
5601       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5602                         << "\nTCO callee: ");
5603       LLVM_DEBUG(Callee.dump());
5604     }
5605   }
5606 
5607   if (!isTailCall && CB && CB->isMustTailCall())
5608     report_fatal_error("failed to perform tail call elimination on a call "
5609                        "site marked musttail");
5610 
5611   // When long calls (i.e. indirect calls) are always used, calls are always
5612   // made via function pointer. If we have a function name, first translate it
5613   // into a pointer.
5614   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5615       !isTailCall)
5616     Callee = LowerGlobalAddress(Callee, DAG);
5617 
5618   CallFlags CFlags(
5619       CallConv, isTailCall, isVarArg, isPatchPoint,
5620       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5621       // hasNest
5622       Subtarget.is64BitELFABI() &&
5623           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5624       CLI.NoMerge);
5625 
5626   if (Subtarget.isAIXABI())
5627     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5628                          InVals, CB);
5629 
5630   assert(Subtarget.isSVR4ABI());
5631   if (Subtarget.isPPC64())
5632     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5633                             InVals, CB);
5634   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5635                           InVals, CB);
5636 }
5637 
5638 SDValue PPCTargetLowering::LowerCall_32SVR4(
5639     SDValue Chain, SDValue Callee, CallFlags CFlags,
5640     const SmallVectorImpl<ISD::OutputArg> &Outs,
5641     const SmallVectorImpl<SDValue> &OutVals,
5642     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5643     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5644     const CallBase *CB) const {
5645   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5646   // of the 32-bit SVR4 ABI stack frame layout.
5647 
5648   const CallingConv::ID CallConv = CFlags.CallConv;
5649   const bool IsVarArg = CFlags.IsVarArg;
5650   const bool IsTailCall = CFlags.IsTailCall;
5651 
5652   assert((CallConv == CallingConv::C ||
5653           CallConv == CallingConv::Cold ||
5654           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5655 
5656   const Align PtrAlign(4);
5657 
5658   MachineFunction &MF = DAG.getMachineFunction();
5659 
5660   // Mark this function as potentially containing a function that contains a
5661   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5662   // and restoring the callers stack pointer in this functions epilog. This is
5663   // done because by tail calling the called function might overwrite the value
5664   // in this function's (MF) stack pointer stack slot 0(SP).
5665   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5666       CallConv == CallingConv::Fast)
5667     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5668 
5669   // Count how many bytes are to be pushed on the stack, including the linkage
5670   // area, parameter list area and the part of the local variable space which
5671   // contains copies of aggregates which are passed by value.
5672 
5673   // Assign locations to all of the outgoing arguments.
5674   SmallVector<CCValAssign, 16> ArgLocs;
5675   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5676 
5677   // Reserve space for the linkage area on the stack.
5678   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5679                        PtrAlign);
5680   if (useSoftFloat())
5681     CCInfo.PreAnalyzeCallOperands(Outs);
5682 
5683   if (IsVarArg) {
5684     // Handle fixed and variable vector arguments differently.
5685     // Fixed vector arguments go into registers as long as registers are
5686     // available. Variable vector arguments always go into memory.
5687     unsigned NumArgs = Outs.size();
5688 
5689     for (unsigned i = 0; i != NumArgs; ++i) {
5690       MVT ArgVT = Outs[i].VT;
5691       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5692       bool Result;
5693 
5694       if (Outs[i].IsFixed) {
5695         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5696                                CCInfo);
5697       } else {
5698         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5699                                       ArgFlags, CCInfo);
5700       }
5701 
5702       if (Result) {
5703 #ifndef NDEBUG
5704         errs() << "Call operand #" << i << " has unhandled type "
5705              << EVT(ArgVT).getEVTString() << "\n";
5706 #endif
5707         llvm_unreachable(nullptr);
5708       }
5709     }
5710   } else {
5711     // All arguments are treated the same.
5712     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5713   }
5714   CCInfo.clearWasPPCF128();
5715 
5716   // Assign locations to all of the outgoing aggregate by value arguments.
5717   SmallVector<CCValAssign, 16> ByValArgLocs;
5718   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5719 
5720   // Reserve stack space for the allocations in CCInfo.
5721   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5722 
5723   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5724 
5725   // Size of the linkage area, parameter list area and the part of the local
5726   // space variable where copies of aggregates which are passed by value are
5727   // stored.
5728   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5729 
5730   // Calculate by how many bytes the stack has to be adjusted in case of tail
5731   // call optimization.
5732   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5733 
5734   // Adjust the stack pointer for the new arguments...
5735   // These operations are automatically eliminated by the prolog/epilog pass
5736   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5737   SDValue CallSeqStart = Chain;
5738 
5739   // Load the return address and frame pointer so it can be moved somewhere else
5740   // later.
5741   SDValue LROp, FPOp;
5742   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5743 
5744   // Set up a copy of the stack pointer for use loading and storing any
5745   // arguments that may not fit in the registers available for argument
5746   // passing.
5747   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5748 
5749   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5750   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5751   SmallVector<SDValue, 8> MemOpChains;
5752 
5753   bool seenFloatArg = false;
5754   // Walk the register/memloc assignments, inserting copies/loads.
5755   // i - Tracks the index into the list of registers allocated for the call
5756   // RealArgIdx - Tracks the index into the list of actual function arguments
5757   // j - Tracks the index into the list of byval arguments
5758   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5759        i != e;
5760        ++i, ++RealArgIdx) {
5761     CCValAssign &VA = ArgLocs[i];
5762     SDValue Arg = OutVals[RealArgIdx];
5763     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5764 
5765     if (Flags.isByVal()) {
5766       // Argument is an aggregate which is passed by value, thus we need to
5767       // create a copy of it in the local variable space of the current stack
5768       // frame (which is the stack frame of the caller) and pass the address of
5769       // this copy to the callee.
5770       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5771       CCValAssign &ByValVA = ByValArgLocs[j++];
5772       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5773 
5774       // Memory reserved in the local variable space of the callers stack frame.
5775       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5776 
5777       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5778       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5779                            StackPtr, PtrOff);
5780 
5781       // Create a copy of the argument in the local area of the current
5782       // stack frame.
5783       SDValue MemcpyCall =
5784         CreateCopyOfByValArgument(Arg, PtrOff,
5785                                   CallSeqStart.getNode()->getOperand(0),
5786                                   Flags, DAG, dl);
5787 
5788       // This must go outside the CALLSEQ_START..END.
5789       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5790                                                      SDLoc(MemcpyCall));
5791       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5792                              NewCallSeqStart.getNode());
5793       Chain = CallSeqStart = NewCallSeqStart;
5794 
5795       // Pass the address of the aggregate copy on the stack either in a
5796       // physical register or in the parameter list area of the current stack
5797       // frame to the callee.
5798       Arg = PtrOff;
5799     }
5800 
5801     // When useCRBits() is true, there can be i1 arguments.
5802     // It is because getRegisterType(MVT::i1) => MVT::i1,
5803     // and for other integer types getRegisterType() => MVT::i32.
5804     // Extend i1 and ensure callee will get i32.
5805     if (Arg.getValueType() == MVT::i1)
5806       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5807                         dl, MVT::i32, Arg);
5808 
5809     if (VA.isRegLoc()) {
5810       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5811       // Put argument in a physical register.
5812       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5813         bool IsLE = Subtarget.isLittleEndian();
5814         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5815                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5816         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5817         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5818                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5819         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5820                              SVal.getValue(0)));
5821       } else
5822         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5823     } else {
5824       // Put argument in the parameter list area of the current stack frame.
5825       assert(VA.isMemLoc());
5826       unsigned LocMemOffset = VA.getLocMemOffset();
5827 
5828       if (!IsTailCall) {
5829         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5830         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5831                              StackPtr, PtrOff);
5832 
5833         MemOpChains.push_back(
5834             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5835       } else {
5836         // Calculate and remember argument location.
5837         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5838                                  TailCallArguments);
5839       }
5840     }
5841   }
5842 
5843   if (!MemOpChains.empty())
5844     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5845 
5846   // Build a sequence of copy-to-reg nodes chained together with token chain
5847   // and flag operands which copy the outgoing args into the appropriate regs.
5848   SDValue InFlag;
5849   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5850     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5851                              RegsToPass[i].second, InFlag);
5852     InFlag = Chain.getValue(1);
5853   }
5854 
5855   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5856   // registers.
5857   if (IsVarArg) {
5858     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5859     SDValue Ops[] = { Chain, InFlag };
5860 
5861     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5862                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5863 
5864     InFlag = Chain.getValue(1);
5865   }
5866 
5867   if (IsTailCall)
5868     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5869                     TailCallArguments);
5870 
5871   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5872                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5873 }
5874 
5875 // Copy an argument into memory, being careful to do this outside the
5876 // call sequence for the call to which the argument belongs.
5877 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5878     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5879     SelectionDAG &DAG, const SDLoc &dl) const {
5880   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5881                         CallSeqStart.getNode()->getOperand(0),
5882                         Flags, DAG, dl);
5883   // The MEMCPY must go outside the CALLSEQ_START..END.
5884   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5885   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5886                                                  SDLoc(MemcpyCall));
5887   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5888                          NewCallSeqStart.getNode());
5889   return NewCallSeqStart;
5890 }
5891 
5892 SDValue PPCTargetLowering::LowerCall_64SVR4(
5893     SDValue Chain, SDValue Callee, CallFlags CFlags,
5894     const SmallVectorImpl<ISD::OutputArg> &Outs,
5895     const SmallVectorImpl<SDValue> &OutVals,
5896     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5897     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5898     const CallBase *CB) const {
5899   bool isELFv2ABI = Subtarget.isELFv2ABI();
5900   bool isLittleEndian = Subtarget.isLittleEndian();
5901   unsigned NumOps = Outs.size();
5902   bool IsSibCall = false;
5903   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5904 
5905   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5906   unsigned PtrByteSize = 8;
5907 
5908   MachineFunction &MF = DAG.getMachineFunction();
5909 
5910   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5911     IsSibCall = true;
5912 
5913   // Mark this function as potentially containing a function that contains a
5914   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5915   // and restoring the callers stack pointer in this functions epilog. This is
5916   // done because by tail calling the called function might overwrite the value
5917   // in this function's (MF) stack pointer stack slot 0(SP).
5918   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5919     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5920 
5921   assert(!(IsFastCall && CFlags.IsVarArg) &&
5922          "fastcc not supported on varargs functions");
5923 
5924   // Count how many bytes are to be pushed on the stack, including the linkage
5925   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5926   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5927   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5928   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5929   unsigned NumBytes = LinkageSize;
5930   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5931 
5932   static const MCPhysReg GPR[] = {
5933     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5934     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5935   };
5936   static const MCPhysReg VR[] = {
5937     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5938     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5939   };
5940 
5941   const unsigned NumGPRs = array_lengthof(GPR);
5942   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5943   const unsigned NumVRs  = array_lengthof(VR);
5944 
5945   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5946   // can be passed to the callee in registers.
5947   // For the fast calling convention, there is another check below.
5948   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5949   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5950   if (!HasParameterArea) {
5951     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5952     unsigned AvailableFPRs = NumFPRs;
5953     unsigned AvailableVRs = NumVRs;
5954     unsigned NumBytesTmp = NumBytes;
5955     for (unsigned i = 0; i != NumOps; ++i) {
5956       if (Outs[i].Flags.isNest()) continue;
5957       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5958                                  PtrByteSize, LinkageSize, ParamAreaSize,
5959                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5960         HasParameterArea = true;
5961     }
5962   }
5963 
5964   // When using the fast calling convention, we don't provide backing for
5965   // arguments that will be in registers.
5966   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5967 
5968   // Avoid allocating parameter area for fastcc functions if all the arguments
5969   // can be passed in the registers.
5970   if (IsFastCall)
5971     HasParameterArea = false;
5972 
5973   // Add up all the space actually used.
5974   for (unsigned i = 0; i != NumOps; ++i) {
5975     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5976     EVT ArgVT = Outs[i].VT;
5977     EVT OrigVT = Outs[i].ArgVT;
5978 
5979     if (Flags.isNest())
5980       continue;
5981 
5982     if (IsFastCall) {
5983       if (Flags.isByVal()) {
5984         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5985         if (NumGPRsUsed > NumGPRs)
5986           HasParameterArea = true;
5987       } else {
5988         switch (ArgVT.getSimpleVT().SimpleTy) {
5989         default: llvm_unreachable("Unexpected ValueType for argument!");
5990         case MVT::i1:
5991         case MVT::i32:
5992         case MVT::i64:
5993           if (++NumGPRsUsed <= NumGPRs)
5994             continue;
5995           break;
5996         case MVT::v4i32:
5997         case MVT::v8i16:
5998         case MVT::v16i8:
5999         case MVT::v2f64:
6000         case MVT::v2i64:
6001         case MVT::v1i128:
6002         case MVT::f128:
6003           if (++NumVRsUsed <= NumVRs)
6004             continue;
6005           break;
6006         case MVT::v4f32:
6007           if (++NumVRsUsed <= NumVRs)
6008             continue;
6009           break;
6010         case MVT::f32:
6011         case MVT::f64:
6012           if (++NumFPRsUsed <= NumFPRs)
6013             continue;
6014           break;
6015         }
6016         HasParameterArea = true;
6017       }
6018     }
6019 
6020     /* Respect alignment of argument on the stack.  */
6021     auto Alignement =
6022         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6023     NumBytes = alignTo(NumBytes, Alignement);
6024 
6025     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6026     if (Flags.isInConsecutiveRegsLast())
6027       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6028   }
6029 
6030   unsigned NumBytesActuallyUsed = NumBytes;
6031 
6032   // In the old ELFv1 ABI,
6033   // the prolog code of the callee may store up to 8 GPR argument registers to
6034   // the stack, allowing va_start to index over them in memory if its varargs.
6035   // Because we cannot tell if this is needed on the caller side, we have to
6036   // conservatively assume that it is needed.  As such, make sure we have at
6037   // least enough stack space for the caller to store the 8 GPRs.
6038   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6039   // really requires memory operands, e.g. a vararg function.
6040   if (HasParameterArea)
6041     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6042   else
6043     NumBytes = LinkageSize;
6044 
6045   // Tail call needs the stack to be aligned.
6046   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6047     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6048 
6049   int SPDiff = 0;
6050 
6051   // Calculate by how many bytes the stack has to be adjusted in case of tail
6052   // call optimization.
6053   if (!IsSibCall)
6054     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6055 
6056   // To protect arguments on the stack from being clobbered in a tail call,
6057   // force all the loads to happen before doing any other lowering.
6058   if (CFlags.IsTailCall)
6059     Chain = DAG.getStackArgumentTokenFactor(Chain);
6060 
6061   // Adjust the stack pointer for the new arguments...
6062   // These operations are automatically eliminated by the prolog/epilog pass
6063   if (!IsSibCall)
6064     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6065   SDValue CallSeqStart = Chain;
6066 
6067   // Load the return address and frame pointer so it can be move somewhere else
6068   // later.
6069   SDValue LROp, FPOp;
6070   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6071 
6072   // Set up a copy of the stack pointer for use loading and storing any
6073   // arguments that may not fit in the registers available for argument
6074   // passing.
6075   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6076 
6077   // Figure out which arguments are going to go in registers, and which in
6078   // memory.  Also, if this is a vararg function, floating point operations
6079   // must be stored to our stack, and loaded into integer regs as well, if
6080   // any integer regs are available for argument passing.
6081   unsigned ArgOffset = LinkageSize;
6082 
6083   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6084   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6085 
6086   SmallVector<SDValue, 8> MemOpChains;
6087   for (unsigned i = 0; i != NumOps; ++i) {
6088     SDValue Arg = OutVals[i];
6089     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6090     EVT ArgVT = Outs[i].VT;
6091     EVT OrigVT = Outs[i].ArgVT;
6092 
6093     // PtrOff will be used to store the current argument to the stack if a
6094     // register cannot be found for it.
6095     SDValue PtrOff;
6096 
6097     // We re-align the argument offset for each argument, except when using the
6098     // fast calling convention, when we need to make sure we do that only when
6099     // we'll actually use a stack slot.
6100     auto ComputePtrOff = [&]() {
6101       /* Respect alignment of argument on the stack.  */
6102       auto Alignment =
6103           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6104       ArgOffset = alignTo(ArgOffset, Alignment);
6105 
6106       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6107 
6108       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6109     };
6110 
6111     if (!IsFastCall) {
6112       ComputePtrOff();
6113 
6114       /* Compute GPR index associated with argument offset.  */
6115       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6116       GPR_idx = std::min(GPR_idx, NumGPRs);
6117     }
6118 
6119     // Promote integers to 64-bit values.
6120     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6121       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6122       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6123       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6124     }
6125 
6126     // FIXME memcpy is used way more than necessary.  Correctness first.
6127     // Note: "by value" is code for passing a structure by value, not
6128     // basic types.
6129     if (Flags.isByVal()) {
6130       // Note: Size includes alignment padding, so
6131       //   struct x { short a; char b; }
6132       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6133       // These are the proper values we need for right-justifying the
6134       // aggregate in a parameter register.
6135       unsigned Size = Flags.getByValSize();
6136 
6137       // An empty aggregate parameter takes up no storage and no
6138       // registers.
6139       if (Size == 0)
6140         continue;
6141 
6142       if (IsFastCall)
6143         ComputePtrOff();
6144 
6145       // All aggregates smaller than 8 bytes must be passed right-justified.
6146       if (Size==1 || Size==2 || Size==4) {
6147         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6148         if (GPR_idx != NumGPRs) {
6149           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6150                                         MachinePointerInfo(), VT);
6151           MemOpChains.push_back(Load.getValue(1));
6152           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6153 
6154           ArgOffset += PtrByteSize;
6155           continue;
6156         }
6157       }
6158 
6159       if (GPR_idx == NumGPRs && Size < 8) {
6160         SDValue AddPtr = PtrOff;
6161         if (!isLittleEndian) {
6162           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6163                                           PtrOff.getValueType());
6164           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6165         }
6166         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6167                                                           CallSeqStart,
6168                                                           Flags, DAG, dl);
6169         ArgOffset += PtrByteSize;
6170         continue;
6171       }
6172       // Copy entire object into memory.  There are cases where gcc-generated
6173       // code assumes it is there, even if it could be put entirely into
6174       // registers.  (This is not what the doc says.)
6175 
6176       // FIXME: The above statement is likely due to a misunderstanding of the
6177       // documents.  All arguments must be copied into the parameter area BY
6178       // THE CALLEE in the event that the callee takes the address of any
6179       // formal argument.  That has not yet been implemented.  However, it is
6180       // reasonable to use the stack area as a staging area for the register
6181       // load.
6182 
6183       // Skip this for small aggregates, as we will use the same slot for a
6184       // right-justified copy, below.
6185       if (Size >= 8)
6186         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6187                                                           CallSeqStart,
6188                                                           Flags, DAG, dl);
6189 
6190       // When a register is available, pass a small aggregate right-justified.
6191       if (Size < 8 && GPR_idx != NumGPRs) {
6192         // The easiest way to get this right-justified in a register
6193         // is to copy the structure into the rightmost portion of a
6194         // local variable slot, then load the whole slot into the
6195         // register.
6196         // FIXME: The memcpy seems to produce pretty awful code for
6197         // small aggregates, particularly for packed ones.
6198         // FIXME: It would be preferable to use the slot in the
6199         // parameter save area instead of a new local variable.
6200         SDValue AddPtr = PtrOff;
6201         if (!isLittleEndian) {
6202           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6203           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6204         }
6205         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6206                                                           CallSeqStart,
6207                                                           Flags, DAG, dl);
6208 
6209         // Load the slot into the register.
6210         SDValue Load =
6211             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6212         MemOpChains.push_back(Load.getValue(1));
6213         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6214 
6215         // Done with this argument.
6216         ArgOffset += PtrByteSize;
6217         continue;
6218       }
6219 
6220       // For aggregates larger than PtrByteSize, copy the pieces of the
6221       // object that fit into registers from the parameter save area.
6222       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6223         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6224         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6225         if (GPR_idx != NumGPRs) {
6226           SDValue Load =
6227               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6228           MemOpChains.push_back(Load.getValue(1));
6229           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6230           ArgOffset += PtrByteSize;
6231         } else {
6232           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6233           break;
6234         }
6235       }
6236       continue;
6237     }
6238 
6239     switch (Arg.getSimpleValueType().SimpleTy) {
6240     default: llvm_unreachable("Unexpected ValueType for argument!");
6241     case MVT::i1:
6242     case MVT::i32:
6243     case MVT::i64:
6244       if (Flags.isNest()) {
6245         // The 'nest' parameter, if any, is passed in R11.
6246         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6247         break;
6248       }
6249 
6250       // These can be scalar arguments or elements of an integer array type
6251       // passed directly.  Clang may use those instead of "byval" aggregate
6252       // types to avoid forcing arguments to memory unnecessarily.
6253       if (GPR_idx != NumGPRs) {
6254         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6255       } else {
6256         if (IsFastCall)
6257           ComputePtrOff();
6258 
6259         assert(HasParameterArea &&
6260                "Parameter area must exist to pass an argument in memory.");
6261         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6262                          true, CFlags.IsTailCall, false, MemOpChains,
6263                          TailCallArguments, dl);
6264         if (IsFastCall)
6265           ArgOffset += PtrByteSize;
6266       }
6267       if (!IsFastCall)
6268         ArgOffset += PtrByteSize;
6269       break;
6270     case MVT::f32:
6271     case MVT::f64: {
6272       // These can be scalar arguments or elements of a float array type
6273       // passed directly.  The latter are used to implement ELFv2 homogenous
6274       // float aggregates.
6275 
6276       // Named arguments go into FPRs first, and once they overflow, the
6277       // remaining arguments go into GPRs and then the parameter save area.
6278       // Unnamed arguments for vararg functions always go to GPRs and
6279       // then the parameter save area.  For now, put all arguments to vararg
6280       // routines always in both locations (FPR *and* GPR or stack slot).
6281       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6282       bool NeededLoad = false;
6283 
6284       // First load the argument into the next available FPR.
6285       if (FPR_idx != NumFPRs)
6286         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6287 
6288       // Next, load the argument into GPR or stack slot if needed.
6289       if (!NeedGPROrStack)
6290         ;
6291       else if (GPR_idx != NumGPRs && !IsFastCall) {
6292         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6293         // once we support fp <-> gpr moves.
6294 
6295         // In the non-vararg case, this can only ever happen in the
6296         // presence of f32 array types, since otherwise we never run
6297         // out of FPRs before running out of GPRs.
6298         SDValue ArgVal;
6299 
6300         // Double values are always passed in a single GPR.
6301         if (Arg.getValueType() != MVT::f32) {
6302           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6303 
6304         // Non-array float values are extended and passed in a GPR.
6305         } else if (!Flags.isInConsecutiveRegs()) {
6306           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6307           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6308 
6309         // If we have an array of floats, we collect every odd element
6310         // together with its predecessor into one GPR.
6311         } else if (ArgOffset % PtrByteSize != 0) {
6312           SDValue Lo, Hi;
6313           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6314           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6315           if (!isLittleEndian)
6316             std::swap(Lo, Hi);
6317           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6318 
6319         // The final element, if even, goes into the first half of a GPR.
6320         } else if (Flags.isInConsecutiveRegsLast()) {
6321           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6322           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6323           if (!isLittleEndian)
6324             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6325                                  DAG.getConstant(32, dl, MVT::i32));
6326 
6327         // Non-final even elements are skipped; they will be handled
6328         // together the with subsequent argument on the next go-around.
6329         } else
6330           ArgVal = SDValue();
6331 
6332         if (ArgVal.getNode())
6333           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6334       } else {
6335         if (IsFastCall)
6336           ComputePtrOff();
6337 
6338         // Single-precision floating-point values are mapped to the
6339         // second (rightmost) word of the stack doubleword.
6340         if (Arg.getValueType() == MVT::f32 &&
6341             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6342           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6343           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6344         }
6345 
6346         assert(HasParameterArea &&
6347                "Parameter area must exist to pass an argument in memory.");
6348         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6349                          true, CFlags.IsTailCall, false, MemOpChains,
6350                          TailCallArguments, dl);
6351 
6352         NeededLoad = true;
6353       }
6354       // When passing an array of floats, the array occupies consecutive
6355       // space in the argument area; only round up to the next doubleword
6356       // at the end of the array.  Otherwise, each float takes 8 bytes.
6357       if (!IsFastCall || NeededLoad) {
6358         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6359                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6360         if (Flags.isInConsecutiveRegsLast())
6361           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6362       }
6363       break;
6364     }
6365     case MVT::v4f32:
6366     case MVT::v4i32:
6367     case MVT::v8i16:
6368     case MVT::v16i8:
6369     case MVT::v2f64:
6370     case MVT::v2i64:
6371     case MVT::v1i128:
6372     case MVT::f128:
6373       // These can be scalar arguments or elements of a vector array type
6374       // passed directly.  The latter are used to implement ELFv2 homogenous
6375       // vector aggregates.
6376 
6377       // For a varargs call, named arguments go into VRs or on the stack as
6378       // usual; unnamed arguments always go to the stack or the corresponding
6379       // GPRs when within range.  For now, we always put the value in both
6380       // locations (or even all three).
6381       if (CFlags.IsVarArg) {
6382         assert(HasParameterArea &&
6383                "Parameter area must exist if we have a varargs call.");
6384         // We could elide this store in the case where the object fits
6385         // entirely in R registers.  Maybe later.
6386         SDValue Store =
6387             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6388         MemOpChains.push_back(Store);
6389         if (VR_idx != NumVRs) {
6390           SDValue Load =
6391               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6392           MemOpChains.push_back(Load.getValue(1));
6393           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6394         }
6395         ArgOffset += 16;
6396         for (unsigned i=0; i<16; i+=PtrByteSize) {
6397           if (GPR_idx == NumGPRs)
6398             break;
6399           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6400                                    DAG.getConstant(i, dl, PtrVT));
6401           SDValue Load =
6402               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6403           MemOpChains.push_back(Load.getValue(1));
6404           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6405         }
6406         break;
6407       }
6408 
6409       // Non-varargs Altivec params go into VRs or on the stack.
6410       if (VR_idx != NumVRs) {
6411         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6412       } else {
6413         if (IsFastCall)
6414           ComputePtrOff();
6415 
6416         assert(HasParameterArea &&
6417                "Parameter area must exist to pass an argument in memory.");
6418         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6419                          true, CFlags.IsTailCall, true, MemOpChains,
6420                          TailCallArguments, dl);
6421         if (IsFastCall)
6422           ArgOffset += 16;
6423       }
6424 
6425       if (!IsFastCall)
6426         ArgOffset += 16;
6427       break;
6428     }
6429   }
6430 
6431   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6432          "mismatch in size of parameter area");
6433   (void)NumBytesActuallyUsed;
6434 
6435   if (!MemOpChains.empty())
6436     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6437 
6438   // Check if this is an indirect call (MTCTR/BCTRL).
6439   // See prepareDescriptorIndirectCall and buildCallOperands for more
6440   // information about calls through function pointers in the 64-bit SVR4 ABI.
6441   if (CFlags.IsIndirect) {
6442     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6443     // caller in the TOC save area.
6444     if (isTOCSaveRestoreRequired(Subtarget)) {
6445       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6446       // Load r2 into a virtual register and store it to the TOC save area.
6447       setUsesTOCBasePtr(DAG);
6448       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6449       // TOC save area offset.
6450       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6451       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6452       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6453       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6454                            MachinePointerInfo::getStack(
6455                                DAG.getMachineFunction(), TOCSaveOffset));
6456     }
6457     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6458     // This does not mean the MTCTR instruction must use R12; it's easier
6459     // to model this as an extra parameter, so do that.
6460     if (isELFv2ABI && !CFlags.IsPatchPoint)
6461       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6462   }
6463 
6464   // Build a sequence of copy-to-reg nodes chained together with token chain
6465   // and flag operands which copy the outgoing args into the appropriate regs.
6466   SDValue InFlag;
6467   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6468     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6469                              RegsToPass[i].second, InFlag);
6470     InFlag = Chain.getValue(1);
6471   }
6472 
6473   if (CFlags.IsTailCall && !IsSibCall)
6474     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6475                     TailCallArguments);
6476 
6477   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6478                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6479 }
6480 
6481 // Returns true when the shadow of a general purpose argument register
6482 // in the parameter save area is aligned to at least 'RequiredAlign'.
6483 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6484   assert(RequiredAlign.value() <= 16 &&
6485          "Required alignment greater than stack alignment.");
6486   switch (Reg) {
6487   default:
6488     report_fatal_error("called on invalid register.");
6489   case PPC::R5:
6490   case PPC::R9:
6491   case PPC::X3:
6492   case PPC::X5:
6493   case PPC::X7:
6494   case PPC::X9:
6495     // These registers are 16 byte aligned which is the most strict aligment
6496     // we can support.
6497     return true;
6498   case PPC::R3:
6499   case PPC::R7:
6500   case PPC::X4:
6501   case PPC::X6:
6502   case PPC::X8:
6503   case PPC::X10:
6504     // The shadow of these registers in the PSA is 8 byte aligned.
6505     return RequiredAlign <= 8;
6506   case PPC::R4:
6507   case PPC::R6:
6508   case PPC::R8:
6509   case PPC::R10:
6510     return RequiredAlign <= 4;
6511   }
6512 }
6513 
6514 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6515                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6516                    CCState &S) {
6517   AIXCCState &State = static_cast<AIXCCState &>(S);
6518   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6519       State.getMachineFunction().getSubtarget());
6520   const bool IsPPC64 = Subtarget.isPPC64();
6521   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6522   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6523 
6524   if (ValVT == MVT::f128)
6525     report_fatal_error("f128 is unimplemented on AIX.");
6526 
6527   if (ArgFlags.isNest())
6528     report_fatal_error("Nest arguments are unimplemented.");
6529 
6530   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6531                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6532                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6533   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6534                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6535                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6536 
6537   static const MCPhysReg VR[] = {// Vector registers.
6538                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6539                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6540                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6541 
6542   if (ArgFlags.isByVal()) {
6543     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6544       report_fatal_error("Pass-by-value arguments with alignment greater than "
6545                          "register width are not supported.");
6546 
6547     const unsigned ByValSize = ArgFlags.getByValSize();
6548 
6549     // An empty aggregate parameter takes up no storage and no registers,
6550     // but needs a MemLoc for a stack slot for the formal arguments side.
6551     if (ByValSize == 0) {
6552       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6553                                        State.getNextStackOffset(), RegVT,
6554                                        LocInfo));
6555       return false;
6556     }
6557 
6558     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6559     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6560     for (const unsigned E = Offset + StackSize; Offset < E;
6561          Offset += PtrAlign.value()) {
6562       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6563         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6564       else {
6565         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6566                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6567                                          LocInfo));
6568         break;
6569       }
6570     }
6571     return false;
6572   }
6573 
6574   // Arguments always reserve parameter save area.
6575   switch (ValVT.SimpleTy) {
6576   default:
6577     report_fatal_error("Unhandled value type for argument.");
6578   case MVT::i64:
6579     // i64 arguments should have been split to i32 for PPC32.
6580     assert(IsPPC64 && "PPC32 should have split i64 values.");
6581     LLVM_FALLTHROUGH;
6582   case MVT::i1:
6583   case MVT::i32: {
6584     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6585     // AIX integer arguments are always passed in register width.
6586     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6587       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6588                                   : CCValAssign::LocInfo::ZExt;
6589     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6590       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6591     else
6592       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6593 
6594     return false;
6595   }
6596   case MVT::f32:
6597   case MVT::f64: {
6598     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6599     const unsigned StoreSize = LocVT.getStoreSize();
6600     // Floats are always 4-byte aligned in the PSA on AIX.
6601     // This includes f64 in 64-bit mode for ABI compatibility.
6602     const unsigned Offset =
6603         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6604     unsigned FReg = State.AllocateReg(FPR);
6605     if (FReg)
6606       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6607 
6608     // Reserve and initialize GPRs or initialize the PSA as required.
6609     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6610       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6611         assert(FReg && "An FPR should be available when a GPR is reserved.");
6612         if (State.isVarArg()) {
6613           // Successfully reserved GPRs are only initialized for vararg calls.
6614           // Custom handling is required for:
6615           //   f64 in PPC32 needs to be split into 2 GPRs.
6616           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6617           State.addLoc(
6618               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6619         }
6620       } else {
6621         // If there are insufficient GPRs, the PSA needs to be initialized.
6622         // Initialization occurs even if an FPR was initialized for
6623         // compatibility with the AIX XL compiler. The full memory for the
6624         // argument will be initialized even if a prior word is saved in GPR.
6625         // A custom memLoc is used when the argument also passes in FPR so
6626         // that the callee handling can skip over it easily.
6627         State.addLoc(
6628             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6629                                              LocInfo)
6630                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6631         break;
6632       }
6633     }
6634 
6635     return false;
6636   }
6637   case MVT::v4f32:
6638   case MVT::v4i32:
6639   case MVT::v8i16:
6640   case MVT::v16i8:
6641   case MVT::v2i64:
6642   case MVT::v2f64:
6643   case MVT::v1i128: {
6644     const unsigned VecSize = 16;
6645     const Align VecAlign(VecSize);
6646 
6647     if (!State.isVarArg()) {
6648       // If there are vector registers remaining we don't consume any stack
6649       // space.
6650       if (unsigned VReg = State.AllocateReg(VR)) {
6651         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6652         return false;
6653       }
6654       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6655       // might be allocated in the portion of the PSA that is shadowed by the
6656       // GPRs.
6657       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6658       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6659       return false;
6660     }
6661 
6662     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6663     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6664 
6665     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6666     // Burn any underaligned registers and their shadowed stack space until
6667     // we reach the required alignment.
6668     while (NextRegIndex != GPRs.size() &&
6669            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6670       // Shadow allocate register and its stack shadow.
6671       unsigned Reg = State.AllocateReg(GPRs);
6672       State.AllocateStack(PtrSize, PtrAlign);
6673       assert(Reg && "Allocating register unexpectedly failed.");
6674       (void)Reg;
6675       NextRegIndex = State.getFirstUnallocated(GPRs);
6676     }
6677 
6678     // Vectors that are passed as fixed arguments are handled differently.
6679     // They are passed in VRs if any are available (unlike arguments passed
6680     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6681     // functions)
6682     if (State.isFixed(ValNo)) {
6683       if (unsigned VReg = State.AllocateReg(VR)) {
6684         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6685         // Shadow allocate GPRs and stack space even though we pass in a VR.
6686         for (unsigned I = 0; I != VecSize; I += PtrSize)
6687           State.AllocateReg(GPRs);
6688         State.AllocateStack(VecSize, VecAlign);
6689         return false;
6690       }
6691       // No vector registers remain so pass on the stack.
6692       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6693       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6694       return false;
6695     }
6696 
6697     // If all GPRS are consumed then we pass the argument fully on the stack.
6698     if (NextRegIndex == GPRs.size()) {
6699       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6700       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6701       return false;
6702     }
6703 
6704     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6705     // half of the argument, and then need to pass the remaining half on the
6706     // stack.
6707     if (GPRs[NextRegIndex] == PPC::R9) {
6708       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6709       State.addLoc(
6710           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6711 
6712       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6713       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6714       assert(FirstReg && SecondReg &&
6715              "Allocating R9 or R10 unexpectedly failed.");
6716       State.addLoc(
6717           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6718       State.addLoc(
6719           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6720       return false;
6721     }
6722 
6723     // We have enough GPRs to fully pass the vector argument, and we have
6724     // already consumed any underaligned registers. Start with the custom
6725     // MemLoc and then the custom RegLocs.
6726     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6727     State.addLoc(
6728         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6729     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6730       const unsigned Reg = State.AllocateReg(GPRs);
6731       assert(Reg && "Failed to allocated register for vararg vector argument");
6732       State.addLoc(
6733           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6734     }
6735     return false;
6736   }
6737   }
6738   return true;
6739 }
6740 
6741 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6742                                                     bool IsPPC64) {
6743   assert((IsPPC64 || SVT != MVT::i64) &&
6744          "i64 should have been split for 32-bit codegen.");
6745 
6746   switch (SVT) {
6747   default:
6748     report_fatal_error("Unexpected value type for formal argument");
6749   case MVT::i1:
6750   case MVT::i32:
6751   case MVT::i64:
6752     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6753   case MVT::f32:
6754     return &PPC::F4RCRegClass;
6755   case MVT::f64:
6756     return &PPC::F8RCRegClass;
6757   case MVT::v4f32:
6758   case MVT::v4i32:
6759   case MVT::v8i16:
6760   case MVT::v16i8:
6761   case MVT::v2i64:
6762   case MVT::v2f64:
6763   case MVT::v1i128:
6764     return &PPC::VRRCRegClass;
6765   }
6766 }
6767 
6768 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6769                                         SelectionDAG &DAG, SDValue ArgValue,
6770                                         MVT LocVT, const SDLoc &dl) {
6771   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6772   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6773 
6774   if (Flags.isSExt())
6775     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6776                            DAG.getValueType(ValVT));
6777   else if (Flags.isZExt())
6778     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6779                            DAG.getValueType(ValVT));
6780 
6781   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6782 }
6783 
6784 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6785   const unsigned LASize = FL->getLinkageSize();
6786 
6787   if (PPC::GPRCRegClass.contains(Reg)) {
6788     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6789            "Reg must be a valid argument register!");
6790     return LASize + 4 * (Reg - PPC::R3);
6791   }
6792 
6793   if (PPC::G8RCRegClass.contains(Reg)) {
6794     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6795            "Reg must be a valid argument register!");
6796     return LASize + 8 * (Reg - PPC::X3);
6797   }
6798 
6799   llvm_unreachable("Only general purpose registers expected.");
6800 }
6801 
6802 //   AIX ABI Stack Frame Layout:
6803 //
6804 //   Low Memory +--------------------------------------------+
6805 //   SP   +---> | Back chain                                 | ---+
6806 //        |     +--------------------------------------------+    |
6807 //        |     | Saved Condition Register                   |    |
6808 //        |     +--------------------------------------------+    |
6809 //        |     | Saved Linkage Register                     |    |
6810 //        |     +--------------------------------------------+    | Linkage Area
6811 //        |     | Reserved for compilers                     |    |
6812 //        |     +--------------------------------------------+    |
6813 //        |     | Reserved for binders                       |    |
6814 //        |     +--------------------------------------------+    |
6815 //        |     | Saved TOC pointer                          | ---+
6816 //        |     +--------------------------------------------+
6817 //        |     | Parameter save area                        |
6818 //        |     +--------------------------------------------+
6819 //        |     | Alloca space                               |
6820 //        |     +--------------------------------------------+
6821 //        |     | Local variable space                       |
6822 //        |     +--------------------------------------------+
6823 //        |     | Float/int conversion temporary             |
6824 //        |     +--------------------------------------------+
6825 //        |     | Save area for AltiVec registers            |
6826 //        |     +--------------------------------------------+
6827 //        |     | AltiVec alignment padding                  |
6828 //        |     +--------------------------------------------+
6829 //        |     | Save area for VRSAVE register              |
6830 //        |     +--------------------------------------------+
6831 //        |     | Save area for General Purpose registers    |
6832 //        |     +--------------------------------------------+
6833 //        |     | Save area for Floating Point registers     |
6834 //        |     +--------------------------------------------+
6835 //        +---- | Back chain                                 |
6836 // High Memory  +--------------------------------------------+
6837 //
6838 //  Specifications:
6839 //  AIX 7.2 Assembler Language Reference
6840 //  Subroutine linkage convention
6841 
6842 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6843     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6844     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6845     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6846 
6847   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6848           CallConv == CallingConv::Fast) &&
6849          "Unexpected calling convention!");
6850 
6851   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6852     report_fatal_error("Tail call support is unimplemented on AIX.");
6853 
6854   if (useSoftFloat())
6855     report_fatal_error("Soft float support is unimplemented on AIX.");
6856 
6857   const PPCSubtarget &Subtarget =
6858       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6859 
6860   const bool IsPPC64 = Subtarget.isPPC64();
6861   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6862 
6863   // Assign locations to all of the incoming arguments.
6864   SmallVector<CCValAssign, 16> ArgLocs;
6865   MachineFunction &MF = DAG.getMachineFunction();
6866   MachineFrameInfo &MFI = MF.getFrameInfo();
6867   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6868   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6869 
6870   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6871   // Reserve space for the linkage area on the stack.
6872   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6873   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6874   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6875 
6876   SmallVector<SDValue, 8> MemOps;
6877 
6878   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6879     CCValAssign &VA = ArgLocs[I++];
6880     MVT LocVT = VA.getLocVT();
6881     MVT ValVT = VA.getValVT();
6882     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6883     // For compatibility with the AIX XL compiler, the float args in the
6884     // parameter save area are initialized even if the argument is available
6885     // in register.  The caller is required to initialize both the register
6886     // and memory, however, the callee can choose to expect it in either.
6887     // The memloc is dismissed here because the argument is retrieved from
6888     // the register.
6889     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6890       continue;
6891 
6892     auto HandleMemLoc = [&]() {
6893       const unsigned LocSize = LocVT.getStoreSize();
6894       const unsigned ValSize = ValVT.getStoreSize();
6895       assert((ValSize <= LocSize) &&
6896              "Object size is larger than size of MemLoc");
6897       int CurArgOffset = VA.getLocMemOffset();
6898       // Objects are right-justified because AIX is big-endian.
6899       if (LocSize > ValSize)
6900         CurArgOffset += LocSize - ValSize;
6901       // Potential tail calls could cause overwriting of argument stack slots.
6902       const bool IsImmutable =
6903           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6904             (CallConv == CallingConv::Fast));
6905       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6906       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6907       SDValue ArgValue =
6908           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6909       InVals.push_back(ArgValue);
6910     };
6911 
6912     // Vector arguments to VaArg functions are passed both on the stack, and
6913     // in any available GPRs. Load the value from the stack and add the GPRs
6914     // as live ins.
6915     if (VA.isMemLoc() && VA.needsCustom()) {
6916       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6917       assert(isVarArg && "Only use custom memloc for vararg.");
6918       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6919       // matching custom RegLocs.
6920       const unsigned OriginalValNo = VA.getValNo();
6921       (void)OriginalValNo;
6922 
6923       auto HandleCustomVecRegLoc = [&]() {
6924         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
6925                "Missing custom RegLoc.");
6926         VA = ArgLocs[I++];
6927         assert(VA.getValVT().isVector() &&
6928                "Unexpected Val type for custom RegLoc.");
6929         assert(VA.getValNo() == OriginalValNo &&
6930                "ValNo mismatch between custom MemLoc and RegLoc.");
6931         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
6932         MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
6933       };
6934 
6935       HandleMemLoc();
6936       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
6937       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
6938       // R10.
6939       HandleCustomVecRegLoc();
6940       HandleCustomVecRegLoc();
6941 
6942       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
6943       // we passed the vector in R5, R6, R7 and R8.
6944       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
6945         assert(!IsPPC64 &&
6946                "Only 2 custom RegLocs expected for 64-bit codegen.");
6947         HandleCustomVecRegLoc();
6948         HandleCustomVecRegLoc();
6949       }
6950 
6951       continue;
6952     }
6953 
6954     if (VA.isRegLoc()) {
6955       if (VA.getValVT().isScalarInteger())
6956         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6957       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector())
6958         FuncInfo->appendParameterType(VA.getValVT().SimpleTy == MVT::f32
6959                                           ? PPCFunctionInfo::ShortFloatPoint
6960                                           : PPCFunctionInfo::LongFloatPoint);
6961     }
6962 
6963     if (Flags.isByVal() && VA.isMemLoc()) {
6964       const unsigned Size =
6965           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
6966                   PtrByteSize);
6967       const int FI = MF.getFrameInfo().CreateFixedObject(
6968           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
6969           /* IsAliased */ true);
6970       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6971       InVals.push_back(FIN);
6972 
6973       continue;
6974     }
6975 
6976     if (Flags.isByVal()) {
6977       assert(VA.isRegLoc() && "MemLocs should already be handled.");
6978 
6979       const MCPhysReg ArgReg = VA.getLocReg();
6980       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
6981 
6982       if (Flags.getNonZeroByValAlign() > PtrByteSize)
6983         report_fatal_error("Over aligned byvals not supported yet.");
6984 
6985       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
6986       const int FI = MF.getFrameInfo().CreateFixedObject(
6987           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
6988           /* IsAliased */ true);
6989       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6990       InVals.push_back(FIN);
6991 
6992       // Add live ins for all the RegLocs for the same ByVal.
6993       const TargetRegisterClass *RegClass =
6994           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6995 
6996       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
6997                                                unsigned Offset) {
6998         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
6999         // Since the callers side has left justified the aggregate in the
7000         // register, we can simply store the entire register into the stack
7001         // slot.
7002         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7003         // The store to the fixedstack object is needed becuase accessing a
7004         // field of the ByVal will use a gep and load. Ideally we will optimize
7005         // to extracting the value from the register directly, and elide the
7006         // stores when the arguments address is not taken, but that will need to
7007         // be future work.
7008         SDValue Store = DAG.getStore(
7009             CopyFrom.getValue(1), dl, CopyFrom,
7010             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7011             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7012 
7013         MemOps.push_back(Store);
7014       };
7015 
7016       unsigned Offset = 0;
7017       HandleRegLoc(VA.getLocReg(), Offset);
7018       Offset += PtrByteSize;
7019       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7020            Offset += PtrByteSize) {
7021         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7022                "RegLocs should be for ByVal argument.");
7023 
7024         const CCValAssign RL = ArgLocs[I++];
7025         HandleRegLoc(RL.getLocReg(), Offset);
7026         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7027       }
7028 
7029       if (Offset != StackSize) {
7030         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7031                "Expected MemLoc for remaining bytes.");
7032         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7033         // Consume the MemLoc.The InVal has already been emitted, so nothing
7034         // more needs to be done.
7035         ++I;
7036       }
7037 
7038       continue;
7039     }
7040 
7041     if (VA.isRegLoc() && !VA.needsCustom()) {
7042       MVT::SimpleValueType SVT = ValVT.SimpleTy;
7043       unsigned VReg =
7044           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7045       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7046       if (ValVT.isScalarInteger() &&
7047           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7048         ArgValue =
7049             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7050       }
7051       InVals.push_back(ArgValue);
7052       continue;
7053     }
7054     if (VA.isMemLoc()) {
7055       HandleMemLoc();
7056       continue;
7057     }
7058   }
7059 
7060   // On AIX a minimum of 8 words is saved to the parameter save area.
7061   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7062   // Area that is at least reserved in the caller of this function.
7063   unsigned CallerReservedArea =
7064       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7065 
7066   // Set the size that is at least reserved in caller of this function. Tail
7067   // call optimized function's reserved stack space needs to be aligned so
7068   // that taking the difference between two stack areas will result in an
7069   // aligned stack.
7070   CallerReservedArea =
7071       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7072   FuncInfo->setMinReservedArea(CallerReservedArea);
7073 
7074   if (isVarArg) {
7075     FuncInfo->setVarArgsFrameIndex(
7076         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7077     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7078 
7079     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7080                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7081 
7082     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7083                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7084     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7085 
7086     // The fixed integer arguments of a variadic function are stored to the
7087     // VarArgsFrameIndex on the stack so that they may be loaded by
7088     // dereferencing the result of va_next.
7089     for (unsigned GPRIndex =
7090              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7091          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7092 
7093       const unsigned VReg =
7094           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7095                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7096 
7097       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7098       SDValue Store =
7099           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7100       MemOps.push_back(Store);
7101       // Increment the address for the next argument to store.
7102       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7103       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7104     }
7105   }
7106 
7107   if (!MemOps.empty())
7108     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7109 
7110   return Chain;
7111 }
7112 
7113 SDValue PPCTargetLowering::LowerCall_AIX(
7114     SDValue Chain, SDValue Callee, CallFlags CFlags,
7115     const SmallVectorImpl<ISD::OutputArg> &Outs,
7116     const SmallVectorImpl<SDValue> &OutVals,
7117     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7118     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7119     const CallBase *CB) const {
7120   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7121   // AIX ABI stack frame layout.
7122 
7123   assert((CFlags.CallConv == CallingConv::C ||
7124           CFlags.CallConv == CallingConv::Cold ||
7125           CFlags.CallConv == CallingConv::Fast) &&
7126          "Unexpected calling convention!");
7127 
7128   if (CFlags.IsPatchPoint)
7129     report_fatal_error("This call type is unimplemented on AIX.");
7130 
7131   const PPCSubtarget& Subtarget =
7132       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7133 
7134   MachineFunction &MF = DAG.getMachineFunction();
7135   SmallVector<CCValAssign, 16> ArgLocs;
7136   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7137                     *DAG.getContext());
7138 
7139   // Reserve space for the linkage save area (LSA) on the stack.
7140   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7141   //   [SP][CR][LR][2 x reserved][TOC].
7142   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7143   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7144   const bool IsPPC64 = Subtarget.isPPC64();
7145   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7146   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7147   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7148   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7149 
7150   // The prolog code of the callee may store up to 8 GPR argument registers to
7151   // the stack, allowing va_start to index over them in memory if the callee
7152   // is variadic.
7153   // Because we cannot tell if this is needed on the caller side, we have to
7154   // conservatively assume that it is needed.  As such, make sure we have at
7155   // least enough stack space for the caller to store the 8 GPRs.
7156   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7157   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7158                                      CCInfo.getNextStackOffset());
7159 
7160   // Adjust the stack pointer for the new arguments...
7161   // These operations are automatically eliminated by the prolog/epilog pass.
7162   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7163   SDValue CallSeqStart = Chain;
7164 
7165   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7166   SmallVector<SDValue, 8> MemOpChains;
7167 
7168   // Set up a copy of the stack pointer for loading and storing any
7169   // arguments that may not fit in the registers available for argument
7170   // passing.
7171   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7172                                    : DAG.getRegister(PPC::R1, MVT::i32);
7173 
7174   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7175     const unsigned ValNo = ArgLocs[I].getValNo();
7176     SDValue Arg = OutVals[ValNo];
7177     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7178 
7179     if (Flags.isByVal()) {
7180       const unsigned ByValSize = Flags.getByValSize();
7181 
7182       // Nothing to do for zero-sized ByVals on the caller side.
7183       if (!ByValSize) {
7184         ++I;
7185         continue;
7186       }
7187 
7188       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7189         return DAG.getExtLoad(
7190             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7191             (LoadOffset != 0)
7192                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7193                 : Arg,
7194             MachinePointerInfo(), VT);
7195       };
7196 
7197       unsigned LoadOffset = 0;
7198 
7199       // Initialize registers, which are fully occupied by the by-val argument.
7200       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7201         SDValue Load = GetLoad(PtrVT, LoadOffset);
7202         MemOpChains.push_back(Load.getValue(1));
7203         LoadOffset += PtrByteSize;
7204         const CCValAssign &ByValVA = ArgLocs[I++];
7205         assert(ByValVA.getValNo() == ValNo &&
7206                "Unexpected location for pass-by-value argument.");
7207         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7208       }
7209 
7210       if (LoadOffset == ByValSize)
7211         continue;
7212 
7213       // There must be one more loc to handle the remainder.
7214       assert(ArgLocs[I].getValNo() == ValNo &&
7215              "Expected additional location for by-value argument.");
7216 
7217       if (ArgLocs[I].isMemLoc()) {
7218         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7219         const CCValAssign &ByValVA = ArgLocs[I++];
7220         ISD::ArgFlagsTy MemcpyFlags = Flags;
7221         // Only memcpy the bytes that don't pass in register.
7222         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7223         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7224             (LoadOffset != 0)
7225                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7226                 : Arg,
7227             DAG.getObjectPtrOffset(dl, StackPtr,
7228                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7229             CallSeqStart, MemcpyFlags, DAG, dl);
7230         continue;
7231       }
7232 
7233       // Initialize the final register residue.
7234       // Any residue that occupies the final by-val arg register must be
7235       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7236       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7237       // 2 and 1 byte loads.
7238       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7239       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7240              "Unexpected register residue for by-value argument.");
7241       SDValue ResidueVal;
7242       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7243         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7244         const MVT VT =
7245             N == 1 ? MVT::i8
7246                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7247         SDValue Load = GetLoad(VT, LoadOffset);
7248         MemOpChains.push_back(Load.getValue(1));
7249         LoadOffset += N;
7250         Bytes += N;
7251 
7252         // By-val arguments are passed left-justfied in register.
7253         // Every load here needs to be shifted, otherwise a full register load
7254         // should have been used.
7255         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7256                "Unexpected load emitted during handling of pass-by-value "
7257                "argument.");
7258         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7259         EVT ShiftAmountTy =
7260             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7261         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7262         SDValue ShiftedLoad =
7263             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7264         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7265                                               ShiftedLoad)
7266                                 : ShiftedLoad;
7267       }
7268 
7269       const CCValAssign &ByValVA = ArgLocs[I++];
7270       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7271       continue;
7272     }
7273 
7274     CCValAssign &VA = ArgLocs[I++];
7275     const MVT LocVT = VA.getLocVT();
7276     const MVT ValVT = VA.getValVT();
7277 
7278     switch (VA.getLocInfo()) {
7279     default:
7280       report_fatal_error("Unexpected argument extension type.");
7281     case CCValAssign::Full:
7282       break;
7283     case CCValAssign::ZExt:
7284       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7285       break;
7286     case CCValAssign::SExt:
7287       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7288       break;
7289     }
7290 
7291     if (VA.isRegLoc() && !VA.needsCustom()) {
7292       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7293       continue;
7294     }
7295 
7296     // Vector arguments passed to VarArg functions need custom handling when
7297     // they are passed (at least partially) in GPRs.
7298     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7299       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7300       // Store value to its stack slot.
7301       SDValue PtrOff =
7302           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7303       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7304       SDValue Store =
7305           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7306       MemOpChains.push_back(Store);
7307       const unsigned OriginalValNo = VA.getValNo();
7308       // Then load the GPRs from the stack
7309       unsigned LoadOffset = 0;
7310       auto HandleCustomVecRegLoc = [&]() {
7311         assert(I != E && "Unexpected end of CCvalAssigns.");
7312         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7313                "Expected custom RegLoc.");
7314         CCValAssign RegVA = ArgLocs[I++];
7315         assert(RegVA.getValNo() == OriginalValNo &&
7316                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7317         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7318                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7319         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7320         MemOpChains.push_back(Load.getValue(1));
7321         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7322         LoadOffset += PtrByteSize;
7323       };
7324 
7325       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7326       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7327       // R10.
7328       HandleCustomVecRegLoc();
7329       HandleCustomVecRegLoc();
7330 
7331       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7332           ArgLocs[I].getValNo() == OriginalValNo) {
7333         assert(!IsPPC64 &&
7334                "Only 2 custom RegLocs expected for 64-bit codegen.");
7335         HandleCustomVecRegLoc();
7336         HandleCustomVecRegLoc();
7337       }
7338 
7339       continue;
7340     }
7341 
7342     if (VA.isMemLoc()) {
7343       SDValue PtrOff =
7344           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7345       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7346       MemOpChains.push_back(
7347           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7348 
7349       continue;
7350     }
7351 
7352     if (!ValVT.isFloatingPoint())
7353       report_fatal_error(
7354           "Unexpected register handling for calling convention.");
7355 
7356     // Custom handling is used for GPR initializations for vararg float
7357     // arguments.
7358     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7359            LocVT.isInteger() &&
7360            "Custom register handling only expected for VarArg.");
7361 
7362     SDValue ArgAsInt =
7363         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7364 
7365     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7366       // f32 in 32-bit GPR
7367       // f64 in 64-bit GPR
7368       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7369     else if (Arg.getValueType().getFixedSizeInBits() <
7370              LocVT.getFixedSizeInBits())
7371       // f32 in 64-bit GPR.
7372       RegsToPass.push_back(std::make_pair(
7373           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7374     else {
7375       // f64 in two 32-bit GPRs
7376       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7377       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7378              "Unexpected custom register for argument!");
7379       CCValAssign &GPR1 = VA;
7380       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7381                                      DAG.getConstant(32, dl, MVT::i8));
7382       RegsToPass.push_back(std::make_pair(
7383           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7384 
7385       if (I != E) {
7386         // If only 1 GPR was available, there will only be one custom GPR and
7387         // the argument will also pass in memory.
7388         CCValAssign &PeekArg = ArgLocs[I];
7389         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7390           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7391           CCValAssign &GPR2 = ArgLocs[I++];
7392           RegsToPass.push_back(std::make_pair(
7393               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7394         }
7395       }
7396     }
7397   }
7398 
7399   if (!MemOpChains.empty())
7400     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7401 
7402   // For indirect calls, we need to save the TOC base to the stack for
7403   // restoration after the call.
7404   if (CFlags.IsIndirect) {
7405     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7406     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7407     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7408     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7409     const unsigned TOCSaveOffset =
7410         Subtarget.getFrameLowering()->getTOCSaveOffset();
7411 
7412     setUsesTOCBasePtr(DAG);
7413     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7414     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7415     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7416     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7417     Chain = DAG.getStore(
7418         Val.getValue(1), dl, Val, AddPtr,
7419         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7420   }
7421 
7422   // Build a sequence of copy-to-reg nodes chained together with token chain
7423   // and flag operands which copy the outgoing args into the appropriate regs.
7424   SDValue InFlag;
7425   for (auto Reg : RegsToPass) {
7426     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7427     InFlag = Chain.getValue(1);
7428   }
7429 
7430   const int SPDiff = 0;
7431   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7432                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7433 }
7434 
7435 bool
7436 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7437                                   MachineFunction &MF, bool isVarArg,
7438                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7439                                   LLVMContext &Context) const {
7440   SmallVector<CCValAssign, 16> RVLocs;
7441   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7442   return CCInfo.CheckReturn(
7443       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7444                 ? RetCC_PPC_Cold
7445                 : RetCC_PPC);
7446 }
7447 
7448 SDValue
7449 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7450                                bool isVarArg,
7451                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7452                                const SmallVectorImpl<SDValue> &OutVals,
7453                                const SDLoc &dl, SelectionDAG &DAG) const {
7454   SmallVector<CCValAssign, 16> RVLocs;
7455   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7456                  *DAG.getContext());
7457   CCInfo.AnalyzeReturn(Outs,
7458                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7459                            ? RetCC_PPC_Cold
7460                            : RetCC_PPC);
7461 
7462   SDValue Flag;
7463   SmallVector<SDValue, 4> RetOps(1, Chain);
7464 
7465   // Copy the result values into the output registers.
7466   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7467     CCValAssign &VA = RVLocs[i];
7468     assert(VA.isRegLoc() && "Can only return in registers!");
7469 
7470     SDValue Arg = OutVals[RealResIdx];
7471 
7472     switch (VA.getLocInfo()) {
7473     default: llvm_unreachable("Unknown loc info!");
7474     case CCValAssign::Full: break;
7475     case CCValAssign::AExt:
7476       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7477       break;
7478     case CCValAssign::ZExt:
7479       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7480       break;
7481     case CCValAssign::SExt:
7482       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7483       break;
7484     }
7485     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7486       bool isLittleEndian = Subtarget.isLittleEndian();
7487       // Legalize ret f64 -> ret 2 x i32.
7488       SDValue SVal =
7489           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7490                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7491       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7492       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7493       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7494                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7495       Flag = Chain.getValue(1);
7496       VA = RVLocs[++i]; // skip ahead to next loc
7497       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7498     } else
7499       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7500     Flag = Chain.getValue(1);
7501     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7502   }
7503 
7504   RetOps[0] = Chain;  // Update chain.
7505 
7506   // Add the flag if we have it.
7507   if (Flag.getNode())
7508     RetOps.push_back(Flag);
7509 
7510   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7511 }
7512 
7513 SDValue
7514 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7515                                                 SelectionDAG &DAG) const {
7516   SDLoc dl(Op);
7517 
7518   // Get the correct type for integers.
7519   EVT IntVT = Op.getValueType();
7520 
7521   // Get the inputs.
7522   SDValue Chain = Op.getOperand(0);
7523   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7524   // Build a DYNAREAOFFSET node.
7525   SDValue Ops[2] = {Chain, FPSIdx};
7526   SDVTList VTs = DAG.getVTList(IntVT);
7527   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7528 }
7529 
7530 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7531                                              SelectionDAG &DAG) const {
7532   // When we pop the dynamic allocation we need to restore the SP link.
7533   SDLoc dl(Op);
7534 
7535   // Get the correct type for pointers.
7536   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7537 
7538   // Construct the stack pointer operand.
7539   bool isPPC64 = Subtarget.isPPC64();
7540   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7541   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7542 
7543   // Get the operands for the STACKRESTORE.
7544   SDValue Chain = Op.getOperand(0);
7545   SDValue SaveSP = Op.getOperand(1);
7546 
7547   // Load the old link SP.
7548   SDValue LoadLinkSP =
7549       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7550 
7551   // Restore the stack pointer.
7552   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7553 
7554   // Store the old link SP.
7555   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7556 }
7557 
7558 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7559   MachineFunction &MF = DAG.getMachineFunction();
7560   bool isPPC64 = Subtarget.isPPC64();
7561   EVT PtrVT = getPointerTy(MF.getDataLayout());
7562 
7563   // Get current frame pointer save index.  The users of this index will be
7564   // primarily DYNALLOC instructions.
7565   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7566   int RASI = FI->getReturnAddrSaveIndex();
7567 
7568   // If the frame pointer save index hasn't been defined yet.
7569   if (!RASI) {
7570     // Find out what the fix offset of the frame pointer save area.
7571     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7572     // Allocate the frame index for frame pointer save area.
7573     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7574     // Save the result.
7575     FI->setReturnAddrSaveIndex(RASI);
7576   }
7577   return DAG.getFrameIndex(RASI, PtrVT);
7578 }
7579 
7580 SDValue
7581 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7582   MachineFunction &MF = DAG.getMachineFunction();
7583   bool isPPC64 = Subtarget.isPPC64();
7584   EVT PtrVT = getPointerTy(MF.getDataLayout());
7585 
7586   // Get current frame pointer save index.  The users of this index will be
7587   // primarily DYNALLOC instructions.
7588   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7589   int FPSI = FI->getFramePointerSaveIndex();
7590 
7591   // If the frame pointer save index hasn't been defined yet.
7592   if (!FPSI) {
7593     // Find out what the fix offset of the frame pointer save area.
7594     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7595     // Allocate the frame index for frame pointer save area.
7596     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7597     // Save the result.
7598     FI->setFramePointerSaveIndex(FPSI);
7599   }
7600   return DAG.getFrameIndex(FPSI, PtrVT);
7601 }
7602 
7603 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7604                                                    SelectionDAG &DAG) const {
7605   MachineFunction &MF = DAG.getMachineFunction();
7606   // Get the inputs.
7607   SDValue Chain = Op.getOperand(0);
7608   SDValue Size  = Op.getOperand(1);
7609   SDLoc dl(Op);
7610 
7611   // Get the correct type for pointers.
7612   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7613   // Negate the size.
7614   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7615                                 DAG.getConstant(0, dl, PtrVT), Size);
7616   // Construct a node for the frame pointer save index.
7617   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7618   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7619   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7620   if (hasInlineStackProbe(MF))
7621     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7622   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7623 }
7624 
7625 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7626                                                      SelectionDAG &DAG) const {
7627   MachineFunction &MF = DAG.getMachineFunction();
7628 
7629   bool isPPC64 = Subtarget.isPPC64();
7630   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7631 
7632   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7633   return DAG.getFrameIndex(FI, PtrVT);
7634 }
7635 
7636 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7637                                                SelectionDAG &DAG) const {
7638   SDLoc DL(Op);
7639   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7640                      DAG.getVTList(MVT::i32, MVT::Other),
7641                      Op.getOperand(0), Op.getOperand(1));
7642 }
7643 
7644 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7645                                                 SelectionDAG &DAG) const {
7646   SDLoc DL(Op);
7647   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7648                      Op.getOperand(0), Op.getOperand(1));
7649 }
7650 
7651 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7652   if (Op.getValueType().isVector())
7653     return LowerVectorLoad(Op, DAG);
7654 
7655   assert(Op.getValueType() == MVT::i1 &&
7656          "Custom lowering only for i1 loads");
7657 
7658   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7659 
7660   SDLoc dl(Op);
7661   LoadSDNode *LD = cast<LoadSDNode>(Op);
7662 
7663   SDValue Chain = LD->getChain();
7664   SDValue BasePtr = LD->getBasePtr();
7665   MachineMemOperand *MMO = LD->getMemOperand();
7666 
7667   SDValue NewLD =
7668       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7669                      BasePtr, MVT::i8, MMO);
7670   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7671 
7672   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7673   return DAG.getMergeValues(Ops, dl);
7674 }
7675 
7676 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7677   if (Op.getOperand(1).getValueType().isVector())
7678     return LowerVectorStore(Op, DAG);
7679 
7680   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7681          "Custom lowering only for i1 stores");
7682 
7683   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7684 
7685   SDLoc dl(Op);
7686   StoreSDNode *ST = cast<StoreSDNode>(Op);
7687 
7688   SDValue Chain = ST->getChain();
7689   SDValue BasePtr = ST->getBasePtr();
7690   SDValue Value = ST->getValue();
7691   MachineMemOperand *MMO = ST->getMemOperand();
7692 
7693   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7694                       Value);
7695   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7696 }
7697 
7698 // FIXME: Remove this once the ANDI glue bug is fixed:
7699 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7700   assert(Op.getValueType() == MVT::i1 &&
7701          "Custom lowering only for i1 results");
7702 
7703   SDLoc DL(Op);
7704   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7705 }
7706 
7707 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7708                                                SelectionDAG &DAG) const {
7709 
7710   // Implements a vector truncate that fits in a vector register as a shuffle.
7711   // We want to legalize vector truncates down to where the source fits in
7712   // a vector register (and target is therefore smaller than vector register
7713   // size).  At that point legalization will try to custom lower the sub-legal
7714   // result and get here - where we can contain the truncate as a single target
7715   // operation.
7716 
7717   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7718   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7719   //
7720   // We will implement it for big-endian ordering as this (where x denotes
7721   // undefined):
7722   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7723   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7724   //
7725   // The same operation in little-endian ordering will be:
7726   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7727   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7728 
7729   EVT TrgVT = Op.getValueType();
7730   assert(TrgVT.isVector() && "Vector type expected.");
7731   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7732   EVT EltVT = TrgVT.getVectorElementType();
7733   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7734       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7735       !isPowerOf2_32(EltVT.getSizeInBits()))
7736     return SDValue();
7737 
7738   SDValue N1 = Op.getOperand(0);
7739   EVT SrcVT = N1.getValueType();
7740   unsigned SrcSize = SrcVT.getSizeInBits();
7741   if (SrcSize > 256 ||
7742       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7743       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7744     return SDValue();
7745   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7746     return SDValue();
7747 
7748   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7749   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7750 
7751   SDLoc DL(Op);
7752   SDValue Op1, Op2;
7753   if (SrcSize == 256) {
7754     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7755     EVT SplitVT =
7756         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7757     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7758     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7759                       DAG.getConstant(0, DL, VecIdxTy));
7760     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7761                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7762   }
7763   else {
7764     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7765     Op2 = DAG.getUNDEF(WideVT);
7766   }
7767 
7768   // First list the elements we want to keep.
7769   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7770   SmallVector<int, 16> ShuffV;
7771   if (Subtarget.isLittleEndian())
7772     for (unsigned i = 0; i < TrgNumElts; ++i)
7773       ShuffV.push_back(i * SizeMult);
7774   else
7775     for (unsigned i = 1; i <= TrgNumElts; ++i)
7776       ShuffV.push_back(i * SizeMult - 1);
7777 
7778   // Populate the remaining elements with undefs.
7779   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7780     // ShuffV.push_back(i + WideNumElts);
7781     ShuffV.push_back(WideNumElts + 1);
7782 
7783   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7784   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7785   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7786 }
7787 
7788 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7789 /// possible.
7790 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7791   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7792   EVT ResVT = Op.getValueType();
7793   EVT CmpVT = Op.getOperand(0).getValueType();
7794   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7795   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7796   SDLoc dl(Op);
7797 
7798   // Without power9-vector, we don't have native instruction for f128 comparison.
7799   // Following transformation to libcall is needed for setcc:
7800   // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7801   if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
7802     SDValue Z = DAG.getSetCC(
7803         dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
7804         LHS, RHS, CC);
7805     SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
7806     return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
7807   }
7808 
7809   // Not FP, or using SPE? Not a fsel.
7810   if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
7811       Subtarget.hasSPE())
7812     return Op;
7813 
7814   SDNodeFlags Flags = Op.getNode()->getFlags();
7815 
7816   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7817   // presence of infinities.
7818   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7819     switch (CC) {
7820     default:
7821       break;
7822     case ISD::SETOGT:
7823     case ISD::SETGT:
7824       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7825     case ISD::SETOLT:
7826     case ISD::SETLT:
7827       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7828     }
7829   }
7830 
7831   // We might be able to do better than this under some circumstances, but in
7832   // general, fsel-based lowering of select is a finite-math-only optimization.
7833   // For more information, see section F.3 of the 2.06 ISA specification.
7834   // With ISA 3.0
7835   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7836       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7837     return Op;
7838 
7839   // If the RHS of the comparison is a 0.0, we don't need to do the
7840   // subtraction at all.
7841   SDValue Sel1;
7842   if (isFloatingPointZero(RHS))
7843     switch (CC) {
7844     default: break;       // SETUO etc aren't handled by fsel.
7845     case ISD::SETNE:
7846       std::swap(TV, FV);
7847       LLVM_FALLTHROUGH;
7848     case ISD::SETEQ:
7849       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7850         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7851       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7852       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7853         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7854       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7855                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7856     case ISD::SETULT:
7857     case ISD::SETLT:
7858       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7859       LLVM_FALLTHROUGH;
7860     case ISD::SETOGE:
7861     case ISD::SETGE:
7862       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7863         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7864       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7865     case ISD::SETUGT:
7866     case ISD::SETGT:
7867       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7868       LLVM_FALLTHROUGH;
7869     case ISD::SETOLE:
7870     case ISD::SETLE:
7871       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7872         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7873       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7874                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7875     }
7876 
7877   SDValue Cmp;
7878   switch (CC) {
7879   default: break;       // SETUO etc aren't handled by fsel.
7880   case ISD::SETNE:
7881     std::swap(TV, FV);
7882     LLVM_FALLTHROUGH;
7883   case ISD::SETEQ:
7884     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7885     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7886       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7887     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7888     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7889       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7890     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7891                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7892   case ISD::SETULT:
7893   case ISD::SETLT:
7894     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7895     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7896       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7897     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7898   case ISD::SETOGE:
7899   case ISD::SETGE:
7900     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7901     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7902       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7903     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7904   case ISD::SETUGT:
7905   case ISD::SETGT:
7906     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7907     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7908       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7909     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7910   case ISD::SETOLE:
7911   case ISD::SETLE:
7912     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7913     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7914       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7915     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7916   }
7917   return Op;
7918 }
7919 
7920 static unsigned getPPCStrictOpcode(unsigned Opc) {
7921   switch (Opc) {
7922   default:
7923     llvm_unreachable("No strict version of this opcode!");
7924   case PPCISD::FCTIDZ:
7925     return PPCISD::STRICT_FCTIDZ;
7926   case PPCISD::FCTIWZ:
7927     return PPCISD::STRICT_FCTIWZ;
7928   case PPCISD::FCTIDUZ:
7929     return PPCISD::STRICT_FCTIDUZ;
7930   case PPCISD::FCTIWUZ:
7931     return PPCISD::STRICT_FCTIWUZ;
7932   case PPCISD::FCFID:
7933     return PPCISD::STRICT_FCFID;
7934   case PPCISD::FCFIDU:
7935     return PPCISD::STRICT_FCFIDU;
7936   case PPCISD::FCFIDS:
7937     return PPCISD::STRICT_FCFIDS;
7938   case PPCISD::FCFIDUS:
7939     return PPCISD::STRICT_FCFIDUS;
7940   }
7941 }
7942 
7943 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
7944                               const PPCSubtarget &Subtarget) {
7945   SDLoc dl(Op);
7946   bool IsStrict = Op->isStrictFPOpcode();
7947   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7948                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7949 
7950   // TODO: Any other flags to propagate?
7951   SDNodeFlags Flags;
7952   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
7953 
7954   // For strict nodes, source is the second operand.
7955   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
7956   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
7957   assert(Src.getValueType().isFloatingPoint());
7958   if (Src.getValueType() == MVT::f32) {
7959     if (IsStrict) {
7960       Src =
7961           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
7962                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
7963       Chain = Src.getValue(1);
7964     } else
7965       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7966   }
7967   SDValue Conv;
7968   unsigned Opc = ISD::DELETED_NODE;
7969   switch (Op.getSimpleValueType().SimpleTy) {
7970   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7971   case MVT::i32:
7972     Opc = IsSigned ? PPCISD::FCTIWZ
7973                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
7974     break;
7975   case MVT::i64:
7976     assert((IsSigned || Subtarget.hasFPCVT()) &&
7977            "i64 FP_TO_UINT is supported only with FPCVT");
7978     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
7979   }
7980   if (IsStrict) {
7981     Opc = getPPCStrictOpcode(Opc);
7982     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
7983                        {Chain, Src}, Flags);
7984   } else {
7985     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
7986   }
7987   return Conv;
7988 }
7989 
7990 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7991                                                SelectionDAG &DAG,
7992                                                const SDLoc &dl) const {
7993   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
7994   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
7995                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
7996   bool IsStrict = Op->isStrictFPOpcode();
7997 
7998   // Convert the FP value to an int value through memory.
7999   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8000                   (IsSigned || Subtarget.hasFPCVT());
8001   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8002   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8003   MachinePointerInfo MPI =
8004       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8005 
8006   // Emit a store to the stack slot.
8007   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8008   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8009   if (i32Stack) {
8010     MachineFunction &MF = DAG.getMachineFunction();
8011     Alignment = Align(4);
8012     MachineMemOperand *MMO =
8013         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8014     SDValue Ops[] = { Chain, Tmp, FIPtr };
8015     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8016               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8017   } else
8018     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8019 
8020   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8021   // add in a bias on big endian.
8022   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8023     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8024                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8025     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8026   }
8027 
8028   RLI.Chain = Chain;
8029   RLI.Ptr = FIPtr;
8030   RLI.MPI = MPI;
8031   RLI.Alignment = Alignment;
8032 }
8033 
8034 /// Custom lowers floating point to integer conversions to use
8035 /// the direct move instructions available in ISA 2.07 to avoid the
8036 /// need for load/store combinations.
8037 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8038                                                     SelectionDAG &DAG,
8039                                                     const SDLoc &dl) const {
8040   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8041   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8042   if (Op->isStrictFPOpcode())
8043     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8044   else
8045     return Mov;
8046 }
8047 
8048 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8049                                           const SDLoc &dl) const {
8050   bool IsStrict = Op->isStrictFPOpcode();
8051   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8052                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8053   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8054   EVT SrcVT = Src.getValueType();
8055   EVT DstVT = Op.getValueType();
8056 
8057   // FP to INT conversions are legal for f128.
8058   if (SrcVT == MVT::f128)
8059     return Subtarget.hasP9Vector() ? Op : SDValue();
8060 
8061   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8062   // PPC (the libcall is not available).
8063   if (SrcVT == MVT::ppcf128) {
8064     if (DstVT == MVT::i32) {
8065       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8066       // set other fast-math flags to FP operations in both strict and
8067       // non-strict cases. (FP_TO_SINT, FSUB)
8068       SDNodeFlags Flags;
8069       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8070 
8071       if (IsSigned) {
8072         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8073                                  DAG.getIntPtrConstant(0, dl));
8074         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8075                                  DAG.getIntPtrConstant(1, dl));
8076 
8077         // Add the two halves of the long double in round-to-zero mode, and use
8078         // a smaller FP_TO_SINT.
8079         if (IsStrict) {
8080           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8081                                     DAG.getVTList(MVT::f64, MVT::Other),
8082                                     {Op.getOperand(0), Lo, Hi}, Flags);
8083           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8084                              DAG.getVTList(MVT::i32, MVT::Other),
8085                              {Res.getValue(1), Res}, Flags);
8086         } else {
8087           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8088           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8089         }
8090       } else {
8091         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8092         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8093         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8094         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8095         if (IsStrict) {
8096           // Sel = Src < 0x80000000
8097           // FltOfs = select Sel, 0.0, 0x80000000
8098           // IntOfs = select Sel, 0, 0x80000000
8099           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8100           SDValue Chain = Op.getOperand(0);
8101           EVT SetCCVT =
8102               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8103           EVT DstSetCCVT =
8104               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8105           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8106                                      Chain, true);
8107           Chain = Sel.getValue(1);
8108 
8109           SDValue FltOfs = DAG.getSelect(
8110               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8111           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8112 
8113           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8114                                     DAG.getVTList(SrcVT, MVT::Other),
8115                                     {Chain, Src, FltOfs}, Flags);
8116           Chain = Val.getValue(1);
8117           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8118                                      DAG.getVTList(DstVT, MVT::Other),
8119                                      {Chain, Val}, Flags);
8120           Chain = SInt.getValue(1);
8121           SDValue IntOfs = DAG.getSelect(
8122               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8123           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8124           return DAG.getMergeValues({Result, Chain}, dl);
8125         } else {
8126           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8127           // FIXME: generated code sucks.
8128           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8129           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8130           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8131           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8132           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8133         }
8134       }
8135     }
8136 
8137     return SDValue();
8138   }
8139 
8140   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8141     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8142 
8143   ReuseLoadInfo RLI;
8144   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8145 
8146   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8147                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8148 }
8149 
8150 // We're trying to insert a regular store, S, and then a load, L. If the
8151 // incoming value, O, is a load, we might just be able to have our load use the
8152 // address used by O. However, we don't know if anything else will store to
8153 // that address before we can load from it. To prevent this situation, we need
8154 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8155 // the same chain operand as O, we create a token factor from the chain results
8156 // of O and L, and we replace all uses of O's chain result with that token
8157 // factor (see spliceIntoChain below for this last part).
8158 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8159                                             ReuseLoadInfo &RLI,
8160                                             SelectionDAG &DAG,
8161                                             ISD::LoadExtType ET) const {
8162   // Conservatively skip reusing for constrained FP nodes.
8163   if (Op->isStrictFPOpcode())
8164     return false;
8165 
8166   SDLoc dl(Op);
8167   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8168                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8169   if (ET == ISD::NON_EXTLOAD &&
8170       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8171       isOperationLegalOrCustom(Op.getOpcode(),
8172                                Op.getOperand(0).getValueType())) {
8173 
8174     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8175     return true;
8176   }
8177 
8178   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8179   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8180       LD->isNonTemporal())
8181     return false;
8182   if (LD->getMemoryVT() != MemVT)
8183     return false;
8184 
8185   // If the result of the load is an illegal type, then we can't build a
8186   // valid chain for reuse since the legalised loads and token factor node that
8187   // ties the legalised loads together uses a different output chain then the
8188   // illegal load.
8189   if (!isTypeLegal(LD->getValueType(0)))
8190     return false;
8191 
8192   RLI.Ptr = LD->getBasePtr();
8193   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8194     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8195            "Non-pre-inc AM on PPC?");
8196     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8197                           LD->getOffset());
8198   }
8199 
8200   RLI.Chain = LD->getChain();
8201   RLI.MPI = LD->getPointerInfo();
8202   RLI.IsDereferenceable = LD->isDereferenceable();
8203   RLI.IsInvariant = LD->isInvariant();
8204   RLI.Alignment = LD->getAlign();
8205   RLI.AAInfo = LD->getAAInfo();
8206   RLI.Ranges = LD->getRanges();
8207 
8208   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8209   return true;
8210 }
8211 
8212 // Given the head of the old chain, ResChain, insert a token factor containing
8213 // it and NewResChain, and make users of ResChain now be users of that token
8214 // factor.
8215 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8216 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8217                                         SDValue NewResChain,
8218                                         SelectionDAG &DAG) const {
8219   if (!ResChain)
8220     return;
8221 
8222   SDLoc dl(NewResChain);
8223 
8224   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8225                            NewResChain, DAG.getUNDEF(MVT::Other));
8226   assert(TF.getNode() != NewResChain.getNode() &&
8227          "A new TF really is required here");
8228 
8229   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8230   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8231 }
8232 
8233 /// Analyze profitability of direct move
8234 /// prefer float load to int load plus direct move
8235 /// when there is no integer use of int load
8236 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8237   SDNode *Origin = Op.getOperand(0).getNode();
8238   if (Origin->getOpcode() != ISD::LOAD)
8239     return true;
8240 
8241   // If there is no LXSIBZX/LXSIHZX, like Power8,
8242   // prefer direct move if the memory size is 1 or 2 bytes.
8243   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8244   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8245     return true;
8246 
8247   for (SDNode::use_iterator UI = Origin->use_begin(),
8248                             UE = Origin->use_end();
8249        UI != UE; ++UI) {
8250 
8251     // Only look at the users of the loaded value.
8252     if (UI.getUse().get().getResNo() != 0)
8253       continue;
8254 
8255     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8256         UI->getOpcode() != ISD::UINT_TO_FP &&
8257         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8258         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8259       return true;
8260   }
8261 
8262   return false;
8263 }
8264 
8265 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8266                               const PPCSubtarget &Subtarget,
8267                               SDValue Chain = SDValue()) {
8268   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8269                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8270   SDLoc dl(Op);
8271 
8272   // TODO: Any other flags to propagate?
8273   SDNodeFlags Flags;
8274   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8275 
8276   // If we have FCFIDS, then use it when converting to single-precision.
8277   // Otherwise, convert to double-precision and then round.
8278   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8279   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8280                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8281   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8282   if (Op->isStrictFPOpcode()) {
8283     if (!Chain)
8284       Chain = Op.getOperand(0);
8285     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8286                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8287   } else
8288     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8289 }
8290 
8291 /// Custom lowers integer to floating point conversions to use
8292 /// the direct move instructions available in ISA 2.07 to avoid the
8293 /// need for load/store combinations.
8294 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8295                                                     SelectionDAG &DAG,
8296                                                     const SDLoc &dl) const {
8297   assert((Op.getValueType() == MVT::f32 ||
8298           Op.getValueType() == MVT::f64) &&
8299          "Invalid floating point type as target of conversion");
8300   assert(Subtarget.hasFPCVT() &&
8301          "Int to FP conversions with direct moves require FPCVT");
8302   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8303   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8304   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8305                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8306   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8307   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8308   return convertIntToFP(Op, Mov, DAG, Subtarget);
8309 }
8310 
8311 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8312 
8313   EVT VecVT = Vec.getValueType();
8314   assert(VecVT.isVector() && "Expected a vector type.");
8315   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8316 
8317   EVT EltVT = VecVT.getVectorElementType();
8318   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8319   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8320 
8321   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8322   SmallVector<SDValue, 16> Ops(NumConcat);
8323   Ops[0] = Vec;
8324   SDValue UndefVec = DAG.getUNDEF(VecVT);
8325   for (unsigned i = 1; i < NumConcat; ++i)
8326     Ops[i] = UndefVec;
8327 
8328   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8329 }
8330 
8331 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8332                                                 const SDLoc &dl) const {
8333   bool IsStrict = Op->isStrictFPOpcode();
8334   unsigned Opc = Op.getOpcode();
8335   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8336   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8337           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8338          "Unexpected conversion type");
8339   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8340          "Supports conversions to v2f64/v4f32 only.");
8341 
8342   // TODO: Any other flags to propagate?
8343   SDNodeFlags Flags;
8344   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8345 
8346   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8347   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8348 
8349   SDValue Wide = widenVec(DAG, Src, dl);
8350   EVT WideVT = Wide.getValueType();
8351   unsigned WideNumElts = WideVT.getVectorNumElements();
8352   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8353 
8354   SmallVector<int, 16> ShuffV;
8355   for (unsigned i = 0; i < WideNumElts; ++i)
8356     ShuffV.push_back(i + WideNumElts);
8357 
8358   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8359   int SaveElts = FourEltRes ? 4 : 2;
8360   if (Subtarget.isLittleEndian())
8361     for (int i = 0; i < SaveElts; i++)
8362       ShuffV[i * Stride] = i;
8363   else
8364     for (int i = 1; i <= SaveElts; i++)
8365       ShuffV[i * Stride - 1] = i - 1;
8366 
8367   SDValue ShuffleSrc2 =
8368       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8369   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8370 
8371   SDValue Extend;
8372   if (SignedConv) {
8373     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8374     EVT ExtVT = Src.getValueType();
8375     if (Subtarget.hasP9Altivec())
8376       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8377                                IntermediateVT.getVectorNumElements());
8378 
8379     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8380                          DAG.getValueType(ExtVT));
8381   } else
8382     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8383 
8384   if (IsStrict)
8385     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8386                        {Op.getOperand(0), Extend}, Flags);
8387 
8388   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8389 }
8390 
8391 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8392                                           SelectionDAG &DAG) const {
8393   SDLoc dl(Op);
8394   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8395                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8396   bool IsStrict = Op->isStrictFPOpcode();
8397   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8398   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8399 
8400   // TODO: Any other flags to propagate?
8401   SDNodeFlags Flags;
8402   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8403 
8404   EVT InVT = Src.getValueType();
8405   EVT OutVT = Op.getValueType();
8406   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8407       isOperationCustom(Op.getOpcode(), InVT))
8408     return LowerINT_TO_FPVector(Op, DAG, dl);
8409 
8410   // Conversions to f128 are legal.
8411   if (Op.getValueType() == MVT::f128)
8412     return Subtarget.hasP9Vector() ? Op : SDValue();
8413 
8414   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8415   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8416     return SDValue();
8417 
8418   if (Src.getValueType() == MVT::i1) {
8419     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8420                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8421                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8422     if (IsStrict)
8423       return DAG.getMergeValues({Sel, Chain}, dl);
8424     else
8425       return Sel;
8426   }
8427 
8428   // If we have direct moves, we can do all the conversion, skip the store/load
8429   // however, without FPCVT we can't do most conversions.
8430   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8431       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8432     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8433 
8434   assert((IsSigned || Subtarget.hasFPCVT()) &&
8435          "UINT_TO_FP is supported only with FPCVT");
8436 
8437   if (Src.getValueType() == MVT::i64) {
8438     SDValue SINT = Src;
8439     // When converting to single-precision, we actually need to convert
8440     // to double-precision first and then round to single-precision.
8441     // To avoid double-rounding effects during that operation, we have
8442     // to prepare the input operand.  Bits that might be truncated when
8443     // converting to double-precision are replaced by a bit that won't
8444     // be lost at this stage, but is below the single-precision rounding
8445     // position.
8446     //
8447     // However, if -enable-unsafe-fp-math is in effect, accept double
8448     // rounding to avoid the extra overhead.
8449     if (Op.getValueType() == MVT::f32 &&
8450         !Subtarget.hasFPCVT() &&
8451         !DAG.getTarget().Options.UnsafeFPMath) {
8452 
8453       // Twiddle input to make sure the low 11 bits are zero.  (If this
8454       // is the case, we are guaranteed the value will fit into the 53 bit
8455       // mantissa of an IEEE double-precision value without rounding.)
8456       // If any of those low 11 bits were not zero originally, make sure
8457       // bit 12 (value 2048) is set instead, so that the final rounding
8458       // to single-precision gets the correct result.
8459       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8460                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8461       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8462                           Round, DAG.getConstant(2047, dl, MVT::i64));
8463       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8464       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8465                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8466 
8467       // However, we cannot use that value unconditionally: if the magnitude
8468       // of the input value is small, the bit-twiddling we did above might
8469       // end up visibly changing the output.  Fortunately, in that case, we
8470       // don't need to twiddle bits since the original input will convert
8471       // exactly to double-precision floating-point already.  Therefore,
8472       // construct a conditional to use the original value if the top 11
8473       // bits are all sign-bit copies, and use the rounded value computed
8474       // above otherwise.
8475       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8476                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8477       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8478                          Cond, DAG.getConstant(1, dl, MVT::i64));
8479       Cond = DAG.getSetCC(
8480           dl,
8481           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8482           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8483 
8484       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8485     }
8486 
8487     ReuseLoadInfo RLI;
8488     SDValue Bits;
8489 
8490     MachineFunction &MF = DAG.getMachineFunction();
8491     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8492       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8493                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8494       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8495     } else if (Subtarget.hasLFIWAX() &&
8496                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8497       MachineMemOperand *MMO =
8498         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8499                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8500       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8501       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8502                                      DAG.getVTList(MVT::f64, MVT::Other),
8503                                      Ops, MVT::i32, MMO);
8504       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8505     } else if (Subtarget.hasFPCVT() &&
8506                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8507       MachineMemOperand *MMO =
8508         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8509                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8510       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8511       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8512                                      DAG.getVTList(MVT::f64, MVT::Other),
8513                                      Ops, MVT::i32, MMO);
8514       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8515     } else if (((Subtarget.hasLFIWAX() &&
8516                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8517                 (Subtarget.hasFPCVT() &&
8518                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8519                SINT.getOperand(0).getValueType() == MVT::i32) {
8520       MachineFrameInfo &MFI = MF.getFrameInfo();
8521       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8522 
8523       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8524       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8525 
8526       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8527                                    MachinePointerInfo::getFixedStack(
8528                                        DAG.getMachineFunction(), FrameIdx));
8529       Chain = Store;
8530 
8531       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8532              "Expected an i32 store");
8533 
8534       RLI.Ptr = FIdx;
8535       RLI.Chain = Chain;
8536       RLI.MPI =
8537           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8538       RLI.Alignment = Align(4);
8539 
8540       MachineMemOperand *MMO =
8541         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8542                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8543       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8544       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8545                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8546                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8547                                      Ops, MVT::i32, MMO);
8548       Chain = Bits.getValue(1);
8549     } else
8550       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8551 
8552     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8553     if (IsStrict)
8554       Chain = FP.getValue(1);
8555 
8556     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8557       if (IsStrict)
8558         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8559                          DAG.getVTList(MVT::f32, MVT::Other),
8560                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8561       else
8562         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8563                          DAG.getIntPtrConstant(0, dl));
8564     }
8565     return FP;
8566   }
8567 
8568   assert(Src.getValueType() == MVT::i32 &&
8569          "Unhandled INT_TO_FP type in custom expander!");
8570   // Since we only generate this in 64-bit mode, we can take advantage of
8571   // 64-bit registers.  In particular, sign extend the input value into the
8572   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8573   // then lfd it and fcfid it.
8574   MachineFunction &MF = DAG.getMachineFunction();
8575   MachineFrameInfo &MFI = MF.getFrameInfo();
8576   EVT PtrVT = getPointerTy(MF.getDataLayout());
8577 
8578   SDValue Ld;
8579   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8580     ReuseLoadInfo RLI;
8581     bool ReusingLoad;
8582     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8583       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8584       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8585 
8586       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8587                                    MachinePointerInfo::getFixedStack(
8588                                        DAG.getMachineFunction(), FrameIdx));
8589       Chain = Store;
8590 
8591       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8592              "Expected an i32 store");
8593 
8594       RLI.Ptr = FIdx;
8595       RLI.Chain = Chain;
8596       RLI.MPI =
8597           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8598       RLI.Alignment = Align(4);
8599     }
8600 
8601     MachineMemOperand *MMO =
8602       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8603                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8604     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8605     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8606                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8607                                  MVT::i32, MMO);
8608     Chain = Ld.getValue(1);
8609     if (ReusingLoad)
8610       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8611   } else {
8612     assert(Subtarget.isPPC64() &&
8613            "i32->FP without LFIWAX supported only on PPC64");
8614 
8615     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8616     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8617 
8618     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8619 
8620     // STD the extended value into the stack slot.
8621     SDValue Store = DAG.getStore(
8622         Chain, dl, Ext64, FIdx,
8623         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8624     Chain = Store;
8625 
8626     // Load the value as a double.
8627     Ld = DAG.getLoad(
8628         MVT::f64, dl, Chain, FIdx,
8629         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8630     Chain = Ld.getValue(1);
8631   }
8632 
8633   // FCFID it and return it.
8634   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8635   if (IsStrict)
8636     Chain = FP.getValue(1);
8637   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8638     if (IsStrict)
8639       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8640                        DAG.getVTList(MVT::f32, MVT::Other),
8641                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8642     else
8643       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8644                        DAG.getIntPtrConstant(0, dl));
8645   }
8646   return FP;
8647 }
8648 
8649 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8650                                             SelectionDAG &DAG) const {
8651   SDLoc dl(Op);
8652   /*
8653    The rounding mode is in bits 30:31 of FPSR, and has the following
8654    settings:
8655      00 Round to nearest
8656      01 Round to 0
8657      10 Round to +inf
8658      11 Round to -inf
8659 
8660   FLT_ROUNDS, on the other hand, expects the following:
8661     -1 Undefined
8662      0 Round to 0
8663      1 Round to nearest
8664      2 Round to +inf
8665      3 Round to -inf
8666 
8667   To perform the conversion, we do:
8668     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8669   */
8670 
8671   MachineFunction &MF = DAG.getMachineFunction();
8672   EVT VT = Op.getValueType();
8673   EVT PtrVT = getPointerTy(MF.getDataLayout());
8674 
8675   // Save FP Control Word to register
8676   SDValue Chain = Op.getOperand(0);
8677   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8678   Chain = MFFS.getValue(1);
8679 
8680   SDValue CWD;
8681   if (isTypeLegal(MVT::i64)) {
8682     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8683                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8684   } else {
8685     // Save FP register to stack slot
8686     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8687     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8688     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8689 
8690     // Load FP Control Word from low 32 bits of stack slot.
8691     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8692            "Stack slot adjustment is valid only on big endian subtargets!");
8693     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8694     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8695     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8696     Chain = CWD.getValue(1);
8697   }
8698 
8699   // Transform as necessary
8700   SDValue CWD1 =
8701     DAG.getNode(ISD::AND, dl, MVT::i32,
8702                 CWD, DAG.getConstant(3, dl, MVT::i32));
8703   SDValue CWD2 =
8704     DAG.getNode(ISD::SRL, dl, MVT::i32,
8705                 DAG.getNode(ISD::AND, dl, MVT::i32,
8706                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8707                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8708                             DAG.getConstant(3, dl, MVT::i32)),
8709                 DAG.getConstant(1, dl, MVT::i32));
8710 
8711   SDValue RetVal =
8712     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8713 
8714   RetVal =
8715       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8716                   dl, VT, RetVal);
8717 
8718   return DAG.getMergeValues({RetVal, Chain}, dl);
8719 }
8720 
8721 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8722   EVT VT = Op.getValueType();
8723   unsigned BitWidth = VT.getSizeInBits();
8724   SDLoc dl(Op);
8725   assert(Op.getNumOperands() == 3 &&
8726          VT == Op.getOperand(1).getValueType() &&
8727          "Unexpected SHL!");
8728 
8729   // Expand into a bunch of logical ops.  Note that these ops
8730   // depend on the PPC behavior for oversized shift amounts.
8731   SDValue Lo = Op.getOperand(0);
8732   SDValue Hi = Op.getOperand(1);
8733   SDValue Amt = Op.getOperand(2);
8734   EVT AmtVT = Amt.getValueType();
8735 
8736   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8737                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8738   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8739   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8740   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8741   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8742                              DAG.getConstant(-BitWidth, dl, AmtVT));
8743   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8744   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8745   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8746   SDValue OutOps[] = { OutLo, OutHi };
8747   return DAG.getMergeValues(OutOps, dl);
8748 }
8749 
8750 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8751   EVT VT = Op.getValueType();
8752   SDLoc dl(Op);
8753   unsigned BitWidth = VT.getSizeInBits();
8754   assert(Op.getNumOperands() == 3 &&
8755          VT == Op.getOperand(1).getValueType() &&
8756          "Unexpected SRL!");
8757 
8758   // Expand into a bunch of logical ops.  Note that these ops
8759   // depend on the PPC behavior for oversized shift amounts.
8760   SDValue Lo = Op.getOperand(0);
8761   SDValue Hi = Op.getOperand(1);
8762   SDValue Amt = Op.getOperand(2);
8763   EVT AmtVT = Amt.getValueType();
8764 
8765   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8766                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8767   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8768   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8769   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8770   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8771                              DAG.getConstant(-BitWidth, dl, AmtVT));
8772   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8773   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8774   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8775   SDValue OutOps[] = { OutLo, OutHi };
8776   return DAG.getMergeValues(OutOps, dl);
8777 }
8778 
8779 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8780   SDLoc dl(Op);
8781   EVT VT = Op.getValueType();
8782   unsigned BitWidth = VT.getSizeInBits();
8783   assert(Op.getNumOperands() == 3 &&
8784          VT == Op.getOperand(1).getValueType() &&
8785          "Unexpected SRA!");
8786 
8787   // Expand into a bunch of logical ops, followed by a select_cc.
8788   SDValue Lo = Op.getOperand(0);
8789   SDValue Hi = Op.getOperand(1);
8790   SDValue Amt = Op.getOperand(2);
8791   EVT AmtVT = Amt.getValueType();
8792 
8793   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8794                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8795   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8796   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8797   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8798   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8799                              DAG.getConstant(-BitWidth, dl, AmtVT));
8800   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8801   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8802   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8803                                   Tmp4, Tmp6, ISD::SETLE);
8804   SDValue OutOps[] = { OutLo, OutHi };
8805   return DAG.getMergeValues(OutOps, dl);
8806 }
8807 
8808 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8809                                             SelectionDAG &DAG) const {
8810   SDLoc dl(Op);
8811   EVT VT = Op.getValueType();
8812   unsigned BitWidth = VT.getSizeInBits();
8813 
8814   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8815   SDValue X = Op.getOperand(0);
8816   SDValue Y = Op.getOperand(1);
8817   SDValue Z = Op.getOperand(2);
8818   EVT AmtVT = Z.getValueType();
8819 
8820   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8821   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8822   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8823   // on PowerPC shift by BW being well defined.
8824   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8825                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8826   SDValue SubZ =
8827       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8828   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8829   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8830   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8831 }
8832 
8833 //===----------------------------------------------------------------------===//
8834 // Vector related lowering.
8835 //
8836 
8837 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8838 /// element size of SplatSize. Cast the result to VT.
8839 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8840                                       SelectionDAG &DAG, const SDLoc &dl) {
8841   static const MVT VTys[] = { // canonical VT to use for each size.
8842     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8843   };
8844 
8845   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8846 
8847   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8848   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8849     SplatSize = 1;
8850     Val = 0xFF;
8851   }
8852 
8853   EVT CanonicalVT = VTys[SplatSize-1];
8854 
8855   // Build a canonical splat for this value.
8856   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8857 }
8858 
8859 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8860 /// specified intrinsic ID.
8861 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8862                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8863   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8864   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8865                      DAG.getConstant(IID, dl, MVT::i32), Op);
8866 }
8867 
8868 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8869 /// specified intrinsic ID.
8870 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8871                                 SelectionDAG &DAG, const SDLoc &dl,
8872                                 EVT DestVT = MVT::Other) {
8873   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8874   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8875                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8876 }
8877 
8878 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8879 /// specified intrinsic ID.
8880 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8881                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8882                                 EVT DestVT = MVT::Other) {
8883   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8884   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8885                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8886 }
8887 
8888 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8889 /// amount.  The result has the specified value type.
8890 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8891                            SelectionDAG &DAG, const SDLoc &dl) {
8892   // Force LHS/RHS to be the right type.
8893   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8894   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8895 
8896   int Ops[16];
8897   for (unsigned i = 0; i != 16; ++i)
8898     Ops[i] = i + Amt;
8899   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8900   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8901 }
8902 
8903 /// Do we have an efficient pattern in a .td file for this node?
8904 ///
8905 /// \param V - pointer to the BuildVectorSDNode being matched
8906 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8907 ///
8908 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8909 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8910 /// the opposite is true (expansion is beneficial) are:
8911 /// - The node builds a vector out of integers that are not 32 or 64-bits
8912 /// - The node builds a vector out of constants
8913 /// - The node is a "load-and-splat"
8914 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8915 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8916                                             bool HasDirectMove,
8917                                             bool HasP8Vector) {
8918   EVT VecVT = V->getValueType(0);
8919   bool RightType = VecVT == MVT::v2f64 ||
8920     (HasP8Vector && VecVT == MVT::v4f32) ||
8921     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8922   if (!RightType)
8923     return false;
8924 
8925   bool IsSplat = true;
8926   bool IsLoad = false;
8927   SDValue Op0 = V->getOperand(0);
8928 
8929   // This function is called in a block that confirms the node is not a constant
8930   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8931   // different constants.
8932   if (V->isConstant())
8933     return false;
8934   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8935     if (V->getOperand(i).isUndef())
8936       return false;
8937     // We want to expand nodes that represent load-and-splat even if the
8938     // loaded value is a floating point truncation or conversion to int.
8939     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8940         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8941          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8942         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8943          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8944         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8945          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8946       IsLoad = true;
8947     // If the operands are different or the input is not a load and has more
8948     // uses than just this BV node, then it isn't a splat.
8949     if (V->getOperand(i) != Op0 ||
8950         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8951       IsSplat = false;
8952   }
8953   return !(IsSplat && IsLoad);
8954 }
8955 
8956 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8957 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8958 
8959   SDLoc dl(Op);
8960   SDValue Op0 = Op->getOperand(0);
8961 
8962   if ((Op.getValueType() != MVT::f128) ||
8963       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8964       (Op0.getOperand(0).getValueType() != MVT::i64) ||
8965       (Op0.getOperand(1).getValueType() != MVT::i64))
8966     return SDValue();
8967 
8968   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8969                      Op0.getOperand(1));
8970 }
8971 
8972 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
8973   const SDValue *InputLoad = &Op;
8974   if (InputLoad->getOpcode() == ISD::BITCAST)
8975     InputLoad = &InputLoad->getOperand(0);
8976   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
8977       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
8978     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
8979     InputLoad = &InputLoad->getOperand(0);
8980   }
8981   if (InputLoad->getOpcode() != ISD::LOAD)
8982     return nullptr;
8983   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8984   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8985 }
8986 
8987 // Convert the argument APFloat to a single precision APFloat if there is no
8988 // loss in information during the conversion to single precision APFloat and the
8989 // resulting number is not a denormal number. Return true if successful.
8990 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
8991   APFloat APFloatToConvert = ArgAPFloat;
8992   bool LosesInfo = true;
8993   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
8994                            &LosesInfo);
8995   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
8996   if (Success)
8997     ArgAPFloat = APFloatToConvert;
8998   return Success;
8999 }
9000 
9001 // Bitcast the argument APInt to a double and convert it to a single precision
9002 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9003 // argument if there is no loss in information during the conversion from
9004 // double to single precision APFloat and the resulting number is not a denormal
9005 // number. Return true if successful.
9006 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9007   double DpValue = ArgAPInt.bitsToDouble();
9008   APFloat APFloatDp(DpValue);
9009   bool Success = convertToNonDenormSingle(APFloatDp);
9010   if (Success)
9011     ArgAPInt = APFloatDp.bitcastToAPInt();
9012   return Success;
9013 }
9014 
9015 // Nondestructive check for convertTonNonDenormSingle.
9016 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9017   // Only convert if it loses info, since XXSPLTIDP should
9018   // handle the other case.
9019   APFloat APFloatToConvert = ArgAPFloat;
9020   bool LosesInfo = true;
9021   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9022                            &LosesInfo);
9023 
9024   return (!LosesInfo && !APFloatToConvert.isDenormal());
9025 }
9026 
9027 // If this is a case we can't handle, return null and let the default
9028 // expansion code take care of it.  If we CAN select this case, and if it
9029 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9030 // this case more efficiently than a constant pool load, lower it to the
9031 // sequence of ops that should be used.
9032 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9033                                              SelectionDAG &DAG) const {
9034   SDLoc dl(Op);
9035   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9036   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9037 
9038   // Check if this is a splat of a constant value.
9039   APInt APSplatBits, APSplatUndef;
9040   unsigned SplatBitSize;
9041   bool HasAnyUndefs;
9042   bool BVNIsConstantSplat =
9043       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9044                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9045 
9046   // If it is a splat of a double, check if we can shrink it to a 32 bit
9047   // non-denormal float which when converted back to double gives us the same
9048   // double. This is to exploit the XXSPLTIDP instruction.
9049   // If we lose precision, we use XXSPLTI32DX.
9050   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9051       Subtarget.hasPrefixInstrs()) {
9052     // Check the type first to short-circuit so we don't modify APSplatBits if
9053     // this block isn't executed.
9054     if ((Op->getValueType(0) == MVT::v2f64) &&
9055         convertToNonDenormSingle(APSplatBits)) {
9056       SDValue SplatNode = DAG.getNode(
9057           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9058           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9059       return DAG.getBitcast(Op.getValueType(), SplatNode);
9060     } else {
9061       // We may lose precision, so we have to use XXSPLTI32DX.
9062 
9063       uint32_t Hi =
9064           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9065       uint32_t Lo =
9066           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9067       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9068 
9069       if (!Hi || !Lo)
9070         // If either load is 0, then we should generate XXLXOR to set to 0.
9071         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9072 
9073       if (Hi)
9074         SplatNode = DAG.getNode(
9075             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9076             DAG.getTargetConstant(0, dl, MVT::i32),
9077             DAG.getTargetConstant(Hi, dl, MVT::i32));
9078 
9079       if (Lo)
9080         SplatNode =
9081             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9082                         DAG.getTargetConstant(1, dl, MVT::i32),
9083                         DAG.getTargetConstant(Lo, dl, MVT::i32));
9084 
9085       return DAG.getBitcast(Op.getValueType(), SplatNode);
9086     }
9087   }
9088 
9089   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9090 
9091     bool IsPermutedLoad = false;
9092     const SDValue *InputLoad =
9093         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
9094     // Handle load-and-splat patterns as we have instructions that will do this
9095     // in one go.
9096     if (InputLoad && DAG.isSplatValue(Op, true)) {
9097       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9098 
9099       // We have handling for 4 and 8 byte elements.
9100       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9101 
9102       // Checking for a single use of this load, we have to check for vector
9103       // width (128 bits) / ElementSize uses (since each operand of the
9104       // BUILD_VECTOR is a separate use of the value.
9105       unsigned NumUsesOfInputLD = 128 / ElementSize;
9106       for (SDValue BVInOp : Op->ops())
9107         if (BVInOp.isUndef())
9108           NumUsesOfInputLD--;
9109       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9110       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9111           ((Subtarget.hasVSX() && ElementSize == 64) ||
9112            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9113         SDValue Ops[] = {
9114           LD->getChain(),    // Chain
9115           LD->getBasePtr(),  // Ptr
9116           DAG.getValueType(Op.getValueType()) // VT
9117         };
9118         SDValue LdSplt = DAG.getMemIntrinsicNode(
9119             PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
9120             Ops, LD->getMemoryVT(), LD->getMemOperand());
9121         // Replace all uses of the output chain of the original load with the
9122         // output chain of the new load.
9123         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9124                                       LdSplt.getValue(1));
9125         return LdSplt;
9126       }
9127     }
9128 
9129     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9130     // 32-bits can be lowered to VSX instructions under certain conditions.
9131     // Without VSX, there is no pattern more efficient than expanding the node.
9132     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9133         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9134                                         Subtarget.hasP8Vector()))
9135       return Op;
9136     return SDValue();
9137   }
9138 
9139   uint64_t SplatBits = APSplatBits.getZExtValue();
9140   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9141   unsigned SplatSize = SplatBitSize / 8;
9142 
9143   // First, handle single instruction cases.
9144 
9145   // All zeros?
9146   if (SplatBits == 0) {
9147     // Canonicalize all zero vectors to be v4i32.
9148     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9149       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9150       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9151     }
9152     return Op;
9153   }
9154 
9155   // We have XXSPLTIW for constant splats four bytes wide.
9156   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9157   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9158   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9159   // turned into a 4-byte splat of 0xABABABAB.
9160   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9161     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9162                                   Op.getValueType(), DAG, dl);
9163 
9164   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9165     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9166                                   dl);
9167 
9168   // We have XXSPLTIB for constant splats one byte wide.
9169   if (Subtarget.hasP9Vector() && SplatSize == 1)
9170     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9171                                   dl);
9172 
9173   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9174   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9175                     (32-SplatBitSize));
9176   if (SextVal >= -16 && SextVal <= 15)
9177     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9178                                   dl);
9179 
9180   // Two instruction sequences.
9181 
9182   // If this value is in the range [-32,30] and is even, use:
9183   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9184   // If this value is in the range [17,31] and is odd, use:
9185   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9186   // If this value is in the range [-31,-17] and is odd, use:
9187   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9188   // Note the last two are three-instruction sequences.
9189   if (SextVal >= -32 && SextVal <= 31) {
9190     // To avoid having these optimizations undone by constant folding,
9191     // we convert to a pseudo that will be expanded later into one of
9192     // the above forms.
9193     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9194     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9195               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9196     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9197     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9198     if (VT == Op.getValueType())
9199       return RetVal;
9200     else
9201       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9202   }
9203 
9204   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9205   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9206   // for fneg/fabs.
9207   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9208     // Make -1 and vspltisw -1:
9209     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9210 
9211     // Make the VSLW intrinsic, computing 0x8000_0000.
9212     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9213                                    OnesV, DAG, dl);
9214 
9215     // xor by OnesV to invert it.
9216     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9217     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9218   }
9219 
9220   // Check to see if this is a wide variety of vsplti*, binop self cases.
9221   static const signed char SplatCsts[] = {
9222     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9223     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9224   };
9225 
9226   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9227     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9228     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9229     int i = SplatCsts[idx];
9230 
9231     // Figure out what shift amount will be used by altivec if shifted by i in
9232     // this splat size.
9233     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9234 
9235     // vsplti + shl self.
9236     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9237       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9238       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9239         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9240         Intrinsic::ppc_altivec_vslw
9241       };
9242       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9243       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9244     }
9245 
9246     // vsplti + srl self.
9247     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9248       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9249       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9250         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9251         Intrinsic::ppc_altivec_vsrw
9252       };
9253       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9254       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9255     }
9256 
9257     // vsplti + rol self.
9258     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9259                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9260       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9261       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9262         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9263         Intrinsic::ppc_altivec_vrlw
9264       };
9265       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9266       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9267     }
9268 
9269     // t = vsplti c, result = vsldoi t, t, 1
9270     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9271       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9272       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9273       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9274     }
9275     // t = vsplti c, result = vsldoi t, t, 2
9276     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9277       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9278       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9279       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9280     }
9281     // t = vsplti c, result = vsldoi t, t, 3
9282     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9283       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9284       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9285       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9286     }
9287   }
9288 
9289   return SDValue();
9290 }
9291 
9292 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9293 /// the specified operations to build the shuffle.
9294 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9295                                       SDValue RHS, SelectionDAG &DAG,
9296                                       const SDLoc &dl) {
9297   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9298   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9299   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9300 
9301   enum {
9302     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9303     OP_VMRGHW,
9304     OP_VMRGLW,
9305     OP_VSPLTISW0,
9306     OP_VSPLTISW1,
9307     OP_VSPLTISW2,
9308     OP_VSPLTISW3,
9309     OP_VSLDOI4,
9310     OP_VSLDOI8,
9311     OP_VSLDOI12
9312   };
9313 
9314   if (OpNum == OP_COPY) {
9315     if (LHSID == (1*9+2)*9+3) return LHS;
9316     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9317     return RHS;
9318   }
9319 
9320   SDValue OpLHS, OpRHS;
9321   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9322   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9323 
9324   int ShufIdxs[16];
9325   switch (OpNum) {
9326   default: llvm_unreachable("Unknown i32 permute!");
9327   case OP_VMRGHW:
9328     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9329     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9330     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9331     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9332     break;
9333   case OP_VMRGLW:
9334     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9335     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9336     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9337     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9338     break;
9339   case OP_VSPLTISW0:
9340     for (unsigned i = 0; i != 16; ++i)
9341       ShufIdxs[i] = (i&3)+0;
9342     break;
9343   case OP_VSPLTISW1:
9344     for (unsigned i = 0; i != 16; ++i)
9345       ShufIdxs[i] = (i&3)+4;
9346     break;
9347   case OP_VSPLTISW2:
9348     for (unsigned i = 0; i != 16; ++i)
9349       ShufIdxs[i] = (i&3)+8;
9350     break;
9351   case OP_VSPLTISW3:
9352     for (unsigned i = 0; i != 16; ++i)
9353       ShufIdxs[i] = (i&3)+12;
9354     break;
9355   case OP_VSLDOI4:
9356     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9357   case OP_VSLDOI8:
9358     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9359   case OP_VSLDOI12:
9360     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9361   }
9362   EVT VT = OpLHS.getValueType();
9363   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9364   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9365   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9366   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9367 }
9368 
9369 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9370 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9371 /// SDValue.
9372 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9373                                            SelectionDAG &DAG) const {
9374   const unsigned BytesInVector = 16;
9375   bool IsLE = Subtarget.isLittleEndian();
9376   SDLoc dl(N);
9377   SDValue V1 = N->getOperand(0);
9378   SDValue V2 = N->getOperand(1);
9379   unsigned ShiftElts = 0, InsertAtByte = 0;
9380   bool Swap = false;
9381 
9382   // Shifts required to get the byte we want at element 7.
9383   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9384                                    0, 15, 14, 13, 12, 11, 10, 9};
9385   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9386                                 1, 2,  3,  4,  5,  6,  7,  8};
9387 
9388   ArrayRef<int> Mask = N->getMask();
9389   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9390 
9391   // For each mask element, find out if we're just inserting something
9392   // from V2 into V1 or vice versa.
9393   // Possible permutations inserting an element from V2 into V1:
9394   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9395   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9396   //   ...
9397   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9398   // Inserting from V1 into V2 will be similar, except mask range will be
9399   // [16,31].
9400 
9401   bool FoundCandidate = false;
9402   // If both vector operands for the shuffle are the same vector, the mask
9403   // will contain only elements from the first one and the second one will be
9404   // undef.
9405   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9406   // Go through the mask of half-words to find an element that's being moved
9407   // from one vector to the other.
9408   for (unsigned i = 0; i < BytesInVector; ++i) {
9409     unsigned CurrentElement = Mask[i];
9410     // If 2nd operand is undefined, we should only look for element 7 in the
9411     // Mask.
9412     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9413       continue;
9414 
9415     bool OtherElementsInOrder = true;
9416     // Examine the other elements in the Mask to see if they're in original
9417     // order.
9418     for (unsigned j = 0; j < BytesInVector; ++j) {
9419       if (j == i)
9420         continue;
9421       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9422       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9423       // in which we always assume we're always picking from the 1st operand.
9424       int MaskOffset =
9425           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9426       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9427         OtherElementsInOrder = false;
9428         break;
9429       }
9430     }
9431     // If other elements are in original order, we record the number of shifts
9432     // we need to get the element we want into element 7. Also record which byte
9433     // in the vector we should insert into.
9434     if (OtherElementsInOrder) {
9435       // If 2nd operand is undefined, we assume no shifts and no swapping.
9436       if (V2.isUndef()) {
9437         ShiftElts = 0;
9438         Swap = false;
9439       } else {
9440         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9441         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9442                          : BigEndianShifts[CurrentElement & 0xF];
9443         Swap = CurrentElement < BytesInVector;
9444       }
9445       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9446       FoundCandidate = true;
9447       break;
9448     }
9449   }
9450 
9451   if (!FoundCandidate)
9452     return SDValue();
9453 
9454   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9455   // optionally with VECSHL if shift is required.
9456   if (Swap)
9457     std::swap(V1, V2);
9458   if (V2.isUndef())
9459     V2 = V1;
9460   if (ShiftElts) {
9461     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9462                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9463     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9464                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9465   }
9466   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9467                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9468 }
9469 
9470 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9471 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9472 /// SDValue.
9473 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9474                                            SelectionDAG &DAG) const {
9475   const unsigned NumHalfWords = 8;
9476   const unsigned BytesInVector = NumHalfWords * 2;
9477   // Check that the shuffle is on half-words.
9478   if (!isNByteElemShuffleMask(N, 2, 1))
9479     return SDValue();
9480 
9481   bool IsLE = Subtarget.isLittleEndian();
9482   SDLoc dl(N);
9483   SDValue V1 = N->getOperand(0);
9484   SDValue V2 = N->getOperand(1);
9485   unsigned ShiftElts = 0, InsertAtByte = 0;
9486   bool Swap = false;
9487 
9488   // Shifts required to get the half-word we want at element 3.
9489   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9490   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9491 
9492   uint32_t Mask = 0;
9493   uint32_t OriginalOrderLow = 0x1234567;
9494   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9495   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9496   // 32-bit space, only need 4-bit nibbles per element.
9497   for (unsigned i = 0; i < NumHalfWords; ++i) {
9498     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9499     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9500   }
9501 
9502   // For each mask element, find out if we're just inserting something
9503   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9504   // from V2 into V1:
9505   //   X, 1, 2, 3, 4, 5, 6, 7
9506   //   0, X, 2, 3, 4, 5, 6, 7
9507   //   0, 1, X, 3, 4, 5, 6, 7
9508   //   0, 1, 2, X, 4, 5, 6, 7
9509   //   0, 1, 2, 3, X, 5, 6, 7
9510   //   0, 1, 2, 3, 4, X, 6, 7
9511   //   0, 1, 2, 3, 4, 5, X, 7
9512   //   0, 1, 2, 3, 4, 5, 6, X
9513   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9514 
9515   bool FoundCandidate = false;
9516   // Go through the mask of half-words to find an element that's being moved
9517   // from one vector to the other.
9518   for (unsigned i = 0; i < NumHalfWords; ++i) {
9519     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9520     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9521     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9522     uint32_t TargetOrder = 0x0;
9523 
9524     // If both vector operands for the shuffle are the same vector, the mask
9525     // will contain only elements from the first one and the second one will be
9526     // undef.
9527     if (V2.isUndef()) {
9528       ShiftElts = 0;
9529       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9530       TargetOrder = OriginalOrderLow;
9531       Swap = false;
9532       // Skip if not the correct element or mask of other elements don't equal
9533       // to our expected order.
9534       if (MaskOneElt == VINSERTHSrcElem &&
9535           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9536         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9537         FoundCandidate = true;
9538         break;
9539       }
9540     } else { // If both operands are defined.
9541       // Target order is [8,15] if the current mask is between [0,7].
9542       TargetOrder =
9543           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9544       // Skip if mask of other elements don't equal our expected order.
9545       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9546         // We only need the last 3 bits for the number of shifts.
9547         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9548                          : BigEndianShifts[MaskOneElt & 0x7];
9549         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9550         Swap = MaskOneElt < NumHalfWords;
9551         FoundCandidate = true;
9552         break;
9553       }
9554     }
9555   }
9556 
9557   if (!FoundCandidate)
9558     return SDValue();
9559 
9560   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9561   // optionally with VECSHL if shift is required.
9562   if (Swap)
9563     std::swap(V1, V2);
9564   if (V2.isUndef())
9565     V2 = V1;
9566   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9567   if (ShiftElts) {
9568     // Double ShiftElts because we're left shifting on v16i8 type.
9569     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9570                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9571     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9572     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9573                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9574     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9575   }
9576   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9577   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9578                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9579   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9580 }
9581 
9582 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9583 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9584 /// return the default SDValue.
9585 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9586                                               SelectionDAG &DAG) const {
9587   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9588   // to v16i8. Peek through the bitcasts to get the actual operands.
9589   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9590   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9591 
9592   auto ShuffleMask = SVN->getMask();
9593   SDValue VecShuffle(SVN, 0);
9594   SDLoc DL(SVN);
9595 
9596   // Check that we have a four byte shuffle.
9597   if (!isNByteElemShuffleMask(SVN, 4, 1))
9598     return SDValue();
9599 
9600   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9601   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9602     std::swap(LHS, RHS);
9603     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9604     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9605   }
9606 
9607   // Ensure that the RHS is a vector of constants.
9608   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9609   if (!BVN)
9610     return SDValue();
9611 
9612   // Check if RHS is a splat of 4-bytes (or smaller).
9613   APInt APSplatValue, APSplatUndef;
9614   unsigned SplatBitSize;
9615   bool HasAnyUndefs;
9616   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9617                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9618       SplatBitSize > 32)
9619     return SDValue();
9620 
9621   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9622   // The instruction splats a constant C into two words of the source vector
9623   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9624   // Thus we check that the shuffle mask is the equivalent  of
9625   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9626   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9627   // within each word are consecutive, so we only need to check the first byte.
9628   SDValue Index;
9629   bool IsLE = Subtarget.isLittleEndian();
9630   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9631       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9632        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9633     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9634   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9635            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9636             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9637     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9638   else
9639     return SDValue();
9640 
9641   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9642   // for XXSPLTI32DX.
9643   unsigned SplatVal = APSplatValue.getZExtValue();
9644   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9645     SplatVal |= (SplatVal << SplatBitSize);
9646 
9647   SDValue SplatNode = DAG.getNode(
9648       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9649       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9650   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9651 }
9652 
9653 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9654 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9655 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9656 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9657 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9658   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9659   assert(Op.getValueType() == MVT::v1i128 &&
9660          "Only set v1i128 as custom, other type shouldn't reach here!");
9661   SDLoc dl(Op);
9662   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9663   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9664   unsigned SHLAmt = N1.getConstantOperandVal(0);
9665   if (SHLAmt % 8 == 0) {
9666     SmallVector<int, 16> Mask(16, 0);
9667     std::iota(Mask.begin(), Mask.end(), 0);
9668     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9669     if (SDValue Shuffle =
9670             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9671                                  DAG.getUNDEF(MVT::v16i8), Mask))
9672       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9673   }
9674   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9675   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9676                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9677   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9678                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9679   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9680   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9681 }
9682 
9683 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9684 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9685 /// return the code it can be lowered into.  Worst case, it can always be
9686 /// lowered into a vperm.
9687 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9688                                                SelectionDAG &DAG) const {
9689   SDLoc dl(Op);
9690   SDValue V1 = Op.getOperand(0);
9691   SDValue V2 = Op.getOperand(1);
9692   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9693 
9694   // Any nodes that were combined in the target-independent combiner prior
9695   // to vector legalization will not be sent to the target combine. Try to
9696   // combine it here.
9697   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9698     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9699       return NewShuffle;
9700     Op = NewShuffle;
9701     SVOp = cast<ShuffleVectorSDNode>(Op);
9702     V1 = Op.getOperand(0);
9703     V2 = Op.getOperand(1);
9704   }
9705   EVT VT = Op.getValueType();
9706   bool isLittleEndian = Subtarget.isLittleEndian();
9707 
9708   unsigned ShiftElts, InsertAtByte;
9709   bool Swap = false;
9710 
9711   // If this is a load-and-splat, we can do that with a single instruction
9712   // in some cases. However if the load has multiple uses, we don't want to
9713   // combine it because that will just produce multiple loads.
9714   bool IsPermutedLoad = false;
9715   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9716   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9717       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9718       InputLoad->hasOneUse()) {
9719     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9720     int SplatIdx =
9721       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9722 
9723     // The splat index for permuted loads will be in the left half of the vector
9724     // which is strictly wider than the loaded value by 8 bytes. So we need to
9725     // adjust the splat index to point to the correct address in memory.
9726     if (IsPermutedLoad) {
9727       assert((isLittleEndian || IsFourByte) &&
9728              "Unexpected size for permuted load on big endian target");
9729       SplatIdx += IsFourByte ? 2 : 1;
9730       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9731              "Splat of a value outside of the loaded memory");
9732     }
9733 
9734     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9735     // For 4-byte load-and-splat, we need Power9.
9736     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9737       uint64_t Offset = 0;
9738       if (IsFourByte)
9739         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9740       else
9741         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9742 
9743       // If the width of the load is the same as the width of the splat,
9744       // loading with an offset would load the wrong memory.
9745       if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
9746         Offset = 0;
9747 
9748       SDValue BasePtr = LD->getBasePtr();
9749       if (Offset != 0)
9750         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9751                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9752       SDValue Ops[] = {
9753         LD->getChain(),    // Chain
9754         BasePtr,           // BasePtr
9755         DAG.getValueType(Op.getValueType()) // VT
9756       };
9757       SDVTList VTL =
9758         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9759       SDValue LdSplt =
9760         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9761                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9762       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9763       if (LdSplt.getValueType() != SVOp->getValueType(0))
9764         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9765       return LdSplt;
9766     }
9767   }
9768   if (Subtarget.hasP9Vector() &&
9769       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9770                            isLittleEndian)) {
9771     if (Swap)
9772       std::swap(V1, V2);
9773     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9774     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9775     if (ShiftElts) {
9776       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9777                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9778       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9779                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9780       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9781     }
9782     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9783                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9784     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9785   }
9786 
9787   if (Subtarget.hasPrefixInstrs()) {
9788     SDValue SplatInsertNode;
9789     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9790       return SplatInsertNode;
9791   }
9792 
9793   if (Subtarget.hasP9Altivec()) {
9794     SDValue NewISDNode;
9795     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9796       return NewISDNode;
9797 
9798     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9799       return NewISDNode;
9800   }
9801 
9802   if (Subtarget.hasVSX() &&
9803       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9804     if (Swap)
9805       std::swap(V1, V2);
9806     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9807     SDValue Conv2 =
9808         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9809 
9810     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9811                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9812     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9813   }
9814 
9815   if (Subtarget.hasVSX() &&
9816     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9817     if (Swap)
9818       std::swap(V1, V2);
9819     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9820     SDValue Conv2 =
9821         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9822 
9823     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9824                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9825     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9826   }
9827 
9828   if (Subtarget.hasP9Vector()) {
9829      if (PPC::isXXBRHShuffleMask(SVOp)) {
9830       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9831       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9832       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9833     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9834       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9835       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9836       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9837     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9838       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9839       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9840       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9841     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9842       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9843       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9844       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9845     }
9846   }
9847 
9848   if (Subtarget.hasVSX()) {
9849     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9850       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9851 
9852       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9853       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9854                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9855       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9856     }
9857 
9858     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9859     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9860       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9861       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9862       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9863     }
9864   }
9865 
9866   // Cases that are handled by instructions that take permute immediates
9867   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9868   // selected by the instruction selector.
9869   if (V2.isUndef()) {
9870     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9871         PPC::isSplatShuffleMask(SVOp, 2) ||
9872         PPC::isSplatShuffleMask(SVOp, 4) ||
9873         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9874         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9875         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9876         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9877         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9878         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9879         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9880         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9881         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9882         (Subtarget.hasP8Altivec() && (
9883          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9884          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9885          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9886       return Op;
9887     }
9888   }
9889 
9890   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9891   // and produce a fixed permutation.  If any of these match, do not lower to
9892   // VPERM.
9893   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9894   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9895       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9896       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9897       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9898       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9899       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9900       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9901       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9902       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9903       (Subtarget.hasP8Altivec() && (
9904        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9905        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9906        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9907     return Op;
9908 
9909   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9910   // perfect shuffle table to emit an optimal matching sequence.
9911   ArrayRef<int> PermMask = SVOp->getMask();
9912 
9913   unsigned PFIndexes[4];
9914   bool isFourElementShuffle = true;
9915   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9916     unsigned EltNo = 8;   // Start out undef.
9917     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9918       if (PermMask[i*4+j] < 0)
9919         continue;   // Undef, ignore it.
9920 
9921       unsigned ByteSource = PermMask[i*4+j];
9922       if ((ByteSource & 3) != j) {
9923         isFourElementShuffle = false;
9924         break;
9925       }
9926 
9927       if (EltNo == 8) {
9928         EltNo = ByteSource/4;
9929       } else if (EltNo != ByteSource/4) {
9930         isFourElementShuffle = false;
9931         break;
9932       }
9933     }
9934     PFIndexes[i] = EltNo;
9935   }
9936 
9937   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9938   // perfect shuffle vector to determine if it is cost effective to do this as
9939   // discrete instructions, or whether we should use a vperm.
9940   // For now, we skip this for little endian until such time as we have a
9941   // little-endian perfect shuffle table.
9942   if (isFourElementShuffle && !isLittleEndian) {
9943     // Compute the index in the perfect shuffle table.
9944     unsigned PFTableIndex =
9945       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9946 
9947     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9948     unsigned Cost  = (PFEntry >> 30);
9949 
9950     // Determining when to avoid vperm is tricky.  Many things affect the cost
9951     // of vperm, particularly how many times the perm mask needs to be computed.
9952     // For example, if the perm mask can be hoisted out of a loop or is already
9953     // used (perhaps because there are multiple permutes with the same shuffle
9954     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9955     // the loop requires an extra register.
9956     //
9957     // As a compromise, we only emit discrete instructions if the shuffle can be
9958     // generated in 3 or fewer operations.  When we have loop information
9959     // available, if this block is within a loop, we should avoid using vperm
9960     // for 3-operation perms and use a constant pool load instead.
9961     if (Cost < 3)
9962       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9963   }
9964 
9965   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9966   // vector that will get spilled to the constant pool.
9967   if (V2.isUndef()) V2 = V1;
9968 
9969   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9970   // that it is in input element units, not in bytes.  Convert now.
9971 
9972   // For little endian, the order of the input vectors is reversed, and
9973   // the permutation mask is complemented with respect to 31.  This is
9974   // necessary to produce proper semantics with the big-endian-biased vperm
9975   // instruction.
9976   EVT EltVT = V1.getValueType().getVectorElementType();
9977   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9978 
9979   SmallVector<SDValue, 16> ResultMask;
9980   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9981     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9982 
9983     for (unsigned j = 0; j != BytesPerElement; ++j)
9984       if (isLittleEndian)
9985         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9986                                              dl, MVT::i32));
9987       else
9988         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9989                                              MVT::i32));
9990   }
9991 
9992   ShufflesHandledWithVPERM++;
9993   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9994   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
9995   LLVM_DEBUG(SVOp->dump());
9996   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
9997   LLVM_DEBUG(VPermMask.dump());
9998 
9999   if (isLittleEndian)
10000     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10001                        V2, V1, VPermMask);
10002   else
10003     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10004                        V1, V2, VPermMask);
10005 }
10006 
10007 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10008 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10009 /// information about the intrinsic.
10010 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10011                                  bool &isDot, const PPCSubtarget &Subtarget) {
10012   unsigned IntrinsicID =
10013       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10014   CompareOpc = -1;
10015   isDot = false;
10016   switch (IntrinsicID) {
10017   default:
10018     return false;
10019   // Comparison predicates.
10020   case Intrinsic::ppc_altivec_vcmpbfp_p:
10021     CompareOpc = 966;
10022     isDot = true;
10023     break;
10024   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10025     CompareOpc = 198;
10026     isDot = true;
10027     break;
10028   case Intrinsic::ppc_altivec_vcmpequb_p:
10029     CompareOpc = 6;
10030     isDot = true;
10031     break;
10032   case Intrinsic::ppc_altivec_vcmpequh_p:
10033     CompareOpc = 70;
10034     isDot = true;
10035     break;
10036   case Intrinsic::ppc_altivec_vcmpequw_p:
10037     CompareOpc = 134;
10038     isDot = true;
10039     break;
10040   case Intrinsic::ppc_altivec_vcmpequd_p:
10041     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10042       CompareOpc = 199;
10043       isDot = true;
10044     } else
10045       return false;
10046     break;
10047   case Intrinsic::ppc_altivec_vcmpneb_p:
10048   case Intrinsic::ppc_altivec_vcmpneh_p:
10049   case Intrinsic::ppc_altivec_vcmpnew_p:
10050   case Intrinsic::ppc_altivec_vcmpnezb_p:
10051   case Intrinsic::ppc_altivec_vcmpnezh_p:
10052   case Intrinsic::ppc_altivec_vcmpnezw_p:
10053     if (Subtarget.hasP9Altivec()) {
10054       switch (IntrinsicID) {
10055       default:
10056         llvm_unreachable("Unknown comparison intrinsic.");
10057       case Intrinsic::ppc_altivec_vcmpneb_p:
10058         CompareOpc = 7;
10059         break;
10060       case Intrinsic::ppc_altivec_vcmpneh_p:
10061         CompareOpc = 71;
10062         break;
10063       case Intrinsic::ppc_altivec_vcmpnew_p:
10064         CompareOpc = 135;
10065         break;
10066       case Intrinsic::ppc_altivec_vcmpnezb_p:
10067         CompareOpc = 263;
10068         break;
10069       case Intrinsic::ppc_altivec_vcmpnezh_p:
10070         CompareOpc = 327;
10071         break;
10072       case Intrinsic::ppc_altivec_vcmpnezw_p:
10073         CompareOpc = 391;
10074         break;
10075       }
10076       isDot = true;
10077     } else
10078       return false;
10079     break;
10080   case Intrinsic::ppc_altivec_vcmpgefp_p:
10081     CompareOpc = 454;
10082     isDot = true;
10083     break;
10084   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10085     CompareOpc = 710;
10086     isDot = true;
10087     break;
10088   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10089     CompareOpc = 774;
10090     isDot = true;
10091     break;
10092   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10093     CompareOpc = 838;
10094     isDot = true;
10095     break;
10096   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10097     CompareOpc = 902;
10098     isDot = true;
10099     break;
10100   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10101     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10102       CompareOpc = 967;
10103       isDot = true;
10104     } else
10105       return false;
10106     break;
10107   case Intrinsic::ppc_altivec_vcmpgtub_p:
10108     CompareOpc = 518;
10109     isDot = true;
10110     break;
10111   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10112     CompareOpc = 582;
10113     isDot = true;
10114     break;
10115   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10116     CompareOpc = 646;
10117     isDot = true;
10118     break;
10119   case Intrinsic::ppc_altivec_vcmpgtud_p:
10120     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10121       CompareOpc = 711;
10122       isDot = true;
10123     } else
10124       return false;
10125     break;
10126 
10127   case Intrinsic::ppc_altivec_vcmpequq:
10128   case Intrinsic::ppc_altivec_vcmpgtsq:
10129   case Intrinsic::ppc_altivec_vcmpgtuq:
10130     if (!Subtarget.isISA3_1())
10131       return false;
10132     switch (IntrinsicID) {
10133     default:
10134       llvm_unreachable("Unknown comparison intrinsic.");
10135     case Intrinsic::ppc_altivec_vcmpequq:
10136       CompareOpc = 455;
10137       break;
10138     case Intrinsic::ppc_altivec_vcmpgtsq:
10139       CompareOpc = 903;
10140       break;
10141     case Intrinsic::ppc_altivec_vcmpgtuq:
10142       CompareOpc = 647;
10143       break;
10144     }
10145     break;
10146 
10147   // VSX predicate comparisons use the same infrastructure
10148   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10149   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10150   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10151   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10152   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10153   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10154     if (Subtarget.hasVSX()) {
10155       switch (IntrinsicID) {
10156       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10157         CompareOpc = 99;
10158         break;
10159       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10160         CompareOpc = 115;
10161         break;
10162       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10163         CompareOpc = 107;
10164         break;
10165       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10166         CompareOpc = 67;
10167         break;
10168       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10169         CompareOpc = 83;
10170         break;
10171       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10172         CompareOpc = 75;
10173         break;
10174       }
10175       isDot = true;
10176     } else
10177       return false;
10178     break;
10179 
10180   // Normal Comparisons.
10181   case Intrinsic::ppc_altivec_vcmpbfp:
10182     CompareOpc = 966;
10183     break;
10184   case Intrinsic::ppc_altivec_vcmpeqfp:
10185     CompareOpc = 198;
10186     break;
10187   case Intrinsic::ppc_altivec_vcmpequb:
10188     CompareOpc = 6;
10189     break;
10190   case Intrinsic::ppc_altivec_vcmpequh:
10191     CompareOpc = 70;
10192     break;
10193   case Intrinsic::ppc_altivec_vcmpequw:
10194     CompareOpc = 134;
10195     break;
10196   case Intrinsic::ppc_altivec_vcmpequd:
10197     if (Subtarget.hasP8Altivec())
10198       CompareOpc = 199;
10199     else
10200       return false;
10201     break;
10202   case Intrinsic::ppc_altivec_vcmpneb:
10203   case Intrinsic::ppc_altivec_vcmpneh:
10204   case Intrinsic::ppc_altivec_vcmpnew:
10205   case Intrinsic::ppc_altivec_vcmpnezb:
10206   case Intrinsic::ppc_altivec_vcmpnezh:
10207   case Intrinsic::ppc_altivec_vcmpnezw:
10208     if (Subtarget.hasP9Altivec())
10209       switch (IntrinsicID) {
10210       default:
10211         llvm_unreachable("Unknown comparison intrinsic.");
10212       case Intrinsic::ppc_altivec_vcmpneb:
10213         CompareOpc = 7;
10214         break;
10215       case Intrinsic::ppc_altivec_vcmpneh:
10216         CompareOpc = 71;
10217         break;
10218       case Intrinsic::ppc_altivec_vcmpnew:
10219         CompareOpc = 135;
10220         break;
10221       case Intrinsic::ppc_altivec_vcmpnezb:
10222         CompareOpc = 263;
10223         break;
10224       case Intrinsic::ppc_altivec_vcmpnezh:
10225         CompareOpc = 327;
10226         break;
10227       case Intrinsic::ppc_altivec_vcmpnezw:
10228         CompareOpc = 391;
10229         break;
10230       }
10231     else
10232       return false;
10233     break;
10234   case Intrinsic::ppc_altivec_vcmpgefp:
10235     CompareOpc = 454;
10236     break;
10237   case Intrinsic::ppc_altivec_vcmpgtfp:
10238     CompareOpc = 710;
10239     break;
10240   case Intrinsic::ppc_altivec_vcmpgtsb:
10241     CompareOpc = 774;
10242     break;
10243   case Intrinsic::ppc_altivec_vcmpgtsh:
10244     CompareOpc = 838;
10245     break;
10246   case Intrinsic::ppc_altivec_vcmpgtsw:
10247     CompareOpc = 902;
10248     break;
10249   case Intrinsic::ppc_altivec_vcmpgtsd:
10250     if (Subtarget.hasP8Altivec())
10251       CompareOpc = 967;
10252     else
10253       return false;
10254     break;
10255   case Intrinsic::ppc_altivec_vcmpgtub:
10256     CompareOpc = 518;
10257     break;
10258   case Intrinsic::ppc_altivec_vcmpgtuh:
10259     CompareOpc = 582;
10260     break;
10261   case Intrinsic::ppc_altivec_vcmpgtuw:
10262     CompareOpc = 646;
10263     break;
10264   case Intrinsic::ppc_altivec_vcmpgtud:
10265     if (Subtarget.hasP8Altivec())
10266       CompareOpc = 711;
10267     else
10268       return false;
10269     break;
10270   case Intrinsic::ppc_altivec_vcmpequq_p:
10271   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10272   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10273     if (!Subtarget.isISA3_1())
10274       return false;
10275     switch (IntrinsicID) {
10276     default:
10277       llvm_unreachable("Unknown comparison intrinsic.");
10278     case Intrinsic::ppc_altivec_vcmpequq_p:
10279       CompareOpc = 455;
10280       break;
10281     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10282       CompareOpc = 903;
10283       break;
10284     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10285       CompareOpc = 647;
10286       break;
10287     }
10288     isDot = true;
10289     break;
10290   }
10291   return true;
10292 }
10293 
10294 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10295 /// lower, do it, otherwise return null.
10296 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10297                                                    SelectionDAG &DAG) const {
10298   unsigned IntrinsicID =
10299     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10300 
10301   SDLoc dl(Op);
10302 
10303   switch (IntrinsicID) {
10304   case Intrinsic::thread_pointer:
10305     // Reads the thread pointer register, used for __builtin_thread_pointer.
10306     if (Subtarget.isPPC64())
10307       return DAG.getRegister(PPC::X13, MVT::i64);
10308     return DAG.getRegister(PPC::R2, MVT::i32);
10309 
10310   case Intrinsic::ppc_mma_disassemble_acc:
10311   case Intrinsic::ppc_vsx_disassemble_pair: {
10312     int NumVecs = 2;
10313     SDValue WideVec = Op.getOperand(1);
10314     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10315       NumVecs = 4;
10316       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10317     }
10318     SmallVector<SDValue, 4> RetOps;
10319     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10320       SDValue Extract = DAG.getNode(
10321           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10322           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10323                                                      : VecNo,
10324                           dl, getPointerTy(DAG.getDataLayout())));
10325       RetOps.push_back(Extract);
10326     }
10327     return DAG.getMergeValues(RetOps, dl);
10328   }
10329   }
10330 
10331   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10332   // opcode number of the comparison.
10333   int CompareOpc;
10334   bool isDot;
10335   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10336     return SDValue();    // Don't custom lower most intrinsics.
10337 
10338   // If this is a non-dot comparison, make the VCMP node and we are done.
10339   if (!isDot) {
10340     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10341                               Op.getOperand(1), Op.getOperand(2),
10342                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10343     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10344   }
10345 
10346   // Create the PPCISD altivec 'dot' comparison node.
10347   SDValue Ops[] = {
10348     Op.getOperand(2),  // LHS
10349     Op.getOperand(3),  // RHS
10350     DAG.getConstant(CompareOpc, dl, MVT::i32)
10351   };
10352   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10353   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10354 
10355   // Now that we have the comparison, emit a copy from the CR to a GPR.
10356   // This is flagged to the above dot comparison.
10357   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10358                                 DAG.getRegister(PPC::CR6, MVT::i32),
10359                                 CompNode.getValue(1));
10360 
10361   // Unpack the result based on how the target uses it.
10362   unsigned BitNo;   // Bit # of CR6.
10363   bool InvertBit;   // Invert result?
10364   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10365   default:  // Can't happen, don't crash on invalid number though.
10366   case 0:   // Return the value of the EQ bit of CR6.
10367     BitNo = 0; InvertBit = false;
10368     break;
10369   case 1:   // Return the inverted value of the EQ bit of CR6.
10370     BitNo = 0; InvertBit = true;
10371     break;
10372   case 2:   // Return the value of the LT bit of CR6.
10373     BitNo = 2; InvertBit = false;
10374     break;
10375   case 3:   // Return the inverted value of the LT bit of CR6.
10376     BitNo = 2; InvertBit = true;
10377     break;
10378   }
10379 
10380   // Shift the bit into the low position.
10381   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10382                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10383   // Isolate the bit.
10384   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10385                       DAG.getConstant(1, dl, MVT::i32));
10386 
10387   // If we are supposed to, toggle the bit.
10388   if (InvertBit)
10389     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10390                         DAG.getConstant(1, dl, MVT::i32));
10391   return Flags;
10392 }
10393 
10394 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10395                                                SelectionDAG &DAG) const {
10396   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10397   // the beginning of the argument list.
10398   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10399   SDLoc DL(Op);
10400   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10401   case Intrinsic::ppc_cfence: {
10402     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10403     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10404     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10405                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10406                                                   Op.getOperand(ArgStart + 1)),
10407                                       Op.getOperand(0)),
10408                    0);
10409   }
10410   default:
10411     break;
10412   }
10413   return SDValue();
10414 }
10415 
10416 // Lower scalar BSWAP64 to xxbrd.
10417 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10418   SDLoc dl(Op);
10419   if (!Subtarget.isPPC64())
10420     return Op;
10421   // MTVSRDD
10422   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10423                    Op.getOperand(0));
10424   // XXBRD
10425   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10426   // MFVSRD
10427   int VectorIndex = 0;
10428   if (Subtarget.isLittleEndian())
10429     VectorIndex = 1;
10430   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10431                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10432   return Op;
10433 }
10434 
10435 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10436 // compared to a value that is atomically loaded (atomic loads zero-extend).
10437 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10438                                                 SelectionDAG &DAG) const {
10439   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10440          "Expecting an atomic compare-and-swap here.");
10441   SDLoc dl(Op);
10442   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10443   EVT MemVT = AtomicNode->getMemoryVT();
10444   if (MemVT.getSizeInBits() >= 32)
10445     return Op;
10446 
10447   SDValue CmpOp = Op.getOperand(2);
10448   // If this is already correctly zero-extended, leave it alone.
10449   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10450   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10451     return Op;
10452 
10453   // Clear the high bits of the compare operand.
10454   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10455   SDValue NewCmpOp =
10456     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10457                 DAG.getConstant(MaskVal, dl, MVT::i32));
10458 
10459   // Replace the existing compare operand with the properly zero-extended one.
10460   SmallVector<SDValue, 4> Ops;
10461   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10462     Ops.push_back(AtomicNode->getOperand(i));
10463   Ops[2] = NewCmpOp;
10464   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10465   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10466   auto NodeTy =
10467     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10468   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10469 }
10470 
10471 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10472                                                  SelectionDAG &DAG) const {
10473   SDLoc dl(Op);
10474   // Create a stack slot that is 16-byte aligned.
10475   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10476   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10477   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10478   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10479 
10480   // Store the input value into Value#0 of the stack slot.
10481   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10482                                MachinePointerInfo());
10483   // Load it out.
10484   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10485 }
10486 
10487 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10488                                                   SelectionDAG &DAG) const {
10489   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10490          "Should only be called for ISD::INSERT_VECTOR_ELT");
10491 
10492   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10493 
10494   EVT VT = Op.getValueType();
10495   SDLoc dl(Op);
10496   SDValue V1 = Op.getOperand(0);
10497   SDValue V2 = Op.getOperand(1);
10498   SDValue V3 = Op.getOperand(2);
10499 
10500   if (VT == MVT::v2f64 && C)
10501     return Op;
10502 
10503   if (Subtarget.isISA3_1()) {
10504     if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
10505       return SDValue();
10506     // On P10, we have legal lowering for constant and variable indices for
10507     // integer vectors.
10508     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10509         VT == MVT::v2i64)
10510       return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
10511     // For f32 and f64 vectors, we have legal lowering for variable indices.
10512     // For f32 we also have legal lowering when the element is loaded from
10513     // memory.
10514     if (VT == MVT::v4f32 || VT == MVT::v2f64) {
10515       if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2)))
10516         return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3);
10517       return Op;
10518     }
10519   }
10520 
10521   // Before P10, we have legal lowering for constant indices but not for
10522   // variable ones.
10523   if (!C)
10524     return SDValue();
10525 
10526   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10527   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10528     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10529     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10530     unsigned InsertAtElement = C->getZExtValue();
10531     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10532     if (Subtarget.isLittleEndian()) {
10533       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10534     }
10535     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10536                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10537   }
10538   return Op;
10539 }
10540 
10541 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10542                                            SelectionDAG &DAG) const {
10543   SDLoc dl(Op);
10544   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10545   SDValue LoadChain = LN->getChain();
10546   SDValue BasePtr = LN->getBasePtr();
10547   EVT VT = Op.getValueType();
10548 
10549   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10550     return Op;
10551 
10552   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10553   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10554   // 2 or 4 vsx registers.
10555   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10556          "Type unsupported without MMA");
10557   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10558          "Type unsupported without paired vector support");
10559   Align Alignment = LN->getAlign();
10560   SmallVector<SDValue, 4> Loads;
10561   SmallVector<SDValue, 4> LoadChains;
10562   unsigned NumVecs = VT.getSizeInBits() / 128;
10563   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10564     SDValue Load =
10565         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10566                     LN->getPointerInfo().getWithOffset(Idx * 16),
10567                     commonAlignment(Alignment, Idx * 16),
10568                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10569     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10570                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10571     Loads.push_back(Load);
10572     LoadChains.push_back(Load.getValue(1));
10573   }
10574   if (Subtarget.isLittleEndian()) {
10575     std::reverse(Loads.begin(), Loads.end());
10576     std::reverse(LoadChains.begin(), LoadChains.end());
10577   }
10578   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10579   SDValue Value =
10580       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10581                   dl, VT, Loads);
10582   SDValue RetOps[] = {Value, TF};
10583   return DAG.getMergeValues(RetOps, dl);
10584 }
10585 
10586 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10587                                             SelectionDAG &DAG) const {
10588   SDLoc dl(Op);
10589   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10590   SDValue StoreChain = SN->getChain();
10591   SDValue BasePtr = SN->getBasePtr();
10592   SDValue Value = SN->getValue();
10593   EVT StoreVT = Value.getValueType();
10594 
10595   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10596     return Op;
10597 
10598   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10599   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10600   // underlying registers individually.
10601   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10602          "Type unsupported without MMA");
10603   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10604          "Type unsupported without paired vector support");
10605   Align Alignment = SN->getAlign();
10606   SmallVector<SDValue, 4> Stores;
10607   unsigned NumVecs = 2;
10608   if (StoreVT == MVT::v512i1) {
10609     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10610     NumVecs = 4;
10611   }
10612   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10613     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10614     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10615                               DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
10616     SDValue Store =
10617         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10618                      SN->getPointerInfo().getWithOffset(Idx * 16),
10619                      commonAlignment(Alignment, Idx * 16),
10620                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10621     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10622                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10623     Stores.push_back(Store);
10624   }
10625   SDValue TF = DAG.getTokenFactor(dl, Stores);
10626   return TF;
10627 }
10628 
10629 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10630   SDLoc dl(Op);
10631   if (Op.getValueType() == MVT::v4i32) {
10632     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10633 
10634     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10635     // +16 as shift amt.
10636     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10637     SDValue RHSSwap =   // = vrlw RHS, 16
10638       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10639 
10640     // Shrinkify inputs to v8i16.
10641     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10642     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10643     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10644 
10645     // Low parts multiplied together, generating 32-bit results (we ignore the
10646     // top parts).
10647     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10648                                         LHS, RHS, DAG, dl, MVT::v4i32);
10649 
10650     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10651                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10652     // Shift the high parts up 16 bits.
10653     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10654                               Neg16, DAG, dl);
10655     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10656   } else if (Op.getValueType() == MVT::v16i8) {
10657     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10658     bool isLittleEndian = Subtarget.isLittleEndian();
10659 
10660     // Multiply the even 8-bit parts, producing 16-bit sums.
10661     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10662                                            LHS, RHS, DAG, dl, MVT::v8i16);
10663     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10664 
10665     // Multiply the odd 8-bit parts, producing 16-bit sums.
10666     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10667                                           LHS, RHS, DAG, dl, MVT::v8i16);
10668     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10669 
10670     // Merge the results together.  Because vmuleub and vmuloub are
10671     // instructions with a big-endian bias, we must reverse the
10672     // element numbering and reverse the meaning of "odd" and "even"
10673     // when generating little endian code.
10674     int Ops[16];
10675     for (unsigned i = 0; i != 8; ++i) {
10676       if (isLittleEndian) {
10677         Ops[i*2  ] = 2*i;
10678         Ops[i*2+1] = 2*i+16;
10679       } else {
10680         Ops[i*2  ] = 2*i+1;
10681         Ops[i*2+1] = 2*i+1+16;
10682       }
10683     }
10684     if (isLittleEndian)
10685       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10686     else
10687       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10688   } else {
10689     llvm_unreachable("Unknown mul to lower!");
10690   }
10691 }
10692 
10693 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10694   bool IsStrict = Op->isStrictFPOpcode();
10695   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
10696       !Subtarget.hasP9Vector())
10697     return SDValue();
10698 
10699   return Op;
10700 }
10701 
10702 // Custom lowering for fpext vf32 to v2f64
10703 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10704 
10705   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10706          "Should only be called for ISD::FP_EXTEND");
10707 
10708   // FIXME: handle extends from half precision float vectors on P9.
10709   // We only want to custom lower an extend from v2f32 to v2f64.
10710   if (Op.getValueType() != MVT::v2f64 ||
10711       Op.getOperand(0).getValueType() != MVT::v2f32)
10712     return SDValue();
10713 
10714   SDLoc dl(Op);
10715   SDValue Op0 = Op.getOperand(0);
10716 
10717   switch (Op0.getOpcode()) {
10718   default:
10719     return SDValue();
10720   case ISD::EXTRACT_SUBVECTOR: {
10721     assert(Op0.getNumOperands() == 2 &&
10722            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10723            "Node should have 2 operands with second one being a constant!");
10724 
10725     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10726       return SDValue();
10727 
10728     // Custom lower is only done for high or low doubleword.
10729     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10730     if (Idx % 2 != 0)
10731       return SDValue();
10732 
10733     // Since input is v4f32, at this point Idx is either 0 or 2.
10734     // Shift to get the doubleword position we want.
10735     int DWord = Idx >> 1;
10736 
10737     // High and low word positions are different on little endian.
10738     if (Subtarget.isLittleEndian())
10739       DWord ^= 0x1;
10740 
10741     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10742                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10743   }
10744   case ISD::FADD:
10745   case ISD::FMUL:
10746   case ISD::FSUB: {
10747     SDValue NewLoad[2];
10748     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10749       // Ensure both input are loads.
10750       SDValue LdOp = Op0.getOperand(i);
10751       if (LdOp.getOpcode() != ISD::LOAD)
10752         return SDValue();
10753       // Generate new load node.
10754       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10755       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10756       NewLoad[i] = DAG.getMemIntrinsicNode(
10757           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10758           LD->getMemoryVT(), LD->getMemOperand());
10759     }
10760     SDValue NewOp =
10761         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10762                     NewLoad[1], Op0.getNode()->getFlags());
10763     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10764                        DAG.getConstant(0, dl, MVT::i32));
10765   }
10766   case ISD::LOAD: {
10767     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10768     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10769     SDValue NewLd = DAG.getMemIntrinsicNode(
10770         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10771         LD->getMemoryVT(), LD->getMemOperand());
10772     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10773                        DAG.getConstant(0, dl, MVT::i32));
10774   }
10775   }
10776   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10777 }
10778 
10779 /// LowerOperation - Provide custom lowering hooks for some operations.
10780 ///
10781 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10782   switch (Op.getOpcode()) {
10783   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10784   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10785   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10786   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10787   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10788   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10789   case ISD::STRICT_FSETCC:
10790   case ISD::STRICT_FSETCCS:
10791   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10792   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10793   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10794 
10795   case ISD::INLINEASM:
10796   case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
10797   // Variable argument lowering.
10798   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10799   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10800   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10801 
10802   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10803   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10804   case ISD::GET_DYNAMIC_AREA_OFFSET:
10805     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10806 
10807   // Exception handling lowering.
10808   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10809   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10810   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10811 
10812   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10813   case ISD::STORE:              return LowerSTORE(Op, DAG);
10814   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10815   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10816   case ISD::STRICT_FP_TO_UINT:
10817   case ISD::STRICT_FP_TO_SINT:
10818   case ISD::FP_TO_UINT:
10819   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10820   case ISD::STRICT_UINT_TO_FP:
10821   case ISD::STRICT_SINT_TO_FP:
10822   case ISD::UINT_TO_FP:
10823   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10824   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10825 
10826   // Lower 64-bit shifts.
10827   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10828   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10829   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10830 
10831   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10832   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10833 
10834   // Vector-related lowering.
10835   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10836   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10837   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10838   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10839   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10840   case ISD::MUL:                return LowerMUL(Op, DAG);
10841   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10842   case ISD::STRICT_FP_ROUND:
10843   case ISD::FP_ROUND:
10844     return LowerFP_ROUND(Op, DAG);
10845   case ISD::ROTL:               return LowerROTL(Op, DAG);
10846 
10847   // For counter-based loop handling.
10848   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10849 
10850   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10851 
10852   // Frame & Return address.
10853   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10854   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10855 
10856   case ISD::INTRINSIC_VOID:
10857     return LowerINTRINSIC_VOID(Op, DAG);
10858   case ISD::BSWAP:
10859     return LowerBSWAP(Op, DAG);
10860   case ISD::ATOMIC_CMP_SWAP:
10861     return LowerATOMIC_CMP_SWAP(Op, DAG);
10862   }
10863 }
10864 
10865 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10866                                            SmallVectorImpl<SDValue>&Results,
10867                                            SelectionDAG &DAG) const {
10868   SDLoc dl(N);
10869   switch (N->getOpcode()) {
10870   default:
10871     llvm_unreachable("Do not know how to custom type legalize this operation!");
10872   case ISD::READCYCLECOUNTER: {
10873     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10874     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10875 
10876     Results.push_back(
10877         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10878     Results.push_back(RTB.getValue(2));
10879     break;
10880   }
10881   case ISD::INTRINSIC_W_CHAIN: {
10882     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10883         Intrinsic::loop_decrement)
10884       break;
10885 
10886     assert(N->getValueType(0) == MVT::i1 &&
10887            "Unexpected result type for CTR decrement intrinsic");
10888     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10889                                  N->getValueType(0));
10890     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10891     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10892                                  N->getOperand(1));
10893 
10894     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10895     Results.push_back(NewInt.getValue(1));
10896     break;
10897   }
10898   case ISD::VAARG: {
10899     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10900       return;
10901 
10902     EVT VT = N->getValueType(0);
10903 
10904     if (VT == MVT::i64) {
10905       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10906 
10907       Results.push_back(NewNode);
10908       Results.push_back(NewNode.getValue(1));
10909     }
10910     return;
10911   }
10912   case ISD::STRICT_FP_TO_SINT:
10913   case ISD::STRICT_FP_TO_UINT:
10914   case ISD::FP_TO_SINT:
10915   case ISD::FP_TO_UINT:
10916     // LowerFP_TO_INT() can only handle f32 and f64.
10917     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
10918         MVT::ppcf128)
10919       return;
10920     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10921     return;
10922   case ISD::TRUNCATE: {
10923     if (!N->getValueType(0).isVector())
10924       return;
10925     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
10926     if (Lowered)
10927       Results.push_back(Lowered);
10928     return;
10929   }
10930   case ISD::FSHL:
10931   case ISD::FSHR:
10932     // Don't handle funnel shifts here.
10933     return;
10934   case ISD::BITCAST:
10935     // Don't handle bitcast here.
10936     return;
10937   case ISD::FP_EXTEND:
10938     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10939     if (Lowered)
10940       Results.push_back(Lowered);
10941     return;
10942   }
10943 }
10944 
10945 //===----------------------------------------------------------------------===//
10946 //  Other Lowering Code
10947 //===----------------------------------------------------------------------===//
10948 
10949 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
10950   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10951   Function *Func = Intrinsic::getDeclaration(M, Id);
10952   return Builder.CreateCall(Func, {});
10953 }
10954 
10955 // The mappings for emitLeading/TrailingFence is taken from
10956 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10957 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
10958                                                  Instruction *Inst,
10959                                                  AtomicOrdering Ord) const {
10960   if (Ord == AtomicOrdering::SequentiallyConsistent)
10961     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10962   if (isReleaseOrStronger(Ord))
10963     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10964   return nullptr;
10965 }
10966 
10967 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
10968                                                   Instruction *Inst,
10969                                                   AtomicOrdering Ord) const {
10970   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10971     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10972     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10973     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10974     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10975       return Builder.CreateCall(
10976           Intrinsic::getDeclaration(
10977               Builder.GetInsertBlock()->getParent()->getParent(),
10978               Intrinsic::ppc_cfence, {Inst->getType()}),
10979           {Inst});
10980     // FIXME: Can use isync for rmw operation.
10981     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10982   }
10983   return nullptr;
10984 }
10985 
10986 MachineBasicBlock *
10987 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10988                                     unsigned AtomicSize,
10989                                     unsigned BinOpcode,
10990                                     unsigned CmpOpcode,
10991                                     unsigned CmpPred) const {
10992   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10993   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10994 
10995   auto LoadMnemonic = PPC::LDARX;
10996   auto StoreMnemonic = PPC::STDCX;
10997   switch (AtomicSize) {
10998   default:
10999     llvm_unreachable("Unexpected size of atomic entity");
11000   case 1:
11001     LoadMnemonic = PPC::LBARX;
11002     StoreMnemonic = PPC::STBCX;
11003     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11004     break;
11005   case 2:
11006     LoadMnemonic = PPC::LHARX;
11007     StoreMnemonic = PPC::STHCX;
11008     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11009     break;
11010   case 4:
11011     LoadMnemonic = PPC::LWARX;
11012     StoreMnemonic = PPC::STWCX;
11013     break;
11014   case 8:
11015     LoadMnemonic = PPC::LDARX;
11016     StoreMnemonic = PPC::STDCX;
11017     break;
11018   }
11019 
11020   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11021   MachineFunction *F = BB->getParent();
11022   MachineFunction::iterator It = ++BB->getIterator();
11023 
11024   Register dest = MI.getOperand(0).getReg();
11025   Register ptrA = MI.getOperand(1).getReg();
11026   Register ptrB = MI.getOperand(2).getReg();
11027   Register incr = MI.getOperand(3).getReg();
11028   DebugLoc dl = MI.getDebugLoc();
11029 
11030   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11031   MachineBasicBlock *loop2MBB =
11032     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11033   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11034   F->insert(It, loopMBB);
11035   if (CmpOpcode)
11036     F->insert(It, loop2MBB);
11037   F->insert(It, exitMBB);
11038   exitMBB->splice(exitMBB->begin(), BB,
11039                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11040   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11041 
11042   MachineRegisterInfo &RegInfo = F->getRegInfo();
11043   Register TmpReg = (!BinOpcode) ? incr :
11044     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11045                                            : &PPC::GPRCRegClass);
11046 
11047   //  thisMBB:
11048   //   ...
11049   //   fallthrough --> loopMBB
11050   BB->addSuccessor(loopMBB);
11051 
11052   //  loopMBB:
11053   //   l[wd]arx dest, ptr
11054   //   add r0, dest, incr
11055   //   st[wd]cx. r0, ptr
11056   //   bne- loopMBB
11057   //   fallthrough --> exitMBB
11058 
11059   // For max/min...
11060   //  loopMBB:
11061   //   l[wd]arx dest, ptr
11062   //   cmpl?[wd] incr, dest
11063   //   bgt exitMBB
11064   //  loop2MBB:
11065   //   st[wd]cx. dest, ptr
11066   //   bne- loopMBB
11067   //   fallthrough --> exitMBB
11068 
11069   BB = loopMBB;
11070   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11071     .addReg(ptrA).addReg(ptrB);
11072   if (BinOpcode)
11073     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11074   if (CmpOpcode) {
11075     // Signed comparisons of byte or halfword values must be sign-extended.
11076     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11077       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11078       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11079               ExtReg).addReg(dest);
11080       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11081         .addReg(incr).addReg(ExtReg);
11082     } else
11083       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11084         .addReg(incr).addReg(dest);
11085 
11086     BuildMI(BB, dl, TII->get(PPC::BCC))
11087       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11088     BB->addSuccessor(loop2MBB);
11089     BB->addSuccessor(exitMBB);
11090     BB = loop2MBB;
11091   }
11092   BuildMI(BB, dl, TII->get(StoreMnemonic))
11093     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11094   BuildMI(BB, dl, TII->get(PPC::BCC))
11095     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11096   BB->addSuccessor(loopMBB);
11097   BB->addSuccessor(exitMBB);
11098 
11099   //  exitMBB:
11100   //   ...
11101   BB = exitMBB;
11102   return BB;
11103 }
11104 
11105 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11106   switch(MI.getOpcode()) {
11107   default:
11108     return false;
11109   case PPC::COPY:
11110     return TII->isSignExtended(MI);
11111   case PPC::LHA:
11112   case PPC::LHA8:
11113   case PPC::LHAU:
11114   case PPC::LHAU8:
11115   case PPC::LHAUX:
11116   case PPC::LHAUX8:
11117   case PPC::LHAX:
11118   case PPC::LHAX8:
11119   case PPC::LWA:
11120   case PPC::LWAUX:
11121   case PPC::LWAX:
11122   case PPC::LWAX_32:
11123   case PPC::LWA_32:
11124   case PPC::PLHA:
11125   case PPC::PLHA8:
11126   case PPC::PLHA8pc:
11127   case PPC::PLHApc:
11128   case PPC::PLWA:
11129   case PPC::PLWA8:
11130   case PPC::PLWA8pc:
11131   case PPC::PLWApc:
11132   case PPC::EXTSB:
11133   case PPC::EXTSB8:
11134   case PPC::EXTSB8_32_64:
11135   case PPC::EXTSB8_rec:
11136   case PPC::EXTSB_rec:
11137   case PPC::EXTSH:
11138   case PPC::EXTSH8:
11139   case PPC::EXTSH8_32_64:
11140   case PPC::EXTSH8_rec:
11141   case PPC::EXTSH_rec:
11142   case PPC::EXTSW:
11143   case PPC::EXTSWSLI:
11144   case PPC::EXTSWSLI_32_64:
11145   case PPC::EXTSWSLI_32_64_rec:
11146   case PPC::EXTSWSLI_rec:
11147   case PPC::EXTSW_32:
11148   case PPC::EXTSW_32_64:
11149   case PPC::EXTSW_32_64_rec:
11150   case PPC::EXTSW_rec:
11151   case PPC::SRAW:
11152   case PPC::SRAWI:
11153   case PPC::SRAWI_rec:
11154   case PPC::SRAW_rec:
11155     return true;
11156   }
11157   return false;
11158 }
11159 
11160 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11161     MachineInstr &MI, MachineBasicBlock *BB,
11162     bool is8bit, // operation
11163     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11164   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11165   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11166 
11167   // If this is a signed comparison and the value being compared is not known
11168   // to be sign extended, sign extend it here.
11169   DebugLoc dl = MI.getDebugLoc();
11170   MachineFunction *F = BB->getParent();
11171   MachineRegisterInfo &RegInfo = F->getRegInfo();
11172   Register incr = MI.getOperand(3).getReg();
11173   bool IsSignExtended = Register::isVirtualRegister(incr) &&
11174     isSignExtended(*RegInfo.getVRegDef(incr), TII);
11175 
11176   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
11177     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11178     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
11179         .addReg(MI.getOperand(3).getReg());
11180     MI.getOperand(3).setReg(ValueReg);
11181   }
11182   // If we support part-word atomic mnemonics, just use them
11183   if (Subtarget.hasPartwordAtomics())
11184     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11185                             CmpPred);
11186 
11187   // In 64 bit mode we have to use 64 bits for addresses, even though the
11188   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11189   // registers without caring whether they're 32 or 64, but here we're
11190   // doing actual arithmetic on the addresses.
11191   bool is64bit = Subtarget.isPPC64();
11192   bool isLittleEndian = Subtarget.isLittleEndian();
11193   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11194 
11195   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11196   MachineFunction::iterator It = ++BB->getIterator();
11197 
11198   Register dest = MI.getOperand(0).getReg();
11199   Register ptrA = MI.getOperand(1).getReg();
11200   Register ptrB = MI.getOperand(2).getReg();
11201 
11202   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11203   MachineBasicBlock *loop2MBB =
11204       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11205   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11206   F->insert(It, loopMBB);
11207   if (CmpOpcode)
11208     F->insert(It, loop2MBB);
11209   F->insert(It, exitMBB);
11210   exitMBB->splice(exitMBB->begin(), BB,
11211                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11212   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11213 
11214   const TargetRegisterClass *RC =
11215       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11216   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11217 
11218   Register PtrReg = RegInfo.createVirtualRegister(RC);
11219   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11220   Register ShiftReg =
11221       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11222   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11223   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11224   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11225   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11226   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11227   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11228   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11229   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11230   Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
11231   Register Ptr1Reg;
11232   Register TmpReg =
11233       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11234 
11235   //  thisMBB:
11236   //   ...
11237   //   fallthrough --> loopMBB
11238   BB->addSuccessor(loopMBB);
11239 
11240   // The 4-byte load must be aligned, while a char or short may be
11241   // anywhere in the word.  Hence all this nasty bookkeeping code.
11242   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11243   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11244   //   xori shift, shift1, 24 [16]
11245   //   rlwinm ptr, ptr1, 0, 0, 29
11246   //   slw incr2, incr, shift
11247   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11248   //   slw mask, mask2, shift
11249   //  loopMBB:
11250   //   lwarx tmpDest, ptr
11251   //   add tmp, tmpDest, incr2
11252   //   andc tmp2, tmpDest, mask
11253   //   and tmp3, tmp, mask
11254   //   or tmp4, tmp3, tmp2
11255   //   stwcx. tmp4, ptr
11256   //   bne- loopMBB
11257   //   fallthrough --> exitMBB
11258   //   srw SrwDest, tmpDest, shift
11259   //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11260   if (ptrA != ZeroReg) {
11261     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11262     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11263         .addReg(ptrA)
11264         .addReg(ptrB);
11265   } else {
11266     Ptr1Reg = ptrB;
11267   }
11268   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11269   // mode.
11270   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11271       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11272       .addImm(3)
11273       .addImm(27)
11274       .addImm(is8bit ? 28 : 27);
11275   if (!isLittleEndian)
11276     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11277         .addReg(Shift1Reg)
11278         .addImm(is8bit ? 24 : 16);
11279   if (is64bit)
11280     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11281         .addReg(Ptr1Reg)
11282         .addImm(0)
11283         .addImm(61);
11284   else
11285     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11286         .addReg(Ptr1Reg)
11287         .addImm(0)
11288         .addImm(0)
11289         .addImm(29);
11290   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11291   if (is8bit)
11292     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11293   else {
11294     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11295     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11296         .addReg(Mask3Reg)
11297         .addImm(65535);
11298   }
11299   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11300       .addReg(Mask2Reg)
11301       .addReg(ShiftReg);
11302 
11303   BB = loopMBB;
11304   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11305       .addReg(ZeroReg)
11306       .addReg(PtrReg);
11307   if (BinOpcode)
11308     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11309         .addReg(Incr2Reg)
11310         .addReg(TmpDestReg);
11311   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11312       .addReg(TmpDestReg)
11313       .addReg(MaskReg);
11314   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11315   if (CmpOpcode) {
11316     // For unsigned comparisons, we can directly compare the shifted values.
11317     // For signed comparisons we shift and sign extend.
11318     Register SReg = RegInfo.createVirtualRegister(GPRC);
11319     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11320         .addReg(TmpDestReg)
11321         .addReg(MaskReg);
11322     unsigned ValueReg = SReg;
11323     unsigned CmpReg = Incr2Reg;
11324     if (CmpOpcode == PPC::CMPW) {
11325       ValueReg = RegInfo.createVirtualRegister(GPRC);
11326       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11327           .addReg(SReg)
11328           .addReg(ShiftReg);
11329       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11330       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11331           .addReg(ValueReg);
11332       ValueReg = ValueSReg;
11333       CmpReg = incr;
11334     }
11335     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11336         .addReg(CmpReg)
11337         .addReg(ValueReg);
11338     BuildMI(BB, dl, TII->get(PPC::BCC))
11339         .addImm(CmpPred)
11340         .addReg(PPC::CR0)
11341         .addMBB(exitMBB);
11342     BB->addSuccessor(loop2MBB);
11343     BB->addSuccessor(exitMBB);
11344     BB = loop2MBB;
11345   }
11346   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11347   BuildMI(BB, dl, TII->get(PPC::STWCX))
11348       .addReg(Tmp4Reg)
11349       .addReg(ZeroReg)
11350       .addReg(PtrReg);
11351   BuildMI(BB, dl, TII->get(PPC::BCC))
11352       .addImm(PPC::PRED_NE)
11353       .addReg(PPC::CR0)
11354       .addMBB(loopMBB);
11355   BB->addSuccessor(loopMBB);
11356   BB->addSuccessor(exitMBB);
11357 
11358   //  exitMBB:
11359   //   ...
11360   BB = exitMBB;
11361   // Since the shift amount is not a constant, we need to clear
11362   // the upper bits with a separate RLWINM.
11363   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
11364       .addReg(SrwDestReg)
11365       .addImm(0)
11366       .addImm(is8bit ? 24 : 16)
11367       .addImm(31);
11368   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
11369       .addReg(TmpDestReg)
11370       .addReg(ShiftReg);
11371   return BB;
11372 }
11373 
11374 llvm::MachineBasicBlock *
11375 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11376                                     MachineBasicBlock *MBB) const {
11377   DebugLoc DL = MI.getDebugLoc();
11378   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11379   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11380 
11381   MachineFunction *MF = MBB->getParent();
11382   MachineRegisterInfo &MRI = MF->getRegInfo();
11383 
11384   const BasicBlock *BB = MBB->getBasicBlock();
11385   MachineFunction::iterator I = ++MBB->getIterator();
11386 
11387   Register DstReg = MI.getOperand(0).getReg();
11388   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11389   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11390   Register mainDstReg = MRI.createVirtualRegister(RC);
11391   Register restoreDstReg = MRI.createVirtualRegister(RC);
11392 
11393   MVT PVT = getPointerTy(MF->getDataLayout());
11394   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11395          "Invalid Pointer Size!");
11396   // For v = setjmp(buf), we generate
11397   //
11398   // thisMBB:
11399   //  SjLjSetup mainMBB
11400   //  bl mainMBB
11401   //  v_restore = 1
11402   //  b sinkMBB
11403   //
11404   // mainMBB:
11405   //  buf[LabelOffset] = LR
11406   //  v_main = 0
11407   //
11408   // sinkMBB:
11409   //  v = phi(main, restore)
11410   //
11411 
11412   MachineBasicBlock *thisMBB = MBB;
11413   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11414   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11415   MF->insert(I, mainMBB);
11416   MF->insert(I, sinkMBB);
11417 
11418   MachineInstrBuilder MIB;
11419 
11420   // Transfer the remainder of BB and its successor edges to sinkMBB.
11421   sinkMBB->splice(sinkMBB->begin(), MBB,
11422                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11423   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11424 
11425   // Note that the structure of the jmp_buf used here is not compatible
11426   // with that used by libc, and is not designed to be. Specifically, it
11427   // stores only those 'reserved' registers that LLVM does not otherwise
11428   // understand how to spill. Also, by convention, by the time this
11429   // intrinsic is called, Clang has already stored the frame address in the
11430   // first slot of the buffer and stack address in the third. Following the
11431   // X86 target code, we'll store the jump address in the second slot. We also
11432   // need to save the TOC pointer (R2) to handle jumps between shared
11433   // libraries, and that will be stored in the fourth slot. The thread
11434   // identifier (R13) is not affected.
11435 
11436   // thisMBB:
11437   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11438   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11439   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11440 
11441   // Prepare IP either in reg.
11442   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11443   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11444   Register BufReg = MI.getOperand(1).getReg();
11445 
11446   if (Subtarget.is64BitELFABI()) {
11447     setUsesTOCBasePtr(*MBB->getParent());
11448     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11449               .addReg(PPC::X2)
11450               .addImm(TOCOffset)
11451               .addReg(BufReg)
11452               .cloneMemRefs(MI);
11453   }
11454 
11455   // Naked functions never have a base pointer, and so we use r1. For all
11456   // other functions, this decision must be delayed until during PEI.
11457   unsigned BaseReg;
11458   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11459     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11460   else
11461     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11462 
11463   MIB = BuildMI(*thisMBB, MI, DL,
11464                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11465             .addReg(BaseReg)
11466             .addImm(BPOffset)
11467             .addReg(BufReg)
11468             .cloneMemRefs(MI);
11469 
11470   // Setup
11471   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11472   MIB.addRegMask(TRI->getNoPreservedMask());
11473 
11474   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11475 
11476   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11477           .addMBB(mainMBB);
11478   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11479 
11480   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11481   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11482 
11483   // mainMBB:
11484   //  mainDstReg = 0
11485   MIB =
11486       BuildMI(mainMBB, DL,
11487               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11488 
11489   // Store IP
11490   if (Subtarget.isPPC64()) {
11491     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11492             .addReg(LabelReg)
11493             .addImm(LabelOffset)
11494             .addReg(BufReg);
11495   } else {
11496     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11497             .addReg(LabelReg)
11498             .addImm(LabelOffset)
11499             .addReg(BufReg);
11500   }
11501   MIB.cloneMemRefs(MI);
11502 
11503   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11504   mainMBB->addSuccessor(sinkMBB);
11505 
11506   // sinkMBB:
11507   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11508           TII->get(PPC::PHI), DstReg)
11509     .addReg(mainDstReg).addMBB(mainMBB)
11510     .addReg(restoreDstReg).addMBB(thisMBB);
11511 
11512   MI.eraseFromParent();
11513   return sinkMBB;
11514 }
11515 
11516 MachineBasicBlock *
11517 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11518                                      MachineBasicBlock *MBB) const {
11519   DebugLoc DL = MI.getDebugLoc();
11520   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11521 
11522   MachineFunction *MF = MBB->getParent();
11523   MachineRegisterInfo &MRI = MF->getRegInfo();
11524 
11525   MVT PVT = getPointerTy(MF->getDataLayout());
11526   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11527          "Invalid Pointer Size!");
11528 
11529   const TargetRegisterClass *RC =
11530     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11531   Register Tmp = MRI.createVirtualRegister(RC);
11532   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11533   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11534   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11535   unsigned BP =
11536       (PVT == MVT::i64)
11537           ? PPC::X30
11538           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11539                                                               : PPC::R30);
11540 
11541   MachineInstrBuilder MIB;
11542 
11543   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11544   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11545   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11546   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11547 
11548   Register BufReg = MI.getOperand(0).getReg();
11549 
11550   // Reload FP (the jumped-to function may not have had a
11551   // frame pointer, and if so, then its r31 will be restored
11552   // as necessary).
11553   if (PVT == MVT::i64) {
11554     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11555             .addImm(0)
11556             .addReg(BufReg);
11557   } else {
11558     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11559             .addImm(0)
11560             .addReg(BufReg);
11561   }
11562   MIB.cloneMemRefs(MI);
11563 
11564   // Reload IP
11565   if (PVT == MVT::i64) {
11566     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11567             .addImm(LabelOffset)
11568             .addReg(BufReg);
11569   } else {
11570     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11571             .addImm(LabelOffset)
11572             .addReg(BufReg);
11573   }
11574   MIB.cloneMemRefs(MI);
11575 
11576   // Reload SP
11577   if (PVT == MVT::i64) {
11578     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11579             .addImm(SPOffset)
11580             .addReg(BufReg);
11581   } else {
11582     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11583             .addImm(SPOffset)
11584             .addReg(BufReg);
11585   }
11586   MIB.cloneMemRefs(MI);
11587 
11588   // Reload BP
11589   if (PVT == MVT::i64) {
11590     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11591             .addImm(BPOffset)
11592             .addReg(BufReg);
11593   } else {
11594     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11595             .addImm(BPOffset)
11596             .addReg(BufReg);
11597   }
11598   MIB.cloneMemRefs(MI);
11599 
11600   // Reload TOC
11601   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11602     setUsesTOCBasePtr(*MBB->getParent());
11603     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11604               .addImm(TOCOffset)
11605               .addReg(BufReg)
11606               .cloneMemRefs(MI);
11607   }
11608 
11609   // Jump
11610   BuildMI(*MBB, MI, DL,
11611           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11612   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11613 
11614   MI.eraseFromParent();
11615   return MBB;
11616 }
11617 
11618 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11619   // If the function specifically requests inline stack probes, emit them.
11620   if (MF.getFunction().hasFnAttribute("probe-stack"))
11621     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11622            "inline-asm";
11623   return false;
11624 }
11625 
11626 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11627   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11628   unsigned StackAlign = TFI->getStackAlignment();
11629   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11630          "Unexpected stack alignment");
11631   // The default stack probe size is 4096 if the function has no
11632   // stack-probe-size attribute.
11633   unsigned StackProbeSize = 4096;
11634   const Function &Fn = MF.getFunction();
11635   if (Fn.hasFnAttribute("stack-probe-size"))
11636     Fn.getFnAttribute("stack-probe-size")
11637         .getValueAsString()
11638         .getAsInteger(0, StackProbeSize);
11639   // Round down to the stack alignment.
11640   StackProbeSize &= ~(StackAlign - 1);
11641   return StackProbeSize ? StackProbeSize : StackAlign;
11642 }
11643 
11644 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11645 // into three phases. In the first phase, it uses pseudo instruction
11646 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11647 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11648 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11649 // MaxCallFrameSize so that it can calculate correct data area pointer.
11650 MachineBasicBlock *
11651 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11652                                     MachineBasicBlock *MBB) const {
11653   const bool isPPC64 = Subtarget.isPPC64();
11654   MachineFunction *MF = MBB->getParent();
11655   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11656   DebugLoc DL = MI.getDebugLoc();
11657   const unsigned ProbeSize = getStackProbeSize(*MF);
11658   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11659   MachineRegisterInfo &MRI = MF->getRegInfo();
11660   // The CFG of probing stack looks as
11661   //         +-----+
11662   //         | MBB |
11663   //         +--+--+
11664   //            |
11665   //       +----v----+
11666   //  +--->+ TestMBB +---+
11667   //  |    +----+----+   |
11668   //  |         |        |
11669   //  |   +-----v----+   |
11670   //  +---+ BlockMBB |   |
11671   //      +----------+   |
11672   //                     |
11673   //       +---------+   |
11674   //       | TailMBB +<--+
11675   //       +---------+
11676   // In MBB, calculate previous frame pointer and final stack pointer.
11677   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11678   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11679   // TailMBB is spliced via \p MI.
11680   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11681   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11682   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11683 
11684   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11685   MF->insert(MBBIter, TestMBB);
11686   MF->insert(MBBIter, BlockMBB);
11687   MF->insert(MBBIter, TailMBB);
11688 
11689   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11690   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11691 
11692   Register DstReg = MI.getOperand(0).getReg();
11693   Register NegSizeReg = MI.getOperand(1).getReg();
11694   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11695   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11696   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11697   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11698 
11699   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11700   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11701   // NegSize.
11702   unsigned ProbeOpc;
11703   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11704     ProbeOpc =
11705         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11706   else
11707     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11708     // and NegSizeReg will be allocated in the same phyreg to avoid
11709     // redundant copy when NegSizeReg has only one use which is current MI and
11710     // will be replaced by PREPARE_PROBED_ALLOCA then.
11711     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11712                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11713   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11714       .addDef(ActualNegSizeReg)
11715       .addReg(NegSizeReg)
11716       .add(MI.getOperand(2))
11717       .add(MI.getOperand(3));
11718 
11719   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11720   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11721           FinalStackPtr)
11722       .addReg(SPReg)
11723       .addReg(ActualNegSizeReg);
11724 
11725   // Materialize a scratch register for update.
11726   int64_t NegProbeSize = -(int64_t)ProbeSize;
11727   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11728   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11729   if (!isInt<16>(NegProbeSize)) {
11730     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11731     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11732         .addImm(NegProbeSize >> 16);
11733     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11734             ScratchReg)
11735         .addReg(TempReg)
11736         .addImm(NegProbeSize & 0xFFFF);
11737   } else
11738     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11739         .addImm(NegProbeSize);
11740 
11741   {
11742     // Probing leading residual part.
11743     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11744     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11745         .addReg(ActualNegSizeReg)
11746         .addReg(ScratchReg);
11747     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11748     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11749         .addReg(Div)
11750         .addReg(ScratchReg);
11751     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11752     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11753         .addReg(Mul)
11754         .addReg(ActualNegSizeReg);
11755     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11756         .addReg(FramePointer)
11757         .addReg(SPReg)
11758         .addReg(NegMod);
11759   }
11760 
11761   {
11762     // Remaining part should be multiple of ProbeSize.
11763     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11764     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11765         .addReg(SPReg)
11766         .addReg(FinalStackPtr);
11767     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11768         .addImm(PPC::PRED_EQ)
11769         .addReg(CmpResult)
11770         .addMBB(TailMBB);
11771     TestMBB->addSuccessor(BlockMBB);
11772     TestMBB->addSuccessor(TailMBB);
11773   }
11774 
11775   {
11776     // Touch the block.
11777     // |P...|P...|P...
11778     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11779         .addReg(FramePointer)
11780         .addReg(SPReg)
11781         .addReg(ScratchReg);
11782     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11783     BlockMBB->addSuccessor(TestMBB);
11784   }
11785 
11786   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11787   // DYNAREAOFFSET pseudo instruction to get the future result.
11788   Register MaxCallFrameSizeReg =
11789       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11790   BuildMI(TailMBB, DL,
11791           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11792           MaxCallFrameSizeReg)
11793       .add(MI.getOperand(2))
11794       .add(MI.getOperand(3));
11795   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11796       .addReg(SPReg)
11797       .addReg(MaxCallFrameSizeReg);
11798 
11799   // Splice instructions after MI to TailMBB.
11800   TailMBB->splice(TailMBB->end(), MBB,
11801                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11802   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11803   MBB->addSuccessor(TestMBB);
11804 
11805   // Delete the pseudo instruction.
11806   MI.eraseFromParent();
11807 
11808   ++NumDynamicAllocaProbed;
11809   return TailMBB;
11810 }
11811 
11812 MachineBasicBlock *
11813 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11814                                                MachineBasicBlock *BB) const {
11815   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11816       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11817     if (Subtarget.is64BitELFABI() &&
11818         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11819         !Subtarget.isUsingPCRelativeCalls()) {
11820       // Call lowering should have added an r2 operand to indicate a dependence
11821       // on the TOC base pointer value. It can't however, because there is no
11822       // way to mark the dependence as implicit there, and so the stackmap code
11823       // will confuse it with a regular operand. Instead, add the dependence
11824       // here.
11825       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11826     }
11827 
11828     return emitPatchPoint(MI, BB);
11829   }
11830 
11831   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11832       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11833     return emitEHSjLjSetJmp(MI, BB);
11834   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11835              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11836     return emitEHSjLjLongJmp(MI, BB);
11837   }
11838 
11839   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11840 
11841   // To "insert" these instructions we actually have to insert their
11842   // control-flow patterns.
11843   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11844   MachineFunction::iterator It = ++BB->getIterator();
11845 
11846   MachineFunction *F = BB->getParent();
11847 
11848   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11849       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11850       MI.getOpcode() == PPC::SELECT_I8) {
11851     SmallVector<MachineOperand, 2> Cond;
11852     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11853         MI.getOpcode() == PPC::SELECT_CC_I8)
11854       Cond.push_back(MI.getOperand(4));
11855     else
11856       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11857     Cond.push_back(MI.getOperand(1));
11858 
11859     DebugLoc dl = MI.getDebugLoc();
11860     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11861                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11862   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11863              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11864              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11865              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11866              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11867              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11868              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11869              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11870              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11871              MI.getOpcode() == PPC::SELECT_F4 ||
11872              MI.getOpcode() == PPC::SELECT_F8 ||
11873              MI.getOpcode() == PPC::SELECT_F16 ||
11874              MI.getOpcode() == PPC::SELECT_SPE ||
11875              MI.getOpcode() == PPC::SELECT_SPE4 ||
11876              MI.getOpcode() == PPC::SELECT_VRRC ||
11877              MI.getOpcode() == PPC::SELECT_VSFRC ||
11878              MI.getOpcode() == PPC::SELECT_VSSRC ||
11879              MI.getOpcode() == PPC::SELECT_VSRC) {
11880     // The incoming instruction knows the destination vreg to set, the
11881     // condition code register to branch on, the true/false values to
11882     // select between, and a branch opcode to use.
11883 
11884     //  thisMBB:
11885     //  ...
11886     //   TrueVal = ...
11887     //   cmpTY ccX, r1, r2
11888     //   bCC copy1MBB
11889     //   fallthrough --> copy0MBB
11890     MachineBasicBlock *thisMBB = BB;
11891     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11892     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11893     DebugLoc dl = MI.getDebugLoc();
11894     F->insert(It, copy0MBB);
11895     F->insert(It, sinkMBB);
11896 
11897     // Transfer the remainder of BB and its successor edges to sinkMBB.
11898     sinkMBB->splice(sinkMBB->begin(), BB,
11899                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11900     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11901 
11902     // Next, add the true and fallthrough blocks as its successors.
11903     BB->addSuccessor(copy0MBB);
11904     BB->addSuccessor(sinkMBB);
11905 
11906     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11907         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11908         MI.getOpcode() == PPC::SELECT_F16 ||
11909         MI.getOpcode() == PPC::SELECT_SPE4 ||
11910         MI.getOpcode() == PPC::SELECT_SPE ||
11911         MI.getOpcode() == PPC::SELECT_VRRC ||
11912         MI.getOpcode() == PPC::SELECT_VSFRC ||
11913         MI.getOpcode() == PPC::SELECT_VSSRC ||
11914         MI.getOpcode() == PPC::SELECT_VSRC) {
11915       BuildMI(BB, dl, TII->get(PPC::BC))
11916           .addReg(MI.getOperand(1).getReg())
11917           .addMBB(sinkMBB);
11918     } else {
11919       unsigned SelectPred = MI.getOperand(4).getImm();
11920       BuildMI(BB, dl, TII->get(PPC::BCC))
11921           .addImm(SelectPred)
11922           .addReg(MI.getOperand(1).getReg())
11923           .addMBB(sinkMBB);
11924     }
11925 
11926     //  copy0MBB:
11927     //   %FalseValue = ...
11928     //   # fallthrough to sinkMBB
11929     BB = copy0MBB;
11930 
11931     // Update machine-CFG edges
11932     BB->addSuccessor(sinkMBB);
11933 
11934     //  sinkMBB:
11935     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11936     //  ...
11937     BB = sinkMBB;
11938     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11939         .addReg(MI.getOperand(3).getReg())
11940         .addMBB(copy0MBB)
11941         .addReg(MI.getOperand(2).getReg())
11942         .addMBB(thisMBB);
11943   } else if (MI.getOpcode() == PPC::ReadTB) {
11944     // To read the 64-bit time-base register on a 32-bit target, we read the
11945     // two halves. Should the counter have wrapped while it was being read, we
11946     // need to try again.
11947     // ...
11948     // readLoop:
11949     // mfspr Rx,TBU # load from TBU
11950     // mfspr Ry,TB  # load from TB
11951     // mfspr Rz,TBU # load from TBU
11952     // cmpw crX,Rx,Rz # check if 'old'='new'
11953     // bne readLoop   # branch if they're not equal
11954     // ...
11955 
11956     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11957     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11958     DebugLoc dl = MI.getDebugLoc();
11959     F->insert(It, readMBB);
11960     F->insert(It, sinkMBB);
11961 
11962     // Transfer the remainder of BB and its successor edges to sinkMBB.
11963     sinkMBB->splice(sinkMBB->begin(), BB,
11964                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11965     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11966 
11967     BB->addSuccessor(readMBB);
11968     BB = readMBB;
11969 
11970     MachineRegisterInfo &RegInfo = F->getRegInfo();
11971     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11972     Register LoReg = MI.getOperand(0).getReg();
11973     Register HiReg = MI.getOperand(1).getReg();
11974 
11975     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11976     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11977     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11978 
11979     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11980 
11981     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11982         .addReg(HiReg)
11983         .addReg(ReadAgainReg);
11984     BuildMI(BB, dl, TII->get(PPC::BCC))
11985         .addImm(PPC::PRED_NE)
11986         .addReg(CmpReg)
11987         .addMBB(readMBB);
11988 
11989     BB->addSuccessor(readMBB);
11990     BB->addSuccessor(sinkMBB);
11991   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11992     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11993   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11994     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11995   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11996     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11997   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11998     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11999 
12000   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12001     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12002   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12003     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12004   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12005     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12006   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12007     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12008 
12009   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12010     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12011   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12012     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12013   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12014     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12015   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12016     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12017 
12018   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12019     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12020   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12021     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12022   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12023     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12024   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12025     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12026 
12027   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12028     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12029   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12030     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12031   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12032     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12033   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12034     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12035 
12036   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12037     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12038   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12039     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12040   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12041     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12042   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12043     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12044 
12045   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12046     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12047   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12048     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12049   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12050     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12051   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12052     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12053 
12054   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12055     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12056   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12057     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12058   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12059     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12060   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12061     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12062 
12063   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12064     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12065   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12066     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12067   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12068     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12069   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12070     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12071 
12072   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12073     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12074   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12075     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12076   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12077     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12078   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12079     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12080 
12081   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12082     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12083   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12084     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12085   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12086     BB = EmitAtomicBinary(MI, BB, 4, 0);
12087   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12088     BB = EmitAtomicBinary(MI, BB, 8, 0);
12089   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12090            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12091            (Subtarget.hasPartwordAtomics() &&
12092             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12093            (Subtarget.hasPartwordAtomics() &&
12094             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12095     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12096 
12097     auto LoadMnemonic = PPC::LDARX;
12098     auto StoreMnemonic = PPC::STDCX;
12099     switch (MI.getOpcode()) {
12100     default:
12101       llvm_unreachable("Compare and swap of unknown size");
12102     case PPC::ATOMIC_CMP_SWAP_I8:
12103       LoadMnemonic = PPC::LBARX;
12104       StoreMnemonic = PPC::STBCX;
12105       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12106       break;
12107     case PPC::ATOMIC_CMP_SWAP_I16:
12108       LoadMnemonic = PPC::LHARX;
12109       StoreMnemonic = PPC::STHCX;
12110       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12111       break;
12112     case PPC::ATOMIC_CMP_SWAP_I32:
12113       LoadMnemonic = PPC::LWARX;
12114       StoreMnemonic = PPC::STWCX;
12115       break;
12116     case PPC::ATOMIC_CMP_SWAP_I64:
12117       LoadMnemonic = PPC::LDARX;
12118       StoreMnemonic = PPC::STDCX;
12119       break;
12120     }
12121     Register dest = MI.getOperand(0).getReg();
12122     Register ptrA = MI.getOperand(1).getReg();
12123     Register ptrB = MI.getOperand(2).getReg();
12124     Register oldval = MI.getOperand(3).getReg();
12125     Register newval = MI.getOperand(4).getReg();
12126     DebugLoc dl = MI.getDebugLoc();
12127 
12128     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12129     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12130     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12131     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12132     F->insert(It, loop1MBB);
12133     F->insert(It, loop2MBB);
12134     F->insert(It, midMBB);
12135     F->insert(It, exitMBB);
12136     exitMBB->splice(exitMBB->begin(), BB,
12137                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12138     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12139 
12140     //  thisMBB:
12141     //   ...
12142     //   fallthrough --> loopMBB
12143     BB->addSuccessor(loop1MBB);
12144 
12145     // loop1MBB:
12146     //   l[bhwd]arx dest, ptr
12147     //   cmp[wd] dest, oldval
12148     //   bne- midMBB
12149     // loop2MBB:
12150     //   st[bhwd]cx. newval, ptr
12151     //   bne- loopMBB
12152     //   b exitBB
12153     // midMBB:
12154     //   st[bhwd]cx. dest, ptr
12155     // exitBB:
12156     BB = loop1MBB;
12157     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12158     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12159         .addReg(oldval)
12160         .addReg(dest);
12161     BuildMI(BB, dl, TII->get(PPC::BCC))
12162         .addImm(PPC::PRED_NE)
12163         .addReg(PPC::CR0)
12164         .addMBB(midMBB);
12165     BB->addSuccessor(loop2MBB);
12166     BB->addSuccessor(midMBB);
12167 
12168     BB = loop2MBB;
12169     BuildMI(BB, dl, TII->get(StoreMnemonic))
12170         .addReg(newval)
12171         .addReg(ptrA)
12172         .addReg(ptrB);
12173     BuildMI(BB, dl, TII->get(PPC::BCC))
12174         .addImm(PPC::PRED_NE)
12175         .addReg(PPC::CR0)
12176         .addMBB(loop1MBB);
12177     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12178     BB->addSuccessor(loop1MBB);
12179     BB->addSuccessor(exitMBB);
12180 
12181     BB = midMBB;
12182     BuildMI(BB, dl, TII->get(StoreMnemonic))
12183         .addReg(dest)
12184         .addReg(ptrA)
12185         .addReg(ptrB);
12186     BB->addSuccessor(exitMBB);
12187 
12188     //  exitMBB:
12189     //   ...
12190     BB = exitMBB;
12191   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12192              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12193     // We must use 64-bit registers for addresses when targeting 64-bit,
12194     // since we're actually doing arithmetic on them.  Other registers
12195     // can be 32-bit.
12196     bool is64bit = Subtarget.isPPC64();
12197     bool isLittleEndian = Subtarget.isLittleEndian();
12198     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12199 
12200     Register dest = MI.getOperand(0).getReg();
12201     Register ptrA = MI.getOperand(1).getReg();
12202     Register ptrB = MI.getOperand(2).getReg();
12203     Register oldval = MI.getOperand(3).getReg();
12204     Register newval = MI.getOperand(4).getReg();
12205     DebugLoc dl = MI.getDebugLoc();
12206 
12207     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12208     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12209     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12210     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12211     F->insert(It, loop1MBB);
12212     F->insert(It, loop2MBB);
12213     F->insert(It, midMBB);
12214     F->insert(It, exitMBB);
12215     exitMBB->splice(exitMBB->begin(), BB,
12216                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12217     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12218 
12219     MachineRegisterInfo &RegInfo = F->getRegInfo();
12220     const TargetRegisterClass *RC =
12221         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12222     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12223 
12224     Register PtrReg = RegInfo.createVirtualRegister(RC);
12225     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12226     Register ShiftReg =
12227         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12228     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12229     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12230     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12231     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12232     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12233     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12234     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12235     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12236     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12237     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12238     Register Ptr1Reg;
12239     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12240     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12241     //  thisMBB:
12242     //   ...
12243     //   fallthrough --> loopMBB
12244     BB->addSuccessor(loop1MBB);
12245 
12246     // The 4-byte load must be aligned, while a char or short may be
12247     // anywhere in the word.  Hence all this nasty bookkeeping code.
12248     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12249     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12250     //   xori shift, shift1, 24 [16]
12251     //   rlwinm ptr, ptr1, 0, 0, 29
12252     //   slw newval2, newval, shift
12253     //   slw oldval2, oldval,shift
12254     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12255     //   slw mask, mask2, shift
12256     //   and newval3, newval2, mask
12257     //   and oldval3, oldval2, mask
12258     // loop1MBB:
12259     //   lwarx tmpDest, ptr
12260     //   and tmp, tmpDest, mask
12261     //   cmpw tmp, oldval3
12262     //   bne- midMBB
12263     // loop2MBB:
12264     //   andc tmp2, tmpDest, mask
12265     //   or tmp4, tmp2, newval3
12266     //   stwcx. tmp4, ptr
12267     //   bne- loop1MBB
12268     //   b exitBB
12269     // midMBB:
12270     //   stwcx. tmpDest, ptr
12271     // exitBB:
12272     //   srw dest, tmpDest, shift
12273     if (ptrA != ZeroReg) {
12274       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12275       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12276           .addReg(ptrA)
12277           .addReg(ptrB);
12278     } else {
12279       Ptr1Reg = ptrB;
12280     }
12281 
12282     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12283     // mode.
12284     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12285         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12286         .addImm(3)
12287         .addImm(27)
12288         .addImm(is8bit ? 28 : 27);
12289     if (!isLittleEndian)
12290       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12291           .addReg(Shift1Reg)
12292           .addImm(is8bit ? 24 : 16);
12293     if (is64bit)
12294       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12295           .addReg(Ptr1Reg)
12296           .addImm(0)
12297           .addImm(61);
12298     else
12299       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12300           .addReg(Ptr1Reg)
12301           .addImm(0)
12302           .addImm(0)
12303           .addImm(29);
12304     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12305         .addReg(newval)
12306         .addReg(ShiftReg);
12307     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12308         .addReg(oldval)
12309         .addReg(ShiftReg);
12310     if (is8bit)
12311       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12312     else {
12313       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12314       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12315           .addReg(Mask3Reg)
12316           .addImm(65535);
12317     }
12318     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12319         .addReg(Mask2Reg)
12320         .addReg(ShiftReg);
12321     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12322         .addReg(NewVal2Reg)
12323         .addReg(MaskReg);
12324     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12325         .addReg(OldVal2Reg)
12326         .addReg(MaskReg);
12327 
12328     BB = loop1MBB;
12329     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12330         .addReg(ZeroReg)
12331         .addReg(PtrReg);
12332     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12333         .addReg(TmpDestReg)
12334         .addReg(MaskReg);
12335     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12336         .addReg(TmpReg)
12337         .addReg(OldVal3Reg);
12338     BuildMI(BB, dl, TII->get(PPC::BCC))
12339         .addImm(PPC::PRED_NE)
12340         .addReg(PPC::CR0)
12341         .addMBB(midMBB);
12342     BB->addSuccessor(loop2MBB);
12343     BB->addSuccessor(midMBB);
12344 
12345     BB = loop2MBB;
12346     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12347         .addReg(TmpDestReg)
12348         .addReg(MaskReg);
12349     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12350         .addReg(Tmp2Reg)
12351         .addReg(NewVal3Reg);
12352     BuildMI(BB, dl, TII->get(PPC::STWCX))
12353         .addReg(Tmp4Reg)
12354         .addReg(ZeroReg)
12355         .addReg(PtrReg);
12356     BuildMI(BB, dl, TII->get(PPC::BCC))
12357         .addImm(PPC::PRED_NE)
12358         .addReg(PPC::CR0)
12359         .addMBB(loop1MBB);
12360     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12361     BB->addSuccessor(loop1MBB);
12362     BB->addSuccessor(exitMBB);
12363 
12364     BB = midMBB;
12365     BuildMI(BB, dl, TII->get(PPC::STWCX))
12366         .addReg(TmpDestReg)
12367         .addReg(ZeroReg)
12368         .addReg(PtrReg);
12369     BB->addSuccessor(exitMBB);
12370 
12371     //  exitMBB:
12372     //   ...
12373     BB = exitMBB;
12374     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12375         .addReg(TmpReg)
12376         .addReg(ShiftReg);
12377   } else if (MI.getOpcode() == PPC::FADDrtz) {
12378     // This pseudo performs an FADD with rounding mode temporarily forced
12379     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12380     // is not modeled at the SelectionDAG level.
12381     Register Dest = MI.getOperand(0).getReg();
12382     Register Src1 = MI.getOperand(1).getReg();
12383     Register Src2 = MI.getOperand(2).getReg();
12384     DebugLoc dl = MI.getDebugLoc();
12385 
12386     MachineRegisterInfo &RegInfo = F->getRegInfo();
12387     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12388 
12389     // Save FPSCR value.
12390     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12391 
12392     // Set rounding mode to round-to-zero.
12393     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12394         .addImm(31)
12395         .addReg(PPC::RM, RegState::ImplicitDefine);
12396 
12397     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12398         .addImm(30)
12399         .addReg(PPC::RM, RegState::ImplicitDefine);
12400 
12401     // Perform addition.
12402     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12403                    .addReg(Src1)
12404                    .addReg(Src2);
12405     if (MI.getFlag(MachineInstr::NoFPExcept))
12406       MIB.setMIFlag(MachineInstr::NoFPExcept);
12407 
12408     // Restore FPSCR value.
12409     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12410   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12411              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12412              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12413              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12414     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12415                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12416                           ? PPC::ANDI8_rec
12417                           : PPC::ANDI_rec;
12418     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12419                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12420 
12421     MachineRegisterInfo &RegInfo = F->getRegInfo();
12422     Register Dest = RegInfo.createVirtualRegister(
12423         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12424 
12425     DebugLoc Dl = MI.getDebugLoc();
12426     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12427         .addReg(MI.getOperand(1).getReg())
12428         .addImm(1);
12429     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12430             MI.getOperand(0).getReg())
12431         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12432   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12433     DebugLoc Dl = MI.getDebugLoc();
12434     MachineRegisterInfo &RegInfo = F->getRegInfo();
12435     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12436     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12437     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12438             MI.getOperand(0).getReg())
12439         .addReg(CRReg);
12440   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12441     DebugLoc Dl = MI.getDebugLoc();
12442     unsigned Imm = MI.getOperand(1).getImm();
12443     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12444     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12445             MI.getOperand(0).getReg())
12446         .addReg(PPC::CR0EQ);
12447   } else if (MI.getOpcode() == PPC::SETRNDi) {
12448     DebugLoc dl = MI.getDebugLoc();
12449     Register OldFPSCRReg = MI.getOperand(0).getReg();
12450 
12451     // Save FPSCR value.
12452     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12453 
12454     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12455     // the following settings:
12456     //   00 Round to nearest
12457     //   01 Round to 0
12458     //   10 Round to +inf
12459     //   11 Round to -inf
12460 
12461     // When the operand is immediate, using the two least significant bits of
12462     // the immediate to set the bits 62:63 of FPSCR.
12463     unsigned Mode = MI.getOperand(1).getImm();
12464     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12465         .addImm(31)
12466         .addReg(PPC::RM, RegState::ImplicitDefine);
12467 
12468     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12469         .addImm(30)
12470         .addReg(PPC::RM, RegState::ImplicitDefine);
12471   } else if (MI.getOpcode() == PPC::SETRND) {
12472     DebugLoc dl = MI.getDebugLoc();
12473 
12474     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12475     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12476     // If the target doesn't have DirectMove, we should use stack to do the
12477     // conversion, because the target doesn't have the instructions like mtvsrd
12478     // or mfvsrd to do this conversion directly.
12479     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12480       if (Subtarget.hasDirectMove()) {
12481         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12482           .addReg(SrcReg);
12483       } else {
12484         // Use stack to do the register copy.
12485         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12486         MachineRegisterInfo &RegInfo = F->getRegInfo();
12487         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12488         if (RC == &PPC::F8RCRegClass) {
12489           // Copy register from F8RCRegClass to G8RCRegclass.
12490           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12491                  "Unsupported RegClass.");
12492 
12493           StoreOp = PPC::STFD;
12494           LoadOp = PPC::LD;
12495         } else {
12496           // Copy register from G8RCRegClass to F8RCRegclass.
12497           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12498                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12499                  "Unsupported RegClass.");
12500         }
12501 
12502         MachineFrameInfo &MFI = F->getFrameInfo();
12503         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12504 
12505         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12506             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12507             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12508             MFI.getObjectAlign(FrameIdx));
12509 
12510         // Store the SrcReg into the stack.
12511         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12512           .addReg(SrcReg)
12513           .addImm(0)
12514           .addFrameIndex(FrameIdx)
12515           .addMemOperand(MMOStore);
12516 
12517         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12518             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12519             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12520             MFI.getObjectAlign(FrameIdx));
12521 
12522         // Load from the stack where SrcReg is stored, and save to DestReg,
12523         // so we have done the RegClass conversion from RegClass::SrcReg to
12524         // RegClass::DestReg.
12525         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12526           .addImm(0)
12527           .addFrameIndex(FrameIdx)
12528           .addMemOperand(MMOLoad);
12529       }
12530     };
12531 
12532     Register OldFPSCRReg = MI.getOperand(0).getReg();
12533 
12534     // Save FPSCR value.
12535     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12536 
12537     // When the operand is gprc register, use two least significant bits of the
12538     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12539     //
12540     // copy OldFPSCRTmpReg, OldFPSCRReg
12541     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12542     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12543     // copy NewFPSCRReg, NewFPSCRTmpReg
12544     // mtfsf 255, NewFPSCRReg
12545     MachineOperand SrcOp = MI.getOperand(1);
12546     MachineRegisterInfo &RegInfo = F->getRegInfo();
12547     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12548 
12549     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12550 
12551     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12552     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12553 
12554     // The first operand of INSERT_SUBREG should be a register which has
12555     // subregisters, we only care about its RegClass, so we should use an
12556     // IMPLICIT_DEF register.
12557     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12558     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12559       .addReg(ImDefReg)
12560       .add(SrcOp)
12561       .addImm(1);
12562 
12563     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12564     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12565       .addReg(OldFPSCRTmpReg)
12566       .addReg(ExtSrcReg)
12567       .addImm(0)
12568       .addImm(62);
12569 
12570     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12571     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12572 
12573     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12574     // bits of FPSCR.
12575     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12576       .addImm(255)
12577       .addReg(NewFPSCRReg)
12578       .addImm(0)
12579       .addImm(0);
12580   } else if (MI.getOpcode() == PPC::SETFLM) {
12581     DebugLoc Dl = MI.getDebugLoc();
12582 
12583     // Result of setflm is previous FPSCR content, so we need to save it first.
12584     Register OldFPSCRReg = MI.getOperand(0).getReg();
12585     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12586 
12587     // Put bits in 32:63 to FPSCR.
12588     Register NewFPSCRReg = MI.getOperand(1).getReg();
12589     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12590         .addImm(255)
12591         .addReg(NewFPSCRReg)
12592         .addImm(0)
12593         .addImm(0);
12594   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12595              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12596     return emitProbedAlloca(MI, BB);
12597   } else {
12598     llvm_unreachable("Unexpected instr type to insert");
12599   }
12600 
12601   MI.eraseFromParent(); // The pseudo instruction is gone now.
12602   return BB;
12603 }
12604 
12605 //===----------------------------------------------------------------------===//
12606 // Target Optimization Hooks
12607 //===----------------------------------------------------------------------===//
12608 
12609 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12610   // For the estimates, convergence is quadratic, so we essentially double the
12611   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12612   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12613   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12614   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12615   if (VT.getScalarType() == MVT::f64)
12616     RefinementSteps++;
12617   return RefinementSteps;
12618 }
12619 
12620 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
12621                                             const DenormalMode &Mode) const {
12622   // We only have VSX Vector Test for software Square Root.
12623   EVT VT = Op.getValueType();
12624   if (!isTypeLegal(MVT::i1) ||
12625       (VT != MVT::f64 &&
12626        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
12627     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
12628 
12629   SDLoc DL(Op);
12630   // The output register of FTSQRT is CR field.
12631   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
12632   // ftsqrt BF,FRB
12633   // Let e_b be the unbiased exponent of the double-precision
12634   // floating-point operand in register FRB.
12635   // fe_flag is set to 1 if either of the following conditions occurs.
12636   //   - The double-precision floating-point operand in register FRB is a zero,
12637   //     a NaN, or an infinity, or a negative value.
12638   //   - e_b is less than or equal to -970.
12639   // Otherwise fe_flag is set to 0.
12640   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
12641   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
12642   // exponent is less than -970)
12643   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
12644   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
12645                                     FTSQRT, SRIdxVal),
12646                  0);
12647 }
12648 
12649 SDValue
12650 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
12651                                                SelectionDAG &DAG) const {
12652   // We only have VSX Vector Square Root.
12653   EVT VT = Op.getValueType();
12654   if (VT != MVT::f64 &&
12655       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
12656     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
12657 
12658   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
12659 }
12660 
12661 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12662                                            int Enabled, int &RefinementSteps,
12663                                            bool &UseOneConstNR,
12664                                            bool Reciprocal) const {
12665   EVT VT = Operand.getValueType();
12666   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12667       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12668       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12669       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12670     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12671       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12672 
12673     // The Newton-Raphson computation with a single constant does not provide
12674     // enough accuracy on some CPUs.
12675     UseOneConstNR = !Subtarget.needsTwoConstNR();
12676     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12677   }
12678   return SDValue();
12679 }
12680 
12681 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12682                                             int Enabled,
12683                                             int &RefinementSteps) const {
12684   EVT VT = Operand.getValueType();
12685   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12686       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12687       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12688       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12689     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12690       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12691     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12692   }
12693   return SDValue();
12694 }
12695 
12696 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12697   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12698   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12699   // enabled for division), this functionality is redundant with the default
12700   // combiner logic (once the division -> reciprocal/multiply transformation
12701   // has taken place). As a result, this matters more for older cores than for
12702   // newer ones.
12703 
12704   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12705   // reciprocal if there are two or more FDIVs (for embedded cores with only
12706   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12707   switch (Subtarget.getCPUDirective()) {
12708   default:
12709     return 3;
12710   case PPC::DIR_440:
12711   case PPC::DIR_A2:
12712   case PPC::DIR_E500:
12713   case PPC::DIR_E500mc:
12714   case PPC::DIR_E5500:
12715     return 2;
12716   }
12717 }
12718 
12719 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12720 // collapsed, and so we need to look through chains of them.
12721 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12722                                      int64_t& Offset, SelectionDAG &DAG) {
12723   if (DAG.isBaseWithConstantOffset(Loc)) {
12724     Base = Loc.getOperand(0);
12725     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12726 
12727     // The base might itself be a base plus an offset, and if so, accumulate
12728     // that as well.
12729     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12730   }
12731 }
12732 
12733 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12734                             unsigned Bytes, int Dist,
12735                             SelectionDAG &DAG) {
12736   if (VT.getSizeInBits() / 8 != Bytes)
12737     return false;
12738 
12739   SDValue BaseLoc = Base->getBasePtr();
12740   if (Loc.getOpcode() == ISD::FrameIndex) {
12741     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12742       return false;
12743     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12744     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12745     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12746     int FS  = MFI.getObjectSize(FI);
12747     int BFS = MFI.getObjectSize(BFI);
12748     if (FS != BFS || FS != (int)Bytes) return false;
12749     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12750   }
12751 
12752   SDValue Base1 = Loc, Base2 = BaseLoc;
12753   int64_t Offset1 = 0, Offset2 = 0;
12754   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12755   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12756   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12757     return true;
12758 
12759   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12760   const GlobalValue *GV1 = nullptr;
12761   const GlobalValue *GV2 = nullptr;
12762   Offset1 = 0;
12763   Offset2 = 0;
12764   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12765   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12766   if (isGA1 && isGA2 && GV1 == GV2)
12767     return Offset1 == (Offset2 + Dist*Bytes);
12768   return false;
12769 }
12770 
12771 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12772 // not enforce equality of the chain operands.
12773 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12774                             unsigned Bytes, int Dist,
12775                             SelectionDAG &DAG) {
12776   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12777     EVT VT = LS->getMemoryVT();
12778     SDValue Loc = LS->getBasePtr();
12779     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12780   }
12781 
12782   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12783     EVT VT;
12784     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12785     default: return false;
12786     case Intrinsic::ppc_altivec_lvx:
12787     case Intrinsic::ppc_altivec_lvxl:
12788     case Intrinsic::ppc_vsx_lxvw4x:
12789     case Intrinsic::ppc_vsx_lxvw4x_be:
12790       VT = MVT::v4i32;
12791       break;
12792     case Intrinsic::ppc_vsx_lxvd2x:
12793     case Intrinsic::ppc_vsx_lxvd2x_be:
12794       VT = MVT::v2f64;
12795       break;
12796     case Intrinsic::ppc_altivec_lvebx:
12797       VT = MVT::i8;
12798       break;
12799     case Intrinsic::ppc_altivec_lvehx:
12800       VT = MVT::i16;
12801       break;
12802     case Intrinsic::ppc_altivec_lvewx:
12803       VT = MVT::i32;
12804       break;
12805     }
12806 
12807     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12808   }
12809 
12810   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12811     EVT VT;
12812     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12813     default: return false;
12814     case Intrinsic::ppc_altivec_stvx:
12815     case Intrinsic::ppc_altivec_stvxl:
12816     case Intrinsic::ppc_vsx_stxvw4x:
12817       VT = MVT::v4i32;
12818       break;
12819     case Intrinsic::ppc_vsx_stxvd2x:
12820       VT = MVT::v2f64;
12821       break;
12822     case Intrinsic::ppc_vsx_stxvw4x_be:
12823       VT = MVT::v4i32;
12824       break;
12825     case Intrinsic::ppc_vsx_stxvd2x_be:
12826       VT = MVT::v2f64;
12827       break;
12828     case Intrinsic::ppc_altivec_stvebx:
12829       VT = MVT::i8;
12830       break;
12831     case Intrinsic::ppc_altivec_stvehx:
12832       VT = MVT::i16;
12833       break;
12834     case Intrinsic::ppc_altivec_stvewx:
12835       VT = MVT::i32;
12836       break;
12837     }
12838 
12839     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12840   }
12841 
12842   return false;
12843 }
12844 
12845 // Return true is there is a nearyby consecutive load to the one provided
12846 // (regardless of alignment). We search up and down the chain, looking though
12847 // token factors and other loads (but nothing else). As a result, a true result
12848 // indicates that it is safe to create a new consecutive load adjacent to the
12849 // load provided.
12850 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12851   SDValue Chain = LD->getChain();
12852   EVT VT = LD->getMemoryVT();
12853 
12854   SmallSet<SDNode *, 16> LoadRoots;
12855   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12856   SmallSet<SDNode *, 16> Visited;
12857 
12858   // First, search up the chain, branching to follow all token-factor operands.
12859   // If we find a consecutive load, then we're done, otherwise, record all
12860   // nodes just above the top-level loads and token factors.
12861   while (!Queue.empty()) {
12862     SDNode *ChainNext = Queue.pop_back_val();
12863     if (!Visited.insert(ChainNext).second)
12864       continue;
12865 
12866     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12867       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12868         return true;
12869 
12870       if (!Visited.count(ChainLD->getChain().getNode()))
12871         Queue.push_back(ChainLD->getChain().getNode());
12872     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12873       for (const SDUse &O : ChainNext->ops())
12874         if (!Visited.count(O.getNode()))
12875           Queue.push_back(O.getNode());
12876     } else
12877       LoadRoots.insert(ChainNext);
12878   }
12879 
12880   // Second, search down the chain, starting from the top-level nodes recorded
12881   // in the first phase. These top-level nodes are the nodes just above all
12882   // loads and token factors. Starting with their uses, recursively look though
12883   // all loads (just the chain uses) and token factors to find a consecutive
12884   // load.
12885   Visited.clear();
12886   Queue.clear();
12887 
12888   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12889        IE = LoadRoots.end(); I != IE; ++I) {
12890     Queue.push_back(*I);
12891 
12892     while (!Queue.empty()) {
12893       SDNode *LoadRoot = Queue.pop_back_val();
12894       if (!Visited.insert(LoadRoot).second)
12895         continue;
12896 
12897       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12898         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12899           return true;
12900 
12901       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12902            UE = LoadRoot->use_end(); UI != UE; ++UI)
12903         if (((isa<MemSDNode>(*UI) &&
12904             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12905             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12906           Queue.push_back(*UI);
12907     }
12908   }
12909 
12910   return false;
12911 }
12912 
12913 /// This function is called when we have proved that a SETCC node can be replaced
12914 /// by subtraction (and other supporting instructions) so that the result of
12915 /// comparison is kept in a GPR instead of CR. This function is purely for
12916 /// codegen purposes and has some flags to guide the codegen process.
12917 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12918                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12919   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12920 
12921   // Zero extend the operands to the largest legal integer. Originally, they
12922   // must be of a strictly smaller size.
12923   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12924                          DAG.getConstant(Size, DL, MVT::i32));
12925   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12926                          DAG.getConstant(Size, DL, MVT::i32));
12927 
12928   // Swap if needed. Depends on the condition code.
12929   if (Swap)
12930     std::swap(Op0, Op1);
12931 
12932   // Subtract extended integers.
12933   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12934 
12935   // Move the sign bit to the least significant position and zero out the rest.
12936   // Now the least significant bit carries the result of original comparison.
12937   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12938                              DAG.getConstant(Size - 1, DL, MVT::i32));
12939   auto Final = Shifted;
12940 
12941   // Complement the result if needed. Based on the condition code.
12942   if (Complement)
12943     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12944                         DAG.getConstant(1, DL, MVT::i64));
12945 
12946   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12947 }
12948 
12949 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12950                                                   DAGCombinerInfo &DCI) const {
12951   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12952 
12953   SelectionDAG &DAG = DCI.DAG;
12954   SDLoc DL(N);
12955 
12956   // Size of integers being compared has a critical role in the following
12957   // analysis, so we prefer to do this when all types are legal.
12958   if (!DCI.isAfterLegalizeDAG())
12959     return SDValue();
12960 
12961   // If all users of SETCC extend its value to a legal integer type
12962   // then we replace SETCC with a subtraction
12963   for (SDNode::use_iterator UI = N->use_begin(),
12964        UE = N->use_end(); UI != UE; ++UI) {
12965     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12966       return SDValue();
12967   }
12968 
12969   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12970   auto OpSize = N->getOperand(0).getValueSizeInBits();
12971 
12972   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12973 
12974   if (OpSize < Size) {
12975     switch (CC) {
12976     default: break;
12977     case ISD::SETULT:
12978       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12979     case ISD::SETULE:
12980       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12981     case ISD::SETUGT:
12982       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12983     case ISD::SETUGE:
12984       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12985     }
12986   }
12987 
12988   return SDValue();
12989 }
12990 
12991 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12992                                                   DAGCombinerInfo &DCI) const {
12993   SelectionDAG &DAG = DCI.DAG;
12994   SDLoc dl(N);
12995 
12996   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12997   // If we're tracking CR bits, we need to be careful that we don't have:
12998   //   trunc(binary-ops(zext(x), zext(y)))
12999   // or
13000   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13001   // such that we're unnecessarily moving things into GPRs when it would be
13002   // better to keep them in CR bits.
13003 
13004   // Note that trunc here can be an actual i1 trunc, or can be the effective
13005   // truncation that comes from a setcc or select_cc.
13006   if (N->getOpcode() == ISD::TRUNCATE &&
13007       N->getValueType(0) != MVT::i1)
13008     return SDValue();
13009 
13010   if (N->getOperand(0).getValueType() != MVT::i32 &&
13011       N->getOperand(0).getValueType() != MVT::i64)
13012     return SDValue();
13013 
13014   if (N->getOpcode() == ISD::SETCC ||
13015       N->getOpcode() == ISD::SELECT_CC) {
13016     // If we're looking at a comparison, then we need to make sure that the
13017     // high bits (all except for the first) don't matter the result.
13018     ISD::CondCode CC =
13019       cast<CondCodeSDNode>(N->getOperand(
13020         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13021     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13022 
13023     if (ISD::isSignedIntSetCC(CC)) {
13024       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13025           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13026         return SDValue();
13027     } else if (ISD::isUnsignedIntSetCC(CC)) {
13028       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13029                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13030           !DAG.MaskedValueIsZero(N->getOperand(1),
13031                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13032         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13033                                              : SDValue());
13034     } else {
13035       // This is neither a signed nor an unsigned comparison, just make sure
13036       // that the high bits are equal.
13037       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13038       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13039 
13040       // We don't really care about what is known about the first bit (if
13041       // anything), so pretend that it is known zero for both to ensure they can
13042       // be compared as constants.
13043       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13044       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13045 
13046       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13047           Op1Known.getConstant() != Op2Known.getConstant())
13048         return SDValue();
13049     }
13050   }
13051 
13052   // We now know that the higher-order bits are irrelevant, we just need to
13053   // make sure that all of the intermediate operations are bit operations, and
13054   // all inputs are extensions.
13055   if (N->getOperand(0).getOpcode() != ISD::AND &&
13056       N->getOperand(0).getOpcode() != ISD::OR  &&
13057       N->getOperand(0).getOpcode() != ISD::XOR &&
13058       N->getOperand(0).getOpcode() != ISD::SELECT &&
13059       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13060       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13061       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13062       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13063       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13064     return SDValue();
13065 
13066   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13067       N->getOperand(1).getOpcode() != ISD::AND &&
13068       N->getOperand(1).getOpcode() != ISD::OR  &&
13069       N->getOperand(1).getOpcode() != ISD::XOR &&
13070       N->getOperand(1).getOpcode() != ISD::SELECT &&
13071       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13072       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13073       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13074       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13075       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13076     return SDValue();
13077 
13078   SmallVector<SDValue, 4> Inputs;
13079   SmallVector<SDValue, 8> BinOps, PromOps;
13080   SmallPtrSet<SDNode *, 16> Visited;
13081 
13082   for (unsigned i = 0; i < 2; ++i) {
13083     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13084           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13085           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13086           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13087         isa<ConstantSDNode>(N->getOperand(i)))
13088       Inputs.push_back(N->getOperand(i));
13089     else
13090       BinOps.push_back(N->getOperand(i));
13091 
13092     if (N->getOpcode() == ISD::TRUNCATE)
13093       break;
13094   }
13095 
13096   // Visit all inputs, collect all binary operations (and, or, xor and
13097   // select) that are all fed by extensions.
13098   while (!BinOps.empty()) {
13099     SDValue BinOp = BinOps.pop_back_val();
13100 
13101     if (!Visited.insert(BinOp.getNode()).second)
13102       continue;
13103 
13104     PromOps.push_back(BinOp);
13105 
13106     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13107       // The condition of the select is not promoted.
13108       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13109         continue;
13110       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13111         continue;
13112 
13113       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13114             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13115             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13116            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13117           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13118         Inputs.push_back(BinOp.getOperand(i));
13119       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13120                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13121                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13122                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13123                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13124                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13125                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13126                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13127                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13128         BinOps.push_back(BinOp.getOperand(i));
13129       } else {
13130         // We have an input that is not an extension or another binary
13131         // operation; we'll abort this transformation.
13132         return SDValue();
13133       }
13134     }
13135   }
13136 
13137   // Make sure that this is a self-contained cluster of operations (which
13138   // is not quite the same thing as saying that everything has only one
13139   // use).
13140   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13141     if (isa<ConstantSDNode>(Inputs[i]))
13142       continue;
13143 
13144     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13145                               UE = Inputs[i].getNode()->use_end();
13146          UI != UE; ++UI) {
13147       SDNode *User = *UI;
13148       if (User != N && !Visited.count(User))
13149         return SDValue();
13150 
13151       // Make sure that we're not going to promote the non-output-value
13152       // operand(s) or SELECT or SELECT_CC.
13153       // FIXME: Although we could sometimes handle this, and it does occur in
13154       // practice that one of the condition inputs to the select is also one of
13155       // the outputs, we currently can't deal with this.
13156       if (User->getOpcode() == ISD::SELECT) {
13157         if (User->getOperand(0) == Inputs[i])
13158           return SDValue();
13159       } else if (User->getOpcode() == ISD::SELECT_CC) {
13160         if (User->getOperand(0) == Inputs[i] ||
13161             User->getOperand(1) == Inputs[i])
13162           return SDValue();
13163       }
13164     }
13165   }
13166 
13167   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13168     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13169                               UE = PromOps[i].getNode()->use_end();
13170          UI != UE; ++UI) {
13171       SDNode *User = *UI;
13172       if (User != N && !Visited.count(User))
13173         return SDValue();
13174 
13175       // Make sure that we're not going to promote the non-output-value
13176       // operand(s) or SELECT or SELECT_CC.
13177       // FIXME: Although we could sometimes handle this, and it does occur in
13178       // practice that one of the condition inputs to the select is also one of
13179       // the outputs, we currently can't deal with this.
13180       if (User->getOpcode() == ISD::SELECT) {
13181         if (User->getOperand(0) == PromOps[i])
13182           return SDValue();
13183       } else if (User->getOpcode() == ISD::SELECT_CC) {
13184         if (User->getOperand(0) == PromOps[i] ||
13185             User->getOperand(1) == PromOps[i])
13186           return SDValue();
13187       }
13188     }
13189   }
13190 
13191   // Replace all inputs with the extension operand.
13192   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13193     // Constants may have users outside the cluster of to-be-promoted nodes,
13194     // and so we need to replace those as we do the promotions.
13195     if (isa<ConstantSDNode>(Inputs[i]))
13196       continue;
13197     else
13198       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13199   }
13200 
13201   std::list<HandleSDNode> PromOpHandles;
13202   for (auto &PromOp : PromOps)
13203     PromOpHandles.emplace_back(PromOp);
13204 
13205   // Replace all operations (these are all the same, but have a different
13206   // (i1) return type). DAG.getNode will validate that the types of
13207   // a binary operator match, so go through the list in reverse so that
13208   // we've likely promoted both operands first. Any intermediate truncations or
13209   // extensions disappear.
13210   while (!PromOpHandles.empty()) {
13211     SDValue PromOp = PromOpHandles.back().getValue();
13212     PromOpHandles.pop_back();
13213 
13214     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13215         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13216         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13217         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13218       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13219           PromOp.getOperand(0).getValueType() != MVT::i1) {
13220         // The operand is not yet ready (see comment below).
13221         PromOpHandles.emplace_front(PromOp);
13222         continue;
13223       }
13224 
13225       SDValue RepValue = PromOp.getOperand(0);
13226       if (isa<ConstantSDNode>(RepValue))
13227         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13228 
13229       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13230       continue;
13231     }
13232 
13233     unsigned C;
13234     switch (PromOp.getOpcode()) {
13235     default:             C = 0; break;
13236     case ISD::SELECT:    C = 1; break;
13237     case ISD::SELECT_CC: C = 2; break;
13238     }
13239 
13240     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13241          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13242         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13243          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13244       // The to-be-promoted operands of this node have not yet been
13245       // promoted (this should be rare because we're going through the
13246       // list backward, but if one of the operands has several users in
13247       // this cluster of to-be-promoted nodes, it is possible).
13248       PromOpHandles.emplace_front(PromOp);
13249       continue;
13250     }
13251 
13252     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13253                                 PromOp.getNode()->op_end());
13254 
13255     // If there are any constant inputs, make sure they're replaced now.
13256     for (unsigned i = 0; i < 2; ++i)
13257       if (isa<ConstantSDNode>(Ops[C+i]))
13258         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13259 
13260     DAG.ReplaceAllUsesOfValueWith(PromOp,
13261       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13262   }
13263 
13264   // Now we're left with the initial truncation itself.
13265   if (N->getOpcode() == ISD::TRUNCATE)
13266     return N->getOperand(0);
13267 
13268   // Otherwise, this is a comparison. The operands to be compared have just
13269   // changed type (to i1), but everything else is the same.
13270   return SDValue(N, 0);
13271 }
13272 
13273 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13274                                                   DAGCombinerInfo &DCI) const {
13275   SelectionDAG &DAG = DCI.DAG;
13276   SDLoc dl(N);
13277 
13278   // If we're tracking CR bits, we need to be careful that we don't have:
13279   //   zext(binary-ops(trunc(x), trunc(y)))
13280   // or
13281   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13282   // such that we're unnecessarily moving things into CR bits that can more
13283   // efficiently stay in GPRs. Note that if we're not certain that the high
13284   // bits are set as required by the final extension, we still may need to do
13285   // some masking to get the proper behavior.
13286 
13287   // This same functionality is important on PPC64 when dealing with
13288   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13289   // the return values of functions. Because it is so similar, it is handled
13290   // here as well.
13291 
13292   if (N->getValueType(0) != MVT::i32 &&
13293       N->getValueType(0) != MVT::i64)
13294     return SDValue();
13295 
13296   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13297         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13298     return SDValue();
13299 
13300   if (N->getOperand(0).getOpcode() != ISD::AND &&
13301       N->getOperand(0).getOpcode() != ISD::OR  &&
13302       N->getOperand(0).getOpcode() != ISD::XOR &&
13303       N->getOperand(0).getOpcode() != ISD::SELECT &&
13304       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13305     return SDValue();
13306 
13307   SmallVector<SDValue, 4> Inputs;
13308   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13309   SmallPtrSet<SDNode *, 16> Visited;
13310 
13311   // Visit all inputs, collect all binary operations (and, or, xor and
13312   // select) that are all fed by truncations.
13313   while (!BinOps.empty()) {
13314     SDValue BinOp = BinOps.pop_back_val();
13315 
13316     if (!Visited.insert(BinOp.getNode()).second)
13317       continue;
13318 
13319     PromOps.push_back(BinOp);
13320 
13321     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13322       // The condition of the select is not promoted.
13323       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13324         continue;
13325       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13326         continue;
13327 
13328       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13329           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13330         Inputs.push_back(BinOp.getOperand(i));
13331       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13332                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13333                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13334                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13335                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13336         BinOps.push_back(BinOp.getOperand(i));
13337       } else {
13338         // We have an input that is not a truncation or another binary
13339         // operation; we'll abort this transformation.
13340         return SDValue();
13341       }
13342     }
13343   }
13344 
13345   // The operands of a select that must be truncated when the select is
13346   // promoted because the operand is actually part of the to-be-promoted set.
13347   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13348 
13349   // Make sure that this is a self-contained cluster of operations (which
13350   // is not quite the same thing as saying that everything has only one
13351   // use).
13352   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13353     if (isa<ConstantSDNode>(Inputs[i]))
13354       continue;
13355 
13356     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13357                               UE = Inputs[i].getNode()->use_end();
13358          UI != UE; ++UI) {
13359       SDNode *User = *UI;
13360       if (User != N && !Visited.count(User))
13361         return SDValue();
13362 
13363       // If we're going to promote the non-output-value operand(s) or SELECT or
13364       // SELECT_CC, record them for truncation.
13365       if (User->getOpcode() == ISD::SELECT) {
13366         if (User->getOperand(0) == Inputs[i])
13367           SelectTruncOp[0].insert(std::make_pair(User,
13368                                     User->getOperand(0).getValueType()));
13369       } else if (User->getOpcode() == ISD::SELECT_CC) {
13370         if (User->getOperand(0) == Inputs[i])
13371           SelectTruncOp[0].insert(std::make_pair(User,
13372                                     User->getOperand(0).getValueType()));
13373         if (User->getOperand(1) == Inputs[i])
13374           SelectTruncOp[1].insert(std::make_pair(User,
13375                                     User->getOperand(1).getValueType()));
13376       }
13377     }
13378   }
13379 
13380   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13381     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13382                               UE = PromOps[i].getNode()->use_end();
13383          UI != UE; ++UI) {
13384       SDNode *User = *UI;
13385       if (User != N && !Visited.count(User))
13386         return SDValue();
13387 
13388       // If we're going to promote the non-output-value operand(s) or SELECT or
13389       // SELECT_CC, record them for truncation.
13390       if (User->getOpcode() == ISD::SELECT) {
13391         if (User->getOperand(0) == PromOps[i])
13392           SelectTruncOp[0].insert(std::make_pair(User,
13393                                     User->getOperand(0).getValueType()));
13394       } else if (User->getOpcode() == ISD::SELECT_CC) {
13395         if (User->getOperand(0) == PromOps[i])
13396           SelectTruncOp[0].insert(std::make_pair(User,
13397                                     User->getOperand(0).getValueType()));
13398         if (User->getOperand(1) == PromOps[i])
13399           SelectTruncOp[1].insert(std::make_pair(User,
13400                                     User->getOperand(1).getValueType()));
13401       }
13402     }
13403   }
13404 
13405   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13406   bool ReallyNeedsExt = false;
13407   if (N->getOpcode() != ISD::ANY_EXTEND) {
13408     // If all of the inputs are not already sign/zero extended, then
13409     // we'll still need to do that at the end.
13410     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13411       if (isa<ConstantSDNode>(Inputs[i]))
13412         continue;
13413 
13414       unsigned OpBits =
13415         Inputs[i].getOperand(0).getValueSizeInBits();
13416       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13417 
13418       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13419            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13420                                   APInt::getHighBitsSet(OpBits,
13421                                                         OpBits-PromBits))) ||
13422           (N->getOpcode() == ISD::SIGN_EXTEND &&
13423            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13424              (OpBits-(PromBits-1)))) {
13425         ReallyNeedsExt = true;
13426         break;
13427       }
13428     }
13429   }
13430 
13431   // Replace all inputs, either with the truncation operand, or a
13432   // truncation or extension to the final output type.
13433   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13434     // Constant inputs need to be replaced with the to-be-promoted nodes that
13435     // use them because they might have users outside of the cluster of
13436     // promoted nodes.
13437     if (isa<ConstantSDNode>(Inputs[i]))
13438       continue;
13439 
13440     SDValue InSrc = Inputs[i].getOperand(0);
13441     if (Inputs[i].getValueType() == N->getValueType(0))
13442       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13443     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13444       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13445         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13446     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13447       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13448         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13449     else
13450       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13451         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13452   }
13453 
13454   std::list<HandleSDNode> PromOpHandles;
13455   for (auto &PromOp : PromOps)
13456     PromOpHandles.emplace_back(PromOp);
13457 
13458   // Replace all operations (these are all the same, but have a different
13459   // (promoted) return type). DAG.getNode will validate that the types of
13460   // a binary operator match, so go through the list in reverse so that
13461   // we've likely promoted both operands first.
13462   while (!PromOpHandles.empty()) {
13463     SDValue PromOp = PromOpHandles.back().getValue();
13464     PromOpHandles.pop_back();
13465 
13466     unsigned C;
13467     switch (PromOp.getOpcode()) {
13468     default:             C = 0; break;
13469     case ISD::SELECT:    C = 1; break;
13470     case ISD::SELECT_CC: C = 2; break;
13471     }
13472 
13473     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13474          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13475         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13476          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13477       // The to-be-promoted operands of this node have not yet been
13478       // promoted (this should be rare because we're going through the
13479       // list backward, but if one of the operands has several users in
13480       // this cluster of to-be-promoted nodes, it is possible).
13481       PromOpHandles.emplace_front(PromOp);
13482       continue;
13483     }
13484 
13485     // For SELECT and SELECT_CC nodes, we do a similar check for any
13486     // to-be-promoted comparison inputs.
13487     if (PromOp.getOpcode() == ISD::SELECT ||
13488         PromOp.getOpcode() == ISD::SELECT_CC) {
13489       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13490            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13491           (SelectTruncOp[1].count(PromOp.getNode()) &&
13492            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13493         PromOpHandles.emplace_front(PromOp);
13494         continue;
13495       }
13496     }
13497 
13498     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13499                                 PromOp.getNode()->op_end());
13500 
13501     // If this node has constant inputs, then they'll need to be promoted here.
13502     for (unsigned i = 0; i < 2; ++i) {
13503       if (!isa<ConstantSDNode>(Ops[C+i]))
13504         continue;
13505       if (Ops[C+i].getValueType() == N->getValueType(0))
13506         continue;
13507 
13508       if (N->getOpcode() == ISD::SIGN_EXTEND)
13509         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13510       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13511         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13512       else
13513         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13514     }
13515 
13516     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13517     // truncate them again to the original value type.
13518     if (PromOp.getOpcode() == ISD::SELECT ||
13519         PromOp.getOpcode() == ISD::SELECT_CC) {
13520       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13521       if (SI0 != SelectTruncOp[0].end())
13522         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13523       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13524       if (SI1 != SelectTruncOp[1].end())
13525         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13526     }
13527 
13528     DAG.ReplaceAllUsesOfValueWith(PromOp,
13529       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13530   }
13531 
13532   // Now we're left with the initial extension itself.
13533   if (!ReallyNeedsExt)
13534     return N->getOperand(0);
13535 
13536   // To zero extend, just mask off everything except for the first bit (in the
13537   // i1 case).
13538   if (N->getOpcode() == ISD::ZERO_EXTEND)
13539     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13540                        DAG.getConstant(APInt::getLowBitsSet(
13541                                          N->getValueSizeInBits(0), PromBits),
13542                                        dl, N->getValueType(0)));
13543 
13544   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13545          "Invalid extension type");
13546   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13547   SDValue ShiftCst =
13548       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13549   return DAG.getNode(
13550       ISD::SRA, dl, N->getValueType(0),
13551       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13552       ShiftCst);
13553 }
13554 
13555 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13556                                         DAGCombinerInfo &DCI) const {
13557   assert(N->getOpcode() == ISD::SETCC &&
13558          "Should be called with a SETCC node");
13559 
13560   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13561   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13562     SDValue LHS = N->getOperand(0);
13563     SDValue RHS = N->getOperand(1);
13564 
13565     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13566     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13567         LHS.hasOneUse())
13568       std::swap(LHS, RHS);
13569 
13570     // x == 0-y --> x+y == 0
13571     // x != 0-y --> x+y != 0
13572     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13573         RHS.hasOneUse()) {
13574       SDLoc DL(N);
13575       SelectionDAG &DAG = DCI.DAG;
13576       EVT VT = N->getValueType(0);
13577       EVT OpVT = LHS.getValueType();
13578       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13579       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13580     }
13581   }
13582 
13583   return DAGCombineTruncBoolExt(N, DCI);
13584 }
13585 
13586 // Is this an extending load from an f32 to an f64?
13587 static bool isFPExtLoad(SDValue Op) {
13588   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13589     return LD->getExtensionType() == ISD::EXTLOAD &&
13590       Op.getValueType() == MVT::f64;
13591   return false;
13592 }
13593 
13594 /// Reduces the number of fp-to-int conversion when building a vector.
13595 ///
13596 /// If this vector is built out of floating to integer conversions,
13597 /// transform it to a vector built out of floating point values followed by a
13598 /// single floating to integer conversion of the vector.
13599 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13600 /// becomes (fptosi (build_vector ($A, $B, ...)))
13601 SDValue PPCTargetLowering::
13602 combineElementTruncationToVectorTruncation(SDNode *N,
13603                                            DAGCombinerInfo &DCI) const {
13604   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13605          "Should be called with a BUILD_VECTOR node");
13606 
13607   SelectionDAG &DAG = DCI.DAG;
13608   SDLoc dl(N);
13609 
13610   SDValue FirstInput = N->getOperand(0);
13611   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13612          "The input operand must be an fp-to-int conversion.");
13613 
13614   // This combine happens after legalization so the fp_to_[su]i nodes are
13615   // already converted to PPCSISD nodes.
13616   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13617   if (FirstConversion == PPCISD::FCTIDZ ||
13618       FirstConversion == PPCISD::FCTIDUZ ||
13619       FirstConversion == PPCISD::FCTIWZ ||
13620       FirstConversion == PPCISD::FCTIWUZ) {
13621     bool IsSplat = true;
13622     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13623       FirstConversion == PPCISD::FCTIWUZ;
13624     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13625     SmallVector<SDValue, 4> Ops;
13626     EVT TargetVT = N->getValueType(0);
13627     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13628       SDValue NextOp = N->getOperand(i);
13629       if (NextOp.getOpcode() != PPCISD::MFVSR)
13630         return SDValue();
13631       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13632       if (NextConversion != FirstConversion)
13633         return SDValue();
13634       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13635       // This is not valid if the input was originally double precision. It is
13636       // also not profitable to do unless this is an extending load in which
13637       // case doing this combine will allow us to combine consecutive loads.
13638       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13639         return SDValue();
13640       if (N->getOperand(i) != FirstInput)
13641         IsSplat = false;
13642     }
13643 
13644     // If this is a splat, we leave it as-is since there will be only a single
13645     // fp-to-int conversion followed by a splat of the integer. This is better
13646     // for 32-bit and smaller ints and neutral for 64-bit ints.
13647     if (IsSplat)
13648       return SDValue();
13649 
13650     // Now that we know we have the right type of node, get its operands
13651     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13652       SDValue In = N->getOperand(i).getOperand(0);
13653       if (Is32Bit) {
13654         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13655         // here, we know that all inputs are extending loads so this is safe).
13656         if (In.isUndef())
13657           Ops.push_back(DAG.getUNDEF(SrcVT));
13658         else {
13659           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13660                                       MVT::f32, In.getOperand(0),
13661                                       DAG.getIntPtrConstant(1, dl));
13662           Ops.push_back(Trunc);
13663         }
13664       } else
13665         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13666     }
13667 
13668     unsigned Opcode;
13669     if (FirstConversion == PPCISD::FCTIDZ ||
13670         FirstConversion == PPCISD::FCTIWZ)
13671       Opcode = ISD::FP_TO_SINT;
13672     else
13673       Opcode = ISD::FP_TO_UINT;
13674 
13675     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13676     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13677     return DAG.getNode(Opcode, dl, TargetVT, BV);
13678   }
13679   return SDValue();
13680 }
13681 
13682 /// Reduce the number of loads when building a vector.
13683 ///
13684 /// Building a vector out of multiple loads can be converted to a load
13685 /// of the vector type if the loads are consecutive. If the loads are
13686 /// consecutive but in descending order, a shuffle is added at the end
13687 /// to reorder the vector.
13688 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13689   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13690          "Should be called with a BUILD_VECTOR node");
13691 
13692   SDLoc dl(N);
13693 
13694   // Return early for non byte-sized type, as they can't be consecutive.
13695   if (!N->getValueType(0).getVectorElementType().isByteSized())
13696     return SDValue();
13697 
13698   bool InputsAreConsecutiveLoads = true;
13699   bool InputsAreReverseConsecutive = true;
13700   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13701   SDValue FirstInput = N->getOperand(0);
13702   bool IsRoundOfExtLoad = false;
13703 
13704   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13705       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13706     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13707     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13708   }
13709   // Not a build vector of (possibly fp_rounded) loads.
13710   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13711       N->getNumOperands() == 1)
13712     return SDValue();
13713 
13714   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13715     // If any inputs are fp_round(extload), they all must be.
13716     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13717       return SDValue();
13718 
13719     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13720       N->getOperand(i);
13721     if (NextInput.getOpcode() != ISD::LOAD)
13722       return SDValue();
13723 
13724     SDValue PreviousInput =
13725       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13726     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13727     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13728 
13729     // If any inputs are fp_round(extload), they all must be.
13730     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13731       return SDValue();
13732 
13733     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13734       InputsAreConsecutiveLoads = false;
13735     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13736       InputsAreReverseConsecutive = false;
13737 
13738     // Exit early if the loads are neither consecutive nor reverse consecutive.
13739     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13740       return SDValue();
13741   }
13742 
13743   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13744          "The loads cannot be both consecutive and reverse consecutive.");
13745 
13746   SDValue FirstLoadOp =
13747     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13748   SDValue LastLoadOp =
13749     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13750                        N->getOperand(N->getNumOperands()-1);
13751 
13752   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13753   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13754   if (InputsAreConsecutiveLoads) {
13755     assert(LD1 && "Input needs to be a LoadSDNode.");
13756     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13757                        LD1->getBasePtr(), LD1->getPointerInfo(),
13758                        LD1->getAlignment());
13759   }
13760   if (InputsAreReverseConsecutive) {
13761     assert(LDL && "Input needs to be a LoadSDNode.");
13762     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13763                                LDL->getBasePtr(), LDL->getPointerInfo(),
13764                                LDL->getAlignment());
13765     SmallVector<int, 16> Ops;
13766     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13767       Ops.push_back(i);
13768 
13769     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13770                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13771   }
13772   return SDValue();
13773 }
13774 
13775 // This function adds the required vector_shuffle needed to get
13776 // the elements of the vector extract in the correct position
13777 // as specified by the CorrectElems encoding.
13778 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13779                                       SDValue Input, uint64_t Elems,
13780                                       uint64_t CorrectElems) {
13781   SDLoc dl(N);
13782 
13783   unsigned NumElems = Input.getValueType().getVectorNumElements();
13784   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13785 
13786   // Knowing the element indices being extracted from the original
13787   // vector and the order in which they're being inserted, just put
13788   // them at element indices required for the instruction.
13789   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13790     if (DAG.getDataLayout().isLittleEndian())
13791       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13792     else
13793       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13794     CorrectElems = CorrectElems >> 8;
13795     Elems = Elems >> 8;
13796   }
13797 
13798   SDValue Shuffle =
13799       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13800                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13801 
13802   EVT VT = N->getValueType(0);
13803   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13804 
13805   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13806                                Input.getValueType().getVectorElementType(),
13807                                VT.getVectorNumElements());
13808   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13809                      DAG.getValueType(ExtVT));
13810 }
13811 
13812 // Look for build vector patterns where input operands come from sign
13813 // extended vector_extract elements of specific indices. If the correct indices
13814 // aren't used, add a vector shuffle to fix up the indices and create
13815 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13816 // during instruction selection.
13817 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13818   // This array encodes the indices that the vector sign extend instructions
13819   // extract from when extending from one type to another for both BE and LE.
13820   // The right nibble of each byte corresponds to the LE incides.
13821   // and the left nibble of each byte corresponds to the BE incides.
13822   // For example: 0x3074B8FC  byte->word
13823   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13824   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13825   // For example: 0x000070F8  byte->double word
13826   // For LE: the allowed indices are: 0x0,0x8
13827   // For BE: the allowed indices are: 0x7,0xF
13828   uint64_t TargetElems[] = {
13829       0x3074B8FC, // b->w
13830       0x000070F8, // b->d
13831       0x10325476, // h->w
13832       0x00003074, // h->d
13833       0x00001032, // w->d
13834   };
13835 
13836   uint64_t Elems = 0;
13837   int Index;
13838   SDValue Input;
13839 
13840   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13841     if (!Op)
13842       return false;
13843     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13844         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13845       return false;
13846 
13847     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13848     // of the right width.
13849     SDValue Extract = Op.getOperand(0);
13850     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13851       Extract = Extract.getOperand(0);
13852     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13853       return false;
13854 
13855     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13856     if (!ExtOp)
13857       return false;
13858 
13859     Index = ExtOp->getZExtValue();
13860     if (Input && Input != Extract.getOperand(0))
13861       return false;
13862 
13863     if (!Input)
13864       Input = Extract.getOperand(0);
13865 
13866     Elems = Elems << 8;
13867     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13868     Elems |= Index;
13869 
13870     return true;
13871   };
13872 
13873   // If the build vector operands aren't sign extended vector extracts,
13874   // of the same input vector, then return.
13875   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13876     if (!isSExtOfVecExtract(N->getOperand(i))) {
13877       return SDValue();
13878     }
13879   }
13880 
13881   // If the vector extract indicies are not correct, add the appropriate
13882   // vector_shuffle.
13883   int TgtElemArrayIdx;
13884   int InputSize = Input.getValueType().getScalarSizeInBits();
13885   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13886   if (InputSize + OutputSize == 40)
13887     TgtElemArrayIdx = 0;
13888   else if (InputSize + OutputSize == 72)
13889     TgtElemArrayIdx = 1;
13890   else if (InputSize + OutputSize == 48)
13891     TgtElemArrayIdx = 2;
13892   else if (InputSize + OutputSize == 80)
13893     TgtElemArrayIdx = 3;
13894   else if (InputSize + OutputSize == 96)
13895     TgtElemArrayIdx = 4;
13896   else
13897     return SDValue();
13898 
13899   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13900   CorrectElems = DAG.getDataLayout().isLittleEndian()
13901                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13902                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13903   if (Elems != CorrectElems) {
13904     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13905   }
13906 
13907   // Regular lowering will catch cases where a shuffle is not needed.
13908   return SDValue();
13909 }
13910 
13911 // Look for the pattern of a load from a narrow width to i128, feeding
13912 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
13913 // (LXVRZX). This node represents a zero extending load that will be matched
13914 // to the Load VSX Vector Rightmost instructions.
13915 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
13916   SDLoc DL(N);
13917 
13918   // This combine is only eligible for a BUILD_VECTOR of v1i128.
13919   if (N->getValueType(0) != MVT::v1i128)
13920     return SDValue();
13921 
13922   SDValue Operand = N->getOperand(0);
13923   // Proceed with the transformation if the operand to the BUILD_VECTOR
13924   // is a load instruction.
13925   if (Operand.getOpcode() != ISD::LOAD)
13926     return SDValue();
13927 
13928   auto *LD = cast<LoadSDNode>(Operand);
13929   EVT MemoryType = LD->getMemoryVT();
13930 
13931   // This transformation is only valid if the we are loading either a byte,
13932   // halfword, word, or doubleword.
13933   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
13934                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
13935 
13936   // Ensure that the load from the narrow width is being zero extended to i128.
13937   if (!ValidLDType ||
13938       (LD->getExtensionType() != ISD::ZEXTLOAD &&
13939        LD->getExtensionType() != ISD::EXTLOAD))
13940     return SDValue();
13941 
13942   SDValue LoadOps[] = {
13943       LD->getChain(), LD->getBasePtr(),
13944       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
13945 
13946   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
13947                                  DAG.getVTList(MVT::v1i128, MVT::Other),
13948                                  LoadOps, MemoryType, LD->getMemOperand());
13949 }
13950 
13951 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13952                                                  DAGCombinerInfo &DCI) const {
13953   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13954          "Should be called with a BUILD_VECTOR node");
13955 
13956   SelectionDAG &DAG = DCI.DAG;
13957   SDLoc dl(N);
13958 
13959   if (!Subtarget.hasVSX())
13960     return SDValue();
13961 
13962   // The target independent DAG combiner will leave a build_vector of
13963   // float-to-int conversions intact. We can generate MUCH better code for
13964   // a float-to-int conversion of a vector of floats.
13965   SDValue FirstInput = N->getOperand(0);
13966   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13967     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13968     if (Reduced)
13969       return Reduced;
13970   }
13971 
13972   // If we're building a vector out of consecutive loads, just load that
13973   // vector type.
13974   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13975   if (Reduced)
13976     return Reduced;
13977 
13978   // If we're building a vector out of extended elements from another vector
13979   // we have P9 vector integer extend instructions. The code assumes legal
13980   // input types (i.e. it can't handle things like v4i16) so do not run before
13981   // legalization.
13982   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13983     Reduced = combineBVOfVecSExt(N, DAG);
13984     if (Reduced)
13985       return Reduced;
13986   }
13987 
13988   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
13989   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
13990   // is a load from <valid narrow width> to i128.
13991   if (Subtarget.isISA3_1()) {
13992     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
13993     if (BVOfZLoad)
13994       return BVOfZLoad;
13995   }
13996 
13997   if (N->getValueType(0) != MVT::v2f64)
13998     return SDValue();
13999 
14000   // Looking for:
14001   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14002   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14003       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14004     return SDValue();
14005   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14006       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14007     return SDValue();
14008   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14009     return SDValue();
14010 
14011   SDValue Ext1 = FirstInput.getOperand(0);
14012   SDValue Ext2 = N->getOperand(1).getOperand(0);
14013   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14014      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14015     return SDValue();
14016 
14017   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14018   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14019   if (!Ext1Op || !Ext2Op)
14020     return SDValue();
14021   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14022       Ext1.getOperand(0) != Ext2.getOperand(0))
14023     return SDValue();
14024 
14025   int FirstElem = Ext1Op->getZExtValue();
14026   int SecondElem = Ext2Op->getZExtValue();
14027   int SubvecIdx;
14028   if (FirstElem == 0 && SecondElem == 1)
14029     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14030   else if (FirstElem == 2 && SecondElem == 3)
14031     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14032   else
14033     return SDValue();
14034 
14035   SDValue SrcVec = Ext1.getOperand(0);
14036   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14037     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14038   return DAG.getNode(NodeType, dl, MVT::v2f64,
14039                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14040 }
14041 
14042 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14043                                               DAGCombinerInfo &DCI) const {
14044   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14045           N->getOpcode() == ISD::UINT_TO_FP) &&
14046          "Need an int -> FP conversion node here");
14047 
14048   if (useSoftFloat() || !Subtarget.has64BitSupport())
14049     return SDValue();
14050 
14051   SelectionDAG &DAG = DCI.DAG;
14052   SDLoc dl(N);
14053   SDValue Op(N, 0);
14054 
14055   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14056   // from the hardware.
14057   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14058     return SDValue();
14059   if (!Op.getOperand(0).getValueType().isSimple())
14060     return SDValue();
14061   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14062       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14063     return SDValue();
14064 
14065   SDValue FirstOperand(Op.getOperand(0));
14066   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14067     (FirstOperand.getValueType() == MVT::i8 ||
14068      FirstOperand.getValueType() == MVT::i16);
14069   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14070     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14071     bool DstDouble = Op.getValueType() == MVT::f64;
14072     unsigned ConvOp = Signed ?
14073       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14074       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14075     SDValue WidthConst =
14076       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14077                             dl, false);
14078     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14079     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14080     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14081                                          DAG.getVTList(MVT::f64, MVT::Other),
14082                                          Ops, MVT::i8, LDN->getMemOperand());
14083 
14084     // For signed conversion, we need to sign-extend the value in the VSR
14085     if (Signed) {
14086       SDValue ExtOps[] = { Ld, WidthConst };
14087       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14088       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14089     } else
14090       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14091   }
14092 
14093 
14094   // For i32 intermediate values, unfortunately, the conversion functions
14095   // leave the upper 32 bits of the value are undefined. Within the set of
14096   // scalar instructions, we have no method for zero- or sign-extending the
14097   // value. Thus, we cannot handle i32 intermediate values here.
14098   if (Op.getOperand(0).getValueType() == MVT::i32)
14099     return SDValue();
14100 
14101   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14102          "UINT_TO_FP is supported only with FPCVT");
14103 
14104   // If we have FCFIDS, then use it when converting to single-precision.
14105   // Otherwise, convert to double-precision and then round.
14106   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14107                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14108                                                             : PPCISD::FCFIDS)
14109                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14110                                                             : PPCISD::FCFID);
14111   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14112                   ? MVT::f32
14113                   : MVT::f64;
14114 
14115   // If we're converting from a float, to an int, and back to a float again,
14116   // then we don't need the store/load pair at all.
14117   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14118        Subtarget.hasFPCVT()) ||
14119       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14120     SDValue Src = Op.getOperand(0).getOperand(0);
14121     if (Src.getValueType() == MVT::f32) {
14122       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14123       DCI.AddToWorklist(Src.getNode());
14124     } else if (Src.getValueType() != MVT::f64) {
14125       // Make sure that we don't pick up a ppc_fp128 source value.
14126       return SDValue();
14127     }
14128 
14129     unsigned FCTOp =
14130       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14131                                                         PPCISD::FCTIDUZ;
14132 
14133     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14134     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14135 
14136     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14137       FP = DAG.getNode(ISD::FP_ROUND, dl,
14138                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14139       DCI.AddToWorklist(FP.getNode());
14140     }
14141 
14142     return FP;
14143   }
14144 
14145   return SDValue();
14146 }
14147 
14148 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14149 // builtins) into loads with swaps.
14150 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14151                                               DAGCombinerInfo &DCI) const {
14152   SelectionDAG &DAG = DCI.DAG;
14153   SDLoc dl(N);
14154   SDValue Chain;
14155   SDValue Base;
14156   MachineMemOperand *MMO;
14157 
14158   switch (N->getOpcode()) {
14159   default:
14160     llvm_unreachable("Unexpected opcode for little endian VSX load");
14161   case ISD::LOAD: {
14162     LoadSDNode *LD = cast<LoadSDNode>(N);
14163     Chain = LD->getChain();
14164     Base = LD->getBasePtr();
14165     MMO = LD->getMemOperand();
14166     // If the MMO suggests this isn't a load of a full vector, leave
14167     // things alone.  For a built-in, we have to make the change for
14168     // correctness, so if there is a size problem that will be a bug.
14169     if (MMO->getSize() < 16)
14170       return SDValue();
14171     break;
14172   }
14173   case ISD::INTRINSIC_W_CHAIN: {
14174     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14175     Chain = Intrin->getChain();
14176     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14177     // us what we want. Get operand 2 instead.
14178     Base = Intrin->getOperand(2);
14179     MMO = Intrin->getMemOperand();
14180     break;
14181   }
14182   }
14183 
14184   MVT VecTy = N->getValueType(0).getSimpleVT();
14185 
14186   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14187   // aligned and the type is a vector with elements up to 4 bytes
14188   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14189       VecTy.getScalarSizeInBits() <= 32) {
14190     return SDValue();
14191   }
14192 
14193   SDValue LoadOps[] = { Chain, Base };
14194   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14195                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14196                                          LoadOps, MVT::v2f64, MMO);
14197 
14198   DCI.AddToWorklist(Load.getNode());
14199   Chain = Load.getValue(1);
14200   SDValue Swap = DAG.getNode(
14201       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14202   DCI.AddToWorklist(Swap.getNode());
14203 
14204   // Add a bitcast if the resulting load type doesn't match v2f64.
14205   if (VecTy != MVT::v2f64) {
14206     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14207     DCI.AddToWorklist(N.getNode());
14208     // Package {bitcast value, swap's chain} to match Load's shape.
14209     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14210                        N, Swap.getValue(1));
14211   }
14212 
14213   return Swap;
14214 }
14215 
14216 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14217 // builtins) into stores with swaps.
14218 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14219                                                DAGCombinerInfo &DCI) const {
14220   SelectionDAG &DAG = DCI.DAG;
14221   SDLoc dl(N);
14222   SDValue Chain;
14223   SDValue Base;
14224   unsigned SrcOpnd;
14225   MachineMemOperand *MMO;
14226 
14227   switch (N->getOpcode()) {
14228   default:
14229     llvm_unreachable("Unexpected opcode for little endian VSX store");
14230   case ISD::STORE: {
14231     StoreSDNode *ST = cast<StoreSDNode>(N);
14232     Chain = ST->getChain();
14233     Base = ST->getBasePtr();
14234     MMO = ST->getMemOperand();
14235     SrcOpnd = 1;
14236     // If the MMO suggests this isn't a store of a full vector, leave
14237     // things alone.  For a built-in, we have to make the change for
14238     // correctness, so if there is a size problem that will be a bug.
14239     if (MMO->getSize() < 16)
14240       return SDValue();
14241     break;
14242   }
14243   case ISD::INTRINSIC_VOID: {
14244     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14245     Chain = Intrin->getChain();
14246     // Intrin->getBasePtr() oddly does not get what we want.
14247     Base = Intrin->getOperand(3);
14248     MMO = Intrin->getMemOperand();
14249     SrcOpnd = 2;
14250     break;
14251   }
14252   }
14253 
14254   SDValue Src = N->getOperand(SrcOpnd);
14255   MVT VecTy = Src.getValueType().getSimpleVT();
14256 
14257   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14258   // aligned and the type is a vector with elements up to 4 bytes
14259   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14260       VecTy.getScalarSizeInBits() <= 32) {
14261     return SDValue();
14262   }
14263 
14264   // All stores are done as v2f64 and possible bit cast.
14265   if (VecTy != MVT::v2f64) {
14266     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14267     DCI.AddToWorklist(Src.getNode());
14268   }
14269 
14270   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14271                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14272   DCI.AddToWorklist(Swap.getNode());
14273   Chain = Swap.getValue(1);
14274   SDValue StoreOps[] = { Chain, Swap, Base };
14275   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14276                                           DAG.getVTList(MVT::Other),
14277                                           StoreOps, VecTy, MMO);
14278   DCI.AddToWorklist(Store.getNode());
14279   return Store;
14280 }
14281 
14282 // Handle DAG combine for STORE (FP_TO_INT F).
14283 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14284                                                DAGCombinerInfo &DCI) const {
14285 
14286   SelectionDAG &DAG = DCI.DAG;
14287   SDLoc dl(N);
14288   unsigned Opcode = N->getOperand(1).getOpcode();
14289 
14290   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14291          && "Not a FP_TO_INT Instruction!");
14292 
14293   SDValue Val = N->getOperand(1).getOperand(0);
14294   EVT Op1VT = N->getOperand(1).getValueType();
14295   EVT ResVT = Val.getValueType();
14296 
14297   if (!isTypeLegal(ResVT))
14298     return SDValue();
14299 
14300   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14301   bool ValidTypeForStoreFltAsInt =
14302         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14303          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14304 
14305   if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
14306     return SDValue();
14307 
14308   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14309       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14310     return SDValue();
14311 
14312   // Extend f32 values to f64
14313   if (ResVT.getScalarSizeInBits() == 32) {
14314     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14315     DCI.AddToWorklist(Val.getNode());
14316   }
14317 
14318   // Set signed or unsigned conversion opcode.
14319   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14320                           PPCISD::FP_TO_SINT_IN_VSR :
14321                           PPCISD::FP_TO_UINT_IN_VSR;
14322 
14323   Val = DAG.getNode(ConvOpcode,
14324                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14325   DCI.AddToWorklist(Val.getNode());
14326 
14327   // Set number of bytes being converted.
14328   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14329   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14330                     DAG.getIntPtrConstant(ByteSize, dl, false),
14331                     DAG.getValueType(Op1VT) };
14332 
14333   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14334           DAG.getVTList(MVT::Other), Ops,
14335           cast<StoreSDNode>(N)->getMemoryVT(),
14336           cast<StoreSDNode>(N)->getMemOperand());
14337 
14338   DCI.AddToWorklist(Val.getNode());
14339   return Val;
14340 }
14341 
14342 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14343   // Check that the source of the element keeps flipping
14344   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14345   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14346   for (int i = 1, e = Mask.size(); i < e; i++) {
14347     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14348       return false;
14349     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14350       return false;
14351     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14352   }
14353   return true;
14354 }
14355 
14356 static bool isSplatBV(SDValue Op) {
14357   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14358     return false;
14359   SDValue FirstOp;
14360 
14361   // Find first non-undef input.
14362   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14363     FirstOp = Op.getOperand(i);
14364     if (!FirstOp.isUndef())
14365       break;
14366   }
14367 
14368   // All inputs are undef or the same as the first non-undef input.
14369   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14370     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14371       return false;
14372   return true;
14373 }
14374 
14375 static SDValue isScalarToVec(SDValue Op) {
14376   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14377     return Op;
14378   if (Op.getOpcode() != ISD::BITCAST)
14379     return SDValue();
14380   Op = Op.getOperand(0);
14381   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14382     return Op;
14383   return SDValue();
14384 }
14385 
14386 // Fix up the shuffle mask to account for the fact that the result of
14387 // scalar_to_vector is not in lane zero. This just takes all values in
14388 // the ranges specified by the min/max indices and adds the number of
14389 // elements required to ensure each element comes from the respective
14390 // position in the valid lane.
14391 // On little endian, that's just the corresponding element in the other
14392 // half of the vector. On big endian, it is in the same half but right
14393 // justified rather than left justified in that half.
14394 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14395                                             int LHSMaxIdx, int RHSMinIdx,
14396                                             int RHSMaxIdx, int HalfVec,
14397                                             unsigned ValidLaneWidth,
14398                                             const PPCSubtarget &Subtarget) {
14399   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14400     int Idx = ShuffV[i];
14401     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14402       ShuffV[i] +=
14403           Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
14404   }
14405 }
14406 
14407 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14408 // the original is:
14409 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14410 // In such a case, just change the shuffle mask to extract the element
14411 // from the permuted index.
14412 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
14413                                const PPCSubtarget &Subtarget) {
14414   SDLoc dl(OrigSToV);
14415   EVT VT = OrigSToV.getValueType();
14416   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14417          "Expecting a SCALAR_TO_VECTOR here");
14418   SDValue Input = OrigSToV.getOperand(0);
14419 
14420   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14421     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14422     SDValue OrigVector = Input.getOperand(0);
14423 
14424     // Can't handle non-const element indices or different vector types
14425     // for the input to the extract and the output of the scalar_to_vector.
14426     if (Idx && VT == OrigVector.getValueType()) {
14427       unsigned NumElts = VT.getVectorNumElements();
14428       assert(
14429           NumElts > 1 &&
14430           "Cannot produce a permuted scalar_to_vector for one element vector");
14431       SmallVector<int, 16> NewMask(NumElts, -1);
14432       unsigned ResultInElt = NumElts / 2;
14433       ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
14434       NewMask[ResultInElt] = Idx->getZExtValue();
14435       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14436     }
14437   }
14438   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14439                      OrigSToV.getOperand(0));
14440 }
14441 
14442 // On little endian subtargets, combine shuffles such as:
14443 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14444 // into:
14445 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14446 // because the latter can be matched to a single instruction merge.
14447 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14448 // to put the value into element zero. Adjust the shuffle mask so that the
14449 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14450 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
14451 // nodes with elements smaller than doubleword because all the ways
14452 // of getting scalar data into a vector register put the value in the
14453 // rightmost element of the left half of the vector.
14454 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14455                                                 SelectionDAG &DAG) const {
14456   SDValue LHS = SVN->getOperand(0);
14457   SDValue RHS = SVN->getOperand(1);
14458   auto Mask = SVN->getMask();
14459   int NumElts = LHS.getValueType().getVectorNumElements();
14460   SDValue Res(SVN, 0);
14461   SDLoc dl(SVN);
14462   bool IsLittleEndian = Subtarget.isLittleEndian();
14463 
14464   // On little endian targets, do these combines on all VSX targets since
14465   // canonical shuffles match efficient permutes. On big endian targets,
14466   // this is only useful for targets with direct moves.
14467   if (!Subtarget.hasDirectMove() && !(IsLittleEndian && Subtarget.hasVSX()))
14468     return Res;
14469 
14470   // If this is not a shuffle of a shuffle and the first element comes from
14471   // the second vector, canonicalize to the commuted form. This will make it
14472   // more likely to match one of the single instruction patterns.
14473   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14474       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14475     std::swap(LHS, RHS);
14476     Res = DAG.getCommutedVectorShuffle(*SVN);
14477     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14478   }
14479 
14480   // Adjust the shuffle mask if either input vector comes from a
14481   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14482   // form (to prevent the need for a swap).
14483   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14484   SDValue SToVLHS = isScalarToVec(LHS);
14485   SDValue SToVRHS = isScalarToVec(RHS);
14486   if (SToVLHS || SToVRHS) {
14487     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14488                             : SToVRHS.getValueType().getVectorNumElements();
14489     int NumEltsOut = ShuffV.size();
14490     unsigned InElemSizeInBits =
14491         SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits()
14492                 : SToVRHS.getValueType().getScalarSizeInBits();
14493     unsigned OutElemSizeInBits = SToVLHS
14494                                      ? LHS.getValueType().getScalarSizeInBits()
14495                                      : RHS.getValueType().getScalarSizeInBits();
14496 
14497     // The width of the "valid lane" (i.e. the lane that contains the value that
14498     // is vectorized) needs to be expressed in terms of the number of elements
14499     // of the shuffle. It is thereby the ratio of the values before and after
14500     // any bitcast.
14501     unsigned ValidLaneWidth = InElemSizeInBits / OutElemSizeInBits;
14502 
14503     // Initially assume that neither input is permuted. These will be adjusted
14504     // accordingly if either input is.
14505     int LHSMaxIdx = -1;
14506     int RHSMinIdx = -1;
14507     int RHSMaxIdx = -1;
14508     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14509 
14510     // Get the permuted scalar to vector nodes for the source(s) that come from
14511     // ISD::SCALAR_TO_VECTOR.
14512     // On big endian systems, this only makes sense for element sizes smaller
14513     // than 64 bits since for 64-bit elements, all instructions already put
14514     // the value into element zero.
14515     if (SToVLHS) {
14516       if (!IsLittleEndian && InElemSizeInBits >= 64)
14517         return Res;
14518       // Set up the values for the shuffle vector fixup.
14519       LHSMaxIdx = NumEltsOut / NumEltsIn;
14520       SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
14521       if (SToVLHS.getValueType() != LHS.getValueType())
14522         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14523       LHS = SToVLHS;
14524     }
14525     if (SToVRHS) {
14526       if (!IsLittleEndian && InElemSizeInBits >= 64)
14527         return Res;
14528       RHSMinIdx = NumEltsOut;
14529       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14530       SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
14531       if (SToVRHS.getValueType() != RHS.getValueType())
14532         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14533       RHS = SToVRHS;
14534     }
14535 
14536     // Fix up the shuffle mask to reflect where the desired element actually is.
14537     // The minimum and maximum indices that correspond to element zero for both
14538     // the LHS and RHS are computed and will control which shuffle mask entries
14539     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14540     // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
14541     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14542                                     HalfVec, ValidLaneWidth, Subtarget);
14543     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14544 
14545     // We may have simplified away the shuffle. We won't be able to do anything
14546     // further with it here.
14547     if (!isa<ShuffleVectorSDNode>(Res))
14548       return Res;
14549     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14550   }
14551 
14552   SDValue TheSplat = IsLittleEndian ? RHS : LHS;
14553   // The common case after we commuted the shuffle is that the RHS is a splat
14554   // and we have elements coming in from the splat at indices that are not
14555   // conducive to using a merge.
14556   // Example:
14557   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14558   if (!isSplatBV(TheSplat))
14559     return Res;
14560 
14561   // We are looking for a mask such that all even elements are from
14562   // one vector and all odd elements from the other.
14563   if (!isAlternatingShuffMask(Mask, NumElts))
14564     return Res;
14565 
14566   // Adjust the mask so we are pulling in the same index from the splat
14567   // as the index from the interesting vector in consecutive elements.
14568   if (IsLittleEndian) {
14569     // Example (even elements from first vector):
14570     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14571     if (Mask[0] < NumElts)
14572       for (int i = 1, e = Mask.size(); i < e; i += 2)
14573         ShuffV[i] = (ShuffV[i - 1] + NumElts);
14574     // Example (odd elements from first vector):
14575     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14576     else
14577       for (int i = 0, e = Mask.size(); i < e; i += 2)
14578         ShuffV[i] = (ShuffV[i + 1] + NumElts);
14579   } else {
14580     // Example (even elements from first vector):
14581     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
14582     if (Mask[0] < NumElts)
14583       for (int i = 0, e = Mask.size(); i < e; i += 2)
14584         ShuffV[i] = ShuffV[i + 1] - NumElts;
14585     // Example (odd elements from first vector):
14586     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
14587     else
14588       for (int i = 1, e = Mask.size(); i < e; i += 2)
14589         ShuffV[i] = ShuffV[i - 1] - NumElts;
14590   }
14591 
14592   // If the RHS has undefs, we need to remove them since we may have created
14593   // a shuffle that adds those instead of the splat value.
14594   SDValue SplatVal =
14595       cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
14596   TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
14597 
14598   if (IsLittleEndian)
14599     RHS = TheSplat;
14600   else
14601     LHS = TheSplat;
14602   return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14603 }
14604 
14605 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14606                                                 LSBaseSDNode *LSBase,
14607                                                 DAGCombinerInfo &DCI) const {
14608   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14609         "Not a reverse memop pattern!");
14610 
14611   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14612     auto Mask = SVN->getMask();
14613     int i = 0;
14614     auto I = Mask.rbegin();
14615     auto E = Mask.rend();
14616 
14617     for (; I != E; ++I) {
14618       if (*I != i)
14619         return false;
14620       i++;
14621     }
14622     return true;
14623   };
14624 
14625   SelectionDAG &DAG = DCI.DAG;
14626   EVT VT = SVN->getValueType(0);
14627 
14628   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14629     return SDValue();
14630 
14631   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14632   // See comment in PPCVSXSwapRemoval.cpp.
14633   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14634   if (!Subtarget.hasP9Vector())
14635     return SDValue();
14636 
14637   if(!IsElementReverse(SVN))
14638     return SDValue();
14639 
14640   if (LSBase->getOpcode() == ISD::LOAD) {
14641     // If the load return value 0 has more than one user except the
14642     // shufflevector instruction, it is not profitable to replace the
14643     // shufflevector with a reverse load.
14644     for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
14645          UI != UE; ++UI)
14646       if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
14647         return SDValue();
14648 
14649     SDLoc dl(LSBase);
14650     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14651     return DAG.getMemIntrinsicNode(
14652         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14653         LSBase->getMemoryVT(), LSBase->getMemOperand());
14654   }
14655 
14656   if (LSBase->getOpcode() == ISD::STORE) {
14657     // If there are other uses of the shuffle, the swap cannot be avoided.
14658     // Forcing the use of an X-Form (since swapped stores only have
14659     // X-Forms) without removing the swap is unprofitable.
14660     if (!SVN->hasOneUse())
14661       return SDValue();
14662 
14663     SDLoc dl(LSBase);
14664     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14665                           LSBase->getBasePtr()};
14666     return DAG.getMemIntrinsicNode(
14667         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14668         LSBase->getMemoryVT(), LSBase->getMemOperand());
14669   }
14670 
14671   llvm_unreachable("Expected a load or store node here");
14672 }
14673 
14674 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14675                                              DAGCombinerInfo &DCI) const {
14676   SelectionDAG &DAG = DCI.DAG;
14677   SDLoc dl(N);
14678   switch (N->getOpcode()) {
14679   default: break;
14680   case ISD::ADD:
14681     return combineADD(N, DCI);
14682   case ISD::SHL:
14683     return combineSHL(N, DCI);
14684   case ISD::SRA:
14685     return combineSRA(N, DCI);
14686   case ISD::SRL:
14687     return combineSRL(N, DCI);
14688   case ISD::MUL:
14689     return combineMUL(N, DCI);
14690   case ISD::FMA:
14691   case PPCISD::FNMSUB:
14692     return combineFMALike(N, DCI);
14693   case PPCISD::SHL:
14694     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14695         return N->getOperand(0);
14696     break;
14697   case PPCISD::SRL:
14698     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14699         return N->getOperand(0);
14700     break;
14701   case PPCISD::SRA:
14702     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14703       if (C->isNullValue() ||   //  0 >>s V -> 0.
14704           C->isAllOnesValue())    // -1 >>s V -> -1.
14705         return N->getOperand(0);
14706     }
14707     break;
14708   case ISD::SIGN_EXTEND:
14709   case ISD::ZERO_EXTEND:
14710   case ISD::ANY_EXTEND:
14711     return DAGCombineExtBoolTrunc(N, DCI);
14712   case ISD::TRUNCATE:
14713     return combineTRUNCATE(N, DCI);
14714   case ISD::SETCC:
14715     if (SDValue CSCC = combineSetCC(N, DCI))
14716       return CSCC;
14717     LLVM_FALLTHROUGH;
14718   case ISD::SELECT_CC:
14719     return DAGCombineTruncBoolExt(N, DCI);
14720   case ISD::SINT_TO_FP:
14721   case ISD::UINT_TO_FP:
14722     return combineFPToIntToFP(N, DCI);
14723   case ISD::VECTOR_SHUFFLE:
14724     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14725       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14726       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14727     }
14728     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14729   case ISD::STORE: {
14730 
14731     EVT Op1VT = N->getOperand(1).getValueType();
14732     unsigned Opcode = N->getOperand(1).getOpcode();
14733 
14734     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14735       SDValue Val= combineStoreFPToInt(N, DCI);
14736       if (Val)
14737         return Val;
14738     }
14739 
14740     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14741       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14742       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14743       if (Val)
14744         return Val;
14745     }
14746 
14747     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14748     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14749         N->getOperand(1).getNode()->hasOneUse() &&
14750         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14751          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14752 
14753       // STBRX can only handle simple types and it makes no sense to store less
14754       // two bytes in byte-reversed order.
14755       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14756       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14757         break;
14758 
14759       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14760       // Do an any-extend to 32-bits if this is a half-word input.
14761       if (BSwapOp.getValueType() == MVT::i16)
14762         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14763 
14764       // If the type of BSWAP operand is wider than stored memory width
14765       // it need to be shifted to the right side before STBRX.
14766       if (Op1VT.bitsGT(mVT)) {
14767         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14768         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14769                               DAG.getConstant(Shift, dl, MVT::i32));
14770         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14771         if (Op1VT == MVT::i64)
14772           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14773       }
14774 
14775       SDValue Ops[] = {
14776         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14777       };
14778       return
14779         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14780                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14781                                 cast<StoreSDNode>(N)->getMemOperand());
14782     }
14783 
14784     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14785     // So it can increase the chance of CSE constant construction.
14786     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14787         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14788       // Need to sign-extended to 64-bits to handle negative values.
14789       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14790       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14791                                     MemVT.getSizeInBits());
14792       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14793 
14794       // DAG.getTruncStore() can't be used here because it doesn't accept
14795       // the general (base + offset) addressing mode.
14796       // So we use UpdateNodeOperands and setTruncatingStore instead.
14797       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14798                              N->getOperand(3));
14799       cast<StoreSDNode>(N)->setTruncatingStore(true);
14800       return SDValue(N, 0);
14801     }
14802 
14803     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14804     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14805     if (Op1VT.isSimple()) {
14806       MVT StoreVT = Op1VT.getSimpleVT();
14807       if (Subtarget.needsSwapsForVSXMemOps() &&
14808           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14809            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14810         return expandVSXStoreForLE(N, DCI);
14811     }
14812     break;
14813   }
14814   case ISD::LOAD: {
14815     LoadSDNode *LD = cast<LoadSDNode>(N);
14816     EVT VT = LD->getValueType(0);
14817 
14818     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14819     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14820     if (VT.isSimple()) {
14821       MVT LoadVT = VT.getSimpleVT();
14822       if (Subtarget.needsSwapsForVSXMemOps() &&
14823           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14824            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14825         return expandVSXLoadForLE(N, DCI);
14826     }
14827 
14828     // We sometimes end up with a 64-bit integer load, from which we extract
14829     // two single-precision floating-point numbers. This happens with
14830     // std::complex<float>, and other similar structures, because of the way we
14831     // canonicalize structure copies. However, if we lack direct moves,
14832     // then the final bitcasts from the extracted integer values to the
14833     // floating-point numbers turn into store/load pairs. Even with direct moves,
14834     // just loading the two floating-point numbers is likely better.
14835     auto ReplaceTwoFloatLoad = [&]() {
14836       if (VT != MVT::i64)
14837         return false;
14838 
14839       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14840           LD->isVolatile())
14841         return false;
14842 
14843       //  We're looking for a sequence like this:
14844       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14845       //      t16: i64 = srl t13, Constant:i32<32>
14846       //    t17: i32 = truncate t16
14847       //  t18: f32 = bitcast t17
14848       //    t19: i32 = truncate t13
14849       //  t20: f32 = bitcast t19
14850 
14851       if (!LD->hasNUsesOfValue(2, 0))
14852         return false;
14853 
14854       auto UI = LD->use_begin();
14855       while (UI.getUse().getResNo() != 0) ++UI;
14856       SDNode *Trunc = *UI++;
14857       while (UI.getUse().getResNo() != 0) ++UI;
14858       SDNode *RightShift = *UI;
14859       if (Trunc->getOpcode() != ISD::TRUNCATE)
14860         std::swap(Trunc, RightShift);
14861 
14862       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14863           Trunc->getValueType(0) != MVT::i32 ||
14864           !Trunc->hasOneUse())
14865         return false;
14866       if (RightShift->getOpcode() != ISD::SRL ||
14867           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14868           RightShift->getConstantOperandVal(1) != 32 ||
14869           !RightShift->hasOneUse())
14870         return false;
14871 
14872       SDNode *Trunc2 = *RightShift->use_begin();
14873       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14874           Trunc2->getValueType(0) != MVT::i32 ||
14875           !Trunc2->hasOneUse())
14876         return false;
14877 
14878       SDNode *Bitcast = *Trunc->use_begin();
14879       SDNode *Bitcast2 = *Trunc2->use_begin();
14880 
14881       if (Bitcast->getOpcode() != ISD::BITCAST ||
14882           Bitcast->getValueType(0) != MVT::f32)
14883         return false;
14884       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14885           Bitcast2->getValueType(0) != MVT::f32)
14886         return false;
14887 
14888       if (Subtarget.isLittleEndian())
14889         std::swap(Bitcast, Bitcast2);
14890 
14891       // Bitcast has the second float (in memory-layout order) and Bitcast2
14892       // has the first one.
14893 
14894       SDValue BasePtr = LD->getBasePtr();
14895       if (LD->isIndexed()) {
14896         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14897                "Non-pre-inc AM on PPC?");
14898         BasePtr =
14899           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14900                       LD->getOffset());
14901       }
14902 
14903       auto MMOFlags =
14904           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14905       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14906                                       LD->getPointerInfo(), LD->getAlignment(),
14907                                       MMOFlags, LD->getAAInfo());
14908       SDValue AddPtr =
14909         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14910                     BasePtr, DAG.getIntPtrConstant(4, dl));
14911       SDValue FloatLoad2 = DAG.getLoad(
14912           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14913           LD->getPointerInfo().getWithOffset(4),
14914           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14915 
14916       if (LD->isIndexed()) {
14917         // Note that DAGCombine should re-form any pre-increment load(s) from
14918         // what is produced here if that makes sense.
14919         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14920       }
14921 
14922       DCI.CombineTo(Bitcast2, FloatLoad);
14923       DCI.CombineTo(Bitcast, FloatLoad2);
14924 
14925       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14926                                     SDValue(FloatLoad2.getNode(), 1));
14927       return true;
14928     };
14929 
14930     if (ReplaceTwoFloatLoad())
14931       return SDValue(N, 0);
14932 
14933     EVT MemVT = LD->getMemoryVT();
14934     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14935     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14936     if (LD->isUnindexed() && VT.isVector() &&
14937         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14938           // P8 and later hardware should just use LOAD.
14939           !Subtarget.hasP8Vector() &&
14940           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14941            VT == MVT::v4f32))) &&
14942         LD->getAlign() < ABIAlignment) {
14943       // This is a type-legal unaligned Altivec load.
14944       SDValue Chain = LD->getChain();
14945       SDValue Ptr = LD->getBasePtr();
14946       bool isLittleEndian = Subtarget.isLittleEndian();
14947 
14948       // This implements the loading of unaligned vectors as described in
14949       // the venerable Apple Velocity Engine overview. Specifically:
14950       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14951       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14952       //
14953       // The general idea is to expand a sequence of one or more unaligned
14954       // loads into an alignment-based permutation-control instruction (lvsl
14955       // or lvsr), a series of regular vector loads (which always truncate
14956       // their input address to an aligned address), and a series of
14957       // permutations.  The results of these permutations are the requested
14958       // loaded values.  The trick is that the last "extra" load is not taken
14959       // from the address you might suspect (sizeof(vector) bytes after the
14960       // last requested load), but rather sizeof(vector) - 1 bytes after the
14961       // last requested vector. The point of this is to avoid a page fault if
14962       // the base address happened to be aligned. This works because if the
14963       // base address is aligned, then adding less than a full vector length
14964       // will cause the last vector in the sequence to be (re)loaded.
14965       // Otherwise, the next vector will be fetched as you might suspect was
14966       // necessary.
14967 
14968       // We might be able to reuse the permutation generation from
14969       // a different base address offset from this one by an aligned amount.
14970       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14971       // optimization later.
14972       Intrinsic::ID Intr, IntrLD, IntrPerm;
14973       MVT PermCntlTy, PermTy, LDTy;
14974       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14975                             : Intrinsic::ppc_altivec_lvsl;
14976       IntrLD = Intrinsic::ppc_altivec_lvx;
14977       IntrPerm = Intrinsic::ppc_altivec_vperm;
14978       PermCntlTy = MVT::v16i8;
14979       PermTy = MVT::v4i32;
14980       LDTy = MVT::v4i32;
14981 
14982       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14983 
14984       // Create the new MMO for the new base load. It is like the original MMO,
14985       // but represents an area in memory almost twice the vector size centered
14986       // on the original address. If the address is unaligned, we might start
14987       // reading up to (sizeof(vector)-1) bytes below the address of the
14988       // original unaligned load.
14989       MachineFunction &MF = DAG.getMachineFunction();
14990       MachineMemOperand *BaseMMO =
14991         MF.getMachineMemOperand(LD->getMemOperand(),
14992                                 -(long)MemVT.getStoreSize()+1,
14993                                 2*MemVT.getStoreSize()-1);
14994 
14995       // Create the new base load.
14996       SDValue LDXIntID =
14997           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14998       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14999       SDValue BaseLoad =
15000         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15001                                 DAG.getVTList(PermTy, MVT::Other),
15002                                 BaseLoadOps, LDTy, BaseMMO);
15003 
15004       // Note that the value of IncOffset (which is provided to the next
15005       // load's pointer info offset value, and thus used to calculate the
15006       // alignment), and the value of IncValue (which is actually used to
15007       // increment the pointer value) are different! This is because we
15008       // require the next load to appear to be aligned, even though it
15009       // is actually offset from the base pointer by a lesser amount.
15010       int IncOffset = VT.getSizeInBits() / 8;
15011       int IncValue = IncOffset;
15012 
15013       // Walk (both up and down) the chain looking for another load at the real
15014       // (aligned) offset (the alignment of the other load does not matter in
15015       // this case). If found, then do not use the offset reduction trick, as
15016       // that will prevent the loads from being later combined (as they would
15017       // otherwise be duplicates).
15018       if (!findConsecutiveLoad(LD, DAG))
15019         --IncValue;
15020 
15021       SDValue Increment =
15022           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15023       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15024 
15025       MachineMemOperand *ExtraMMO =
15026         MF.getMachineMemOperand(LD->getMemOperand(),
15027                                 1, 2*MemVT.getStoreSize()-1);
15028       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15029       SDValue ExtraLoad =
15030         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15031                                 DAG.getVTList(PermTy, MVT::Other),
15032                                 ExtraLoadOps, LDTy, ExtraMMO);
15033 
15034       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15035         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15036 
15037       // Because vperm has a big-endian bias, we must reverse the order
15038       // of the input vectors and complement the permute control vector
15039       // when generating little endian code.  We have already handled the
15040       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15041       // and ExtraLoad here.
15042       SDValue Perm;
15043       if (isLittleEndian)
15044         Perm = BuildIntrinsicOp(IntrPerm,
15045                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15046       else
15047         Perm = BuildIntrinsicOp(IntrPerm,
15048                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15049 
15050       if (VT != PermTy)
15051         Perm = Subtarget.hasAltivec()
15052                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15053                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15054                                  DAG.getTargetConstant(1, dl, MVT::i64));
15055                                // second argument is 1 because this rounding
15056                                // is always exact.
15057 
15058       // The output of the permutation is our loaded result, the TokenFactor is
15059       // our new chain.
15060       DCI.CombineTo(N, Perm, TF);
15061       return SDValue(N, 0);
15062     }
15063     }
15064     break;
15065     case ISD::INTRINSIC_WO_CHAIN: {
15066       bool isLittleEndian = Subtarget.isLittleEndian();
15067       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15068       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15069                                            : Intrinsic::ppc_altivec_lvsl);
15070       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15071         SDValue Add = N->getOperand(1);
15072 
15073         int Bits = 4 /* 16 byte alignment */;
15074 
15075         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15076                                   APInt::getAllOnesValue(Bits /* alignment */)
15077                                       .zext(Add.getScalarValueSizeInBits()))) {
15078           SDNode *BasePtr = Add->getOperand(0).getNode();
15079           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15080                                     UE = BasePtr->use_end();
15081                UI != UE; ++UI) {
15082             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15083                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
15084                     IID) {
15085               // We've found another LVSL/LVSR, and this address is an aligned
15086               // multiple of that one. The results will be the same, so use the
15087               // one we've just found instead.
15088 
15089               return SDValue(*UI, 0);
15090             }
15091           }
15092         }
15093 
15094         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15095           SDNode *BasePtr = Add->getOperand(0).getNode();
15096           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15097                UE = BasePtr->use_end(); UI != UE; ++UI) {
15098             if (UI->getOpcode() == ISD::ADD &&
15099                 isa<ConstantSDNode>(UI->getOperand(1)) &&
15100                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15101                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
15102                 (1ULL << Bits) == 0) {
15103               SDNode *OtherAdd = *UI;
15104               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
15105                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
15106                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15107                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
15108                   return SDValue(*VI, 0);
15109                 }
15110               }
15111             }
15112           }
15113         }
15114       }
15115 
15116       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15117       // Expose the vabsduw/h/b opportunity for down stream
15118       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15119           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15120            IID == Intrinsic::ppc_altivec_vmaxsh ||
15121            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15122         SDValue V1 = N->getOperand(1);
15123         SDValue V2 = N->getOperand(2);
15124         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15125              V1.getSimpleValueType() == MVT::v8i16 ||
15126              V1.getSimpleValueType() == MVT::v16i8) &&
15127             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15128           // (0-a, a)
15129           if (V1.getOpcode() == ISD::SUB &&
15130               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15131               V1.getOperand(1) == V2) {
15132             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15133           }
15134           // (a, 0-a)
15135           if (V2.getOpcode() == ISD::SUB &&
15136               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15137               V2.getOperand(1) == V1) {
15138             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15139           }
15140           // (x-y, y-x)
15141           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15142               V1.getOperand(0) == V2.getOperand(1) &&
15143               V1.getOperand(1) == V2.getOperand(0)) {
15144             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15145           }
15146         }
15147       }
15148     }
15149 
15150     break;
15151   case ISD::INTRINSIC_W_CHAIN:
15152     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15153     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15154     if (Subtarget.needsSwapsForVSXMemOps()) {
15155       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15156       default:
15157         break;
15158       case Intrinsic::ppc_vsx_lxvw4x:
15159       case Intrinsic::ppc_vsx_lxvd2x:
15160         return expandVSXLoadForLE(N, DCI);
15161       }
15162     }
15163     break;
15164   case ISD::INTRINSIC_VOID:
15165     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15166     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15167     if (Subtarget.needsSwapsForVSXMemOps()) {
15168       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15169       default:
15170         break;
15171       case Intrinsic::ppc_vsx_stxvw4x:
15172       case Intrinsic::ppc_vsx_stxvd2x:
15173         return expandVSXStoreForLE(N, DCI);
15174       }
15175     }
15176     break;
15177   case ISD::BSWAP:
15178     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15179     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
15180         N->getOperand(0).hasOneUse() &&
15181         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15182          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
15183           N->getValueType(0) == MVT::i64))) {
15184       SDValue Load = N->getOperand(0);
15185       LoadSDNode *LD = cast<LoadSDNode>(Load);
15186       // Create the byte-swapping load.
15187       SDValue Ops[] = {
15188         LD->getChain(),    // Chain
15189         LD->getBasePtr(),  // Ptr
15190         DAG.getValueType(N->getValueType(0)) // VT
15191       };
15192       SDValue BSLoad =
15193         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15194                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15195                                               MVT::i64 : MVT::i32, MVT::Other),
15196                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15197 
15198       // If this is an i16 load, insert the truncate.
15199       SDValue ResVal = BSLoad;
15200       if (N->getValueType(0) == MVT::i16)
15201         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15202 
15203       // First, combine the bswap away.  This makes the value produced by the
15204       // load dead.
15205       DCI.CombineTo(N, ResVal);
15206 
15207       // Next, combine the load away, we give it a bogus result value but a real
15208       // chain result.  The result value is dead because the bswap is dead.
15209       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15210 
15211       // Return N so it doesn't get rechecked!
15212       return SDValue(N, 0);
15213     }
15214     break;
15215   case PPCISD::VCMP:
15216     // If a VCMP_rec node already exists with exactly the same operands as this
15217     // node, use its result instead of this node (VCMP_rec computes both a CR6
15218     // and a normal output).
15219     //
15220     if (!N->getOperand(0).hasOneUse() &&
15221         !N->getOperand(1).hasOneUse() &&
15222         !N->getOperand(2).hasOneUse()) {
15223 
15224       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15225       SDNode *VCMPrecNode = nullptr;
15226 
15227       SDNode *LHSN = N->getOperand(0).getNode();
15228       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15229            UI != E; ++UI)
15230         if (UI->getOpcode() == PPCISD::VCMP_rec &&
15231             UI->getOperand(1) == N->getOperand(1) &&
15232             UI->getOperand(2) == N->getOperand(2) &&
15233             UI->getOperand(0) == N->getOperand(0)) {
15234           VCMPrecNode = *UI;
15235           break;
15236         }
15237 
15238       // If there is no VCMP_rec node, or if the flag value has a single use,
15239       // don't transform this.
15240       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
15241         break;
15242 
15243       // Look at the (necessarily single) use of the flag value.  If it has a
15244       // chain, this transformation is more complex.  Note that multiple things
15245       // could use the value result, which we should ignore.
15246       SDNode *FlagUser = nullptr;
15247       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
15248            FlagUser == nullptr; ++UI) {
15249         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
15250         SDNode *User = *UI;
15251         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15252           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
15253             FlagUser = User;
15254             break;
15255           }
15256         }
15257       }
15258 
15259       // If the user is a MFOCRF instruction, we know this is safe.
15260       // Otherwise we give up for right now.
15261       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15262         return SDValue(VCMPrecNode, 0);
15263     }
15264     break;
15265   case ISD::BRCOND: {
15266     SDValue Cond = N->getOperand(1);
15267     SDValue Target = N->getOperand(2);
15268 
15269     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15270         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15271           Intrinsic::loop_decrement) {
15272 
15273       // We now need to make the intrinsic dead (it cannot be instruction
15274       // selected).
15275       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15276       assert(Cond.getNode()->hasOneUse() &&
15277              "Counter decrement has more than one use");
15278 
15279       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15280                          N->getOperand(0), Target);
15281     }
15282   }
15283   break;
15284   case ISD::BR_CC: {
15285     // If this is a branch on an altivec predicate comparison, lower this so
15286     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15287     // lowering is done pre-legalize, because the legalizer lowers the predicate
15288     // compare down to code that is difficult to reassemble.
15289     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15290     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15291 
15292     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15293     // value. If so, pass-through the AND to get to the intrinsic.
15294     if (LHS.getOpcode() == ISD::AND &&
15295         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15296         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15297           Intrinsic::loop_decrement &&
15298         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15299         !isNullConstant(LHS.getOperand(1)))
15300       LHS = LHS.getOperand(0);
15301 
15302     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15303         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15304           Intrinsic::loop_decrement &&
15305         isa<ConstantSDNode>(RHS)) {
15306       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15307              "Counter decrement comparison is not EQ or NE");
15308 
15309       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15310       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15311                     (CC == ISD::SETNE && !Val);
15312 
15313       // We now need to make the intrinsic dead (it cannot be instruction
15314       // selected).
15315       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15316       assert(LHS.getNode()->hasOneUse() &&
15317              "Counter decrement has more than one use");
15318 
15319       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15320                          N->getOperand(0), N->getOperand(4));
15321     }
15322 
15323     int CompareOpc;
15324     bool isDot;
15325 
15326     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15327         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15328         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15329       assert(isDot && "Can't compare against a vector result!");
15330 
15331       // If this is a comparison against something other than 0/1, then we know
15332       // that the condition is never/always true.
15333       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15334       if (Val != 0 && Val != 1) {
15335         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15336           return N->getOperand(0);
15337         // Always !=, turn it into an unconditional branch.
15338         return DAG.getNode(ISD::BR, dl, MVT::Other,
15339                            N->getOperand(0), N->getOperand(4));
15340       }
15341 
15342       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15343 
15344       // Create the PPCISD altivec 'dot' comparison node.
15345       SDValue Ops[] = {
15346         LHS.getOperand(2),  // LHS of compare
15347         LHS.getOperand(3),  // RHS of compare
15348         DAG.getConstant(CompareOpc, dl, MVT::i32)
15349       };
15350       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15351       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15352 
15353       // Unpack the result based on how the target uses it.
15354       PPC::Predicate CompOpc;
15355       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15356       default:  // Can't happen, don't crash on invalid number though.
15357       case 0:   // Branch on the value of the EQ bit of CR6.
15358         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15359         break;
15360       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15361         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15362         break;
15363       case 2:   // Branch on the value of the LT bit of CR6.
15364         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15365         break;
15366       case 3:   // Branch on the inverted value of the LT bit of CR6.
15367         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15368         break;
15369       }
15370 
15371       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15372                          DAG.getConstant(CompOpc, dl, MVT::i32),
15373                          DAG.getRegister(PPC::CR6, MVT::i32),
15374                          N->getOperand(4), CompNode.getValue(1));
15375     }
15376     break;
15377   }
15378   case ISD::BUILD_VECTOR:
15379     return DAGCombineBuildVector(N, DCI);
15380   case ISD::ABS:
15381     return combineABS(N, DCI);
15382   case ISD::VSELECT:
15383     return combineVSelect(N, DCI);
15384   }
15385 
15386   return SDValue();
15387 }
15388 
15389 SDValue
15390 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15391                                  SelectionDAG &DAG,
15392                                  SmallVectorImpl<SDNode *> &Created) const {
15393   // fold (sdiv X, pow2)
15394   EVT VT = N->getValueType(0);
15395   if (VT == MVT::i64 && !Subtarget.isPPC64())
15396     return SDValue();
15397   if ((VT != MVT::i32 && VT != MVT::i64) ||
15398       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15399     return SDValue();
15400 
15401   SDLoc DL(N);
15402   SDValue N0 = N->getOperand(0);
15403 
15404   bool IsNegPow2 = (-Divisor).isPowerOf2();
15405   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15406   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15407 
15408   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15409   Created.push_back(Op.getNode());
15410 
15411   if (IsNegPow2) {
15412     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15413     Created.push_back(Op.getNode());
15414   }
15415 
15416   return Op;
15417 }
15418 
15419 //===----------------------------------------------------------------------===//
15420 // Inline Assembly Support
15421 //===----------------------------------------------------------------------===//
15422 
15423 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15424                                                       KnownBits &Known,
15425                                                       const APInt &DemandedElts,
15426                                                       const SelectionDAG &DAG,
15427                                                       unsigned Depth) const {
15428   Known.resetAll();
15429   switch (Op.getOpcode()) {
15430   default: break;
15431   case PPCISD::LBRX: {
15432     // lhbrx is known to have the top bits cleared out.
15433     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15434       Known.Zero = 0xFFFF0000;
15435     break;
15436   }
15437   case ISD::INTRINSIC_WO_CHAIN: {
15438     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15439     default: break;
15440     case Intrinsic::ppc_altivec_vcmpbfp_p:
15441     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15442     case Intrinsic::ppc_altivec_vcmpequb_p:
15443     case Intrinsic::ppc_altivec_vcmpequh_p:
15444     case Intrinsic::ppc_altivec_vcmpequw_p:
15445     case Intrinsic::ppc_altivec_vcmpequd_p:
15446     case Intrinsic::ppc_altivec_vcmpequq_p:
15447     case Intrinsic::ppc_altivec_vcmpgefp_p:
15448     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15449     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15450     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15451     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15452     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15453     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15454     case Intrinsic::ppc_altivec_vcmpgtub_p:
15455     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15456     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15457     case Intrinsic::ppc_altivec_vcmpgtud_p:
15458     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15459       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15460       break;
15461     }
15462   }
15463   }
15464 }
15465 
15466 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15467   switch (Subtarget.getCPUDirective()) {
15468   default: break;
15469   case PPC::DIR_970:
15470   case PPC::DIR_PWR4:
15471   case PPC::DIR_PWR5:
15472   case PPC::DIR_PWR5X:
15473   case PPC::DIR_PWR6:
15474   case PPC::DIR_PWR6X:
15475   case PPC::DIR_PWR7:
15476   case PPC::DIR_PWR8:
15477   case PPC::DIR_PWR9:
15478   case PPC::DIR_PWR10:
15479   case PPC::DIR_PWR_FUTURE: {
15480     if (!ML)
15481       break;
15482 
15483     if (!DisableInnermostLoopAlign32) {
15484       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15485       // so that we can decrease cache misses and branch-prediction misses.
15486       // Actual alignment of the loop will depend on the hotness check and other
15487       // logic in alignBlocks.
15488       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15489         return Align(32);
15490     }
15491 
15492     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15493 
15494     // For small loops (between 5 and 8 instructions), align to a 32-byte
15495     // boundary so that the entire loop fits in one instruction-cache line.
15496     uint64_t LoopSize = 0;
15497     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15498       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15499         LoopSize += TII->getInstSizeInBytes(*J);
15500         if (LoopSize > 32)
15501           break;
15502       }
15503 
15504     if (LoopSize > 16 && LoopSize <= 32)
15505       return Align(32);
15506 
15507     break;
15508   }
15509   }
15510 
15511   return TargetLowering::getPrefLoopAlignment(ML);
15512 }
15513 
15514 /// getConstraintType - Given a constraint, return the type of
15515 /// constraint it is for this target.
15516 PPCTargetLowering::ConstraintType
15517 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15518   if (Constraint.size() == 1) {
15519     switch (Constraint[0]) {
15520     default: break;
15521     case 'b':
15522     case 'r':
15523     case 'f':
15524     case 'd':
15525     case 'v':
15526     case 'y':
15527       return C_RegisterClass;
15528     case 'Z':
15529       // FIXME: While Z does indicate a memory constraint, it specifically
15530       // indicates an r+r address (used in conjunction with the 'y' modifier
15531       // in the replacement string). Currently, we're forcing the base
15532       // register to be r0 in the asm printer (which is interpreted as zero)
15533       // and forming the complete address in the second register. This is
15534       // suboptimal.
15535       return C_Memory;
15536     }
15537   } else if (Constraint == "wc") { // individual CR bits.
15538     return C_RegisterClass;
15539   } else if (Constraint == "wa" || Constraint == "wd" ||
15540              Constraint == "wf" || Constraint == "ws" ||
15541              Constraint == "wi" || Constraint == "ww") {
15542     return C_RegisterClass; // VSX registers.
15543   }
15544   return TargetLowering::getConstraintType(Constraint);
15545 }
15546 
15547 /// Examine constraint type and operand type and determine a weight value.
15548 /// This object must already have been set up with the operand type
15549 /// and the current alternative constraint selected.
15550 TargetLowering::ConstraintWeight
15551 PPCTargetLowering::getSingleConstraintMatchWeight(
15552     AsmOperandInfo &info, const char *constraint) const {
15553   ConstraintWeight weight = CW_Invalid;
15554   Value *CallOperandVal = info.CallOperandVal;
15555     // If we don't have a value, we can't do a match,
15556     // but allow it at the lowest weight.
15557   if (!CallOperandVal)
15558     return CW_Default;
15559   Type *type = CallOperandVal->getType();
15560 
15561   // Look at the constraint type.
15562   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15563     return CW_Register; // an individual CR bit.
15564   else if ((StringRef(constraint) == "wa" ||
15565             StringRef(constraint) == "wd" ||
15566             StringRef(constraint) == "wf") &&
15567            type->isVectorTy())
15568     return CW_Register;
15569   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15570     return CW_Register; // just hold 64-bit integers data.
15571   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15572     return CW_Register;
15573   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15574     return CW_Register;
15575 
15576   switch (*constraint) {
15577   default:
15578     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15579     break;
15580   case 'b':
15581     if (type->isIntegerTy())
15582       weight = CW_Register;
15583     break;
15584   case 'f':
15585     if (type->isFloatTy())
15586       weight = CW_Register;
15587     break;
15588   case 'd':
15589     if (type->isDoubleTy())
15590       weight = CW_Register;
15591     break;
15592   case 'v':
15593     if (type->isVectorTy())
15594       weight = CW_Register;
15595     break;
15596   case 'y':
15597     weight = CW_Register;
15598     break;
15599   case 'Z':
15600     weight = CW_Memory;
15601     break;
15602   }
15603   return weight;
15604 }
15605 
15606 std::pair<unsigned, const TargetRegisterClass *>
15607 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15608                                                 StringRef Constraint,
15609                                                 MVT VT) const {
15610   if (Constraint.size() == 1) {
15611     // GCC RS6000 Constraint Letters
15612     switch (Constraint[0]) {
15613     case 'b':   // R1-R31
15614       if (VT == MVT::i64 && Subtarget.isPPC64())
15615         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15616       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15617     case 'r':   // R0-R31
15618       if (VT == MVT::i64 && Subtarget.isPPC64())
15619         return std::make_pair(0U, &PPC::G8RCRegClass);
15620       return std::make_pair(0U, &PPC::GPRCRegClass);
15621     // 'd' and 'f' constraints are both defined to be "the floating point
15622     // registers", where one is for 32-bit and the other for 64-bit. We don't
15623     // really care overly much here so just give them all the same reg classes.
15624     case 'd':
15625     case 'f':
15626       if (Subtarget.hasSPE()) {
15627         if (VT == MVT::f32 || VT == MVT::i32)
15628           return std::make_pair(0U, &PPC::GPRCRegClass);
15629         if (VT == MVT::f64 || VT == MVT::i64)
15630           return std::make_pair(0U, &PPC::SPERCRegClass);
15631       } else {
15632         if (VT == MVT::f32 || VT == MVT::i32)
15633           return std::make_pair(0U, &PPC::F4RCRegClass);
15634         if (VT == MVT::f64 || VT == MVT::i64)
15635           return std::make_pair(0U, &PPC::F8RCRegClass);
15636       }
15637       break;
15638     case 'v':
15639       if (Subtarget.hasAltivec())
15640         return std::make_pair(0U, &PPC::VRRCRegClass);
15641       break;
15642     case 'y':   // crrc
15643       return std::make_pair(0U, &PPC::CRRCRegClass);
15644     }
15645   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15646     // An individual CR bit.
15647     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15648   } else if ((Constraint == "wa" || Constraint == "wd" ||
15649              Constraint == "wf" || Constraint == "wi") &&
15650              Subtarget.hasVSX()) {
15651     // A VSX register for either a scalar (FP) or vector. There is no
15652     // support for single precision scalars on subtargets prior to Power8.
15653     if (VT.isVector())
15654       return std::make_pair(0U, &PPC::VSRCRegClass);
15655     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15656       return std::make_pair(0U, &PPC::VSSRCRegClass);
15657     return std::make_pair(0U, &PPC::VSFRCRegClass);
15658   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15659     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15660       return std::make_pair(0U, &PPC::VSSRCRegClass);
15661     else
15662       return std::make_pair(0U, &PPC::VSFRCRegClass);
15663   } else if (Constraint == "lr") {
15664     if (VT == MVT::i64)
15665       return std::make_pair(0U, &PPC::LR8RCRegClass);
15666     else
15667       return std::make_pair(0U, &PPC::LRRCRegClass);
15668   }
15669 
15670   // Handle special cases of physical registers that are not properly handled
15671   // by the base class.
15672   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
15673     // If we name a VSX register, we can't defer to the base class because it
15674     // will not recognize the correct register (their names will be VSL{0-31}
15675     // and V{0-31} so they won't match). So we match them here.
15676     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15677       int VSNum = atoi(Constraint.data() + 3);
15678       assert(VSNum >= 0 && VSNum <= 63 &&
15679              "Attempted to access a vsr out of range");
15680       if (VSNum < 32)
15681         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15682       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15683     }
15684 
15685     // For float registers, we can't defer to the base class as it will match
15686     // the SPILLTOVSRRC class.
15687     if (Constraint.size() > 3 && Constraint[1] == 'f') {
15688       int RegNum = atoi(Constraint.data() + 2);
15689       if (RegNum > 31 || RegNum < 0)
15690         report_fatal_error("Invalid floating point register number");
15691       if (VT == MVT::f32 || VT == MVT::i32)
15692         return Subtarget.hasSPE()
15693                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
15694                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
15695       if (VT == MVT::f64 || VT == MVT::i64)
15696         return Subtarget.hasSPE()
15697                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
15698                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
15699     }
15700   }
15701 
15702   std::pair<unsigned, const TargetRegisterClass *> R =
15703       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15704 
15705   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15706   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15707   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15708   // register.
15709   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15710   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15711   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15712       PPC::GPRCRegClass.contains(R.first))
15713     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15714                             PPC::sub_32, &PPC::G8RCRegClass),
15715                           &PPC::G8RCRegClass);
15716 
15717   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15718   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15719     R.first = PPC::CR0;
15720     R.second = &PPC::CRRCRegClass;
15721   }
15722   // FIXME: This warning should ideally be emitted in the front end.
15723   const auto &TM = getTargetMachine();
15724   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
15725     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
15726          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
15727         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
15728       errs() << "warning: vector registers 20 to 32 are reserved in the "
15729                 "default AIX AltiVec ABI and cannot be used\n";
15730   }
15731 
15732   return R;
15733 }
15734 
15735 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15736 /// vector.  If it is invalid, don't add anything to Ops.
15737 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15738                                                      std::string &Constraint,
15739                                                      std::vector<SDValue>&Ops,
15740                                                      SelectionDAG &DAG) const {
15741   SDValue Result;
15742 
15743   // Only support length 1 constraints.
15744   if (Constraint.length() > 1) return;
15745 
15746   char Letter = Constraint[0];
15747   switch (Letter) {
15748   default: break;
15749   case 'I':
15750   case 'J':
15751   case 'K':
15752   case 'L':
15753   case 'M':
15754   case 'N':
15755   case 'O':
15756   case 'P': {
15757     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15758     if (!CST) return; // Must be an immediate to match.
15759     SDLoc dl(Op);
15760     int64_t Value = CST->getSExtValue();
15761     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15762                          // numbers are printed as such.
15763     switch (Letter) {
15764     default: llvm_unreachable("Unknown constraint letter!");
15765     case 'I':  // "I" is a signed 16-bit constant.
15766       if (isInt<16>(Value))
15767         Result = DAG.getTargetConstant(Value, dl, TCVT);
15768       break;
15769     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15770       if (isShiftedUInt<16, 16>(Value))
15771         Result = DAG.getTargetConstant(Value, dl, TCVT);
15772       break;
15773     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15774       if (isShiftedInt<16, 16>(Value))
15775         Result = DAG.getTargetConstant(Value, dl, TCVT);
15776       break;
15777     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15778       if (isUInt<16>(Value))
15779         Result = DAG.getTargetConstant(Value, dl, TCVT);
15780       break;
15781     case 'M':  // "M" is a constant that is greater than 31.
15782       if (Value > 31)
15783         Result = DAG.getTargetConstant(Value, dl, TCVT);
15784       break;
15785     case 'N':  // "N" is a positive constant that is an exact power of two.
15786       if (Value > 0 && isPowerOf2_64(Value))
15787         Result = DAG.getTargetConstant(Value, dl, TCVT);
15788       break;
15789     case 'O':  // "O" is the constant zero.
15790       if (Value == 0)
15791         Result = DAG.getTargetConstant(Value, dl, TCVT);
15792       break;
15793     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15794       if (isInt<16>(-Value))
15795         Result = DAG.getTargetConstant(Value, dl, TCVT);
15796       break;
15797     }
15798     break;
15799   }
15800   }
15801 
15802   if (Result.getNode()) {
15803     Ops.push_back(Result);
15804     return;
15805   }
15806 
15807   // Handle standard constraint letters.
15808   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15809 }
15810 
15811 // isLegalAddressingMode - Return true if the addressing mode represented
15812 // by AM is legal for this target, for a load/store of the specified type.
15813 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15814                                               const AddrMode &AM, Type *Ty,
15815                                               unsigned AS,
15816                                               Instruction *I) const {
15817   // Vector type r+i form is supported since power9 as DQ form. We don't check
15818   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15819   // imm form is preferred and the offset can be adjusted to use imm form later
15820   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15821   // max offset to check legal addressing mode, we should be a little aggressive
15822   // to contain other offsets for that LSRUse.
15823   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15824     return false;
15825 
15826   // PPC allows a sign-extended 16-bit immediate field.
15827   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15828     return false;
15829 
15830   // No global is ever allowed as a base.
15831   if (AM.BaseGV)
15832     return false;
15833 
15834   // PPC only support r+r,
15835   switch (AM.Scale) {
15836   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15837     break;
15838   case 1:
15839     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15840       return false;
15841     // Otherwise we have r+r or r+i.
15842     break;
15843   case 2:
15844     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15845       return false;
15846     // Allow 2*r as r+r.
15847     break;
15848   default:
15849     // No other scales are supported.
15850     return false;
15851   }
15852 
15853   return true;
15854 }
15855 
15856 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15857                                            SelectionDAG &DAG) const {
15858   MachineFunction &MF = DAG.getMachineFunction();
15859   MachineFrameInfo &MFI = MF.getFrameInfo();
15860   MFI.setReturnAddressIsTaken(true);
15861 
15862   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15863     return SDValue();
15864 
15865   SDLoc dl(Op);
15866   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15867 
15868   // Make sure the function does not optimize away the store of the RA to
15869   // the stack.
15870   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15871   FuncInfo->setLRStoreRequired();
15872   bool isPPC64 = Subtarget.isPPC64();
15873   auto PtrVT = getPointerTy(MF.getDataLayout());
15874 
15875   if (Depth > 0) {
15876     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15877     SDValue Offset =
15878         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15879                         isPPC64 ? MVT::i64 : MVT::i32);
15880     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15881                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15882                        MachinePointerInfo());
15883   }
15884 
15885   // Just load the return address off the stack.
15886   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15887   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15888                      MachinePointerInfo());
15889 }
15890 
15891 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15892                                           SelectionDAG &DAG) const {
15893   SDLoc dl(Op);
15894   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15895 
15896   MachineFunction &MF = DAG.getMachineFunction();
15897   MachineFrameInfo &MFI = MF.getFrameInfo();
15898   MFI.setFrameAddressIsTaken(true);
15899 
15900   EVT PtrVT = getPointerTy(MF.getDataLayout());
15901   bool isPPC64 = PtrVT == MVT::i64;
15902 
15903   // Naked functions never have a frame pointer, and so we use r1. For all
15904   // other functions, this decision must be delayed until during PEI.
15905   unsigned FrameReg;
15906   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15907     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15908   else
15909     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15910 
15911   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15912                                          PtrVT);
15913   while (Depth--)
15914     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15915                             FrameAddr, MachinePointerInfo());
15916   return FrameAddr;
15917 }
15918 
15919 // FIXME? Maybe this could be a TableGen attribute on some registers and
15920 // this table could be generated automatically from RegInfo.
15921 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15922                                               const MachineFunction &MF) const {
15923   bool isPPC64 = Subtarget.isPPC64();
15924 
15925   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15926   if (!is64Bit && VT != LLT::scalar(32))
15927     report_fatal_error("Invalid register global variable type");
15928 
15929   Register Reg = StringSwitch<Register>(RegName)
15930                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15931                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15932                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15933                      .Default(Register());
15934 
15935   if (Reg)
15936     return Reg;
15937   report_fatal_error("Invalid register name global variable");
15938 }
15939 
15940 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15941   // 32-bit SVR4 ABI access everything as got-indirect.
15942   if (Subtarget.is32BitELFABI())
15943     return true;
15944 
15945   // AIX accesses everything indirectly through the TOC, which is similar to
15946   // the GOT.
15947   if (Subtarget.isAIXABI())
15948     return true;
15949 
15950   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15951   // If it is small or large code model, module locals are accessed
15952   // indirectly by loading their address from .toc/.got.
15953   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15954     return true;
15955 
15956   // JumpTable and BlockAddress are accessed as got-indirect.
15957   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15958     return true;
15959 
15960   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15961     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15962 
15963   return false;
15964 }
15965 
15966 bool
15967 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15968   // The PowerPC target isn't yet aware of offsets.
15969   return false;
15970 }
15971 
15972 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15973                                            const CallInst &I,
15974                                            MachineFunction &MF,
15975                                            unsigned Intrinsic) const {
15976   switch (Intrinsic) {
15977   case Intrinsic::ppc_altivec_lvx:
15978   case Intrinsic::ppc_altivec_lvxl:
15979   case Intrinsic::ppc_altivec_lvebx:
15980   case Intrinsic::ppc_altivec_lvehx:
15981   case Intrinsic::ppc_altivec_lvewx:
15982   case Intrinsic::ppc_vsx_lxvd2x:
15983   case Intrinsic::ppc_vsx_lxvw4x:
15984   case Intrinsic::ppc_vsx_lxvd2x_be:
15985   case Intrinsic::ppc_vsx_lxvw4x_be:
15986   case Intrinsic::ppc_vsx_lxvl:
15987   case Intrinsic::ppc_vsx_lxvll: {
15988     EVT VT;
15989     switch (Intrinsic) {
15990     case Intrinsic::ppc_altivec_lvebx:
15991       VT = MVT::i8;
15992       break;
15993     case Intrinsic::ppc_altivec_lvehx:
15994       VT = MVT::i16;
15995       break;
15996     case Intrinsic::ppc_altivec_lvewx:
15997       VT = MVT::i32;
15998       break;
15999     case Intrinsic::ppc_vsx_lxvd2x:
16000     case Intrinsic::ppc_vsx_lxvd2x_be:
16001       VT = MVT::v2f64;
16002       break;
16003     default:
16004       VT = MVT::v4i32;
16005       break;
16006     }
16007 
16008     Info.opc = ISD::INTRINSIC_W_CHAIN;
16009     Info.memVT = VT;
16010     Info.ptrVal = I.getArgOperand(0);
16011     Info.offset = -VT.getStoreSize()+1;
16012     Info.size = 2*VT.getStoreSize()-1;
16013     Info.align = Align(1);
16014     Info.flags = MachineMemOperand::MOLoad;
16015     return true;
16016   }
16017   case Intrinsic::ppc_altivec_stvx:
16018   case Intrinsic::ppc_altivec_stvxl:
16019   case Intrinsic::ppc_altivec_stvebx:
16020   case Intrinsic::ppc_altivec_stvehx:
16021   case Intrinsic::ppc_altivec_stvewx:
16022   case Intrinsic::ppc_vsx_stxvd2x:
16023   case Intrinsic::ppc_vsx_stxvw4x:
16024   case Intrinsic::ppc_vsx_stxvd2x_be:
16025   case Intrinsic::ppc_vsx_stxvw4x_be:
16026   case Intrinsic::ppc_vsx_stxvl:
16027   case Intrinsic::ppc_vsx_stxvll: {
16028     EVT VT;
16029     switch (Intrinsic) {
16030     case Intrinsic::ppc_altivec_stvebx:
16031       VT = MVT::i8;
16032       break;
16033     case Intrinsic::ppc_altivec_stvehx:
16034       VT = MVT::i16;
16035       break;
16036     case Intrinsic::ppc_altivec_stvewx:
16037       VT = MVT::i32;
16038       break;
16039     case Intrinsic::ppc_vsx_stxvd2x:
16040     case Intrinsic::ppc_vsx_stxvd2x_be:
16041       VT = MVT::v2f64;
16042       break;
16043     default:
16044       VT = MVT::v4i32;
16045       break;
16046     }
16047 
16048     Info.opc = ISD::INTRINSIC_VOID;
16049     Info.memVT = VT;
16050     Info.ptrVal = I.getArgOperand(1);
16051     Info.offset = -VT.getStoreSize()+1;
16052     Info.size = 2*VT.getStoreSize()-1;
16053     Info.align = Align(1);
16054     Info.flags = MachineMemOperand::MOStore;
16055     return true;
16056   }
16057   default:
16058     break;
16059   }
16060 
16061   return false;
16062 }
16063 
16064 /// It returns EVT::Other if the type should be determined using generic
16065 /// target-independent logic.
16066 EVT PPCTargetLowering::getOptimalMemOpType(
16067     const MemOp &Op, const AttributeList &FuncAttributes) const {
16068   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16069     // We should use Altivec/VSX loads and stores when available. For unaligned
16070     // addresses, unaligned VSX loads are only fast starting with the P8.
16071     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16072         (Op.isAligned(Align(16)) ||
16073          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16074       return MVT::v4i32;
16075   }
16076 
16077   if (Subtarget.isPPC64()) {
16078     return MVT::i64;
16079   }
16080 
16081   return MVT::i32;
16082 }
16083 
16084 /// Returns true if it is beneficial to convert a load of a constant
16085 /// to just the constant itself.
16086 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16087                                                           Type *Ty) const {
16088   assert(Ty->isIntegerTy());
16089 
16090   unsigned BitSize = Ty->getPrimitiveSizeInBits();
16091   return !(BitSize == 0 || BitSize > 64);
16092 }
16093 
16094 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16095   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16096     return false;
16097   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16098   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16099   return NumBits1 == 64 && NumBits2 == 32;
16100 }
16101 
16102 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16103   if (!VT1.isInteger() || !VT2.isInteger())
16104     return false;
16105   unsigned NumBits1 = VT1.getSizeInBits();
16106   unsigned NumBits2 = VT2.getSizeInBits();
16107   return NumBits1 == 64 && NumBits2 == 32;
16108 }
16109 
16110 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16111   // Generally speaking, zexts are not free, but they are free when they can be
16112   // folded with other operations.
16113   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16114     EVT MemVT = LD->getMemoryVT();
16115     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16116          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16117         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16118          LD->getExtensionType() == ISD::ZEXTLOAD))
16119       return true;
16120   }
16121 
16122   // FIXME: Add other cases...
16123   //  - 32-bit shifts with a zext to i64
16124   //  - zext after ctlz, bswap, etc.
16125   //  - zext after and by a constant mask
16126 
16127   return TargetLowering::isZExtFree(Val, VT2);
16128 }
16129 
16130 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16131   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16132          "invalid fpext types");
16133   // Extending to float128 is not free.
16134   if (DestVT == MVT::f128)
16135     return false;
16136   return true;
16137 }
16138 
16139 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16140   return isInt<16>(Imm) || isUInt<16>(Imm);
16141 }
16142 
16143 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16144   return isInt<16>(Imm) || isUInt<16>(Imm);
16145 }
16146 
16147 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
16148                                                        MachineMemOperand::Flags,
16149                                                        bool *Fast) const {
16150   if (DisablePPCUnaligned)
16151     return false;
16152 
16153   // PowerPC supports unaligned memory access for simple non-vector types.
16154   // Although accessing unaligned addresses is not as efficient as accessing
16155   // aligned addresses, it is generally more efficient than manual expansion,
16156   // and generally only traps for software emulation when crossing page
16157   // boundaries.
16158 
16159   if (!VT.isSimple())
16160     return false;
16161 
16162   if (VT.isFloatingPoint() && !VT.isVector() &&
16163       !Subtarget.allowsUnalignedFPAccess())
16164     return false;
16165 
16166   if (VT.getSimpleVT().isVector()) {
16167     if (Subtarget.hasVSX()) {
16168       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16169           VT != MVT::v4f32 && VT != MVT::v4i32)
16170         return false;
16171     } else {
16172       return false;
16173     }
16174   }
16175 
16176   if (VT == MVT::ppcf128)
16177     return false;
16178 
16179   if (Fast)
16180     *Fast = true;
16181 
16182   return true;
16183 }
16184 
16185 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16186                                                SDValue C) const {
16187   // Check integral scalar types.
16188   if (!VT.isScalarInteger())
16189     return false;
16190   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16191     if (!ConstNode->getAPIntValue().isSignedIntN(64))
16192       return false;
16193     // This transformation will generate >= 2 operations. But the following
16194     // cases will generate <= 2 instructions during ISEL. So exclude them.
16195     // 1. If the constant multiplier fits 16 bits, it can be handled by one
16196     // HW instruction, ie. MULLI
16197     // 2. If the multiplier after shifted fits 16 bits, an extra shift
16198     // instruction is needed than case 1, ie. MULLI and RLDICR
16199     int64_t Imm = ConstNode->getSExtValue();
16200     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16201     Imm >>= Shift;
16202     if (isInt<16>(Imm))
16203       return false;
16204     uint64_t UImm = static_cast<uint64_t>(Imm);
16205     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16206         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16207       return true;
16208   }
16209   return false;
16210 }
16211 
16212 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16213                                                    EVT VT) const {
16214   return isFMAFasterThanFMulAndFAdd(
16215       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16216 }
16217 
16218 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16219                                                    Type *Ty) const {
16220   switch (Ty->getScalarType()->getTypeID()) {
16221   case Type::FloatTyID:
16222   case Type::DoubleTyID:
16223     return true;
16224   case Type::FP128TyID:
16225     return Subtarget.hasP9Vector();
16226   default:
16227     return false;
16228   }
16229 }
16230 
16231 // FIXME: add more patterns which are not profitable to hoist.
16232 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16233   if (!I->hasOneUse())
16234     return true;
16235 
16236   Instruction *User = I->user_back();
16237   assert(User && "A single use instruction with no uses.");
16238 
16239   switch (I->getOpcode()) {
16240   case Instruction::FMul: {
16241     // Don't break FMA, PowerPC prefers FMA.
16242     if (User->getOpcode() != Instruction::FSub &&
16243         User->getOpcode() != Instruction::FAdd)
16244       return true;
16245 
16246     const TargetOptions &Options = getTargetMachine().Options;
16247     const Function *F = I->getFunction();
16248     const DataLayout &DL = F->getParent()->getDataLayout();
16249     Type *Ty = User->getOperand(0)->getType();
16250 
16251     return !(
16252         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16253         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16254         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16255   }
16256   case Instruction::Load: {
16257     // Don't break "store (load float*)" pattern, this pattern will be combined
16258     // to "store (load int32)" in later InstCombine pass. See function
16259     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16260     // cycles than loading a 32 bit integer.
16261     LoadInst *LI = cast<LoadInst>(I);
16262     // For the loads that combineLoadToOperationType does nothing, like
16263     // ordered load, it should be profitable to hoist them.
16264     // For swifterror load, it can only be used for pointer to pointer type, so
16265     // later type check should get rid of this case.
16266     if (!LI->isUnordered())
16267       return true;
16268 
16269     if (User->getOpcode() != Instruction::Store)
16270       return true;
16271 
16272     if (I->getType()->getTypeID() != Type::FloatTyID)
16273       return true;
16274 
16275     return false;
16276   }
16277   default:
16278     return true;
16279   }
16280   return true;
16281 }
16282 
16283 const MCPhysReg *
16284 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16285   // LR is a callee-save register, but we must treat it as clobbered by any call
16286   // site. Hence we include LR in the scratch registers, which are in turn added
16287   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16288   // to CTR, which is used by any indirect call.
16289   static const MCPhysReg ScratchRegs[] = {
16290     PPC::X12, PPC::LR8, PPC::CTR8, 0
16291   };
16292 
16293   return ScratchRegs;
16294 }
16295 
16296 Register PPCTargetLowering::getExceptionPointerRegister(
16297     const Constant *PersonalityFn) const {
16298   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16299 }
16300 
16301 Register PPCTargetLowering::getExceptionSelectorRegister(
16302     const Constant *PersonalityFn) const {
16303   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16304 }
16305 
16306 bool
16307 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16308                      EVT VT , unsigned DefinedValues) const {
16309   if (VT == MVT::v2i64)
16310     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16311 
16312   if (Subtarget.hasVSX())
16313     return true;
16314 
16315   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16316 }
16317 
16318 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16319   if (DisableILPPref || Subtarget.enableMachineScheduler())
16320     return TargetLowering::getSchedulingPreference(N);
16321 
16322   return Sched::ILP;
16323 }
16324 
16325 // Create a fast isel object.
16326 FastISel *
16327 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16328                                   const TargetLibraryInfo *LibInfo) const {
16329   return PPC::createFastISel(FuncInfo, LibInfo);
16330 }
16331 
16332 // 'Inverted' means the FMA opcode after negating one multiplicand.
16333 // For example, (fma -a b c) = (fnmsub a b c)
16334 static unsigned invertFMAOpcode(unsigned Opc) {
16335   switch (Opc) {
16336   default:
16337     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16338   case ISD::FMA:
16339     return PPCISD::FNMSUB;
16340   case PPCISD::FNMSUB:
16341     return ISD::FMA;
16342   }
16343 }
16344 
16345 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16346                                                 bool LegalOps, bool OptForSize,
16347                                                 NegatibleCost &Cost,
16348                                                 unsigned Depth) const {
16349   if (Depth > SelectionDAG::MaxRecursionDepth)
16350     return SDValue();
16351 
16352   unsigned Opc = Op.getOpcode();
16353   EVT VT = Op.getValueType();
16354   SDNodeFlags Flags = Op.getNode()->getFlags();
16355 
16356   switch (Opc) {
16357   case PPCISD::FNMSUB:
16358     if (!Op.hasOneUse() || !isTypeLegal(VT))
16359       break;
16360 
16361     const TargetOptions &Options = getTargetMachine().Options;
16362     SDValue N0 = Op.getOperand(0);
16363     SDValue N1 = Op.getOperand(1);
16364     SDValue N2 = Op.getOperand(2);
16365     SDLoc Loc(Op);
16366 
16367     NegatibleCost N2Cost = NegatibleCost::Expensive;
16368     SDValue NegN2 =
16369         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16370 
16371     if (!NegN2)
16372       return SDValue();
16373 
16374     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16375     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16376     // These transformations may change sign of zeroes. For example,
16377     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16378     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16379       // Try and choose the cheaper one to negate.
16380       NegatibleCost N0Cost = NegatibleCost::Expensive;
16381       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16382                                            N0Cost, Depth + 1);
16383 
16384       NegatibleCost N1Cost = NegatibleCost::Expensive;
16385       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16386                                            N1Cost, Depth + 1);
16387 
16388       if (NegN0 && N0Cost <= N1Cost) {
16389         Cost = std::min(N0Cost, N2Cost);
16390         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16391       } else if (NegN1) {
16392         Cost = std::min(N1Cost, N2Cost);
16393         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16394       }
16395     }
16396 
16397     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16398     if (isOperationLegal(ISD::FMA, VT)) {
16399       Cost = N2Cost;
16400       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16401     }
16402 
16403     break;
16404   }
16405 
16406   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16407                                               Cost, Depth);
16408 }
16409 
16410 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16411 bool PPCTargetLowering::useLoadStackGuardNode() const {
16412   if (!Subtarget.isTargetLinux())
16413     return TargetLowering::useLoadStackGuardNode();
16414   return true;
16415 }
16416 
16417 // Override to disable global variable loading on Linux and insert AIX canary
16418 // word declaration.
16419 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16420   if (Subtarget.isAIXABI()) {
16421     M.getOrInsertGlobal(AIXSSPCanaryWordName,
16422                         Type::getInt8PtrTy(M.getContext()));
16423     return;
16424   }
16425   if (!Subtarget.isTargetLinux())
16426     return TargetLowering::insertSSPDeclarations(M);
16427 }
16428 
16429 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
16430   if (Subtarget.isAIXABI())
16431     return M.getGlobalVariable(AIXSSPCanaryWordName);
16432   return TargetLowering::getSDagStackGuard(M);
16433 }
16434 
16435 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16436                                      bool ForCodeSize) const {
16437   if (!VT.isSimple() || !Subtarget.hasVSX())
16438     return false;
16439 
16440   switch(VT.getSimpleVT().SimpleTy) {
16441   default:
16442     // For FP types that are currently not supported by PPC backend, return
16443     // false. Examples: f16, f80.
16444     return false;
16445   case MVT::f32:
16446   case MVT::f64:
16447     if (Subtarget.hasPrefixInstrs()) {
16448       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
16449       return true;
16450     }
16451     LLVM_FALLTHROUGH;
16452   case MVT::ppcf128:
16453     return Imm.isPosZero();
16454   }
16455 }
16456 
16457 // For vector shift operation op, fold
16458 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16459 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16460                                   SelectionDAG &DAG) {
16461   SDValue N0 = N->getOperand(0);
16462   SDValue N1 = N->getOperand(1);
16463   EVT VT = N0.getValueType();
16464   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16465   unsigned Opcode = N->getOpcode();
16466   unsigned TargetOpcode;
16467 
16468   switch (Opcode) {
16469   default:
16470     llvm_unreachable("Unexpected shift operation");
16471   case ISD::SHL:
16472     TargetOpcode = PPCISD::SHL;
16473     break;
16474   case ISD::SRL:
16475     TargetOpcode = PPCISD::SRL;
16476     break;
16477   case ISD::SRA:
16478     TargetOpcode = PPCISD::SRA;
16479     break;
16480   }
16481 
16482   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16483       N1->getOpcode() == ISD::AND)
16484     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16485       if (Mask->getZExtValue() == OpSizeInBits - 1)
16486         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16487 
16488   return SDValue();
16489 }
16490 
16491 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16492   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16493     return Value;
16494 
16495   SDValue N0 = N->getOperand(0);
16496   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16497   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
16498       N0.getOpcode() != ISD::SIGN_EXTEND ||
16499       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
16500       N->getValueType(0) != MVT::i64)
16501     return SDValue();
16502 
16503   // We can't save an operation here if the value is already extended, and
16504   // the existing shift is easier to combine.
16505   SDValue ExtsSrc = N0.getOperand(0);
16506   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16507       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16508     return SDValue();
16509 
16510   SDLoc DL(N0);
16511   SDValue ShiftBy = SDValue(CN1, 0);
16512   // We want the shift amount to be i32 on the extswli, but the shift could
16513   // have an i64.
16514   if (ShiftBy.getValueType() == MVT::i64)
16515     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16516 
16517   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16518                          ShiftBy);
16519 }
16520 
16521 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16522   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16523     return Value;
16524 
16525   return SDValue();
16526 }
16527 
16528 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16529   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16530     return Value;
16531 
16532   return SDValue();
16533 }
16534 
16535 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16536 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16537 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16538 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16539 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16540                                  const PPCSubtarget &Subtarget) {
16541   if (!Subtarget.isPPC64())
16542     return SDValue();
16543 
16544   SDValue LHS = N->getOperand(0);
16545   SDValue RHS = N->getOperand(1);
16546 
16547   auto isZextOfCompareWithConstant = [](SDValue Op) {
16548     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16549         Op.getValueType() != MVT::i64)
16550       return false;
16551 
16552     SDValue Cmp = Op.getOperand(0);
16553     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16554         Cmp.getOperand(0).getValueType() != MVT::i64)
16555       return false;
16556 
16557     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16558       int64_t NegConstant = 0 - Constant->getSExtValue();
16559       // Due to the limitations of the addi instruction,
16560       // -C is required to be [-32768, 32767].
16561       return isInt<16>(NegConstant);
16562     }
16563 
16564     return false;
16565   };
16566 
16567   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16568   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16569 
16570   // If there is a pattern, canonicalize a zext operand to the RHS.
16571   if (LHSHasPattern && !RHSHasPattern)
16572     std::swap(LHS, RHS);
16573   else if (!LHSHasPattern && !RHSHasPattern)
16574     return SDValue();
16575 
16576   SDLoc DL(N);
16577   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16578   SDValue Cmp = RHS.getOperand(0);
16579   SDValue Z = Cmp.getOperand(0);
16580   auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
16581   int64_t NegConstant = 0 - Constant->getSExtValue();
16582 
16583   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16584   default: break;
16585   case ISD::SETNE: {
16586     //                                 when C == 0
16587     //                             --> addze X, (addic Z, -1).carry
16588     //                            /
16589     // add X, (zext(setne Z, C))--
16590     //                            \    when -32768 <= -C <= 32767 && C != 0
16591     //                             --> addze X, (addic (addi Z, -C), -1).carry
16592     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16593                               DAG.getConstant(NegConstant, DL, MVT::i64));
16594     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16595     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16596                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16597     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16598                        SDValue(Addc.getNode(), 1));
16599     }
16600   case ISD::SETEQ: {
16601     //                                 when C == 0
16602     //                             --> addze X, (subfic Z, 0).carry
16603     //                            /
16604     // add X, (zext(sete  Z, C))--
16605     //                            \    when -32768 <= -C <= 32767 && C != 0
16606     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16607     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16608                               DAG.getConstant(NegConstant, DL, MVT::i64));
16609     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16610     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16611                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16612     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16613                        SDValue(Subc.getNode(), 1));
16614     }
16615   }
16616 
16617   return SDValue();
16618 }
16619 
16620 // Transform
16621 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16622 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16623 // In this case both C1 and C2 must be known constants.
16624 // C1+C2 must fit into a 34 bit signed integer.
16625 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16626                                           const PPCSubtarget &Subtarget) {
16627   if (!Subtarget.isUsingPCRelativeCalls())
16628     return SDValue();
16629 
16630   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16631   // If we find that node try to cast the Global Address and the Constant.
16632   SDValue LHS = N->getOperand(0);
16633   SDValue RHS = N->getOperand(1);
16634 
16635   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16636     std::swap(LHS, RHS);
16637 
16638   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16639     return SDValue();
16640 
16641   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16642   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16643   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16644 
16645   // Check that both casts succeeded.
16646   if (!GSDN || !ConstNode)
16647     return SDValue();
16648 
16649   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16650   SDLoc DL(GSDN);
16651 
16652   // The signed int offset needs to fit in 34 bits.
16653   if (!isInt<34>(NewOffset))
16654     return SDValue();
16655 
16656   // The new global address is a copy of the old global address except
16657   // that it has the updated Offset.
16658   SDValue GA =
16659       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16660                                  NewOffset, GSDN->getTargetFlags());
16661   SDValue MatPCRel =
16662       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16663   return MatPCRel;
16664 }
16665 
16666 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16667   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16668     return Value;
16669 
16670   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16671     return Value;
16672 
16673   return SDValue();
16674 }
16675 
16676 // Detect TRUNCATE operations on bitcasts of float128 values.
16677 // What we are looking for here is the situtation where we extract a subset
16678 // of bits from a 128 bit float.
16679 // This can be of two forms:
16680 // 1) BITCAST of f128 feeding TRUNCATE
16681 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16682 // The reason this is required is because we do not have a legal i128 type
16683 // and so we want to prevent having to store the f128 and then reload part
16684 // of it.
16685 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16686                                            DAGCombinerInfo &DCI) const {
16687   // If we are using CRBits then try that first.
16688   if (Subtarget.useCRBits()) {
16689     // Check if CRBits did anything and return that if it did.
16690     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16691       return CRTruncValue;
16692   }
16693 
16694   SDLoc dl(N);
16695   SDValue Op0 = N->getOperand(0);
16696 
16697   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16698   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16699     EVT VT = N->getValueType(0);
16700     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16701       return SDValue();
16702     SDValue Sub = Op0.getOperand(0);
16703     if (Sub.getOpcode() == ISD::SUB) {
16704       SDValue SubOp0 = Sub.getOperand(0);
16705       SDValue SubOp1 = Sub.getOperand(1);
16706       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16707           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16708         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16709                                SubOp1.getOperand(0),
16710                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16711       }
16712     }
16713   }
16714 
16715   // Looking for a truncate of i128 to i64.
16716   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16717     return SDValue();
16718 
16719   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16720 
16721   // SRL feeding TRUNCATE.
16722   if (Op0.getOpcode() == ISD::SRL) {
16723     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16724     // The right shift has to be by 64 bits.
16725     if (!ConstNode || ConstNode->getZExtValue() != 64)
16726       return SDValue();
16727 
16728     // Switch the element number to extract.
16729     EltToExtract = EltToExtract ? 0 : 1;
16730     // Update Op0 past the SRL.
16731     Op0 = Op0.getOperand(0);
16732   }
16733 
16734   // BITCAST feeding a TRUNCATE possibly via SRL.
16735   if (Op0.getOpcode() == ISD::BITCAST &&
16736       Op0.getValueType() == MVT::i128 &&
16737       Op0.getOperand(0).getValueType() == MVT::f128) {
16738     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16739     return DCI.DAG.getNode(
16740         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16741         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16742   }
16743   return SDValue();
16744 }
16745 
16746 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16747   SelectionDAG &DAG = DCI.DAG;
16748 
16749   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16750   if (!ConstOpOrElement)
16751     return SDValue();
16752 
16753   // An imul is usually smaller than the alternative sequence for legal type.
16754   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16755       isOperationLegal(ISD::MUL, N->getValueType(0)))
16756     return SDValue();
16757 
16758   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16759     switch (this->Subtarget.getCPUDirective()) {
16760     default:
16761       // TODO: enhance the condition for subtarget before pwr8
16762       return false;
16763     case PPC::DIR_PWR8:
16764       //  type        mul     add    shl
16765       // scalar        4       1      1
16766       // vector        7       2      2
16767       return true;
16768     case PPC::DIR_PWR9:
16769     case PPC::DIR_PWR10:
16770     case PPC::DIR_PWR_FUTURE:
16771       //  type        mul     add    shl
16772       // scalar        5       2      2
16773       // vector        7       2      2
16774 
16775       // The cycle RATIO of related operations are showed as a table above.
16776       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16777       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16778       // are 4, it is always profitable; but for 3 instrs patterns
16779       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16780       // So we should only do it for vector type.
16781       return IsAddOne && IsNeg ? VT.isVector() : true;
16782     }
16783   };
16784 
16785   EVT VT = N->getValueType(0);
16786   SDLoc DL(N);
16787 
16788   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16789   bool IsNeg = MulAmt.isNegative();
16790   APInt MulAmtAbs = MulAmt.abs();
16791 
16792   if ((MulAmtAbs - 1).isPowerOf2()) {
16793     // (mul x, 2^N + 1) => (add (shl x, N), x)
16794     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16795 
16796     if (!IsProfitable(IsNeg, true, VT))
16797       return SDValue();
16798 
16799     SDValue Op0 = N->getOperand(0);
16800     SDValue Op1 =
16801         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16802                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16803     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16804 
16805     if (!IsNeg)
16806       return Res;
16807 
16808     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16809   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16810     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16811     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16812 
16813     if (!IsProfitable(IsNeg, false, VT))
16814       return SDValue();
16815 
16816     SDValue Op0 = N->getOperand(0);
16817     SDValue Op1 =
16818         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16819                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16820 
16821     if (!IsNeg)
16822       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16823     else
16824       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16825 
16826   } else {
16827     return SDValue();
16828   }
16829 }
16830 
16831 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16832 // in combiner since we need to check SD flags and other subtarget features.
16833 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16834                                           DAGCombinerInfo &DCI) const {
16835   SDValue N0 = N->getOperand(0);
16836   SDValue N1 = N->getOperand(1);
16837   SDValue N2 = N->getOperand(2);
16838   SDNodeFlags Flags = N->getFlags();
16839   EVT VT = N->getValueType(0);
16840   SelectionDAG &DAG = DCI.DAG;
16841   const TargetOptions &Options = getTargetMachine().Options;
16842   unsigned Opc = N->getOpcode();
16843   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16844   bool LegalOps = !DCI.isBeforeLegalizeOps();
16845   SDLoc Loc(N);
16846 
16847   if (!isOperationLegal(ISD::FMA, VT))
16848     return SDValue();
16849 
16850   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16851   // since (fnmsub a b c)=-0 while c-ab=+0.
16852   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16853     return SDValue();
16854 
16855   // (fma (fneg a) b c) => (fnmsub a b c)
16856   // (fnmsub (fneg a) b c) => (fma a b c)
16857   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16858     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16859 
16860   // (fma a (fneg b) c) => (fnmsub a b c)
16861   // (fnmsub a (fneg b) c) => (fma a b c)
16862   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16863     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16864 
16865   return SDValue();
16866 }
16867 
16868 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16869   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16870   if (!Subtarget.is64BitELFABI())
16871     return false;
16872 
16873   // If not a tail call then no need to proceed.
16874   if (!CI->isTailCall())
16875     return false;
16876 
16877   // If sibling calls have been disabled and tail-calls aren't guaranteed
16878   // there is no reason to duplicate.
16879   auto &TM = getTargetMachine();
16880   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16881     return false;
16882 
16883   // Can't tail call a function called indirectly, or if it has variadic args.
16884   const Function *Callee = CI->getCalledFunction();
16885   if (!Callee || Callee->isVarArg())
16886     return false;
16887 
16888   // Make sure the callee and caller calling conventions are eligible for tco.
16889   const Function *Caller = CI->getParent()->getParent();
16890   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16891                                            CI->getCallingConv()))
16892       return false;
16893 
16894   // If the function is local then we have a good chance at tail-calling it
16895   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16896 }
16897 
16898 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16899   if (!Subtarget.hasVSX())
16900     return false;
16901   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16902     return true;
16903   return VT == MVT::f32 || VT == MVT::f64 ||
16904     VT == MVT::v4f32 || VT == MVT::v2f64;
16905 }
16906 
16907 bool PPCTargetLowering::
16908 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16909   const Value *Mask = AndI.getOperand(1);
16910   // If the mask is suitable for andi. or andis. we should sink the and.
16911   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16912     // Can't handle constants wider than 64-bits.
16913     if (CI->getBitWidth() > 64)
16914       return false;
16915     int64_t ConstVal = CI->getZExtValue();
16916     return isUInt<16>(ConstVal) ||
16917       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16918   }
16919 
16920   // For non-constant masks, we can always use the record-form and.
16921   return true;
16922 }
16923 
16924 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16925 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16926 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16927 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16928 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16929 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16930   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16931   assert(Subtarget.hasP9Altivec() &&
16932          "Only combine this when P9 altivec supported!");
16933   EVT VT = N->getValueType(0);
16934   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16935     return SDValue();
16936 
16937   SelectionDAG &DAG = DCI.DAG;
16938   SDLoc dl(N);
16939   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16940     // Even for signed integers, if it's known to be positive (as signed
16941     // integer) due to zero-extended inputs.
16942     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16943     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16944     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16945          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16946         (SubOpcd1 == ISD::ZERO_EXTEND ||
16947          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16948       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16949                          N->getOperand(0)->getOperand(0),
16950                          N->getOperand(0)->getOperand(1),
16951                          DAG.getTargetConstant(0, dl, MVT::i32));
16952     }
16953 
16954     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16955     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16956         N->getOperand(0).hasOneUse()) {
16957       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16958                          N->getOperand(0)->getOperand(0),
16959                          N->getOperand(0)->getOperand(1),
16960                          DAG.getTargetConstant(1, dl, MVT::i32));
16961     }
16962   }
16963 
16964   return SDValue();
16965 }
16966 
16967 // For type v4i32/v8ii16/v16i8, transform
16968 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16969 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16970 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16971 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16972 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16973                                           DAGCombinerInfo &DCI) const {
16974   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16975   assert(Subtarget.hasP9Altivec() &&
16976          "Only combine this when P9 altivec supported!");
16977 
16978   SelectionDAG &DAG = DCI.DAG;
16979   SDLoc dl(N);
16980   SDValue Cond = N->getOperand(0);
16981   SDValue TrueOpnd = N->getOperand(1);
16982   SDValue FalseOpnd = N->getOperand(2);
16983   EVT VT = N->getOperand(1).getValueType();
16984 
16985   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16986       FalseOpnd.getOpcode() != ISD::SUB)
16987     return SDValue();
16988 
16989   // ABSD only available for type v4i32/v8i16/v16i8
16990   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16991     return SDValue();
16992 
16993   // At least to save one more dependent computation
16994   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16995     return SDValue();
16996 
16997   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16998 
16999   // Can only handle unsigned comparison here
17000   switch (CC) {
17001   default:
17002     return SDValue();
17003   case ISD::SETUGT:
17004   case ISD::SETUGE:
17005     break;
17006   case ISD::SETULT:
17007   case ISD::SETULE:
17008     std::swap(TrueOpnd, FalseOpnd);
17009     break;
17010   }
17011 
17012   SDValue CmpOpnd1 = Cond.getOperand(0);
17013   SDValue CmpOpnd2 = Cond.getOperand(1);
17014 
17015   // SETCC CmpOpnd1 CmpOpnd2 cond
17016   // TrueOpnd = CmpOpnd1 - CmpOpnd2
17017   // FalseOpnd = CmpOpnd2 - CmpOpnd1
17018   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17019       TrueOpnd.getOperand(1) == CmpOpnd2 &&
17020       FalseOpnd.getOperand(0) == CmpOpnd2 &&
17021       FalseOpnd.getOperand(1) == CmpOpnd1) {
17022     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17023                        CmpOpnd1, CmpOpnd2,
17024                        DAG.getTargetConstant(0, dl, MVT::i32));
17025   }
17026 
17027   return SDValue();
17028 }
17029 
17030 /// getAddrModeForFlags - Based on the set of address flags, select the most
17031 /// optimal instruction format to match by.
17032 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17033   // This is not a node we should be handling here.
17034   if (Flags == PPC::MOF_None)
17035     return PPC::AM_None;
17036   // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17037   for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17038     if ((Flags & FlagSet) == FlagSet)
17039       return PPC::AM_DForm;
17040   for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
17041     if ((Flags & FlagSet) == FlagSet)
17042       return PPC::AM_DSForm;
17043   for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
17044     if ((Flags & FlagSet) == FlagSet)
17045       return PPC::AM_DQForm;
17046   // If no other forms are selected, return an X-Form as it is the most
17047   // general addressing mode.
17048   return PPC::AM_XForm;
17049 }
17050 
17051 /// Set alignment flags based on whether or not the Frame Index is aligned.
17052 /// Utilized when computing flags for address computation when selecting
17053 /// load and store instructions.
17054 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
17055                                SelectionDAG &DAG) {
17056   bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
17057   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
17058   if (!FI)
17059     return;
17060   const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
17061   unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
17062   // If this is (add $FI, $S16Imm), the alignment flags are already set
17063   // based on the immediate. We just need to clear the alignment flags
17064   // if the FI alignment is weaker.
17065   if ((FrameIndexAlign % 4) != 0)
17066     FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
17067   if ((FrameIndexAlign % 16) != 0)
17068     FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
17069   // If the address is a plain FrameIndex, set alignment flags based on
17070   // FI alignment.
17071   if (!IsAdd) {
17072     if ((FrameIndexAlign % 4) == 0)
17073       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17074     if ((FrameIndexAlign % 16) == 0)
17075       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17076   }
17077 }
17078 
17079 /// Given a node, compute flags that are used for address computation when
17080 /// selecting load and store instructions. The flags computed are stored in
17081 /// FlagSet. This function takes into account whether the node is a constant,
17082 /// an ADD, OR, or a constant, and computes the address flags accordingly.
17083 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
17084                                               SelectionDAG &DAG) {
17085   // Set the alignment flags for the node depending on if the node is
17086   // 4-byte or 16-byte aligned.
17087   auto SetAlignFlagsForImm = [&](uint64_t Imm) {
17088     if ((Imm & 0x3) == 0)
17089       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17090     if ((Imm & 0xf) == 0)
17091       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17092   };
17093 
17094   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
17095     // All 32-bit constants can be computed as LIS + Disp.
17096     const APInt &ConstImm = CN->getAPIntValue();
17097     if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17098       FlagSet |= PPC::MOF_AddrIsSImm32;
17099       SetAlignFlagsForImm(ConstImm.getZExtValue());
17100       setAlignFlagsForFI(N, FlagSet, DAG);
17101     }
17102     if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
17103       FlagSet |= PPC::MOF_RPlusSImm34;
17104     else // Let constant materialization handle large constants.
17105       FlagSet |= PPC::MOF_NotAddNorCst;
17106   } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
17107     // This address can be represented as an addition of:
17108     // - Register + Imm16 (possibly a multiple of 4/16)
17109     // - Register + Imm34
17110     // - Register + PPCISD::Lo
17111     // - Register + Register
17112     // In any case, we won't have to match this as Base + Zero.
17113     SDValue RHS = N.getOperand(1);
17114     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
17115       const APInt &ConstImm = CN->getAPIntValue();
17116       if (ConstImm.isSignedIntN(16)) {
17117         FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
17118         SetAlignFlagsForImm(ConstImm.getZExtValue());
17119         setAlignFlagsForFI(N, FlagSet, DAG);
17120       }
17121       if (ConstImm.isSignedIntN(34))
17122         FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
17123       else
17124         FlagSet |= PPC::MOF_RPlusR; // Register.
17125     } else if (RHS.getOpcode() == PPCISD::Lo &&
17126                !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
17127       FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
17128     else
17129       FlagSet |= PPC::MOF_RPlusR;
17130   } else { // The address computation is not a constant or an addition.
17131     setAlignFlagsForFI(N, FlagSet, DAG);
17132     FlagSet |= PPC::MOF_NotAddNorCst;
17133   }
17134 }
17135 
17136 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17137 /// the address flags of the load/store instruction that is to be matched.
17138 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
17139                                            SelectionDAG &DAG) const {
17140   unsigned FlagSet = PPC::MOF_None;
17141 
17142   // Compute subtarget flags.
17143   if (!Subtarget.hasP9Vector())
17144     FlagSet |= PPC::MOF_SubtargetBeforeP9;
17145   else {
17146     FlagSet |= PPC::MOF_SubtargetP9;
17147     if (Subtarget.hasPrefixInstrs())
17148       FlagSet |= PPC::MOF_SubtargetP10;
17149   }
17150   if (Subtarget.hasSPE())
17151     FlagSet |= PPC::MOF_SubtargetSPE;
17152 
17153   // Mark this as something we don't want to handle here if it is atomic
17154   // or pre-increment instruction.
17155   if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
17156     if (LSB->isIndexed())
17157       return PPC::MOF_None;
17158 
17159   // Compute in-memory type flags. This is based on if there are scalars,
17160   // floats or vectors.
17161   const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
17162   assert(MN && "Parent should be a MemSDNode!");
17163   EVT MemVT = MN->getMemoryVT();
17164   unsigned Size = MemVT.getSizeInBits();
17165   if (MemVT.isScalarInteger()) {
17166     assert(Size <= 64 && "Not expecting scalar integers larger than 8 bytes!");
17167     if (Size < 32)
17168       FlagSet |= PPC::MOF_SubWordInt;
17169     else if (Size == 32)
17170       FlagSet |= PPC::MOF_WordInt;
17171     else
17172       FlagSet |= PPC::MOF_DoubleWordInt;
17173   } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
17174     if (Size == 128)
17175       FlagSet |= PPC::MOF_Vector;
17176     else if (Size == 256)
17177       FlagSet |= PPC::MOF_Vector256;
17178     else
17179       llvm_unreachable("Not expecting illegal vectors!");
17180   } else { // Floating point type: can be scalar, f128 or vector types.
17181     if (Size == 32 || Size == 64)
17182       FlagSet |= PPC::MOF_ScalarFloat;
17183     else if (MemVT == MVT::f128 || MemVT.isVector())
17184       FlagSet |= PPC::MOF_Vector;
17185     else
17186       llvm_unreachable("Not expecting illegal scalar floats!");
17187   }
17188 
17189   // Compute flags for address computation.
17190   computeFlagsForAddressComputation(N, FlagSet, DAG);
17191 
17192   // Compute type extension flags.
17193   if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
17194     switch (LN->getExtensionType()) {
17195     case ISD::SEXTLOAD:
17196       FlagSet |= PPC::MOF_SExt;
17197       break;
17198     case ISD::EXTLOAD:
17199     case ISD::ZEXTLOAD:
17200       FlagSet |= PPC::MOF_ZExt;
17201       break;
17202     case ISD::NON_EXTLOAD:
17203       FlagSet |= PPC::MOF_NoExt;
17204       break;
17205     }
17206   } else
17207     FlagSet |= PPC::MOF_NoExt;
17208 
17209   // For integers, no extension is the same as zero extension.
17210   // We set the extension mode to zero extension so we don't have
17211   // to add separate entries in AddrModesMap for loads and stores.
17212   if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
17213     FlagSet |= PPC::MOF_ZExt;
17214     FlagSet &= ~PPC::MOF_NoExt;
17215   }
17216 
17217   // If we don't have prefixed instructions, 34-bit constants should be
17218   // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17219   bool IsNonP1034BitConst =
17220       ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
17221        FlagSet) == PPC::MOF_RPlusSImm34;
17222   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
17223       IsNonP1034BitConst)
17224     FlagSet |= PPC::MOF_NotAddNorCst;
17225 
17226   return FlagSet;
17227 }
17228 
17229 /// SelectForceXFormMode - Given the specified address, force it to be
17230 /// represented as an indexed [r+r] operation (an XForm instruction).
17231 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
17232                                                       SDValue &Base,
17233                                                       SelectionDAG &DAG) const {
17234 
17235   PPC::AddrMode Mode = PPC::AM_XForm;
17236   int16_t ForceXFormImm = 0;
17237   if (provablyDisjointOr(DAG, N) &&
17238       !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
17239     Disp = N.getOperand(0);
17240     Base = N.getOperand(1);
17241     return Mode;
17242   }
17243 
17244   // If the address is the result of an add, we will utilize the fact that the
17245   // address calculation includes an implicit add.  However, we can reduce
17246   // register pressure if we do not materialize a constant just for use as the
17247   // index register.  We only get rid of the add if it is not an add of a
17248   // value and a 16-bit signed constant and both have a single use.
17249   if (N.getOpcode() == ISD::ADD &&
17250       (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
17251        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
17252     Disp = N.getOperand(0);
17253     Base = N.getOperand(1);
17254     return Mode;
17255   }
17256 
17257   // Otherwise, use R0 as the base register.
17258   Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17259                          N.getValueType());
17260   Base = N;
17261 
17262   return Mode;
17263 }
17264 
17265 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
17266 /// compute the address flags of the node, get the optimal address mode based
17267 /// on the flags, and set the Base and Disp based on the address mode.
17268 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
17269                                                        SDValue N, SDValue &Disp,
17270                                                        SDValue &Base,
17271                                                        SelectionDAG &DAG,
17272                                                        MaybeAlign Align) const {
17273   SDLoc DL(Parent);
17274 
17275   // Compute the address flags.
17276   unsigned Flags = computeMOFlags(Parent, N, DAG);
17277 
17278   // Get the optimal address mode based on the Flags.
17279   PPC::AddrMode Mode = getAddrModeForFlags(Flags);
17280 
17281   // Set Base and Disp accordingly depending on the address mode.
17282   switch (Mode) {
17283   case PPC::AM_DForm:
17284   case PPC::AM_DSForm:
17285   case PPC::AM_DQForm: {
17286     // This is a register plus a 16-bit immediate. The base will be the
17287     // register and the displacement will be the immediate unless it
17288     // isn't sufficiently aligned.
17289     if (Flags & PPC::MOF_RPlusSImm16) {
17290       SDValue Op0 = N.getOperand(0);
17291       SDValue Op1 = N.getOperand(1);
17292       int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
17293       if (!Align || isAligned(*Align, Imm)) {
17294         Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
17295         Base = Op0;
17296         if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
17297           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17298           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17299         }
17300         break;
17301       }
17302     }
17303     // This is a register plus the @lo relocation. The base is the register
17304     // and the displacement is the global address.
17305     else if (Flags & PPC::MOF_RPlusLo) {
17306       Disp = N.getOperand(1).getOperand(0); // The global address.
17307       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
17308              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
17309              Disp.getOpcode() == ISD::TargetConstantPool ||
17310              Disp.getOpcode() == ISD::TargetJumpTable);
17311       Base = N.getOperand(0);
17312       break;
17313     }
17314     // This is a constant address at most 32 bits. The base will be
17315     // zero or load-immediate-shifted and the displacement will be
17316     // the low 16 bits of the address.
17317     else if (Flags & PPC::MOF_AddrIsSImm32) {
17318       auto *CN = cast<ConstantSDNode>(N);
17319       EVT CNType = CN->getValueType(0);
17320       uint64_t CNImm = CN->getZExtValue();
17321       // If this address fits entirely in a 16-bit sext immediate field, codegen
17322       // this as "d, 0".
17323       int16_t Imm;
17324       if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
17325         Disp = DAG.getTargetConstant(Imm, DL, CNType);
17326         Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17327                                CNType);
17328         break;
17329       }
17330       // Handle 32-bit sext immediate with LIS + Addr mode.
17331       if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
17332           (!Align || isAligned(*Align, CNImm))) {
17333         int32_t Addr = (int32_t)CNImm;
17334         // Otherwise, break this down into LIS + Disp.
17335         Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
17336         Base =
17337             DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
17338         uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
17339         Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
17340         break;
17341       }
17342     }
17343     // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
17344     Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
17345     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
17346       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17347       fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17348     } else
17349       Base = N;
17350     break;
17351   }
17352   case PPC::AM_None:
17353     break;
17354   default: { // By default, X-Form is always available to be selected.
17355     // When a frame index is not aligned, we also match by XForm.
17356     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
17357     Base = FI ? N : N.getOperand(1);
17358     Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17359                                 N.getValueType())
17360               : N.getOperand(0);
17361     break;
17362   }
17363   }
17364   return Mode;
17365 }
17366 
17367 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
17368                                                  bool Return,
17369                                                  bool IsVarArg) const {
17370   switch (CC) {
17371   case CallingConv::Cold:
17372     return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
17373   default:
17374     return CC_PPC64_ELF_FIS;
17375   }
17376 }
17377